
Software Modeling & Analysis

OOPT (Object Oriented Process with Trace)

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr

http://cse.konkuk.ac.kr/
http://cse.konkuk.ac.kr/

What is OOPT?

• OOPT (Object Oriented Process with Trace)

– A software process based on RUP

– Revision of OSP (by Tailored to SE classes in universities)

• Characteristics of OOPT

• 3 Stages

1. Iterative : Multiple development cycles

2. Incremental : System grows incrementally as each cycle is completed

3. Architecture : Stage > Cycle > Phase > Activity

2

Plan and
Elaboration

Build Deployment
1000 2000 3000

http://cse.konkuk.ac.kr/

1. 3 Stages

• Stage 1000 : Plan and Elaboration

– Planning, defining requirements, building prototyping, etc

– Corresponding to Inception/Elaboration phases in the RUP

• Stage 2000 : Build

– Construction of the system

– Corresponding to Construct phase in the RUP

• Stage 3000 : Deployment

– Implementation of the system into use

– Corresponding to Transition phase in the RUP

3

Plan and
Elaboration

Build Deployment
1000 2000 3000

http://cse.konkuk.ac.kr/

2. Iterative Development

• Multiple iterations in the Build stage

• Each iteration took about 2 to 8 weeks

4

Cycle 1 Cycle 2 Cycle n...

Plan and
Elaboration

Build Deployment
1000 2000 3000

2100 2200 2n00

Revise
Plan

2110 Sync.
Artifacts

2120

Analyze

2130

Design

2140

Construct

2150

Test

2160

http://cse.konkuk.ac.kr/

3. Incremental Development

5

Cycle 1 Cycle 2 Cycle n...

Plan and
Elaboration

Build Deployment
1000 2000 3000

2100 2200 2n00

Use-Case A
Simplified Version
. . .

Use-Case A
Full Version
. . .

Use-Case D
Full Version
. . .

Use-Case C
Full Version
. . .

Use-Case B
Full Version
. . .

Use-Case C
Simplified Version
. . .

http://cse.konkuk.ac.kr/

4. Architecture of OSP

6

Define
Real Use Cases

2141 Define
Reports & UI

2142 Refine
System Archi.

2143 Define
Interaction D.

2144 Define
Design Class D

2145 Define
DB Schema

2146

Activity

Stage

Cycle 1 Cycle 2 Cycle n...

Plan and
Elaboration

Build Deployment
1000 2000 3000

2100 2200 2n00

Revise
Plan

2110 Sync.
Artifacts

2120

Analyze

2130

Design

2140

Construct

2150

Test

2160

http://cse.konkuk.ac.kr/

Phase 2040.
Design

Revise
Plan

2110 Sync.
Artifacts

2120

Analyze

2130

Design

2140

Construct

2150

Test

2160

http://cse.konkuk.ac.kr/
http://cse.konkuk.ac.kr/

Phase 2040. Design

• Phase 2040 Activities

8

Define Reports,
UI, and Storyboards

2142 Refine
System Architecture

2143Design
Real Use Cases

2141

Define
Interaction Diagrams

2144

b

Design
2140

a. In parallel with interaction diagrams
b. Varied order

Define Design
Class Diagrams

2145 a

Define
Database Schema

2147

Design
Traceability Analysis

2146

http://cse.konkuk.ac.kr/

Activity 2041. Design Real Use Cases

• Description

– It describes real/actual design of the use case in terms of concrete
input and output technology and its overall implementation.

– If a graphical user interface is involved, the real use case will include
diagrams of the GUI and discussion of the low-level interactions with
interface widgets.

– Input : Essential Use Case Descriptions

– Output : Real Use Case Descriptions

9

Define Reports,
UI, and Storyboards

2142Design
Real Use Cases

2141

http://cse.konkuk.ac.kr/

Activity 2041. Design Real Use Cases

• Steps

1. Select each use case from essential use cases

2. Add user interface widgets into the expanded format, and concrete
implementation details into the typical courses of events

10

Object Store

End Sale Make PaymentEnter Item

Price

Total

Tendered

Quantity

Descrpt.

Balance

UPC

B

C

D

E

F

G

H I J

A

Window-1

http://cse.konkuk.ac.kr/

Activity 2041. Design Real Use Cases

11

Use Case Buy Items – Version 1 (Cash only)

Actor Customer, Cashier

Purpose Capture a sale and its cash payment

Overview
A Customer arrives at a checkout with items to purchase. The Cashier records the items and collects
cash payment, which may be authorized. On completion, the Customer leaves with the items.

Type Primary and Real

Cross Reference
Functions: R1.1, R1.2, R1.3, R1.7, R1.9, R2.1
Use Cases: Log In use case

Pre-Requisites N/A

UI Widgets Window-1

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) This use case begins when a customer arrives at the POST to checkout with items to purchase.
2. (A) For each item, the Cashier types an UPC in A of Window-1. If there is more than one of an

item, the quantity may optionally be entered in E. They press B after each item entry. (E1)
3. (S) Adds the item information to the running sales transaction. The description and price of the

current item are displayed in B and F of Window1.
4. (A) The Cashier tells the customer the total.

Alternative Courses of Events …

Exceptional Courses of Events E1: If an invalid UPC is entered, indicate an error.

http://cse.konkuk.ac.kr/

Activity 2042.
Define Reports, UI, and Storyboards

• Description

– Design UI storyboard and UI components.

– Input : Requirements Specification, Real Use Case Descriptions

– Output : UI Storyboard, UI Component Design Specification

12

Define Reports,
UI, and Storyboards

2142Design
Real Use Cases

2141 Refine
System Architecture

2143 b

http://cse.konkuk.ac.kr/

Activity 2043. Refine System Architecture

• Description

– Refine draft system architecture developed in the plan stage

– Input : Draft System Architecture

– Output : A package diagram, a deployment diagram

– Standards Applied

• UML’s Package Diagram

• UML’s Deployment Diagram

13

Define Reports,
UI, and Storyboards

2142 Refine
System Architecture

2143 b
Define

Interaction Diagrams

2144

http://cse.konkuk.ac.kr/

Activity 2043. Refine System Architecture

• Steps (1~3: Deployment diagram , 4~7: Package diagram)

1. Define a 3-tier layered system architecture

• Presentation Layer : Windows, Reports, and so on

• Application Logic Layer : Tasks and rules that govern the process

• Storage Layer : Persistent storage mechanism

14

Application
Logic

Storage

Presentation

Record sales
Authorize
payments

POSTApplet

Database

http://cse.konkuk.ac.kr/

Activity 2043. Refine System Architecture

2. Decompose the application logic tier into finer layers

• Domain object layer

– Classes representing domain concepts

• Service layer

– Service objects for functions such as database interaction, reporting,
communications, security, and so on

15

Application
Logic

Storage

Presentation

Database

Sale

POSTApplet

Database
Interface ReportGenerator

Payment

“Services Layer”

“Domain Layer”

http://cse.konkuk.ac.kr/

Activity 2043. Refine System Architecture

3. Assign each tier into different physical computing nodes, and/or
different processes

16

Application
Logic

Storage

Presentation

Database

Sale

POSTApplet

Database
Interface ReportGenerator

Payment

Client computer

Application
Server

Data Server

http://cse.konkuk.ac.kr/

Activity 2043. Refine System Architecture

4. Identify packages

• Place elements together

– that are in the same subject area-closely related by concept or
purpose, or that are in a type hierarchy together

– that participate in the same use cases or

– that are strongly associated

17

Core

Products

POST Store Manager

Sales

Sales
LineItem

Sale Cashier Customer

Item
Product
Catalog

Product
Specification

http://cse.konkuk.ac.kr/

Activity 2043. Refine System Architecture

5. Layers of the architecture :

• vertical tiers

Partitions of the architecture :

• horizontal division of relatively parallel subsystems

18

Domain

Services

Core Elements Sales Products

Relational Database
Interface

Communication Reporting
Object Database

Interface

Vertical

Layers

Horizontal Partitions

http://cse.konkuk.ac.kr/

Activity 2043. Refine System Architecture

6. Determine package dependencies

• Dependency relationships indicates coupling between packages.

19

Domain

Core Elements Sales

Dependency

http://cse.konkuk.ac.kr/

Activity 2043. Refine System Architecture

7. Assign visibility between package classes.

• Access into the Domain packages

– Some packages, typically the presentation package, have visibility into many
of the classes representing domain concepts

• Access into the Service packages

– Some packages, typically the Domain and Presentation packages, have
visibility into only one or a very few classes in each particular Service package

• Access into the Presentation packages

– No other packages have direct visibility to the Presentation layer

20

http://cse.konkuk.ac.kr/

Activity 2043. Refine System Architecture

21

Domain

RDB Interface Security

Sale

...

...

Payment

...

...

Product
Catalog

...

...

Broker

...

...

Proxy

...

...

Security
Facade

User

...

...

Visibility into many classes
from other packages.

Visibility into one or
only a few classes in each

Service package.

Product
Description

...

...

DBFacade

...

addUser(User)
...

...

get(id) : Object
save(Object)
...

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Description

– Collaboration diagrams illustrate object interactions in a graph or
network format.

– To illustrate how objects interactions via messages to fulfill tasks.

– Input : Real Use Case Descriptions

– Output : An interaction diagram

– Standards Applied

• UML’s Sequence Diagram or Collaboration Diagram

22

Refine
System Architecture

2143 b
Define

Interaction Diagrams

2144 Define Design
Class Diagrams

2145 a

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Interaction diagram is a generalization of two more specialized
UML diagram types:

– Collaboration diagram

– Sequence diagram

• The both can be used to express similar message interactions

• Collaboration Diagram

– Illustrates object interactions in a graphs or network format

• Sequence Diagram

– Illustrates interactions in a kind of fence format, in which each new
object is added to the right.

23

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Sequence Diagram vs. Collaboration Diagram

Type Strengths Weaknesses

Sequence
Diagram

Clearly shows sequence or time
ordering of messages

Forced to extend to the right,
when adding new objects with
consuming horizontal space

Collaboration
Diagram

Space economical and flexible
to add new objects in two
dimensions

Better to illustrate complex
branching, iteration, and
concurrent behavior

Difficult to see sequence of
messages

24

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Steps

1. Draw up actors

2. Deploy objects or classes participating each use case from the real
use case descriptions and conceptual class diagram

3. Design a system of interacting objects to fulfill the tasks.

• Regard the use case description as a starting point

25

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Illustrating Classes and Instances

:Sale

s1:Sale

Sale Class

Instance

Named Instance

26

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Illustrating Links and Parameters

– A link is a connection path between two instances.

• Illustrating a Return Value

Msg1()

1: addPayment(amount:Money)

:Sale:POST

Msg1()

1: tot := total(): Integer

:Sale:POST

27

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Message Syntax

– return := message(parameter : parameterType) : returnType

– Standard UML message syntax

• Illustrating Messages to ‘Self’

(‘This’)

Msg1()

1: addPayment(amount: Money)

:Sale:POST

Msg1()

:POST

1: clear()
28

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Illustrating Iterations

– Iteration

– Iteration Clause

Msg1()

1*: li := nextLineItem(): SalesLineItem

:Sale:POST

Msg1()

1*: [i:=1..10] li := nextLineItem(): SalesLineItem

:Sale:POST

29

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Illustrating Creation of Instances
– Creating message with optional initializing parameters”

• Illustrating Conditional Messages

Msg1()

1: [new sale] create(cashier)
:Sale:POST

30

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Illustrating Message Number Sequencing

– The first message is not numbered

– The order and nesting of subsequent messages are shown with a
legal numbering scheme

:ClassB

msg1()

:ClassA

:ClassC

1: msg2()

1.1: msg3()

31

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Illustrating Mutually Exclusive Conditional Paths

:ClassE

:ClassA

:ClassD

:ClassB

:ClassC

1b: [not test1] msg4() 1a.1: msg3()

1b.1: msg5()

1a: [test1] msg2()

msg1()

2: msg6()

“ 1a and 1b are
mutually exclusive conditional paths”

“ unconditional after
either msg2 or msg4”

32

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Illustrating Collections

– A multi-object, or set of instances, may be shown with a stack icon

sales:Sale

33

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Illustrating Messages to Multi-objects

– A message to a multi-object icon indicates that it is sent to the
collection object itself

:Sale

Msg1()

:SalesLineItem

1: s :=size() : int

34

http://cse.konkuk.ac.kr/

Activity 2044. Define Interaction Diagrams

• Illustrating Messages to a Class Object

– Messages may be sent to a class itself not an instance, in order to
invoke class methods

:Sale

Msg1()

Date

1: d1 := today(): Date

35

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

• Description
– Describes more details in conceptual class diagram

– Add navigability, dependency, data type, operation signature,
parameters, return types, and so on.

– Input : Interaction Diagram, Conceptual Class Diagram

– Output : A Design Class Diagram

– Standards Applied

• UML’s Class Diagram

36

Define
Interaction Diagrams

2144 Define Design
Class Diagrams

2145 a Design
Traceability Analysis

2146

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

• Steps

1. Identity all classes

2. Draw them in a class diagram

3. Add attributes

4. Add method names

5. Add type information to the attributes and methods

6. Add the associations

7. Add navigability arrows

8. Add dependency

37

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

• Step 1. Identify all classes

– by scanning all interaction diagrams

– listing classes mentioned

POST
Sale

ProductCatalog
ProductSpecification

Store
SalesLineItem

Payment

38

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

• Step 2. Draw a class diagram

– includes classes found in Step 1

ProductSpecification

SalesLineItem

Payment

SaleStore

ProductCatalogPOST

39

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

• Step 3. Add attributes

– Include the attributes previously identified in the conceptual class
diagram that are also used in the design

ProductSpecification

description
price
UPC

SalesLineItem

quantity

Payment

amount

Sale

date
isComplete
time

Store

address
name

ProductCatalog

quantity

POST

40

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

• Step 4. Add method names

– Identify method of each class by scanning the interaction diagrams

– The messages sent to a class in interaction diagrams must be defined
in the class

– Don’t add

• creation methods and constructors

• accessing methods

• messages to a multiobject

Sale

makeLineitem()

date
isComplete
time

:Sale:POST

3: makeLineItem(spec, qty)

41

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

ProductSpecification

description
price
UPC

SalesLineItem

quantity

subtotal()

Payment

amount

Sale

becomeComplete()
makeLineItem()
makePayment()
total()

date
isComplete
time

Store

address
name

addSale()

ProductCatalog

quantity

Specification()

POST

endSale()
enterItem()
makePayment()

42

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

• Step 5. Add type information

– Show types of attributes, method parameters, and method return
values optionally.

– Determine whether to show type information or not

• When using a CASE tool with automatic code generation,
exhaustive details are necessary

• If it is being created for software developers to read, exhaustive
detail may adversely effect the noise-to-value ratio

43

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

ProductSpecification

description : Text
price : Quantity
upc : UPC

SalesLineItem

quantity : integer

subtotal() : Quantity

Payment

amount : Quantity

Store

address : Address
name : Text

addSale(s:Sale)

ProductCatalog

specification(upc : integer) : ProductSpecification)

POST

endSale()
enerItem(upc : integer, qty : integer)
makePayment(cash Tendered : Quantity)

Sale

becomeComplete()
makeLineItem(spec : ProdSpecification, qty : integer)
makePayment(cashTendered : Quantity)
total() : Quantity

date : Date
isComplete : Boolean
time : Time

Return type of method void : no return type

44Konkuk University

http://cse.konkuk.ac.kr/

• Step 6. Add associations

– Choose associations by software-oriented need-to-know criterion
from the interaction diagrams

• Step 7. Add navigability arrows

– According to the interaction diagram

– Common situations to define navigability

• A sends a message to B

• A creates an instance B

• A needs to maintain a connection to B

45Konkuk University

Activity 2045. Define Design Class Diagrams

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

POST

endSale()
enerItem()
makePayment()

Sale

becomeComplete()
makeLineItem()
makePayment()
total()

date
isComplete
time

1

1

Captures

Absence of navigability
arrow indicates no
connection from Sale to
POST.

Navigability arrow indicates
POST objects are connected
uni-directoinally to Sale
object.

POST class will probably
have an attribute pointing

to a Sale object.

46

http://cse.konkuk.ac.kr/

Activity 2045. Define Design Class Diagrams

• Step 8. Add dependency relationship

– when there is non-attribute visibility between classes

– Non-attribute visibility : parameter, global, or locally declared visibility

47

ProductSpecification

description : Text
price : Quantity
upc : UPC

SalesLineItem

quantity : integer

subtotal()

Payment

amount : Quantity

Store

address : Address
name : Text

addSale()
ProductCatalog

specification()

POST

endSale()
enerItem()
makePayment()

Sale

becomeComplete()
makeLineItem()
makePayment()
total()

date : Date
isComplete : Boolean
time : Time

Looks-in

Houses

Captures
Contains

Contains

Logs-completed 

Paid-by

Describes

1

1

1

11

1

1

1 1..*

1 1..*

1 1

*

http://cse.konkuk.ac.kr/

Activity 2046. Design Traceability Analysis

• Description

– Analysis the connection of results which are the results of analyze
and design step

• Identify the connection of use cases and class, methods and test cases

– Express the traces about requirements to test cases

– Input : Real use case description, design class diagram,

functional requirements, System test cases

– Output : Traceability analysis result

48

Define Design
Class Diagram

2145 Design
Traceability Analysis

2146 Define
Database Schema

2147

http://cse.konkuk.ac.kr/

Activity 2046. Design Traceability Analysis

• Steps:

1. Identify the related information of essential and real use cases

• 1:1 or more

2. Identify the traces between operation contracts(2036) and operations
in interaction diagram(2044)

• Express the direct contacts or hidden contacts

3. Identify the relations of the results of step 2 and class diagram (class,
method)

4. Writing the results of the analysis

5. If the operations which are not expressed directly in this step (e.g.
GUI related operation like text input), they should be written by 2053

49

http://cse.konkuk.ac.kr/

Activity 2046. Design Traceability Analysis

• Draw up the traces between operation contracts(2036) and operations in
interaction diagram(2044)

– Direct : Operation which is connected directly

– Hidden : Operations which are used to operate the function invisibly

50

HiddenDirect

http://cse.konkuk.ac.kr/

Activity 2046. Design Traceability Analysis

• The results of step 3 and 4

51

http://cse.konkuk.ac.kr/

Activity 2046. Design Traceability Analysis

52

http://cse.konkuk.ac.kr/

Activity 2047. Define Database Schema

• Description
– Design database, table, and records

– Map classes into tables

– Input : Design Class Diagram

– Output : A Database Schema

• Steps:
1. Map classes into tables

2. Map relationships between classes into relations between tables

3. Map attributes into fields of tables

4. Design Schema

53

Design
Traceability Analysis

2146 Define
Database Schema

2147

http://cse.konkuk.ac.kr/

