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FUNDAMENTALS OF
SOFTWARE TESTING & ANALYSIS



Engineering Processes

« All engineering processes have two common activities.
— Construction (1)
— Checking (#@=#, #al)

« Software engineering (purpose: construction of high-quality software)
— Construction (= Development)
— Verification — ourConcern!

KU
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Verification Activities : An Example of Testing Activities

|
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Requirements | Requirements | Architectural Detailed Unit Codin Integration & N R aREs
Elicitation Specification Design Design g Delivery
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£ | Identify qualites
=1
E
o« Plan system test
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i [ Plan unit & integration test
=4
£ | Monitor the A&T process
] Validate specifications
@
“E- | Analyze architectural design |
_E | Inspect architectural design |
=
m
£ | Inspect detailed design |
1
= Code inspection
“ Generate system test ]
e
E ! Generate integration test l
o
5 Generate unit test
=
g [ Generate regression test I
T
Q Update regression test

test case execution and sw validation

| Design scaffolding |

| Design oracles |

| Execute unit test |

| Analyze coverage ‘

| Generate structural test |

| Execute integration test I

| Execute system test |

| Execute acceptance test |

l Execute regression test ‘

Process
improvement

| Collect data on faults |

| analyze faults and improve the process |
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Verification and Validation (V&V)

« Validation: Are we building the right software?

— “Does the software system meet the user's real needs?”

« Verification: Are we buiIding the software, right? (with respect to requirements specification)

— “Does the software system meet the requirements specifications?”
Y q 14

SW

Actual '
Requiranents Sytan

Validation Verification
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V&V Depends on Specifications

* Unverifiable (but validatable) specification

— “If a user presses a request button at floor i, an available elevator must arrive at floor i soon.”

» Verifiable specification:

— “If a user presses a request button at floor i, an available elevator must arrive at floor i within 30 seconds.”

EPENDABLE SOFTWARE 1 O
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V-Model of V&V Activities

Actual Needs and P .
Constraints f; User Acceptance (alpha, beta test) Package
System
System Systmm Tust Integration
Specifications | , : . .
\,_l Analysis / Review
P Subsystem /I ;
: Design/Specs \I Integration Test Subsystem 4
1 :' Verification
Analysis / Review ;
Unit/ : |
o Unit /
o Components Module Test Components
Specs
\ User review of external behavior as it is determined or

becomes visible
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Undecidability of Correctness Properties

Correctness properties are not decidable.

— Halting problem is embedded in almost every property of interest.

2N

=

EPEMNDABLE SOFTWARE

In computability theory, the halting problem is the problem of determining, from a
description of an arbitrary computer program and an input, whether the program will finish

running, or continue to run forever. Alan Turing proved in 1936 that a general algorithm to
solve the halting problem for all possible program—input pairs cannot exist.

12
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3 Dimensions of STA Activities

Theorem proving: « Optimistic Inaccuracy

Unbounded eff Perfect verification of
n OUTae?ifyege%r;rtaol arbitrary properties by - We may accept some programs that do not

. logical proof or exhaustive
RIOREMISS. testing (Infinite effort) possess the property.. .
— It may not detect all violations.
— Testing

Model checking:
Decidable but
possibly intractable
checking of simple
temporal properties.

* Pessimistic Inaccuracy

— Not guaranteed to accept a program even if the
program does possess the property being
Tvpical tesfing analyzed, because of false alarms

teqhniques — Static Code Analysis

(8l Data flow
analysis

Precise analysis of
simple syntactic
properties.

« Simplified Properties
— It reduces the degree of freedom by simplifying
the property to check.
— Theorem Proving, Model Checking

Optimistic
inaccuracy

Pessimistic
inaccuracy

13
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Software Quality

* Qualities cannot be added after development.

— Quality results from a set of inter-dependent activities.
* Quality depends on every part of the software process.

— Quality assurance is not a phase, but a life-style.

» Testing and analysis activities occur from early in requirements engineering through delivery and subsequent evolution.

* An essential feature of software development processes is

“Software test and analysis is thoroughly integrated into development processes.”

Superseded Standard

IEEE 1074-2006

IEEE Standard for Developing a Software Project
Life Cycle Process

| DEPEMDABLE SOFTWARE
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Software Quality Process

* Quality process

— A set of activities and responsibilities focusing on ensuring adequate dependability concerned with project
schedule or with product usability

— A&T planning is Integral to the quality process.
* Quality goals can be achieved only through careful A&T planning.
+ Selects and arranges STA activities to be as cost-effective as possible
* Should balance several STA activities across the whole development process

* Quality process provides a framework for
— Selecting and arranging STA activities and considering interactions and trade-offs with other important goals.

Active Standard

IEEE 730-2014

IEEE Standard for Software Quality Assurance
Processes

| DEPEMDABLE SOFTWARE
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An Example of Other Important Goals

o  High Depandability vs. TimetoMarket

 Critical medical devices

— Better to achieve ultra-high dependability on a much longer schedule than a reasonably high degree of
dependability on a tight schedule

« Mass market products

— Better to achieve a reasonably high degree of dependability on a tight schedule than to achieve ultra-high
dependability on a much longer schedule

KU
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A&T Plan

« A comprehensive description of the quality process that includes:
— Objectives, goals and scope of A&T activities
— Documents and other items that must be available
— Items to be tested
— Features to be tested and not to be tested
— Analysis and test activities
— Staff involved in A&T
— Constraints
— Pass and fail criteria for Test
— Schedule
— Deliverables
— Hardware and software requirements
— Risks and contingencies

(} DerenDaBLE SOFTWARE 1 7
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Quality Goals

« Goal must be further refined into a clear and reasonable set of objectives.

« Product quality : goals of software quality engineering
* Process quality : means to achieve the goals (i.e., product quality)

* Product qualities
— Internal qualities: invisible to clients
- Maintainability, Flexibility, Reparability, Changeability ISO/IEC 25010:2011

— External qualities: directly visible to clients Systems and software engineering —
Systems and software Quality

+ Usefulness . .
- . . . Requirements and Evaluation (SQuaRE)
— Usability, Performance, Security, Portability, Interoperability — System and software quality models

+ Dependability
— Correctness, Reliability, Safety, Robustness
— Availability, Reliability, Safety, Security

g
EPENDABLE SOFTWARE 1 8
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Dependability

* Dependability = trustworthiness to a system
— Dependable system is a system that is trusted by its users.

» Principal dimensions of dependability
— Availability, Reliability, Safety, Security
— Others are Reparability, Maintainability, Survivability, Error tolerance, etc.

The ability of the system The ability of the system The ability of the system The ability of the system

to deliver services to deliver services to operate without to protect itself against
when requested as specified catastrophic failure accidental or deliberate
intrusions

EPENDABLE SOFTWARE
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Dependability Costs

 Dependability costs
— Cost to achieve the required dependability

— Tend to increase exponentially as required levels of dependability increase
* More expensive development techniques and hardware are required.
* Increased testing and system validation are also required.

Cost ¢

»
»

Low Medium  High Very High Ultra High
Dependability

b
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Dependability Economics

 Dependability Economics

— “It may be more cost effective to accept untrustworthy systems and pay for failure costs, because of very high
costs of dependability achievement.”

 However, it depends on
— Social and political factors
» Poor reputation for products may lose future business.
— System types
* For business systems (custom SW), modest levels of dependability may be adequate.

EPENDABLE SOFTWARE 2 1
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Dependability Properties

Correctness —
— Aprogram is correct if it is consistent with its specification.
— Seldom practical for non-trivial systems

Reliability
— Likelihood of correct function for some “unit” of behavior
— Statistical approximation to correctness (100% reliable = correct) -

Safety
— Concerned with preventing certain undesirable behavior, called hazards
— “Catastrophes should never happen.”

Robustness
— Providing acceptable (degraded) behavior under extreme conditions
— Fail softly —

I o

i
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An Example of Dependability Properties

« Correctness, Reliability :

— Let traffic pass according to correct pattern and
central scheduling

* Robustness, Safety :
— Provide degraded function when it fails

— Never signal conflicting greens
 Blinking red / blinking yellow is better than no lights.
* No lights is better than conflicting greens.

EPENDABLE SOFTWARE 2 3
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Relationship among Dependability Properties

Reliable but not Correct:
Failures can occur rarely

Robust but not Safe:
Catastrophic failures can occur

Correct but not Safe nor Robust:
The specification is inadequate

EPENDABLE SOFTWARE
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Robust

Safe but not Correct:
Annoying failures can occur

KU o
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SQA Engineers

«  SQA : Software Quality Assurance

» A pretty important engineer for assuring SW quality consistently
— Managing quality process
— Selecting appropriate activities for each project/organization
* Preparing, Monitoring, Evaluating, Improving
— Keeping balance between quality and other goals (time to market)
— Experienced well

— Working on the rock of deep/solid/accurate knowledge on STA activities
+ Testing
« Static Analysis
* Model Checking
* + Review

g
EPENDABLE SOFTWARE 2 5
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Basic Questions on Software Verification

1. When do verification and validation start and end?

2. What techniques should be applied?

3. How can we assess the readiness of a product?

4. How can we ensure the quality of successive releases?

5. How can the development process be improved?

26
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1. When Do Verification and Validation Start and End?

* For an example, Test

— A widely-used V&V activity
— Usually known as a last activity in software development process, but not the last activity is “test execution”

— Test execution is a small part of V&V process

+ V&V start as soon as we decide to build a software product, or even before.

« V&V last far beyond the product delivery as long as the software is in use, to cope with evolution and
adaptations to new conditions.

27
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Early Start: From Feasibility Study

» Feasibility study of a new project must take into account required qualities and their impact on the
overall cost.

* Quality related activities include
— Risk analysis
— Measures needed to assess and control quality at each stage of development
— Assessment of the impact of new features and new quality requirements
— Contribution of quality control activities to development cost and schedule

{ :r'lgn'::]:}F_PENDABLE SOFTWARE 28
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Long Lasting: Beyond Maintenance

 Maintenance activities include
— Analysis of changes and extensions
— Generation of new test suites for the added functionalities

— Re-executions of tests to check for non regression of software functionalities after changes and extensions
— Fault tracking and analysis

Y
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2. What Techniques Should be Applied?

« No single A&T technigue can serve all purposes.

THERE'S NOSILVER BULLET

» The primary reasons for combining techniques are:
— Effectiveness for different classes of faults
+ analysis instead of testing for race conditions
— Applicability at different points in a project
* inspection for early requirements validation 1‘0 ":lilll cr ﬂlllll‘t
— Differences in purpose

« statistical testing to measure reliability m&mﬁ g:"i“:f; I-B:n“:;lil::;uing
Reloaded

— Tradeoffs in cost and assurance
+ expensive technique for key properties

Frederick P, Brooks, Jr.
University of Nerth Carolina at Chapel Hill Staven Fraser and Densts Mamci

“No single software engineering development would
produce an order-of-magnitude improvement to
programming productivity within10 years.”

Fredrick Brooks 1986

EPENDABLE SOFTWARE 3 O
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Integration &

Requirements | Requirements | Architectural Detailed
Delivery

Elicitation Specification Design Design

Identify qualites

| Plan acceptance test |

Plan system test

| Plan unit & integration test

Unit Coding Maintenance

ing

Planning & monitor

| Monitor the A&T process

| Validate specifications |

| Analyze architectural design |

| Inspect architectural design |

| Inspect detailed design |

Code inspection

Verification of specs

Generate system test |

Generate integration test |

| Generate unit test |

| Generate regression test |

Generation of tests

| Update regression test |

| Design scaffolding |

| Design oracles |

| Execute unit test |

| Analyze coverage |

| Generate structural test |

| Execute integration test |

| Execute system test |

| Execute acceptance test |

test case execution and sw validation

| Execute regression test |

| Collect data on faults |

| analyze faults and improve the process | 31

Process
improvement
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3. How Can We Assess the Readiness of a Product?

« A&T activities aim at revealing faults during development.
— We cannot reveal or remove all faults.
— A&T cannot last infinitely.

* One day all A&T activities must stop.

+ We have to know whether products meet the quality requirements or not.

— We must specify the required level of dependability.
- Metric & Measurement

— We can determine when that level has been attained.
- Assessment

Y
() DEPENDABLE SOFTWARE 32
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4. How Can We Ensure the Quality of Successive Releases?

« Software products operate for many years and undergo many changes.
— To adapt to environment changes
— To serve new and changing user requirements

« A&T activities does not stop at the first release.

Overall Structure #2

Version

il
 Quality tasks after delivery include a éw (] Contm'a / Ay StaﬁcAnawsis\

— Test and analysis of new and modified code 1t
— Re-execution of system tests A S ™
— Extensive record-keeping o ( @ c Server FindBugs
Rl Communication w Jenkins
Mradle . I k ‘ checksty'e
+ CTIP helps a lot. fs SIACK Y] Bui Fmd
Mradle mw
Unit Test
JUnit@ Bug Tracking/ . ‘ Tes Sweter
— Requirements [ A Bb-f

Management  REDMINE Link Fi=sting

EPENDABLE SOFTWARE 3 3
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9. How Can the Development Process be Improved?

» The same defects are encountered in project after project.
« We can improve the quality through identifying and removing weaknesses

— in development process

— in A&T process (quality process)

Organizational Requirements Configuration
- SPI (Software Process Improvement) Befinifion Management

Monitoring & Control

Organizational Stopli :
: S upplier Agreement
Process Definition ’h,rkmngﬁmem

Process & Product

Technical

=n
E=3
B3
=2
==

Organizational

of an organization (Lv. 1 ~ 5). Managemen
1. Initial : Essentially uncontrolled

Repeatable : Product (projecty management procedures are defined and used.

Defined : Process management procedures and strategies are defined and used.

Managed : Quality management strategies are defined and used.

Optimizing : Process improvement strategies are defined and used.

EPENDABLE SOFTWARE 34
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Casual Analysis

Solution Quiality Assurance
‘Organizational Product Measurement
Training Management Integration & Analysis
‘
o e Decision Analysis
L o . - Verfication & Reliaon
« CMMi tries to evaluate quantitatively process quality il
Qual oject
1

HQlOCBORY & Resolution

M

=
=
=N
=
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BASIC SOFTWARE TESTING & ANALYSIS
TECHNIQUES

* Finite Models

= Data Dependency and Data Flow Models

» Symbolic Execution and Proof of Properties
» Finite State Verification



Finite Models

= CFG
= Call Graph
= FSM



Model

« A model is a representation that is simpler than the artifact it represents.
— While preserves some important attributes of the actual artifact

* Our concern is with models of program execution.

]{'l ]’ KONKUK
UNIVERSITY
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Directed Graph

« Directed graph:
— N : set of nodes
— E : setof edges (relation on the set of nodes)

KU oo
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Directed Graph with Labels

* We can label nodes with the names or descriptions of the entities they represent.

— If nodes a and b represent program regions containing assignment statements, we might draw the two nodes
and an edge (a, b) connecting them in this way:

Y
'ns  DEPENDABLE SOFTWARE 40
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Finite Abstractions of Behavior

Two (side) effects of abstraction

— Coarsening of execution model

______________________________________________

— Introduction of nondeterminism

b
| DEPENDABLE SOF TWARE

[ele]e)

orle)

[elel )

("‘\
- J

___________

0@

A\
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Intraprocedural Control Flow Graph

+ Called “Control Flow Graph” or “CFG”
— Adirected graph (N, E)

* Nodes
— Regions of source code (basic blocks)
— Basic block = maximal program region with a single entry and single exit point
— Statements are often grouped in single regions to get a compact model.
— Sometime single statements are broken into more than one node to model control flow within the statement.

* Directed edges
— Possibility that program execution proceeds from the end of one region directly to the beginning of another

42
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An Example of CFG

public static String collapseNewlines(String argStr)

{
char last = argStr.charAt(0);

StringBuffer argBuf = new StringBuffer();

for (int cldx = 0 ; cldx < argStr.length(); cldx++)

{
char ch = argStr.charAt(cldx);

if (ch !="\n' || last !="\n')
{

argBuf.append(ch);

last = ch;

return argBuf.toString();

EPENDABLE SOFTWARE
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public static String collapseNewlinesiString argSir)

v

{ b2
char last = argStr.charAti0);
StringBuffer argBuf = new StringBuffer();

for {intcldx =0 ;

(cldx < argStr.length{); (hS\-

-
,—False—fl-—Truaj
[ b
char ch = argStr.charAt{cldx);
if {ch ="
alse—)—True
G | last 1= ") @%)
True

b6
argBul.append{ch);
last = ch;
}

False l
E ©
cldx++)

P

retum argBuf.toString(); e
!
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The Use of CFG

« CFG may be used directly to define thoroughness criteria for testing.
— Test Case Selection and Adequacy
— Structural Testing

 CFGis often used to define another model which is used to define a thoroughness criterion.
— Data Flow Graph
— Data Dependency Graph
— Control Dependency Graph

KU KONKUK
UNIVERSITY
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Call Graph

* “Interprocedural Control Flow Graph” = Call Graph
— Adirected graph (N, E)

* Nodes
— Represent procedures, methods, functions, etc.

 Edges

— Represent ‘call’ relation

« Call graph presents many more design issues and trade-off than CFG.
— Overestimation of call relation
— Context sensitive/insensitive

| Y
-
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Overestimation in a Call Graph

« The static call graph includes calls through dynamic bindings that never occur in execution.

public class C {
public static C cFactory(String kind) {
if (kind == "C") return new C();
if (kind =="S") return new S();

return null; A.check()

}
void foo() {

System.out.println("You called the parent's method");
}

public static void main(String args[]) {

(new A()).check(); \

class S extends C {

void foo() { C.foo() S.foo() C.cFactory(string)
System.out.println("You called the child's method");
}

}
class A { . .
void check() { never occur in execution

C myC = C.cFactory("S");
myC.foo();

}
}

b
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Context Sensitive/Insensitive Call Graphs

public class Context {
public static void main(String args[]) {
Context ¢ = new Context();
c.foo(3); main main
c.bar(17);
}

void foo(int n) {
int[] myArray = new int[ n J;
depends(myArray, 2) ; C foo C.bar C.foo(3) C.bar(17)

}

void bar(int n) {
int[] myArray = new int[ n J;
depends( myArray, 16) ;

} C.depends C.depends(int(3) a,2) C.depends (int(17) a,16)

A

void depends(int[] a, intn) {
a[n] =42;
}
}

< Context Insensitive > < Context Sensitive >

b
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Finite State Machine

« FSMs are constructed prior to source code and serve as specifications.
— While CFGs can be extracted from programs.
— Adirected graph (N, E)
— CFG and FSM are duals.

* Nodes

— Afinite set of states

 Edges

— A set of transitions among states

LF CR EOF other char
e | e/emit I/ emit d/- w / append
w [ e/emit I/ emit d/emit w / append
| el- d/- w / append

I S
[ (M DEPENDABLE SOFTWARE
) LABORATORY

—

_LF Other char
emit apend

Other char
LF CR_ append
emit

! Looking for

\ optional DOS LF
E

KU oo
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Abstract Function for Modeling FSMs
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e = N L

[T T % T o~ T - T T % T o+ T % T & T S T 2 L e T et
PR = O O 0 o~ D kW N = O D3 kW N = O @D

a3
34
as

/" Convert each line from standard input "/
void transduce() {

}

#define BUFLEN 1000
char buf[BUFLEN]; /* Accumulate fine into this buffer %/
int pos=0; /* Index for next character in buffer */

char inChar; /* Next character from input */
int atCR = 0; /" 0="within line”, 1="optional DOS LF" "/

while ((inChar = getchar()) != EOF ) {
switch (inChar) {
case LF:
if (atCR) { /* Optional DOS LF */
atCR = 0;
}else { /* Encountered CR within line */
emit{buf, pos);
pos=0;
}
break;
case CR:
emit(buf, pos);
pos =0;
atCR = 1;
break;
default:

if (pos >= BUFLEN-2) fail("Buffer overflow");

buf[pos++] = inChar;
} 7 switch ¥/

if (pos > 0) {
emit(buf, pos);

b

Abstract state | Concrete stite
Lines | atCR | pos
e (Empty buffer) | 3—-13 | O 0
w (Within line) | 13 0 =0
1 {(Locking for LF) | 13 1 0
d (Done) | 36 - -
Moddingwith
Abstraction
LF CR EOF other
e | e/emit | 1/emit | d/- w /[ append
e/emit | 1/emit | d/emit | w/append
1l |el- 1/ emit | d/- w /[ append

49
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Correctness Relations for FSM Models

FSM Model Program
- public static Tablel
rd Y ‘“x_ getTablel [} |
.l_,."' '-.,\ if {ref == mnull) {
I-' . ! synchroniged (Tablel) {
RBC]LIII"E!d ‘::. if (ref == mull){
i i ref = new Tablel(),;
Froperties ref.inizialize(};
i - H
..\-. “ S : 1
M A 'f:l return ref;
. | S
The model is syntactically ,
The model satisfies well-fromed, consistent The model accurately
The specification and complete represents the program

EPENDABLE SOFTWARE 5 O
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Data and Control Dependence

= Data Dependency Graph
= Control Dependency
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Why Data Flow Models Need?

« The 3 Finite models emphasize control flow only.
— Control flow graph
— Call graph
— Finite state machine

+ We also need to reason about data dependence to reason about transmission of information through
program variables.

* “Where does this value of x come from?”
o “What would be affected by changing this?”

* Many program analyses and test design techniques use data flow information and dependences,
and often in combination with control flows.

| Y
-
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Definition-Use Pairs

- Def-use (du) pair associates a point in a program where a value is produced with a point where it is used.

« Definition: where a variable gets a value
— Variable declaration
— Variable initialization
— Assignment
— Values received by a parameter

» Use: extraction of a value from a variable
— Expressions
— Conditional statements
— Parameter passing
— Returns

54
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Def-Use Pairs and Def-Use Paths

i‘;.(-")_{; [ if (..) J

X=.. ‘ Definition: x gets
\ a value

e /\”’I
} _
y=..+x+..; L )

!

path

S
‘ Use: the value of x
Def-Use l’;%// is extracted

n
b8 i
X | DEPENDABLE SOFTWARE 5 5
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Def-Use Pairs

/** Euclid's algorithm */
public int gcd(int x, int y) {

while (y!=0){ //B:usey

}

return x; // F: use x

int tmp; // A: def x, y, tmp

tmp=x%y; //C:deftmp;usex,y
X=y; // D: def x; use y
y = tmp; // E: def y; use tmp

EPENDABLE SOFTWARE
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—{ public int gcd

!

p

public int ged{int x, int y} {

int tmp; def={x y. tmp}
\ l use ={}
-
while (y 1= 0) @
D
\‘E def=(}
Fals '4 per
/ True
s g
tmp =x % y; \(D
W def={tmp}
l use = {x, y}
-
ﬁ ~ (0)
" def={x}
‘ use = {y}
/y = tmp; @
i def = {y}
use = {tmp}
\
&A.Eeturn X @
L def={}
use = {x}
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Definition-Clear & Killing

« Adefinition-clear path is a path along the CFG from a definition to a use of the same variable without
another definition of the variable between.

— If, instead, another definition is present on the path, then the latter definition kills the former.

+ Adef-use pair is formed if and only if there is a definition-clear path between the definition and the use.

Y
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Definition-Clear & Killing

< N X o X
1

/I A: def x
Y; /I B: Kill x, def x

f(x); /I C:use x

Path A..C is not definition-clear <

Path B..C is definition-clear <

-

Definition: x
gets a value

Definition: x gets a
B _ 1 new value, old
\ X=Yy ) value is killed
' l Y
;/ : \ Use: th I f
C _ se: the value o
\ y = f(x) X is extracted
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(Direct) Data Dependence Graph

* Direct data dependence graph
— “Where did these values come from?”

— Adirect graph (N, E)

Nodes: as in the control flow graph (CFG)

Edges: def-use (du) pairs, labelled with the variable name

}

/** Euclid's algorithm */

public int ged(int x, int y) {
int tmp; // A: def x, y, tmp
while (y!=0){ //B:usey

tmp=x%y; //C:deftmp;usex,y
X=vy; // D: def x; use y
y = tmp; // E: def y; use tmp

return x; // F: use x

EPENDABLE SOFTWARE
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'fpl.JtJIi{: int ged{int x, inty) {

[while (y 1= 0)
{

KU KONKUK
UNIVERSITY

\ifmtmp;l — )
A I \ -H\
rx_' ly  vmmmmes y""“\ |
7 b ¥ ' :
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’ y y | i :
Y ¥ |
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Y
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Control Dependence

« Control dependence

— “Which statement controls whether this statement executes?”

— A (rooted) directed graph
* Nodes: as in the CFG

+ Edges: unlabelled, from entry/branching points to controlled blocks

/** Euclid's algorithm */
public int ged(int x, int y) {

while (y!=0){ //B:usey

}

return x; // F: use x

}

int tmp; // A: def x, y, tmp

tmp=x%y; //C:deftmp;usex,y
X=Yy; // D: def x; use y
y = tmp; // E: def y; use tmp

EPENDABLE SOFTWARE
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(mp=x%y

"public int ged(int x, int y) {

@%
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Dominator

Pre-dominators are used to make this intuitive notion of “controlling decision” precise.

Node M dominates node N, if every path from the root to N passes through M.

— A node will typically have many dominators, but except for the root, there is a unique immediate dominator of
node N which is closest to N on any path from the root, and which is in turn dominated by all the other
dominators of N.

— Because each node (except the root) has a unique immediate dominator, the immediate dominator relation
forms a tree.

Post-dominators are calculated in the reverse of the control flow graph, using a special “exit” node as
the root.

b
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An Example of Dominators

A « A pre-dominates all nodes.

| * G post-dominates all nodes.

B

 F and G post-dominate E.
/\ § « G is the immediate post-dominator of B.
C E
h . b ’ « C does not post-dominate B.

D F « B is the immediate pre-dominator of G.

\/ * F does not pre-dominate G.
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More Precise Definition of Control Dependence

* We can use post-dominators to give a more precise definition of control dependence
— Consider again a node N that is reached on some but not all execution paths.
— There must be some node C with the following property:
* C has at least two successors in the control flow graph (i.e., it represents a control flow decision).

* C s not post-dominated by N.
* There is a successor of C in the control flow graph that is post-dominated by N.

— When these conditions are true, we say node N is control-dependent on node C.

« Intuitively, if C is the last decision that controls whether N executes or not, we say that N is control-
dependent on C.

LABORATORY
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An Example of Control Dependence

I Execution of F is

not inevitable at B

B
A """""""""""""" Execution of F is
;C_, ;E_, inevitable at E
D F

F is control-dependent on B,

the last point at which its
execution was not inevitable
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Symbolic Execution and Proof of Properties



KU
Symbolic Execution

« Symbolic execution builds predicates that characterize conditions for executing paths and effects of the
execution on program state.

— Bridges program behavior to logic

* Finds important applications in
— Program analysis
— Test data generation

— Formal verification (proofs) of program correctness
* Rigorous proofs of properties of critical subsystems
— Example: safety kernel of a medical device
» Formal verification of critical properties particularly resistant to dynamic testing
— Example: security properties
» Formal verification of algorithm descriptions and logical designs
— less complex than implementations

KONKUK
UNIVERSITY
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Symbolic Execution

« Tracing execution with symbolic values and expressions
— Values are expressions over symbols.
— Executing statements computes new expressions with the symbols.

Execution with concrete values Execution with symbolic values

(before) (before)

low 12 low L

high 15 high H

mid - mid -

mid = (high + low) / 2 mid = (high + low) / 2
(after) (after)

low 12 Low L

high 15 high H

mid 13 mid (L+H) / 2

EPENDABLE SOFTWARE 68
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Tracing Execution with Symbolic Executions

A Yk, 0 <k < size : dictKeys[k] =key > L<k<H

char *binarySearch( char *key, char *dictKeys| 1, AH2M21
char *dictValues[ ], int dictSize) {

int low = 0; Execution with symbolic values
int high = dictSize - 1;
f“t mid; ) (before)
int comparison; low =0
A high = H-1
while (high >= low) { A € / supposed
d =(H-1)/2
mid = (high + low) / 2; mid = (H-1)/
comparison = strcmp( dictKeys[mid], key ); while (high >= low) {
if (comparison < 0) {
low = mid + 1; (after)
} else if ( comparison >0) { low = 0
high = mid - 1; A high = H-1
}else { A : when true
d=(H-1)/2
return dictValues[mid]; A ?:ll_l)/é ) kl{, >= 0/
}
} A not((H-1)/2 - key >= 0)
return O;
when false
}

LABORATORY
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Summary Information

Symbolic representation of paths may become extremely complex.

We can simplify the representation by replacing a complex condition P with a weaker condition W
such that
- P=W
* W describes the path with less precision.
— Wis a summary of P.

EMNDABLE SOFTWARE
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An Example of Summary Information

» If we are reasoning about the correctness of the binary search algorithm,

— “mid = (high+low) /2"

Complete condition:

low =L
A high=H
A mid=M

A M= (L+H)/2

« The weaker condition contains less information,

Weaker condition:

low =L
A high=H
A mid=M

A L<=M<=H

but still enough to reason about correctness.

71



Weaker Precondition

* The weaker predicate “L <= mid <= H” is chosen based on what must be true for the program to
execute correctly.

— It cannot be derived automatically from source code.
— It depends on our understanding of the code and our rationale for believing it to be correct.

* A predicate stating what should be true at a given point can be expressed in the form of an assertion.

 Weakening the predicate has a cost for testing.

— Satisfying the predicate is no longer sufficient to find data that forces program execution along that path.
+ Test data satisfying a weaker predicate W is necessary to execute the path, but it may not be sufficient.
* Showing that W cannot be satisfied shows path infeasibility.
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; LABORATORY



() DEPENDABLE SOFTWARE

Loops and Assertions

« The number of execution paths through a program with loops is potentially infinite.

« To reason about program behavior in a loop, we can place within the loop an invariant.
— Assertion that states a predicate that is expected to be true each time execution reaches that point

« Each time program execution reaches the invariant assertion, we can weaken the description of

program state.
— |If predicate P represents the program state and the assertion is W

— We must first ascertain P => W
— And then we can substitute W for P

LABORATORY
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Precondition and Postcondition

Supposed that
— Every loop contains an assertion (Loop Invariant)
— There is an assertion at the beginning of the program (Precondition)

— There is a final assertion at the end (Postcondition)

Then
— Every possible execution path would be a sequence of segments from one assertion to the next.

Precondition : the assertion at the beginning of a segment
Postcondition : the assertion at the end of the segment

I | Y
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Verification of Program Correctness

* For each program segment, if we can verify that
— Starting from the precondition,
— Executing the program segment,

— And postcondition holds at the end of the segment.

« Then, we can verify the correctness of an infinite number of program paths.

EPENDABLE SOFTWARE
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An Example of Verification with Assertions

char *bLnarxtsigarcl}( char *_keyaghar *dictKeys[ ], Precondition: “should be sorted”
char *dictValues[ ], int dictSize) { Vi,j, 0<i <] <size : dictKeys[i] < dictKeyslj]

int low =0;
int high = dictSize - 1;
int mid;
int comparison;
Invariant: “should be in range”
while (high >= low) { ﬁ Vi, 0 <i < size : dictKeys[i] = key = low <i < high
mid = (high + low) / 2;
comparison = strcmp( dictKeys[mid], key );
if (comparison < 0) {
low = mid + 1;
} else if ( comparison >0) {
high = mid - 1;
} else {
return dictValues[mid];
}
}

return O;

b
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When Executing the Loop

Initial values: low =1L

A high=H

Precondition
Vij, 0 =i <j<size : dictkeys][i] < dictKeys]j]

Instantiated invariant: Vi, j, 0 <i<j<size: dictKeys][i] < dictKeys[j]

A YKk, 0 < k < size : dictKeys[k] =key > L<k<H

After executing: mid = (high + low) / 2
Invariant
low=1L Vi,0<i<size:
A high=H dictKeys][i] = key — low <i < high
Amid=M

A Vi, j,0<i<j<size: dictKeys[i] < dictKeys[j]
A YKk, 0 <k < size: dictKeys[k] =key > L<k<H
AH2M2L

Y
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After executing the Loop

In case of M < key < H

After executing the loop: low = M+1
A high=H
Amid=M
A Vi, j,0<i<j<size: dictKeys[i] < dictKeys[j]
A YKk, 0 < k <size: dictKeys[k] =key > L<k<H
AH2M2L
A dictkeys[M] < key

The new instance of the invariant: Vi, j, 0 <i<j<size: dictKeys[i] < dictKeys|[j]
A Yk, 0 <k < size : dictKeys[k] = key > M+1 < k<=H

o [Ifthe invariant is satisfied, then the loop is correct with respect to the preconditions and the invariant.

EPENDABLE SOFTWARE
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At the End of the Loop

» Even the invariant is satisfied, but the postcondition is false:

low=1L
A high=H
A Vi, j,0<i<]j<size: dictKeys]i] < dictKeys|j]
A VK, 0 < k < size : dictKeys[k] =key > L<k<H
A L>H

» If'the condition satisfies the post-condition, then the program is correct with respect to the pre-condition and
post-condition.

79



Compositional Reasoning

* Follow the hierarchical structure of a program
— at a small scale (within a single procedure)
— at larger scales (across multiple procedures)

 Hoare triple: [pre] block [post]

— If'the program is in a state satisfying the precondition pre at entry to the block, then after execution of the
block, it will be in a state satisfying the postcondition post.

N

(Not “it should be”)
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Reasoning about Hoare Triples: Inference

| :invariant
While loops: C : loop condition
S : body of the loop

premise \ [IAC]S[I]
[1]while(C) {S}[l A ~C] -~

/ conclusion

Inference rule says:
"if we can verify the premise (top), then we can infer the conclusion (bottom)”

g
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Other Inference Rule

if statement:

[P A C]thenpart [Q] [P A ~C] elsepart [Q]

[P] if (C) {thenpart} else {elsepart} [Q]

Y
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Reasoning Style

Summarize the effect of a block of program code by a “ contract = precondition + postcondition”
— We can then use the contract wherever the procedure is called.

Summarizing binarySearch:
(Vi,j, O<i<j<size : keys[i]<keys[j]) < precondition
s = binarySearch(k, keys, vals, size)

(s=v and 3i, O<issize : keys[i]=k A vals[i]=v) < postcondition
V (s=v A -3i, 0<issize : keys|[i]=k)

KU KONKUK
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Finite State Verification (FSV)

* Finite state verification can automatically prove some significant properties of a finite model of the
infinite execution space.
— Most important properties of program execution are not decidable.

* Need to balance trade-offs among
— Generality of properties to be checked
— Class of programs or models that can be checked
— Computational effort in checking
— Human effort in producing models and specifying properties
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Resources and Results

Properties to be proved
A

Symbolic Exeaution
complex and Formal Reasoning
FiniteState

Vaification

Applies techniques from symbolic
execution and formal reasoning to
models that abstract the potentially
infinite state space of program
behavior into finite representations

Control
and Data flow
Modds

simple Computational cost

Ny,
>

low high
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Cost of FSV

* Human effort and skill are required.
— to prepare a finite state model

— to prepare a suitable specification (property) for automated analysis

» lterative process of FSV
— Prepare a model and specify properties
— Attempt verification
— Receive reports of impossible or unimportant faults
— Refine the specification or the model

EPENDABLE SOFTWARE
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Construct
an initial model

Attempt verification
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Abstract the model
further

Make the model
more precise

L

88



KU oo

Finite State Verification Framework

public static Tablel
getTablel() {

if (ref == null) {
synchronized (Tablel) {
if (ref == null){
ref = new Tablel(); No concurrent
meEoImAElaIAAA () § modifications of
) ) Table1

}
return ref;

Dooo

Direct check of source/design
PROGRAM or DESIGN " (impractical or impossible) —>  PROPERTY OF INTEREST

Derive models o
of software Implication
or design

__ Algorithmic check | pROPERTY OF THE MODEL
of the model for the property

never(<d>and <y>)

T h N
l it
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Applications for Finite State Verifications

 Concurrent (multi-threaded, distributed, parallel, etc.) system
— First and most well-developed application of FSV
— Difficult to test thoroughly (apparent non-determinism based on scheduler)
— Sensitive to differences between development environment and field environment

« Data models
— Difficult to identify “corner cases” and interactions among constraints, or to thoroughly test them

« Security
— Some threats depend on unusual (and untested) use

LABORATORY
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Modeling Concurrent System

Deriving a good finite state model is hard.

Example: FSM model of a program with multiple threads of control

— Simplifying assumptions
* We can determine in advance the number of threads.
* We can obtain a finite state machine model of each thread.
*  We can identify the points at which processes can interact.

— State of the whole system model
* Tuple of states of individual process models

— Transition
« Transition of one or more of the individual processes, acting individually or in concert

KU oo
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An Example : On-line Purchasing System

» Specification
— In-memory data structure initialized by reading configuration tables at system start-up
— Initialization of the data structure must appear atomic.
— The system must be reinitialized on occasion.
— The structure is kept in memory.

* Implementation (with bugs)
— No monitor (e.g., Java synchronized), because it’s too expensive.

— But use double-checked locking idiom* for a fast system
+ *Bad decision, broken idiom ... but extremely hard to find the bug through testing. (before JVM 1.4)
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On-line Purchasing System - Implementation

public void reinit() { needslnit = true; }

class Tablel {
private static Tablel ref = null; private synchronized void initialize() {
private boolean needslinit = true; .
private ElementClass [ ] theValues; needslnit = false;
private Table1() { } }
public static Tablel getTablel() { public int lookup(int i) {
if (ref == null) if (needsinit) {
{ synchedinitialize(); } synchronized(this) {
return ref; if (needsinit) {
} this.initialize();
private static synchronized void synchedInitialize() { } }
if (ref == null) { }
ref = new Tablel(); return theValues[i].getX() + theValues[i].getY();
ref.initialize(); }
}
}
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Analysis on On-line Purchasing System

« Start from models of individual threads

— Systematically trace all the possible interleaving of threads
[ (a) ]
lookup()

— Like hand-executing all possible sequences of execution, x)

but automated reinit()
needslnit==true needslnit=true
(b) (y)
* Analysis begins by constructing an FSM model of each obtain lock p

individual thread. ©)

needslnit==true

(d)
modifying

needslnit==false

needslnit==false

needslnit=false

(e)

,—release lock

)

reading

LABORATORY
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Analysis (Continued)

Java threading rules:
— “When one thread has obtained a monitor lock, the other thread cannot obtain the same lock.”

Locking prevents threads from concurrently calling initialize
— But does not prevent possible race condition between threads executing the lookup method

However, tracing possible executions by hand is completely impractical.

Use a finite state verification using the SPIN model checker

KU
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Modeling the System in PROMELA

proctype Lookup(int id) {
if :: (needslInit) ->

atomic { ! locked ->locked = true; };
% if :: (needslnit) ->

assert (! modifying);
modifying = true;
: /* Initialization happens here */
C:] modifying = false ;
needslnit = false;
:: (! needslinit) ->

§ skip;
- :
locked = false ;
fi;
assert (! modifying);}

needsinit==true

acquire lock

() DEPENDABLE SOFTWARE

LABORATORY



Run SPIN and Output

 Spin
— Depth-first search of possible executions of the model
— Explores 51 states and 92 state transitions in 0.16 seconds

— Finds a sequence of 17 transitions from the initial state of the model to a state
in which one of the assertions in the model evaluates to false

Depth=10 States=51 Transitions=92 Memory=2.302

pan: assertion violated ! (modifying) (at depth 17)
pan: wrote pan_in.trail

(Spin Version 4.2.5 -- 2 April 2005)

0.16 real 0.00 user 0.03 sys
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Counterexample: Interpret the Output

proc 3 (lookup) proc 1 (reinit) proc 2 (lookup)

((a))public init lookup(int i)
if (needslnit) {

(b))

((©)) synchronized(this) {
(@) if (needsinit) {
(o)) this.initialize();

!
¥
}
((x))public void reinit()
((y)) {needslnit = true; }
((a)) public init lookup(int i)
((b))  if (needsInit) {
return ((c)) synchronized(this) {
theValuesli].getX() . ((d)) if (needslnit) {
+ theValues]i].getY(); Read/write this.initialize();
} Race condition

States (f) and (d)

LABORATORY
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The State Space Explosion Problem

« Dining Philosophers - looking for deadlock with SPIN
5 phils+forks 145 states
Deadlock found

10 phils+forks 18,313 states
Error trace too long to be useful

15 phils+forks 148,897 states
Error trace too long to be useful

EPENDABLE SOFTWARE
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The Model Correspondence Problem

» Verifying correspondence between model and program

— Extract the model from the source code with verified procedures
« Blindly mirroring all details - state space explosion
* Omitting crucial detail > “false alarm” reports

— Conformance testing
+ Combination of FSV and testing is a good tradeoff.

 Produce the source code automatically from the model
— Most applicable within well-understood domains
— A motivation of MBD (Model-Based Development)
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Granularity of Modeling

(w)

u+i;
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I
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Analysis of Different Models

* We can find the race only with fine-grain models.

RacerP RacerQ
(a) t=i
(b) t=1+1;
u=u+i;

o
i
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Looking for Appropriate Granularity

« Compilers may rearrange the order of instruction.

— A simple store of a value into a memory cell may be compiled into a store into a local register, with the actual
store to memory appearing later.

— Two loads or stores to different memory locations may be reordered for reasons of efficiency.

— Parallel computers may place values initially in the cache memory of a local processor, and only later write into
a memory area.

— Even representing each memory access as an individual action is not always sufficient.

» Example: Double-check idiom only for lazy initialization

— Spin assumes that memory accesses occur in the order given in the PROMELA program, and we code them in
the same order as the Java program.

— But Java does not guarantee that they will be executed in that order.
— And SPIN would find a flaw.

() DEPENDABLE SOFTWARE
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Intentional Models

Enumerating all reachable states is a limiting factor of finite state verification.

We can reduce the space by using intentional (symbolic) representations.
— Describing sets of reachable states without enumerating each one individually
— Intentional models do not necessarily grow with the size of the set they represent.

Example: a set of Integers
— Enumeration : {2, 4, 6, 8, 10, 12, 14, 16, 18}
— Intentional representation : {x&N | x mod 2 =0 and 0<x<20} < “characteristic function”

KU KONKUK
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OBDD: A Useful Intentional Model

« OBDD (Ordered Binary Decision Diagram)
— A compact representation of Boolean functions

» Characteristic function for transition relations
— Transitions = pairs of states
— Function from pairs of states to Booleans is true, if there is a transition between the pair.

— Built iteratively by breadth-first expansion of the state space:
» Create a representation of the whole set of states reachable in k+1 steps from the set of states reachable in k steps
+ OBDD stabilizes when all the transitions that can occur in the next step are already represented in the OBDD.
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From OBDD to Symbolic Checking

* Intentional representation itself is not enough.
— We must have an algorithm for determining whether it satisfies the property we are checking.

« Example: A set of communicating state machines using OBDD
— Representing the transition relation of a set of communicating state machines (Model)
— Modeling a class of temporal logic specification formulas (specification)

» We going to combine OBDD representations of model and specification to produce a representation of
just the set of transitions leading to a violation of the specification.
— If the set is empty, the property has been verified.

106
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Representing Transition Relations as Boolean Functions

« BDD is a decision tree that has been transformed into an acyclic graph by merging nodes leading to
identical sub-trees.

 a=bandc
not(a) or (b and c)




Representing Transition Relations as Boolean Functions : Steps

Ve |
™ - © X,

SO (00) i T| |T
| \

A. Assign a label to each state

]
b xo0=1)

B. Encode transitions
b (x0=1)

X4

C. The transition tuples correspond to paths
leading to true, and all other paths lead to

false.
®)
"A|
Xg XXy X3Xy < Xa
0| 00 | 00 JLINEL
1| 00 | 01
1] 01 | 10

A”

sym from state to state

|
& '
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Intentional vs. Explicit Representations

 Worst case:
— Given a large set S of states,

— Arepresentation capable of distinguishing each subset of S cannot be more compact on average than the
representation that simply lists elements of the chosen subset.

» Intentional representations work well when they exploit structure and regularity of the state space.
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Model Refinement

* Construction of finite state models should balance precision and efficiency.

« Often the first model is unsatisfactory.
— Case 1: Report potential failures that are obviously impossible
— Case 2: Exhaust resources before producing any result

* Minor differences in the model can have large effects on tractability of the verification procedure.

* Finite state verification as iterative process is required.

13 | DEPENDABLE SOFTWARE 1 10
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lteration Verification Process

Construct
an initial model

» Attempt verification

spurious
results
Abstract the model Make the model
further more precise

EPENDABLE SOF TWARE 1 1 1
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Refinement 1. Adding Details to the Model

M, |= P Initial (coarse grain) model
(The counter example that violates P is possible in M,,
but does not correspond to an execution of the real program.)

M, |=P  Refined (more detailed) model
(the counterexample above is not possible in M,, but a new
counterexamples violates M,, and does not correspond to an
execution of the real program too.)

M, |=P  Refined (final) model
(the counter example that violates P in M, corresponds to an
execution in the real program.)

n 3
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Refinement 2: Add Premises to the Property

Initial (coarse grain) model
M|=P

Add a constraint C, that eliminates the bogus behavior
M|=C,=>P

M[=(C,and C,) = P

Until the verification succeeds or produces a valid counter example
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SOFTWARE TESTING TECHNIQUES

» Test Case Selection and Adequacy
» Functional Testing

» Combinatorial Testing

» Structural Testing

» Data-Flow Testing

» Model-Based Testing

» Fault-Based Testing

» Test Execution
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Test Case Selection and Adequacy
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Overview

« What we want to know is a real way of measuring effectiveness of testing.

— “If the system passes an adequate suite of test cases, then it must be correct.”

« But that's impossible.
— The adequacy of test suites is provably undecidable.

* Therefore, we’ll have to settle on weaker proxies for adequacy.

EPENDABLE SOF TWARE 1 1 8
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Terminologies in Testing

Test case a set of inputs, execution conditions, and a pass/fail criterion

Test case specification

(Test specification) a requirement to be satisfied by one or more test cases

Test obligation a partial test case specification, requiring some property deemed important to thorough testing
Test suite a set of test cases

Test (Test execution) the activity of executing test cases and evaluating their results

Adequacy criterion a predicate that is true (satisfied) or false of a (program, test suite) pair

EPENDABLE SOFTWARE 1 1 9
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Source of Test Specification

Other similar names Source of test specification

(but not the same exactly) Examples

_ Software specification
Black box testing o _ _ -
Specification-based testing  |f Specification requires robust recovery from power failure, test obligations

should include simulated power failure.

Functional Testing

: White box testing Source code
Structural Testing ; _
Code-based testing Traverse each program loop one or more times
Models of system
Model-based * Models used in specification or design
Testing * Models derived from source code

Exercise all transitions in communication protocol model
Hypothesized faults, Common bugs

Fault-basedTesting Check for buffer overflow handling (common vulnerability) by testing on very
large inputs

EPENDABLE SOFTWARE 1 2 O
LABORATORY



KU KONKUK
UNIVERSITY

Adequacy Criteria

» Adequacy criterion = Set of test obligations

« A test suite satisfies an adequacy criterion, iff
— All the tests succeed (pass), and
— Every test obligation in the criterion is satisfied by at least one of the test cases in the test suite.

— Example:

» “The statement coverage adequacy criterion is satisfied by test suite S for program P, if each executable statement
in P is executed by at least one test case in S, and the outcome of each test execution was pass.”

EPENDABLE SOF TWARE 1 2 1
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Satisfiability

« Often no test suite can satisfy a criterion for a given program.

— Example:

+ Defensive programming style includes “can’t happen” sanity checks.
— if(z<0){
throw new LogicError (“z must be positive here!”)

}
» For this program, no test suite can satisfy statement coverage.

« Two ways of coping with the unsatisfiability of adequacy criteria
— A : Exclude any unsatisfiable obligation from the criterion
— B : Measure the extent to which a test suite approaches an adequacy criterion

KU

KONKUK
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Coping with the Unsatisfiability

* Approach A
— Exclude any unsatisfiable obligation from the criterion

— Example:
* Modify statement coverage to require execution only of statements which can be executed

— But we can’t know for sure which are executable or not.

« Approach B
— Measure the extent to which a test suite approaches an adequacy criterion
— Example
+ If a test suite satisfies 85 of 100 obligations, we have reached 85% coverage.
— Terms:

* An adequacy criterion is satisfied or not.
* A coverage measure is the fraction of satisfied obligations.

13 DEPENDABLE SOFTWARE 1 23
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Coverage

Measuring coverage (% of satisfied test obligations) can be a useful indicator of
— Progress toward a thorough test suite (thoroughness of test suite), and
— Trouble spots requiring more attention in testing.

But coverage is only a proxy for thoroughness or adequacy.
— It's easy to improve coverage without improving a test suite (much easier than designing good test cases)
— The only measure that really matters is (cost-) effectiveness.

EPENDABLE SOFTWARE

LABORATORY

KU KONKUK
UNIVERSITY

124



KU oo

Comparing Criteria

 (Can we distinquish stronger from weaker adequacy criteria?

* Analytical approach
— Describe conditions under which one adequacy criterion is provably stronger than another
— Just a piece of the overall “effectiveness” question

— Stronger = gives stronger guarantees — Subsumes relation
*  Working from easier to harder levels of coverage, but not a direct indication of quality.

13 DEPENDABLE SOFTWARE 1 25
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Subsumes Relation

KU KONKUK
UNIVERSITY

« Test adequacy criterion A subsumes test adequacy criterion B iff, for every program P, every test suite

satisfying A with respect to P also satisfies B with respect to P,

EPENDABLE SOFTWARE
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THEORETICAL CRITERIA

PRACTICAL CRITERIA

( Path Testing )

(Boundary interior testing )

( Cyclomatic testing )

( LCSAJ

testing >

C Branch

testing )

( Loop boundary testing ) ( Statement testing >

@ompound condition lestin@

( MC/DC testing >
@raﬂch and condition teslin@
( Basic condition testing >
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Use of Adequacy Criteria

» Test selection approaches (Selection)

— Guidance in devising a thorough test suite
+ E.g., A specification-based testing criterion may suggest test cases covering representative combinations of values.

* Revealing missing tests (Measurement)
— Post hoc analysis: What might | have missed with this test suite?

 Often in combination
— Desiqgn test suite from specifications, then use structural criterion (e.g., coverage of all branches) to highlight
missed logic

EPENDABLE SOF TWARE 1 2 7
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Functional Testing

* Functional testing
— Deriving test cases from program specifications
— ‘Functional refers to the source of information used in test case design, not to what is tested.
— Functional specification is a formal or informal description of intended program behavior.

* Also known as:
— Specification-based testing (from specifications)
— Black-box testing (no view of source code)

EPENDABLE SOFTWARE
LABORATORY

]{'l ]’ KONKUK
UNIVERSITY

130



Systematic Testing vs. Random Testing

* Random (uniform) testing
— Pick possible inputs uniformly
— Avoids designer’s bias
— But treats all inputs as equally valuable.

« Systematic (non-uniform) testing
— Try to select inputs that are especially valuable
— Usually by choosing representatives of classes that are apt to fail often or not at all

 Functional testing is a systematic (partition-based) testing strateqgy.

EPENDABLE SOFTWARE
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Why Not Random Testing?

* Due to non-uniform distribution of faults

— Example: —b+ /b2 — 4ac

+ Java class “roots” applies quadratic equation X 9
a

— Supposed an incomplete implementation logic:
« Program does not properly handle the case in which b?2-4ac=0anda=0

— Failing values are sparse in the input space: needles in a very big haystack
— Random sampling is unlikely to choose a=0 and b=0.

LABORATORY
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Purpose of Testing

* Our goal is to find needles and remove them from hay.
— Look systematically (non-uniformiy) for needles.

— We need to use everything we know about needles.
+ E.g., Are they heavier than hay? Do they sift to the bottom?

» To estimate the proportion of needles to hay, sample randomlyuniformiy).
— Reliability estimation requires unbiased samples for valid statistics, but that’s not our goal.

KU oo
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Systematic Partition Testing

Failures are sparse in
the space of possible
1 No failure inputs.

But, dense in some parts
of the space

B Failure (valuable test case)

8 0ODOO0OO00OO00000d0o0og O0/00 OO
§ O0OO0OO0OO0O0OO0O00O00O0OOD0OOD= 0 OO0 00 OO
3 000000000000 O00REOOOOO0O0Odoo
s> 00000000000000R0000000000000
2 & OO 000000000000 00O0O0O0O0OODon
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D_'C $d :: ] __________________________
52 000000 0000000000 | | oo
¢= 000000 0000000000 o0
L ; { :
¢ 000000000000 0000 oo
£ 0o oopo oo oo Oojon CICL L0 00 oo | mim}

If we systematically test some cases
from each part, we will include the
dense parts.

Functional testing is one way of
drawing pink lines to isolate regions
with likely failures.

g
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Principles of Systematic Partitioning

« Exploit some knowledge to choose samples that are more likely to include “special’ or “trouble-prone”
regions of the input space
— Failures are sparse in the whole input space.
— But we may find regions in which they are dense.

* (Quasi-) Partition testing: separates the input space into classes whose union is the entire space
— Sampling each class in the quasi-partition selects at least one input that leads to a failure, revealing the fault.
— Seldom guaranteed; We depend on experience-based heuristics.

I o

i
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A Systematic Approach: Functional Testing

Functional testing uses the specification (formal or informal) t0 partition the input space.

KU KONKUK
UNIVERSITY

— For example, the specification of “roots” program suggests division between cases with zero, one, and two real
roots.

— Test each category and boundaries between categories

No guarantees, but experience suggests failures often lie at the boundaries. (as in the “roots” program)

Functional Testing is a base-line technique for designing test cases.
— Timely

Often useful in refining specifications and assessing testability before code is written

— Effective

Find some classes of fault (e.g., missing logic) that can elude other approaches

— Widely applicable

To any description of program behavior serving as specification
At any level of granularity from module to system testing

— Economical

Typically, less expensive to design and execute than structural (code-based) test cases
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Functional Test vs. Structural Test

« Different testing strategies are most effective for different classes of faults.

* Functional testing is best for missing logic faults.
— A common problem: Some program logic was simply forgotten.
— Structural testing will never focus on code that isn’t there.

* Functional test applies at all granularity levels.

— Unit (from module interface spec)

— Integration (from API or subsystem spec)

— System (from system requirements spec)

— Regression (from system requirements + bug history)

- Structural test design applies to relatively small parts of a system.
— Unit and integration testing

Y
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Main Steps of Functional Program Testing

EPENDABLE SOFTWARE
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Functional specifications

Brute force testing

Identify independently testable features
Y P Y Finite State Machine,

Grammar,
Algebraic Specification,
Logic Specification,

CFG /DFG

Independently Testable Feature

Derive a model

Test selection
criteria

Manual Mapping,
Symbolic Execution,

Identify representative values

Representative Values

Semantic Constraint,
Combinational Selection,
Exhaustive Enumeration,
Random Selection

Test Case Specification

Generate test cases

A-posteriori Satisfaction

Instantiate tests

Scaffolding
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From Specifications to Test Cases

1. ldentify independently testable features (categories)
— If the specification is large, break it into independently testable features.

2. ldentify representative classes of values, or derive a model of behavior
— Often simple input/output transformations don’t describe a system.

— We use models in program specification, in program design, and in test design too.

3. Generate test case specifications
— Typically, combinations of input values or model behaviors

4. Generate test cases and instantiate tests

() DEPENDABLE SOFTWARE
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Overview

- Combinatorial testing identifies distinct attributes that can be varied In data, environment or
configuration.

— Example:
» Browser could be “IE” or “Firefox”
* Operating system could be “Vista”, “XP” or “OSX”

« Combinatorial testing systematically generates combinations to be tested.

— Example:
* |E on Vista, |IE on XP, Firefox on Vista, Firefox on OSX, etc.
— Rationale: Test cases should be varied and include possible “corner cases”.

EPENDABLE SOFTWARE
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Key Ideas in Combinatorial Approaches

« Category-partition testing
— Separate manual) identification of values that characterize the input space from (automatic) generation of
combinations for test cases

« Pairwise testing
— Systematically test interactions among attributes of the program input space with a relatively small number of
test cases

» Catalog-based testing
— Aggregate and synthesize the experience of test designers in a particular organization or application domain, to
aid in identifying attribute values

LABORATORY
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1. Category-Partition Testing

1. Decompose the specification into independently testable features
— for each feature, identify parameters and environment elements
— for each parameter and environment element, identify elementary characteristics (— categories)

2. ldentify representative (classes of) values

— for each characteristic(category), identify classes of values
* normal values
* boundary values
* special values
* error values

3. Generate test case specifications

EPENDABLE SOFTWARE 1 4 5
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An Example: “Check Configuration”

KU

* In the Web site of a computer manufacturer, ‘checking configuration’ checks the validity of a computer

configuration.

— Two parameters:
* Model
+ Set of Components

KONKUK
UNIVERSITY

Model: A model identifies a specific product and determinesa set of
congtraints on available components. Models are characterized by logical
dotsfor components which may or may not be implemented by physical
dotson abus Slotsmay be required or optional. Required dotsmust be
assigned with a suitable component to obtain alegal configuration, while
optional dotsmay beleft empty or filled depending on the customer’s
needs.

Example: Therequired “dots’ of the Chipmunk C20laptop computer
include a screen, a processor, a hard disk, memory, and an operating
system. (Of these, only the hard disk and memory are implemented
using actual hardware dotson abus) The optional dotsinclude
external storage devices such asaCD/DVD writer.

Set of Components: A set of (dot, component) pairs, correspond  to the
required and optional dots of the model. A component 1sa choice that can be
varied within amodel, and which isnot designed to be replaced by the end
user. Available componentsand a default for each dot isdetermined by the
model. The special value emptyisallowed (and may be the default selection)
for optional dots In addition to being compatible or incompatible with a
particular model and dot, individual components may be compatible or
incompatible with each other.

Esxample: The default configuration of the Chipmunk C20 includes 20
gigabytesof hard disk; 30 and 40 gigabyte disks are also available. (Since the
hard disk isarequired dot, emptyisnot an allowed choice.) The default
operating system isRodentOS 3.2, personal edition, but RodentOS 3.2
mobile server edition may also be selected. The mobile server edition requires
at least 30 gigabytesof hard disk.

DEPEMNDABLE SOFTWARE
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Step 1: Identify Independently Testable Features and Parameter
Characteristics

« Choosing categories
— No hard-and-fast rules for choosing categories!
— Not a trivial task

« Categories reflect test designer's judgment.
— Which classes of values may be treated differently by an implementation.

 (Choosing categories well requires experience and knowledge of the application domain and product
architecture.
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|ldentify Independently Testable Units
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Parameters Categories
Model number
Model Number of required slots for selected model (#SMRS)
Number of optional slots for selected model (#SMOS)
Correspondence of selection with model slots
Number of required components with selection  empty
Components | Required component selection
Number of optional components with selection # empty
Optional component selection
Product Number of models in database (#DBM)
Database

Number of components in database (#¥DBC)
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Step 2: Identify Representative Values

» ldentify representative classes of values for each of the categories

* Representative values may be identified by applying

— Boundary value testing
+ Select extreme values within a class
» Select values outside but as close as possible to the class
+ Select interior (non-extreme) values of the class
— Erroneous condition testing
» Select values outside the normal domain of the program
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Representative Values: Model

Model number
—  Malformed
— Not in database
- Valid

Number of required slots for selected model (#SMRS)
- 0
- 1
—  Many

Number of optional slots for selected model (#SMOS)

150



Representative Values: Components

« Correspondence of selection with model slots
— Omitted slots
— Extra slots
- Mismatched slots
- Complete correspondence

* Number of required components with non-empty selection
- 0
- < number required slots
- = number required slots

* Required component selection
- Some defaults
— Allvalid
—  >1incompatible with slots
— > 1 incompatible with another selection
—  >1 incompatible with model
—  >1notin database

() DEPENDABLE SOFTWARE
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Representative Values: Components

* Number of optional components with non-empty selection
- 0
-  <#SMOS
-  =#SMOS

« Optional component selection
—  Some defaults
—  All valid
— 21 incompatible with slots
—  >1 incompatible with another selection
— > 1 incompatible with model
—  >1notin database

() DEPENDABLE SOFTWARE 1 52
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Representative Values: Product Database

* Number of models in database (#DBM)
- 0
- 1
—  Many

*  Number of components in database (#DBC)
- 0
- 1
—  Many

— Note 0 and 1 are unusual (special) values.
« They might cause unanticipated behavior alone or in combination with particular values of other parameters.
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Step 3: Generate Test Case Specifications

A combination of values for each category corresponds to a test case specification.
— In the example, we have 314,928 test cases.

— Most of which are impossible.
+ Example: zero slots and at least one incompatible slot

Need to introduce constraints in order to rule out impossible combinations and reduce the size of the
test suite.

— Error constraints
— Property constraints
— Single constraints

W
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Error Constraints

Model number

T Malformed [error]
* [error] indicates a value class that corresponds Not in database [error]

to an erroneous values. Valid

— Need to be tried only once Correspondence of selection with model slots

Omitted slots [error]
. E | | Extra slots [error]
rror value class Mismatched slots [error]

— No need to test all possible combinations of Complete correspondence

errors, and one test is enough. . . .
Number of required comp. with non-empty selection

0 [error]
< number of required slots [error]

Required comp. selection
> 1 not in database [error]

Number of models in database (#DBM)
0 [error]

Number of components in database (#DBC)
0 [error]

FError consraintsreducetest auite
from314.928t0 2,711 tet cases
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Property Constraints

e Constraint [property] [if_property] rule out Num1ber of required slot[s for selec;c;cli\l:;odel (#SMRS)
. . . . proper y
invalid combinations of values. Many [property RSNE] [property RSMANY]
— [property] groups values of a single parameter
to identify subsets of values with common Number of optional slots for selected model (#SMOS)
properties. 1 [property OSNE]
Many [property OSNE] [property OSMANY]

— [if-property] bounds the choices of values for a

category that can be combined with a particular Number of required comp. with non-empty selection

value selected for a different category. 0 [if RSNE] [error]
< number required slots [if RSNE] [error]
= number required slots [if RSMANY]

Number of optional comp. with non-empty selection
< number required slots [if OSNE]
= number required slots [if OSMANY]

fromZ2 711 to 908 test cases
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Single Constraints

* [single] indicates a value class that test
designers choose to test only once to reduce
the number of test cases.

 Example

— Value some default for required component
selection and optional component selection
may be tested only once despite not being an
erroneous condition.

* Note

— Single and error have the same effect but
differ in rationale.

— Keeping them distinct is important for
documentation and regression testing.

| DEPEMNDABLE SOF TWARE
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Number of required slots for selected model (#SMRS)
- 0 [single]
- 1 [property RSNE] [single]

Number of optional slots for selected model (#SMOS)

- 0 [single]

- 1 [single] [property OSNE]
Required component selection

— Some default [single]
Optional component selection

— Some default [single]

Number of models in database (#DBM)

-1 [single]
Number of components in database (#¥DBC)
-1 [single]
from 908 to 69 test casss
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Check Configuration - Summary of Categories

Parameter Model

Model number

—  Malformed [error]
— Notin database [error]
- Valid
Number of required slots for selected model (#SMRS)
- 0 [single]
-1 [property RSNE] [single]
-  Many [property RSNE] [property RSMANY]
Number of optional slots for selected model (#SMOS)
- 0 [single]
-1 [property OSNE] [single]
-  Many [property OSNE] [property OSMANY]

Environment Product data base

Number of models in database (#¥DBM)

- 0 [error]
-1 [single]
- Many
Number of components in database (#DBC)
-0 [error]
-1 [single]
- Many

() DEPENDABLE SOFTWARE
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Parameter Component

Correspondence of selection with model slots

—  Omitted slots [error]
— Extra slots [error]
— Mismatched slots [error]

— Complete correspondence

# of required components (selection = empty)
-0 [if RSNE] [error]
— < number required slots [if RSNE] [error]
— = number required slots [if RSMANY]

Required component selection
—  Some defaults [single]
— Al valid
— 21 incompatible with slots
— 21 incompatible with another selection
— 21 incompatible with model

— 21 not in database [error]
# of optional components (selection = empty)

-0

- <#SMOS [if OSNE]

- =#SMOS [if OSMANY]
Optional component selection

—  Some defaults [single]

- All valid

— 21 incompatible with slots

— 21 incompatible with another selection
— 21 incompatible with model

— 21 not in database [error]



TSL : Test Specification Language

« TSL (Test Specification Language)
— Category
— Property List

— Selector Expression
—  https://github.com/alexorso/tslgenerator
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Test specification for Siena HierarchicalDispatcher "application”

Oregon State University, and

#
#
# (C) University of California Irvine,
#
# Georgia Tech, 2001

#

9 Parameters:

10 Pattern size:

1 empty. [property Empty]

x single character. [property NonEmpty]

1 many character. [property NonEmpty]
14 longer than any line in the file. [error]

15

16 Quoting:

17

pattern is quoted.
pattern is not quoted.

[property Quoted]
[if NonEmpty]

pattern is improperly quoted. [error]
21 Embeddedblanks:
22 no embedded blank. [if NonEmpty]
23 one embedded blank. [if NonEmpty && Quoted]

several embedded blanks. [if NonEmpty && Quoted]
Embeddedquotes:
no embedded quotes.
one embedded quote.
several embedded quotes.

[if NonEmpty]
[if NonEmpty]
[if NonEmpty] [single]

Filename:
good file name.

Quoting
Embeddedblanks
Embeddedquotes
Filename

Number of occurrences ofpatterninfile :

Pattern occurrencesontargetline

Test Case 26
Pattern size
Quoting
Embeddedblanks
Embeddedquotes
Filename

Test Case 27
Pattern size
Quoting
Embeddedblanks
Embeddedquotes
Filename

Test Case 28
Pattern size
Quoting
Embeddedblanks
Embeddedquotes
Filename

240 Test Case 28
24

Pattern size

(Key = 3.1.1.1.1.3.1.)

Number of occurrences ofpatterninfile :
Pattern occurrencesontargetline H

(Key = 3.1.1.2.1.2.1.)

Number of occurrences ofpatterninfile :
Pattern occurrencesontargetline :

(Key = 3.1.1.2.1.3.1.)

Number of occurrences ofpatterninfile :
Pattern occurrencesontargetline H

(Key = 3.1.2.1.1.2.1.)

pattern is guoted
no embedded blank
no embedded quotes
good file name
exactly one

one

many character
pattern is guoted
no embedded blank
no embedded quotes
good file name
more than one

one

many character
pattern is quoted
no embedded blank
one embedded quote
good file name
exactly one

one

many character
pattern is quoted
no embedded blank
one embedded quote
good file name
more than one

one

many character

no file with this name. [error] Quoting pattern is quoted
Gitttad: arEeE Embeddedblanks one embedded blank
t ] Embeddedquotes no embedded quotes
| Filename good file name
Environments: Number of urrences ofvatterninfil exactlv one
Normal text file length : 1282 lines:45  Ln:25 Col:5 Sel:0]0 Dos#Windows UTF-8
ey i TSL > 40 Test cases

LABORATORY
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Category-Partitioning Testing, in Summary

« Category partition testing gives us systematic approaches to
— ldentify characteristics and values (the creative step)
— Generate combinations (the mechanical step).

» But test suite size grows very rapidly with number of categories.

— Pairwise (and n-way) combinatorial testing is a non-exhaustive approach.
+ Combine values systematically but not exhaustively.
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2. Pairwise Combination Testing

« Category partition works well when intuitive constraints reduce the number of combinations to a small
amount of test cases.

— Without many constraints, the number of combinations may be unmanageable.

« Pairwise combination
— Generate combinations that efficiently cover all pairs (triples,...) of classes, instead of exhaustive combinations

— Rationale:
* Most failures are triggered by single values or combinations of a few values.
» Covering pairs (triples,...) reduces the number of test cases, but reveals most faults.

ﬂS‘:‘I}EP EEEEEEE SOFTWARE 1 6 1



An Example: Display Control

KU oo

* No constraints reduce the total number of combinations 432 (3x4x3x4x3) test cases, if we consider all
combinations.

n 3
(r DEPENDABLE SOFTWARE
5 LABORATORY

full-graphics English Minimal Monochrome Hand-held

text-only French Standard Color-map Laptop

limited-bandwidth Spanish Document-loaded 16-bit Full-size
Portuguese True-color
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Pairwise Combination: 17 Test Cases
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English Monochrome Full-graphics Minimal Hand-held
English Color-map Text-only Standard Full-size
English 16-bit Limited-bandwidth - Full-size
English True-color Text-only Document-loaded Laptop
French Monochrome Limited-bandwidth Standard Laptop
French Color-map Full-graphics Document-loaded Full-size
French 16-bit Text-only Minimal -

French True-color - - Hand-held
Spanish Monochrome - Document-loaded Full-size
Spanish Color-map Limited-bandwidth Minimal Hand-held
Spanish 16-bit Full-graphics Standard Laptop
Spanish True-color Text-only - Hand-held
Portuguese - - Monochrome Text-only
Portuguese Color-map - Minimal Laptop
Portuguese 16-bit Limited-bandwidth Document-loaded Hand-held
Portuguese True-color Full-graphics Minimal Full-size
Portuguese True-color Limited-bandwidth Standard Hand-held




Adding Constraints

» Simple constraints

— Example: “Color monochrome not compatible with screen laptop and full size” can be handled by considering
the case in separate tables.

full-graphics English Minimal Monochrome Hand-held
text-only French Standard Color-map
limited-bandwidth Spanish Document-loaded 16-bit
Portuguese True-color
full-graphics English Minimal
text-only French Standard Color-map Laptop
limited-bandwidth Spanish Document-loaded 16-bit Full-size
Portuguese True-color
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Pairwise Testing Tools

* Wwww.pairwise.org

EPENDABLE SOFTWARE
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3

0N DU W N

CATS (Constrained Array Test System} *
OATS (Orthogonal Array Test System)

. Bender RBT Inc.

. Pairwise Test Case Generator
. Combo-Test

.IPOs?

VPTAG

. SpecExplorer

IBM Functional Coverage Unified Solution
CombTestWeb

Hexawise

PictMaster

NTestCaseBuilder

. tcases
. Pairwiser

NUnit

. ecFeed
. TechQA

Pairwise Online Tool

*) Not known to be available publicly

Available Tools

[Sherwood] Bell Labs
[Phadke] ATT

AETG Telecordia
IPO (PairTest) ? [Tai/Lei]
TConfig [Williams]
TCG (Test Case Generator) " NASA
AllPairs Satisfice
Pro-Test SigmaZone
CTS (Combinatorial Test Services) IBM
. Jenny [Jenkins]
ReduceArray?2 STSC, U.S. Air Force
. TestCover Testcover.com
. DDA [Colburn/Cohen/Turban]
. Test Vector Generator
. OA1 k sharp technology
. TESTONA Assystem Germany
. AllPairs [McDowell]
. Intelligent Test Case Handler (replaces CTS) IBM
CaseMaker Diaz & Hilterscheid
PICT Microsoft Corp.
. rdExpert Phadke Associates, Inc.
OATSGen ? Motorola
SmartTest Smartware Technologies Inc.
EXACT ? [Yan/Zhang]
AllPairs MetaCommunications
ATD AtYourSide Consulting
. ACTS [formerly: FireEye] NIST

BenderRBT
TestersDesk

Web-based, commercial
Java-applet

Perl script, free, GPL

GUI, commercial

Free for non-commercial use
Command-line, free, public-domain
Spreadsheet-based, free
Web-based, commercial

GUI, free

GUI, free for non-comercial use

Command-line, free

Free for non-commercial use

GUI, commercial

Command-line, open source at http-//github com/microsoft/pict

GUI, commercial

Free

GUI, commercial
GUI

GUI, commercial
Web-based

The Australian eHealth Research Centre Command-line, free

[Calvagna/Gargantini]
[Robert Vanderwall]
Microsoft Corp.

IBM

Universidad de Castilla-La Mancha

Hexawise

IWATSU System & Software

[Murphy]
[Kimbrough]
Inductive AS
Poole et al
ecFeed AS

[Dementiev]

GUI, free

GUI, commercial

Web-based, free

Web-based, free & commercial
Spreadsheet-based, free

NET library

Command-line, free
Web-based, free & commercial
Unit test framework
Standalone, Eclipse plug-in, and jUnit runner
Web-based, free

Web-based, free

165



K‘[I KONKUK
UNTVERSITY

Comparison of Efficiency

The number of test cases produced by different tools for the same model;

Model AETG "IPO 2 TConfig * CTS # Jenny ® TestCover ® DDA " AllPairs [McDowell] ® PICT EXACT® IPO-s © ecFeed '?

34 9 9 9 9 11 9 ? ) 9 2 9 10
31 15 17 15 15 18 15 18 17 18 15 17 19
41531722 A 34 40 39 38 29 35 34 37 ? 32 37
41332 2% 28 26 30 29 28 21 27 26 27 Pt | 22 28
A 10 15 14 10 16 10 15 14 15 10 10 16
1020 180 212 231 210 193 181 201 197 210 ? 220 203

Y. Lel and K. C. Tai In-parameter-order. a test generation strategy for pairwise testing, p. 8.

2 K. C.Tai and Y. Lei A Test Generation Strategy for Painwise Testing, p. 2.

A A W Williams Determination of Test Configurations for Pair-wise Interaction Coverage, p. 15.

4 A Hartman and L. Raskin Problems and Algorithms for Covening Arrays, p. 11.

% Supplied by Bob Jenkins.

% Supplied by George Sherwood.

7 C. J. Colbourn, M. B. Cohen, R C. Turban A Deterministic Density Aigorithm for Pairwise Interaction Coverage, p. 6.

8 J. Yan, J. Zhang Backiracking Algorithms and Search Heuristics 10 Generate Test Suites for Combinatorial Testing, p. 8.

% A Calvagna, A Gargantini IPO-s: Incremental Generation of Combinatorial Interaction Test Data Based on Symmefries of Covering Arrays, p. 17.
10 Supplied by Patryk Chamuczynski.

Maintained by Jacek Czerwonka, Last updated: October 2016
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Pairwise Combination Testing, in Summary

« Category-partition approach gives us
— Separation between (manual) identification of parameter characteristics and values, and (automatic) generation
of test cases that combine them

— Constraints to reduce the number of combinations
» Pairwise (or n-way) testing gives us

— Much smaller test suites, even without constraints
— But we can still use constraints.

» We still need help to make the manual step more systematic.

() DEPENDABLE SOFTWARE 1 67
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3. Catalog-based Testing

» Deriving value classes requires human judgment. Therefore, gathering experience in a systematic
collection can
— Speed up the test design process,
— Routinize many decisions, better focusing human effort,
— Accelerate training, and
— Reduce human error

- Catalogs capture the experience of test designers by listing important cases for each possible type of
variable.
— Example: If the computation uses an integer variable, a catalog might indicate the following relevant cases

+ The element immediately preceding the lower bound

* The lower bound of the interval

* A non-boundary element within the interval

* The upper bound of the interval

* The element immediately following the upper bound

168

B
(M DEeEPENDABLE SOFTWARE
Ny LABORATORY



|

Catalog-based Testing Process

1. ldentify elementary items of the specification
— Pre-conditions
— Post-conditions
— Definitions
— Variables
— Operations

2. Derive a first set of test case specifications from pre-conditions, post-conditions and definitions

3. Complete the set of test case specifications using test catalogs

EPENDABLE SOFTWARE
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What Have We Got from Three Methods?

Category partition testing

— Division into a (manual) step of identifying categories and values, with constraints, and an (automated) step of
generating combinations

« Pairwise testing
— Systematic generation of smaller test suites

Catalog-based testing
— Improving the manual step by recording and using standard patterns for identifying significant values

Three ideas can be combined.

1
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Structural Testing

« Judging test suite thoroughness based on the structure of the program itself

— Also known as
*  White-box testing
* Glass-box testing
* Code-based testing

— Distinguish from functional (requirements-based, “black-box”) testing

« Structural testing is still testing product functionality against its specification.
— Only the measure of thoroughness has changed.

EPENDABLE SOFTWARE 1 7 3
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Rationale of Structural Testing

« One way of answering the question “What is missing in our test suite?”
— |If a part of a program is not executed by any test case in the suite, faults in that part cannot be exposed.

— But what'’s the ‘part’?
» Typically, a control flow element or combination
— Statements (CFG nodes)
— Branches (crG edges)
— Fragments and combinations: Conditions, paths

« Structural testing complements functional testing.
— Another way to recognize cases that are treated differently

* Recalling fundamental rationale
“Prefer test cases that are treated differently over cases treated the same.”

EPENDABLE SOFTWARE
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No Guarantee

Executing all control flow elements does not guarantee finding all faults.
— Execution of a faulty statement may not always result in a failure.

* The state may not be corrupted when the statement is executed with some data values.

+ Corrupt state may not propagate through execution to eventually lead to failure.

What is the value of structural coverage?
— Increases confidence in thoroughness of testing

KU

KONKUK
UNIVERSITY
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Structural Testing Complements Functional Testing

« Control flow-based testing includes cases that may not be identified from specifications alone.
— Typical case: Implementation of a single item of the specification by multiple parts of the program

» Test suites that satisfy control flow adequacy criteria could fail in revealing faults that can be caught
with functional criteria.

— Typical case: Missing path faults
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Structural Testing, in Practice

« Create functional test suite first, then measure structural coverage to identify and see what is
missing.
— May interpret unexecuted elements due to natural differences between specification and implementation.
— May reveal flaws in the software or development process
* Inadequacy of specifications that do not include cases present in the implementation

» Coding practice that radically diverges from the specification
* Inadequate functional test suites

« Attractive because structural testing is automated.
— Coverage measurements are convenient progress indicators.

— Sometimes used as a criterion of completion of testing
» Use with caution: does not ensure effective test suites

KONKUK
UNIVERSITY
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An Example Program: ‘cgi_decode’ and CFG

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

#include “hex values.h”

int cgi_decode(char* encoded, char* decoded) {
char *eptr = encoded;
char *dptr = decoded;
intok = 0;
while (*eptr) {
charc;
c = *eptr;
if(c== "+ ){
*dptr= *
}elseif (c== ‘%" ){
int digit_high = Hex Values[*(+ +eptr)];
int digit low = Hex Values[*(++eptr)];

if (digit_high == -1 || digit low == -1) {
ok=1;
} else {
*dptr = 16 * digit_high + digit low;
}
} else {
*dptr = *eptr;
}
++dptr;
++eptr;
}
*dptr= "\0" ;
return ok;

}

Y
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}

4| int cgi_decode(char *encoded, char *decoded) i

A
*dptr = "\0";

return ok;

v
{char *eptr = encoded; A
char *dptr = decoded;
intok =0;
v
[ while (*eptr) { (I_B}
ﬁFalse—kTru
charc;
c = "eptr;
if (c=="+"){
ﬁF"fﬂs True

[elseif (c=="%"){ Q%

F False—); True—l

else F) (int digit_high = Hex_Values[*(++eptr)]; G
*dptr = *eptr;
}

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {
v%False—)¥Trueﬁv

else {

*dptr = 16 * digit_high +

digit_low;
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Structural Testing Techniques

1. Statement (Coverage-based structural) Testing
2. Branch (Coverage-based structural) Testing

3. Condition (Coverage-based structural) Testing
— Basic
— Compounded
- MC/DC

4. Path Testing

— Bounded interior
— Loop boundary
— LCSAJ

— Cyclomatic
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1. Statement Testing

* Adequacy criterion:
— [Each statement (or node in the cFG) must be executed at least once.

« Coverage:
number of executed statements
number of statements

« Rationale:
— Afault in a statement can only be revealed by executing the faulty statement.

* Nodes in a CFG often represent basic blocks of multiple statements.
— Some standards refer to ‘basic block coverage’ or ‘node coverage’.
— Difference in granularity, but not in concept

I T,

i
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An Example: for Function “cgi_decode”

4| int cgi_decode(char *encoded, char *decoded) i

v
{char *eptr = encoded, % < TeSt cases >
char *dptr = decoded;
intok = 0; TO —
‘ “n 1} e 1} 0 th)
( — @ {, tes_t , ’E)est+case Yo1Dadequacy”}
Fals —_ 17/18 = 94% Statement coverage
/ :

T,=

{*adequate+test%0Dexecution%7U"}

ﬁFals Tru
[elseif (c== %) { (I% @ 18/18 = 100% Statement coverage
}

fFalsngme—\v T, = {“%3D", “%A”, “a+b”, “test’}

else F) (int digit_high = Hex_Values[*(++eptr)]; (G - 0
*dptr = *eptr; % int digit_low = Hex_Values[*(++eptr)]; % 18/18 = 100% Statement coverage
} if (digit_high == -1 || digit_low == -1) {
T e T Ty = {7, “+%0D+%4J")
*dptr = 16 * digit_high +
digit_low;
!
L T4 = {*first+test%9Ktest%K9"}
*dptr ="\0"; ++dptr;
return ok; ++eptr;
} }
:SIIEF_PENDABLE SOFTWARE 1 81
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Coverage Is Not a Matter of Size

« Coverage does not depend on the number of test cases.
- TO ’ T1 : T1 >coverage TO T1 <cardinality TO

- T1 ’ T2 : T2 =coverage T1 T2 >cardinality T1

* Minimizing test suite size is not the goal.
— Small test cases make failure diagnosis easier.

— But a failing test case in T, gives more information for fault localization than a failing test case in T,

EPENDABLE SOF TWARE 1 82
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Complete Statement Coverage

« Complete statement coverage may not imply
executing all branches in a program.

Example:
— Suppose block F were missing

— But statement adequacy would not require false
branch from D to L

e T3={"7“4+%0D+%4J"}
— 100% statement coverage
— No false branch from D

Y
(r DEPENDABLE SOFTWARE
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4| int cgi_decode(char *encoded, char *decoded) i

KU oo

v
{char *eptr = encoded; A
char *dptr = decoded;

int ok =0;

——Fa

( while (*eptr) { (B):

Is

(elseif (c =="%){ (D)

v
*dptr = "\0;
return ok;
}

True
!

False—)\ True N
else { int digit_high = Hex_Values[*(++eptr)]; G
*dptr = *eptr; int digit_low = Hex_Values[*(++eptr)];
} if (digit_high == -1 || digit_low == -1) {

False—)\True;

ok =1;

—

else { H
*dptr = 16 * digit_high +
digit_low;
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2. Branch Testing

* Adequacy criterion:

— [Each branch (edge in the cFG) must be executed at least once.

» Coverage:
number of executed branches

number of branches

«  Example:
— T3={", “+%0D+%4J"}
* 100% Stmt Cov.
* 88% Branch Cov. (7/8 branches)
— T, ={"%3D", “%A”, “a+b”, “test”}
* 100% Stmt Cov.
* 100% Branch Cov. (8/8 branches)

.
|\.
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4' int cgi_decode(char *encoded, char *decoded) i

{char *eptr = encoded; A
char *dptr = decoded;
int ok = 0;

( while (*eptr) { <B~

—Fals

Fals Trueﬁ
‘else { int digit_high = Hex_Values[*(++eptr)];
*dptr = *eptr; int digit_low = Hex_Values[* ++eptr
N ) if (digit_high == -1 || digit_low == -1)

False—)\Truel

else { ok 1;
*dptr = 16 * digit_high +
d|g|t low;

e True
elseif (c =="%) { (D) [ *dptr =" (;ﬁ

v
*dptr = "0 ++dptr;
return ok; ++eptr
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Statements vs. Branches

« Traversing all edges causes all nodes to be visited.

— Therefore, test suites that satisfy the branch adequacy also satisfy the statement adequacy criterion for the
same program.

— Branch adequacy subsumes statement adequacy.

« The converse is not true (see Tj).
— A statement-adequate test suite may not be branch-adequate.

1
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All Branches Coverage

« “All branches coverage” can still miss conditions.

Example:

— Supposed that we missed the

negation operator of “digit_high == -

digit_high ==

« Branch adequacy criterion can be satisfied by varying
only ‘digit_low’.
— The faulty sub-expression might never determine the result.

— We might never really test the faulty condition, even though
we tested both outcomes of the branch.

(r | DEPENDABLE SOFTWARE
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1] digit_low == -1

”»

4‘ int cgi_decode(char *encoded, char *decoded) i

A,
*dptr ="\0";

return ok;

}

i

{char *eptr = encoded; A
char *dptr = decoded,

intok = 0;

while (*eptr) { (B )«
Fal True

charc;
c = *eptr;
if (c=="+{

False

elseif (¢ =="'%") { 0

I Trug
FF

*dptr =" E ]

else

}

F
*dptr = *eptr;

int digit_low = Hex_Values[* ++eptr)]
if (digit_high == -1 || digit_low == -1) {

int digit_high = Hex VaIues[ (++eptr)]; %

vﬁFalse—)PTruej

else { ok 1;
*dptr = 16 * digit_high +
dlglt low;

++dptr;
++eptr
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. Condition Testing

Branch coverage exposes faults in how a computation has been decomposed into cases.
— Intuitively attractive: checking the programmer’s case analysis
— But only roughly: grouping cases with the same outcome

Condition coverage considers case analysis in more detail.
— Consider ‘individual conditions’ in a compound Boolean expression
« E.g., both parts of “igit_high == 1 || digit_low == -1"

Adequacy criterion:
— Each basic condition must be executed at least once.

Basic condition testing coverage :
number of truth values taken by all basic conditions
2 * number of basic conditions
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Basic Conditions vs. Branches

« Basic condition adequacy criterion can be satisfied without satisfying branch coverage.

o T4 = {*first+test%9Ktest%K9"}
— Satisfies basic condition adequacy
— But does not satisfy branch condition adequacy

 Branch and basic condition are not comparable.
— Neither implies the other.

188
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Covering Branches and Conditions

« Branch and condition adequacy:
— Cover all conditions and all decisions

« Compound condition adequacy :

— Cover all possible evaluations of compound conditions.

— Cover all branches of a decision tree.

digit_high
N

false
e
digit_low == 1
N

true false
' 4
TRUE FALSE

===

true

4
FALSE

KU KONKUK
UNIVERSITY
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Compounded Conditions

« Compound conditions often have exponential complexity.

. Example: (((a]|b)&&c)| d) &&e

(1) true - true - true true
(2) false true true - true true
(3) true - false true true true
(4) false true false true true
(5) false false - true true
(6) true - true - false
(7) false true true - false
(8) true - false true false
(9) false true false true false
(10) false false - true false
(11) true - false false -
(12) false true false false -
(13) false false - false -

() DEPENDABLE SOFTWARE
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Modified Condition/Decision (MC/DC)

* Motivation
— Effectively test important combinations of conditions, without exponential blowup in test suite size

— “Important” combinations means:
« Each basic condition shown to independently affect the outcome of each decision.
* Requires
— For each basic condition C, two test cases,
— Values of all ‘evaluated’ conditions except C are the same.
— Compound condition as a whole evaluates to ‘true’ for one and ‘false’ for the other.

EPENDABLE SOFTWARE
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Complexity of MC/DC

« MC/DC has a linear complexity.

. Example: (((a||b) &&c) | d) && e

— Underlined values independently affect the output of the decision.

(1) true > true - true true
(2) false true true true true
(3) true - false true true true
(6) true - true - false false
(11) true - false false - false
(13) false false - false false

192
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Comments on MC/DC

- MC/DC

« Widely used as a good balance of thoroughness and test size.

Basic condition coverage (C)
Branch coverage (DC)

+ one additional condition (M)
+ Every condition must independently affect the decision’s output.

Subsumed by compound conditions
Subsumes all other criteria discussed so far.

Stronger than statement and branch coverage

Required by various international standard for functional safety
« DO-178B/C
+ 1SO 26262
+ IEC 61508

KU oo
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4. Path Testing

* There are many more paths than branches.
— Decision and condition adequacy criteria consider individual decisions only.

- Path testing focuses combinations of decisions along paths.

« Adequacy criterion:
— Each path must be executed at least once.

» Coverage:
number of executed paths
number of paths

KU

KONKUK
UNIVERSITY
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Path Coverage Criteria in Practice

* The number of paths in a program with loops is unbounded.
— Usually impossible to satisfy

* To be a feasible criterion, we should partition infinite set of paths into a finite number of classes.

» Useful criteria can be obtained by limiting
— Number of traversals of loops
— Length of the paths to be traversed
— Dependencies among selected paths
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LCSAJ Adequacy

 Linear Code Sequence And Jumps (LCSAJ)

— Sequential subpath in the CFG starting and ending in a branch
+ TER, = statement coverage
* TER, = branch coverage
+ TER,,, = coverage of n consecutive LCSAJs

— Essentially considering full path coverage of (short) sequences of decisions

» Data flow criteria considered in a later chapter provide a more principled way of choosing some
particular sub-paths as important enough to cover in testing.

— But, neither LCSAJ nor data flow criteria are much used in current practice.

1
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Cyclomatic Adequacy

 Cyclomatic number
— Number of independent paths in the CFG
— A path is representable as a bit vector, where each component of the vector represents an edge.
— “Dependence’” is ordinary linear dependence between (bit) vectors

« If e = #edges, n = #nodes, ¢ = #connected components of a graph,

— e -n+ cforan arbitrary graph
— e-n+2foraCFG « Cyclomatic complexity

- Cyclomatic coverage counts the number of independent paths that have been exercised, relative to
cyclomatic complexity.

I I Y
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Procedure Call Testing

« Measuring coverage of control flow within individual procedure is not well-straightly suited to integration
or system testing.

« Choose a coverage granularity commensurate with the granularity of testing

— If unit testing has been effective, then faults that remain to be found in integration testing will be primarily
interface faults, and testing effort should focus on interfaces between units rather than their internal details.

* Procedure entry and exit testing
— Procedure may have multiple entry points (e.g., Fortran) and multiple exit points.

« Call coverage
— The same entry point may be called from many points.

n 3
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Comparing Structural Testing Criteria

D

D

=
T
]
=
& ( Path Testing
|
=
o
& (Bcundary interior testing )
£
=
T
|
E ( Cyclomatic testing >
(&)
2
O
3
] ( LCSAJ testing
o
C Branch testing

D

( Loop boundary testing ) ( Staternent testing >
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@om pound condition testin@

( MC/DC testing >
@ranch and condition tesiin@
( Basic condition testing >

Subsumption Relation among Structural Test Adequacy Criteria
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Satisfying Structural Criteria

Large amounts of ‘fossil’ code may indicate serious maintainability problems.

But some unreachable code is common even in well-designed and well-maintained systems.

Solutions:
1. Make allowances by setting a coverage goal less than 100%

2. Require justification of elements left uncovered
*+ As RTCA-DO-178B/C and EUROCAE ED-12B for modified MC/DC

EPENDABLE SOFTWARE
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Data Flow Testing



KU KONKUK
UNIVERSITY

Motivation

« Middle ground in structural testing
— Node and edge coverage don’t test interactions.

— Path-based criteria require impractical number of test cases.
* Only a few paths uncover additional faults, anyway.

— Need to distinguish “important” paths

* Intuition: Statements interact through data flow.
— Value computed in one statement, is used in another.
— Bad value computation can be revealed only when it is used.

EPENDABLE SOF TWARE 2 O 3
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Def-Use Pairs

’ « Value of x at 6 could be computed at 1 or at 4.
X = ..
4 2\ « Bad computation at 1 or 4 could be revealed
\—l/ T only if they are used at 6.
\3 : , -  (1,6)and (4, 6) are def-use (DU) pairs.
l ..-X_ — defsat1,4
: : — useat6

EPENDABLE SOFTWARE 204
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Terminology

DU pair
— A pair of definition and use for a variable, such that at least one DU path exists from the definition to the use.
" is a definition of x
- “=..x.."isauseof x

- “X=..

DU path
— Adefinition-clear path on the CFG starting from a definition to a use of a same variable
— Definition clear: Value is not replaced on path.
— Note: Loops could create infinite DU paths between a def and a use.
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Definition-Clear Path

: + 1,2,3,5,6 is a definition-clear path from 1 to 6.
X = . — X s not re-assigned between 1 and 6.
i + 1,2,4,5,6 s not a definition-clear path from 1 to 6.
I If cese — the value of x is “killed” (reassigned) at node 4.
/ o “ ________ / N ....... . . )
%37 } « (1, 6)is a DU pair because 1,2,3,5,6 is a
| X = e definition-clear path.
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Adequacy Criteria

All DU pairs
— FEach DU pair is exercised by at least one test case.

All DU paths
— Each simple (non looping) DU path is exercised by at least one test case.

All definitions
— For each definition, there is at least one test case which exercises a DU pair containing it.
— Because every computed value is used somewhere.

Corresponding coverage fractions can be defined similarly.
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Difficult Cases

X[]=...;...; ¥y =X[]
— DU pair (only) if i == j

s pPp=&X;...;'p=99;..;9=x
— *pis an alias of x

m.putFoo(...); ... ; y=n.getFoo(...);
— Are m and n the same object?
— Do m and n share a “foo” field?

Problem of aliases:
— Which references are (always or sometimes) the same?

n 3
(r DEPENDABLE SOFTWARE 208
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Data Flow Coverage with Complex Structures

« Arrays and pointers are critical for data flow analysis.
— Under-estimation of aliases may fail to include some DU pairs.
— Over-estimation may introduce unfeasible test obligations.

» For testing, it may be preferable to accept under-estimation of alias set rather than over-estimation or
expensive analysis.

— Alias analysis may rely on external guidance or other global analysis to calculate good estimates.
— Undisciplined use of dynamic storage, pointer arithmetic, etc. may make the whole analysis infeasible.
— But, in other applications (e.g., compilers), a conservative over-estimation of aliases is usually required.
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Data Flow Coverage in Practice

« The path-oriented nature of data flow analysis makes the infeasibility problem especially relevant.
— Combinations of elements matter.
— Impossible to distinguish feasible from infeasible paths.
— More paths = More work to check manually

* In practice, reasonable coverage is (often, not always) achievable.
— Number of paths is exponential in worst case, but often linear.
— All DU paths is more often impractical.
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Model-Based Testing
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[ Functional Specifications ]

Identify
Independently
Testable
Features

A4
[Independently Testable Feature]

G(\@ﬂ\ 0&\\‘/\ o

Sy
S N 94, ke
QNQQ‘GQ'A\\@ K

Finite State Machine
Grammar

Algebraic Specification

| ogic Specification
trol/Data Flow Graph

Brute [ Representative Values ]

Force
Testing
Gy
7
%,
DI
LN
. . 7c Sx
Semantic Constraints ‘ Oe,}b ‘e,
Combinatorial Selection s S [

Exaustive Enumeration \/

Random Selection ‘
[ Test Case Specifications

W Manal Mapping
Symbolic Execution
‘ A-posteriori Satisfaction

Generate
Test Cases

-

—— L Test Cases

Instantiate
Tests

4,

Scaffolding
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Overview

Models used in specification or design have structure.
— Useful information for selecting representative classes of behavior
— Behaviors that are treated differently with respect to the model should be tried by a thorough test suite.
— In combinatorial testing, it is difficult to capture that structure clearly and correctly in constraints.

We can devise test cases to check actual behavior against behavior specified by the model.

— “Coverage” similar to structural testing, but applied to specification or design models

EPENDABLE SOFTWARE

LABORATORY

KU KONKUK
UNIVERSITY

214



Deriving Test Cases from Finite State Machines
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Informal Specification: Feature “Maintenance” of the Chipmunk W

Site and an FSM model

Maintenance: The Maintenance function recordsthe history of itemsundergoing
maintenance.

If the product is covered by warranty or maintenance contract, maintenance can be
requested either by calling the maintenancetoll free number, or through the web site, or
by bringing theitem to a desgnated maintenance station. If the maintenanceisrequested
by phone or web ste and the customerisa US or EU resdent, theitemispicked up at the
customer ste, otherwise, the customer shall ship theitem with an expresscourier.

If the maintenance contract number provided by the customer isnot valid, theitem
followsthe procedure for itemsnot covered by warranty.

If the product isnot covered by warranty or maintenance contract, maintenance can be
requested only by bringing the item to a maintenance station. The maintenance station
informsthe customer of the estimated costsfor repair. Maintenance startsonly when the
customer acceptsthe estimate.

If the customer doesnot accept the estimate, the product isreturned to the

customer. Small problems can berepaired directly at the maintenance station. If the
maintenance station cannot solve the problem, the product is sent to the maintenance
regional headquarters(if in USor EU) or to the maintenance main headquarters
(otherwise).

If the maintenanceregional headquarterscannot solve the problem, the product issent to
the maintenance main headquarters.

Maintenanceis suspended if some componentsarenot available.

Oncerepaired, the product isreturned to the customer.

EFENDADCE SO TYVARE
LABORATORY

NO
Maintenance

- by 1o
X
Q'\o‘&“ 2 /(/8};"/70,;;"@\9( return
AR\ (cop. &) O
e (o g (Cop, LU, 7y,
A 0«"‘“ S '9___—: 0 ””ecf ’GS/iy =6
288 mg,
: 2 . 2 09 g ,j
Wait for Maintenance 828c< Wait for
turning (no warranty) 2850 val
re g@ 3 % pick up
,% 2z \8{
Ebs

g

<)  Repair
(maintenance
station)

repair completed Repaired

X
& 9%, &
» .0 i\
0 &b N
<(\Q O /% 65“'
9 component ) &
Y ’ 0% o4
arrives (a) ’Oé > 2
K7

) Repair
(regional
headquarters)
component:
arrives (b)

unable to repair
(not US or EU resident)

Jiedau
0} 8|qeun

&7
component ‘S P
arrives (c) c

} Repair
(main
headquarters)

216



Test Cases Generated from the FSM

* FSM can be used both to
1. Guide test selection (checking each state transition)
2. Constructing an oracle that judge whether each observed behavior is correct

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 O

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

* Questions:
—  “Is this a thorough test suite?”

—  “How can we judge?”

- Coverage criteria require

(} DerenDaBLE SOFTWARE 21 7
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Transition Coverage Criteria

- All state coverage
— Every state in the model should be visited by at least one test case.

« All transition coverage
— Every transition between states should be traversed by at least one test case.
— Most commonly used criterion
— Atransition can be thought of as a (precondition, postcondition) pair

KU oo
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Deriving Test Cases from Decision Structures

» Some specifications are structured as decision tables, decision trees, or flow charts.
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Informal Specification: Feature “Price” of the Chipmunk Web Site
and a Decision Table Model

.. .. . . . . Educati Individual
Pricing: The pricing function determinesthe adjusted price of a ucation ndividua
configuration for a particular customer. EduAc T T F F F F F F

BusAc - - F F F F F F

"The scheduled price of a configuration is the sum of the scheduled P > CT1 ] ] F E T | T ] _
price of the model and the scheduled price of each component in the
configuration. The adjusted priceiseither the scheduled price, if no YP>¥T1 ) ) ) ) ) ) ) 3
discounts are applicable, or the scheduled price less any applicable CP>CT2 - - - - F F T T
discounts YP > YT2 - A D -
There are three price schedules and three corresponding discount P <Sc - T : T - - - -
schedules, Business, Educational, and Individual.

. SP<T1 - - - - F T - -
Educational prices The adjusted price for a purchase charged to an SP<T2 - - - - - - F T
educat@onal ao_count in good sanding 1s the scheduled price from the out Edu | sp | nD | sp | 11 | sp | T2 Sp
educational price schedule. No further discounts apply.

Special-price non-discountable offers: Sometimesa complete CtO“Strtai"tS(Ed Ac, Bushc) st (P <YT1. YP > YT2)
: : - : . at-most-one UAC, bUSAC at-most-one < s >

conﬁguratlon }soffered at aspegal, npnﬂlscountable price. When a YP > YT2 — YP > YT1 at.most-one (CP < CT1. CP > CT2)

special, non-discountable price isavailable for a configuration, the CP>CT2 — CP >CT1 at-most-one (SP < T1, SP > T2

adjusted priceisthe non-discountable price or the regular price after SP>T2 > SP>T1

any applicable discounts whichever isless

() DEPENDABLE SOFTWARE
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Test Cases Generated from the Decision Table

« Basic condition coverage
— Atest case specification for each column in the table

« Compound condition adequacy criterion
— Atest case specification for each combination of truth values of basic conditions

« Modified condition/decision adequacy criterion (MC/DC)
— Each column in the table represents a test case specification.
— We add columns that differ in one input row and in outcome, then merge compatible columns.

KU
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Deriving Test Cases from Control and Data Flow Graph

« If the specification or model has both decisions and sequential logic, we can cover it like program
source code with flowgraph.

]Hf%'mwcat]bﬂ E> Flowgraph E> Test Cases

b
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Informal Specification: Feature “Process Shipping Order” of the

Chipmunk Web Site and an CFG Model

| Process shipping order |

Process shipping order: The Process shipping order function checks the validity of
ordersand prepares the receipt.

( CostOfGoods < MinOrder \

no

Avalid order contains the following data: ( ‘”‘er”*’“"”a' d"mes'““ﬁv

cost of goods If the cost of goodsislessthan the minimum processable order (MinOrder) prgi:ﬁf OR oxpediiod tgifcf’re?g@ [5&2%235&‘12?3 froght OR 'gcgr:i?ﬁth;’ir}
then the order isinvalid.

shipping address: The addressincludesname, address city, postal code, and country.
preferred shipping method: If the addressisdomestic, the shipping method must be
either land freight, expedited land freight, or overnight air; If the addressisinternational,
the shipping method must be either air freight, or expedited air freight.

( calculate international shipping charge ) ( calculate domestic shipping charge )

total charge = goods + shipping )

individual customer

type of customer which can be individual, business, educational

es

preferred method of payment. Individual customers can use only credit cards business ’
and educational customers can choose between credit card and invoice credit card

. . . . . btain credit card data: number, o
card information: if the method of payment is credit card, fields credit card number, name / '( o Corﬁ clarcc?,rexp?r:tig: Qair nam? invoice
on card, expiration date, and billing address if different than shipping address must be
provided. If credit card information isnot valid the user can either provide new data or yes{ billing address = shipping address >
abort the order. no
The outputs of Process shipping order are h
validity: Validity isa boolean output which indicates whether the order can be processed.

total charge: Thetotal charge isthe sum of the value of goods and the computed shipping

valid credit card yes /
g . g inf i
costs (onlyif validity = true). L Y

payment status: if all data are processed correctly and the credit card information isvalid no [

enter order
os prepare receipt
\_ g
. \ > invalid order <
| '4_.33F_PENDABLE SOFTWARE 22 3
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or the payment isinvoice, payment statusis set to valid, the order isentered, and areceipt @
isprepared; otherwise, validity = false.

payement status = valid }




Test Cases Generated from the CFG

 Node adequacy criteria

 Branch adequacy criteria

b
:5\:D EPENDABLE SOFTWARE
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TCA1 No Int Air Bus CC No Yes
TC-2 No Dom Air Ind CcC - No (abort)
TCA1 No Int Air Bus CcC No Yes
TC-2 No Dom Land - - - -
TC-3 Yes - - - - - -
TC-4 No Dom Air - - - -
TC-5 No Int Land - - - -
TC-6 No - - Edu Inv - -
TC-7 No - - - CcC Yes -
TC-8 No - - - CcC - No (abort)
TC-9 No - - - CcC - No (no abort)
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Deriving Test Cases from Grammars

« Grammars are good at representing inputs of varying and unbounded size with recursive structure and boundary
conditions.

« Examples:
— Complex textual inputs
— Trees (search trees, parse trees, ...)
+ Example: XML and HTMI are trees in textual form
— Program structures
*  Which are also tree structures in textual format

S;Z%ﬂ E> Grammar E> Test Cases

LABORATORY
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Grammar-Based Testing

» Test cases are ‘strings’ generated from the grammar.

» Coverage criteria:
— Production coverage:
» Each production must be used to generate at least one (section of) test case.
— Boundary condition:
* Annotate each recursive production with minimum and maximum number of application, then generate:
— Minimum
— Minimum + 1
— Maximum - 1
— Maximum

KU
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Informal Specification: Feature “Check Configuration” of the

Chipmunk Web Site and a Grammar Model

be selected. The mobile server edition requires at least 30 gigabytes of hard disk.

Check configuration: The Check-configuration function checksthe validity of a

::= <modelNumber><compSequence>
<optCompSequence>

computer configuration.

Model: Amodel identifies a specific product and determinesa set of constraints

on available components Models are characterized by logical dotsfor Model <Model>
components, which may or may not be implemented by physical dotson abus.

Slotsmay be required or optional. Required dotsmust be assigned with a suitable compSeq1 [0, 16] <compSequence>

::=<Component><compSequence>

component to obtain alegal configuration, while optional dotsmay be left empty

or filled depending on the customers needs compSeq2 <compSequence>

=empty

optCompSeq1 [0, 16] | <optCompSequence>

::= <OptionalComponent> <optCompSequence>

Esample: The required ™" dots' of the Chipmunk C20 laptop computer indude a
screen, a processor, a hard disk, memory, and an operating system. (Of these, only optCompSeq2 <optCompSequence>

=empty

the hard disk and memory are implemented using actual hardware dotson abus.)

The optional dotsinclude external storage devices such asaCD/DVD writer. comp <Componedt == <ComponentTypes <Componentialue
OptComp <OptionalComponent> ::=<ComponentType>

Set of Components: A set of [dot,component ] pairs, which must correspond to -

the required and optional dotsassociated with the model. A component isa modNum <modelNumber> == string

choice that can be varied within amodel, and which isnot designed to be replaced CompTyp <ComponentType> = string

by the end user. Available componentsand a default for each dot isdetermined

by the model. The special value empty isallowed (and may be the default CompVal <ComponentValue> :=string

selection) for optional dots. In addition to being compatible or incompatible with
aparticular model and dot, individual components may be compatible or
incompatible with each other.

Example: The default configuration of the Chipmunk C20 includes 20 gigabytes
of hard disk; 30 and 40 gigabyte disksare also available. (Since thehard diskisa
required dot, emptyisnot an allowed choice.) The default operating systemis
RodentOS 3.2, personal edition, but RodentOS 3.2 mobile server edition may also

227
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Test Cases Generated from the Grammar

*  “Mod000”
— Covers Model, compSeq1[0], compSeq2, optCompSeq1[0], optCompSeq2, modNum

*  “Mod000 (Comp000, Val000) (OptComp000)”

— Covers Model, compSeq1[1], compSeqg2, optCompSeq2[0], optCompSeq2, Comp, OptComp, modNum,
CompTyp, CompVal

 Etc.

e Comments:

— By first applying productions with nonterminals on the right side, we obtain few, large test cases.
— By first applying productions with terminals on the right side, we obtain many, small test cases.
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Grammar Testing vs. Combinatorial Testing

« Combinatorial specification-based testing is good for “mostly independent” parameters.
— We can incorporate a few constraints, but complex constraints are hard to represent and use.

— We must often “factor and flatten.”
+ E.g., separate “set of slots” into characteristics “number of slots” and predicates about what is in the slots (all together)

« Grammar describes sequences and nested structure naturally.

— But, some relations among different parts may be difficult to describe and exercise systematically,
» E.g., compatibility of components with slots.

1
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Fault-Based Testing
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Estimating Test Suite Quality

* Supposed that | have a program with bugs.

 Add 100 new bugs
— Assume they are exactly like real bugs in every way
— 1 make 100 copies of my program, each with one of my 100 new bugs.

* Run my test suite on the programs with seeded bugs
— And the tests revealed 20 of the bugs.
— The other 80 program copies do not fail.

« What/How can | infer about my test suite’s quality?

232
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Basic Assumptions

We want to judge effectiveness of a test suite in finding real faults,
— by measuring how well it finds seeded fake faults.

Valid to the extent that the seeded bugs are representative of real bugs
— Not necessarily identical
— But the differences should not affect the selection.

KU oo
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Mutation Testing

A mutant is a copy of a program with a mutation.

« A mutation is a syntactic change (a seeded bug).
— Example: change (i < 0) to (i <= 0)

* Run test suite on all the mutant programs.
« A mutant is killed, if it fails on at least one test case. — The bug is found.

« If many mutants are killed, infer that the test suite is also effective at finding real bugs.

T
n 3
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Assumptions on Mutation Testing

« Competent programmer hypothesis

— Programs are nearly correct.
* Real faults are small variations from the correct program.
* Therefore, mutants are reasonable models of real buggy programs.

« Coupling effect hypothesis
— Tests that find simple faults also find more complex faults.

— Even if mutants are not perfect representatives of real faults, a test suite that kills mutants is good at finding real
faults too.

0
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Mutant Operators

* Syntactic changes from legal program to illegal program
— Specific to each programming language

« Examples:
— crp: constant for constant replacement
« E.g., from (x<5) to(x<12)
» Select constants found somewhere in program text
— ror: relational operator replacement
« E.g., from (x<=5)to (x <95)
— vie: variable initialization elimination
+ E.g., changeint x =5; to int x;

236

B
(M DEeEPENDABLE SOFTWARE
Ny LABORATORY



‘ KU KONKUK
UNIVERSITY

Fault-based Adequacy Criteria

Mutation analysis consists of the following steps:
— Select mutation operators
— Generate mutants
— Distinguish mutants

Live mutants
— Mutants not killed by a test suite

Given a set of mutants SM and a test suite T, the fraction of nonequivalence mutants killed by T
measures the adequacy of T with respect to SM.
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Variations on Mutation Analysis

* Problem:
— There are lots of mutants.
— Running each test case to completion on every mutant is expensive.
— Number of mutants grows with the square of program size.

« Solutions:
— Weak mutation:
+ Execute meta-mutant (with many seeded faults) together with original program
— Statistical mutation
* Just create a random sample of mutants

13 | DEPENDABLE SOFTWARE 2 3 8
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Summary

Fault-based testing is a widely used in semiconductor manufacturing.
— With good fault models of typical manufacturing faults, e.g., “stuck-at-one” for a transistor
— But fault-based testing for design errors is more challenging (as in software).

Mutation testing is not widely used in industry.
— But plays a role in software testing research, to compare effectiveness of testing techniques.

KU oo
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Test Execution
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Automating Test Execution

* Designing test cases and test suites is creative.
— Demanding intellectual activity
— Requiring human judgment

« Executing test cases should be automatic.
— Design once, execute many times

« Test automation separates the creative human process from the mechanical process of test execution.

EPENDABLE SOFTWARE 242
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From Test Case Specifications to Test Cases

» Test design often yields test case specifications, rather than concrete data.
— E.g., “a large positive number”, not 420,023
— E.g., “a sorted sequence, length > 2”, not “Alpha, Beta, Chi, Omega”
— Other details for execution may be omitted.

« Test Generation creates concrete/executable test cases from test case specifications.

» A Tool chain for test case generation and execution

— A combinatorial test case generation to create test data
» Optional: Constraint-based data generator to “concretize” individual values, e.g., from “positive integer” to 42

— ‘DDSteps’ to convert from spreadsheet data to ‘JUnit’ test cases
— ‘JUnit’ to execute concrete test cases

243
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Scaffolding

» Code produced to support development activities
— Not part of the “product” as seen by the end user
— May be temporary (like scaffolding in construction of buildings)

« Scaffolding includes
— Test harnesses
— Drivers
— Stubs

EPENDABLE SOFTWARE 244
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Scaffolding

« Test driver

— A“main” program for running a test
* May be produced before a “real” main program
* Provide more control than the “real” main program

— To drive program under test through test cases

 Test stub
— Substitute for called functions/methods/objects

« Test harness
— Substitutes for other parts of the deployed environment
— E.g., Software simulation of a hardware device

KU oo
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Controllability & Observability

+ Example: We want to automate tests.
— Interactive input provides limited control.
— Graphical output provides limited observability.

GUI input (MVC “Controller”)

Ll

Program Functionality

1Ll

Graphical output (MVC “View”)

246



Controllability & Observability

e Solution:

— Adesign for automated test provides interfaces for control (API) and observation (wrapper on output)

GUI input (MVC “Controller”) Test Driver
API
Program Functionality LogBehavior

T L L1r

Capture Wrapper

Graphical output (MVC “View”)




Generic vs. Specific Scaffolding

* How general should scaffolding be?
— We could build a driver and stubs for each test case.
— Or at least factor out some common code of the driver and test management (e.g. JUnit)

— Or further factor out some common support code, to drive a large number of test cases from data (as in
DDSteps)

— Or further generate the data automatically from a more abstract model (e.g. network traffic model)

* It's a question of costs and re-use, just as for other kinds of software.

() DEPENDABLE SOFTWARE
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Test Oracles

* No use running 10,000 test cases automatically, if the results must be checked by hand.

« It's a problem of ‘range of specific to general’, again
— E.g., JUnit: Specific oracle (“assert”) should be coded by hand in each test case.

» Typical approaches

— Comparison-based oracle with predicted output value
— Self-checks

Y
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Comparison-based Oracle

» With a comparison-based oracle, we need predicted output for each input.
— Oracle compares actual to predicted output, and reports failure if they differ.
— Fine for a small number of hand-generated test cases
— E.g., for hand-written JUnit test cases

Test Harness
Test Case
with Comparison Based
; Test Input . \ Oracle
| Expected Output |- ~( Compare }{—+/Pass/Fail
et et m o s e o b i ' \ /f

Program
Under Test

Y
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Self-Checks as Oracles

* An oracle can also be written as self-checks.
— Often possible to judge correctness without predicting results

« Advantages and limits: Usable with large, automatically generated test suites, but often only a partial
check

— E.g., structural invariants of data structures
— Recognize many or most failures, but not all

Test Harness

...................................

Program
Under Test

: ; Self-checks . Failure
TP ! - Notification :

o'
o8
=1
=
=
="
Y
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TESTING IN FUNCTIONAL SAFETY STANDARDS
(IEC 61508, 1SO-26262)



|

Contents and Pages of the Standard 1S0-26262

. 1SO 26262 (Introduction)

. 1SO 26262-1: Vocabulary (in summary)

1. 1ISO 26262-2: Management of Functional Safety (in summary)

V. 1SO 26262-3: Concept Phase (in summary)

V. ISO 26262-6: Product Development: Software Level

6-5 Initiation of Product Development at the Software Level
6-6 Specification of Software Safety Requirements

6-7 Software Architectural Design

6-8 Software Unit Design and Implementation

6-9 Software Unit Testing

6-10 Software Integration and Testing

6-11 Verification of Software Safety Requirements
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. 1S0 26262

H SO 26262+

ISO 26262 is the adaptation of IEC 61508 to comply with needs specific to the application sector of electrical
and/or electronic (E/E) systems within road vehicles.

ISO 26262+= T E/EAM 2RO HelStH IEC 615085 £3} o &#

M

With the trend of increasing technological complexity, software content and mechatronic implementation, there
are increasing risks from systematic failures and random hardware failures. ISO 26262 includes guidance to

BS EN 61508-1:2010

5 BSI Standards Publication

Functional safety of electrical/
electronic/programmable
electronic safety-related
systems

Part 1: General requirernents

O TR A% PURATTLD TY S0PV LA

avoid these risks by providing appropriate requirements and processes. S— 5.8
HEA|A-Ol 2™t 27|, Systematic Failures?t Random Failures2 QI3 Risk 57}
+1S0 26262+ O|H riskE Y = U= 2P AE(Requirements) It =2 M A (processes)S M| S THC}.
1.130
systematic failure
. failure (1.39), related in a deterministic way to a certain cause, that can only be eliminated by a change of the
Safety Lifecycle design or of the manufacturing process, operational procedures, documentation or other relevant factors
+
Functional Safety 1.92
+ random hardware failure
failure (1.39) that can occur unpredictably during the lifetime of a hardware element (1.32) and that follows a
ASIL probability distribution
l@EPENDABLE SOFTWARE 2 5 5
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b)

provides an automotive safety lifecycle (management, development, production, operation, service,
decommissioning) and supports tailoring the necessary activities during these lifecycle phases;

+ MEAARS 2|3t Safety Lifecycle2 A|S$HC}

+ Safety Llfecycle§ ESESES W Ax"(TalIorlng)_"’é' = Qe gt s

—

0%
o
>
OH

M
b

provides an automotive-specific risk-based approach to determine integrity levels [Automotive Safety
Integrity Levels (ASIL)};

+ MEAARO| E3tE 2|23 7|8t SIL(Safety Integrity Level)= XS 2L}
— ASIL(Automotive SIL)

uses ASILs to specify applicable requirements of ISO 26262 so as to avoid unreasonable residual risk;

+ ASILS O| 23| X 3|0t 8l= ISO 26262 B E RFAIES EFSHC}

provides requirements for validation and confirmation measures to ensure a sufficient and acceptable
level of safety being achieved;

provides requirements for relations with suppliers.

+ 27 = £E AT YE As0| B HFL Y "XI golg = =
Validation & Conflrmatlon u(Measures)oﬂ Lot @ A2 A5 BHCE
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Safety issues are intertwined with common function-oriented and quality-oriented development activities and
work products. ISO 26262 addresses the safety-related aspects of development activities and work products.

AMAE-E PS5 Lt 7|%(Non—$afety Functions)9| JHEO TS M= D2{sHX| Z=Ct
+ Safety-Related Functions®| 7'Z2tS CHZLC},

ISO 26262 addresses possible hazards caused by malfunctioning behaviour of E/E safety-related systems,
including interaction of these systems. It does not address hazards related to electric shock, fire, smoke, heat,
radiation, toxicity, flammability, reactivity, corrosion, release of energy and similar hazards, unless directly
caused by malfunctioning behaviour of E/E safety-related systems.

E/E Safety-Related System?2| 2%HE (Malfunctioning) 22 Q1% HazardsTH2 112{$tCt,
+ electric shock, fire, smoke, heat 62 12 X

ISO 26262 does not address the nominal performance of E/E systems, even if dedicated functional
performance standards exist for these systems (e.g. active and passive safety systems, brake systems,
Adaptive Cruise Control).

M5 (Performance) && O|F= 118 X

KU KONKUK
UNIVERSITY

257



|

. 1S0 26262

B V-Model 7| gt 7}

EPENDABLE SOFTWARE
LABORATORY

29292 0S40 MalAaAQ — | 2inbiy

I 1. Vocabulary I
2. Management of functional safety
2-6 Safety management during the concept phase 2-7 Safety management after the item s release
25 Cwerdll safely management ‘ and the product development for production
LF | " %
3. Concept phase [ 4. Product development at the system level i roduction and operation
33 Htanvdefinition mgicgl%%d:%lam level A1 Relamoiior prosle roduction ‘
o . Operation, service
3-6 Initiation of the safety lifecycle (maintenance and repair), and
decommissioning
3-7 Hazard analysis and risk
| nent
3-8 Functional safety
concept
5-5 Initiation
development
5-6 Specification
safely requireme
5-7 Hardware desigl
5-8 Evaluation of the hg
architectural metrics
5-9 Evaluationof the safety g
violations due to random hard
failures _
5-10 Hardware integration and
testing
|6-11 Verificalion of software safety
requirements
8. Supporting processes
8-5 Interfaces within distributed developments 8-10 Documentation
8-6 Specification and management of safety requirements 8-11 Confidence in the use of software tools
8-7 Configuration management 8-12 Qualification of software compenents
8-8 Change management 8-13 Qualification of hardware components
8-9 Verification 8-14 Proven in use argument
9. ASIL-oriented and safety-oriented analyses
9-5 Reguirements decomposition with respect to ASIL tailoring | [9-7 Analysis of dependent failures |
|9-5 Criteria for coexistence of elements \ |9-B Safety analyses |

I 10. Guideline on ISO 26262 I
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. Safety LlfecyCIe 2-5to 2-7 Management of functional safety
3-5 Item definition
i Initiation of the
| 3-6 safety lifecycle g
1 L ::
2.7 Hazard analysis -
and risk assessment 2,‘ H
1
+ 5
3.8 Functional safety o
concept
T
. 2
4 |Product development: =
l ‘l system level ! ! E
; a
Operation Production S5 [HW i 6 | sw Allocation Extemal | ©
76 | ianning 7-5 | " Cianning level level |\l.| toother Controllabilty | | 2% | @
“\technologies 2
- RN a—
~\‘ g
t ) s, =
4-9 | Safetyvalidation | < ]
&
Functional safety . .
4-10‘ assessment Maln TOpIC
Release
4-11 ‘ for production
+
»7-5 Production - C
d y Inthe case of a 228
¢ modification, backto T 3 o
Operation, service 4,—.1!’1& appropriate g 3%
»7-6 and lifecycle phase ® 5
decommissioning

Figure 2 — Safety lifecycle

EPENDABLE SOF TWARE 2 5 9
LABORATORY



. 1ISO 26262-2

B Functional Safety Assessment

6.4.9.3 One or more persons shall be appointed to carry out a functional safety assessment, in
accordance with 5.4.3. The appointed persons shall provide a report that contains a judgement of the
achieved functional safety.

KU

2t ItemO| 27L& = 7|52 d(Functional Safety)= ZtEH=X| EHJudgment)HC}.
+ 24
+ B8
xXHE St :
+ 2UF g4 Table A.10 — Functional safety assessment

(see Clause 8)

Assessment/Technique ~* Ref. SIL 1 SIL 2 SIL 3 SIL 4

1 Checklists B.2.5 R R R R

2 Decision/truth tables C.6.1 R R R R

3 Failure analysis Table B.4 R R HR HR

- Common cause failure analysis of diverse software (if C.6.3 - R HR HR
diverse software is actually used)

5 Reliability block diagram C.6.4 R R R R
Forward traceability between the requirements of C.2.11 R R HR HR
Clause 8 and the plan for software functional safsty
assessment

NOTE 1 See Table C.10.
NOTE 2 The references (which are informative, not normative) "B.x.x.x", "C.x.x.x" in column 3 (Ref.) indicate

detailed descriptions of techniques/measures given in Annexes B and C of |IEC 61508-7.

Appropriate techniques/measures shall be selected according to the safety integrity level.

v -
| B
3‘: | DEPENDABLE SOFTWARE
L y
i
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V. 1S0 26262-6

M Part 6: Product Development at the Software Level

This part of ISO 26262 specifies the requirements for product development at the software level for
automotive applications, including the following:

— requirements for initiation of product development at the software level, 6-5
— specification of the software safety requirements, 6-6

— software architectural design, 6-7

— software unit design and implementation, 6-8

— software unit testing, 6-9

— software integration and testing, and 6-10

— verification of software safety requirements. 6-11

ISO 26262 Part 6= Software2| 7H'&0] CHSF 27 ALES HO|BHC}
+ 6-5 Requirements for Initiation of Product Development at the Software Level : AZEQ0 Jiet Z2 A S AF
+ 6-6 Specification of the Software Safety Requirements : 2 7 A 24 Gl B4
+ 6-7 Software Architecture Design : 4| &7

6-8 Software Unit Design and Implementation : % 84 % 713

-9 Software Unit Testing : T2 AlE

10 Software Integration and Testing : 2& S& % S8 AlH

+
+
+ 6
+ 6-11 Verification of Software Safety Requirements : ot™ Q7 ALE AT

6
6
6

g
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6-5 Initiation of Product Development at the Software Level

M 6-5 Initiation of Product Development at the Software Level

5.1 Objectives

The objective of this sub-phase is to plan and initiate the functional safety activities for the sub-phases of the
software development.

AZEY O] LS U AL
7 |22

N<LD, FQ ActivitiesS HtC}.
- AT E -”O'I -6;" |'

5.2 General

The initiation of the software development is a planning activity, where software development sub-phases and
their supporting processes (see |1SO 26262-8 and ISO 26262-9) are determined and planned according to the
extent and complexity of the item development. The software development sub-phases and supporting
processes are initiated by determining the appropriate methods in order to comply with the requirements and
their respective ASIL. The methods are supported by guidelines and tools, which are determined and planned
for each sub-phase and supporting process.

E glof 7HE I?E!%
2ZEQIN Ji'e Z ThA| S (Sub-Phases)dt X|# Z 2 M| 2 F (Supporting Processes)S 2 OHCt.
+ 51%.3_* té,”é.*E(Methocls)Oﬂ ol8l| ZH=ICt.
710| =212l (Guidelines) 2t E-Tl(Too|s)01| o8}l X|Yet=c}.

i)

Aot WH 2 (Appropriate Methods)2 (Technical Safety Requirements + ASIL)2 ftA 22 X2[& = Q0{0F BHCt,

b
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6-5 Initiation of Product Development at the Software Level

5.4.1 The activities and the determination of appropriate methods for the product development at the
software level shall be planned.

5.4.2 The tailoring of the lifecycle for product development at the software level shall be performed in
accordance with ISO 26262-2:2011, 6.4.5, and based on the reference phase model given in Figure 2.

2T EQ0 HYS 2Tt ZRMA Activities@t ALE S M ETH HHH E (Methods)S A= SHC
+ SDLC(Software Development Life-Cycle)= 3= (Tailoring)2t &= RUL}.

+ V-Model A|“8‘(Figure 2)

Hem testin / f
0 47 System design 1\ il 448 ltem integration and *»
% Test phase testing QS
5. s verification -3
o '
*3)? Design phase
verification
LI Vo A SO - .l e | R S

]
b-11 Venfication of
it safely
requiremants

&6 Specification of
software safsty

requirements

Software testing

Test phase

% venification

"

\
Desiyn phase

venfication %%
kY :
G 67 Software |\ Software testing 6-10 Software
‘?". architectursl design [ Test phase integration and testing
& 1Y venfication

"
\
Desihn phase
verhcation

1
'

3
68 Software unit
design and

implement ation L

65 Intiation of product development
at the software level

69 Software unit
testing

wific aholt

lg Figure 2 — Reference phase model for the software development
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6-5 Initiation of Product Development at the Software Level

5.4.4 The software development process for the software of an item, including lifecycle phases, methods,
languages and tools, shall be consistent across all the sub-phases of the software lifecycle and be compatible
with the system and hardware development phases, such that the required data can be transformed correctly.

2T EQO 7Y Z 2 M| A(+ Lifecycle phases, HHE, 7}0| E21l oy X EF)= HHH 2 Z Y2 Consistent) =| 0] OF BHC}
+ A|AE B BEQ 0] JHE T2 M AL S HCompatible) T O OF $HCF,

5.4.5 For each sub-phase of software development, the selection of the following, including guidelines for
their application, shall be carried out:

a) methods; and
b) corresponding tools.
SDLC Zt THA|O| A At2%, M SHAppropriate)
+ HHE (Methods)
+ Zql(Tools) : WHE| AHBS & sy =7

+ 7|‘°|EEI‘?_|(Guidelines) CERHEL Ol AR A 3 Of|F|gest Practice)
= dddljof oot
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6-5 Initiation of Product Development at the Software Level,

5.4.7 To support the correctness of the design and implementation, the design and coding guidelines for the
modelling, or programming languages, shall address the topics listed in Table 1.

NOTE 1 Coding guidelines are usually different for different programming languages.
NOTE 2 Coding guidelines can be different for model-based development.

NOTE 3 Existing coding guidelines can be modified for a specific item development.

2EY oo L =22 A S FsHH AME5t7| AT 710 =2t (Guideline)S M| SOl OF BHCL.
+ ALE ._0101| et 40|

=| =7
+ D 7|g H* LYENM= CHEA —1?5:-' Table 1 — Topics to be covered by modelling and coding guidelines
o

+ 7|E0] = 7I0|EEIRIZ HE [ (A Specific Item)oﬂ a2t
HESHA =8 7ts i ASIL

A B c D

7|'0|EEI'?—I% Table 1.2 Q%(Topics)%% E-ﬂ' HOI: -6|-_|'E|'- la |Enforcement of low complexity? ++ ++ ++ ++
Ib |Use of language subsets® ++ ++ ++ ++

lc | Enforcement of strong typing® ++ ++ Ea ++

1d |Use of defensive implementation techniques 0 =k ++ +4

le |Use of established design principles + + 3 8

11 | Use of unambiguous graphical representation + ++ ++ ++

1g |Use of style guides + ++ ++ ++

1h |Use of naming conventions ++ ++ ++ ++

2 An appropriate compromise of this topic with other methods in this part of ISO 26262 may be required.

b The objectives of method 1b are
— Exclusion of ambiguously defined language constructs which may be interpreted differently by different modellers,
programmers, code generators or compilers.
— Exclusion of language constructs which from experience easily lead to mistakes, for example assignments in conditions or
identical naming of local and global vanables.
I - — Exclusion of language constructs which could result in unhandled run-time errors.
|DEPENDABLE SOFTWARE £ The objective of method ¢ is to impose principles of strong typing where these are not inherent in the language. 265
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65 Indiation of product development

6-6 Specification of Software Safety Requirements

B 6-6 Specification of Software Safety Requirements

tem testing

6.2 General

The technical safety requirements are refined and allocated to hardware and software during the system
design phase given in 1SO 26262-4:2011, Clause 7. The specification of the software safety requirements
considers constraints of the hardware and the impact of these constraints on the software. This sub-phase

includes the specification of software safety requirements to support the subsequent design phases.

Technical Safety Requirements= 26262-40] A{
+ HM|(specification) =| 11
+ Hardware/Software0f & 2 Allocation)E! Ct.

47 System design
Test phase
verification

\
Design phase

56 Specibcation of

Software testing

6-60| A= . ]

+ Hardware2 ¢! C.L*I_Iﬂ OF AL g(Cons;raints)J—'ﬂ' | S
+ Software 0‘” |:|| Xl = %1 °°|:(|mpact)§ ol E:I o|— O:I 2 risk assessment
. - o -

Software Safety RequirementsE %+ otCt 8 Specification of safety goals

3 l

3-8 Functional safety
/ concept
4.8 hem integration and v o
testing q; Specification of functional safety
3 requirements

611 Venfication of

software safety
requirements

Test phase
venfication

Design phase
verficytion

67 Software
architectural design

Desin phass
e .iflUn

&’.pﬁ

Test phase
verification

s
R

Software testing

software safely
requirtements

610 Software
integration and testing

68 Software unit
design and
implementation

hade

69 Software unit
testing

1
Product development <

3-7 Hazard analysis and
risk assessment

Hazard analysis and risk
assessment

¥
4-6 Specification of
technical safety requirements|
Specification of technical safety
requirements

Specification and management of safety requirements

KU

P ——

—
15-6 Specification of hardware| 6-6 Specification of software
safety requirements

safety requirements

8-6 Specification and management of safety requirements

Hardware safety requirements Software safety requirements

K

Figure 3 — Structure of the safety requirements (26262-3)
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6-6 Specification of Software Safety Requirements

(26262-8 Clause 6)
6.4.1 Specification of safety requirements

6.4.1.1 To achieve the characteristics of safety requirements listed in 6.4.2.4, safety requirements shall
be specified by an appropriate combination of:

a) natural language, and
b) methods listed in Table 1.
NOTE Faor higher level safety requirements (e.g. functional and technical safety requirements) natural language is

maore appropriate while for lower level safety requirements (e.g. software and hardware safety requirements) notations
listed in Table 1 are more appropriate.

26262-8: Clause 6
+ Safety Requirements Specification2 X}0{L} HHY - =HH-H

ogt

FHIel =gt = FNM| [0fof Bt

Safety Requirements?} 7tX0f 2 &/d
+ Unambiguous and Comprehensive

+ Atomic Table 1 — Specifying safety requirements

+ Inter.nally Consistent ASIL

+ Feasible Methods A 5 c >

+ Verifiable
1a Informal notations for requirements specification HEF FE A F
1] Semi-formal notations for requirements specification *: + =+ T
lc Formal notations for requirements specification + + + +

b
?QZ}EPENDABLE SOF TWARE 2 67
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Table A.1 — Software safety requirements specification

(See 7.2)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1a | Semi-formal methods Table B.7 R R HR HR
1b Formal methods B.22,c.24 -—- R R HR
2 Forward traceability between the system safety c.2.11 R R HR HR
requirements and the software safety requirements

3 Backward traceability between the safety Cc.2.11 R R HR HR
requirements and the perceived safety needs

- Computer-aided specification tools to support B.2.4 R R HR HR
appropriate technigues/measures above

NOTE 1 The software safety requirements specification will always require a description of the problem in natural

language and any necessary mathematical notation that reflects the application.

NQOTE 2 The table reflects additional requirements for specifying the software safety requirements clearly and
precisely.

NQOTE 3 See Table C.1.

NOTE 4 The references (which are informative, not normative) "B.o.x.x", "C.x.x.x" in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

-

Appropriate techniques/measures shall be selected according to the safety

integrity

level.

Alternate or

equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.
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6-7 Software Architectural Design

B 6-7. Software Architectural Design

7.1 Objectives

The first objective of this sub-phase is to develop a software architectural design that realizes the software
safety requirements.

The second objective of this sub-phase is to verify the software architectural design.

Software Safety RequirementsE (42t Realization)Z == U= Software Architectural DesignS 7HZ2THC}

7kt Software Architectural DesignS Z 5 (Verify) L.

% 47 System design Hem testing 48 tem and .
% i ? Test phase testing Qg
%X verification g
< \
3,
- Design phase
venhication
I e A SO /.. 1+ oo oo | S S

O
611 Venfication of
software safety
requitements

&6 Specibication of
software safety
fequirements

Software testing

Test phase

2 verification

Desiyn phase
venficytion %%
\

67 Software
architectural design

\

Software testing

Test phase
venfication

610 Software
integration and testing

Desihn phass
ver| ‘l‘:lﬂn

65 Initiation of product development
at the software level

‘t.
68 Software unit
design and
implementation

it
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6-7 Software Architectural Design

7.2 General

The software architectural design represents all software components and their interactions in a hierarchical
structure. Static aspects, such as interfaces and data paths between all software components, as well as
dynamic aspects, such as process sequences and timing behaviour are described.

Software Architectural Design
+ BE Software Components@ 0| 7t2| Interactions2 HE ™ 2 Z(in a Hierarchical Structure) 2

+ H& Q4 interface / data paths (2 £ software components2])
+ %75‘" 8.4 process sequences , timing behavior

o
1ot
o
n

In order to develop a software architectural design both software safety requirements as well as all non-safety-
related requirements are implemented. Hence in this sub-phase safety-related and non-safety-related
reguirements are handled within one development process.

Safety / Non-Safety RequirementsS 25 274 1z{stCt.

The software architectural design provides the means to implement the software safety requirements and to
manage the complexity of the software development.

Software Architectural Design=

+ Software Safety RequirementsE T&15t11
L2IZEQO 7H’ 9 E’u'E(Complemty)% HE[Y 5 U H = (Means)= M| S L}
U 270

{D EPENDABLE SOFTWARE
LABORATORY



Table A.2 — Software design and development —
software architecture design
(see 7.4.3)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
Architecture and design feature

1 Fault detection C.3.1 - R HR HR
2 Error detecting codes c.3.2 R R HR
3a | Failure assertion programming c3.3 R R R HR
3b | Diverse monitor techniques (with independence between c.2.4 --- R -

the monitor and the monitored function in the same

computer)
3c | Diverse monitor techniques (with separation between the c.3.4 - R R HR

monitor computer and the monitored computer)
3d | Diverse redundancy, implementing the same software C.3.5 - -—- -— R

safety requirements specification
3e Functionally diverse redundancy, implementing different C.3.5 - --- R HR

software safety requirements specification
3f Backward recovery C.3.6 R R -— NR
3g | Stateless software design (or limited state design) c.2.12 e e R HR
4a | Re-try fault recovery mechanisms C37 R R - -
4b | Graceful degradation c.3.8 R R HR HR
5 Artificial intelligence - fault correction C.3.9 - NR NR NR
6 Dynamic reconfiguration c.3.10 - NR NR NR
7 Modular approach Table B.9 HR HR HR HR
&8 Use of trusted/verified software elements (if available) c.2.10 R HR HR HR
9 Forward traceability between the software safety c.2.11 R R HR HR

requirements specification and software architecture
10 | Backward traceability between the software safety c.2.11 R R HR HR

requirements specification and software architecture
11a | Structured diagrammatic methods ** c.21 HR HR HR HR
11b | Semi-formal methods ** Table B.7 R R HR HR
11c | Formal design and refinement methods ** B.2.2, C.2.4 --- R R HR
11d | Automatic software generation c46 R R R
12 | Computer-aided specification and design tools B.2.4 R HR HR
13a | Cyclic behaviour, with guaranteed maximum cycle time C.3.11 R HR HR HR
13b | Time-triggered architecture C.3.11 R HR HR HR
13c | Event-driven. with guaranteed maximum response time c.3.11 R HR HR g
14 | Static resource allocation c.2.63 = R HR HR
15 | Static synchronisation of access to shared resources C.2.6.3 - - R HR

;'E}F_PENDABLE SOFTWARE 271
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6-7 Software Architectural Design

7.4.18 The software architectural design shall be verified in accordance with 1SO 26262-8:2011, Clause 9,
and by using the software architectural design verification methods listed in Table 6 to demonstrate the
following properties:

a) compliance with the software safety requirements;

b) compatibility with the target hardware; and

NOTE This includes the resources as specified in 7.4 17.

c) adherence to design guidelines.

26262-8 Clause 9% 0|%3}0:| 9 Verification
: O A= e L. o siC 9.1 Objectives .
+ Software Architectural DesignS &% (Verification) Sl{OF BHC}. 9.2 General........

o| 74=H}tH (=3 9.3 Inputs to this clause.
+ Table 6 _l Obood Af © 9.4 Requirements and recommendations..
9.5 Work products ......

(26262-8 Clause 9)
Table 6 — Methods for the verification of the software architectural design

Methods e

A B c D
la |Walk-through of the design? ++ +
Ib | Inspection of the design? + ++ ++ ++
Ic | Simulation of dynamic parts of the design® + + + ++
Id |Prototype generation o 0 2 *E
le |Formal verification 0 o] + +
If | Control flow analysis® + + ++ i
1g |Data flow analysis® + + ++ ++
2 |n the case of model-based development these methods can be applied to the model.
b Method 1c requires the usage of executable models for the dynamic parts of the software architecture.
¢ Control and data flow analysis may be limited to safety-related components and their interfaces.
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Table A.9 — Software verification

(See 7.9)
Technique/Measure * Ref. SiL 1 SiL 2 SIL 3 SIiL 4
1 Formal proof c:h.2 -— R R HR
2 Animation of specification and design C.5.26 R R R R
Static analysis B.6.4 R HR HR HR
Table B.&
4 Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
5 Forward traceability between the software design c:2:11 R R HR HR
specification and the software verification (including
data verification) plan
6 Backward traceability between the software c.2.11 R R HR HR
verification (including data verification) plan and
the software design specification
7 Offline numerical analysis C.2.13 R R HR HR
Software module testing and integration See Table A.5
Programmable electronics integration testing See Table A.6
Software system testing (validation) See Table A.7

NOTE 1 For convenience all verification activities have been drawn together under this table. However, this does
not place additional requirements for the dynamic testing element of verification in Table A.5 and Table A.6 which
are verification activities in themselves. Nor does this table require verification testing in addition to software
validation (see Table B.7), which in this standard is the demonstration of conformance to the safety requirements
specification (end-end verification).

NOTE 2 Verification crosses the boundaries of IEC 61508-1, IEC 61508-2 and IEC 61508-3. Therefore the first
verification of the safety-related system is against the earlier system level specifications.

NOTE 3 In the early phases of the software safety lifecycle verification is static, for example inspection, review,
formal proof. When code is produced dynamic testing becomes possible. It is the combination of both types of
information that is required for verification. For example code verification of a software module by static means
includes such techniques as software inspections, walk-throughs, static analysis, formal proof. Code verification
by dynamic means includes functional testing, white-box testing, statistical testing. It is the combination of both
types of evidence that provides assurance that each software module satisfies its associated specification.

NOTE 4 See Table C.9.

NOTE 5 The references (which are informative., not normative) “B.x.x.x", "C.x.x.x" in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.
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Table B.8 — Static analysis

(Referenced by Table A.9)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4

1 Boundary value analysis C.5.4 R R HR HR

2 Checklists B.2.5 R R R R

3 Control flow analysis cC59 R HR HR HR

4 Data flow analysis C.5.10 R HR HR HR

5 Error guessing C.55 R R R R

Ba | Formal inspections, including specific criteria C.5.14 R HR HR

6b | Walk-through (software) C.5.15 R R

7 Symbolic execution 5711 -—- -—- R R

8 Design review C.5.16 HR HR HR HR

9 Static analysis of run time error behaviour B22 C24 R R R HR

10 | Worst-case execution time analysis C.5.20 R R R R

NOTE 1 See Table C.18.

NOTE 2 The references “B.x.xx", “Cxxx" in column 3 (Ref) indicate detailed descriptions of

techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.
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l 6-8 Software Unit Design and Implementation

8.1 Objectives

The first objective of this sub-phase is to specify the software units in accordance with the software

architectural design and the associated software safety requirements.

The second objective of this sub-phase is to implement the software units as specified.

The third objective of this sub-phase is the static verification of the design of the software units and their

implementation.

o
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Software Architectural Designl} Software Safety Requirements0i| [[}2} Software Unit2 4 M|‘2A|(Detailed Design)TtCt.

AN EA T Software Unit2 ¥ (Implementation)S+Ct.
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6-8 Software Unit Design and Implementation

8.2 General

Based on the software architectural design, the detailed design of the software units is developed. The
detailed design will be implemented as a model or directly as source code, in accordance with the modelling
or coding guidelines respectively. The detailed design and the implementation are statically verified before
proceeding to the software unit testing phase. The implementation-related properties are achievable at the
source code level if manual code development is used. If model-based development with automatic code
generation is used, these properties apply to the model and need not apply to the source code.

Software Architectural Design0il [[tZ2} Software Unit2 AM|AA|St 0 L SHCE
+ Dol J|H HEol Ao x| DO AMBHE HS AT Z 7hE

- A=
+ ™MHEHAZ (static Verlflcatlon) S £dlsiCt

In order to develop a single software unit design/both software safety requirements as well as all non-safety-
related requirements are implemented. Hence in this sub-phase safety-related and non-safety-related
requirements are handled within one development process.

Safety / Non-Safety RequirementsS 25 27| 112{5tC}

The implementation of the software units includes the generation of source code and the translation into
object code.

Software Unit 78S AAJC MM QHNE JAC HIl
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6-8 Software Unit Design and Implementation

8.4.2 To ensure that the software unit design captures the information necessary to allow the subsequent
development activities to be performed correctly and effectively, the software unit design shall be described
using the notations listed in Table 7.

Table 7 — Notations for software unit design

ASIL
Methods
A B C D
la | Natural language ++ ++ g 4
1b |Informal notations +4+ ++ + +
lc | Semi-formal notations + ++ ++ ++
1d | Formal notations + + + +

Software Unit2] M2 = E7|™ (Notations)= ALESHAl & HAM|S|OF SHCL. (Table 7)
+ 7| & (Functional Behavior)
+ L& 24
— H HE g £+ US HEE XHM|SHA| =g strt.

8.4.3 The specification of the software units shall describe the functional behaviour and the internal design
to the level of detail necessary for their implementation.

EXAMPLE Internal design can include constraints on the use of registers and storage of data.

Il b
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6-8 Software Unit Design and Implementation

8.44 Design principles for software unit design and implementation at the source code level as listed in
Table 8 shall be applied to achieve the following properties:

a) correct order of execution of subprograms and functions within the software units, based on the software
architectural design; L
A2 LIS 0| HSverificationd OF L}

b) consistency of the interfaces between the software units;
Table 8 — Design principles for software unit design and implementation

c) correctness of data flow and control flow between and within the software units;

ASIL
Methods
d) simplicity; A B c D
- sty 1a | One entry and one exit point in subprograms and functions® ok £+ ++ ++
e) readability and comprehensibility; - - 5
1b | No dynamic objecis or variables, or else online test during their creation® + ++ ++ ++
f) robustness; 1c | Initialization of variables ++ ++ ++ ++
) ) ) o 1d | No multiple use of variable names? + ++ ++ ++
EXAMPLE Methods to prevent implausible values, execution errors, division by zero, and err - - —
1e | Avoid global variables or else justify their usage® ¥ + ++ ++
control flow.
If | Limited use of pointers? 0 + 3 HE
g) suitability for software madification; and 1g | No implicit type conversionsa® . - s -
h) testability 1h | No hidden data flow or control flow® + ++ ++ ++
1i | No unconditional jumps3b.c ++ ++ ++ ++
A X (Design Principles)S X -23|{OF StC}. ij |No recursions + + | 4+
+ Table 8 2 Methods 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling notations used in model-based development.
B | —
+ SM2A et FHE 22T RE HE . . . .
Methods 1g and 1i are not applicable in assembler programming.
€ Methods 1h and 1i reduce the potential for modelling data fiow and control flow through jumps or global variables.

NOTE For the C language, MISRA CBl covers many of the methods listed in Table 8.

+ MISRA-CE ME3|H Table 82| 22 £&
7|9t g
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Table B.1 — Design and coding standards

(Referenced by Table A.4)

Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SiL 4
1 Use of coding standard to reduce likelihood of errors C262 HR HR HR HR
2 No dynamic objects C.26.3 R HR HR HR
3a | No dynamic variables C.2863 -— R HR HR
3b | Online checking of the installation of dynamic variables C264 -—- R HR HR
4 Limited use of interrupts C2865 R R HR HR
5 Limited use of pointers C.2.6.6 - R HR HR
6 Limited use of recursion C267 - R HR HR
7 Mo unstructured control flow in programs in higher level C262 R HR HR HR
languages
a Mo automatic type conversion C262 R HR HR HR

NOTE 1 Measures 2, 3a and 5. The use of dynamic objects (for example on the execution stack or on a heap)
may impose requirements on both available memory and also execution time. Measures 2, 3a and 5 do not need to
be applied if a compiler is used which ensures a) that sufficient memory for all dynamic variables and objects will
be allocated before runtime, or which guarantees that in case of memory allocation error, a safe state is achieved;
b) that response times meet the requirements.

NOTE 2 See Table C.11.

NOTE 3 The references (which are informative, not normative) "B x.x.x", “C.x.x.x" in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.
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6-8 Software Unit Design and Implementation

8.4.5 The software unit design and implementation shall be verified in accordance with ISO 26262-8:2011
Clause 9, and by applying the verification methods listed in Table 9, to demonstrate:

a) the compliance with the hardware-software interface specification (in accordance with ISO 26262-5:2011,
6.4.10);

b) the fulflment of the software safety requirements as allocated to the software units (in accordance with
7.4.9) through traceability;

c) the compliance of the source code with its design specification;

NOTE In the case of model-based development, requirement c) still applies. =
d) the compliance of the source code with the coding guidelines (see 5.5.3); and

e) the compatibility of the software unit implementations with the target hardware.

o
4
02
o
[S)
o
anl

Software Unit Designt Implementation0i| CH$t Z & (verification)
+ Table 92| HE =SS A&

HAE L
+ Hardware-Software Interface Specification2| &5 0| &£
kel Software Safety RequirementsE 2.5 I =X| of

+
+ &2 A EQ| Design Specification = 0§
+
+

1

AA AE9| Coding Guideline &4 05
T8 1} Target Hardware®t2| SEHd o5

- O Y2 o2A MEB3IM o= LHES M= AT AQIX| 2l of St}

\ l;._l?}\
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6-8 Software Unit Design and Implementation

Table 9 — Methods for the verification of software unit design and implementation

ASIL
Methods

A B c D
la [Walk-through? ++ + o o
b [Inspection® + + - e
lc | Semi-formal verification + + ++ ++
1d |Formal verification 0 o + +
1e |Control flow analysis®¢ + + Fes 4
1f  |Data flow analysis?© + + i e
lg | Static code analysis + ++ ++ ++
Ih | Semantic code analysisd + + ¥ +

2 In the case of model-based software development the software unit specification design and implementation can be verified at the
model level.

b Methods 1e and 1f can be applied at the source code level. These methods are applicable both to manual code development and
to model-based development.

€ Methods 1e and 1f can be part of methods 1d, 1g or 1h.

d  Method 1h is used for mathematical analysis of source code by use of an abstract representation of possible values for the
variables. For this it is not necessary to translate and execute the source code.

NOTE Table 9 lists only static verification techniques. Dynamic verification techniques (e.g. testing technigues) are
covered in Tables 10, 11 and 12.

|
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6-9 Software Unit Testing

l 6-9 Software Unit Testing

9.1 Objectives

The objective of this sub-phase is to demonstrate that the software units fulfil the software unit design
specifications and do not contain undesired functionality.

9.2 General

A procedure for testing the software unit against the software unit design specifications is established, and the
tests are carried out in accordance with this procedure.

Software UnitOf| CH®t E| A& (Software Unit Testing)= = THCL.

+ Software UnitO| Software Unit Design Specification= ':.'_*—’—‘53.:.*% HolCk
+ Software UnitO| |} X| 2= 7|5 (Undesired Functionalitiesy= T3 SHX| X2 EQIC}

~ Bt ATEQ0f HAY 2% X

Hem testing

44 tem integration and

Software Unit Testing2 2|3t E Xl (Procedure)S &3l % 47 Systemgesn (4

ng=
olof 2t HAES $HstCt, kY

Test phase
verific ation

Design phase
vent ‘ahan

611 Verfication of
software safety
requirements.

&6 Specibcation of
software safety
requirements

Software testing

Test phase
venfic ation

Sotware testing 610 Software

integration and testing

Test phase
venfication

65 Initiation of product devalopment
it the software level

design and ok
implemantation _Test sting

548 Software unit [} al 69 Software unit
o
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9.4.1

The requirements of this subclause shall be complied with if the software unit is safety-related.

NOTE “Safety-related” means that the unit implements safety requirements, or that the criteria for coexistence of the
unit with other units are not satisfied.

Safety-Related Functions= T2t Software UnitOf| Ciot HIAR S A}

9.4.3 The software unit testing methods listed in Table 10 shall be applied to demonstrate that the software
units achieve:

compliance with the software unit design specification (in accordance with Clause 8);

compliance with the specification of the hardware-software interface (in accordance with
ISO 26262-5:2011, 6.4.10);

the specified functionality;

confidence in the absence of unintended functionality; + 2gtxol HARIS| X X

robustness; and

EXAMPLE The absence of inaccessible software, the effectiveness of error detection and error handling
mechanisms.

sufficient resources to support their functionality.

Table 102| | A& W E (Testing Methods)= AMESH0] Software Unit Testings =& oHCt.
+ H28 S~ 2t AHE5t= HAE HHE 40[SIC}

—
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YdtHo 2 8= Unit Testing WHE

Table 10 — Methods for software unit testing

ASIL
Methods
24 A B [ & D
la | Requirements-based test? ++ 4 + +
1b | Interface test + -+ ++ ¥
1c | Fault injection test® + + - i
1d | Resource usage test® + + + +
le |Back-to-back comparison test between model and code, if a;:;pli(:able‘j + + ++ ++

2 The software requirements at the unit level are the basis for this requirements-based test.

b This includes injection of arbitrary faults (e.g. by corrupting values of variables, by introducing code mutations, or by corrupting
values of CPU registers).

¢ Some aspects of the resource usage test can only be evaluated properly when the software unit tests are executed on the target
hardware or if the emulator for the target processor supports resource usage tests.

4 This method requires a model that can simulate the functionality of the software units. Here, the model and code are stimulated in
the same way and results compared with each other.
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U Ol Functional Test Cases 2443

9.4.4 To enable the specification of appropriate test cases for the software unit testjn'g in accordance with
9.4.3, test cases shall be derived using the methods listed in Table 11.

L

ASIL
Methods
A B G D
la JAnalysis of requirements I ++ ++ ++ ++
1b | Generation and analysis of equivalence classes® E + ++ ++ ++
1¢ | Analysis of boundary valuesb + ++ ++ ++
Id | Error guessing® + + + +

selected for each class.

2 Equivalence classes can be identified based on the division of inputs and outputs, such that a representative test value can be

b This method applies to interfaces, values approaching and crossing the boundaries and out of range values.

€ Error guessing tests can be based on data collected through a “lessons learned” process and expert judgment.

Software Unit Testing2| Test CasesE 7l HE"(Derivation)'5|'7 | fleh &

+ Software Unit Design SpecificationS & *"°“:f

+ 5Y El‘EH* (Equivalence Classes) 7H &= O|'9'0HA'| Mot
+ 71'71| (Boundary Values) =412 &3l 7§L2tCt.

L X% HAHE 0RES HAE oAz gL

 DEPENDABLE SOFTWARE
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HE (Table 11)

EH
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9.45 To evaluate the completeness of test cases and to demonstrate that there is no unintended
functionality, the coverage of requirements at the software unit level shall be determined and the structural
coverage shall be measured in accordance with the metrics listed in Table 12. If the achieved structural
coverage is considered insufficient, either additional test cases shall be specified or a rationale shall be

provided.

Unit Test Cases2| Software Unit Design Specification0| Ci{ 3t Requirements CoverageS
+ UTCZt SUDSE YOtLt B SH=X| A LHSTE (100%: HAIE EIAES, 50%: SSRSQ &2 5 50%2t E

— 2=l UTCO| ‘d'S(Completeness)= L7t5H= HLfXQ X|HE O (&4 100% E)

3
=3
[u]

AE 2al)

Unit Test Cases2| Structural CoverageE &7
+ FIH O 2, UTC7} Unit CodeS HOFL} MASH=X| 2HQIHCE
+ Structural Coverage Criteria Al-2 (Table 12)

+ Statement Coverage , Branch Coverage , MC/DC &

+ Testing Tools= O|&3lA 57 8l ¥4 7I=

- WEE UTCe| 452 E7Icts BUiH X & X
+ Requirements Analysis(Z, Functional Tesh S &l /'L El UTCE E et 7ts

Table 12 — Structural coverage metrics at the software unit level

ASIL
Methods
A B C D
la Statement coverage ++ ++ + -
Ib | Branch coverage 5 ++ g 4+
lc  |MC/DC (Modified Condition/Decision Coverage) + + + ++

286
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Table A.5 — Software design and development —
software module testing and integration

(See 7.4.7 and 7.4.8)

Technique/Measure * Ref. SIL1|SIL2|SIL3| SIL4
1 Probabilistic testing C.5.1 -—- R R R
2 Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
3 Data recording and analysis c.5.2 HR HR HR HR
4 Functional and black box testing B.5:1 HR HR HR HR
B.5.2
Table B.3
5 Performance testing Table B.6 R HR HR
<] Model based testing c.5.27 R HR HR
7 Interface testing C.5.3 R HR HR
8 Test management and automation tools c.4.7 R HR HR HR
9 Forward traceability between the software design specification ei2:1 R HR HR
and the module and integration test specifications
10 Formal verification c.5.12 e b R R

NOTE 1 Software module and integration testing are verification activities (see Table B.9).

NOTE 2 See Table C.5.

NOTE 3 Technique 9. Formal verification may reduce the amount and extent of module and integration testing

required.

NOTE 4 The references (which are informative, not normative) “B.x.x.x", "C.x.x.x" in column 3 (Ref.) indicate

detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

" Appropriate techniques/measures shall be selected according to the safety integrity level.
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Table B.2 — Dynamic analysis and testing

(Referenced by Tables A.5 and A.9)

specification and the code.

NOTE 2 See Table C.12.

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIiL 4
1 Test case execution from boundary value analysis C54 R HR HR HR
2 Test case execution from error guessing G55 R R
3 Test case execution from error seeding C.56 -—- R
- Test case execution from model-based test case G.5.27 R R HR HR
generation
5 Performance modelling C.5.20 R HR
6 Equivalence classes and input partition testing C57 R HR
Ta | Structural test coverage (entry points) 100 % ** c58 HR HR HR HR
Tb | Structural test coverage (statements) 100 %** cb8 R HR HR HR
7c | Structural test coverage (branches) 100 %™ Ch58 R HR HR
7d | Structural test coverage (conditions, MC/DC) 100 %™* C58 R R R HR
NOTE 1 The analysis for the test cases is at the subsystem level and is based on the specification and/or the

NQOTE 3 The references (which are informative, not normative) ‘B x.x.x", “C.x.x.x" in column 3 (Ref) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

*k

Appropriate technigues/measures shall be selected according to the safety integrity level.

Where 100 % coverage cannot be achieved (e.g. statement coverage of defensive code), an appropriate
explanation should be given.
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Table B.3 - Functional and black-box testing

(Referenced by Tables A.5, A.6 and A.7)

Technigue/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Test case execution from cause conseguence diagrams B66.2 --- - R R
2 Test case execution from model-based test case C.5.27 R R HR HR
generation
3 Prototyping/animation C.517 - - R R
- Equivalence classes and input partition testing, Ch7 R HR HR HR
including boundary value analysis Ch54
5 Process simulation C.5.18 R R R R

NOTE 1 The analysis for the test cases is at the software system level and is based on the specification only.

NOTE 2 The completeness of the simulation will depend upon the safety integrity level, complexity and
application.

NOTE 3 See Table C.13.

NOTE 4 The references (which are informative, not normative) "B .x x x", “C.x.x.x" in column 3 (Ref) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate technigues/measures shall be selected according to the safety integrity level.
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B 6-10 Software Integration and Testing
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10.1 Objectives

The first objective of this sub-phase is to integrate the software elements.

The second objective of this sub-phase is to demonstrate that the software architectural design is realized by
the embedded software.

10.2 General

In this sub-phase, the particular integration levels and the interfaces between the software elements are
tested against the software architectural design. The steps of the integration and testing of the software

elements correspond directly to the hierarchical architecture of the software.

The embedded software can consist of safety-related and non-safety-related software elements.

Software ElementsOi| Lot & (Integration)= TSt
+ Non-Safety-Related Software Elementske Zgtst o= QILCt,

Software Integration(+Interfaces)Ofl CHSH | A& (Integration Testing)= Al =50 =l SHC} 3
S

+ Software IntegrationO| Software Architecture Design2 & T EX| 2 QISHC}
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10.4.1 The planning of the software integration shall describe the steps for integrating the individual software
units hierarchically into software components until the embedded software is fully integrated, and shall
consider:

a) the functional dependencies that are relevant for software integration; and

b) the dependencies between the software integration and the hardware-software integration.

™A Embedded Software?t 2 & 77t X|, Software Units2 |5 X (Hierarchically) 2 £ S (Integration)THC.
+ 7|58 o|EEA
+ Hardware-Software Integration 12| S| Z&A 18| &

10.4.2 Software integration testing shall be planned, specified and executed in accordance with
ISO 26262-8:2011, Clause 9.

NOTE 1 Based on the definitions in 1SO 26262-8:2011, Clause 9, the software integration test objects are the software
components.

Software Integration Testing2 26262-8 Clause 90| [[}2} 7|2l £|0{OF $HC}, 9 Verification

N 9.1 Objectives
+ SITS| L% : Software Components 92 General

9.3 Inputs to this clause

9.4 Requirements and recommendations.......auemiu.

9.5 Work products

(26262-8 Clause 9)
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Table 13 — Methods for software integration testing

ASIL
Methods

A B c D
1a Requirements-based test? ++ ++ S ++
1b Interface test ++ ++ ++ ++
1¢  |Faultinjection test® + + +t ++
1d Resource usage testcd + + + ++
1e | Back-to-back comparison test between model and code, if applicable® + + ++ ++

3 The software requirements at the architectural level are the basis for this requirements-based test.

b This includes injection of arbitrary faults in order to test safety mechanisms (e.g. by corrupting software or hardware components).

€ To ensure the fulfilment of requirements influenced by the hardware architectural design with sufficient tolerance, properties such
as average and maximum processor performance, minimum or maximum execution times, storage usage (e.g. RAM for stack and heap,
ROM for program and data) and the bandwidth of communication links (e.g. data buses) have to be determined.

d  Spme aspects of the resource usage test can only be evaluated properly when the software integration tests are executed on the
target hardware or if the emulator for the target processor supports resource usage tests.

&  This method requires a model that can simulate the functionality of the software components. Here, the model and code are
stimulated in the same way and results compared with each other.
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10.4.4 To enable the specification of appropriate test cases for the software integration test methods
selected in accordance with 10.4.3, test cases shall be derived using the methods listed in Table 14.

Table 14 — Methods for deriving test cases for software integration testing

ASIL
Methods
A B Cc D
1a | Analysis of requirements ++ ++ ++ ++
b Generation and analysis of equivalence classes? + ++ ++ ++
1c Analysis of boundary values? + ++ ++ ++
Id | Error guessing® $ + oy "

3 Equivalence classes can be identified based on the division of inputs and outputs, such that a representative test value can be
selected for each class.

b This method applies to parameters or variables, values approaching and crossing the boundaries and out of range values.

€ Error guessing tests can be based on data collected through a “lessons learned” process and expert judgment.

] l=13

Software Integration Testing2| Test CasesE 7ll'¥ (Derivation)5t7| ¢2F L E (Table 11)
+ Software Architectural Designg & &AI3HC},
+ &Y S 2 A (Equivalence Classes) 7HE S 0|85}
+ B A%t Boundary Values) =42 Soll 7HLTHCL.
+ A G QLRSS HAE #Ho|lAR &EotCt

Y
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10.4.5 To evaluate the completeness of tests and to obtain confidence that there is no unintended
functionality, the coverage of requirements at the software architectural level by test cases shall be
determined. If necessary, additional test cases shall be specified or a rationale shall be provided.

Integration Test Cases2| Software Architectural Design0f CH$+ Requirements CoverageS &%
+ ITC7} SAD2 YOtL AHBSH=X] A AFSICE (100%: HHES HAES, 50%: SADS| &2 F 50%3 HAE $8)

——0,

— WL E 1ITCO| d&(Completeness)= L7}6H= HHH Ol X HE (3H 100% E)

10.4.6 This subclause applies to ASIL (A), (B), C and D, in accordance with 4.3: To evaluate the
completeness of test cases and to obtain confidence that there is no unintended functionality, the structural
coverage shall he measured in accordance with the metrics listed in Table 15. If the achieved structural

coverage is considered insufficient, either additional test cases shall be specified or a rationale shall be
provided.

Integration Test Cases2| Structural CoverageE SH 2 EMN, ITC2| dS(Completeness)= L THOFCL
+ Structural Coverage Criteria A& (Table 15)

+ Function Coverage , Call Coverage
+ Y- HEHEN E2S 0|Bo)H 57 7ts

Table 15 — Structural coverage metrics at the software architectural level

ASIL
Methods
A B c D
la |Function coverage? 5 + ++ -
b | Call coverage® + 5 o 4

8  Method 1a refers to the percentage of executed software functions. This evidence can be achieved by an appropriate software

integration strategy.

b Method 1b refers to the percentage of executed software function calls.
IJ:I} EPENDABLE SOFTWARE 2 94
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10.4.7 It shall be verified that the embedded software that is to be included as part of a production release in
accordance with ISO 26262-4:2011, Clause 11, contains all the specified functions, and only contains other
unspecified functions if these functions do not impair the compliance with the software safety requirements.

|

" oy

E3t=l Embedded Software7f Product Release0| 2%t 7| 53c5)0 E&S=X| OISt

+ O ZO|Lt HAE, o Z2|0|M §& fIot ZE-7| 52 AH |0{0F SOt
+ Q% 7150 B FHE|RE=X|E 6-11 Verification of Software Safety RequirementsO| A %

10.4.8 The test environment for software integration testing shall correspond as closely as possible to the
target environment. If the software integration testing is not carried out in the target environment, the
differences in the source and object code and the differences between the test environment and the target
environment shall be analysed in order to specify additional tests in the target environment during the
subsequent test phases.
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6-10 Software Integration and Testing

Rest of
Test Level Embedded SW Processor embedded Plant
System
One Wy MT (Model Test) Simulated - - -
simulation
B.ack-to_—back MiL (Model-in-the-Loop) Simulated - - Simulated
simulation
Rapid prototyping RP Experimental Experimental Experimental Real
SW Unit, SW : : Experimental . :
integration (1) SiL (SW-in-the-Loop) (host) Host Simulated Simulated
SW Unit, SW . . 5
e beatan (2] SiL Real (target) Emulator Simulated Simulated
HW/SW integration HiL (HW-in-the-Loop) Real (target) Real (target) Experimental Simulated
System integration HiL Real (target) Real (target) Prototype Simulated
Environmental HiL/ST (System Test) Real (target) Real (target) Real Simulated
Pre-Production ST Real (target) Real (target) Real Real

1
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6-11 Verification of Software Safety Requirements

B 6-11 Verification of Software Safety Requirements

11.1 Objectives

The objective of this sub-phase is to demonstrate that the embedded software fulfils the software safety
requirements.

11.2 General

The purpose of the verification of the software safety requirements is to_demonstrate that the embedded
software satisfies its requirements in the target environment.

KU

%|E ST = Embedded Software?t Software Safety RequirementsS THESH=X| &l (verification) 2T}

+ Embedded Software?} A K| 2 T&E|= Target Environment 12{5iA| HAR S =3
+ Embedded SoftwareE Hardware0| Ex{siA| B AE 3|{OF L}

11.4.3 The testing of the implementation of the software safety requirements shall be executed on the target
hardware. \

re level
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6-11 Verification of Software Safety Requirements

11.4.2 To verify that the embedded software fulfils the software safety requirements, tests shall be conducted
in the test environments listed in Table 186.

NOTE Test cases that already exist, for example from software integration testing, can be re-used.

Table 16 — Test environments for conducting the software safety requirements verification

ASIL
Methods
A B Cc D
la | Hardware-in-the-loop + + ++ ++
1b | Electronic control unit network environments? ++ ++ ++ ++
1c | Vehicles ++ ++ 4 T4

3 Examples include test benches partially or fully integrating the electrical systems of a vehicle, “lab-cars” or “mule” vehicles, and

“rest of the bus™ simulations.

Verification of SSR2 Embedded SoftwareE ElZl StESJ0| EZA0AM HAETCZMN S EICEH
+ Table 16
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6-11 Verification of Software Safety Requirements

11.4.4 The resulis of the verification of the software safety requirements shall be evaluated with regard to:

a) compliance with the expected results;
b) coverage of the software safety requirements; and

c) pass or fail criteria.

Verification of Software Safety Requirements2
+ HAE +=A1o0% 53t B)
+ SSRO|| CHBF Requirements Coverage Al 4F
+ Pass/Fail &8

= ZaoHt}
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Software Quality Process

* Quality process

— A set of activities and responsibilities focusing on ensuring adequate dependability concerned with project
schedule or with product usability
— A&T planning is Integral to the quality process.
* Quality goals can be achieved only through careful A&T planning.
+ Selects and arranges STA activities to be as cost-effective as possible
* Should balance several STA activities across the whole development process

* Quality process provides a framework for
— Selecting and arranging STA activities, and also
— Considering interactions and trade-offs with other important goals.
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V-Model of V&V Activities

Actual Needs and A :
_ s ——— A e Delivered
Constraints -f < User Acceptance (alpha, beta test) Package
System System Test Infg;:::?on
Specifications | 4 :
\‘_‘ Analysis / Review
£ Ds:;ib;:;;::'cs <: Integration Test Subsystem
/L
Analysis / Review
Unit/ z
: Unit /
o Con;;:z:nts < Module Test Components
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User review of external behavior as it is determined or

becomes visible

Verification >

Validation
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3 Dimensions of STA Activities

Theorem proving:
Unbounded effort to
verify general
properties.

Perfect verification of
arbitrary properties by
logical proof or exhaustive
testing (Infinite effort)

Model checking:
Decidable but
possibly intractable
checking of simple
temporal properties. S

Data flow
analysis

Typical testing
technigues

)/

Precise analysis of
simple syntactic
properties.

Optimistic
inaccuracy

Pessimistic
inaccuracy
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« Optimistic Inaccuracy

— We may accept some programs that do not
possess the property.

— It may not detect all violations.
— Testing

* Pessimistic Inaccuracy

— Not guaranteed to accept a program even if the
program does possess the property being
analyzed, because of false alarms

— Static Code Analysis

« Simplified Properties
— It reduces the degree of freedom by simplifying
the property to check.

— Theorem Proving, Model Checking
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Testing Coverages
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THEORETICAL CRITERIA

PRACTICAL CRITERIA

( Path Testing >
(Baundary interior testing )

( Cyclomatic testing >

( LCSAJ testing )

< Branch testing >

( Loop boundary testing > ( Statement testing )

@ompound condition Iestin@

( MC/DC testing >
@ranch and condition testin@
( Basic condition testing )
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Functional Program Testing

Functional specifications
Brute force testing

Identify independently testable features
Y P Y Finite State Machine,

Grammar,
Algebraic Specification,
Logic Specification,

CFG /DFG

Independently Testable Feature

Derive a model

Test selection
criteria

Manual Mapping,
Symbolic Execution,
A-posteriori Satisfaction

Identify representative values

Representative Values

Semantic Constraint,
Combinational Selection,
Exhaustive Enumeration,
Random Selection

Test Case Specification

Generate test cases

Instantiate tests

Scaffolding
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CTIP Examples

Requirement Management ‘
Cl Server
L

- - \\
Configuration Management S | SonarQUbé\\

Ogit | rmi cs &

6 Static Analysis
GitHub
1 EN\[SW
W
%, .
B 8 <«— % TestLink
REDMINE
Team Communication Issue tracking System Test

5 slack
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Software V&V cvus+

Overview

O-0O
GitHub Actions

Testing &
Visualzation

Visuakzation

Q

GitHub Pages

Communication

4 slack

Version control

Requirement
Management
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V-Model in IEC 61508

\ Rem testin / - f
‘% 47 System design |« —— 9 48 Itamtmum and a;
est phase
G » vernficalion >
< N
‘:", Desiyn phase
Ve \i{ll]’ﬂ
y .\ e N e g
é-E Splmﬁu:;z: of # Software testing &1 V!nﬁ“gr;:: of
software safety software safely
requirements Test phasge requirements
E » venfication
5 De‘:@n ha
5 58

% S vaﬁﬁqlEnn %

3 2 % L

T @ 1
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b E o 67 Software P Software testing 6-10 Software

E " 1 architectural design Test phase integration and testing

= = Y venfication

3" Ovei b

® phase
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b3 3

G-Bdi.:::a:: dum' t 69 Software unit
implementation st phade testing

Figure 2 — Reference phase model for the software development
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STA Techniques in IEC 61508 Standard

Table A.1 — Software safety requirements specification

(See 7.2)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1a | Semi-formal methods Table B.7 R R HR HR
1b | Formal methods B.2.2.C.2.4 - R R HR
2 Forward traceability between the system safety c.2.11 R R HR HR
requirements and the software safety requirements

3 Backward traceability between the safety Ei2:11 R R HR HR
requirements and the perceived safety needs

4 Computer-aided specification tools to support B.2.4 R R HR HR
appropriate techniques/measures above

NOTE 1 The software safety requirements specification will always require a description of the problem in natural
language and any necessary mathematical notation that reflects the application.

NOTE 2 The table reflects additional requirements for specifying the software safety requirements clearly and
precisely.

NOTE 3 See Table C.1.

NOTE 4 The references (which are informative, not normative) “B.x.x.x", “C.x.x.x" in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. it is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.
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Table A.5 — Software design and development —
software module testing and integration

(See 7.4.7 and 7.4.8)

Technique/Measure * Ref, SIL1|SIL2|SIL3]| SIL4
1 Probabilistic testing C.5.1 --- R R R
2 Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
3 Data recording and analysis C.5.2 HR HR HR HR
4 Functional and black box testing B.5.1 HR HR HR HR
B.5.2
Table B.3
5 Performance testing Table B.6 R R HR HR
6 Model based testing C.5.27 R HR HR
7 Interface testing C.53 R HR HR
8 Test management and automation tools C.4.7 R HR HR HR
9 Forward traceability between the software design specification c.2.11 R HR HR
and the module and integration test specifications
10 Formal verification c.5.12 e = R R

NOTE 1 Software module and integration testing are verification activities (see Table B.9).

NOTE 2 See Table C.5.

NOTE 3 Technique 9. Formal verification may reduce the amount and extent of module and integration testing

required.

NOTE 4 The references (which are informative, not normative) "B.x.x.x", “C.x.x.x" in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

Appropriate techniques/measures shall be selected according to the safety integrity level.
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Table A.9 — Software verification

(See 7.9)
Technique/Measure * Ref. SIL 1 SIiL 2 SIL 3 SiL 4
1 Formal proof c:5.12 -- R R HR
2 Animation of specification and design C.5.26 R R R R
3 Static analysis B.6.4 R HR HR HR
Table B.8
4 Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
5 Forward traceability between the software design c.2.11 R R HR HR
specification and the software verification (including
data verification) plan
=] Backward traceability between the software c.2:11 R R HR HR
verification (including data verification) plan and
the software design specification
7 Offline numerical analysis C.2.13 R R HR HR
Software module testing and integration See Table A5
Programmable electronics integration testing See Table A.6
Software system testing (validation) See Table A.7

NOTE 1 For convenience all verification activities have been drawn together under this table. However, this does
not place additional requirements for the dynamic testing element of verification in Table A.5 and Table A.6 which
are verification activities in themselves. Nor does this table require verification testing in addition to software
validation (see Table B.7), which in this standard is the demonstration of confermance to the safety requirements
specification (end-end verification).

NOTE 2 Verification crosses the boundaries of IEC 61508-1, |IEC 61508-2 and IEC 61508-3. Therefore the first
verification of the safety-related system is against the earlier system level specifications.

NOTE 3 In the early phases of the software safety lifecycle verification is static, for example inspection, review,
formal proof. When code is produced dynamic testing becomes possible. It is the combination of both types of
information that is required for verification. For example code verification of a software module by static means
includes such techniques as software inspections, walk-throughs, static analysis, formal proof. Code verification
by dynamic means includes functional testing, white-box testing, statistical testing. It is the combination of both
types of evidence that provides assurance that each software module satisfies its associated specification.

NOTE 4 See Table C.9.

NOTE § The references (which are informative, not normative) “B.x.x.x", "C.x.x.x" in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level.
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Table B.2 — Dynamic analysis and testing

(Referenced by Tables A.5 and A.9)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4

1 Test case execution from boundary value analysis C54 R HR HR HR
2 Test case execution from error guessing C.5.5 R

3 Test case execution from error seeding Cbh6 -

4 Test case execution from model-based test case Ch.27 R R HR HR

generation

5 Performance modelling C.5.20 R R R HR
6 Equivalence classes and input partition testing C.5.7 R R R HR
Ta | Structural test coverage (entry points) 100 % ** c58 HR HR HR HR
7b | Structural test coverage (statements) 100 %** cbh8 R HR HR HR
7c | Structural test coverage (branches) 100 %** C.h8 R R HR HR
7d | Structural test coverage (conditions, MC/DC) 100 %™* cCb58 R R R HR

MOTE 1 The analysis for the test cases is at the subsystem level and is based on the specification and/or the
specification and the code.

NOTE 2 See Table C.12.

NOTE 2 The references (which are informative, not normative) “B.x.x.x", “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate technigues/measures shall be selected according to the safety integrity level.

** Where 100 % coverage cannot be achieved (e.g. statement coverage of defensive code), an appropriate
explanation should be given.
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Table B.8 — Static analysis

(Referenced by Table A.9)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4

1 Boundary value analysis C.5.4 R R HR HR
2 Checklists B.2.5 R R R R
3 Control flow analysis Cb59 R HR HR HR
4 Data flow analysis C.5.10 R HR HR HR
5 Error guessing C.5H5 R R R R
Ba | Formal inspections, including specific criteria C.5.14 R R HR HR
6b | Walk-through (software) C.5.15 R R

7 Symbolic execution 5711 -—- -—- R R
8 Design review C.5.16 HR HR HR HR
9 Static analysis of run time error behaviour B.2.2, C.24 R R R HR
10 | Worst-case execution time analysis C.5.20 R R R R

NOTE 1 See Table C.18.

NOTE 2 The references "“B.x.xx", “Cxxx" in column 3 (Ref) indicate detailed descriptions of
techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate technigques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

KU
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Table B.3 - Functional and black-box testing

(Referenced by Tables A.5, A.6 and A.7)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Test case execution from cause consequence diagrams B662 - - R R
2 Test case execution from model-based test case C.5.27 R R HR HR
generation
3 Prototyping/animation C517 --- -—- R R
4 Equivalence classes and input partition testing, C57 R HR HR HR
including boundary value analysis Cc54
5 Process simulation Cc.5.18 R R R R

NOTE 1 The analysis for the test cases is at the software system level and is based on the specification only.

NOTE 2 The completeness of the simulation will depend upon the safety integrity level, complexity and

application.

NOTE 3 See Table C.13.

NOTE 4 The references (which are informative, not normative) “B.x.x x", “C_x.x.x" in column 3 (Ref) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate technigues/measures shall be selected according to the safety integrity level.
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Table B.1 — Design and coding standards

(Referenced by Table A.4)

Technique/Measure © Ref. SIL 1 SIL 2 SIL 3 SiL 4
1 Use of coding standard to reduce likelihood of errors C.286.2 HR HR HR HR
2 Mo dynamic objects C263 R HR HR HR
3a | No dynamic variables C.263 - R HR HR
3b | Online checking of the installation of dynamic variables C264 - R HR HR
4 Limited use of interrupts C.286.5 R R HR HR
5 Limited use of pointers C266 -—- R HR HR
6 Limited use of recursion c.26.7 --- R HR HR
T4 No unstructured control flow in pragrams in higher level C26.2 R HR HR HR
languages
8 No automatic type conversion C26.2 R HR HR HR

NOTE 1 Measures 2, 3a and 5. The use of dynamic objects (for example on the execution stack or on a heap)
may impose requirements on both available memory and also execution time. Measures 2, 3a and 5 do not need to
be applied if a compiler is used which ensures a) that sufficient memory for all dynamic variables and objects will
be allocated before runtime, or which guarantees that in case of memory allocation error, a safe state is achieved;
b) that response times meet the requirements.

NOTE 2 See Table C.11.

NOTE 3 The references (which are informative, not normative) "B.x.x.x", “C.x.x.x" in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
Justified in accordance with the properties, given in Annex C, desirable in the particular application.
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Table B.1 — Design and coding standards

(Referenced by Table A.4)

Technique/Measure © Ref. SIL 1 SIL 2 SIL 3 SiL 4
1 Use of coding standard to reduce likelihood of errors C.286.2 HR HR HR HR
2 Mo dynamic objects C263 R HR HR HR
3a | No dynamic variables C.263 - R HR HR
3b | Online checking of the installation of dynamic variables C264 - R HR HR
4 Limited use of interrupts C.286.5 R R HR HR
5 Limited use of pointers C266 -—- R HR HR
6 Limited use of recursion c.26.7 --- R HR HR
T4 No unstructured control flow in pragrams in higher level C26.2 R HR HR HR
languages
8 No automatic type conversion C26.2 R HR HR HR

NOTE 1 Measures 2, 3a and 5. The use of dynamic objects (for example on the execution stack or on a heap)
may impose requirements on both available memory and also execution time. Measures 2, 3a and 5 do not need to
be applied if a compiler is used which ensures a) that sufficient memory for all dynamic variables and objects will
be allocated before runtime, or which guarantees that in case of memory allocation error, a safe state is achieved;
b) that response times meet the requirements.

NOTE 2 See Table C.11.

NOTE 3 The references (which are informative, not normative) "B.x.x.x", “C.x.x.x" in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
Justified in accordance with the properties, given in Annex C, desirable in the particular application.

KU KONKUK
UNIVERSITY

317



STA Techniques in ISO 26262 Standard

EPENDABLE SOFTWARE
LABORATORY

Table 13 — Methods for software integration testing

ASIL
Methods

A B c D
la Requirements-based test? ++ ++ ++ ++
1b Interface test ++ ++ ++ ++
1c | Faultinjection test? + + ++ +
1d |Resource usage tested - + + ++
1e Back-to-back comparison test between model and code, if applicable® + + ++ ++

3 The software requirements at the architectural level are the basis for this requirements-based test.

b This includes injection of arbitrary faults in order to test safety mechanisms (e.g. by corrupting software or hardware components).

¢ To ensure the fulfilment of requirements influenced by the hardware architectural design with sufficient tolerance, properties such
as average and maximum processor performance, minimum or maximum execution times, storage usage (e.g. RAM for stack and heap,
ROM for program and data) and the bandwidth of communication links (e.g. data buses) have to be determined.

d  sSome aspects of the resource usage test can only be evaluated properly when the software integration tests are executed on the
target hardware or if the emulator for the target processor supports resource usage tests.

€  This method requires a model that can simulate the functionality of the software components. Here, the model and code are
stimulated in the same way and results compared with each other.
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10.4.4 To enable the specification of appropriate test cases for the software integration test methods
selected in accordance with 10.4.3, test cases shall be derived using the methods listed in Table 14.

Table 14 — Methods for deriving test cases for software integration testing

ASIL
Methods
A B Cc D
1a | Analysis of requirements ++ ++ ++ ++
1b Generation and analysis of equivalence classes? + ++ ++ ++
1c Analysis of boundary values? + ++ ++ ++
Id | Error guessing® $ + oy "

3 Equivalence classes can be identified based on the division of inputs and outputs, such that a representative test value can be
selected for each class.

b This method applies to parameters or variables, values approaching and crossing the boundaries and out of range values.

€ Error guessing tests can be based on data collected through a “lessons learned” process and expert judgment.
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Challenges in Software Testing

» Testing embedded SW and systems

«  SW-HW Co-Development and Co-Testing
» Testing SoC (System On Chips)

» Testing Agile SW

« Testing legacy SW with no documentation

« Continuous Testing and Integration Platform (CTIP)
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