
Software Verification & Validation

JUNBEOM YOO

KONKUK University
http://dslab.konkuk.ac.kr

2024 Spring

Text and References

2

소주제대주제

Fundamentals of Software Testing & Analysis Fundamentals of
Software Testing & Analysis

Basic Software Testing & Analysis Techniques
- Finite Models
- Data and Control Dependency
- Symbolic Execution and Proof of Properties
- Finite State Verification

Basic Software Testing &
Analysis Techniques

Software Testing Techniques
- Test Case Selection and Adequacy
- Functional Testing
- Combinatorial Testing
- Structural Testing
- Data-Flow Testing
- Model-Based Testing
- Fault-Based Testing
- Test Execution

Software Testing Techniques

Testing in Functional Safety Standards (IEC 61508, ISO-26262)
State-of-the-art Issues

Summary

Contents

3

4

블랙박스 테스트

화이트박스 테스트
기능 테스트

구조 테스트

테스트 케이스
테스트 데이터

테스트 오라클

Coverage Criteria

테스트 드라이버
테스트 Scaffolding

테스트 실행

소프트웨어 테스트

모델 기반 테스트

Category-Partitioning 테스트

N-Pairwise 테스트

테스트 케이스 자동 생성

테스트 데이터 자동 생성

Coverage 측정

HW/SW Co-테스트

테스트 계획서

테스트 결과 보고서

CTIP(Continuous Test & Integration Platform)

테스트 자동화 도구

Boundary Value 테스트

테스트 명세서

3점 점합

Code Review
Clean Code

Refactoring

TDD

Cyclomatic Complexity
시뮬레이션 기반 테스트

Static Code Analysis

gTest

TFD

CI / CD

테스트 Stub

xUnit

Code Review

코드 기반 테스트

구조 기반 테스트

스펙 기반 테스트

시스템 테스트 계획서

QAS

비기능/품질 테스트

요구공학

5

FUNDAMENTALS OF
SOFTWARE TESTING & ANALYSIS

6

Engineering Processes

• All engineering processes have two common activities.
– Construction (개발)

– Checking (검수, 감리)

• Software engineering (purpose: construction of high-quality software)
– Construction (= Development)

– Verification ← Our Concern !

7

Verification Activities : An Example of Testing Activities

8

V&V Depends on Specifications

• Unverifiable (but validatable) specification
– “If a user presses a request button at floor i, an available elevator must arrive at floor i soon.”

• Verifiable specification:
– “If a user presses a request button at floor i, an available elevator must arrive at floor i within 30 seconds.”

10

V-Model of V&V Activities

11

3 Dimensions of STA Activities

• Optimistic Inaccuracy
– We may accept some programs that do not

possess the property.
– It may not detect all violations.
– Testing

• Pessimistic Inaccuracy
– Not guaranteed to accept a program even if the

program does possess the property being
analyzed, because of false alarms

– Static Code Analysis

• Simplified Properties
– It reduces the degree of freedom by simplifying

the property to check.
– Theorem Proving, Model Checking

13

Software Quality

• Qualities cannot be added after development.
– Quality results from a set of inter-dependent activities.

• Quality depends on every part of the software process.

– Quality assurance is not a phase, but a life-style.
• Testing and analysis activities occur from early in requirements engineering through delivery and subsequent evolution.

• An essential feature of software development processes is

“Software test and analysis is thoroughly integrated into development processes.”

14

Software Quality Process

• Quality process
– A set of activities and responsibilities focusing on ensuring adequate dependability concerned with project

schedule or with product usability

– A&T planning is Integral to the quality process.
• Quality goals can be achieved only through careful A&T planning.
• Selects and arranges STA activities to be as cost-effective as possible
• Should balance several STA activities across the whole development process

• Quality process provides a framework for
– Selecting and arranging STA activities and considering interactions and trade-offs with other important goals.

15

A&T Plan

• A comprehensive description of the quality process that includes:
– Objectives, goals and scope of A&T activities
– Documents and other items that must be available
– Items to be tested
– Features to be tested and not to be tested
– Analysis and test activities
– Staff involved in A&T
– Constraints
– Pass and fail criteria for Test
– Schedule
– Deliverables
– Hardware and software requirements
– Risks and contingencies

17

Quality Goals

• Goal must be further refined into a clear and reasonable set of objectives.

• Product quality : goals of software quality engineering
• Process quality : means to achieve the goals (i.e., product quality)

• Product qualities
– Internal qualities: invisible to clients

• Maintainability, Flexibility, Reparability, Changeability
– External qualities: directly visible to clients

• Usefulness
– Usability, Performance, Security, Portability, Interoperability

• Dependability
– Correctness, Reliability, Safety, Robustness
– Availability, Reliability, Safety, Security

18

Dependability

• Dependability = trustworthiness to a system
– Dependable system is a system that is trusted by its users.

• Principal dimensions of dependability
– Availability, Reliability, Safety, Security
– Others are Reparability, Maintainability, Survivability, Error tolerance, etc.

19

Dependability

Availability Reliability Safety Security

The ability of the system
to deliver services
when requested

The ability of the system
to deliver services

as specified

The ability of the system
to operate without
catastrophic failure

The ability of the system
to protect itself against
accidental or deliberate

intrusions

Dependability Costs

• Dependability costs
– Cost to achieve the required dependability

– Tend to increase exponentially as required levels of dependability increase
• More expensive development techniques and hardware are required.
• Increased testing and system validation are also required.

20

Cost

Dependability
Low Medium High Very High Ultra High

Dependability Economics

• Dependability Economics

– “It may be more cost effective to accept untrustworthy systems and pay for failure costs, because of very high
costs of dependability achievement.”

• However, it depends on
– Social and political factors

• Poor reputation for products may lose future business.
– System types

• For business systems (custom SW), modest levels of dependability may be adequate.

21

Dependability Properties

• Correctness
– A program is correct if it is consistent with its specification.
– Seldom practical for non-trivial systems

• Reliability
– Likelihood of correct function for some “unit” of behavior
– Statistical approximation to correctness (100% reliable = correct)

• Safety
– Concerned with preventing certain undesirable behavior, called hazards
– “Catastrophes should never happen.”

• Robustness
– Providing acceptable (degraded) behavior under extreme conditions
– Fail softly

22

Normal
Operation

Abnormal
Operation &

Situation

• Correctness, Reliability :
– Let traffic pass according to correct pattern and

central scheduling

• Robustness, Safety :
– Provide degraded function when it fails
– Never signal conflicting greens

• Blinking red / blinking yellow is better than no lights.
• No lights is better than conflicting greens.

23

An Example of Dependability Properties

Relationship among Dependability Properties

24

Reliable Correct Safe Robust

Robust but not Safe:
Catastrophic failures can occur

Safe but not Correct:
Annoying failures can occur

Correct but not Safe nor Robust:
The specification is inadequate

Reliable but not Correct:
Failures can occur rarely

SQA Engineers

• SQA : Software Quality Assurance

• A pretty important engineer for assuring SW quality consistently
– Managing quality process
– Selecting appropriate activities for each project/organization

• Preparing, Monitoring, Evaluating, Improving
– Keeping balance between quality and other goals (time to market)

– Experienced well
– Working on the rock of deep/solid/accurate knowledge on STA activities

• Testing
• Static Analysis
• Model Checking
• + Review

25

Basic Questions on Software Verification

26

1. When do verification and validation start and end?

2. What techniques should be applied?

3. How can we assess the readiness of a product?

4. How can we ensure the quality of successive releases?

5. How can the development process be improved?

1. When Do Verification and Validation Start and End?

• For an example, Test
– A widely-used V&V activity
– Usually known as a last activity in software development process, but not the last activity is “test execution”
– Test execution is a small part of V&V process

• V&V start as soon as we decide to build a software product, or even before.

• V&V last far beyond the product delivery as long as the software is in use, to cope with evolution and
adaptations to new conditions.

27

Early Start: From Feasibility Study

• Feasibility study of a new project must take into account required qualities and their impact on the
overall cost.

• Quality related activities include
– Risk analysis
– Measures needed to assess and control quality at each stage of development
– Assessment of the impact of new features and new quality requirements
– Contribution of quality control activities to development cost and schedule

28

Long Lasting: Beyond Maintenance

• Maintenance activities include
– Analysis of changes and extensions
– Generation of new test suites for the added functionalities
– Re-executions of tests to check for non regression of software functionalities after changes and extensions
– Fault tracking and analysis

29

2. What Techniques Should be Applied?

• No single A&T technique can serve all purposes.

• The primary reasons for combining techniques are:
– Effectiveness for different classes of faults

• analysis instead of testing for race conditions
– Applicability at different points in a project

• inspection for early requirements validation
– Differences in purpose

• statistical testing to measure reliability
– Tradeoffs in cost and assurance

• expensive technique for key properties

30

“No single software engineering development would
produce an order-of-magnitude improvement to
programming productivity within10 years.”

Fredrick Brooks 1986

31

Requirements
Elicitation

Requirements
Specification

Architectural
Design

Detailed
Design Unit Coding Integration &

Delivery Maintenance

Pl
an

ni
ng

 &
 m

on
it

or
in

g
Ve

ri
fi

ca
ti

on
 o

f
sp

ec
s

te
st

 c
as

e
ex

ec
ut

io
n

an
d

sw
 v

al
id

at
io

n

Identify qualites

Plan acceptance test

Validate specifications

Plan system test

Plan unit & integration test

G
en

er
at

io
n

of
 t

es
ts

Inspect architectural design

Analyze architectural design

Inspect detailed design

Monitor the A&T process

Generate system test

Generate integration test

Generate unit test

Generate regression test

Update regression test

Code inspection

Design scaffolding

Design oracles

Execute unit test

Execute integration test

Analyze coverage

Generate structural test

Execute system test

Execute acceptance test

Execute regression test

Collect data on faults

analyze faults and improve the processPr
oc

es
s

im
pr

ov
em

en
t

3. How Can We Assess the Readiness of a Product?

• A&T activities aim at revealing faults during development.
– We cannot reveal or remove all faults.
– A&T cannot last infinitely.

• One day all A&T activities must stop.

• We have to know whether products meet the quality requirements or not.
– We must specify the required level of dependability.

à Metric & Measurement
– We can determine when that level has been attained.

à Assessment

32

4. How Can We Ensure the Quality of Successive Releases?

• Software products operate for many years and undergo many changes.
– To adapt to environment changes
– To serve new and changing user requirements

• A&T activities does not stop at the first release.

• Quality tasks after delivery include
– Test and analysis of new and modified code
– Re-execution of system tests
– Extensive record-keeping

• CTIP helps a lot.

33

5. How Can the Development Process be Improved?

• The same defects are encountered in project after project.
• We can improve the quality through identifying and removing weaknesses

– in development process
– in A&T process (quality process)

• SPI (Software Process Improvement)

• CMMi tries to evaluate quantitatively process quality
of an organization (Lv. 1 ~ 5).

1. Initial : Essentially uncontrolled
2. Repeatable : Product (Project) management procedures are defined and used.
3. Defined : Process management procedures and strategies are defined and used.
4. Managed : Quality management strategies are defined and used.
5. Optimizing : Process improvement strategies are defined and used.

34

35

BASIC SOFTWARE TESTING & ANALYSIS
TECHNIQUES

36

§ Finite Models
§ Data Dependency and Data Flow Models
§ Symbolic Execution and Proof of Properties
§ Finite State Verification

Finite Models

§ CFG
§ Call Graph
§ FSM

Model

• A model is a representation that is simpler than the artifact it represents.
– While preserves some important attributes of the actual artifact

• Our concern is with models of program execution.

38

Directed Graph

• Directed graph:
– N : set of nodes
– E : set of edges (relation on the set of nodes)

39

a

b c

b a c

N = { a, b, c }
E = { (a, b), (a, c), (c, a) }

Directed Graph with Labels

• We can label nodes with the names or descriptions of the entities they represent.
– If nodes a and b represent program regions containing assignment statements, we might draw the two nodes

and an edge (a, b) connecting them in this way:

40

x = y + z;

a = f(x);

Finite Abstractions of Behavior

• Two (side) effects of abstraction

– Coarsening of execution model

– Introduction of nondeterminism

41

Intraprocedural Control Flow Graph

• Called “Control Flow Graph” or “CFG”
– A directed graph (N, E)

• Nodes
– Regions of source code (basic blocks)
– Basic block = maximal program region with a single entry and single exit point
– Statements are often grouped in single regions to get a compact model.
– Sometime single statements are broken into more than one node to model control flow within the statement.

• Directed edges
– Possibility that program execution proceeds from the end of one region directly to the beginning of another

42

public static String collapseNewlines(String argStr)
{

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}

43

An Example of CFG

The Use of CFG

• CFG may be used directly to define thoroughness criteria for testing.
– Test Case Selection and Adequacy
– Structural Testing

• CFG is often used to define another model which is used to define a thoroughness criterion.
– Data Flow Graph
– Data Dependency Graph
– Control Dependency Graph

44

Call Graph

• “Interprocedural Control Flow Graph” = Call Graph
– A directed graph (N, E)

• Nodes
– Represent procedures, methods, functions, etc.

• Edges
– Represent ‘call’ relation

• Call graph presents many more design issues and trade-off than CFG.
– Overestimation of call relation
– Context sensitive/insensitive

45

Overestimation in a Call Graph

• The static call graph includes calls through dynamic bindings that never occur in execution.

46

public class C	{
public static C	cFactory(String	kind)	{

if (kind	==	"C")	return new C();	
if (kind	==	"S")	return new S();	
return null;	

}
void foo()	{	

System.out.println("You	called	the	parent's	method");	
}
public static voidmain(String	args[])	{	

(new A()).check();	
}

}
class S	extends C	{	

void foo()	{
System.out.println("You	called	the	child's	method");	

}
}
class A	{

void check()	{			
C	myC =	C.cFactory("S");	
myC.foo();		

}
}

A.check()

C.foo() S.foo() C.cFactory(string)

never occur in execution

Context Sensitive/Insensitive Call Graphs

47

public	class	Context	{
public static voidmain(String	args[])	{	

Context	c	=	new Context();	
c.foo(3);	
c.bar(17);	

}

void foo(int	n)	{
int[]		myArray	=	new int[n];	
depends(myArray,	2)	;	

}

void bar(int	n)	{
int[]		myArray	=	new int[n];	
depends(myArray,	16)	;	

}

void depends(int[]	a,	int	n)	{
a[n]	=	42;	

}
}

main

C.foo C.bar

C.depends

main

C.foo(3) C.bar(17)

C.depends(int(3) a,2) C.depends (int(17) a,16)

< Context Insensitive > < Context Sensitive >

Finite State Machine

• FSMs are constructed prior to source code and serve as specifications.
– While CFGs can be extracted from programs.
– A directed graph (N, E)
– CFG and FSM are duals.

• Nodes
– A finite set of states

• Edges
– A set of transitions among states

48

other charEOFCRLF

w / appendd / -l / emite / emite

w / appendd / emitl / emite / emitw

w / appendd / -e / -l

Correctness Relations for FSM Models

50

51

Data and Control Dependence

§ Data Dependency Graph
§ Control Dependency

Why Data Flow Models Need?

• The 3 Finite models emphasize control flow only.
– Control flow graph
– Call graph
– Finite state machine

• We also need to reason about data dependence to reason about transmission of information through
program variables.

• “Where does this value of x come from?”
• “What would be affected by changing this?”

• Many program analyses and test design techniques use data flow information and dependences,
and often in combination with control flows.

53

Definition-Use Pairs

• Def-use (du) pair associates a point in a program where a value is produced with a point where it is used.

• Definition: where a variable gets a value
– Variable declaration
– Variable initialization
– Assignment
– Values received by a parameter

• Use: extraction of a value from a variable
– Expressions
– Conditional statements
– Parameter passing
– Returns

54

Def-Use Pairs and Def-Use Paths

55

...
if (...) {

x = ... ;
...
}
y = ... + x + ... ;
…

x = ...

if (...) {

...

y = ... + x + ...

...

...

Definition: x gets
a value

Use: the value of x
is extractedDef-Use

path

Def-Use Pairs

56

/** Euclid's algorithm */

public int gcd(int x, int y) {
int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x

}

Definition-Clear & Killing

• A definition-clear path is a path along the CFG from a definition to a use of the same variable without
another definition of the variable between.

– If, instead, another definition is present on the path, then the latter definition kills the former.

• A def-use pair is formed if and only if there is a definition-clear path between the definition and the use.

57

Definition-Clear & Killing

58

x = ... // A: def x
q = ...
x = y; // B: kill x, def x
z = ...
y = f(x); // C: use x x = ...

...

...

Definition: x
gets a value

Use: the value of
x is extracted

A

x = y
Definition: x gets a

new value, old
value is killed

...

y = f(x)

B

C
Path B..C is definition-clear

Path A..C is not definition-clear

(Direct) Data Dependence Graph

• Direct data dependence graph
– “Where did these values come from?”
– A direct graph (N, E)

• Nodes: as in the control flow graph (CFG)
• Edges: def-use (du) pairs, labelled with the variable name

59

y

/** Euclid's algorithm */

public int gcd(int x, int y) {
int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x

}

y

Control Dependence

• Control dependence
– “Which statement controls whether this statement executes?”
– A (rooted) directed graph

• Nodes: as in the CFG
• Edges: unlabelled, from entry/branching points to controlled blocks

60

/** Euclid's algorithm */

public int gcd(int x, int y) {
int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x

}

Dominator

• Pre-dominators are used to make this intuitive notion of “controlling decision” precise.

• Node M dominates node N, if every path from the root to N passes through M.
– A node will typically have many dominators, but except for the root, there is a unique immediate dominator of

node N which is closest to N on any path from the root, and which is in turn dominated by all the other
dominators of N.

– Because each node (except the root) has a unique immediate dominator, the immediate dominator relation
forms a tree.

• Post-dominators are calculated in the reverse of the control flow graph, using a special “exit” node as
the root.

61

• A pre-dominates all nodes.
• G post-dominates all nodes.

• F and G post-dominate E.
• G is the immediate post-dominator of B.

• C does not post-dominate B.

• B is the immediate pre-dominator of G.
• F does not pre-dominate G.

62

An Example of Dominators

More Precise Definition of Control Dependence

• We can use post-dominators to give a more precise definition of control dependence
– Consider again a node N that is reached on some but not all execution paths.
– There must be some node C with the following property:

• C has at least two successors in the control flow graph (i.e., it represents a control flow decision).
• C is not post-dominated by N.
• There is a successor of C in the control flow graph that is post-dominated by N.

– When these conditions are true, we say node N is control-dependent on node C.

• Intuitively, if C is the last decision that controls whether N executes or not, we say that N is control-
dependent on C.

63

An Example of Control Dependence

64

A

B

C

D

E

F

G F is control-dependent on B,
the last point at which its

execution was not inevitable

Execution of F is
not inevitable at B

Execution of F is
inevitable at E

65

Symbolic Execution and Proof of Properties

Symbolic Execution

• Symbolic execution builds predicates that characterize conditions for executing paths and effects of the
execution on program state.

– Bridges program behavior to logic

• Finds important applications in
– Program analysis
– Test data generation
– Formal verification (proofs) of program correctness

• Rigorous proofs of properties of critical subsystems
– Example: safety kernel of a medical device

• Formal verification of critical properties particularly resistant to dynamic testing
– Example: security properties

• Formal verification of algorithm descriptions and logical designs
– less complex than implementations

67

Symbolic Execution

• Tracing execution with symbolic values and expressions
– Values are expressions over symbols.
– Executing statements computes new expressions with the symbols.

68

Execution with concrete values

(before)
low 12
high 15
mid -

mid = (high + low) / 2

(after)
low 12
high 15
mid 13

Execution with symbolic values

(before)
low L
high H
mid -

mid = (high + low) / 2

(after)
Low L
high H
mid (L+H) / 2

Tracing Execution with Symbolic Executions

69

char *binarySearch(char *key, char *dictKeys[],
char *dictValues[], int dictSize) {

int low = 0;
int high = dictSize - 1;
int mid;
int comparison;

while (high >= low) {
mid = (high + low) / 2;
comparison = strcmp(dictKeys[mid], key);
if (comparison < 0) {
low = mid + 1;

} else if (comparison > 0) {
high = mid - 1;

} else {
return dictValues[mid];

}
}
return 0;

}

Execution with symbolic values

(before)
low = 0

∧ high = H-1
∧ mid = (H-1)/2

while (high >= low) {

(after)
low = 0

∧ high = H-1
∧ mid = (H-1)/2
∧ (H-1)/2 - key >= 0
...
∧ not((H-1)/2 - key >= 0)

when true

when false

∧ ∀k, 0 ≤ k < size : dictKeys[k] = key → L ≤ k ≤ H
∧ H ≥ M ≥ L

supposed

Summary Information

• Symbolic representation of paths may become extremely complex.

• We can simplify the representation by replacing a complex condition P with a weaker condition W
such that

– P => W
• W describes the path with less precision.

– W is a summary of P.

70

An Example of Summary Information

• If we are reasoning about the correctness of the binary search algorithm,
– “mid = (high+low) / 2 ”

• The weaker condition contains less information, but still enough to reason about correctness.

71

Weaker condition:

low = L
∧ high = H
∧ mid = M
∧ L <= M <= H

Complete condition:

low = L
∧ high = H
∧ mid = M
∧ M = (L+H) / 2

Weaker Precondition

• The weaker predicate “L <= mid <= H” is chosen based on what must be true for the program to
execute correctly.

– It cannot be derived automatically from source code.
– It depends on our understanding of the code and our rationale for believing it to be correct.

• A predicate stating what should be true at a given point can be expressed in the form of an assertion.

• Weakening the predicate has a cost for testing.
– Satisfying the predicate is no longer sufficient to find data that forces program execution along that path.

• Test data satisfying a weaker predicate W is necessary to execute the path, but it may not be sufficient.
• Showing that W cannot be satisfied shows path infeasibility.

72

Loops and Assertions

• The number of execution paths through a program with loops is potentially infinite.

• To reason about program behavior in a loop, we can place within the loop an invariant.
– Assertion that states a predicate that is expected to be true each time execution reaches that point

• Each time program execution reaches the invariant assertion, we can weaken the description of
program state.

– If predicate P represents the program state and the assertion is W
– We must first ascertain P => W
– And then we can substitute W for P

73

Precondition and Postcondition

• Supposed that
– Every loop contains an assertion (Loop Invariant)
– There is an assertion at the beginning of the program (Precondition)

– There is a final assertion at the end (Postcondition)

• Then
– Every possible execution path would be a sequence of segments from one assertion to the next.

• Precondition : the assertion at the beginning of a segment
• Postcondition : the assertion at the end of the segment

74

Verification of Program Correctness

• For each program segment, if we can verify that
– Starting from the precondition,
– Executing the program segment,
– And postcondition holds at the end of the segment.

• Then, we can verify the correctness of an infinite number of program paths.

75

An Example of Verification with Assertions

76

char *binarySearch(char *key, char *dictKeys[],
char *dictValues[], int dictSize) {

int low = 0;
int high = dictSize - 1;
int mid;
int comparison;

while (high >= low) {
mid = (high + low) / 2;
comparison = strcmp(dictKeys[mid], key);
if (comparison < 0) {
low = mid + 1;

} else if (comparison > 0) {
high = mid - 1;

} else {
return dictValues[mid];

}
}
return 0;

}

Precondition: “should be sorted”
∀i,j, 0 ≤ i < j < size : dictKeys[i] ≤ dictKeys[j]

Invariant: “should be in range”
∀i, 0 ≤ i < size : dictKeys[i] = key → low ≤ i ≤ high

When Executing the Loop

77

low = L
∧ high = H

∀i, j, 0 ≤ i < j < size : dictKeys[i] ≤ dictKeys[j]
∧ ∀k, 0 ≤ k < size : dictKeys[k] = key → L ≤ k ≤ H

Initial values:

Instantiated invariant:

low = L
∧ high = H
∧ mid = M
∧ ∀i, j, 0 ≤ i < j < size : dictKeys[i] ≤ dictKeys[j]
∧ ∀k, 0 ≤ k < size : dictKeys[k] = key → L ≤ k ≤ H
∧ H ≥ M ≥ L

After executing: mid = (high + low) / 2

Invariant
∀i, 0 ≤ i < size :
dictKeys[i] = key → low ≤ i ≤ high

Precondition
∀i,j, 0 ≤ i < j < size : dictKeys[i] ≤ dictKeys[j]

After executing the Loop

78

low = M+1
∧ high = H
∧ mid = M
∧ ∀i, j, 0 ≤ i < j < size : dictKeys[i] ≤ dictKeys[j]
∧ ∀k, 0 ≤ k < size : dictKeys[k] = key → L ≤ k ≤ H
∧ H ≥ M ≥ L
∧ dictkeys[M] < key

After executing the loop:

The new instance of the invariant: ∀i, j, 0 ≤ i < j < size : dictKeys[i] ≤ dictKeys[j]
∧ ∀k, 0 ≤ k < size : dictKeys[k] = key → M+1 ≤ k <= H

• If the invariant is satisfied, then the loop is correct with respect to the preconditions and the invariant.

In case of M < key < H

At the End of the Loop

• Even the invariant is satisfied, but the postcondition is false:

• If the condition satisfies the post-condition, then the program is correct with respect to the pre-condition and
post-condition.

79

low = L
∧ high = H
∧ ∀i, j, 0 ≤ i < j < size : dictKeys[i] ≤ dictKeys[j]
∧ ∀k, 0 ≤ k < size : dictKeys[k] = key → L ≤ k ≤ H
∧ L > H

Compositional Reasoning

• Follow the hierarchical structure of a program
– at a small scale (within a single procedure)
– at larger scales (across multiple procedures)

• Hoare triple: [pre] block [post]
– If the program is in a state satisfying the precondition pre at entry to the block, then after execution of the

block, it will be in a state satisfying the postcondition post.

80

(Not “it should be”)

Reasoning about Hoare Triples: Inference

81

[I ∧C] S [I]
[I] while(C) { S } [I ∧ ¬C]

Inference rule says:
"if we can verify the premise (top), then we can infer the conclusion (bottom)”

premise

conclusion

While loops:
I : invariant
C : loop condition
S : body of the loop

Other Inference Rule

82

if statement:

[P ∧ C] thenpart [Q] [P ∧ ¬C] elsepart [Q]
[P] if (C) {thenpart} else {elsepart} [Q]

84

Finite State Verification

Finite State Verification (FSV)

• Finite state verification can automatically prove some significant properties of a finite model of the
infinite execution space.

– Most important properties of program execution are not decidable.

• Need to balance trade-offs among
– Generality of properties to be checked
– Class of programs or models that can be checked
– Computational effort in checking
– Human effort in producing models and specifying properties

86

Cost of FSV

• Human effort and skill are required.
– to prepare a finite state model
– to prepare a suitable specification (property) for automated analysis

• Iterative process of FSV
– Prepare a model and specify properties
– Attempt verification
– Receive reports of impossible or unimportant faults
– Refine the specification or the model

88

Finite State Verification Framework

89

Applications for Finite State Verifications

• Concurrent (multi-threaded, distributed, parallel, etc.) system
– First and most well-developed application of FSV
– Difficult to test thoroughly (apparent non-determinism based on scheduler)

– Sensitive to differences between development environment and field environment

• Data models
– Difficult to identify “corner cases” and interactions among constraints, or to thoroughly test them

• Security
– Some threats depend on unusual (and untested) use

90

Modeling Concurrent System

• Deriving a good finite state model is hard.

• Example: FSM model of a program with multiple threads of control
– Simplifying assumptions

• We can determine in advance the number of threads.
• We can obtain a finite state machine model of each thread.
• We can identify the points at which processes can interact.

– State of the whole system model
• Tuple of states of individual process models

– Transition
• Transition of one or more of the individual processes, acting individually or in concert

91

An Example : On-line Purchasing System

• Specification
– In-memory data structure initialized by reading configuration tables at system start-up
– Initialization of the data structure must appear atomic.
– The system must be reinitialized on occasion.
– The structure is kept in memory.

• Implementation (with bugs)
– No monitor (e.g., Java synchronized), because it’s too expensive.
– But use double-checked locking idiom* for a fast system

• *Bad decision, broken idiom ... but extremely hard to find the bug through testing. (before JVM 1.4)

92

On-line Purchasing System - Implementation

93

class Table1 {
private static Table1 ref = null;
private boolean needsInit = true;
private ElementClass [] theValues;
private Table1() { }

public static Table1 getTable1() {
if (ref == null)

{ synchedInitialize(); }
return ref;

}

private static synchronized void synchedInitialize() {
if (ref == null) {

ref = new Table1();
ref.initialize();

}
}

public void reinit() { needsInit = true; }

private synchronized void initialize() {
. . .
needsInit = false;

}

public int lookup(int i) {
if (needsInit) {

synchronized(this) {
if (needsInit) {

this.initialize();
}

}
}
return theValues[i].getX() + theValues[i].getY();

}

. . .
}

• Start from models of individual threads
– Systematically trace all the possible interleaving of threads
– Like hand-executing all possible sequences of execution,

but automated

• Analysis begins by constructing an FSM model of each
individual thread.

(a)
lookup()

needsInit==true

(b)

obtain lock

(c)

(f)
reading

needsInit==false

(e)

(d)
modifyingneedsInit==false

needsInit==true

needsInit=false

release lock

E

(x)
reinit()

needsInit=true

(y)

E

94

Analysis on On-line Purchasing System

Analysis (Continued)

• Java threading rules:
– “When one thread has obtained a monitor lock, the other thread cannot obtain the same lock.”

• Locking prevents threads from concurrently calling initialize
– But does not prevent possible race condition between threads executing the lookup method

• However, tracing possible executions by hand is completely impractical.

• Use a finite state verification using the SPIN model checker

95

Modeling the System in PROMELA

96

needsinit==true

acquire lock

...

...
proctype Lookup(int id) {

if :: (needsInit) ->
atomic { ! locked -> locked = true; };
if :: (needsInit) ->

assert (! modifying);
modifying = true;
/* Initialization happens here */
modifying = false ;
needsInit = false;

:: (! needsInit) ->
skip;

fi;
locked = false ;

fi;
assert (! modifying);}

Run SPIN and Output

• Spin
– Depth-first search of possible executions of the model
– Explores 51 states and 92 state transitions in 0.16 seconds
– Finds a sequence of 17 transitions from the initial state of the model to a state

in which one of the assertions in the model evaluates to false

97

Depth=10 States=51 Transitions=92 Memory=2.302
pan: assertion violated !(modifying) (at depth 17)
pan: wrote pan_in.trail
(Spin Version 4.2.5 -- 2 April 2005)
…
0.16 real 0.00 user 0.03 sys

Counterexample: Interpret the Output

98

Read/write
Race condition

States (f) and (d)

…
return

theValues[i].getX()
+ theValues[i].getY();

}

proc 3 (lookup)

public void reinit()
{ needsInit = true; }

(x)

proc 1 (reinit)

public init lookup(int i)
if (needsInit) {

synchronized(this) {
if (needsInit) {

this.initialize();
}

}
}

(y)

proc 2 (lookup)

(a)
(b)
(c)
(d)
(e)

(f)

public init lookup(int i)
if (needsInit) {

synchronized(this) {
if (needsInit) {

this.initialize();
...

(a)
(b)
(c)
(d)

The State Space Explosion Problem

• Dining Philosophers - looking for deadlock with SPIN

5 phils+forks 145 states
Deadlock found

10 phils+forks 18,313 states
Error trace too long to be useful

15 phils+forks 148,897 states
Error trace too long to be useful

99

The Model Correspondence Problem

• Verifying correspondence between model and program
– Extract the model from the source code with verified procedures

• Blindly mirroring all details à state space explosion
• Omitting crucial detail à “false alarm” reports

– Conformance testing
• Combination of FSV and testing is a good tradeoff.

• Produce the source code automatically from the model
– Most applicable within well-understood domains
– A motivation of MBD (Model-Based Development)

100

Granularity of Modeling

101

(a)

(d)

i = i+1

E

(a)

(b)

t=i;

E

(c)

t=t+1;

(d)

i=t;

(w)

(x)

u=i;

E

(y)

u=u+1;

(z)

i=u;

(w)

(z)

i = i+1

E

Analysis of Different Models

• We can find the race only with fine-grain models.

102

RacerP RacerQ

t = i;
(a)

t = t+1;
(b)

i = t;
(c)

(d)

u = i;
(w)

u = u+1;
(x)

i = u;
(y)

(z)

Looking for Appropriate Granularity

• Compilers may rearrange the order of instruction.
– A simple store of a value into a memory cell may be compiled into a store into a local register, with the actual

store to memory appearing later.
– Two loads or stores to different memory locations may be reordered for reasons of efficiency.
– Parallel computers may place values initially in the cache memory of a local processor, and only later write into

a memory area.
– Even representing each memory access as an individual action is not always sufficient.

• Example: Double-check idiom only for lazy initialization
– Spin assumes that memory accesses occur in the order given in the PROMELA program, and we code them in

the same order as the Java program.
– But Java does not guarantee that they will be executed in that order.
– And SPIN would find a flaw.

103

OBDD: A Useful Intentional Model

• OBDD (Ordered Binary Decision Diagram)

– A compact representation of Boolean functions

• Characteristic function for transition relations
– Transitions = pairs of states
– Function from pairs of states to Booleans is true, if there is a transition between the pair.
– Built iteratively by breadth-first expansion of the state space:

• Create a representation of the whole set of states reachable in k+1 steps from the set of states reachable in k steps
• OBDD stabilizes when all the transitions that can occur in the next step are already represented in the OBDD.

105

From OBDD to Symbolic Checking

• Intentional representation itself is not enough.
– We must have an algorithm for determining whether it satisfies the property we are checking.

• Example: A set of communicating state machines using OBDD
– Representing the transition relation of a set of communicating state machines (Model)

– Modeling a class of temporal logic specification formulas (Specification)

• We going to combine OBDD representations of model and specification to produce a representation of
just the set of transitions leading to a violation of the specification.

– If the set is empty, the property has been verified.

106

Representing Transition Relations as Boolean Functions

• BDD is a decision tree that has been transformed into an acyclic graph by merging nodes leading to
identical sub-trees.

• a Þ b and c
not(a) or (b and c)

107

a
F T

F T

b
F T

c
F T

Representing Transition Relations as Boolean Functions : Steps

A. Assign a label to each state

B. Encode transitions

C. The transition tuples correspond to paths
leading to true, and all other paths lead to
false.

108

s0 (00)

s1 (01)

b (x0=1)

a (x0=0)

0 0 0 0 0

0 0 0 1 1

x1 x2 x3 x4 x0

x0
0 1

x1
0 1

F T

x1
0 1

x2
0 1

x3
0 1

x4
0 1

x2
0 1

x3
0 1

x4
0 1

sym from state to state

(A)

(B)

(C)

s2 (10)

b (x0=1)

0 1 1 0 1

x3
0 1

Intentional vs. Explicit Representations

• Worst case:
– Given a large set S of states,
– A representation capable of distinguishing each subset of S cannot be more compact on average than the

representation that simply lists elements of the chosen subset.

• Intentional representations work well when they exploit structure and regularity of the state space.

109

Model Refinement

• Construction of finite state models should balance precision and efficiency.

• Often the first model is unsatisfactory.
– Case 1: Report potential failures that are obviously impossible
– Case 2: Exhaust resources before producing any result

• Minor differences in the model can have large effects on tractability of the verification procedure.

• Finite state verification as iterative process is required.

110

Iteration Verification Process

111

Construct
an initial model

Attempt verification

Abstract the model
further

exhausts
computational

resources

Make the model
more precise

spurious
results

Refinement 1: Adding Details to the Model

M1 |= P Initial (coarse grain) model
(The counter example that violates P is possible in M1,

but does not correspond to an execution of the real program.)

M2 |= P Refined (more detailed) model
(the counterexample above is not possible in M2, but a new

counterexamples violates M2, and does not correspond to an
execution of the real program too.)

....

Mk |= P Refined (final) model
(the counter example that violates P in Mk corresponds to an
execution in the real program.)

112

Refinement 2: Add Premises to the Property

Initial (coarse grain) model

M |= P

Add a constraint C1 that eliminates the bogus behavior

M |= C1 Þ P

M |= (C1 and C2) Þ P
....

Until the verification succeeds or produces a valid counter example

113

114

SOFTWARE TESTING TECHNIQUES

115

§ Test Case Selection and Adequacy
§ Functional Testing
§ Combinatorial Testing
§ Structural Testing
§ Data-Flow Testing
§ Model-Based Testing
§ Fault-Based Testing
§ Test Execution

116

블랙박스 테스트

화이트박스 테스트
기능 테스트

구조 테스트

테스트 케이스
테스트 데이터

테스트 오라클

Coverage Criteria

테스트 드라이버
테스트 Scaffolding

테스트 실행

소프트웨어 테스트

모델 기반 테스트

Category-Partitioning 테스트

N-Pairwise 테스트

테스트 케이스 자동 생성

테스트 데이터 자동 생성

Coverage 측정

HW/SW Co-테스트

테스트 계획서

테스트 결과 보고서

CTIP(Continuous Test & Integration Platform)

테스트 자동화 도구

Boundary Value 테스트

테스트 명세서

3점 점합

Code Review
Clean Code

Refactoring

TDD

Cyclomatic Complexity
시뮬레이션 기반 테스트

Static Code Analysis

gTest

TFD

CI / CD

테스트 Stub

xUnit

Code Review

코드 기반 테스트

구조 기반 테스트

스펙 기반 테스트

시스템 테스트 계획서

QAS

비기능/품질 테스트

요구공학

Test Case Selection and Adequacy

Overview

• What we want to know is a real way of measuring effectiveness of testing.
– “If the system passes an adequate suite of test cases, then it must be correct.”

• But that’s impossible.
– The adequacy of test suites is provably undecidable.

• Therefore, we’ll have to settle on weaker proxies for adequacy.

118

Terminologies in Testing

DescriptionsTerms

a set of inputs, execution conditions, and a pass/fail criterionTest case

a requirement to be satisfied by one or more test casesTest case specification
(Test specification)

a partial test case specification, requiring some property deemed important to thorough testingTest obligation

a set of test casesTest suite

the activity of executing test cases and evaluating their resultsTest (Test execution)

a predicate that is true (satisfied) or false of a áprogram, test suiteñ pairAdequacy criterion

119

Source of Test Specification

Source of test specificationOther similar names
(but not the same exactly)Testing

Examples
Software specification

Black box testing
Specification-based testingFunctional Testing If specification requires robust recovery from power failure, test obligations

should include simulated power failure.

Source codeWhite box testing
Code-based testingStructural Testing

Traverse each program loop one or more times

Models of system
• Models used in specification or design
• Models derived from source code

Model-based
Testing

Exercise all transitions in communication protocol model

Hypothesized faults, Common bugs
Fault-basedTesting Check for buffer overflow handling (common vulnerability) by testing on very

large inputs

120

Adequacy Criteria

• Adequacy criterion = Set of test obligations

• A test suite satisfies an adequacy criterion, iff
– All the tests succeed (pass), and
– Every test obligation in the criterion is satisfied by at least one of the test cases in the test suite.

– Example:
• “The statement coverage adequacy criterion is satisfied by test suite S for program P, if each executable statement

in P is executed by at least one test case in S, and the outcome of each test execution was pass.”

121

Satisfiability

• Often no test suite can satisfy a criterion for a given program.
– Example:

• Defensive programming style includes “can’t happen” sanity checks.
– if (z < 0) {

throw new LogicError (“z must be positive here!”)
}

• For this program, no test suite can satisfy statement coverage.

• Two ways of coping with the unsatisfiability of adequacy criteria
– A : Exclude any unsatisfiable obligation from the criterion
– B : Measure the extent to which a test suite approaches an adequacy criterion

122

Coping with the Unsatisfiability

• Approach A
– Exclude any unsatisfiable obligation from the criterion
– Example:

• Modify statement coverage to require execution only of statements which can be executed
– But we can’t know for sure which are executable or not.

• Approach B
– Measure the extent to which a test suite approaches an adequacy criterion
– Example

• If a test suite satisfies 85 of 100 obligations, we have reached 85% coverage.
– Terms:

• An adequacy criterion is satisfied or not.
• A coverage measure is the fraction of satisfied obligations.

123

Coverage

• Measuring coverage (% of satisfied test obligations) can be a useful indicator of
– Progress toward a thorough test suite (thoroughness of test suite), and
– Trouble spots requiring more attention in testing.

• But coverage is only a proxy for thoroughness or adequacy.
– It’s easy to improve coverage without improving a test suite (much easier than designing good test cases)
– The only measure that really matters is (cost-) effectiveness.

124

Comparing Criteria

• Can we distinguish stronger from weaker adequacy criteria?

• Analytical approach
– Describe conditions under which one adequacy criterion is provably stronger than another
– Just a piece of the overall “effectiveness” question
– Stronger = gives stronger guarantees → Subsumes relation

• Working from easier to harder levels of coverage, but not a direct indication of quality.

125

Subsumes Relation

• Test adequacy criterion A subsumes test adequacy criterion B iff, for every program P, every test suite
satisfying A with respect to P also satisfies B with respect to P.

126

Use of Adequacy Criteria

• Test selection approaches (Selection)
– Guidance in devising a thorough test suite

• E.g., A specification-based testing criterion may suggest test cases covering representative combinations of values.

• Revealing missing tests (Measurement)
– Post hoc analysis: What might I have missed with this test suite?

• Often in combination
– Design test suite from specifications, then use structural criterion (e.g., coverage of all branches) to highlight

missed logic

127

128

Functional Testing

Functional Testing

• Functional testing
– Deriving test cases from program specifications
– ‘Functional’ refers to the source of information used in test case design, not to what is tested.
– Functional specification is a formal or informal description of intended program behavior.

• Also known as:
– Specification-based testing (from specifications)

– Black-box testing (no view of source code)

130

Systematic Testing vs. Random Testing

• Random (uniform) testing
– Pick possible inputs uniformly
– Avoids designer’s bias
– But treats all inputs as equally valuable.

• Systematic (non-uniform) testing
– Try to select inputs that are especially valuable
– Usually by choosing representatives of classes that are apt to fail often or not at all

• Functional testing is a systematic (partition-based) testing strategy.

131

Why Not Random Testing?

• Due to non-uniform distribution of faults
– Example:

• Java class “roots” applies quadratic equation

– Supposed an incomplete implementation logic:
• Program does not properly handle the case in which b2 - 4ac = 0 and a = 0

– Failing values are sparse in the input space: needles in a very big haystack
– Random sampling is unlikely to choose a=0 and b=0.

132

Purpose of Testing

• Our goal is to find needles and remove them from hay.
– Look systematically (non-uniformly) for needles.

– We need to use everything we know about needles.
• E.g., Are they heavier than hay? Do they sift to the bottom?

• To estimate the proportion of needles to hay, sample randomly(uniformly).
– Reliability estimation requires unbiased samples for valid statistics, but that’s not our goal.

133

Systematic Partition Testing

134

Principles of Systematic Partitioning

• Exploit some knowledge to choose samples that are more likely to include “special” or “trouble-prone”
regions of the input space

– Failures are sparse in the whole input space.
– But we may find regions in which they are dense.

• (Quasi-) Partition testing: separates the input space into classes whose union is the entire space
– Sampling each class in the quasi-partition selects at least one input that leads to a failure, revealing the fault.
– Seldom guaranteed; We depend on experience-based heuristics.

135

A Systematic Approach: Functional Testing

• Functional testing uses the specification (formal or informal) to partition the input space.
– For example, the specification of “roots” program suggests division between cases with zero, one, and two real

roots.
– Test each category and boundaries between categories

• No guarantees, but experience suggests failures often lie at the boundaries. (as in the “roots” program)

• Functional Testing is a base-line technique for designing test cases.
– Timely

• Often useful in refining specifications and assessing testability before code is written
– Effective

• Find some classes of fault (e.g., missing logic) that can elude other approaches
– Widely applicable

• To any description of program behavior serving as specification
• At any level of granularity from module to system testing

– Economical
• Typically, less expensive to design and execute than structural (code-based) test cases

136

Functional Test vs. Structural Test

• Different testing strategies are most effective for different classes of faults.

• Functional testing is best for missing logic faults.
– A common problem: Some program logic was simply forgotten.
– Structural testing will never focus on code that isn’t there.

• Functional test applies at all granularity levels.
– Unit (from module interface spec)
– Integration (from API or subsystem spec)
– System (from system requirements spec)
– Regression (from system requirements + bug history)

• Structural test design applies to relatively small parts of a system.
– Unit and integration testing

137

Main Steps of Functional Program Testing

138

Functional specifications

Independently Testable Feature

Representative Values Model

Test Case Specification

Test Cases

Scaffolding

Identify independently testable features

Derive a modelIdentify representative values

Generate test case specifications

Generate test cases

Instantiate tests

Finite State Machine,
Grammar,

Algebraic Specification,
Logic Specification,

CFG / DFG

Test selection
criteria

Manual Mapping,
Symbolic Execution,

A-posteriori Satisfaction

Semantic Constraint,
Combinational Selection,
Exhaustive Enumeration,

Random Selection

Brute force testing

From Specifications to Test Cases

1. Identify independently testable features (categories)
– If the specification is large, break it into independently testable features.

2. Identify representative classes of values, or derive a model of behavior
– Often simple input/output transformations don’t describe a system.
– We use models in program specification, in program design, and in test design too.

3. Generate test case specifications
– Typically, combinations of input values or model behaviors

4. Generate test cases and instantiate tests

139

140

 Id
en

tif
y

In
de

pe
nd

en
tly

Te

st
ab

le

Fe
at

ur
es

Generate Test-Case

Specifications Generate Test-
Case

Specifi
cations

G
en

er
at

e
Te

st
 C

as
es

In
st

an
tia

te
Te

st
s

141

Combinatorial Testing

Overview

• Combinatorial testing identifies distinct attributes that can be varied In data, environment or
configuration.

– Example:
• Browser could be “IE” or “Firefox”
• Operating system could be “Vista”, “XP” or “OSX”

• Combinatorial testing systematically generates combinations to be tested.
– Example:

• IE on Vista, IE on XP, Firefox on Vista, Firefox on OSX, etc.
– Rationale: Test cases should be varied and include possible “corner cases”.

143

Key Ideas in Combinatorial Approaches

• Category-partition testing
– Separate (manual) identification of values that characterize the input space from (automatic) generation of

combinations for test cases

• Pairwise testing
– Systematically test interactions among attributes of the program input space with a relatively small number of

test cases

• Catalog-based testing
– Aggregate and synthesize the experience of test designers in a particular organization or application domain, to

aid in identifying attribute values

144

1. Category-Partition Testing

1. Decompose the specification into independently testable features
– for each feature, identify parameters and environment elements
– for each parameter and environment element, identify elementary characteristics (→ categories)

2. Identify representative (classes of) values
– for each characteristic(category), identify classes of values

• normal values
• boundary values
• special values
• error values

3. Generate test case specifications

145

Step 1: Identify Independently Testable Features and Parameter
Characteristics
• Choosing categories

– No hard-and-fast rules for choosing categories!
– Not a trivial task

• Categories reflect test designer's judgment.
– Which classes of values may be treated differently by an implementation.

• Choosing categories well requires experience and knowledge of the application domain and product
architecture.

147

Identify Independently Testable Units

Model number

Model Number of required slots for selected model (#SMRS)

Number of optional slots for selected model (#SMOS)

148

Correspondence of selection with model slots

Components

Number of required components with selection ¹ empty

Required component selection

Number of optional components with selection ¹ empty

Optional component selection

Number of models in database (#DBM)Product
Database Number of components in database (#DBC)

Parameters Categories

Step 2: Identify Representative Values

• Identify representative classes of values for each of the categories

• Representative values may be identified by applying
– Boundary value testing

• Select extreme values within a class
• Select values outside but as close as possible to the class
• Select interior (non-extreme) values of the class

– Erroneous condition testing
• Select values outside the normal domain of the program

149

Representative Values: Model

• Model number
– Malformed
– Not in database
– Valid

• Number of required slots for selected model (#SMRS)
– 0
– 1
– Many

• Number of optional slots for selected model (#SMOS)
– 0
– 1
– Many

150

Representative Values: Components

• Correspondence of selection with model slots
– Omitted slots
– Extra slots
– Mismatched slots
– Complete correspondence

• Number of required components with non-empty selection
– 0
– < number required slots
– = number required slots

• Required component selection
– Some defaults
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database

151

Representative Values: Components

• Number of optional components with non-empty selection
– 0
– < #SMOS
– = #SMOS

• Optional component selection
– Some defaults
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database

152

Representative Values: Product Database

• Number of models in database (#DBM)
– 0
– 1
– Many

• Number of components in database (#DBC)
– 0
– 1
– Many

– Note 0 and 1 are unusual (special) values.
• They might cause unanticipated behavior alone or in combination with particular values of other parameters.

153

Step 3: Generate Test Case Specifications

• A combination of values for each category corresponds to a test case specification.
– In the example, we have 314,928 test cases.
– Most of which are impossible.

• Example: zero slots and at least one incompatible slot

• Need to introduce constraints in order to rule out impossible combinations and reduce the size of the
test suite.

– Error constraints
– Property constraints
– Single constraints

154

Check Configuration - Summary of Categories

Parameter Model
• Model number

– Malformed [error]
– Not in database [error]
– Valid

• Number of required slots for selected model (#SMRS)
– 0 [single]
– 1 [property RSNE] [single]
– Many [property RSNE] [property RSMANY]

• Number of optional slots for selected model (#SMOS)
– 0 [single]
– 1 [property OSNE] [single]
– Many [property OSNE] [property OSMANY]

Environment Product data base
• Number of models in database (#DBM)

– 0 [error]
– 1 [single]
– Many

• Number of components in database (#DBC)
– 0 [error]
– 1 [single]
– Many

Parameter Component
• Correspondence of selection with model slots

– Omitted slots [error]
– Extra slots [error]
– Mismatched slots [error]
– Complete correspondence

• # of required components (selection ¹ empty)
– 0 [if RSNE] [error]
– < number required slots [if RSNE] [error]
– = number required slots [if RSMANY]

• Required component selection
– Some defaults [single]
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database [error]

• # of optional components (selection ¹ empty)
– 0
– < #SMOS [if OSNE]
– = #SMOS [if OSMANY]

• Optional component selection
– Some defaults [single]
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database [error]

158

• TSL (Test Specification Language)

– Category
– Property List
– Selector Expression
– https://github.com/alexorso/tslgenerator

159

TSL : Test Specification Language

TSL 40 Test cases

Category-Partitioning Testing, in Summary

• Category partition testing gives us systematic approaches to
– Identify characteristics and values (the creative step)
– Generate combinations (the mechanical step).

• But test suite size grows very rapidly with number of categories.
– Pairwise (and n-way) combinatorial testing is a non-exhaustive approach.

• Combine values systematically but not exhaustively.

160

2. Pairwise Combination Testing

• Category partition works well when intuitive constraints reduce the number of combinations to a small
amount of test cases.

– Without many constraints, the number of combinations may be unmanageable.

• Pairwise combination
– Generate combinations that efficiently cover all pairs (triples,…) of classes, instead of exhaustive combinations
– Rationale:

• Most failures are triggered by single values or combinations of a few values.
• Covering pairs (triples,…) reduces the number of test cases, but reveals most faults.

161

An Example: Display Control

• No constraints reduce the total number of combinations 432 (3x4x3x4x3) test cases, if we consider all
combinations.

162

Screen sizeColorFontsLanguageDisplay Mode

Hand-heldMonochromeMinimalEnglishfull-graphics

LaptopColor-mapStandardFrenchtext-only

Full-size16-bitDocument-loadedSpanishlimited-bandwidth

True-colorPortuguese

Pairwise Combination: 17 Test Cases

163

Screen SizeFontsDisplay ModeColorLanguage

Hand-heldMinimalFull-graphicsMonochromeEnglish

Full-sizeStandardText-onlyColor-mapEnglish

Full-size-Limited-bandwidth16-bitEnglish

LaptopDocument-loadedText-onlyTrue-colorEnglish

LaptopStandardLimited-bandwidthMonochromeFrench

Full-sizeDocument-loadedFull-graphicsColor-mapFrench

-MinimalText-only16-bitFrench

Hand-held--True-colorFrench

Full-sizeDocument-loaded-MonochromeSpanish

Hand-heldMinimalLimited-bandwidthColor-mapSpanish

LaptopStandardFull-graphics16-bitSpanish

Hand-held-Text-onlyTrue-colorSpanish

Text-onlyMonochrome--Portuguese

LaptopMinimal-Color-mapPortuguese

Hand-heldDocument-loadedLimited-bandwidth16-bitPortuguese

Full-sizeMinimalFull-graphicsTrue-colorPortuguese

Hand-heldStandardLimited-bandwidthTrue-colorPortuguese

Adding Constraints

• Simple constraints
– Example: “Color monochrome not compatible with screen laptop and full size” can be handled by considering

the case in separate tables.

164

Screen sizeColorFontsLanguageDisplay Mode

Hand-heldMonochromeMinimalEnglishfull-graphics

Color-mapStandardFrenchtext-only

16-bitDocument-loadedSpanishlimited-bandwidth

True-colorPortuguese

Screen sizeColorFontsLanguageDisplay Mode

MinimalEnglishfull-graphics

LaptopColor-mapStandardFrenchtext-only

Full-size16-bitDocument-loadedSpanishlimited-bandwidth

True-colorPortuguese

Pairwise Testing Tools

• www.pairwise.org

165

166

Pairwise Combination Testing, in Summary

• Category-partition approach gives us
– Separation between (manual) identification of parameter characteristics and values, and (automatic) generation

of test cases that combine them
– Constraints to reduce the number of combinations

• Pairwise (or n-way) testing gives us
– Much smaller test suites, even without constraints
– But we can still use constraints.

• We still need help to make the manual step more systematic.

167

3. Catalog-based Testing

• Deriving value classes requires human judgment. Therefore, gathering experience in a systematic
collection can

– Speed up the test design process,
– Routinize many decisions, better focusing human effort,
– Accelerate training, and
– Reduce human error

• Catalogs capture the experience of test designers by listing important cases for each possible type of
variable.

– Example: If the computation uses an integer variable, a catalog might indicate the following relevant cases
• The element immediately preceding the lower bound
• The lower bound of the interval
• A non-boundary element within the interval
• The upper bound of the interval
• The element immediately following the upper bound

168

Catalog-based Testing Process

1. Identify elementary items of the specification
– Pre-conditions
– Post-conditions
– Definitions
– Variables
– Operations

2. Derive a first set of test case specifications from pre-conditions, post-conditions and definitions

3. Complete the set of test case specifications using test catalogs

169

What Have We Got from Three Methods?

• Category partition testing
– Division into a (manual) step of identifying categories and values, with constraints, and an (automated) step of

generating combinations

• Pairwise testing
– Systematic generation of smaller test suites

• Catalog-based testing
– Improving the manual step by recording and using standard patterns for identifying significant values

• Three ideas can be combined.

170

171

Structural Testing

Structural Testing

• Judging test suite thoroughness based on the structure of the program itself
– Also known as

• White-box testing
• Glass-box testing
• Code-based testing

– Distinguish from functional (requirements-based, “black-box”) testing

• Structural testing is still testing product functionality against its specification.
– Only the measure of thoroughness has changed.

173

Rationale of Structural Testing

• One way of answering the question “What is missing in our test suite?”
– If a part of a program is not executed by any test case in the suite, faults in that part cannot be exposed.
– But what’s the ‘part’?

• Typically, a control flow element or combination
– Statements (CFG nodes)

– Branches (CFG edges)

– Fragments and combinations: Conditions, paths

• Structural testing complements functional testing.
– Another way to recognize cases that are treated differently

• Recalling fundamental rationale
– “Prefer test cases that are treated differently over cases treated the same.”

174

No Guarantee

• Executing all control flow elements does not guarantee finding all faults.
– Execution of a faulty statement may not always result in a failure.

• The state may not be corrupted when the statement is executed with some data values.
• Corrupt state may not propagate through execution to eventually lead to failure.

• What is the value of structural coverage?
– Increases confidence in thoroughness of testing

175

Structural Testing Complements Functional Testing

• Control flow-based testing includes cases that may not be identified from specifications alone.
– Typical case: Implementation of a single item of the specification by multiple parts of the program

• Test suites that satisfy control flow adequacy criteria could fail in revealing faults that can be caught
with functional criteria.

– Typical case: Missing path faults

176

Structural Testing, in Practice

• Create functional test suite first, then measure structural coverage to identify and see what is
missing.

– May interpret unexecuted elements due to natural differences between specification and implementation.
– May reveal flaws in the software or development process

• Inadequacy of specifications that do not include cases present in the implementation
• Coding practice that radically diverges from the specification
• Inadequate functional test suites

• Attractive because structural testing is automated.
– Coverage measurements are convenient progress indicators.
– Sometimes used as a criterion of completion of testing

• Use with caution: does not ensure effective test suites

177

1. #include “hex_values.h”

2. int cgi_decode(char* encoded, char* decoded) {
3. char *eptr = encoded;
4. char *dptr = decoded;
5. int ok = 0;
6. while (*eptr) {
7. char c;
8. c = *eptr;
9. if (c == ‘+’) {
10. *dptr = ‘ ‘;
11. } else if (c == ‘%’) {
12. int digit_high = Hex_Values[*(++eptr)];
13. int digit_low = Hex_Values[*(++eptr)];

14. if (digit_high == -1 || digit_low == -1) {
15. ok = 1;
16. } else {
17. *dptr = 16 * digit_high + digit_low;
18. }
19. } else {
20. *dptr = *eptr;
21. }
22. ++dptr;
23. ++eptr;
24. }
25. *dptr = ‘\0’;
26. return ok;
27. }

 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {

*dptr = ' ';
}

while (*eptr) {
True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high +
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else
*dptr = *eptr;
}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

LM

178

An Example Program: ‘cgi_decode’ and CFG

Structural Testing Techniques

1. Statement (Coverage-based structural) Testing

2. Branch (Coverage-based structural) Testing

3. Condition (Coverage-based structural) Testing
– Basic
– Compounded
– MC/DC

4. Path Testing
– Bounded interior
– Loop boundary
– LCSAJ
– Cyclomatic

179

1. Statement Testing

• Adequacy criterion:
– Each statement (or node in the CFG) must be executed at least once.

• Coverage:
number of executed statements

number of statements

• Rationale:
– A fault in a statement can only be revealed by executing the faulty statement.

• Nodes in a CFG often represent basic blocks of multiple statements.
– Some standards refer to ‘basic block coverage’ or ‘node coverage’.
– Difference in granularity, but not in concept

180

An Example: for Function “cgi_decode”

181

< Test cases >
T0 =
{“”, “test”, “test+case%1Dadequacy”}
17/18 = 94% Statement coverage

T1 =
{“adequate+test%0Dexecution%7U”}
18/18 = 100% Statement coverage

T2 = {“%3D”, “%A”, “a+b”, “test”}
18/18 = 100% Statement coverage

T3 = {“ ”, “+%0D+%4J”}
…

T4 = {“first+test%9Ktest%K9”}
…

Coverage Is Not a Matter of Size

• Coverage does not depend on the number of test cases.
– T0 , T1 : T1 >coverage T0 T1 <cardinality T0

– T1 , T2 : T2 =coverage T1 T2 >cardinality T1

• Minimizing test suite size is not the goal.
– Small test cases make failure diagnosis easier.

– But a failing test case in T2 gives more information for fault localization than a failing test case in T1

182

• Complete statement coverage may not imply
executing all branches in a program.

• Example:
– Suppose block F were missing
– But statement adequacy would not require false

branch from D to L

• T3 = {“ ”, “+%0D+%4J”}
– 100% statement coverage
– No false branch from D

 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {

*dptr = ' ';
}

while (*eptr) {
True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high +
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else {
*dptr = *eptr;
}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

LM

183

Complete Statement Coverage

2. Branch Testing

• Adequacy criterion:
– Each branch (edge in the CFG) must be executed at least once.

• Coverage:
number of executed branches

number of branches

• Example:
– T3 = {“”, “+%0D+%4J”}

• 100% Stmt Cov.
• 88% Branch Cov. (7/8 branches)

– T2 = {“%3D”, “%A”, “a+b”, “test”}
• 100% Stmt Cov.
• 100% Branch Cov. (8/8 branches)

184

 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {

*dptr = ' ';
}

while (*eptr) {
True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high +
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else {
*dptr = *eptr;
}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

LM

Statements vs. Branches

• Traversing all edges causes all nodes to be visited.
– Therefore, test suites that satisfy the branch adequacy also satisfy the statement adequacy criterion for the

same program.
– Branch adequacy subsumes statement adequacy.

• The converse is not true (see T3).
– A statement-adequate test suite may not be branch-adequate.

185

All Branches Coverage

• “All branches coverage” can still miss conditions.

• Example:
– Supposed that we missed the

negation operator of “digit_high == -1”,

digit_high == 1 || digit_low == -1

• Branch adequacy criterion can be satisfied by varying
only ‘digit_low’.

– The faulty sub-expression might never determine the result.
– We might never really test the faulty condition, even though

we tested both outcomes of the branch.

186

3. Condition Testing

• Branch coverage exposes faults in how a computation has been decomposed into cases.
– Intuitively attractive: checking the programmer’s case analysis
– But only roughly: grouping cases with the same outcome

• Condition coverage considers case analysis in more detail.
– Consider ‘individual conditions’ in a compound Boolean expression

• E.g., both parts of ‘”igit_high == 1 || digit_low == -1”

• Adequacy criterion:
– Each basic condition must be executed at least once.

• Basic condition testing coverage :
number of truth values taken by all basic conditions

2 * number of basic conditions

187

Basic Conditions vs. Branches

• Basic condition adequacy criterion can be satisfied without satisfying branch coverage.

• T4 = {“first+test%9Ktest%K9”}
– Satisfies basic condition adequacy
– But does not satisfy branch condition adequacy

• Branch and basic condition are not comparable.
– Neither implies the other.

188

Covering Branches and Conditions

• Branch and condition adequacy:
– Cover all conditions and all decisions

• Compound condition adequacy :
– Cover all possible evaluations of compound conditions.
– Cover all branches of a decision tree.

189

Compounded Conditions

• Compound conditions often have exponential complexity.

• Example: (((a || b) && c) || d) && e

190

OutcomeedcbaTest Case

truetrue-true-true(1)

truetrue-truetruefalse(2)

truetruetruefalse-true(3)

truetruefalsetruefalse(4)

truetrue-falsefalse(5)

false-true-true(6)

false-truetruefalse(7)

falsetruefalse-true(8)

falsetruefalsetruefalse(9)

falsetrue-falsefalse(10)

-falsefalse-true(11)

-falsefalsetruefalse(12)

-false-falsefalse(13)

Modified Condition/Decision (MC/DC)

• Motivation
– Effectively test important combinations of conditions, without exponential blowup in test suite size

– “Important” combinations means:
• Each basic condition shown to independently affect the outcome of each decision.
• Requires

– For each basic condition C, two test cases,
– Values of all ‘evaluated’ conditions except C are the same.
– Compound condition as a whole evaluates to ‘true’ for one and ‘false’ for the other.

191

Complexity of MC/DC

• MC/DC has a linear complexity.

• Example: (((a || b) && c) || d) && e
– Underlined values independently affect the output of the decision.

192

OutcomeedcbaTest Case

truetrue-true-true(1)

truetrue-truetruefalse(2)

truetruetruefalse-true(3)

falsefalse-true-true(6)

false-falsefalse-true(11)

false-false-falsefalse(13)

Comments on MC/DC

• MC/DC
– Basic condition coverage (C)
– Branch coverage (DC)
– + one additional condition (M)

• Every condition must independently affect the decision’s output.

– Subsumed by compound conditions
– Subsumes all other criteria discussed so far.

– Stronger than statement and branch coverage

• Widely used as a good balance of thoroughness and test size.
– Required by various international standard for functional safety

• DO-178B/C
• ISO 26262
• IEC 61508

193

4. Path Testing

• There are many more paths than branches.
– Decision and condition adequacy criteria consider individual decisions only.

• Path testing focuses combinations of decisions along paths.

• Adequacy criterion:
– Each path must be executed at least once.

• Coverage:
number of executed paths

number of paths

194

Path Coverage Criteria in Practice

• The number of paths in a program with loops is unbounded.
– Usually impossible to satisfy

• To be a feasible criterion, we should partition infinite set of paths into a finite number of classes.

• Useful criteria can be obtained by limiting
– Number of traversals of loops
– Length of the paths to be traversed
– Dependencies among selected paths

195

LCSAJ Adequacy

• Linear Code Sequence And Jumps (LCSAJ)
– Sequential subpath in the CFG starting and ending in a branch

• TER1 = statement coverage
• TER2 = branch coverage
• TERn+2 = coverage of n consecutive LCSAJs

– Essentially considering full path coverage of (short) sequences of decisions

• Data flow criteria considered in a later chapter provide a more principled way of choosing some
particular sub-paths as important enough to cover in testing.

– But, neither LCSAJ nor data flow criteria are much used in current practice.

196

Cyclomatic Adequacy

• Cyclomatic number
– Number of independent paths in the CFG
– A path is representable as a bit vector, where each component of the vector represents an edge.
– “Dependence” is ordinary linear dependence between (bit) vectors

• If e = #edges, n = #nodes, c = #connected components of a graph,
– e - n + c for an arbitrary graph
– e - n + 2 for a CFG ← Cyclomatic complexity

• Cyclomatic coverage counts the number of independent paths that have been exercised, relative to
cyclomatic complexity.

197

Procedure Call Testing

• Measuring coverage of control flow within individual procedure is not well-straightly suited to integration
or system testing.

• Choose a coverage granularity commensurate with the granularity of testing
– If unit testing has been effective, then faults that remain to be found in integration testing will be primarily

interface faults, and testing effort should focus on interfaces between units rather than their internal details.

• Procedure entry and exit testing
– Procedure may have multiple entry points (e.g., Fortran) and multiple exit points.

• Call coverage
– The same entry point may be called from many points.

198

Comparing Structural Testing Criteria

199
Subsumption Relation among Structural Test Adequacy Criteria

Satisfying Structural Criteria

• Large amounts of ‘fossil’ code may indicate serious maintainability problems.

• But some unreachable code is common even in well-designed and well-maintained systems.

• Solutions:
1. Make allowances by setting a coverage goal less than 100%

2. Require justification of elements left uncovered
• As RTCA-DO-178B/C and EUROCAE ED-12B for modified MC/DC

200

201

Data Flow Testing

Motivation

• Middle ground in structural testing
– Node and edge coverage don’t test interactions.
– Path-based criteria require impractical number of test cases.

• Only a few paths uncover additional faults, anyway.
– Need to distinguish “important” paths

• Intuition: Statements interact through data flow.
– Value computed in one statement, is used in another.
– Bad value computation can be revealed only when it is used.

203

Def-Use Pairs

• Value of x at 6 could be computed at 1 or at 4.

• Bad computation at 1 or 4 could be revealed
only if they are used at 6.

• (1, 6) and (4, 6) are def-use (DU) pairs.
– defs at 1, 4
– use at 6

204

x =

if

x =

...

....

y = x + ...

4

1

6

2

3

5

Terminology

• DU pair
– A pair of definition and use for a variable, such that at least one DU path exists from the definition to the use.
– “x = ...” is a definition of x
– “= ... x ...” is a use of x

• DU path
– A definition-clear path on the CFG starting from a definition to a use of a same variable
– Definition clear: Value is not replaced on path.
– Note: Loops could create infinite DU paths between a def and a use.

205

Definition-Clear Path

• 1,2,3,5,6 is a definition-clear path from 1 to 6.
– x is not re-assigned between 1 and 6.

• 1,2,4,5,6 is not a definition-clear path from 1 to 6.
– the value of x is “killed” (reassigned) at node 4.

• (1, 6) is a DU pair because 1,2,3,5,6 is a
definition-clear path.

206

x =

if

x =

...

....

y = x + ...

4

1

6

2

3

5

Adequacy Criteria

• All DU pairs
– Each DU pair is exercised by at least one test case.

• All DU paths
– Each simple (non looping) DU path is exercised by at least one test case.

• All definitions
– For each definition, there is at least one test case which exercises a DU pair containing it.
– Because every computed value is used somewhere.

• Corresponding coverage fractions can be defined similarly.

207

Difficult Cases

• x[i] = ... ; ... ; y = x[j]
– DU pair (only) if i == j

• p = &x ; ... ; *p = 99 ; ... ; q = x
– *p is an alias of x

• m.putFoo(...); ... ; y=n.getFoo(...);
– Are m and n the same object?
– Do m and n share a “foo” field?

• Problem of aliases:
– Which references are (always or sometimes) the same?

208

Data Flow Coverage with Complex Structures

• Arrays and pointers are critical for data flow analysis.
– Under-estimation of aliases may fail to include some DU pairs.
– Over-estimation may introduce unfeasible test obligations.

• For testing, it may be preferable to accept under-estimation of alias set rather than over-estimation or
expensive analysis.

– Alias analysis may rely on external guidance or other global analysis to calculate good estimates.
– Undisciplined use of dynamic storage, pointer arithmetic, etc. may make the whole analysis infeasible.
– But, in other applications (e.g., compilers), a conservative over-estimation of aliases is usually required.

209

Data Flow Coverage in Practice

• The path-oriented nature of data flow analysis makes the infeasibility problem especially relevant.
– Combinations of elements matter.
– Impossible to distinguish feasible from infeasible paths.
– More paths = More work to check manually

• In practice, reasonable coverage is (often, not always) achievable.
– Number of paths is exponential in worst case, but often linear.
– All DU paths is more often impractical.

210

211

Model-Based Testing

213

 Id
en

tif
y

In
de

pe
nd

en
tly

Te

st
ab

le

Fe
at

ur
es

Generate Test-Case

Specifications Generate Test-
Case

Specifi
cations

G
en

er
at

e
Te

st
 C

as
es

In
st

an
tia

te
Te

st
s

Overview

• Models used in specification or design have structure.
– Useful information for selecting representative classes of behavior
– Behaviors that are treated differently with respect to the model should be tried by a thorough test suite.
– In combinatorial testing, it is difficult to capture that structure clearly and correctly in constraints.

• We can devise test cases to check actual behavior against behavior specified by the model.
– “Coverage” similar to structural testing, but applied to specification or design models

214

Test Cases Generated from the FSM

• FSM can be used both to
1. Guide test selection (checking each state transition)
2. Constructing an oracle that judge whether each observed behavior is correct

• Questions:
– “Is this a thorough test suite?”
– “How can we judge?”

à Coverage criteria require

217

01420TC1

0654250TC2

069530TC3

06987857530TC4

Transition Coverage Criteria

• All state coverage
– Every state in the model should be visited by at least one test case.

• All transition coverage
– Every transition between states should be traversed by at least one test case.
– Most commonly used criterion
– A transition can be thought of as a (precondition, postcondition) pair

218

Test Cases Generated from the Decision Table

• Basic condition coverage
– A test case specification for each column in the table

• Compound condition adequacy criterion
– A test case specification for each combination of truth values of basic conditions

• Modified condition/decision adequacy criterion (MC/DC)
– Each column in the table represents a test case specification.
– We add columns that differ in one input row and in outcome, then merge compatible columns.

221

Test Cases Generated from the CFG

• Node adequacy criteria

• Branch adequacy criteria

224

CC validSame AddressPay
MethodCust TypeShip

MethodShip WhereToo SmallCase

YesNoCCBusAirIntNoTC-1

----LandDomNoTC-2

------YesTC-3

----AirDomNoTC-4

----LandIntNoTC-5

--InvEdu--NoTC-6

-YesCC---NoTC-7

No (abort)-CC---NoTC-8

No (no abort)-CC---NoTC-9

CC validSame AddressPay
MethodCust TypeShip

MethodShip WhereToo SmallCase

YesNoCCBusAirIntNoTC-1

No (abort)-CCIndAirDomNoTC-2

Grammar-Based Testing

• Test cases are ‘strings’ generated from the grammar.

• Coverage criteria:
– Production coverage:

• Each production must be used to generate at least one (section of) test case.
– Boundary condition:

• Annotate each recursive production with minimum and maximum number of application, then generate:
– Minimum
– Minimum + 1
– Maximum - 1
– Maximum

226

Test Cases Generated from the Grammar

• “Mod000”
– Covers Model, compSeq1[0], compSeq2, optCompSeq1[0], optCompSeq2, modNum

• “Mod000 (Comp000, Val000) (OptComp000)”
– Covers Model, compSeq1[1], compSeq2, optCompSeq2[0], optCompSeq2, Comp, OptComp, modNum,

CompTyp, CompVal

• Etc.

• Comments:
– By first applying productions with nonterminals on the right side, we obtain few, large test cases.
– By first applying productions with terminals on the right side, we obtain many, small test cases.

228

Grammar Testing vs. Combinatorial Testing

• Combinatorial specification-based testing is good for “mostly independent” parameters.
– We can incorporate a few constraints, but complex constraints are hard to represent and use.
– We must often “factor and flatten.”

• E.g., separate “set of slots” into characteristics “number of slots” and predicates about what is in the slots (all together)

• Grammar describes sequences and nested structure naturally.
– But, some relations among different parts may be difficult to describe and exercise systematically,

• E.g., compatibility of components with slots.

229

230

Fault-Based Testing

Estimating Test Suite Quality

• Supposed that I have a program with bugs.

• Add 100 new bugs
– Assume they are exactly like real bugs in every way
– I make 100 copies of my program, each with one of my 100 new bugs.

• Run my test suite on the programs with seeded bugs
– And the tests revealed 20 of the bugs.
– The other 80 program copies do not fail.

• What/How can I infer about my test suite’s quality?

232

Basic Assumptions

• We want to judge effectiveness of a test suite in finding real faults,
– by measuring how well it finds seeded fake faults.

• Valid to the extent that the seeded bugs are representative of real bugs
– Not necessarily identical
– But the differences should not affect the selection.

233

Assumptions on Mutation Testing

• Competent programmer hypothesis
– Programs are nearly correct.

• Real faults are small variations from the correct program.
• Therefore, mutants are reasonable models of real buggy programs.

• Coupling effect hypothesis
– Tests that find simple faults also find more complex faults.
– Even if mutants are not perfect representatives of real faults, a test suite that kills mutants is good at finding real

faults too.

235

Mutant Operators

• Syntactic changes from legal program to illegal program
– Specific to each programming language

• Examples:
– crp: constant for constant replacement

• E.g., from (x < 5) to (x < 12)
• Select constants found somewhere in program text

– ror: relational operator replacement
• E.g., from (x <= 5) to (x < 5)

– vie: variable initialization elimination
• E.g., change int x =5; to int x;

236

Fault-based Adequacy Criteria

• Mutation analysis consists of the following steps:
– Select mutation operators
– Generate mutants
– Distinguish mutants

• Live mutants
– Mutants not killed by a test suite

• Given a set of mutants SM and a test suite T, the fraction of nonequivalence mutants killed by T
measures the adequacy of T with respect to SM.

237

Variations on Mutation Analysis

• Problem:
– There are lots of mutants.
– Running each test case to completion on every mutant is expensive.
– Number of mutants grows with the square of program size.

• Solutions:
– Weak mutation:

• Execute meta-mutant (with many seeded faults) together with original program
– Statistical mutation

• Just create a random sample of mutants

238

Summary

• Fault-based testing is a widely used in semiconductor manufacturing.
– With good fault models of typical manufacturing faults, e.g., “stuck-at-one” for a transistor
– But fault-based testing for design errors is more challenging (as in software).

• Mutation testing is not widely used in industry.
– But plays a role in software testing research, to compare effectiveness of testing techniques.

239

240

Test Execution

Automating Test Execution

• Designing test cases and test suites is creative.
– Demanding intellectual activity
– Requiring human judgment

• Executing test cases should be automatic.
– Design once, execute many times

• Test automation separates the creative human process from the mechanical process of test execution.

242

From Test Case Specifications to Test Cases

• Test design often yields test case specifications, rather than concrete data.
– E.g., “a large positive number”, not 420,023
– E.g., “a sorted sequence, length > 2”, not “Alpha, Beta, Chi, Omega”
– Other details for execution may be omitted.

• Test Generation creates concrete/executable test cases from test case specifications.

• A Tool chain for test case generation and execution
– A combinatorial test case generation to create test data

• Optional: Constraint-based data generator to “concretize” individual values, e.g., from “positive integer” to 42
– ‘DDSteps’ to convert from spreadsheet data to ‘JUnit’ test cases
– ‘JUnit’ to execute concrete test cases

243

Scaffolding

• Code produced to support development activities
– Not part of the “product” as seen by the end user
– May be temporary (like scaffolding in construction of buildings)

• Scaffolding includes
– Test harnesses
– Drivers
– Stubs

244

Scaffolding

• Test driver
– A “main” program for running a test

• May be produced before a “real” main program
• Provide more control than the “real” main program

– To drive program under test through test cases

• Test stub
– Substitute for called functions/methods/objects

• Test harness
– Substitutes for other parts of the deployed environment
– E.g., Software simulation of a hardware device

245

Generic vs. Specific Scaffolding

• How general should scaffolding be?
– We could build a driver and stubs for each test case.
– Or at least factor out some common code of the driver and test management (e.g. JUnit)
– Or further factor out some common support code, to drive a large number of test cases from data (as in

DDSteps)
– Or further generate the data automatically from a more abstract model (e.g. network traffic model)

• It’s a question of costs and re-use, just as for other kinds of software.

248

Test Oracles

• No use running 10,000 test cases automatically, if the results must be checked by hand.

• It’s a problem of ‘range of specific to general’, again
– E.g., JUnit: Specific oracle (“assert”) should be coded by hand in each test case.

• Typical approaches
– Comparison-based oracle with predicted output value
– Self-checks

249

Comparison-based Oracle

• With a comparison-based oracle, we need predicted output for each input.
– Oracle compares actual to predicted output, and reports failure if they differ.
– Fine for a small number of hand-generated test cases
– E.g., for hand-written JUnit test cases

250

Self-Checks as Oracles

• An oracle can also be written as self-checks.
– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically generated test suites, but often only a partial
check

– E.g., structural invariants of data structures
– Recognize many or most failures, but not all

251

252

TESTING IN FUNCTIONAL SAFETY STANDARDS
(IEC 61508, ISO-26262)

253

Contents and Pages of the Standard ISO-26262

I. ISO 26262 (Introduction) 4

II. ISO 26262-1: Vocabulary (in summary) 9

III. ISO 26262-2: Management of Functional Safety (in summary) 14

IV. ISO 26262-3: Concept Phase (in summary) 21

V. ISO 26262-6: Product Development: Software Level 130

6-5 Initiation of Product Development at the Software Level 16
6-6 Specification of Software Safety Requirements 7
6-7 Software Architectural Design 40
6-8 Software Unit Design and Implementation 26
6-9 Software Unit Testing 18
6-10 Software Integration and Testing 15
6-11 Verification of Software Safety Requirements 6

254

I. ISO 26262

■ ISO 26262는

ISO 26262는 전장 E/E시스템에 적합하게 IEC 61508를 특화 한 표준

전장시스템의 발전과 함께, Systematic Failures와 Random Failures로 인한 Risk 증가
+ ISO 26262는 이런 risk를 줄일 수 있는 요구사항(Requirements)과 프로세스(processes)를 제공한다.

Safety Lifecycle
+

Functional Safety
+

ASIL

255

I. ISO 26262

+ 전장시스템을 위한 Safety Lifecycle을 제공한다.
+ Safety Lifecycle을 적절하게 수정(Tailoring)할 수 있는 방법을 제공한다.

+ 전장시스템에 특화된 리스크 기반 SIL(Safety Integrity Level)을 제공한다.
→ ASIL(Automotive SIL)

+ ASIL을 이용해서 적용해야 하는 ISO 26262 모든 요구사항을 분류한다.

+ 요구되는 수준의 안전성(즉, ASIL)이 잘 만족되었는지 확인할 수 있는
Validation 및 Confirmation 방법(Measures)에 대한 요구사항을 제공한다.

+ V&C 방법들이 가져야 할 요건들을 제공
+ 구체적인 V&C 방법을 제시 X

256

I. ISO 26262

■ ISO 26262 기본 가정 (Assumptions)

시스템을 구성하는 일반 기능(Non-Safety Functions)의 개발에 대해서는 고려하지 않는다.
+ Safety-Related Functions의 개발만을 다룬다.

E/E Safety-Related System의 오작동(Malfunctioning)으로 인한 Hazards만을 고려한다.
+ electric shock, fire, smoke, heat 등은 고려 X

성능(Performance) 관련 이슈는 고려 X

257

I. ISO 26262

■ V-Model 기반 개발 방법론

258

III. ISO 26262-2

■ Safety Lifecycle

Main Topic

259

III. ISO 26262-2

■ Functional Safety Assessment

각 Item이 요구되는 기능안전성(Functional Safety)을 확보했는지 판정(Judgment)한다.
+ 합격
+ 불합격
+ 조건부 합격

260

V. ISO 26262-6

■ Part 6: Product Development at the Software Level

ISO 26262 Part 6는 Software의 개발에 대한 요구사항을 정의한다.
+ 6-5 Requirements for Initiation of Product Development at the Software Level : 소프트웨어 개발 프로세스를 시작
+ 6-6 Specification of the Software Safety Requirements : 요구사항 분석 및 명세
+ 6-7 Software Architecture Design : 상위 설계
+ 6-8 Software Unit Design and Implementation : 유닛 설계 및 구현
+ 6-9 Software Unit Testing : 단위 시험
+ 6-10 Software Integration and Testing : 모듈 통합 및 통합 시험
+ 6-11 Verification of Software Safety Requirements : 안전 요구사항 검증

6-5

6-6

6-7

6-8

6-9

6-10

6-11

261

6-5 Initiation of Product Development at the Software Level

■ 6-5 Initiation of Product Development at the Software Level

소프트웨어 개발을 위한 계획을 세우고, 주요 Activities를 정한다.
→ 소프트웨어 개발 프로세스를 준비한다.

소프트웨어 개발 계획은
+ 소프트웨어 개발 각 단계들(Sub-Phases)과 지원 프로세스들(Supporting Processes)를 결정한다.
+ 적절한 방법론(Methods)에 의해 결정된다.

+ 가이드라인(Guidelines)과 도구(Tools)에 의해 지원받는다.

적절한 방법론(Appropriate Methods)은 (Technical Safety Requirements + ASIL)을 효과적으로 처리할 수 있어야 한다.

262

6-5 Initiation of Product Development at the Software Level

소프트웨어 개발을 위한 프로세스 Activities와 사용할 적절한 방법론(Methods)를 계획한다.
+ SDLC(Software Development Life-Cycle)을 수정(Tailoring)할 수 있다.
+ V-Model 사용(Figure 2)

263

6-5 Initiation of Product Development at the Software Level

소프트웨어 개발 프로세스(+ Lifecycle phases, 방법론, 가이드라인(언어) 및 도구)는 전체적으로 일관(Consistent)되어야 한다.
+ 시스템 및 하드웨어 개발 프로세스와 호환(Compatible)되어야 한다.

SDLC 각 단계에서 사용할, 적절한(Appropriate)
+ 방법론(Methods)
+ 도구(Tools) : 방법론의 사용을 돕는 (자동화) 도구
+ 가이드라인(Guidelines) : 방법론+도구의 사용 설명서 및 예제(Best Practice)

을 선정해야 한다.

264

6-5 Initiation of Product Development at the Software Level5/16

모델링 언어 및 프로그래밍 언어를 정확하게 사용하기 위한 가이드라인(Guideline)을 제공해야 한다.
+ 사용 언어에 따라 상이
+ 모델 기반 방법론에서는 다르게 적용됨
+ 기존에 있는 가이드라인을 적용 대상(A Specific Item)에 따라

적절하게 수정 가능

가이드라인은 Table 1.의 항목(Topics)들을 포함해야 한다.

265

6-6 Specification of Software Safety Requirements

■ 6-6 Specification of Software Safety Requirements

Technical Safety Requirements는 26262-4에서
+ 명세(Specification)되고
+ Hardware/Software에 할당(Allocation)된다.

6-6에서는
+ Hardware로 인한 제약사항(Constraints)과
+ Software에 미치는 영향(Impact)을 고려하여

Software Safety Requirements를 작성한다.

(26262-3)
266

6-6 Specification of Software Safety Requirements
(26262-8 Clause 6)

26262-8: Clause 6
+ Safety Requirements Specification은 자연어나 비정형ž준정형ž정형명세의 조합으로 명세 되어야 한다.

Safety Requirements가 가져야 할 속성
+ Unambiguous and Comprehensive
+ Atomic
+ Internally Consistent
+ Feasible
+ Verifiable

267

268

6-7 Software Architectural Design

■ 6-7. Software Architectural Design

Software Safety Requirements를 구현(실재화: Realization)할 수 있는 Software Architectural Design을 개발한다.

개발한 Software Architectural Design을 검증(Verify)한다.

269

6-7 Software Architectural Design

Software Architectural Design은
+ 모든 Software Components와 이들 간의 Interactions을 계층적으로(in a Hierarchical Structure)로 표현한다.
+ 정적 요소: interface / data paths (모든 software components의)
+ 동적 요소: process sequences , timing behavior

Safety / Non-Safety Requirements를 모두 함께 고려한다.

Software Architectural Design은
+ Software Safety Requirements를 구현하고
+ 소프트웨어 개발의 복잡도(Complexity)를 관리할 수 있는 방법들(Means)을 제공한다.

270

271

6-7 Software Architectural Design

26262-8 Clause 9를 이용하여
+ Software Architectural Design을 검증(Verification) 해야 한다.
+ Table 6 의 검증방법 사용

(26262-8 Clause 9)

검증할 내용

272

273

274

6-8 Software Unit Design and Implementation

■ 6-8 Software Unit Design and Implementation

Software Architectural Design과 Software Safety Requirements에 따라 Software Unit을 상세설계(Detailed Design)한다.

상세설계한 Software Unit을 구현(Implementation)한다.

Software Unit의 상세설계와 구현을 정적검증(Static Verification) 한다.

275

6-8 Software Unit Design and Implementation

Software Architectural Design에 따라 Software Unit을 상세설계하고 구현한다.
+ 모델 기반 방법론일 경우, 최종 모델을 생성하는 것을 구현단계로 간주
+ 정적검증(Static Verification)을 수행한다.

Safety / Non-Safety Requirements를 모두 함께 고려한다.

Software Unit 구현은 소스코드 생성과 오브젝트 코드 변환을 포함한다.

276

6-8 Software Unit Design and Implementation

Software Unit의 상세설계는 표기법(Notations)을 사용해서 잘 명세해야 한다. (Table 7)
+ 기능(Functional Behavior)
+ 내부 설계
→ 보고 바로 구현할 수 있을 정도로 자세하게 작성한다.

277

6-8 Software Unit Design and Implementation

설계원칙(Design Principles)을 적용해야 한다.
+ Table 8
+ 상세설계와 구현된 소스코드에 모두 적용

+ MISRA-C를 적용하면 Table 8의 많은 부분을 만족시킬 수 있다.
+ 1a, 1b, 1d, 1e, 1f, 1g, 1i는 모델 기반 방법론에는 적용되지 않는다.

원칙은 나중에 검증(Verification)해야 한다.

278

279

6-8 Software Unit Design and Implementation

Software Unit Design과 Implementation에 대한 검증(Verification)을 수행해야 한다.
+ Table 9의 방법들을 사용

검증 내용
+ Hardware-Software Interface Specification의 준수 여부
+ 할당된 Software Safety Requirements를 모두 구현하였는지 여부
+ 소스 코드의 Design Specification 준수 여부
+ 소스 코드의 Coding Guideline 준수 여부
+ 구현과 Target Hardware와의 호환성 여부

→ 어떤 방법을 어떻게 사용해서 어느 내용을 효과적으로 검증할 것인지 결정해야 한다.

검증할 내용

280

6-8 Software Unit Design and Implementation

281

6-9 Software Unit Testing

■ 6-9 Software Unit Testing

Software Unit에 대한 테스팅(Software Unit Testing)을 수행한다.
+ Software Unit이 Software Unit Design Specification을 만족함을 보인다.
+ Software Unit이 원치 않는 기능(Undesired Functionalities)을 수행하지 않음을 보인다.

→ 일반적인 소프트웨어 테스팅의 목적 X

Software Unit Testing을 위한 절차(Procedure)를 수립하고,
이에 따라 테스팅을 수행한다.

282

6-9 Software Unit Testing

Safety-Related Functions을 구현한 Software Unit에 대한 테스팅을 수행한다.

Table 10의 테스팅 방법론(Testing Methods)을 사용하여 Software Unit Testing을 수행한다.
+ 테스팅 목적(a~f)에 따라 사용하는 테스팅 방법론 상이하다.

+ 일반적인 테스팅의 목적 X

283

6-9 Software Unit Testing

일반적으로 수행하는 Unit Testing 방법들

284

6-9 Software Unit Testing

Software Unit Testing의 Test Cases를 개발(Derivation)하기 위한 방법론 (Table 11)
+ Software Unit Design Specification을 잘 분석한다.
+ 동일 클래스(Equivalence Classes) 개념을 이용해서 분석한다.
+ 경계값(Boundary Values) 분석을 통해 개발한다.
+ 자주 발생했던 오류들을 테스트 케이스로 활용한다.

일반적인 Functional Test Cases 생성 방법

285

6-9 Software Unit Testing

Unit Test Cases의 Software Unit Design Specification에 대한 Requirements Coverage를 측정
+ UTC가 SUDS를 얼마나 커버하는지 계산한다. (100%: 전체를 테스트함, 50%: SSRS의 항목 중 50%만 테스트 수행)
→ 개발된 UTC의 성능(Completeness)을 평가하는 절대적인 지표 O (항상 100% 要)

Unit Test Cases의 Structural Coverage를 측정
+ 추가적으로, UTC가 Unit Code를 얼마나 실행하는지 확인한다.
+ Structural Coverage Criteria 사용 (Table 12)
+ Statement Coverage , Branch Coverage , MC/DC 등

+ Testing Tools을 이용해서 측정 및 생성 가능
→ 개발된 UTC의 성능을 평가하는 절대적인 지표 X

+ Requirements Analysis(즉, Functional Test)를 통해 개발된 UTC를 보완 가능

286

287

288

289

6-10 Software Integration and Testing

■ 6-10 Software Integration and Testing

Software Elements에 대한 통합(Integration)을 수행한다.
+ Non-Safety-Related Software Elements도 포함할 수 있다.

Software Integration(+Interfaces)에 대한 테스팅(Integration Testing)을 계획하고 수행한다.
+ Software Integration이 Software Architecture Design을 잘 구현했는지 확인한다.

290

6-10 Software Integration and Testing

전체 Embedded Software가 완성될 때까지, Software Units을 계층적(Hierarchically)으로 통합(Integration)한다.
+ 기능적 의존관계
+ Hardware-Software Integration 과의 의존관계 고려 要

Software Integration Testing은 26262-8 Clause 9에 따라 계획되어야 한다.
+ SIT의 대상 : Software Components

(26262-8 Clause 9)

291

6-10 Software Integration and Testing

292

6-10 Software Integration and Testing

Software Integration Testing의 Test Cases를 개발(Derivation)하기 위한 방법론 (Table 11)
+ Software Architectural Design을 잘 분석한다.
+ 동일 클래스(Equivalence Classes) 개념을 이용해서 분석한다.
+ 경계값(Boundary Values) 분석을 통해 개발한다.
+ 자주 발생했던 오류들을 테스트 케이스로 활용한다.

293

6-10 Software Integration and Testing

Integration Test Cases의 Software Architectural Design에 대한 Requirements Coverage를 측정
+ ITC가 SAD을 얼마나 커버하는지 계산한다. (100%: 전체를 테스트함, 50%: SAD의 항목 중 50%만 테스트 수행)
→ 개발된 ITC의 성능(Completeness)을 평가하는 절대적인 지표(항상 100% 要)

Integration Test Cases의 Structural Coverage를 측정함으로써, ITC의 성능(Completeness)을 판단한다.
+ Structural Coverage Criteria 사용 (Table 15)
+ Function Coverage , Call Coverage

+ 디버깅ž정적분석 도구를 이용해서 측정 가능

294

6-10 Software Integration and Testing

최종 통합된 Embedded Software가 Product Release에 필요한 기능(코드)만 포함하는지 확인한다.
+ 디버깅이나 테스팅, 에뮬레이션 등을 위한 코드ž기능은 삭제되어야 한다.
+ 필요한 기능이 잘 구현되었는지는 6-11 Verification of Software Safety Requirements에서 수행

Software Integration Testing을 위한 테스팅 환경은 실제 환경과 가능한 유사해야 한다.
+ 차이점이 있을 경우, 다음 테스팅 단계를 위해 정확한 분석을 수행해야 한다.

295

6-10 Software Integration and Testing

296

6-11 Verification of Software Safety Requirements

■ 6-11 Verification of Software Safety Requirements

최종 통합된 Embedded Software가 Software Safety Requirements를 만족하는지 확인(Verification)한다.
+ Embedded Software가 실제로 구동되는 Target Environment 고려해서 테스팅을 수행
+ Embedded Software를 Hardware에 탑재해서 테스트 해야 한다.

297

6-11 Verification of Software Safety Requirements

Verification of SSR은 Embedded Software를 타겟 하드웨어 환경에서 테스트함으로써 수행된다.
+ Table 16

298

6-11 Verification of Software Safety Requirements

Verification of Software Safety Requirements은
+ 테스팅 수행(100% 통과 要)
+ SSR에 대한 Requirements Coverage 계산
+ Pass/Fail 판정

을 포함한다.

299

300

SUMMARY

301

Software Quality Process

• Quality process
– A set of activities and responsibilities focusing on ensuring adequate dependability concerned with project

schedule or with product usability
– A&T planning is Integral to the quality process.

• Quality goals can be achieved only through careful A&T planning.
• Selects and arranges STA activities to be as cost-effective as possible
• Should balance several STA activities across the whole development process

• Quality process provides a framework for
– Selecting and arranging STA activities, and also
– Considering interactions and trade-offs with other important goals.

302

V-Model of V&V Activities

303

• Optimistic Inaccuracy
– We may accept some programs that do not

possess the property.
– It may not detect all violations.
– Testing

• Pessimistic Inaccuracy
– Not guaranteed to accept a program even if the

program does possess the property being
analyzed, because of false alarms

– Static Code Analysis

• Simplified Properties
– It reduces the degree of freedom by simplifying

the property to check.
– Theorem Proving, Model Checking

304

3 Dimensions of STA Activities

Testing Coverages

305

Functional Program Testing

306

Functional specifications

Independently Testable Feature

Representative Values Model

Test Case Specification

Test Cases

Scaffolding

Identify independently testable features

Derive a modelIdentify representative values

Generate test case specifications

Generate test cases

Instantiate tests

Finite State Machine,
Grammar,

Algebraic Specification,
Logic Specification,

CFG / DFG

Test selection
criteria

Manual Mapping,
Symbolic Execution,

A-posteriori Satisfaction

Semantic Constraint,
Combinational Selection,
Exhaustive Enumeration,

Random Selection

Brute force testing

CTIP Examples

307

CTIP Examples

308

V-Model in IEC 61508

309

STA Techniques in IEC 61508 Standard

310

STA Techniques in IEC 61508 Standard

311

STA Techniques in IEC 61508 Standard

312

STA Techniques in IEC 61508 Standard

313

STA Techniques in IEC 61508 Standard

314

STA Techniques in IEC 61508 Standard

315

STA Techniques in IEC 61508 Standard

316

STA Techniques in IEC 61508 Standard

317

STA Techniques in ISO 26262 Standard

318

STA Techniques in ISO 26262 Standard

319

Challenges in Software Testing

• Testing embedded SW and systems

• SW-HW Co-Development and Co-Testing

• Testing SoC (System On Chips)

• Testing Agile SW

• Testing legacy SW with no documentation

• Continuous Testing and Integration Platform (CTIP)

320

321

블랙박스 테스트

화이트박스 테스트
기능 테스트

구조 테스트

테스트 케이스
테스트 데이터

테스트 오라클

Coverage Criteria

테스트 드라이버
테스트 Scaffolding

테스트 실행

소프트웨어 테스트

모델 기반 테스트

Category-Partitioning 테스트

N-Pairwise 테스트

테스트 케이스 자동 생성

테스트 데이터 자동 생성

Coverage 측정

HW/SW Co-테스트

테스트 계획서

테스트 결과 보고서

CTIP(Continuous Test & Integration Platform)

테스트 자동화 도구

Boundary Value 테스트

테스트 명세서

3점 점합

Code Review
Clean Code

Refactoring

TDD

Cyclomatic Complexity
시뮬레이션 기반 테스트

Static Code Analysis

gTest

TFD

CI / CD

테스트 Stub

xUnit

Code Review

코드 기반 테스트

구조 기반 테스트

스펙 기반 테스트

시스템 테스트 계획서

QAS

비기능/품질 테스트

요구공학

322

