Software Engineering

JUNBEOM YOO

KONKUK University

http://dslab.konkuk.ac.kr

m%EFENDABLE SOFTWARE
LABORATORY
2024.08.25 | & +H

KU KONKUK
UNIVERSITY

Text and References

THE RATIONAL
UNIFIED PROCESS
AN INTRODUCTION

THiro EpitioN

PHILIPPE KRUCHTEN

ugh Yersion 2.0 OMG dard -~ W

APPLYING UML UML DISTILLED
Software Engmeemng AND PATTERNS ™ Ty Eprrion

and lteative Development A BRIEF GUIDE TO THE STANDARD
OBJECT MODELING LANGUAGE

-

TENTH EDITION

lan Sommerville

i
poocH H

; JRCOBSON

g RUKBAUGH

ALWAYS LEARNING PEARSON

CR \lG "l,‘\l{\l AN

EFENDABLE SOFTWARE 2
LABORATORY

Contents

An Introduction to Software Engineering
Software Development Process

Agile Software Development
Requirements Engineering

System Modeling
« Structured Analysis and Structured Design (SASD)

Architectural Design

Design and Implementation
* An Introduction to UML
* Object-Oriented Analysis and Design (OOAD)

8. Software Testing
9. Software Evolution

apkowbd-=

N o

DEPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

Lists of Homework/Activities

An Introduction to Software Engineering - Homework #1
Software Development Process - Homework #2
Agile Software Development - Homework #3
Requirements Engineering - Homework #4
System Modeling - Homework #5
« Structured Analysis and Structured Design (SASD) - Homework #6 #7
Architectural Design - Homework #8
7. Design and Implementation - Homework #9
* An Introduction to UML
« Object-Oriented Analysis and Design (OOAD) - Homework #10
8. Software Testing - Homework #11
9. Software Evolution - Homework #12

apkowbd-=

o

-
I
A DEPENDABLE SOFTWARE 4
1Y) LABORATORY
S

EFENDABLE SOFTWARE 5
LABORATORY

1. An Introduction to Software Engineering

KU KONKUK
UNIVERSITY

Software Engineering

« Software engineering is concerned with theories, methods and tools for professional and
cost-effective software development.
— More and more systems are software-controlled.
— The economies of all developed nations are dependent on software.
— Software costs often dominate computer system (hardware) costs.

— Software costs is more to maintain than to develop.
* For systems with a long life, maintenance costs may be several times development costs.

* Professional

* Cost-Effective g A|AE * Large Systems
* Team Development
* Reuse
of2{ AME x| & %ol
=1 1 -
X B

1)
J] DEPENDABLE SOFTWARE 7
gl y LABORATORY

w

Types of Software Products

« Generic Software

— Stand-alone systems that are marketed and sold to any customer who wishes to buy them
* Most PC software : graphics programs, project management tools, CAD software
» Software for specific markets such as appointments systems for dentists

— Software requirements specification is owned by the software developer.
» Decisions on software change are made by the developer.

* Customized Software
— Software that is commissioned by a specific customer to meet their own needs
» Embedded control systems, air traffic control software, traffic monitoring systems
— Software specification is owned by the customer for the software.
+ Customers make decisions on software changes that are required.

Question:
— 2N M Teller7t AtESHE “SHA|AEH"2 O{H SW 2171272

| DEFENDABLE SOFTWARE
y LABORATORY

KU

KONKUK
UNIVERSITY

Essential Attributes of Good Software Products

Product characteristic

Description

Maintainability

Software should be written in such a way so that it can evolve to meet the changing needs of
customers. This is a critical attribute because software change is inevitable in changing business
environments.

Dependability

Software dependability includes a range of characteristics including reliability, security and safety.
Dependable software should not cause physical or economic damage in the event of system
failure. Malicious users should not be able to access or damage the system.

Efficiency

Software should not make wasteful use of system resources such as memory and processor
cycles. Efficiency therefore includes responsiveness, processing time, memory utilization, etc.

Acceptability

Software must be acceptable to the type of users for which it is designed. This means that it must
be understandable, usable and compatible with other systems that they use.

| DEPENDABLE SOFTWARE
LABORATORY

Software Engineering

+ Software engineering is an engineering discipline that is concerned with all aspects of software
production from the early stages of system specification through to maintaining the system after it has
gone into use.

» “Engineering discipline’
— Using appropriate theories and methods to solve problems bearing in mind organizational and financial
constraints

» “All aspects of software production”

— Not just technical process of development, but also project management and the development of tools,
methods, etc. to support software production.

g

m %%EFENDABLE SOFTWARE 1 O
4 LABORATORY

R

KU sy
Typical Activities in Software Engineering

Software Specification

— Customers and engineers define the software to produce and the constraints on its operation.
— Requirements Engineering

Software Development
— The software is designed and programmed.
— Architecture Design, Detailed Design and Implementation
- CTIP (Continuous Test and Integration Platform)

Software Validation
— The software is checked to ensure that it is what the customer requires.
— Software V&V (verification & validation) , Testing

Software Evolution

— The software is modified to reflect changing customer and market requirements.
— Software Maintenance

EEEEEEEEE SOFTWARE 1 1
LABORATORY

KU Sovemsmy
Software Project Failures

» Software projects failures (The Software Crisis) due to
— Increasing system complexity
« Larger and even more complex and new systems are required.
+ Systems must be built and delivered more quickly.
— Not use software engineering methods

* New software engineering techniques help us to build larger,
more complex systems, the demands change.

* But many companies do not use software engineering.

» A solution to overcome software project failures is
to adopt software engineering.

“I'm a software engineer, so I can confirm
it works by magic.”

(DEPENDABLE SOFTWARE '] 2
y LABORATORY

Software Engineering Diversity

* No silver bullet for software engineering
— There are many different types of software system.
— There is no universal set of software techniques applicable to all of these.

THERE'S No SILVER BULLET

« The software engineering methods and tools used depend on
— the type of application being developed, the requirements of the customer, and the background of the

development team
1o Siluer Bullet

Essence and Accidents of No Silver Bullet:
Software Engineering Software Engineering
Reloaded

Frederick P. Brooks, Jr.
University of North Carolina al Chapel Hill

Steven Frases and Dennis Manci

“No single software engineering development would
produce an order-of-magnitude improvement to
programming productivity within10 years.”

Fredrick Brooks 1986

Fashioning complex
conceptual constructs
is the essence;
accidental tasks arise
in representing the
constructs in
language. Past
progress has so
reduced the accidental
tasks that future
progress now depends
upon addressing the
essence.

EFENDABLE SOFTWARE
LABORATORY

Software Application Types

Type

Features

Stand-alone applications

Application systems that run on a local computer, such as a PC. They include all necessary functionality
and do not need to be connected to network

Interactive transaction-based
applications

Applications that execute on a remote computer and are accessed by users from their own PCs or
terminals, including web applications such as e-commerce applications (= Web-based System)

Embedded control systems

Software control systems that control and manage hardware devices

Batch processing systems

Business systems that are designed to process large numbers of individual inputs to create
corresponding outputs in large batches

Entertainment systems

Systems that are primarily for personal use and which are intended to entertain the user

Systems for modelling and
simulation

Systems that are developed by scientists and engineers to model physical processes or situations, which
include many, separate, interacting objects (= M&S)

Data collection systems

Systems that collect data from their environment using a set of sensors and send that data to other
systems for processing.

Systems of systems

Systems that are composed of a number of other software systems (= CPS)

(0 DEePENDABLE SOFTWARE
Gd LABORATORY

14

KU Sovemsmy
Fundamentals of Software Engineering

* Fundamental principles applicable to all types of software system, irrespective of the development
techniques used:

— “Systems should be developed using a managed and understood development process. Of course, different processes are
used for different types of software.”

* SLDC (Sofiware Development Life-Cycle) , Development Process , A gile, Dev/i Ops

— “Dependability and performance are important for all types of systems.”
* Software Quality

— “Understanding and managing the software specification and requirements are important.”
* Requirements Engineering

— “Where appropriate, you should reuse software that has already been developed rather than write new software.”
* Software Reuse , Open-Source Software

EPENDABLE SOF TWARE 1 5
LABORATORY

KU KONKUK
UNIVERSITY

A Newcomer : Web-based Software Engineering

 The Web is now a platform for running various application.
— Web services allow application functionality to be accessed over the web.
— Cloud computing enables applications run remotely on the ‘cloud’.

+ Web-based systems
— Complex distributed systems

— The fundamental principles of software engineering are applicable to web-based systems in the same ways.
+ Software reuse
— When building these systems, you think about how you can assemble them from pre-existing software components and systems.
* Incremental and agile development
— Web-based systems should be developed and delivered incrementally.
» Service-oriented systems
— Software may be implemented using service-oriented software engineering, where the software components are stand-alone web services.
* Rich interfaces

— Interface development technologies such as AJAX and HTML5 have emerged that support the creation of rich interfaces within a web
browser.

DEPENDABLE SOFTWARE 1 6
y LABORATORY

KU KONKUK
UNIVERSITY

10 FAQs about Software Engineering

Question & Answer

What is software?

Computer programs and associated documentation.
Software products may be developed for a particular customer or may be developed for a general market.

What are the attributes of good software?

Good software should deliver the required functionality and performance to the user and should be maintainable, dependable
and usable.

What is software engineering?
Software engineering is an engineering discipline that is concerned with all aspects of software production.

What are the fundamental software engineering activities?
Software specification, software development, software validation and software evolution.

What is the difference between software engineering and computer science?

Computer science focuses on theory and fundamentals.
software engineering is concerned with the practicalities of developing and delivering useful software.

| DEFENDABLE SOFTWARE 1 7
LABORATORY

KU KONKUK
UNIVERSITY

10 FAQs about Software Engineering

Question & Answer

What is the difference between software engineering and system engineering?

System engineering is concerned with all aspects of computer-based systems development including hardware, software and
process engineering. Software engineering is part of this more general process.

What are the key challenges facing software engineering?
Coping with increasing diversity, demands for reduced delivery times and developing trustworthy software.

What are the costs of software engineering?

Roughly 60% of software costs are development costs, 40% are testing costs.
For custom software, evolution costs often exceed development costs.

What are the best software engineering techniques and methods?

While all software projects have to be professionally managed and developed, different techniques are appropriate for
different types of system. You can'’t, therefore, say that one method is better than another.

What differences has the web made to software engineering?

The web has led to the availability of software services and the possibility of developing highly distributed service-based
systems. Web-based systems development led to the advances in programming languages and software reuse.

"DEPENDABLE SOFTWARE 1 8
LABORATORY

Homework / Activity #1

. r}

ojo

Mo
o

o
n, =Qe| o|AS

o =H5tM K.

171 (1960s)

7 (2020s)

0|2 (2040s)

The Software
Crisis

SW7Z{& TN 7| 2 5=
EH'SI-_

fEI

Causes

Solutions

Features Editor: Dale Strok dstrok@compurer.org

No Silver Bullet:
Software Engineering
Reloaded

Steven Fraser and Dennis Mancl

cekebratory panel took place at the 22nd In-

tern. al Conference on Obyect-Oriented

Programming, Systems, Languages, and
Applications in Montreal. The occasion
was the 20th anniversary of Fred Brooks
paper “No Silver Bullet: Essence and Acci
dents of Software Engineering.” The paper appeared
in the April 1987 Computer,
reprinted from the Proceed-

ings of the IFIP 10th World Cmm

Computer Congress (North-
Holland, 1986). The panclist
positions appear in the Oorsia
2007 Conference Companion
(ACM Press)

Steve Fraser as impresal
introduced the panel, which in-
cluded Fred Brooks (Univ. of
North Carolina at Chapel Hill
David Parnas (Univ. of Limer.
wk

Enginecering Inst.), Aki Na

Linda Northrop (Softw

mioka (Cisco Systems), Dave
Thomas (Bedarra Rescarch),
Rixardo Lopez (Quakomm), and Marun Fowler
(ThoughtWorks)

Steve started by polling the audience: “How many
of you have read the paper?™ About three-quarters
raised their hands. “I remember that it came

the day of my doctoral defense. My thesis supervisor
said it was a good thing that | didn't say anything
that disagreed with Fred.”

Opening statements

The first panclist to speak was Fred Brooks, who
is widely recognized for his 1975 book The Myths.
cal Man-Month (Addison-Wesley), a collection of
essays on software project management. The book
was based on Fred's experience as the project man:
ager for the development of IBM's System/360 fam-
ily of computers and then the
Q%360 operating system and

compilers. Fred recapped “No
Sitver Bullet,” suggesting that
software challenges are cither
essential or accidental. The
premise of the paper was that
unless the remaining acciden:

o
Silwer
Bullet

tal complexity 1s 90 percent of
all the remaining complexity,
shrinking all accidental com:
plexity to zero still would not
result in an order-of-magnitude
impre
that useful sohutions must ad-

ment. Fred suggested

dress inherent complexity—
observing that object-oriented

techniques have come closest to achieving this goal.

Next up was David Parnas, whose collected
papers were published in Software Fundamen.
tals (Addison-Wesley) in 2001, In particular, he's
known for his Commmunications of the ACM pa-
pers “On the Criteria to Be Used in Decomposing
(May 1972) and “Soft-
ware Aspects of Strategic Defense Systems™ (Dec

Systems into Module

assaryFebruary 2008 1ERE SOFTWARE §1

Samples from SE Undergraduate (KU 2021)

HH(1960s)

0|2} (2040s)

The
software

crisis

Sw o Zig THHZE RF AT

B11H(2020s)
T SwY HI80l FH FIIUA 7|gE0l
HWOl Hi3f swoll HE o #@2 H8E FX3Z

e

SWH &S| ¥, CHy, 20| oj¥R resource
ANBYE ALIXH ZPOLACL 22 HR swe A
gxte| a7F EUEFSIO, Al2E 2/7 ROl ¥
WotD AlAH BEZE X[HEICH

loT, YHICIE Al2HI 22 7182l
7t HE F7HY HO|X|B SE HEY
sw EHo| Xsjg 2ol

E swe O HaX 2HA 2PAlE WY 458 w2
7tA] 280} AHIR 278 FHSHE 20| of2fE A
olct

Causes

ME S A2HES HH
8O AT O SFHHAM
OF 88 £ A M A2Y
§o| d&8 rigol Fact

g
=
2

SE 7|%0| SYLIX Y
of G BXBL A|AH Jjeo| of
2{fct

ojHEC S STAT swE AL, el oSt
7| oD WM WY HIE =0 U HEF WE
A|90] Zo| wMsia Qct

HexE0| si@sop = Xl 727t HH
Ao AR iR Moz # SE §uE X &
2 Hefo|ct of EC swEH sHHE 7|s0 £F
8101 sw O A8l AIZE W H|80| HEE
HO|CLE H(quality), HIE W HF&(cost and
efficiency), 7|& ¥&(innovation)@ &5 S50}
e 19SS oTHECH O AY Yo Algefor
Bt

Customer, Developer, User 22| 4AZ0| A
TSR] S0F MR QFAEE Mg nterst
X| gt

HOo|H, loT, YHCIS 7|@e WHe2 F{E2 Bt
she GIOJE MR YW 4 e ATEO jy
8 R ¥ /15490l o (HoH JUFE 2ZEHY
gio| oepzix| ¢

EB YOO MiE digital native'® A7|EE 5o
| 1 HIHoz WOrEOl: FYE HOCL 1=

inl
OlE2| GIOJE WAHES A% Foig 2oln, 1g0|

b2}

=2

278 AlAH % swel 72 ¥ SNEE BYLo|
Zo18 Aolch £ 0]S0| swolM |iste W T3
He PHHOID YUK 0|50 27F THE OF

g&0iE 2ojct

SW HEe| a5tz 71YPES swad &
=3P AH0|D o DM B2 ZIYE0 :
HES ¥ Aztol glof swaAZ7L Wa o|gez #HX
1, cyber security 2 safety™ A{3}& 0|t

i

g 2211
x|

Solutions

Software Engineering(SE)E &
sl EXE shHste A=
Ch SE #E22 ‘Waterfal

Model' 0] =& Art

SEOl&= BiLie| dHHM(silver bullet)O FEIRSHE| 2
7] m@of seel X&Fel wWHo| Wasich seQ
Uu2 BRIz BERE + AT HEHs TH
SE Ol3dle W SPSE WHAIHOF st OIF 9
8 28§ SE 7I¥8 HMIMoz 4831 Y
5ol sERKo| HIxHoz Sxisjop st =
E SR AtHe| WHO| WRsCL G WHEE
swol cigstel SEE O FMEolR Yus 7Y
§8 JHUsHop BCt

7128 FYEM Yo MRE MU oMt
7l Sish Mzel 27E wESA Telg 4+ Us
THES BE HAES HAY e Uk &%
AHERIS] Q70| F2f Y87 98| DevOpset
#0| developdt management® UEEC2 Yy
sjot sict

SEUlE ojwdl siijel SjAYO| U= 0| OjL?| W
of ThEg 212t otof 7|0l FS el swE Mot
2|0 JfgRtEe| sE R]O| HF FYLE0 249 SE
HEZ2t EHE siHsl: 20| ofd JHUKEel HMH
o SE +ES mOI0F gch 2N BoislE 2B|xe]
Q78 weiztz| s WLASE Agle DevOps?t 22
#ao2 X&HEHP A2H deploy®t management®
"@ajo} $Ch FIMHOER SEBER XSHOE AP0
G% gast wig os WAzt ot

20

Samples from SE Undergraduate (KU 2021)

T (2020s)

0|2 (2040s)

The
software

crisis

LZESIY e s

NATO £ZEQo WXL ofgy A

HAL EHk““’J Uﬂ*ltﬂ[% !OLWII
EH =0 ik ZRHEQS

[€

gote] 4% SE& AlZto] 2%
& 718t g+Eo=2 gatk|n At
19001CH2] IT HOF 8T SEEC}
oFwel BT 557 2 UuE o

2r} si= elo] O}‘—‘ Zio|Ch g2

O 22l= CHAl & ¥ SW crisis®

ZE 0|2 A olo] AlEHE Zo|

Lt CHE giCh HUstE 22|= 0

SF F20] oy Hgsto] 2ZE

9ol 28 R AlE + gieg

Ay 71e ¥ =E4E HEY =
gich

2020402t = BB + 2AF
HLo| BE (T2 T HOp7H &
@ Ao Zt 7pEe Jiel HE
EZ2C AIR HAE 8 + U8
HEZ SteQiois e Holn
= 2250 AfF Holch

dejut 71Ee] e JHYXEe
Ol 3tEQO ¥ sw 8% SE 8
w2tz 5= ol§ ZoIch ity

T 20 FAKE
FEuxoz E';'OP.‘_' g AtdolLt

Causes

StEQI0] £0171 BE2A SFsta
Jdof WE} A8IHE0 H=

7l)\I’%‘i“ﬁi. EWPJ A9 am

Eqlol 7ig 7le ¥ BYoRE

OG22 sw g ==4g o
#3t7|0] 2SR

X3 At 2ty i ol g3t
2 aEg ik 10T, ESHE, HE
3 & FH2 7Ig80 ANy

MOIE KoiEn w22 s

0|3 227 AZEY0 Z2HA

o #THE @ty 2ZEQ O]

S#0| 10f 2 X2l e 7|

50| HRUE 2) g
Qict

2o HEEE 48 T& U
7He| =2 ME P4 =0 AT
Zdo|ct, ol OfFEe] SW crisistlA
s ;lxo_l)Hur Eml g
gl 7|2 = S|Pt Qict 1%t
4 =ge A¥F0 10 Y8ste
TE XAME 770 sEEe
2 2|7t o

Solutions

=213 XS SHEEG 2
&, 47 me zgol os Yz
=250 wELD IXH
I9) ol 2T 27| Al
Ol Htgoz Az
A0 Fe-ojzs g Y @7

=]

ZEQ0 3= €Y 2 Y

£
2 gole dtue] 227 gich M2

o R2l& X27X|e| 2ZEQ0]
2% 208 62 ¥3IMo= ¥

stof g@H AlFOF BCh X T £

olsg ged tin2 sw Z2HE
& siZsHo; o A40 HEIIE
FooX g g Bol 2HE 2
[AIZH B B UZ + Us
HLXED 20 XHEH sw It
g 20| @asich

F 7HA| Seto] uckn AZipch
AR EEAFH HURIRE 7|9IWC
Ol= Atgte] ME zCHCH S
g 40|} =3 Ctadt JER
otddo] ottl HEEel WA eu
of FHao; i 12IEE HE
=2EHT Z2M22h T 2Opo] Of
2oty +e dHg 08B0 2
UCH W2AH ASdte ARt H
ol FHLR= Oi2)2] SW crisis
M ordmol Jjw Y 2 Vg
8 o Hoio,

Ha -h 0\

o

7(1960s)

F#A(2020s)

0]2}(2040s)

SW 7ig oHA7F 25 A

st RS SW 7R AT

=> No Silver Bullet (c}%3h software
system& geote shitel SW
engineering 7|4 ¢12)

w27 Fiele HEY 45§ SW7H et
7HA 2% 5 AL

1950 AHE st=dole] %
§ wdez §H Algo] Fpgstd
SWE oi2] Algel szl AlE
g 2 M software cirsis
.

Hozeyg FFEHAM Hoju O &=
9| 2%stel AFETL gL, oM i
sk ol EalAloldel B, JREEel 2o
e} SW AR|Uo}3 seto] k2 HEslof
oF st 71ES ©Y £FHez SW
engineering® ZI¥5tnAL 8t software
crisis ¥AY.

fole] YAo| 7MAAE: 2HX|TH 1874
oict FFE 840] 4ol 2812 Fohlo
£ Yol AU FE2 ARY A5& "waA
I Ug. SW 7igo] Y 458 gt
A 23] software crisis?} WAE 7t54
o] L.

Solutions

£ ¢AE o=t sigs 94
£F old9 HeEEg vyI:
waterfall modelo] §7%.

olZal#lol el ElQl, m7e| a3, 7dd
o] F=2o mie} SW A]A=o] cioksial. of
o w2} & c}E SW engineering 7|H &
€ A A0 HEA|H SW Y DA E S
A

olo] OFF ZeAM, U4 ARE 5 O W
=27 Qe 2%t AREEC A7sA
U ARED 2D, 6% Cheret SREA
AR YA she shed. olof Ags
£ SW aRUo}R 7)ol fgslolor @
Zolet .

Frgd
Boehm, B. (2006, May). A view of 20th and 2lst century software engineering. In Proceedings of the 28th international conference
on Software engineering (pp. 12-29).
Randell, B. (1996). The 1968/69 nato software engineering reports. History of software engineering. 37.
Fraser, S., & Mancl, D. (2008). No silver bullet: Software engineering reloaded. IEEE Software, 25(1), 91-94.

EFENDABLE SOFTWARE 2 3
LABORATORY

2. Software Development Process

| E Lt
Software Process

« Software process is a structured set of activities required to develop a software system.

* Many different software processes but all involve:
— Specification: defining what the system should do
— Design and implementation: defining the organization of the system and implementing the system
— Validation: checking that it does what the customer wants
— Evolution: changing the system in response to changing customer needs.

« Software process model is an abstract representation of a process, presenting a description of a
process from some perspectives.

— Waterfall

— Incremental SW Process
— Evolutionary Model
— Spiral

- CBD (Component-Based Development)
— Iterative - Agile

— lterative - RUP (Rational Unified Process) SW Process

(DEPENDABLE SOFTWARE 2 5
y LABORATORY

Software Process Model

26

KU KONKUK
UNIVERSITY

Software Process Model

+ Software (Development) Process models

— Defining a distinct set of activities, actions, tasks, milestones, and work products that are required to engineer
high-quality software, systematically.

— Defining Who is doing What, When to do it, How to reach a certain goal.
= SDLC (SW Development Life-Cycle) models (SW’4 HF7| 2)

<1960s ~ 2000s > <2000s ~ Now >

Waterfall Model """ Application Domain

Re.
‘‘‘‘‘‘‘‘
\\\\\\\\

Incremental Model N "% Waterfall Model : tailored for

~ Application Domain

Evolutionary Model

Component-Based Development
Iterative Model tailored for

Iterative Model (agiley = s e

(Rational) Unified Process =~

LABORATORY

m !Jl ‘ “%It)EFENDABLE SOFTWARE 27
By

Typical SDLC Models

B

* Wldely used SDLC (SW Development Life-Cycle) models:

EFENDABLE SOl

Waterfall

Incremental

Evolutionary

Spiral

CBD (Component-Based Development)
Iterative - Agile

Iterative - RUP (Rational Unified Process)

FTWARE

LABORATORY

28

KU KONKUK
UNIVERSITY

The Waterfall Model

» Aclassic software development life-cycle model proposed in 1960s
— Suggests a systematic and sequential approach to software development

— Has distinct/separated phases
* In principle, a phase must be complete before moving onto the next phase.

— Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing customer

requirements.
Requirements
definition
Y

System and
software design

A

Y
Implementation
and unit testing
A
Integration and
system testing
A
Y

(Operation and

maintenance

DEPENDABLE SOFTWARE 29
LABORATORY

KU KONKUK
UNIVERSITY

The Waterfall Model

« The waterfall model is useful in situations where,
— Requirements are fixed early.
— Work can/should proceed to completion in a linear manner.
— Large systems engineering projects where a system is developed at several sites

* Only appropriate when the requirements are well-understood and changes will be fairly limited during
the design process.

perceived
need
e

requirements
)
“1 design
=X,
code
—)
test
= 1

“| integrate

EEEEEEEEE SOFTWARE 3 O
LABORATORY

KU Sovemsmy
The Incremental and Evolutionary Model

Release 1
——— Incremental development
design code test in‘tegrate O&M (each peleage adds more
- release 2 func’rionalify)
o
3 > design | code test |integrate| O&M
5
g release 3
% » design | code test [integrate| O&M
n
.......... p—
»| design | code | test |integrate] O&M
version 1
reqts design code test | integrate | O&M
lessons Ielrrnr
version 2
reqts design code test | integrate O&M
Evolutionary development .. 3 | | [essons legrmt |
(each version incorporates . :
' reqts design code test |integrate
new requirements) |

(DEPENDABLE SOFTWARE 3 1
y LABORATORY

The Incremental and Evolutionary Model

» Often called “Incremental and Evolutionary Development”

* A number of increments are developed in parallel.

— Each increment is developed independent with each other, and integrated later.
- Incremental Development

— The last version is the final one to deliver.
- Evolutionary Development

— More rapid delivery and deployment of useful software to the customer is possible.

* The process is not visible.
— Many increments are developed concurrently.
— Documentations are not easy.

+ System structure tends to degrade as new increments are added.
— Regular change tends to corrupt its structure.
— Incorporating further software changes becomes increasingly difficult and costly.

() DEFENDABLE SOFTWARE
I i LABORATORY

KU KONKUK
UNIVERSITY

32

KU KONKUK
UNIVERSITY

The Spiral Model

» An iterative version of the waterfall model with “risk analysis” added

Determine goals,
alternatives,
constraints

> \ Evaluate

e alternatives
* m and risks
"1‘

& & D ks
‘§§-§' o‘,«é‘\«\

budget, budgets budget; f::i:efl

concept of
operation

Develop
and
test

EFENDABLE SOFTWARE 3 3
LABORATORY

KU KONKUK
UNIVERSITY

CBD (Component-Based Development)

 Based on software reuse

— Systems are integrated from existing components or application systems.
* Using COTS (Commercial-off-the-shelf) Systems/components.
— Reused elements should be configured to adapt their behaviour and functionality.

* Reuse is now conceptually the standard approach for building many types of business systems.

+ Types of reusable software components:
— Stand-alone application systems (COTS):
» Configured for use in a particular environment
— Collections of objects:
+ Developed as a package to be integrated with component frameworks such as .NET or J2EE

— Web services:
» Developed according to service standards and which are available for remote invocation

h DEPENDABLE SOFTWARE 34
LABORATORY

KU KONKUK
UNIVERSITY

CBD

» Reuse-oriented software engineering process

Application system

Software available
discovery

Requirements
refinement

Configure
application
system

Requirements
specification

Software
evaluation

Adapt
components
Integrate
system
Develop new
> components
* Advantages:

— Reduced costs and risks as less software is developed from scratch.
— Faster delivery and deployment of systems are possible.

Components
available

« Disadvantages :
— Requirements compromises are inevitable, so system may not meet real needs of users.
— Loss of control over evolution of reused system elements

EPENDABLE SOFTWARE 3 5
y LABORATORY

KU KONKUK
UNIVERSITY

The Iterative Model - Agile

« Agile development is an umbrella term for a group of methodologies weighting rapid prototyping and
rapid development experiences.

— Lightweight in terms of documentation and process specification
- Example: XP (eXtreme Programming) , TFD (Test First Development)

» Agile methods attributes

- Requirements Analysis & Design
— lterative (several cycles)
i Implementation
— Incremental (not delivering the product at once) 4, i
. Bnnmy
— Actively involve users to establish requirements -
] - b Deployment
Initial 2
Planning ;
* Agile Manifesto _
Evaluation .
— Individual processes and tools T
— Working software documentation
— Customer collaboration contract negotiation
— Responding to change following a plan

EEEEEEEEE SOFTWARE 3 6
LABORATORY

The lterative Model - RUP

* Rational Unified Process (RUP) or UP
A software development approach that is

 lterative (Incremental, Evolutionary)
— Each iteration includes a small waterfall cycle (3~4 weeks).
* Risk-driven / Client-driven / Architecture-centric

* Use-Case-driven

— A Well-defined and well-structured software engineering process

* 4 Phases and 9 Disciplines

— Ade-facto industry standard for developing OO software

developmentcycle
A

iteration phase
f/\ A
d
inc. efa}boraj(‘on con}:truc tion tran%iﬁon

EFENDABLE SOFTWARE
LABORATORY

T

milestone

An iteration end-point

when some significant
decisionor evaluation

oceurs.

T

release

A stable executable subset
of the final product. The
end of each iterationis a
minor release.

T

increment final production
The difference (delta) release
between the releases At this point, the system
of 2 subsequent is released for
iterations. production use.

THE RATIONAL
UNIFIED PROCESS
AN INTRODUCTION

THIRD EDITION

37

. - APPIYING UML
(Rational) Unified Process AND PATTERNS

An ntroducion o Oject Oriented Analysis and Design

 The UP encourages a combination of risk-driven and client-driven iterative planning.
— To identify and drive down the high risks (architecturally), and
— To build visible features that clients care most about.

CRAIG LARMAN

+ Risk-driven iterative development includes more specifically the practice of architecture-centric
iterative development.
— Early iterations in elaboration phase focus on building, testing, and stabilizing the core architecture.

A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending in a stable executable.

i ; - N
Sample Unified Process Artifacts and Timing (s-start; r-refine) o / N
Slaciae s ample
Discipline Artifact Incep. | Elab. | Const. | Trans. UP Discipli | |
Iteration=p 11 El1..En Cl1..Cn T1..T2 ‘/7Business Modeling o
i i i Focus | PR ——— &
Business Modeling |Domain Model s of this < Requirements | sl] e
Requirements Use-Case Model S T book ‘ A 1
isi { Design ——— . — e
Vision s T _ [= B .
1 1 Impl tati — e .
Supplementary Specification s T mplementation _—
Glossary S T Test
Design Design Model S - SR BN D O I S —
SW Architecture Document B Gorifqunin Ko [M P | S N
Data Model S r Management |———— "~ -
Implementation |Implementation Model (code, html, ...) s = = Project Management | =" — 1 |
Environment

Iterations
EPENDABLE SOF TWARE 3 8
LABORATORY

| E Lt
Waterfall vs. lterative

» The Waterfall process (= Plan-driven)
— All process activities are planned in advance.
— Progress is measured against this plan.
* The lterative process (= Agile, UP)
— Planning is incremental and iterative.
— Easier to change the process to reflect changing customer requirements

* There are no right or wrong software development processes.
— In practice, most practical processes include elements of both waterfall and iterative approaches.

<1960s ~ 2000s >

Waterfall Model

< 2000s ~ Now >

Incremental Model

Waterfall Model

Evolutionary Model

Component-Based Development ...

Iterative Model (Agile)

Iterative Model

(Rational) Unified Process

PENDABLE SOFTWARE

_______ g . Application Domain

'_““-Application Domain »

- Application Domain h T

== Application Domain

DEPENDABLE SOFTWARE

Process Activities

40

B

Process Activities

.
differently in different development processes.
Requirements
elicitation and
analysis
Requirements
specification —
[; Requirements
validation
System
descriptions
User and system
requirements
‘—» Requirements
> document
Requirements System System Detailed
specification specification design design

Acceptance System Sub-system Module and
testp lan integration integration unit code
p test plan test plan and test

System
integration test

Sub-system
integration test

Acceptance
test

EFENDABLE SOFTWARE
LABORATORY

| KU S |

The 4 basic process activities of specification, development, validation and evolution are organized

Design inputs

Platform

information

Requirements
specification

Data
description

v

Design activities

Architectural Interface
design \ design

Component
design

C Database design

)

.

Design outputs

System
architecture

Database
specification

Interface
specification

Component
specification

'

Define system Assess existing Propose system Modify
requirements systems changes systems
A A
i
Existing New
systems system

41

KU Sovemsmy
1. Requirements Engineering Process

* RE (Requirements Engineering)
— The process of establishing what services are required and the constraints on the system’s operation and
development
* What services: functional requirements (FR)
+ Constraints: non-functional (quality) requirements (NFR)

Requirements
elicitation and
analysis

* Requirements engineering process

— Requirements elicitation and analysis
* What do the system stakeholders require or expect from the system?
— Requirements specification

Requirements
specification

T~

Requirements
validation

» Defining the requirements in detail System
— Requirements validation descriptions
+ Checking the validity of the requirements User and system
requirements

\—> Requirements

- document

PENDABLE SOFTWARE 42
LABORATORY

2. Software Design and Implementation

« The process of converting the system specification into an executable system
— Software design: Design a software structure that realizes the specification
— Implementation: Translate this structure into an executable program

Design inputs

| 4

EFENDABLE SOFTWARE
LABORATORY

information

specification

Platform Requirements Data

description

Y

Design activities

Architectural Interface
design \ design

Component
design

< Database design >

i

Design outputs

architecture

System

Database
specification

Interface
specification

Component
specification

43

KU Sovemsmy
Design Activities

Architectural design

— Identify the overall structure of the system, the principal components (subsystems or modules), their relationships,
and how they are distributed
—> AD (Architecture Description): ISO/IEC/IEEE 42010:2011 - Systems and Software Engineering - Architecture Description

Interface design
— Define the interfaces between system components

Component selection and design
— Search for reusable components. If unavailable, you design how it will operate

Database design
— Design the system data structures and how these are to be represented in a database

(DEPENDABLE SOFTWARE 44
y LABORATORY

KU S
Implementation Activities

+ The software is implemented either by developing programs or by configuring application system.

— Programming
* An individual activity with no standard process
* Clean code + Refactoring + Unit Testing
— Debugging
* An activity of finding (locating) program faults and correcting these faults
« # Testing : An activity of detecting program faults

+ Design and implementation are interleaved activities for most types of software system.

Q DEPENDABLE SOFTWARE 45
y LABORATORY

KU KONKUK
UNIVERSITY

3. Software Validation

« Verification and Validation (V&V) intends to show that a system conforms to its specification (—
Verification) and meets the requirements of the system customer (—Validation).

— Involves (static) code checking, review and system (dynamic) testing.

— Testing is the most commonly used V & V activity.
- IEEE 1012-2016 - IEEE Standard for System, Software, and Hardware Verification and Validation

EFENDABLE SOFTWARE 46

KU KONKUK
UNIVERSITY

Software Testing

» Stages of testing
— Component (Unit) Testing
* Unit testing / Module testing
* Individual components are tested independently.
» Components may be functions or objects or coherent groupings of these entities.

— System Testing l

* + Integration Testing
_ Component , Acceptance
« Testing of the system as a whole. < testing System testing (testing)

» Testing of emergent properties is particularly important. A

— Acceptance Testing
+ Testing with customer data to check that the system meets the customer’s needs.
+ Validation activity

EFENDABLE SOFTWARE 47
LABORATORY

KU KONKUK
UNIVERSITY

V-Model of Software Testing

Detailed
design

System
specification

Requirements
specification

Y
Acceptance System Sub-system Module and
testp lan integration integration unit code
P test plan test plan and test

Sub-system

System
integration test

Acceptance
integration test

test

48

EFENDABLE SOFTWARE
LABORATORY

SOFTWARE TESTING
AND ANALYSIS

V-Model of Software Testing LS

Actual Needs and Al A
p y Delivered
Constraints “ User Acceptance (alpha, beta test) Package —
) Michal Young
System
System bl Integration
Specifications |
\,_‘ Analysis / Review
/ Subsystem /] .
Design/Specs \l Integration Test Subsystem

/1_
h|

Analysis / Review @
Con"l-lr::‘ljents Module Test Unit / —
T i Compnnents Validation
Specs

33

|

Y User review of external behavior as it is determined or
becomes visible

EFENDABLE SOFTWARE 49
LABORATORY

V-Model of Software Testing from IEC 61508

E/E/PE system
safety

requirements
specification

E/E/PE system
architecture

Software safety
requirements
specification

Software
system design

— Output

—--- % Veification

Validation

Validation |‘ Validated
testing software

rr Integration testing

programmable
electronics)

(components,
e PR S ST R L subsystems and

Integration
testing (module)

 DEPENDABLE SOFTWARE
4 LABORATORY

KU KONKUK
UNIVERSITY

50

| E Lt
4. Software Evolution

+ Software must also evolve and change, as requirements change through changing business circumstances.
— Software is inherently flexible and can change.

— Maintenance
+ S3M (SW Maintenance Maturity Model)

Define system Assess existing Propose system Modify
requirements systems changes systems

Existing New
systems system

EPENDABLE SOF TWARE 5 1
LABORATORY

Process Improvement

52

KU KONKUK
UNIVERSITY

KU KONKUK
UNIVERSITY

Process Improvement

* Process improvement

— Understanding existing processes and changing these processes to increase product quality and/or reduce
costs and development time.

« Away of enhancing the quality of their software and reducing costs

— The level of process maturity, such as CMMi, reflects the extent to which good technical and management
practice has been adopted in organizational software development processes.

— Activities of process improvement
* Analysis
+ Change
* Measurement

Measure

Change Analyze

L RN
I
A DEPENDABLE SOFTWARE 5 3
A LABORATORY

KU KONKUK
UNIVERSITY

Process Improvement Activities

* Process analysis
— The current process is assessed, and process weaknesses and bottlenecks are identified.
— Process models (process maps) that describe the process may be developed.

* Process change
— Process changes are proposed to address some of the identified process weaknesses.
— These are introduced and the cycle resumes to collect data about the effectiveness of the changes.

 Process measurement
— Measure one or more attributes of the software process or product
— These measurements forms a baseline that helps you decide if process improvements have been effective.

() DEFENDABLE SOFTWARE 54
y LABORATORY

KU 5o

Process Measurement

Wherever possible, quantitative process data should be collected.
— However, organizations often do not have clearly defined process standards.
+ ltis very difficult as we don’t know what to measure.
— A process should be defined before any measurement is possible.

« The organizational objectives should drive the process improvements.

 Examples of process metrics
— Time taken for process activities to be completed
» calendar time, effort to complete an activity or process
— Resources required for processes or activities
+ total effort in person-days
— Number of occurrences of a particular event
* number of defects discovered

Q DEPENDABLE SOFTWARE 5 5
y LABORATORY

KU KONKUK
UNIVERSITY

The SEI CMMi

« CMMi (Capability Maturity Model Integrated) of SEI (Software Engineering Institute) in CMU

Initial : Essentially uncontrolled

Repeatable : Product (projecty management procedures are defined and used.
Defined : Process management procedures and strategies are defined and used.
Managed : Quality management strategies are defined and used.

Optimizing : Process improvement strategies are defined and used.

akrwbd-=

Focus on process

5 -Optimizing

improvement

Processes are measured and
controlled

Projects tailor their processes from the organizations
development methodology

3 -Defined

Processes are characterized for specific projects and

2 = REPeata ble organization is often reactive

Process is unpredictable, poorly controlled and reactive

EFENDABLE SOFTWARE 56
LABORATORY

KU Sovemsmy

22 Processes in CMMi

Process Project Engineering

Management Management

Organizational Project Planning

Process Focus

Requirements Configuration

Project Definition Management

Monitoring & Control

Technical Process & Product
Solution Quality Assurance

Organizational

g S lier Agreement
Process Definition SolRlaes

Management

Requirements

Product Measurement
Management

Organizational
Integration & Analysis

Rigellgllgle]

Risk Management
Decision Analysis

Organizational
& Resolution

Process Performance Verification

Integrated Project
Management

Organizational
Performance
Management

EFENDABLE SOFTWARE 57
LABORATORY

Casual Analysis

Quantitative Project _
& Resolution

Management

Validation

22 Processes in CMMi 1.3

DEPENDABLE SOFTWARE
J LABORATORY

Capahility Maturity Model Integration® for Development Version 1.3 (CMMI-D
|_Goal] Practice | subpractice _____| | oncept |

Work Product odula ap | Usab d
NA NA NA NA NA NA | NA | NA | NA | NA | NA | NA
7 15 54 231 231 700% | 100% | 100% | 100% | 100% | 100% | 400%
11 26 86 411 411 100% 100% 100% 100% 100% 100% 100%
2 3 2 66 6 700% | 100% | 100% | 100% | 100% | 100% | 100%
2 5 15 71 71 100% | _100% | _100% | 100% | _100% | 100%
- 49 6 0 9 00% | 100% | 100 0% | 100% | 1009 00
1- Initial NA NA NA NA N/A NA N/A NA N/A N/A N/A NIA
- — —_— -
EStabiish citera for GStngUSng TStS of cera for GrUngUSIng ; p . 5 o = o
providers providers
Establish objective criteria for the Criteria for evaluation and acceptance of
evaluation and acceptance of 1 2 4 8 16 32 100%
. requirements
Requirements | Analyze requirements to ensure that Results of analyses against criteria 1 2 4 8 16 32 | 100%
established criteria are met
Reach an understanding of requirements
with requirements providers so that project|A set of approved requirements 1 2 4) 16 32 100%
can commit to them
N Obtain :f:ffg the impact of requirements on |2 irements impact assessments 1 2 4 8 16 32 100%
o Negotiate and record commitments Documented commitments to 1 2 4 8 16 32 100%
and changes
Document all requirements and
requirements changes that are given to or [Requirements change requests 1 2 4 8 16 32 | 100%
generated by the project
Manage |Maintain a requirements change history, oo irements change impact reports 1 2 4 8 16 32 | 100%
° including the rationale for changes
Requirements
requirements Changes " [Evaluate the mpact of requirement
Manage changes from the standpoint of relevant Requirements status 1 2 4 8 16 32 100%
Management -
(REQM)
Make requirements and change data Requirements database 1 2 4 8 16 32 | 100%
available to the project
Maintain requirements traceability to
ensure that the source of lower lewel (i.e., |Requirements traceability matrix 1 2 4 8 16 32 100%
Maintain |derived) requirements is documented
idirectional [Maintain raceabillty fom a
i ility of to its derived tracking system 1 2 4 8 16 32 100%
Requirements |and allocation to work products
Generate a requirements traceabilty Requirements traceability report 1 2 4 8 16 32 | 100%
|matrix
Documentation of inconsistencies
Review project plans, activities, and work bet it d £ pl
products for consistency with etween requirements anc project plans 1 2 4 8 16 32 100%
Ensure and work products, including sources and
E requirements and changes made to them °
Alignment conditions
Pr:jee“::vieVeV:rk '::;)"'y the source of the Inconsistency (f|o oo of inconsistency 1 2 4 8 16 32 100%
and [Identiy any changes that should be made
Requirements [to plans and work products resulting from |Changes to resolve inconsistencies 1 2 4 8 16 32 | 100%
changes to the baseline
Initiate any necessary corrective actions | Corrective actions 1 2 4 8 16 32 100%
Develop a WBS, WES T 7 7 7 76 32| 100%
Define the work packages in suficient
Estimate the |(°t@ll s that estimates of project tasks, |,y jecciptions 1 2 4 8 16 32 | 100%
Seaps ofthe [fesponsibiies, and schedule can be
Trajoct . [specited
dentify products and product components 5.1 ..ot ang component list 1 2 4 8 16 32 | 100%
to be extemally acquired
dentity work products to be reused [Reusable work product Tist i 2 73 5 16 32| 100%
D::::‘ nsthotechnical jspproachiforiifio ey Rosroac 1 2 4 8 16 32 | 100%
Establish [2o° _ :
Eetrten o |Use approprate methods (o determine the
Work Product |2ttrioutes of the work products and tasks | £irating models and inputs 1 2 4 8 16 32 | 100%
to be used to estimate resource
. and Task °
Establish Attributes
Estimates Estimate the attributes of work products |t i 1 2 4 8 16 32 100%
and tasks

EV-V1.3

58

K KONKUK
UNIVERSITY

CMMI 2.1 (SE/SW/IPPD/SS) Process Evaluation Checklist

CMMI™ (SE/SW/IPPD/SS) Process Evaluation Checklist

1 2 4 8 16 32
1 2 4 g 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 g 16 32
1 2 4 8 16 32
1 2 4 g 16 32
1 2 4 k-3 16 32
1 2 4 s 16 32
1 2 4 8 16 32
|Plan for Data) 1 2 4 16 2
D“'mhw Pian for 1 2 4 16 2
1 2 4 16 2
1 4 16
1 4 16
1 4 16
1 4 16
1 4 1 32
1 4 1 2
1 4 1
1 4 1
1 4 1 32
1 4 1 32
1 4 1
1 3 1
1 4 1
1 4 1
1 4 1
4 1
4 1
4 1
4 1
1 2 4] 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 k7]
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 k-3 16 32
1 2 4 8 16 2
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
1 2 4 8 16 32
EFPENDABLE SOFTWARE 100% 100% 100% 100% 100% 100% 59

LABORATORY

EFENDABLE SOFTWARE
LABORATORY

Develop Collect Stakeholder Needs 1 2 4 3 16 32
i Elicit Needs 1 7 4 3 16 32 100%
¥ Develop the C Requi 1 2 4 3 16 32 100%
Establish Product and Product-Component Req 1 7 4 3 16 32 100%
Davefop Erict [Allocate Product Component Requirement 1 2 1 3 16 32 100%
Requirements | \oOUrements [jo ity Intecface R 1 2 4 3 16 32 100%
Development Establish Operational Concepts and Scenarios 1 2 4 3 16 32 100%
Establish a Definition of Required Functionality 1 2 1 3 16 32 100%
A”‘fz::d Analyze Req 1 3 3 3 16 32 100%
s Analyze Reg ts to Achieve Balance 1 2 1 3 16 32 100%
¥ [Validate Requirement 1 2 1 3 16 32 100%
[Validate Requirements with Comprehensive Methods 1 2 4 3 16 32 100%
Develop Altemative Solutions and Selection Criteria 1 2 3 3 16 32 100%
s’é’" Frodect. | cvelip Detuiled Aliesnativs Sihstions sl Selsction Cicin 1 2 4 3 16 32 100%
i Evolve Op | Concepts and Scenari 1 2 2 3 16 3 100%
Select Product-Component Soluti 1 2 4 3 16 32 100%
[Design the Product or Product Component 1 2 4 8 16 32 100%
Technical Solution| Establish a Technical Data Package 1 2 1 3 16 32 100%
Develop the Design|Establish Interface Descrip 1 2 4 3 16 32 100%
Design Interfaces Using Criteria 1 2 4 3 16 32 100%
Perform Make, Buy, or Reuse Analyses 1 2 3 3 16 32 100%
Implement the |Implement the Design 1 2 3 3 16 32 100%
Product Design _|Develop Product Support Documentation 1 2 4 8 16 32 100%
o . |Determine L ion S e 1 2 4 3 16 32 100%
hﬁg;“;‘”‘ Establish the Product Intesration Envi 1 2 1 3 16 32 100%
Establish Product Integration Procedures and Criteria 1 2 3 3 16 32 100%
bt Ensure Interface[Review luterface Descriptions for Comp 1 2 4 3 16 32 100%
St Compatibility [Manage Interfaces 1 2 1 3 16 32 100%
e Product |CoBfim Readiness of Product C ts for Integration 1 2 I 3 16 32 100%
‘C““‘“b ots ang [Assesble Product Components 1 2 4 3 16 32 100%
Deloe, the Produc Evaate Assembled Product Component 1 2 1 3 16 32 100%
Package and Deliver the Product or Product Component 1 2 4 8 16 32 100%
Prepare for _|S6lect Work Products for Verification 1 2 4 3 16 32 100%
Verification |EStablish the Verification Environment 1 2 4 3 16 32 100%
[Establish Venification Procedures and Criteria 1 3 1 3 16 32 100%
~ Prepare for Peer Reviews 1 2 4 8 16 32 100%
Veslication Pmm Conduct Peer Reviews 1 2 4 3 16 32 100%
|Analyze Peer Review Data 1 2 4 3 16 32 100%
Verify Selected |Perform Verification 1 2 3 3 16 32 100%
Work Products _[Analyze Verification Results and Identify Corrective Action 1 2 1 3 16 32 100%
Select Products for Validati 1 2 1 3 16 32 100%
l:‘,'ffﬁf: [Establish the Validation Environment 1 2 4 3 16 32 100%

60

EFENDABLE SOFTWARE
LABORATORY

Validation e |Establish Validation P and Criteria 1 2 4 16 32 100%
Validate Product or| Perform Validation 1 2 4 16 32 100% |

Product Analyze Vahdation Results 1 2 4 16 32 100%

Determine Process-|Establish Organizational Process Needs 1 2 4 16 32 100%

Improvement |A 1se the Organization's P 1 2 4 8 16 32 100%

o . 'ﬁpﬂﬂm&ﬁ! dentify the Organization's Process Improvements 1 2 4] 16 32 100%

Proree: Forns |F1an ad mplemen{ Establish Process Action Plans 1 2 3 16 3 100%

Process- Implement Process Action Plans 1 2 4 16 3 100%

Improvement |Deploy Organizational Process Assets 1 2 4 16 3 100%

Activity In Process-Related Expeniences mnto the Organizational Procq 1 2 4 8 16 32 100%

Establish Standard Processes 1 2 3 s 16 32 100%

Establish [Establich Life Cycle Model Description 1 2 1 s 16 n 100%

Orn-i;::‘-:. Organizational oring Criteria and Guidelines 1 3 1 s 16) 100%

Process Assets tion’s Measurement Reposito 1 2 4 8 16 32 100%

tion’s Process Asset Library 1 2 4 8 16 32 100%

Evblihag |Establish the Strategic Training Needs 1 2 4 s 16 32 100%

o Determine Which Training Needs Are the Responsibility of Organiz 1 3 3 s 16 32 100%

Ocgantzationsl To'g"“;‘:::h Establich an Orzanizational Training Tactical Plan 1 2 3 s 16 32 100%

= it Establish Training Capabili 1 2 3 s 16 32 100%

g Provide Necessary |Deliver Trainy 1 2 3 s 16 2 100%

T Establish Training Records 1 3 3 s 16 32 100%

M98 [Assess Traiming Effectiveness 1 3 3 s 15 32 100%

i 5 1 2 3 s 16 32 100%

’ ag Project Activities 1 2 3 s 16 32 100%

U*"“P;"’;: 1 2 3 s 16 32 100%

Defisied 1 2 3 B 16 2 100%

1 2 3 s 16 32 100%

Integrated Project, 1 2 3 s 16 2 100%

Management for rag 1 2 3 3 16 2 100%

PPD Resolve 1 3 3 3 16 32 100%

Tse the Projects | Define Project’s Shared-Vision Conlest 1 2 3 3 16 2 100%

Shared Vision for [Establish the Project's Shared Vision 1 2 3 s 16 2 100%

: Determine Integrated Team Structure for the Project 1 2 3 s 16 32 100%

O‘.f:;::ﬁ’mmwr liminary Distribution of Requi tol dTeam}p 1 2 3 s 16 12 100%

Establish Integrated Teams 1 3 3 3 16 32 100%

| Determine Risk Sousces and Categories 1 2 3 s 16 2 100%

P"""'ﬁfk | Define Risk Parameters 1 2 3 s 16 2 100%

. Establich a Risk Management Steateg 1 2 1 s 16 32 100%

Risk M: Tdeatify and _|[dentify Risks 1 2 3 s 15 32 100%

Analyze Risks _[Evaluate_Categorize_and Prioritize Risks 1 3 3 3 16 2 100%

1 2 3 s 16 32 100%

1 2 3 s 16 2 100%

1 2 1 s 16 2 100%

1 3 3 s 16 32 100%

Assign Appropriate Team Members 1 2 3 16) 100%

Integrated Establish a Shared Vision 1 2 4 16 32 100%

Teaming Establish a Team Charter 1 2 4 16 32 100%

G°gp::::“‘ Define Roles and Responsibilitics i 3 3 i 2 100%

Establish Operating Procedures 1 2 3 s 16 32 100%

Collaborate ing Teams 1 2 4 8 16 32 100%

Analyze and Select| Analyze Potential Sources of Products 1 2 4 8 16 32 100%

Integ: d Sources of Products|Evaluate and Determine Sousces of Products 1 2 4 8 16 32 100%

Supplier [e Work. | Moitor Selected Supplier Work Products 1 3 3 8 16 E5) 100%

Management m‘"?"'“’s“mm Evaluate Selected Supplier Work Products 1 2 3 s 16 32 100%

Revise the Supplier Apreement or Relationship 1 2 4 s 16 2 100%

Establish Guidelines for Decision Analysi 1 2 4 8 16 32 100%

[Establish Evaluation Criteria 1 3 1 3 16 32 100%

Decision A Evaluate deotify Altemative Solutions 1 2 3 3 16 32 100%

and Resolution | Alternatives [Select Evaluation Methods 1 2 3 s 16 32 100%

Evaluate Alternatives 1 2 4 s 16 32 100%

Select Solutions 1 3 3 s 16) 100%

[Establish the Organization's Shared Vision 1 3 1 s 16 32 100%

Provide IPPD =

[Establish an Integrated Work Environment 1 2 3 s 16 3 100%

‘.o""'i"""':t Infiastructure || 4 eatify PPD-Unique Skall Requiremeat 1 2 3 s 16 32 100%

5 [Establish Leadership Mechanisms 1 2 3 s 16 32 100%

I=hgaton m"]:i"’?:f” [Establih Incentives for Iategration 1 2 3 s 15 32 100%

ki [Establish Mechagisms to Balance Team and Home Organization Resp| 1 2 3 s 16 32 100%

CMMI Level 3 Score 100% 100% 100% 100% | 100% | 100% | 100%

61

EFENDABLE SOFTWARE
LABORATORY

Establish Select Processes 1 2 4 8 16 32 100%

Organizational Pext Establish Process Performance Measures 1 2 4 3 16 32 100%
Process Basclives and Establish Quality and Process-Perfor Objectives 1 2 4 8 16 32 100%
Performance Models Establish Process Perft e Baseli 1 2 4 8 16 32 100%
Establish Process Perf e Models 1 2 4 8 16 32 100%

Establish the Project's Objectives 1 2 4 8 16 32 100%

Quantitatively |Compose the Defined Process 1 2 4] 16 32 100%

Quantitative Manage the Project|Select the Subprocesses that Will Be Statistically Managed 1 2 4 8 16 32 100%
Project Manage Project Performance 1 2 4 8 16 32 100%
Management |Statistically M, Select Measures and Analytic Techniq 1 2 4 8 16 32 100%
= = |Apply Statistical Methods to Understand Variation 1 2 4 8 16 32 100%

e " |Monitor Perf e of the Selected Subprocesses 1 2 4) 16 32 100%

Record Statistical Management Data 1 Z 4 8 16 32 100%

CMMI Level 4 Score 100% 100% 100% 100% 100% 100% 100%

Collect and Analyze Improvement Proposals 1 2 4 8 16 32 100%

Select Identify and Analyze Innovations 1 2 4 8 16 32 100%

Organizational Imp Pilot Improvements 1 2 4 8 16 32 100%
Innovation and Select Improvements for Deployment 1 2 4 8 16 32 100%
Deployment Deploy Plan the Deployment 1 2 1 s 16 32 100%

. ats | Manage the Deployment 1 2 3 B 16 32 100%

T M Improvement Effects 1 2 4 8 16 32 100%

Determine Causes |Select Defect Data for Analysis 1 2 4 8 16 32 100%

Ciial Analvits of Defects Analyze Causes 1 2 4 8 16 32 100%
5 Impl the Action Proposals 1 2 4 8 16 32 100%

Al Nl m];:fi’:m Of | Evaluate the Effect of Ch 1 2 3 3 16 32 100%
Record Data 1 2 4 8 16 32 100%

CMMI Level 5 Score 100% 100% 100% 100% 100% 100% 100%

* Capability Maturity Model Integration and CMMI are service marks of Carnegie Mellon University.

62

SW Development Methodology

RU=

63

[RU o
Software Development Methodology

« Software Development = Solving Problems with Software working on a Computer

~Natural Language

Problems Bt S
= i — pescriptions o robiems
in real world (through Identifying Requirements)
<2
: Programming Language D
Solutions ~ — Descriptions of Solutions = + —

in computer (through Designing Programs) _
3 Program Execution
Crmmmmmmmmmmmmm—— with Computer System

FEH EMMA fuuYE
Software Development = Q@R i Procedural Programming ——» SASD
Object-Oriented Programming —— OOAD

AR HEYHE

EFENDABLE SOFTWARE 64
LABORATORY

KU KONKUK
UNIVERSITY

Procedural Programming

* Aprogram is organized with procedures.
— Procedure/Function
 building-block of procedural programs
+ statements changing values of variables
— Focusing on data structures, algorithms, and sequencing of steps
* Algorithm : a set of instructions for solving a problem (Control-centric)
« Data structure : a construct used to organize data in a specific way (Data-centric)

— Most computer languages (from FORTRAN to ¢) @are procedural programming languages.

struct account {

Procedure 1: Deposit() {...} ———— | char name;
. int accountld;
float balance;

Procedure 2: Withdraw() {...}
/ float interestYTD;
<<Use>> char accountType;

Procedure 3: Transfer() {...} }:

Procedures (with Algorithms) Data Structure

EPENDABLE SOF TWARE 65
LABORATORY

A Procedural Program

| *polynomial.c - Windows 2%

oEE BHEE MY4O B2l ESEM
#include <stdio.h>

#include <stdlib.h>

int p1Coef, p1Degree, p2Coef, p2Degree;

typedef struct Term {

int coeff//Zt 28| A==

int degree;//Z} S&| A=

struct Term *next;//next terma& ¥ &= Q&, @2 AE
} Term;

typedef struct polynomial {
Term *head;
Term *tail;
IPolynomial;

void addTerm(Polynomial *p, int coeff, int degree) {
//42]9] term0O| RH410| THEO| 2= next termBt ¥ 4= gloO=2
Term* termNew;
Term* temp;

termNew = (Term *)malloc(sizeof(Term));
termNew->coeff = coeff;
termNew->degree = degree;
termNew->next = NULL;

if (p->head == NULL) {
p-zhead = termNew;

¥
else {
temp = p->head;
while {temp-=next != NULL) {
temp = temp->next;
}
temp->next = termNew;
}

}

void tSort(Polynomial *p) {
int temp;
HOFEAS e F N7F 52 JFH B2 ATA "2t
Term *term = (Term *)malloc(sizeof(Term));
term = p->head;

while ((term}->next = NULL) {
T, if (p->head-»degree > p--head->next->degree) {
LABORATORY Ln 121, Col 1

HCrEA BHLUE list2 23, CheAo] 807Hs 2 €2 e list9] nodeZ ZLCL

100% | Windows (CRLP)

ANSI

| *polynomial.c - Windows 2% - o x
oEE BEEE MY40 B2l ESEM

'nt main{) {

Polynomial *p1 = (Polynomial *)malloc(sizeof(Polynomial));
Polynomial *p2 = (Polynomial *)malloc(sizeof(Polynomial);
Polynomial *p3 = (Polynomial *)malloc(sizeof(Polynomial);

while (1) {
printf{"#n Wn");
printf("A B CHEFA0] B0 2} 2o] Hx=et X|+=8 M2 LHSIH2Wn");
printfC A <0f 02 LT 22 Hold Y LA FoUwn);
print(#n");

pl1->head = NULL;
do {
scanf_s("%d %d", &p1Coef, &p1Degree);
if (p1Coef 1= 0) {
addTerm(p1. p1Coef, p1Degree);

}
} while (p1Coef != Q);

printf("#n #n");
printf("F S ChEAC] 20 Z g9 Ao A8 =AUZ LHoIwWn);
printfC 2 <=0]l 05 LHY B COl4 LY 2x] YELTHn");

printf(¥n");

p2->head = NULL;
do {
scanf_s("%d %d", &p2Coef, &p2Degree);
it (p2Coef !=0) {
addTerm(p2, p2Coef, p2Degree);

}
} while (p2Caoef = 0);

printf("#n AG)=");
printPoly(p1):
printf("#n Be)=");
printPaly(p2);

p3->head = NULL;
addP(p1, p2, p3);

printf("n CeJ=");
printPoly(p3);

Ln 121, ol 1 100% Windows (CRL) ANSI

66

K KONKUK
UNIVERSITY

SASD for Procedural Programming

T /Enable "Move Forward", Cleaner Command (On)

e SASD (structured Analysis and Structured Design, TX &2 A A 7| 7] 'LutH =)

Tick [F 8& 1L] Tick [F 88 IR]

— Atraditional software development methodology for procedural programs St e Koo
— Top-Down Divide and Conquer b - T

eaner Command (On) Cleaner Gommand-(On)

» Divide large, complex problems into smaller, more easily handled ones
— Functional view of the problem using DFD (Data Flow Diagram)

Tick [F && L&&R]
I Disable “Move Forward",
Cleaner Command (Off),

An FSM for 2.1.1 Controller

Motor Command

Determine
Obstade e
5 Oibstack
Location Lpation
1.5
Motor Command
Determine
Dust T Dmt
Existence Existance

1.6

Motor Command

Cleaner Command

]}WENDABLE SOFTWARE A level 3 DFD for RVC Control 67

LABORATORY

An SASD Example - RVC Control

— DFD Level 0
Front Sensor Input
Left Sensor Input

Right Sensor input
Dust Sensor input

Sensor

Cleaner

Structured Analysis

DFD Level 3

Frort Samsee Ingut

Motor Command

® 1 Enable “Move Forward”. Cieaner Command (0n)

wMove
R -
TekiF s / N Tex I 88w
10aatse tove /Dabl Wove Forwaed.
Cioarar . Gewer
> ~ o

Determine
Obstade
Location

Motor Command

Determine

Tia
—— Motor Command ---
T = Cleaner Command
Controller
Structured Chart
Obstacle Location
Structured Design
Determine Determine Trigger
Obstacle Location Dust Existence
EPENDABLE SOFTWARE . lm,’r:"‘;;::“' | n';:;:’:' I MoveFom:rdl | Tumn Left I I Turn Right |
LASBORATORY ()

KONK!

UNIV

| KU o |

68

KU KONKUK
UNIVERSITY

Object-Oriented Programming

* A program is organized with objects.
— Providing system functionalities through object communications
» Object : consisting of data and operations
+ Object communication : an object calls an operation of other objects with its data
* No explicit data flow, but only communication sequences among objects

Class What’s your name?

[4 o
Professor :
-name: String
-age: Integer yoo.getName()
-speciality: String client Professor Yoo
+getName(): String
+getAge(): Integer
+getSpeciality(): Strin
getSp y() g —

yoo : Professor

speciality = Software Engineering

DEPENDABLE SOFTWARE H 69
4 L ABORATORY

Object
Yoo : Professor 1 : getName() '

name = Yoo >|_—'_|
age =43 !

An Object-Oriented Program

| Factorials java - Windows B 2% - m} x
oem BEE MYNQ 27y ESEH)
Fmport Jjava.util.Scanner;

public class Factorials {
static int fac;

public static int recursiveFactorial(int n) {
if (n == 0) return 1;
else return n*recursiveFactorial(n-1);

1

public static void main(String[] args) {
while(true) {
System.out.printin("A| MSL X} SHE factorial 242 LHBIMK.);
Scanner keyboard = new Scanner(System.in);
if(keyboard.hasNextInt() {
fac = keyboard.nextInt();

lelse {
System.out.printin("Z2X 8 YHYULCH Z204S SEFLCL);
break;
}
System.out.print(fac + " = ");
ifffac == 0) {
System.out.println("0! = 1");
lelse {
inti = fac;
whileG >-1) {

System.out.print{i + "*");
i

}

System.out.printin("1 = " + recursiveFactorial(fac) + "#n");

EPENDABLE SOFTWARE 70
LABORATORY
Ln1, Col 1 100% Windows (CRLF) UTF-8

KU KONKUK
UNIVERSITY

OOAD for Object-Oriented Programming

* OOAD (Object-Oriented Analysis and Design, AKA Z{H| X| k7| et H =2
— “Identifying your requirements and creating a domain model, and then add methods to the appropriate classes and
define the messaging between the objects in order to fulfill the requirements”

— Object-Oriented Analysis (OOA)
» Discover the domain concepts/objects (pomain Model)
+ Identify requirements (Use-Case Model)

— Object-Oriented Design (OOD)
» Define software objects (Static model > Class Diagram)
» Define how they collaborate to fulfill the requirements (Dynamic model > Sequence Diagram)

— Various development process models are available.
+ Waterfall
* UP (lterative)

EFENDABLE SOFTWARE 7 1
LABORATORY

OOA - Domain Model

| 4

EFENDABLE SOFTWARE
LABORATORY

< <Business Object>>
Item

ID : Integer

< <Business Object>>
Title

available : Boolean

T .5
Refer to

0.1

< <Business Object>>
Loan

date: Date
late-return-fee : Integer

0.*

Has/Have

Copy of

name : String

isbn : String

count : Integer

price : Float
publisher : String
lending time : Integer

A,

Refer to

< <Business Object>>
Book

<<Business Object>>
Magazine

author: String

month : Integer

< <Business Object> >
Librarian

name : String
user ID : String
password : string

<<Business Object>>
Borrower

name : String
age : Integer
SSN : String
address : String
phone : String
zip : String

< <Business Object>>
Reservation

1 0.*
Has/Have

date : Date —

K[]’ KONKUK
UNIVERSITY
| S——————————

72

00D Static Model - Class Diagram

copy of
i
Database +1
-Title: Map
+Item: Map
+Borrower: Map Tnle
+oan: Map +name: String
+Reservation: Map ~tisbn: ISBNType
: Flot
Item +searchTileDB(isbn: ISBNType): Title et R

+temID: String
+available: Boolean
-Host: Boolean

+setlost{flag: Boolean): Void
+searchltem(itemiD: String): Ttem
+addItem(itemRef: Item): Void
+updateItem(itemRef: Item): Void
+removeltem{itemRef: Item): Void
+setAvailable(fiag: Boolean): Void
+getTitie(itemRef: Item): Tite

+1

Rifer To

-isBorrowed(): Boolean +* Manages 4

+checkinDate: Date
+chedkOutDate: Date
+HateReturnFee: Integer
+validLoan: Boolean
+LoanCount: Long

+setvalidLoan(flag: Boolean): Void

+calaulatel ateReturnFee{loanPeriod: Integer): Integer
+calaulateReplacementFee(price: Float): Integer
+searchLoan(itemID: String): Loan
+searchLoan(barrowerRef: Borrower): Loan
+addLoan(loanRef: Loan): Void
+updateLoan(oanRef: Loan): Void

+decreasel oanCount(): Void
+nereaseloanCount(): Void

+gethumOfLoan(): Void

+getitem{LoanRef: Loan): Itam

+addTtieDB(tileRef: Tite): Void

+removeTitleDB(titeRef: Title): Void

+updateTitleDB({tteRs oid

+searchltemDE(itemID: String): Ttem

+addItemDB({itemRef: Ttem): Void

+removeltemDB(itemRef: Item): Void
+updateItemDV(itemRef: Item): Void
“tsearchBorrowerDB(ssn: Sting): Borrower
+addBerrowerDB (borrowerRef: Borrower): Yoid
+removeBorrowerDB{borrowerRef: Borrower): Void
+updateBorrowerDB{borrowerRef; Borrower): Void
+searchloanDB{temID: String): Loan
+searchLoanDB(borrwerRef: Borrower): Loan
+addLoanDB(loanRef: Loan): Void
+updateLoanDB({loanRef: Loan): Void
~+searchReservationD8{isbn: 1SBNType): Reservation
+searchReservationDB(titeRef; Title): Reservation
+searchReservationDB(borrowerRef: Borrower): Resrvation[]
+1 +addReservationDB(reservationRef: Reservation): Void
+removeReservationDB(reservationrRef: Reservation): Void

EFENDABLE SOFTWARE

Lo..=

HoanPeriod: Integer
+numOfitem: Integer
+availalbeCount: Integer
+reservationCount: Integer

e RN
+1 Manages 4+

increaseAvailableCount(): Void
+decreaseAvailableCount(): Void
+increaseNumOfItem{): Void
+decreaseNumOfTtem(): Void
+gethumOfItem(): Integer
+getPrice(): Float
+getloanPeriod(): Integer
+gethewltemID(): String
+searchTitle(isbn: 1SBNType): Title
+addTitle(titeRef: Title): Void
+removeTitie(titeRef: Title)
+updateTitle (titleRs it oid
sReserved{titeRef: Title): Boolean
+increaseReservationCount(): Yoid
+decreaseReservationCount(): Void

oid

Magazine

|

+publishCyde: String
+month: String

+ssn: String
+address: String
~+reservationCount: Integer

41 | HoanCount: Integer

1 oanCount(): Void
+decreaseloanCount(): Void
-“increaseReservationCount(): Void
+decreaseReservationCount(): Void
~+searchBorrower (ssn: String): Borrower
+addBorrower(borrowerRef: Borrower): Void
+removeBorrower{ssn: String): Void
+updateBorrower (borrwerRef: Borrawer): Void

+1

Hekiin +validateDB{userID: String, password: String): Void
+1
+1 Manage!
Manag Refer
s
+0..4
Librarian o
+name: String negee Reservation
+userld: String
+password: String +reserveDate: Date
Hoi o Bk +searchReservation(isbn: ISBNType): Reservation
+validate(userl: String, password: String) +searchReservation(titeRef: Title): Reservation
+logOut{userID: String) +searchReservation{borrowerRef: Borrower): Reservation[]
+addReservation{reservationRef: Reservation): Voi
+removeReservation{reservationRef: Reservation): Void
+printMotifyCard(titleRef: Title): Void
4= +printCard(resrvationRef: Reservation): Void
+getTitle(reservationRef: Reservation): Title
Borrower
40,4
+name: String

Book

+author: String

73

00D Dynamic Model - Sequence Diagram

EFENDABLE SOFTWARE
LABORATORY

: Librarian

1: makeReservation{isbn, ssn)

[titleRef is invalid]

& : displayMessage{"Error”)

[borrrowerRef is invalid]

11 : displayMezsage{"Error”)

20 ; displayMessage("OK")

Z: seardﬂ'lﬁe(isbn)

P R R S R S e v i
5: tifenef

[titeRefis valid]

7 : searchBorrower(ssn)

10 ¢ borrowerRef

[borrawerRef is valid]

2 ; addReservation{titeRef, borrowerRy

e
N
L

O —— |

13 : reservationRef

s addReservatlonireservatlonRef)

18 : increaseReservationCount()

15 : addReser

81 searchBorrower{ssn)

vation{reservationRef)

195 \ncreaseReserfvaﬁonCount{}

’ 1

74

An OOAD Example - Dice Game

Define use cases

Define domain
model

Define interaction
diagrams

Define design class
diagrams

OOA

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.

- If the dice’s face value totals seven,

player wins; otherwise, player loses.

EFENDABLE SOFTWARE
LABORATORY

Flayel 1 Rolls 2 e
name faceValue
[2
Plays

1

DiceGame

I Includes

Domain Model

OooD

Interaction Diagram

DicaGomt | do: Din

| |

]
E.LQL) L v \
| m\\ 0 \' 1
|] !
1
|)
— e\l v —
'_ﬁgu@@&m.b_‘r—_.‘
I : \
\ \ ‘
1
DiceGame Die
die1 : Die | 1 2---, faceValue : int
die2 : Die &
i getFaceValue() : int
play()

roll{)

Design Class Diagram

75

conceptual
classes in
the
domain
inspire the
names of
some
software
classes in
the design

EFENDABLE SOFTWARE
LABORATORY

{\‘ czgr
/N
=

Sample Unified Process Artifact Relationships

Domain Model

Domain Model

\
Sale Captured-on | Register ProductCatalog ‘ !
dateTime 1 1 i ’ ‘ ‘
—) . J |
I\
/
/ domain concepts ‘
/

/ <&

Use Case Diagrams

X
\ Use-Case Model

\ ~
\ G - Syst
A : System |
| Process Sale Cashier i
3 make |
| NewSale [

J

C‘;s; | 1. Customer -
| arrives ... e}:/ents ! !
nam?s 2. Cashier ' | lenterltentn : |
makes new . I (id, quantit
f
| sale ! : |
b
LB‘ | : !

System Sequence Diagrams

| use-case
\ realization with B

\ interaction m
I

\ diagrams
\ ‘ makeNewSale

_;j— create 4: __________ p[@

Design Model

[ProductCatalogJ‘
L "

desc = getDescription(id) . ‘\
{ 1
1

Register

addLineltem(desc, quantity) e

i

|
» I

i

7
/ the design

‘/ classes
discovered
while designing

UCRs can be
summarized in

ProductCatalog

1

makeNewSale()
enterltem(...)

talog | -]
calaleg getDescription(...) : ProductDescription i lass di
class diagrams

| Y,

Use-Case Model

Sequence Diagrams

Class Diagram

'' 0O Implementation

76

Homework / Activity #2

« CMmmi2| Hgof chigt =L ME7|ALS HotEAM K.

- =Qlo| x| 2o =T (B
Me|otM| 2.
— H|2E|= CMMi 2.1 ChecklistE 7|E2 &, ZF S+=20f Lo M «A/S/5}7 2 HpgtL|Ct.

[El

2HE

Ao 2 CMMi 7S Roughd}A| Z1dstn, O L2

Sim / . .
CMMI™™ (SE/SW/IPPD/SS) Process Evaluation Checklist
Level Process Area Specific Goal | Specific Practice || Concept || Detailed | Modular [Formatted| Usable [Evidence [Total
1 - Inirial
Obtain an Understanding of Requirements 1 2 4 8 16 32 100%
Rk it M Obtain C to R 1 2 4 8 16 32 100%
e T Manage Req Changes 1 2 4 8 16 32 100%
e Maintain Bidirectional Traceability of Reg; 1 2 4 8 16 32 100%
Ideatify Inc es Between Project Work and R 1 2 4 8 16 32 100%
Estimate the Scope of the Project 1 2 4 8 16 32 100%
Establish Estimat Establish Estimates of Work Product and Task Attributes 1 2 4 8 16 32 100%
Define Project Life Cycle 1 2
Determine Estimates of Effort and Cost 1 2
Establish the Budget and Schedule 1 2
Identify Project Risks 1 2
: . Plan for Data M 1 B
Project Planning De-.:lolrl a Project Plan foe Project Resouroes 1 =
= — = - —
= Plan for Needed Knowledge and Skills 1 2 7_|I- g‘% EIE:l g g J'g 7I‘
™ = 3
Plan Stakeholder Involvement 1 2 = e
Establish the Project Plan 1 2 (g / S / ol-)
Obtain Review Plans that Affect the Project 1 2
Ci to the|Reconcile Work and Resource Levels 1 2
Plan Obtain Plan Commitment 1 2
Monitor Project Planning Parameters 1 2
Monitor Commitments 1 2
Moitor Project Monitor Project Risks 1 2
Project 1 Against Plan Moanitor Data Managemeant 1 2 4 8 16 32 100%
e sl) Monitor Stakeholder Involvement 1 2 4 s 16 32 100%
E f.'omr:l Conduct Progress Reviews 1 2 4 8 16 32 100%
Conduct Milestone Reviews 1 2 4 8 16 32 100%
Mibiags Coriective Analyze lssues 1 2 4 8 16 32 100%
: = . Take Comection Action 1 2 4 8 16 32 100%
2 - Mana s
. el Artion o Clows Manage Corrective Action 1 2 - 8 16 32 100%
Netermina Arnmisition Time n) 4 [14 Y] 10094

Samples from SE Undergraduate (KU 2021)

YAER CMMI V20 Q15 "X EHEX| 2B} ShepA |28, Q1N SBEIOIN 2|1 S wot 2. [KA, B2 ATE0] LA HH 2D AUS)

2220201012 28 247 BF5Y 20201012 282 gz 23z A LI iy SI7170E T 20k OvmI | T 2 5 =S

& =2 a%s M O

- TQMS & cMMIinstitute Partner I'I‘QG"'
DL nextChip completed a CMMI Benchmark Appraisal on October 16®, 2020 in accordance with

the CMMI Institute’s CMMI Method Definition Document V2.0 and judged

[oldI2] ZFeH 21AH] WAETO0| CMMI V2,0 JIYS QIEE FSEITM AISA P (j Hanwha Systems
H 20MIM ZHRE S5 DSCID 122 FRICH o
R&D Division
tobe
CMMI(SEL=TSE2Y. Capabiity Maturity Model Integration)= 012 FHIDIME CMMI Development vz.o:vlv.h SAM/ Maturity Level 5
CHE 9& 2T SO DEAD L(SENUIA IHRE 2ZE210{ 24 A2 HALIKE =
M S5 B 2LO0ICE Ol AHSAL AIZUIM BIZLIAE SRABID) S8 A 215 ,J,w ﬁ[z
g itz BEICL Appraisal ID. 51256 SangWook J
Expiraton Dete. October 16, 2023 CMMI High Maturity Leed Aopraiser
WASE A2 "IHEHS UIXLIA BRDCIQE A QPARE DI S8l =SO85 KAI)iI 23710 _J EO0k0 A CMMI(Capability MaturljyxModd Integ:aho
201840 21 V1.3 CMME J1E 8l V2.0 71E8 DIEQACHDH U280 2 SA P " HMOI STIHR(RED) BT 7| 201 n) Z| 0 CHAQl e 5§ SO B2 2ZEQoj(SW) JHEA=O0| A X +TUS ChA B ¢
p. Zo2 ANE A 1SS HOICHD M08] EHSHAIAEI(27221000] RO STHL(RED) SAZHTT} 2| Z0) o184
ZZZ V20 IS YAHE ZIgsl A58 2l £TICL CMM(Capabilty Maturity Model Integration)” 2121 2.0 HHEIHILA 21 SS9 12 5 S
QISE BISHCID 2% WAL
I dEaFIR RS =M SR ISR ARCLEAN IRIMANSE ME Y BRBBOFUUOS KA T2 2ZEOI(SW) HLAZO| HA 2T $EUF CHA| B o ASUCL B
& Zigsln A2ANSE NSt olF Sﬁl ALS AN E012K=0 210 &2/ 40 E& ChMI= I3 FDILE thEtel 2T Ex0f ZHATLHOIR 2L 225 2otk o =%
8 RPHSE o0ist] (20 Y3 AS2 AISA 2ISH S0HiIA 0Dt 2ICL WEAITY AZES0| A AT SREC AV} US DWOICH U ASE 22 271 7H2 20kl CMMI(Capability Maturity Model Integration) £{ 11 EtA2l 2 # 5 & 2152t 2
SHOUNE X TRH S H200) (13 TN L) S2FE SUHOF Wl
? ;_\E;F';I Mci:i‘:l;ﬁg;l_i?ﬁéﬁmf:?m—_ﬁ f:eiiﬁéfigf;gg EISIAIAEIE DI CMMI 1.3 DI 1D SII2 % 58 Alct 200935 531 91 KAl 2014 | SHZHAL SL20| cMMI Y 5 Q158 $1S3HH 0]0] S8) HASES), EIHAL HIRHO,
as == LE= = = SIZIEE20), 20208 CMMI 21 DIZAIEN W ME JHZE 2.0 HJ 15% Sim7L £ sn| 7 M o AL &t of 24l ¢ B OI2= Lo
DIEAISID ALE A HIS 3 SOMHAC) HMZAS 515 = A Q100 P — dIL S €371 71 ™ 20I= TS EOi5H0] cmmI O] 2 S § 21T 2lCh
A2ET AAARE "01E V2, OZQE Ef:"-;f O:—.Ifugj gfil ﬁ%!ifm:’-_ﬁkl{ :i:lrf;:l‘—’lﬂ;lz CMM 2,0 IEE 1A 2704 TIHE OLIZL SBB AN S 22 270 CMMI = SW ot A|ARIZBHSE) FOFC| LA 2E T2 tshs (iaX Q! I 7|Z0|Ct 0|3 3YH0| 245
TS CHAl B TOIZ S AACHTH RIEA AIZOIA G xS 2 EH 529 M2 IIEE SUE ESH0I USE WE £ A0, HaALHe N)
2102 JCHEHCH D 28uCt N OMM JIEHOZ BTN DS WA LA AHSON, BE 2RNE LM SISI0! Wop A|AE JHH UK E BEQI 7|F02 WH| Qo) 744|7| 2ECHE! Sw T8 YT A(SE, S/W Engine

UF EEU AILZ N R HUFSE SUHS AHITE

78

EFENDABLE SOFTWARE 79
LABORATORY

3. Agile Software Development

KU

Rapid Software Development

* Rapid development and delivery is now often the most important requirement for software systems.

Software must evolve quickly to reflect changing business needs.
Plan-driven development does not meet these business needs.

* Agile development methods emerged in the late 1990s to radically reduce the delivery time for
working software systems.

» Features of Agile development

EEEEEEEEE SOl
LABORATORY

The system is developed as a series of versions or increments with stakeholders involved in version
specification and evaluation.

Frequent delivery of new versions for evaluation
Extensive tool support (e.g., automated testing tools)
Minimal documentation to focus on working code

FTWARE 8 1

KONKUK
UNIVERSITY

| 4

Plan-Driven (Waterfall) vs. Agile Development

EFENDABLE SOFTWARE
LABORATORY

Plan-based development

Design and
implementation

Requirements
engineering

Requirements
specification

Requirements change
requests

Agile development

Requirements
engineering

Design and
implementation

KU KONKUK
UNIVERSITY

82

EFENDABLE SOFTWARE

F\T\IHAT’S OUR

STRATEGY?

WE'RE GOING
AGILE !

THE €UTURE IS
UNCERTAIN.

THINGS ARE
CHANGING
SO FAST.

WENEED TO
ADAPT
QUICKLY.

WE CAN'T
DEFINE EVERY-
THING UPFRONT,

\
X

WHAT PO
YOU MEAN
BY AGILE "

THAT'S ONE OF
THE THINGS WE
CAN'T DEFINE
UPERONT.

KU KONKUK
UNIVERSITY

Agile Methods

EFENDABLE SOFTWARE 84
4 LABORATORY

KU KONKUK
UNIVERSITY

Agile Methods

* Motivation
— Dissatisfaction with the overheads involved in software design methods of the 1980s and 1990s (Waterfall)

— To reduce overheads in the software process and to be able to respond quickly to changing requirements
without excessive rework

* Agile methods
— Focus on the code rather than the design
— Based on an iterative approach to software development
— Intend to deliver working software quickly and evolve this quickly to meet changing requirements

 Two types of Agile methods
— Agile Development Techniques
— Agile Project Management

(DEPENDABLE SOFTWARE 8 5
y LABORATORY

KL]' i\"\‘.'\Xi-ﬂ K

Agile Manifesto

* “We are uncovering better ways of developing software by doing it and helping others do it. Through this work
we have come to value.”

86

Principles of Agile Methods

el sl
jood design enhance

Simplicity--the art of maximizing

of work not done--is e
¥
The best architectures, requires

emerge from self-orgat

87

KU KONKUK
UNIVERSITY

Applicability of Agile Method

* Development of small or medium-sized product for sale
— Almost all software products and apps are now developed using an agile approach.

» Custom system development within an organization where,
— Clear commitment from customers to become involved in the development process.
— Few external rules and regulations that affect the software

Q DEPENDABLE SOFTWARE 88
I y LABORATORY

Agile vs. DevOps

B:)EFENDABLE SOFTWARE 8 9
LABORATORY

Agile Development Techniques

90

KU Sovemsmy
Extreme Programming

+ Extreme Programming (XP) takes an ‘extreme’ approach to iterative development.
— New versions may be built several times per day.
— Increments are delivered to customers every 2 weeks.
— All tests must be run for every build and the build is only accepted if tests run successfully.

Select user
Break down
stories for this . Plan release
stories to tasks
release

A

Evaluate Release Develop/integrate/
system software test software

{ DEPENDABLE SOFTWARE 9 1
LABORATORY

XP Principles

* The XP principles

— Incremental development is supported through small, frequent system releases.
— Customer involvement means full-time customer engagement with the team.
— Collective ownership through pair programming

— Change supported through regular system releases

— Maintaining simplicity through constant refactoring

EFENDABLE SOFTWARE
LABORATORY

| KU KONKUK
UNIVERSITY

92

XP Practices

Principle or Practice

Description

Incremental planning

Requirements are recorded on story cards and the stories to be included in a release are determined by the
time available and their relative priority. The developers break these stories into development ‘Tasks’.

Small releases

The minimal useful set of functionality that provides business value is developed first. Releases of the system
are frequent and incrementally add functionality to the first release.

Simple design

Enough design is carried out to meet the current requirements and no more.

Test-first development

An automated unit test framework is used to write tests for a new piece of functionality before that functionality
itself is implemented.

Refactoring

All developers are expected to refactor the code continuously as soon as possible code improvements are
found. This keeps the code simple and maintainable.

Pair programming

Developers work in pairs, checking each other’s work and providing the support to always do a good job.

Collective ownership

The pairs of developers work on all areas of the system, so that no islands of expertise develop and all the
developers take responsibility for all of the code. Anyone can change anything.

Continuous integration

As soon as the work on a task is complete, it is integrated into the whole system. After any such integration,
all the unit tests in the system must pass.

Sustainable pace

Large amounts of overtime are not considered acceptable as the net effect is often to reduce code quality and
medium term productivity

On-site customer

A representative of the end-user of the system (the customer) should be available full time for the use of the
XP team. In an extreme programming process, the customer is a member of the development team and is
responsible for bringing system requirements to the team for implementation.

() DEPENDABLE SOFTWARE

LABORATORY

93

| E Lt
XP in Practice

« The XP method itself is not widely used now, since

— Extreme programming has a technical focus and is not easy to integrate with management practice in most
organizations.

 However, XP practices are widely used in other development methods.
User stories for specification

Refactoring

Test-first development (TFD)

Pair programming

hoOond=

(DEPENDABLE SOFTWARE 94
y LABORATORY

| 4

1. User Stories for Requirements

User requirements are expressed as user stories or scenarios.

— Written on cards and the development team break them down into implementation tasks.

Tasks are the basis of schedule and cost estimates.
— Customer or user is part of the XP team and is responsible for making decisions on requirements.

* The customer chooses the stories for inclusion in the next release.

Prescribing medication

The record of the patient must be open for input. Click on the medication field and
select either ‘current medication’, ‘new medication’ or ‘formulary".

If you select ‘current medication’, you will be asked to check the dose; If you wish to
change the dose, enter the new dose then confirm the prescription.

If you choose, ‘new medication’, the system assumes that you know which
medication you wish to prescribe. Type the first few letters of the drug name. You
will then see a list of possible drugs starting with these letters. Choose the required
medication. You will then be asked to check that the medication you have selected
is correct. Enter the dose then confirm the prescription.

If you choose ‘formulary’, you will be presented with a search box for the approved
formulary. Search for the drug required then select it. You will then be asked to
check that the medication you have selected is correct. Enter the dose then confirm
the prescription.

In all cases, the system will check that the dose is within the approved range and
will ask you to change it if it is outside the range of recommended doses.

After you have confirmed the prescription, it will be displayed for checking. Either
click ‘OK’ or ‘Change’. If you click ‘OK’, your prescription will be recorded on the audit
database. If you click ‘Change’, you reenter the ‘Prescribing medication’ process.

Task 1: Change dose of prescribed drug

Task 2: Formulary selection

Task 3: Dose checking

Dose checking is a safety precaution to check that
the doctor has not prescribed a dangerously small or
large dose.

Using the formulary id for the generic drug name,
lookup the formulary and retrieve the recommended
maximum and minimum dose.

Check the prescribed dose against the minimum and
maximum. If outside the range, issue an error

EFENDABLE SOFTWARE

LABORATORY

User Story

message saying that the dose is too high or too low.
If within the range, enable the ‘Confirm’ button.

Tasks

KU KONKUK
UNIVERSITY

95

KU KONKUK
UNIVERSITY

2. Refactoring

"LSol 1 X|7] A LA
"LhSol EAH 1E & A= X2 E 0|2 HEO k2t

+ Conventional wisdom in software engineering is to design for change.
— It is worth spending time and effort anticipating changes as this reduces costs later in the life cycle.

« XP, however, claims that this is not worthwhile as changes cannot be reliably anticipated.

« XP proposes constant code improvement (Refactoring) to make changes easier when they must be

implemented.
— Changes are easier to make because the code is well-structured and clear.

— Examples of refactoring
* Re-organization of a class hierarchy to remove duplicate code.
+ Tidying up and renaming attributes and methods to make them easier to understand.
» The replacement of inline code with calls to methods that have been included in a program library.

— Typesllevels of refactoring
* Architecture > Design > Code > Data

R
() DEPENDABLE SOFTWARE 9 6
W y LABORATORY

) »

KU KONKUK
UNIVERSITY

3. Test-First Development

 TFD (Test-First Development)
— Testing is central to XP.
“The program should be tested after every change has been made.”

» Difficulties in TFD
— Programmers prefer programming to testing and sometimes they take short cuts when writing tests.
— Some tests can be very difficult to write incrementally.
— ltis difficult to judge the completeness of a set of (a lot of) tests.

* Features of the XP testing
— Test-First development
— Incremental test development from scenarios
— User involvement in test development and validation

— Automated test harnesses are used to run all component tests each time that a new release is built.
(CTIP: Continuous Testing and Integration Platform)

() DEFENDABLE SOFTWARE 97
; i LABORATORY

CTIP Examples (KU 2021)

Advanced CTIP Environment

checksty e
-.__-__,,.---*""""P qu sonarqube
- N F—\ q Google
O GitHub : 8 /A Azure
.) git {_;j enkins
JUnit MSradle

Test
Link

pyautogui @Notion % -;" SIGCk

EPENDABLE SOF TWARE 9 8
LABORATORY

CTIP Examples (KU 2021)

Requirement Management
%o
. ‘ Cl Server
m a
: @
;

Configuration Management | SonarQUbﬂ

— 12 fit Pmd Cs' &

9 o Static Analysis
‘ Build GitHub
MGradle 1 aWs
‘ Test = ~ =3
: gl
JUnit@ B @ <«— % Testlink
REDMINE
Team Communication Issue tracking System Test
a2 slack
sy e 29

KU KONKUK
UNIVERSITY

CTIP Examples (KU 2021)

TUCTIP B R

Server 2

Server 1 aWS aws
N N—

o ®= 0 S I D S D S S S S S

{
: / Cl Tool . " \
1 i @ result } I \
: 1 _-L___L/ - A " 1 Sonal'QUbe\\ -
' ! ! Jenkins !] !
| i = Buid 3= | Build '] :
1 _ I p—>checkstyle
| : it e b [T
i Gradle | GitHub : zap]er e ' | I |plugin :
L1 . 1
i l il 42| Tool i [y shslack “* e an i
: Test 1 . :)‘:__-’i L] . . : : DONT ST THE MESSENR :
; I m——————— i . Communication i 1 I
i _ :] .‘ 0‘ Tool | ' e '
}JUmt@ i) qE) 1 B F.’?Bt Co
; | | REDMINE «—— % TestLink ! ! meiibves |
_ E—— I I . i
1 Unit Test ! ‘\Issue Tracking Tool System Test ¢ I StaticAnalyzer |
7 N e e B Attt A e’ ‘_ _________ P4

©)Saebyeol Yu. Saebyeol's PowerPoint

IQZ)EFEN DABLE SOF TWARE 1 OO
LABORATORY

CTIP Examples (KU 2021)

Overall Structure #2

Build

MGradle

Unit Test

JUnit@

Version

it

docker

Team

Communication |
i slack
- SIAC

GitHub | F ey
R I NaE ‘
cl Selrver Fi:g;g;
‘lli
Jenkins checkstyle
Build |
\M/ DON'T SHOOT THE MESSENGER
—
W,
Bug Tracking/ .‘ “ Test System
Requirements W M Link | Testing
Management REDM'_NE w

101

CTIP Examples (KU 2021)

Software V&V -vex +-

Overview

Version control

B S Amabic B ®

cs | 18 ()

GitHub Actions *
Pmid GitHub

Build

Spg{mlgs

sonarcloud

Requirement
Management

\e« QA
[P 7 | Sprint T2

&)l bug issue
GitHub Pages -

4

BDEF'ENDAEILE SOFTWARE 102
LASBORATORY

CTIP Examples (KU 2021)

2021 Software V&V

— Team Communication —
gl L) oiscoro B o " "
GitHub TestRail
S b

. = . MySsQu
— Static Analsis tool | ——
Jen%ns . ‘é) Apache
sonarQUbE\\ = _
* s
JUnit@ JACOCO mEMﬂd__ Flndﬂ‘igs
BT . checkstyle
MSradle

EFPENDABLE SOFTWARE 103

KU KONKUK
UNIVERSITY

Test-Driven Development

 TDD (Test-Driven Development)

— “Writing tests before code clarifies the requirements to be implemented.”

— Tests are written as programs rather than data so that they can be executed automatically.
— The test includes a check that it has executed correctly.

« Automated test execution environment is mandatory.

— All previous and new tests are run automatically when new functionality is added, thus checking that the new
functionality has not introduced errors.

b
i ngEFENDABLE SOFTWARE '] 04
N LABORATORY

KSR
Customer Involvement

* The customer is a part of the team in XP.
— Help develop acceptance tests for the stories that are to be implemented in the next release of the system.

— Writes tests as development proceeds.
« All new code is therefore validated to ensure that it is what the customer needs.
» testcase # testdata

* However, customers have limited time available and so cannot work full-time with the development
team.

— They may feel that providing the requirements was enough of a contribution and so may be reluctant to get
involved in the testing process.

i 1 ‘S:?E)EFENDABLE SOFTWARE 1 05
y LABORATORY

KU KONKUK
UNIVERSITY

Test Case Description for ‘Dose Checking'’

Test 4: Dose checking

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:

1. Test for inputs where the single dose is correct but the frequency is too
high.

2. Test for inputs where the single dose is too high and too low.

3. Test for inputs where the single dose * frequency is too high and too low.
4. Test for inputs where single dose * frequency is in the permitted range.

Output:
OK or error message indicating that the dose is outside the safe range.

RN
‘ il DEPENDABLE SOFTWARE 1 06
Ny LABORATORY
L

KU KONKUK
UNIVERSITY

Test Automation

+ Test automation
— “Tests are written as executable components before the task is implemented.”
— Automated test framework is required.
— Each testing component should
» Be stand-alone (independent),

+ Simulate the submission of input to be tested, and
» Check that the result meets the output specification.

* Automated test framework
— A system that makes it easy to write executable tests and submit a set of tests for execution
— Examples:
* A series of xUnit (e.g., JUnit)
— As testing is automated, a set of tests is always ready to test quickly.

 Whenever any functionality is added to the system, the tests can be run and problems that the new code has introduced
can be caught immediately, as CTIP.

RN
‘ () DEFENDABLE SOFTWARE '] 07
Ny LABORATORY

L

KU KONKUK
UNIVERSITY

4. Pair Programming

* Pair programming

— “Involves programmers working in pairs, developing code together.”

— Programmers sit together at the same computer to develop the software.
» Pairs are created dynamically so that all team members work with each other during the development process.

+ The sharing of knowledge that happens during pair programming is very important, as it reduces the overall risks to a
project when team members leave.

— Advantages:
* Helps develop common ownership of code and spreads knowledge across the team.
+ Serves as an informal review process as each line of code is looked at by more than 1 person.
* Encourages refactoring as the whole team can benefit from improving the system code.

» Pair programming is not necessarily inefficient.
— Some evidence suggests that a pair working together is more efficient than 2 programmers working separately.

LABORATORY

Th
” %@%EFENDABLE SOFTWARE 1 08

Agile Project Management

109

KU KONKUK
UNIVERSITY

Agile Project Management

» The principal responsibility of software project managers is to manage the project so that the
software is delivered on time and within the planned budget for the project.

 The standard approach to project management is the plan-driven.
— Managers draw up a plan for the project showing
* What should be delivered,
* When it should be delivered, and
» Who will work on the development of the project deliverables.

* Agile project management requires a different approach.

— Should be adapted to incremental development and the practices used in agile (development) methods.
— Scrum

il] :{_:?E)EFENDABLE SOFTWARE '] '] O
! i LABORATORY

KU KONKUK
UNIVERSITY

Scrum

 Scrum
— An agile method that focuses on managing iterative development rather than specific agile practices.

— The name of a short daily meeting

» All team members share information, describe their progress since the last meeting, problems that have arisen, and what is
planned for the following day.

+ Everyone on the team knows what is going on and, if problems arise, can re-plan short-term work to cope with them.

3 phases in Scrum
— Initial phase
* An outline planning phase, where you establish the general objectives for the project and design the software architecture.
— A series of sprint cycles
» Each cycle develops an increment of the system. (2~4 weeks for each sprint)
— Project closure phase
* Wraps up the project, completes required documentation, and assesses the lessons learned from the project.

LABORATORY

Th
” %@%EFENDABLE SOFTWARE 1 1 1

Scrum Terminology

Scrum term

Definition

Development team

A self-organizing group of software developers, which should be no more than 7 people. They are responsible for
developing the software and other essential project documents.

Potentially shippable
product increment

The software increment that is delivered from a sprint. The idea is that this should be ‘potentially shippable’ which
means that it is in a finished state and no further work, such as testing, is needed to incorporate it into the final
product. In practice, this is not always achievable.

Product backlog

This is a list of ‘to do’ items which the Scrum team must tackle. They may be feature definitions for the software,
software requirements, user stories or descriptions of supplementary tasks that are needed, such as architecture
definition or user documentation.

Product owner

An individual (or possibly a small group) whose job is to identify product features or requirements, prioritize these
for development and continuously review the product backlog to ensure that the project continues to meet critical
business needs. The Product Owner can be a customer but might also be a product manager in a software
company or other stakeholder representative.

Scrum

A daily meeting of the Scrum team that reviews progress and prioritizes work to be done that day. Ideally, this
should be a short face-to-face meeting that includes the whole team.

Scrum Master

The ScrumMaster is responsible for ensuring that the Scrum process is followed and guides the team in the
effective use of Scrum. He or she is responsible for interfacing with the rest of the company and for ensuring that
the Scrum team is not diverted by outside interference. The Scrum developers are adamant that the
ScrumMaster should not be thought of as a project manager. Others, however, may not always find it easy to see
the difference.

Sprint A development iteration. Sprints are usually 2-4 weeks long.
An estimate of how much product backlog effort that a team can cover in a single sprint. Understanding a team’s
Velocity velocity helps them estimate what can be covered in a sprint and provides a basis for measuring improving

performance.

DEPENDABLE SOFTWARE
LABORATORY

The Scrum Sprint Cycles

Review work Select Plan
to be done items | sprint

Review
sprint

Product Sprint Pﬁ’gentiglly
backlog backlog >hippable
software

]} EEEEEEEEE corrwane 113
LABORATORY

KU KONKUK
UNIVERSITY

The Scrum Sprint Cycles

® O
o
.
Daily Scrum
Meeting

Inpults |JI
. Burndown/ up
I I Charts

Scrum
Master

Ewvery
24 Hours

A 2
F = ®
Product F =1

Owner

Sprint Review
1-4 Week

Sprint
The Team

N

Sprint end date and

Sprint Backlog team deliverable Finished Work
Product Backlog Sprint Planing do nat change
Meeting .
& dinai
A ¢
=

Sprint Retrospective

DEPENDABLE SOFTWARE 1 1 4
y LABORATORY

The Scrum Sprint Cycles

« Sprints are fixed length, normally 2~4 weeks.

» The starting point for planning is the product backlog, which is the list of work to be done on the
project.

» The selection phase involves all project teams who work with the customer to select the features and
functionality from the product backlog to be developed during the sprint (sprint backlog).

— Once these are agreed, the team organize themselves to develop the software.

— During this stage, the team is isolated from the customer and the organization, with all communications
channelled through the so-called ‘Scrum master’.

— The role of the Scrum master is to protect the development team from external distractions.

» At the end of the sprint, the work done is reviewed and presented to stakeholders.
— The next sprint cycle then begins.

| _' ?IDEFENDABLE SOFTWARE 1 1 5

LABORATORY

Homework / Activity #3

(¢);

Agile Development Techniques A-20]| CHSt M2 7| AHAILY)E &0 EM| L.

F

Agile Project Management & 80| LTt ME7|AHAILY)E Fot HM| L.

2. HEEBYA OfAIY A3y
“oigiel XZE AT BAUE” FEERATL Y KA AlF
Yozl #s

COMPUTERWOCHE Editorial | COMPUTERWOCHE
Y Oto|Z2AZE OfL|Y 2|AE[QH @AQIOE= AMY X9 sEO| URT 22 F §
o $3 MBS FGIDR YTk SIEIY YN HX YUACL HiE YBS FFY 45 @
AT FAUSAE YA, J12AB A A= OAYUCL AZ XME YB 20| SiKI
7| gich BASIOE FHol Boli ¥, CIE A% HIOIME 4¥o| o %X Yrhe 28
27| Hch AEIEQ] #EE2AA0 OfO|Cio7t BB AIFOICE

oz 4

0
0
o

FECIL vigsts 210] OlorEMM 27 8 ¢ F
AZO0IRUCL 474 gholl EA9DS EE ofXiY A3Y WHE

2 S8 AHEXt RIER =FE ot 7
2, B E2{o| dAlZt FX 0| F2 7|50/0, 1 P
Histe SM& NJeich Z9et 49 EHe ATIS A8

o=z M viye HAUE

X
g3 eS8 Fyust a0
AL

FEBEAE 20219 CXE 24 MHE dArp(glEdA 28 2dE gith ZE ANE &
Cixtot o|8Y + A= ZE2 7|59 LY EAFS I3l izl grE0W| dgolck
a2 ISYAHE MERS GY AMES FUQD, SAEUAME FRME KEEAZ MY
o, Al Y o n8E ZFoH @ HARCL O|F viL GI2E 2Ot HBAHLE
7t g HopEe{n MHE S2X| Yotk ot

EA9(29 A2 A 0| FOIHCL 2018 X2 M IAE APt SRH2E AXB &
EEZAE OfM| AEeHO(Strabag) 2 HE 2iMs|Alo: oiZ{Xiel £240| =[UCt H
H O g2 YA KEESAS Y W3 4E FEE Ml A0, 00| 2,5002
9 At HEY YHZ SSEO| QACH

BAQIOE "2l oY siLiel SHE 9 YBiCHatN, “2H HE Y REI ZB O
AY 24 AE B sttt 8 & ot ATolztn FEJYCL ofzjol s, 912 EAt
gie #2 8 FYoME 382 |EeF 129 @70 ot YFeichs #lo| RAEC B
ReiCh LF7H ‘00 0|2k RLE0| WHSID St ALRX ZHO| LT S8
Fofgict.

Samples from SE Undergraduate (KU 2021)

RUTOR | JAYH 20200007 2T 404 e | 233 () =esl ¥

Hj 'SUSE'22 E2|H KTt 2HM 5| 2LRCL 3~43 2L CIXIE WIolElE J)
LE D ZAGh=0 20U Bl PEZ AZHCEO) FIE 0IFRE= Ol "SEHTA
2 01" 'S ASA) AHLI'E ALMSt LIMCH AIRZ2 QAL EEE3 S0I
HACIHM KT UHRH M= TLEHIZOIY &2 2R 2ol A L= 23S
LI2Ch KT= HEA HCH =&l 'S4 0t 'FHL'0I12h= DNAE O|AE = ANNE
7t HIZZ2 '8l0|=22|< R AKZ 0ICH

ORAIZ 2 ‘220 FASH LZEAUN(SWIRE MUIAE WEEh= 248 EICH AKA
H=OILE 2M3 2 ECke Z2 04D 1EM =38 F= i Aoz, F2 o0t
Z LS ITIIZ0ILIHEIZ AEIES0IA 2H22ot 2 KT & MAI 218 B%2t e
&t A3 (Scum) HHEE B HEAIA KT2H| '510/22]< 0HAIR 8 B, 018 &

A RS Z SEHG| AUCH 23 ARIE THE0EICH

Sl0I221S MHAKZE "B ST 2 JHZE =+ ASIE DS 20l L2 22t
E0ICH KT= J1E2 U MU|A= 8Z AIJIYMIOIE], 22AF= S DI J12E SAl
ol JHEBH0F Sk RIAICEH AICEL J1E HSIITAE 0l2 248 JI2te= &R0l B
71 G20l At i Eke AEIE0ILLCIAIE 710l AF25ks 0HAIY 2HHEE HE
S22t R FACE J1E 238 (HAIZEICZ = = 2|20l FoE et 2T S
O|EHt ZE2H0AXLE E8P] HBChs B SHACH

QLQESKTIMTEE EHEMHYIACHEZ Z2HEY (Rt 1 S8E =261 '"UEE
OHAHY Di &8 THEQICID £&WECEL @ SHA2 "A3H BEE E312AM A O
20ll= "0HALE 2t (Agile-wow)' HHZEE, 0244 0= "0H AL 3|(Agile-key)'
UHEE FSEUOZ HEfl= S RAGHI (S8 20| Blol=S2|= DhAIZ Sl &2 i
E°0I2/H "0le SEE I 5IFE LIk &N SHLISI0AN A2 D2 AIDHA]
sto1=22l= AR 2EES TS AI=0l2tn R0

117

1. The agile team has gone home. Now what?

[

The agile team has gone home.

Alak Uniyal, Infosys

Now what?

Agile may be synonymous with software development, but it is equally about
people. Because the purpose of agile sprints is to incorporate feedback at quick
intervals to deliver what customers want. And the agile process itself works best
with close collaboration between developer and stakeholder groups, also
bringing together development and IT operations teams when used in
conjunction with DevOps. So it is no surprise that there is a strong correlation
between an enterprise’s growth and its agile capability: 6 of the top 7 agile levers
by impact were people-related. (My team published some recent research on

this.)

A core principle of agile transformation is to use face-to-face interaction, which
went right out the window when the pandemic hit. However, the use of agile has
actually increased over the past year while almost everyone around the world

was working remotely. Reconciling these seemingly opposite shifts makes for an

interesting challenge for enterprises. But it is not an impossible one.
Workforce and workspace levers

Using agile virtual workspaces along with digital collaboration platforms to
support remote but collective and cohesive work has been a big driver of success.
At my company, we conducted a study of our own employees right before and
just into the pandemic, and it showed that when 3 or more early agile sprints
were conducted on-premises with workers coming to the office, it paved the way
for the asynchronous communication and remote work that followed. At the

same time, using digitized visual Kanban dashboards along with other

Samples from SE Undergraduate (KU 2021)

collaboration accelerators helped our remote teams make better decisions and

operate as productively as they did when they were on-premises.

Culture levers

Autonomous and self-managed teams are able to focus better on value delivery,
which improves customer experience and return on investment. Similarly, self-

organized agile teams improve technology outcomes.

A hybrid working model can complicate
this, though. When agile development
goes from on-premises to remote — Stripe

especially without warning as it did last

| The payments platform
for global growth

year — the teams risk losing visibility of
the status of different projects, their

business and technical contexts, and Learn more -
even the pathways of communication.

We found from our experience that

enabling early, incremental feedback to
remote teams helped them stay on track or correct course on time when needed.
This also coordinated the efforts of developers working on different parts of the

same module and gave them a shared sense of purpose.

For enterprises with entrenched agile principles and practices, switching to a
hybrid working model requires significant adjustment. But with the right
adaptation of practices and some changes around technology tools and
platforms, functional skills, and organization structure and culture, agile teams

can perform comparably to how they used to when they worked in the office.

118

lg:)EF'ENDAEILE SOFTWARE 1 1 9
L ABORATORY

4. Requirements Engineering

KU Sovemsmy
Requirements Engineering

» The process of establishing the services that a customer requires from a system and the constraints
under which it operates and is developed.

— System requirements: descriptions of the system services and constraints that are generated during the
requirements engineering process

* Requirements
— Range from a high-level abstract statements of a service or of system constraints to a detailed mathematical
functional specification.
+ Statements of services - Functional requirements (FR)
» System constraint > Non-functional requirements (NFR)

{; é- EFENDABLE SOFTWARE '] 21
T LABORATORY

KU KONKUK
UNIVERSITY

Types of Requirement

* User requirements

— Statements in natural language and diagrams of the services the system provides and its operational
constraints

— Elicited/Discovered from stakeholders
— Defined for customers

+ System requirements

— A structured document setting out detailed descriptions of the system’s functions, services and operational
constraints

— Defines what should be implemented
— Specified for developers

‘‘‘‘‘

h Y
| };lg %‘:DEFENDABLE SOFTWARE '] 22
b &

LABORATORY

User and System Requirements

o

‘ () DEFENDABLE SOFTWARE
Ny LABORATORY

L

User requirements definition

1. The Mentcare system shall generate monthly management reports

showing the cost of drugs prescribed by each clinic during that month.

System requirements specification

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.

1.2 The system shall generate the report for printing after 17.30 on the
last working day of the month.

1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.

1.4 If drugs are available in different dose units (e.g. 10mg, 20mg, etc)
separate reports shall be created for each dose unit.

1.5 Access to drug cost reports shall be restricted to authorized users as
listed on a management access control list.

KU KONKUK
UNIVERSITY

123

System Stakeholders

* Any person or organization who is affected by the system in some way and so who has a legitimate
interest

« Typical stakeholders:

User Concerned with the features and functionality of the new system
Designer Want to build a perfect system, or reuse existing code
System Analyst Want to “get the requirements right”

Training and User Support Want to make sure the new system is usable and manageable

Business Analyst Want to make sure “we are doing better than the competition”
Technical Author Will prepare user manuals and other documentation for the new system
Project Manager Wants to complete the project on time, within budget, with all objectives met.

Customer Wants to get best value for money invested

| _' ';IDEFENDABLE SOFTWARE 124

LABORATORY

Agile Methods and Requirements

« Many agile methods argue that
“Producing detailed system requirements is a waste of time as requirements change so quickly.”
— The requirements document is therefore always out of date.

* Agile methods usually use incremental requirements engineering and may express requirements as
user stories.
— This is practical for business systems.

— This is often problematic for systems that require pre-delivery analysis (e.g., critical systems) or systems
developed by several teams.

() DEFENDABLE SOFTWARE '] 25
y LABORATORY

Functional and Non-Functional Requirements

KU Sovemsmy
Functional and Non-Functional Requirements

* Functional requirements

— Statements of services the system should provide
* How the system should react to particular inputs.
* How the system should behave in particular situations.

— May state what the system should not do.

* Non-functional requirements
— Constraints on the services or functions offered by the system such as
+ timing constraints, constraints on the development process, standards, etc.
— Often apply to the system as a whole rather than individual features or services.

« Domain requirements
— Constraints on the system from the domain of operation

M% EEEEEEEEE SOFTWARE ,] 2 7
LABORATORY

KU KONKUK
UNIVERSITY

Functional Requirements

» Describing functionality or system services depends on the type of software, expected users and the
type of system where the software is used.
— Functional User Requirements may be high-level statements of what the system should do.
— Functional System Requirements should describe the system services (user requirements) in detail.

* An example of Mentcare System
— Functional user requirement : “A user shall be able to search the appointments lists for all clinics.”

— Functional system requirement :“The system shall generate each day, for each clinic, a list of patients who are
expected to attend appointments that day.”

i] :{:?E)EFENDABLE SOFTWARE 1 28
I y LABORATORY

KU KONKUK
UNIVERSITY

Requirements Imprecision

* Problems arise when functional requirements are not precisely stated.
— Ambiguous requirements may be interpreted in different ways by developers and users.

» For example, the term ‘search’ in the requirement :

“A user shall be able to search the appointments lists for all clinics.”

— User intention : Search for a patient name across all appointments in all clinics.
— Developer interpretation : Search for a patient name in an individual clinic. User chooses a clinic then search.

-

| };lg %‘:DEFENDABLE SOFTWARE '] 29
b &

LABORATORY

KU KONKUK
UNIVERSITY

Requirements Completeness and Consistency

* In principle, requirements should be both complete and consistent (C&C).

« Complete
— They should include descriptions of all facilities required.

+ Consistent
— There should be no conflicts or contradictions in the descriptions of the system facilities.

* In practice, it is impossible to produce a complete and consistent requirements document.

il] :{_:?E)EFENDABLE SOFTWARE '] 30
y LABORATORY

KU Sovemsmy
Non-Functional Requirements

* Define system properties and constraints
— Properties: reliability, response time and storage requirements, 1/0 device capability, system representations, etc.
« Quality Attribute Requirements

— Constraints: mandating a particular IDE, programming languages or development methods, or
standards compliance (IEC 61508, ISO 26262, IEEE 829,830,1012,1016,12207,25010, etc.)

* Non-functional requirements may be more critical than functional requirements.
— If these are not met, the system may be useless.

* Non-functional requirements may affect the overall architecture of a system.
— Generate a number of related functional requirements that define system services that are required.

M@&; EEEEEEEEE corrwane 131
LABORATORY

Types of Non-Functional Requirements

| 4

LABORATORY

Non-functional
requirements

Product
requirements

Organizational
requirements

External
requirements

Efficiency
requirements

Dependability
requirements

Security
requirements

Regulatory
requirements

Ethical
requirements

Usability
requirements

Environmental
requirements

Operational
requirements

Development
requirements

Performance
requirements

Space
requirements

EFENDABLE SOFTWARE

Legislative
requirements

Accounting
requirements

Safety/security
requirements

| KU e

132

Non-functional Classifications

* Product requirements
— Requirements which specify that the delivered product must behave in a particular way
— E.g., execution speed, reliability, etc.

— “The Mentcare system shall be available to all clinics during normal working hours (Mon-Fri, 0830-17.30). Downtime
within normal working hours shall not exceed five seconds in any one day.”

« Organizational requirements
— Requirements which are a consequence of organisational policies and procedures
— E.g., process standards used, implementation requirements, etc.
— “Users of the Mentcare system shall authenticate themselves using their health authority identity card.”

+ External requirements
— Requirements which arise from factors which are external to the system and its development process
— E.qg., interoperability requirements, legislative requirements, etc.
— “The system shall implement patient privacy provisions as set out in HStan-03-2006-priv.”

| _' ';IDEFENDABLE SOFTWARE 1 33

LABORATORY

KU KONKUK
UNIVERSITY

Quality Attributes

* Measurable or testable properties of a system

— Used to indicate how well the system satisfies the needs of its stakeholders
+ Availability, configurability, modifiability, performance, reliability, reusability, security, portability, maintainability, efficiency,
usability, many others
— Emergent properties : not a measure of software in isolation
* Measures the relationship between software and its application domain
+ Cannot measure this until you place the software into its environment
— Quality will be different in different environments

« Software quality is all about fitness to purpose of stakeholders.
“Does it do what is needed?”
— “Does it do it in the way that its users need it to?”
— “Does it do it reliably enough? fast enough? safely enough? securely enough?”
— “Will it be affordable? will it be ready when its users need it?”

— “Can it be changed as the needs change?”

RN
‘ () DEFENDABLE SOFTWARE '] 34
Ny LABORATORY

L

KU 5o

Quality Attributes : Taxonomies

« -ilities
— understandability, usability, modifiability, interoperability, reliability, portability, maintainability, scalability,
configurability, customizability, adaptability, variability, volatility, traceability, ...

+ -ities
— security, simplicity, clarity, ubiquity, integrity, modularity, ...

* -hess

— user-friendliness, robustness, timeliness, responsiveness, correctness, completeness, conciseness,
cohesiveness, ...

« others
— performance, efficiency, accuracy, precision, cost, development time, low coupling, ...

i 1 ‘S:?E)EFENDABLE SOFTWARE 1 3 5
y LABORATORY

SR

Software Quality Model : ISO/IEC 9126

external and
internal

quality

LABORATORY

functionality reliability usability efficiency maintainability portability
Salitit;ig maturity understandability| | .o analysability adaptability
fault tolerance learnability changeability installability
interoperability recoverability operability resource stability co-existence
security attractiveness utilisation testability replaceability
functionality reliability usability efficiency maintainability portability
compliance compliance compliance compliance compliance compliance
Figure 4 — Quality model for external and internal quality
e
J i %:)EFENDABLE SOFTWARE

FINAL
DRAFT

BONEC JTC 1
Secretanal ANSI

voting begns on
2000-01-20

oling lerminates on

2000-03.20

INTERNATIONAL ISO/IEC
STANDARD FDIS
9126-1

Information technology — Software
product quality —

Part 1:
Quality model

page i1

136

Conventional Quality Categories in ISO/IEC 9126

Software Effect of software
Development product in use
Process Software Product (user impact)

Quality in
Use

External
Quality

Internal
Quality

Process
Quality

137

| 4

ISO/IEC 25010

« ISO/IEC 25010:2011 Systems and software engineering - Systems and software Quality

Requirements and Evaluation (SQuaRE) - System and software quality models

EFENDABLE SOFTWARE
LABORATORY

| Product Quality |
Functional gt Performance e v s o e i
Suitability Reliability Efficiency Usability Maintainability Security Compatibility Portability
| m'f:"smg'ﬁ || Maturity || 'I'imebahaviourl oy || Modularity H Confidentiality H GCo-existence ” Adaptability |
Fi I . B} .
bitsscnialn || Availability || et || Learnabiity || Reusabilty]l Integrity H Interoperability ” Installability |
Func_l:&::L & | Fault tolerance || Capacity || Operability || Analysability “ Nan-repudiation ‘
= User error R .
[T | [| [e |
User interface = =
aesthetics [Toctabllty]l Authenticity |
Accessibility
| Quality in use |
T
- 1 Freedom for Context
1
] Satisfaction i Effectiveness risk Efficlency Coverage
1 1
1 1
1 CONOMIC s Context
‘‘‘‘‘‘ » Usefulness i mitigation
————————— I 1 eal o
ox - T]
. 1 1 MVIromnme:
(Customer eXperience) I Pleasure i iltation
i i
1 1

K[]’ KONKUK
UNIVERSITY
| S——————————

138

Lists of System Quality Attributes (Wikipedia)

Quality attributes [edit)

Motable quality attributes include:

accessibility

accountability

accuracy

adaptability
administrability

affordability

agility {see Common subsets below)

auditability

autonomy [Erl]

availability

compatibility

composability [Erl]

confidentialit

3

configurability

correctness

credibility

custormizability

» debuggability

» degradability
o determinability

o demenstrability

» dependability (see Common subsets below)

» deployability

o discoverability [Erl]
o distributability

o durability

effectiveness

efficiency

evolvability

extensibility

failure transparency
fault-tolerance

fidelity

flexibility

inspectability

installability

Many of these guality attnbutes can also be applied to data quality.

EFENDABLE SOFTWARE
LABORATORY

integrity
interchangeability
interoperability [Erl]
learnability
localizability
maintainability
manageability
mability
modifiability
madulanty
ohservability
operability
orthogonality
portability
precision
predictability
process capabilities

producibility

provability

recoverahility

redundancy

relevance

reliability

repeatability

reproducibility

resilience

responsivensss

reusability [Er]

robustnass

safety

scalability

seamlessness

self-sustainability

serviceability (a.k.a. supportability)
securability (see Common subsets below)

simplicity

stability
standards compliance
survivability
sustainability
tailorability
testability
timeliness
traceability
transparency
ubiquity
understandability
upgradability
usability

vulnerability

139

KU KONKUK
UNIVERSITY

Goals and Requirements

* Non-functional requirements may be very difficult to state precisely.
— Imprecise requirements may be difficult to verify.
— Goals are helpful to developers as they convey the intentions of the system users.

+ Goal
— A general intention of the user such as ‘ease of use’
— Often NFR (Quality Attributes)

. . . Goal
» Verifiable Non-Functional Requirement (Non-Verifiable NFR)

— A statement using some measure that can be objectively tested
Goal Analysis

Verifiable NFR

Th
” %@%EFENDABLE SOFTWARE 1 40

LABORATORY

Example : Goal and Non-Functional Requirements

» Quality factor: Usability

* Goal:
“The system should be easy to use by medical staff and should be organized in such a way that user errors are
minimized.”

» Verifiable non-functional requirement
“Medical staff shall be able to use all the system functions after four hours of training. After this training, the average
number of errors made by experienced users shall not exceed two per hour of system use.”

-' @DEFENDABLE SOFTWARE 141
y LABORATORY

KU Sovemsmy
Goal Analysis

* Goal Analysis
— Focus on why a system is required
» Express the ‘why’ as a set of stakeholder goals
— Goal refinement to arrive at specific requirements
» Document, organize and classify goals
— Goal evolution
* Refine, elaborate, and operationalize goals
— Goal hierarchies show refinements and alternatives

* Goal model visualizes goal analysis
— (Hard) Goal
» Describe functions that must be carried out.
- FR
— Soft Goal

+ Cannot really be fully satisfied such as quality.
— Accuracy, Performance, Security, etc.

* NFR (Quality)

{; ‘E- EFENDABLE SOFTWARE 1 42
1 LABORATORY

Example - Goal Elaboration

Or-decomposition . .
Crucial plannin
decision be made
/mee made

Decision be made e
by email discussion face-to-face

/I\ Agenda be Meeting be Meetin Minutes be
efined scheduled be hel circulated

| Date and Attendees Changes
ocafion set know details be handled

Meeting be
requested
room : change
availability Meeting pequeg-rs
determined announced accepfed
Attendee AV & other aftendees’ facilities
list needs preferences booked 122???;2%6 Par‘ric]i(pan’rs
obtained defined known notified

DEPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

Goal Elaboration

+ Goal Elaboration
— “Why” questions explore higher goals (context)

— “How” questions explore lower goals (operations) Barn G get good
— “How else” questions explore alternatives income grade
A / +
- Relationships between goals t m"f’
— One goal helps achieve another (+)
— One goal hurts achievement of another (-) et full _
— One goal makes another (++) time job

* Achievement of goal A guarantees achievement of goal B
— One goal breaks another (--) -

 Achievement of goal A prevents achievement of goal B attend
lectures

b
i ngEFENDABLE SOFTWARE '] 44
N LABORATORY

KU KONKUK
UNIVERSITY

Soft Goals

« Soft Goals: Goals can never be fully satisfied.
— E.q., “system should be easy to use’ , “access should be secure’
— Also known as NFR(Non-Functional Requirements) or Quality attributes/requirements
— We have to look for things that contribute to satisfying soft goals.

« Example: a train system, we identified 3 soft goals.

minimize improve
serve more
passengers cosls safesy
Wl mainé-.\
ﬂ#‘fi cnlfsw minimize minimize safe distance ¢learer
operation govelopment signalling
p more costs costs
increase fpequen‘l’
train speed tprqins \
reduce
staffing

“é:)EFENDABLE SOFTWARE 1 4 5
y LABORATORY

Soft Goals as Selection Criteria

+ Goal Analysis

minimize improve
costs safety
ey minimize minimize
Pr:ggggr ;g:n?::: operation | development mainfa/in\
comfort costs £=i3 dii?rf::ce clearer
A i
e signalling
éduce
- ++ \#+ staffing
) ¥,
add new increase fmor'e
- requen
tracks train speed) fr?nins
automate automate < buy new
raking collision hire more rolling stock
avoidance operators

LABORATORY

146

Requirements Engineering Processes

RU=

KU Sovemsmy
Requirements Engineering Processes

« The RE process varies widely depending on
— the application domain
— the software development process applied
— the people/organization developing the requirements

Requirements
elicitation and
analysis

Requirements
specification

Requirements
validation

* 4 common activities common to all processes:

. e . System
1. Requirements elicitation and analysis descriptions
2. Requirements specification User and system
requirements
3. Requirements validation
. Requirements
4. Requirements change management »| document

* In practice, RE is an iterative activity in which these processes are interleaved.

148

DEPEMDABLE SOFTWARE
LABORATORY

KU Sovemsmy
1. Requirements Elicitation and Analysis

» Called requirements elicitation or requirements discovery.

— Software engineers work with a range of system stakeholders to find out about the application domain, the
services that the system should provide, the required system performance, hardware constraints, other
systems, etc.

« Difficulties in requirements elicitation:

- StakehOIderS don’t knOW What they rea”y Want As an analyst, T need] . But what do you
. . . to know what do you 11“ antfy(‘)u.tofd?mg.n want to do with

— Stakeholders express requirements in their own terms. want? the soltware forme. the software?

— Different stakeholders may have conflicting requirements. b ’{: i 8 "

— Organizational and political factors may influence the system Ik =B '

requirements.

— The requirements change during the analysis process. e " —
New stakeholders may emerge and the business environment youy el me wehatihe
may change.

o

Can you design the
software to tell you
my requirements?!

Well, I can design
the software to do
anything!

Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved.

PENDABLE SOF TWARE 1 49
LABORATORY

Process Activities in Requirements Elicitation

Requirements discovery
— Interacting with stakeholders to discover their requirements
— Domain requirements are also discovered at this stage.

Requirements classification and organization
— Groups related requirements and organises them into coherent clusters

KU KONKUK
UNIVERSITY

1. Requirements
discovery

-

N\

— Prioritizing requirements and resolving requirements conflicts

Prioritization and negotiation 4. Requirements

specification

Requirements specification
— Requirements are documented and input into the next round of the spiral.

DEPEMDABLE SOFTWARE
LABORATORY

2. Requirements
classification and
organization

3. Requirements
prioritization and
negotiation

150

Requirements Discovery

* Techniques for requirements discovery:

1.

Requirements workshop

© No oA~ WDN

Brainstorming

Storyboards (Use-Case scenario)
Interviews

Questionnaires

Role playing

Prototypes

Customer requirement specification review

EFENDABLE SOFTWARE
LABORATORY

f)

L

Brainstorming

15
Surveys /
Questionnaire

01
10

Requirement

Workshops 09

Prototype 07

Process
Modelling

Observation

K

Document
Analysis

Nt

Interviews

151

KONKUK
UNIVERSITY

KU KONKUK
UNIVERSITY

Requirements Analysis

* Requirements Analysis
— Specify user requirements into System Requirements with support of requirements analysis models

* Requirements Analysis Models for software development
— In Structured Analysis (SASD)

« DFD (Data Flow Diagram)

* FSM (Finite State Machine)

’ EBD (Entity:RelationShip Diagram)_ Introduction to APPLYING UI\"L
— In Object-Oriented Analysis (OOAD) Systems Analysis AND PATTERNS

« Use Cases and Design: A

An Introduction to Object-Oriented Analysis and Design
and Herative Development

Structured Approach

« SSD (System Sequence Diagram)
* Domain Model

Kendall, Penny A.

Note: This is not the actual book cover

M%EFENDABLE SOFTWARE 1 5 2
LABORATORY

K KONKUK
UNIVERSITY

SASD (Structured Analysis and Structured Design)

T /Enable "Move Forward", Cleaner Command (On)

e SASD (structured Analysis and Structured Design, TX &2 A A 7| 7] 'LutH =)

Tick [F 8& 1L] Tick [F 88 IR]

— Atraditional software development methodology for procedural programs S e e
— Top-Down Divide and Conquer b - T

eaner Command (On) Cleaner Gommand-(On)

» Divide large, complex problems into smaller, more easily handled ones
— Functional view of the problem using DFD (Data Flow Diagram)

Tick [F && L&&R]
I Disable “Move Forward",
Cleaner Command (Off),

An FSM for 2.1.1 Controller

Motor Command

Determine
Obstade
Location

1.5

Motor Command

Determine
Dust
Existence
1.6

Motor Command

Cleaner Command

A level 3 DFD for RVC Control
EPENDABLE SOFTWARE 1 53

LABORATORY

An SASD Example - RVC Control

— DFD Level 0
Front Sensor Input
Left Sensor Input

Right Sensor input
Dust Sensor input

Sensor

Cleaner

Structured Analysis

DFD Level 3

Frort Samsee Ingut

® 1 Enable “Move Forward”. Cieaner Command (0n)

Move
8 rorvars
Tk IFBA / \ Tex [P 88w
 Daatte ove. /Disatie’
Cloner . Comar

Motor Command

Determine
Obstade
Location

Motor Command

Determine

Motor Command

Dur Senser Input
—

Tk < Cleaner Command

Controller

Obstacle Location

Structured Design

Trigger

Determine

Determine
Dust Existence

Obstacle Location

Structured Chart
154

| Tum eft | | i |

Interface Interface

l Right Sensor | Dyt Sovce I Move Fom:rdl

EFENDABLE SOFTWARE
LABORATORY ()

KU KONKUK
UNIVERSITY

OOAD (Object-Oriented Analysis and Design)

* OOAD (Object-Oriented Analysis and Design, Z4X| X| 7l et 2)
— A software development methodology for object-oriented programs
» Providing system functionalities through object communications

“Identifying your requirements and creating a domain model, and then add methods to the appropriate classes
and define the messaging between the objects in order to fulfill the requirements”

— Object-Oriented Analysis (OOA)
» Discover the domain concepts/objects (Domain Model)
* |dentify requirements (Use-Case + SSD)

— Object-Oriented Design (OOD)

» Define software objects (Static model — Class Diagram)
» Define how they collaborate to fulfill the requirements (Dynamic model — Sequence Diagram)

M% EEEEEEEEE SOFTWARE 1 5 5
LABORATORY

An 0OAD Example - Dice Game

Define domain Define interaction Define design class
Define use cases = s
model diagrams diagrams
OOA Oo0oD
Interaction Diagram
Use Case : Play a Dice Game DG LD N
- Player requests to roll the dice. :I' : : o
- System presents results. E"QU | ' !
- If the dice’s face value totals seven, - e\ () ,', "
player wins; otherwise, player loses. ' e cd0) '
)
- O ¥
I = o X0Vl (y ! 2
...... | Y T b
\ \ {
1 r 1
Player 1 Rols 2 e
name faceValue
[2
Plays DiceGame Die
1 die1 : Die | 1 2---, faceValue : int
-] die2 : Die i
DiceGame [4 Piitdsa . getFaceValue() : int
-ludes play() roll()
l Domain Model Design Class Diagram
:‘E:)EFENDABLE SOFTWARE 1 5 6

conceptual
classes in
the
domain
inspire the
names of
some
software
classes in
the design

EFENDABLE SOFTWARE
LABORATORY

Sample Unified Process Artifact Relationships

Domain Model

Sale Captured-on | Regilster

1 1] e

/

ProductCatalog

dateTime

>

/ domain concepts
/ \
\ Use-Case Model

"‘ /
/ o - 0N : System J |
/ | | Process Sale Cashier |
make |
1

| |
| 1. Customer

/ ®) Process {
[A Sale use . | NewSale
| o R <
[/N case | arrives ... system !
events enterltem !

| Cashier |
’ . "names | 2. Cashier o i " |
| | ;) * | makes new > L @M)_,:
‘ sale. I
—° Pl e
- I

Use Case Text System Sequence Diagrams |

/ use-case \\ Design Model
\ realization with Ny, ——— i
\ /n_teraction : Register | [: ProductCatalog
\ diagrams T 1—|,77 -
\ | !
|| makeNewsale I |
1 ! o
\\ ‘ Lj_________~77~~—_9"—89t9————4| —————————— i: Sale B
_ | enterltem(id, quantity) _ i ! B
\: desc = getDescription(id) el }
| |
addLineltem(desc, quantity) T el
¢ >
PN |]
I I
1 I !
,/
‘ / the design
| Register | classes
1 ProductCatalog A/ discovered
‘ 1 while designing
UCRs can be
summarized in

class diagrams

Domain Model

Use-Case Model

Sequence Diagrams

Class Diagram

|
catalog | getDescription(...) : ProductDescription ‘

{
‘ makeNewSale()
‘ enterltem(...)

_______________________________________ 157

OO Implementation

KU S
2. Requirements Specification

» The process of writing down the user and system requirements in a requirements document.

— User requirements have to be understandable by end-users and customers who do not have a technical
background.

— System requirements are more detailed requirements and may include more technical information.

* The requirements may be part of a contract for the system development.
— Requirements should state what the system should do, and the design should describe how it does this.
— In practice, requirements and design are often inseparable.

i 1 ‘S:?E)EFENDABLE SOFTWARE 1 58
y LABORATORY

KU KONKUK
UNIVERSITY

The Software Requirements Document

» The software requirements document is an official statement of what is required of the system

developers.
— Should include both a definition of user requirements and a specification of the system requirements.

— ltis NOT a design document.
» As far as possible, it should set of WHAT the system should do rather than HOW it should do it.

» Users of requirements documents

Use the requirements to

System)
enéineers > understand what system is
Specify the requirements and to be developed.
System read them to check that they
customers > meet their needs. Customers
specify changes to the :
rg ui?(lementﬁ System test Use the reqUIrementS to
q : engineers >| develop validation tests for
the system.
Use the requirements
_ | document to plan a bid for -
Managers ™| the o anljj to plan the System Use the requirements to
svetern develobment brocess inioee »| understand the system and
Y velopment p . engineers the relationships between its
parts.

Y
m %\ %:)EFENDABLE SOFTWARE 1 59

4 LABORATORY
R

Features for Good Specifications

Features

Considerations

Valid (Correct)

Expresses the real needs of the stakeholders (customers, users,...)

Does not contain anything that is not “required”

Unambiguous

Every statement can be read in exactly one way

Complete

All the things the system must do and all the things it must not do!

Conceptual Completeness

+ E.g., responses to all classes of input
Structural Completeness

* E.g., no TBDs!!!

Understandable (Clear)

E.g., by non-computer specialists

Doesn’t contradict itself

Consistent Uses all terms consistently
Ranked Indicates relative importance / stability of each requirement
Verifiable A process exists to test satisfaction of each requirement
Modifiable Can be changed without difficulty '

» Good structure and cross-referencing
Traceable Origin of each requirement is clear

Labels each requirement for future referencing

| DEPENDABLE SOFTWARE
LABORATORY

KU 5o

SRS Contents

+ Software Requirements Specification should address:
— Functionality
* What is the software supposed to do?
— External interfaces
* How does the software interact with people, the system's hardware, other hardware, and other software?
+ What assumptions can be made about these external entities?
— Required performance
« What is the speed, availability, response time, recovery time of various software functions, and so on?
— Quality attributes
+ What are the portability, correctness, maintainability, security, and other considerations?
— Design constraints imposed on an implementation

* Are there any required standards in effect, implementation language, policies for database integrity, resource limits,
operating environment(s) and so on?

N ‘S}?E)EFENDABLE SOFTWARE 161
y LABORATORY

Typical Mistakes in SRS

Mistakes Description
Noise text that carries no relevant information to any feature of the problem
Silence a feature that is not covered by any text

Over-Specification

text that describes a detailed design decision, rather than the problem

Contradiction

text that defines a single feature in a number of incompatible ways

Ambiguity

text that can be interpreted in at least two different ways

Forward Reference

text that refers to a terms or features yet to be defined

Wishful Thinking

text that defines a feature that cannot possibly be verified

Requirements on Users

Cannot require users to do certain things, can only assume that they will

Jigsaw Puzzles

Distributing key information across a document and then cross-referencing

Duck Speak Requirements

Requirements that are only there to conform to standards

Unnecessary Invention of Terminology

e.g., ‘'user input presentation function’

Inconsistent Terminology

Inventing and then changing terminology

Putting the onus on the developers

i.e., making the reader work hard to decipher the intent

Writing for the hostile reader

There are fewer of these than friendly readers

| DEFPEMNDABLE SOFTWARE

LABORATORY

KU Sovemsmy
Requirements Document Variability

» Information in requirements document depends on the type of system and the approach to
development used.
— If systems are developed incrementally, it will typically have less detail in the requirements document.

* Requirements documents standards have been designed.

— |EEE standards 830-1998
* Mostly applicable to the requirements for large systems engineering projects

IEEE Std 830-1998 Table of Contents
f

IEEE snfagem?;; 1. Introduction
IEEE Std 830-1998 1.1 Purpose
1.2 Scope

1.3 Definitions, acronyms, and abbreviations
1.4 References

IEEE Recommended Practice for 1.5 Overview
Software Requirements - ‘;"e:“ze“”"“"“

i g 9 .1 Product perspective
SpECIflcatlonS 2.2 Product functions

2.3 User characteristics
2.4 Constraints

|IEEE Computer Society 2.5 Assumptions and dependencies
g 3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
ponsored by the g < . ;
specific requirements. See also Annex A for several different ways of organizing

Software Engineering Standards Committee
this section of the SRS.)

20 October 1938 SHO1E54 Appendixes
Index 8 Templates

FPENDABLE SOF TWARE

LABORATORY Figure 1 —Prototype SRS outline

SRS Templates: IEEE Std 830-1998

A.1 Template of SRS Section 3 organized by mode: Version 1

3. Specific requirements

3.1
Functional Requirements
(in hierarchy)
3.2
Quality Attributes
33
3.4
3.5
3.6

EFENDABLE SOFTWARE
LABORATORY

External interface requirements
3:i1.1 User interfaces

3:1.2 Hardware interfaces

3.1.3 Software interfaces

3.1.4 Communications interfaces
Functional requirements

3.2.1 Mode 1

3.2.1.1 Functional requirement 1.1

3.2.1.n Functional requirement 1.n
322 Mode2

3.2.m Mode m
3.2.m.1 Functional requirement m.1

3.2.m.n Functional requirement n.n
Performance requirements
Design constraints
Software system attributes
Other requirements

3. Specific requirements

A.2 Template of SRS Section 3 organized by mode: Version 2

3.1. Functional requirements

| Mode 1

3.1.1.1 External interfaces

3
3
3
3

.1.1.1.1 User interfaces

.1.1.1.2 Hardware interfaces
.1.1.1.3 Software interfaces
.1.1.1.4 Communications interfaces

3.1.1.2 Functional requirements

3

31113
3.1.2 Mode 2

3.1l.m Mode m

.1.1.2.1 Functional requirement 1

3.1.1.2.n Functional requirement n
Performance

32 Design constraints
33 Software system attributes
34 Other requirements

Constraints

164

UNIVERSITY

SRS Templates: IEEE Std 830-1998

A.3 Template of SRS Section 3 organized by user class A.4 Template of SRS Section 3 organized by object
3. Specific requirements 3. Specific requirements
3:1 External interface requirements 3.1 External interface requirements
3.1.1 User interfaces 311 User interfaces
3.1.2 Hardware interfaces 3.1.2 Hardware interfaces
3.1.3 Software interfaces 3.1.3 Software interfaces
3.1.4 Communications interfaces 3.1.4 Communications interfaces
3.2 Functional requirements 3.2 Classes/Objects
3:2.1 User class | 3.2.1 Class/Object 1
3.2.1.1 Functional requirement 1.1 3.2.1.1 Autributes (direct or inherited)

3.2.1.1.1 Attribute |

3.2.1.n Functional requirement 1.n :
32.2 User class 2 3.2.1.1.n Attribute n
3.2.1.2 Functions (services, methods, direct or inherited)
3.2.1.2.1 Functional requirement 1.1

3.2.m User class m

32 BECH, P S— . . ‘
3.22m.1 Functional requirement .1 3.2.1.2.m Functional requirement 1.m

3.2.1.3 Messages (communications received or sent)
3.2.2 Class/Object 2

3.2.m.n Functional requirement m.n

3.3 Performance requirements .
. . 2 ~]- 10
34 DCSl‘:'I‘I constraints - 3.4..,5) C l.l\\/()h:]uu p
35 Software system attributes 3.3 PLl".l)thllK&. |quum.muu>
5 2wt ‘ 3.4 Design constraints
3.6 Other requirements N s .
35 Software system attributes

3.6 Other requirements
EFENDABLE SOFTWARE \ 65
LABORATORY

SRS Templates: IEEE Std 830-1998

B

A.5 Template of SRS Section 3 organized by feature

3. Specific requirements

A.6 Template of SRS Section 3 organized by stimulus

3. Specific requirements

3.1 External interface requirements 3.1 External interface requirements
3.1.1 User interfaces 3.1.1 User interfaces
3.1.2 Hardware interfaces 3.1.2 Hardware interfaces
3.1.3 Software interfaces 3.1.3 Software interfaces
3.1.4 Communications interfaces 3.1.4 Communications interfaces
3.9 System features 3.2 Functional requirements
3.2.1 System Feature 1 321 Stimulus |
3.2.1.1 Introduction/Purpose of feature 3.2.1.1 Functional requirement 1.1
3.2.1.2 Stimulus/Response sequence
3.2.1.3 Associated functional requirements
3.2.1.3.1 Functional requirement | : . .
3.2.1.n Functional requirement 1.n
3.2.2 Stimulus 2
3.2.1.3.n Functional requirement n
3.2.2 System feature 2 TR o -
3.2.m.1 Functional requirement m. |
3.2.m System feature m .
3.2.m.n Functional requirement m.n
3.3 Performance requirements
. 34 Design constraints
33 Performance requirements 3.5 Software system attributes
3.4 Design constraints 3.6 Other requirements
3.5 Software system attributes
3.6 Other requirements

EFENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

166

B

SRS Templates: IEEE Std 830-1998

A.7 Template of SRS Section 3 organized by functional hierarchy

3. Specific requirements

s

b L Lo W
=W

EFENDABLE SOFTWARE
LABORATORY

External interface requirements
3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces
Functional requirements
3:2:1 Information flows
3.2.1.1 Data flow diagram |
3.2.1.1.1 Data entities
3.2.1.1.2 Pertinent processes
3.2.1.1.3 Topology
3.2.1.2 Data flow diagram 2

3.2.1.2.1 Data entities
3.2.1.2.2 Pertinent processes
3.2.1.2.3 Topology

Performance requirements
Design constraints
Software system attributes
Other requirements

3.2.1.n.1 Data entities
3.2.1.n.2 Pertinent processes
3.2 3 Topology
Process descriptions
3.2.2.1 Process |
3.2.2.1.1 Input data entities
3.2.2.1.2 Algorithm or formula of process
3.2.2.1.3 Affected data entities
3.2.2.2 Process 2
3.2.2.2.1 Input data entities
3.2.2.2.2 Algorithm or formula of process
........ Alfected data entities

3.2.2.m Process m
3.2.2um.1 Input data entities
3.2.2.m.2 Algorithm or formula of process
3.2.2.m.3 Affected data entities
Data construct specifications
3.2.3.1 Construct |
3.2.3.1.1 Record type
3.2.3.1.2 Constituent fields
3.2.3.2 Construct 2
3.2.3.2.1 Record type
3.2.3.2.2 Constituent fields

323p Construct p
3.2.3,p.1 Record type
.2 Constituent fields
Data dictionary
3.2.4.1 Dataelement |
3.2.4.1.1 Name
3.2.4.1.2 Representation
3.2.4.1.3 Units/Format
3.24.1.4 Precision/Accuracy
3.24.1.5 Range
3.24.2 Dataclement 2
3.242.1 Name

3.24 Representation
3.24 Units/Format
324 Precision/Accuracy

3.2.4.2.5 Range

3244 Dataclement ¢

3.24.4.1 Name
3.2.4.4.2 Representation
3.2.4.¢.3 Units/Format
3.2.4.49.4 Precision/Accuracy
3.24.4.5 Range

167

SRS Templates: IEEE Std 830-1998

A.8 Template of SRS Section 3 showing multiple organizations

3. Specific requirements
3.1 External interface requirements
311 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces
3.2 Functional requirements
321 User class 1
3.2.1.1 Feature 1.1
3.2.1.1.1 Introduction/Purpose of feature
3.2.1.1.2 Stimulus/Response sequence
3.2.1.1.3 Associated functional requirements
3.2.1.2 Feature 1.2
3.2.1.2.1 Introduction/Purpose of feature
3.2.1.2.2 Stimulus/Response sequence
) 3.3

3.2.1.2.3 Associated functional requirements

3.2.1.m Feature l.m
3.2.1L.m.1 Introduction/Purpose of feature
3.2.1.m.2 Stimulus/Response sequence
3.2.1.m.3 Associated functional requirements
322 Userclass 2

User class n

(9%

3 Performance requirements

3
34 Design constraints
3.5 Software system attributes
EPENDABLE 3
Lasor 36 Other requirements

168

KU KONKUK
UNIVERSITY

3. Requirements Validation

» Concerned with demonstrating that the requirements define the system that the customer really wants.
— Requirements error costs are high, so validation is very important
» Fixing a requirements error after delivery may cost up to 100 times the cost of fixing an implementation error.

* Requirements checking
— Validity : Does the system provide the functions which best support the customer’s needs?
— Consistency : Are there any requirements conflicts?
— Completeness : Are all functions required by the customer included?

— Realism : Can the requirements be implemented given available budget and technology
— Verifiability : Can the requirements be checked?

R
() DEPENDABLE SOFTWARE '] 69
W y LABORATORY

) »

V-Model of Software V&V

Where We Are Now

EFENDABLE SOFTWARE
LABORATORY

System
Specifications ,

Delivered
\
. User Acceptance (alpha, beta test) Package
\
1
|
) Syst
/ ystem
)\l System Test Integration
/7 Analysis / Revi
P S nalysis / Review
Subsystem /I Integration Test Subsystem

Design/Specs \l

/;
b

Unit/

Components

Specs

I Module Test

Analysis / Review

Unit /
Components

4

A

\ User review of external behavior as it is determined or

becomes visible

Verification

Validation

=
-

KU

170

KONKUK
UNIVERSITY

Requirements Validation Techniques

 Requirements reviews
— Systematic manual analysis of the requirements

* Prototyping
— Using an executable model of the system to check requirements

« Test-case generation
— Developing tests for requirements to check testability

171

KU KONKUK
UNIVERSITY

4. Requirements Change Management

* Requirements change management is the process of managing changing requirements during the
requirements engineering process and system development, and even after delivery

— We need to keep track of individual requirements and maintain links between dependent requirements so that
you can assess the impact of requirements changes.

— Need to establish a formal process for making change proposals and linking these to system requirements.
— Decides if a requirements change should be accepted or not.

Identified Revised

problem requirements
—_—> »

Problem analysis and _ | Change analysis _ Change
change specification “| and costing ~| implementation

 Requirement change management tools start traceability analysis from requirements to code and TC.
— CTIP (Continuous Testing and Integration Platform) is useful.

Th
” %@%EFENDABLE SOFTWARE 1 72

LABORATORY

Homework / Activity #4

- Eolo| x|20f 3%t TRHE SILHE 422, ISO/NEC 9126(25010)0] K| A 5}= Software Quality
O Z2HE siSEl= &S 1 XMS| EM5M K.

— SieE|= S0 Ci$t Quality RequirementsE Z/d st L.

[m|
—
Of
-

ZEHE IR {Hohol 4
Quality Attributes QA1, QA2, QA3, ..., Responsiveness (0f)
QA1 Quality Requirements
QA2
QA
Regmts 28
Responsiveness | “O| A|A&2 5% L0 2271 BH-S3HOF GHC}”

Samples from SE Undergraduate (KU 2023)

nz2AE /|9

E ™
e ooy (w3
=HE 49 : A, A9 522 1Y oUY Wl ¥ A

o o

3t

rie

Al Aol dn Qe w2 TP d|Yof ste AFREY AlojHld
g Helstes 52 AEsty A2 AR AdY 57t =4F

Quality Attributes

Responsiveness, Confidentiality, Authenticity, Correctness ,
Userinterface aesthetics

W= 9kgAd. 9l 71yl AulAclo 2, Ho]A] o]F A|7E. AM i]7le] 1
Time Behaviour - _
£5 Ho|7}x] = gt
Security - ARSART M e O 4=EE 3 FE. JjQ FEe s|dat Hoto] &
Confidentiality A| =] ojo} ST}
o8 Securtty - SOIE oijd So= 299=0] I AtgAlEt e 2d & 9=
Requirment - 7
Authenticity = sir}.
(ISO/IEC — — -
25010) AM Al AR Yste 9x]9] mfgo] d&s] AMEc=). of
Correctness £ 5= Al doixrt 523 AB7F mA|A] b3y A FEZEE
=g
Userinterface UL UXol|lA AHgxl HolE 9fste, 20%9] ALRAFS©C] 10E o]} A}
aesthetics o|Eo] HEEE C]xI9IL]ojo} gih]

lg:)EF'ENDAEILE SOFTWARE 1 7 5
L ABORATORY

5. System Modeling

KU KONKUK
UNIVERSITY

System Modeling

« System modeling is the process of developing abstract models of a system, with each model
presenting a different view or perspective of that system.
— Helping analysts to understand the functionality of the system
— Helping analysts to communicate with customers

— Mostly based on notations in the Unified Modeling Lanquage (UML)

» System perspectives (Views)
— External perspective: modeling the context or environment of the system
— Interaction perspective: modeling the interactions between a system and its environment, or between the
components of a system
— Structural perspective: modeling the organization of a system or the structure of the data processed by the
system
— Behavioral perspective: modeling the dynamic behavior of the system and how it responds to events

M% EEEEEEEEE SOFTWARE ,] 7 7
LABORATORY

Use of Graphical Models - UML

| 4

UML diagrams used for system modeling:

Use case diagram : showing the interactions between a system and its environment

Sequence diagram : showing interactions between external actors and the system, or between system components
Class diagram : showing the object classes and the associations between these classes

State (Statechart) diagram : showing how the system reacts to internal and external events

Activity diagram : showing the activities involved in a process or in data processing

EFENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

178

External Models

b
i ngEFENDABLE SOFTWARE '] 79
N LABORATORY

| E Lt
Context Models

« Context models illustrate the operational context (boundary) Of a system.
— External perspective
— Show what lies outside the system boundaries

— Architecture models show the system and its relationship with other systems.

«system»
« Example: Mentcare System Patient record
” system
«system»

Man); ement «system»
re grtin Admissions
ssstemg system

«system»
Mentcare

«system» «syst-err?»

HC statistics Prescription
system system

«system»

Appointments

m&EFEN DABLE SOFTWARE SySte m ,] 80

Process Models

* Process models reveal how the system is used in business processes.
— Show how the other systems will be used in business environment.

— UML activity diagrams may be used to define business process models.
+ System level > Component interaction level

* Example : Involuntary Detention @zx+3)

EFENDABLE SOFTWARE
LABORATORY

®

Confirm
detention
decision

Inform
patient of
rights

Record
detention
decision

A

Find secure
place

[dangerous]

_<

dangerous]

«system»
Mentcare

[not available]

[available]

Transfer to
police station

Transfer to
secure hospital

Admit to
[not hospital

K

«system»
Admissions
system

| KU KONKUK
UNIVERSITY

Inform
social care
Inform next

of kin @

Update

register

«system»
Mentcare

181

Interaction Models

182

| E Lt
Interaction Models

* Interaction models
— Modeling user interaction
» Helps to identify user requirements.
— Modeling system-to-system interaction
» Highlights the communication problems that may arise.
— Modeling component interaction
* Helps us understand if a proposed system structure is likely to deliver the required system performance and dependability.

 UML Use-Case diagram and UML Sequence diagram are often used.

{: ‘E- EFENDABLE SOFTWARE 1 83
1 LABORATORY

| KUREE

Use Case Modeling

* Use case represents a discrete task that involves external interaction with a system.

— Use case is a text scenario.
* Represents a discrete task that involves external interaction with a system.
* Actors in a use case may be people or other systems.

— Use case diagrams provide an overview of all use cases.
Mentcare System

Register
patient
Unregister
patient

« Example : “Transfer Data” use-case in Mentcare System

g%

Medical receptionist Patient record system
View patient
info.
Actors Medical receptionist, patient records system (PRS) i
e : Medical
A receptionist may transfer data from the Mentcare system to a general patient ..
- record database that is maintained by a health authority. The information receptionist
Description . . . Transfer data
transferred may either be updated personal information (address, phone
number, etc.) or a summary of the patient's diagnosis and treatment.
Data Patient's personal information, treatment summary
Stimulus User command issued by medical receptionist Con,tad
patient
Response Confirmation that PRS has been updated

Gamments The receptionist must have appropriate security permissions to access the
IQDE’“E“DABLE SO TWARE patient information and the PRS. 184

LABORATORY

KU Sovemsmy
Sequence Diagrams

+ Sequence diagrams show the sequence of interactions that take place during a particular use case.

— The objects and actors involved are listed along the top of the diagram, with a dotted line drawn vertically from
these.

— Interactions between objects are indicated by annotated arrows.

« Example : “View Patient Information” use case in Mentcare System

Medical Receptionist

% P: PatientInfo D: Mentcare-DB AS: Authorization
I I I

ViewInfo (PID)

report (Info, PID,
uID)

I

I

"| | authorize (Info, I

View patient uID) i

|
authorization

alt I
[authorization OK] Patient info I
D I
I P P B —+ -
[authorization fail] Error (no access) I
4_.

________ L]
M DEPENDABLE SOFTWARE I i I I 185
) ' | '

LABORATORY |

Structural Models

186

| E Lt
Structural Models

e Structural models

— Represent the organization of a system in terms of the components that make up that system and their
relationships.

— Static models : show the structure of the system design
+ Class diagram

— Dynamic models : show the organization (structure) of the system when it is executing (i.e., dynamics)
* Object diagram, Component diagram, Composite structure diagram

« Structural models are developed/created when you are designing the system architecture.

{; EFENDABLE SOFTWARE 1 87
LABORATORY

KU Sovemsmy
Class Diagrams

« Class diagrams show the classes in a system and the associations between these classes.
— (Object) Class: a general definition of one kind of system object
— Association: a link between classes indicating relationship between them
— Used when developing an object-oriented system model.

[} DerenpaBLE SoFTWARE

Consultant
1 ferred-t Consultation
referred-to
'I *
1.% 1.X— 1.% 1 B;’fé”s
Condition Patient Getr_ltgral Time
diagnosed- referred-by | Practitioner Clinic
with 1.% Reason
d Medication prescribed
attends ;
1.% '\I'/re_atmer;t prescribed
. oice notes
] prescribes o Tralnscript
Consultation Medication
1.% 1.*
‘l %
. _ N
runs prescribes P,feev;'cgi e()
1.4 .| Treatment RecordNotes ()
Hospital 1. Transcribe ()
Doctor

Classes and Associations in the MHC-PMS

KU Sovemsmy
Generalization and Aggregation in Class Diagram

* Generalization (Inheritance) + Shared Aggregation / Composition

Doctor Patient record
| | 1 1
Hospital General .
doctor practitioner 1 1.
4 Patient Consultation
Consultant Team doctor
| 4 | Doctor
. pr Name
Trainee Qualified Phone #
a0 doctor Email
register ()
de-register ()
| |
Hospital doctor General practitioner
Staff # Practice
Pager # Address

PENDABLE SOFTWARE
LABORATORY

189

Behavioral Models

190

| E Lt
Behavioral Models

* Behavioral models
— Model dynamic behavior of a system as it is executing.

— Show what happens or what is supposed to happen when a system responds to a stimulus from its environment.
« Data: Some data arrives and has to be processed by the system.
+ Events : Some event happens and triggers system processing. Events may have associated data.

 Behavioral models
— Data-driven model
— Event-driven model (State machine model)

E§EFENDABLE SOFTWARE 1 9 1
LABORATORY

| E Lt
Data-Driven Models

* Many business systems are data-processing systems that are primarily driven by data.
— Controlled by the data input to the system, with relatively little external event processing.
— Show the sequence of actions involved in processing input data and generating an associated output.

« Data flow diagram (DFD) and UML Activity diagram are also used.

Blood sugar Get sensor Sensor Compute Blood sugar
_—> _—>
sensor value data sugar level level

Calculate
insulin
delivery

Calculate

pump
commands

Insulin
requirement

Insulin Control Pump control
< -
pump pump commands
An Activity Model of the Insulin Pump’s Operation

E§EFENDABLE SOFTWARE 1 9 2
LABORATORY

KU KONKUK
UNIVERSITY

Event-Driven Models

* Real-time systems are often event-driven with minimal data processing.

« Event-driven modeling shows how a system responds to external and internal events.

— Based on the assumption that a system has a finite number of states and that events (stimuli) may cause a
transition from one state to another.

— Modeled well with FSM (Finite State Machine).

Full
power Full power
— | do: set power
=600
Statecharts Diagram of a Microwave Oven
r
Waiting e)
do: display Number :
. fime Full Set time ; Operation '
power do: get number | | do: operate
exit: set time | oven
Half 1
ower :
Half p / Door e
power Timer closed
Start
Door
open Door =
Half power Enabled open Waiting
———| do: set power Door | do: display do: display
=300 closed 'Ready’ time
Disabled @
do: displa
| [et Waiing 193

| 4

State Machine Models

« State Machine models

— Model the behaviour of the system in response to external and internal events.
— Show the system’s responses to stimuli.

- System states : nodes

- Events : arcs between these nodes.
 Transitions : When an event occurs, the system moves from one state to another.

— UML Statecharts diagram

EFENDABLE SOFTWARE
LABORATORY

/ Operation \
Checking
OK
do: check
status
Turntable Emitter Timeout
fault fault
Done
Alarm
do: displa do: buzzer on
- display for 5 secs,
event
Door open Cancel

(Disabled Je—-

(Waiting j<—

Microwave Oven - Operations State

KU KONKUK
UNIVERSITY

194

Model-Driven Engineering

195

KU KONKUK
UNIVERSITY

Model-Driven Engineering

* Model-driven engineering (MDE)

— An approach to software development where models rather than programs are the principal outputs of the
development process.
— The programs executing on a hardware/software platform are generated automatically from the models.

+ Software engineers no longer should be concerned with programming language details or the specifics of execution
platforms.

+ MDE is still at an early stage of development.

— Advantages
* Allows systems to be considered at higher levels of abstraction
* Generating code automatically means that it is cheaper to adapt systems to new platforms.
— Disadvantages
* Models for abstraction are not necessarily right for implementation.
« Savings from generating code may be outweighed by the costs of developing translators for new platforms.

s h Y

EIQZ)EFENDABLE SOFTWARE 1 96
LABORATORY

Model-Driven Architecture

KU

KONKUK
UNIVERSITY

* Model-driven architecture (MDA) is a model-focused approach to software design and implementation.

— The precursor of more general MDEs
— Models at different levels of abstraction are created.

— From a high-level, platform independent model, it is possible, in principle, to generate a working program without

manual intervention.
* CIM (Computation Independent Model)
* PIM (Platform Independent Model)
* PSM (Platform Specific Models)

— Often use a subset of UML models to describe a system

LABORATORY

197

KU KONKUK
UNIVERSITY

Types of Models in MDA

« Computation Independent Model (CIM)
— Models the important domain abstractions used in a system
— CIMs are sometimes called domain models.

* Platform Independent Model (PIM)
— Models the operation of the system without reference to its implementation.

— PIMs are usually described using UML models that show the static system structure and how they respond to
external and internal events.

* Platform Specific Models (PSM)

— Transformations of the platform-independent model into a separate PSM for each application platform
— In principle, there may be layers of PSM, with each layer adding some platform-specific detail.

o
‘ (0 DerenpaBLE SOFTWARE 198
Ny LABORATORY
g

MDA Transformations

Computation Platform
. . Platform Executable
md;pc;ec?éjlent def(;e::Ient > specific model [code
Translator Translator Translator
Domain specific Platform Language
guidelines specific patterns specific
and rules patterns

EPENDABLE SOF TWARE 1 99

Multiple Platform-Specific Models

J2EE Translator —»| J2EEspecific L | Java code | | java program

model generator
Platform
independent
model
.NET specific C# code
.Net Translator —> model —> generator —>»| C# program

EPENDABLE SOF TWARE 200

KU

Adoption of MDA

« Limitations on adopting MDE/MDA
— Specialized tool support is required to convert models from one level to another

— There is limited tool availability and organizations may require tool adaptation and customization to their
environment

* Models are a good way of facilitating discussions about a software design.
— However, the abstractions that are useful for discussions may not be the right abstractions for implementation.

— For most complex systems, implementation is not the major problem — requirements engineering, security and
dependability, integration with legacy systems and testing are all more significant.

» The arguments for platform-independence are only valid for large, long-lifetime systems.

— For most software products and information systems, the savings from the use of MDA are likely to be
outweighed by the costs of its introduction and tooling.

il] :{_:?E)EFENDABLE SOFTWARE 20 ']
! i LABORATORY

KONKUK
UNIVERSITY

MDE Example : SCADE

SCADE Suite

Jd

i

RIS S o Y i Model
R el I Checking
. o i

/
4
- i
i i
\\
o
3
a
b
]
&
g
§
\

Debug &
Simulation

Model Coverage
Analysis

& DESIGN N

/

4 © 2013 ANSYS, Inc. July 14,2013

EFENDABLE SOFTWARE
LABORATORY

Control
Software Design

Formal
Verification

=

Rapid Prototyping
& Executable Spec

Time & Stack
Analysis

VERIFY

~ESTER
¢ ERHEBEL

SCADE Suite
KCG

o Object C.cfde &
- Compiler
Adaptors | Verification
DO-178B

I_ DO-178C
ﬁ IEC 61508
EN 50128

. ISO 26262

Certification Kits

GENERATE

© Esterel Technologies - An 1SO 9001:2008 Certified Company - Confidential & Proprietary

E_Li;

KU KONKUK
UNIVERSITY

202

KU KONKUK
UNIVERSITY

SCADE Suite Editor i

=lei=|

i trolusw - SCADE Suita - [CruiseControl=CraisaCont:
|[@rgie it gen gorrmor et Lot Bt Tos fiete v e SETE
oD@ mexwomas 2o ¢ ek FAsvmean(akr o |ssdwcs
lmcee|lgsevr|-- o seecjnnansaa [ooper|sorannns g

|T|'|IB :Top Leval of the Crulze Control apolicaton
-/ CiseCorirol |Created oy : Esterel Tecnnologies [$Date: 200810127 1311565 [SRevision: 12§
-1 CuesCortrnl
) (2 Gonetante
A Tyes
EI-EY Cperalars
d-TH
Al 4} Gruze Feguation
F-LF CuizeSoendy
i -} SabraeThotl
-3 Proce
B E3 Sretem
E1-423 Cperators
-} SystemSmul
2 edigiz!
- Ibinear
-] lbmatn
-2 lbrethed
21 teplinear
-2 CarTies
23 tevet

]

=] Figwion |] Framewok

= cenerd

Name: |CrisaCortiol
Path: [oniseContiol CriseComrol
Fiename: [Cruzozontiol zacada =
¥ Separeta Flo Nams
=
|' 1+ Public 1 Pvats ‘ |
i I Hessees A MIC A Du Buald /4 S mmuator #, M etiob e E
[& | i |

Cade Integraton
f- Traczablity

For Hep, press F1

10 © 2013 ANSYS, Inc. July 14,2013 @ Esterel Technologies - An 1SO 3001:2008 Certified Company - Confidential & Proprietary

IQZ)EFENDAEILE SOFTWARE 203
LABORATORY

K KONKUK
UNIVERSITY

SCADE Suite Libraries

libpwlinear - libdigital - libmath

pwilinear package digital package math package

S = 7] T
! == e s | I o - i
= = A F = = = = E
Clock Courter Counter Dead band Dead band dool vector fateger Eocigan Boalean Integer to Realta
pmmatrizal ugymmetrical 1o Integer o baol vector o integer 1o real Boolean boalean
= = == = Sl el =] —l _I ’j _I
B =] =l e i 1 o E E
Limiter Limiter Pre-food Pre-load Rizing edige Fatfing edge Fither cape Court down I range I ranygre I range i range
aprnme trical un-symmetrkal syrameidial unsymmedrical fnrin niout ot i out / ut

I ==} A Ao =] | | Er - [= f
F A I E EEE |l B
uantizer fate Falling Rising Aising edigs Hising edge falling adige Faling adge feund Hound Aeund Oetat ta
Kmitar Hystocasis Hystereti o retrigger retrigger e retrigger ratrigge rearist — P Integer

lut package =l j (=2 =1 =1 =1 =

BlmGage o isecsi) truthtables package E E ‘{j @

#iip flop fip flop Filp flap 1K Toggie Minimum Minimum Mavimum Maimum
ot priarity aEa prignity. ofy ofy

F T [0 Absolute of
________liblinear |1 { -] 1 - | “ o
linear package ruth sale intle vect package
]] — T 1 m— T T 1 i
'|-“‘-“' | {-—"—- i J—L| {J‘*‘ filters package L
Uiy Bk e ki i Mstrin , matrin Matria . vector Vedlar . matrix Scalsr product
manary. falling siring sither = o
bo4 s 1ot
] = - .é_..... LI =] Mot Mz [w [[]
L koo e S — LIRSS Bp D T 2ot | LS et e
Derivative Farward Trapezoid Mean over Mean aver
integratar integrater 2ryries 3 peies
u | Mo # = F Npoya™ =¥ Kors M, M4 ot Mo
Disrate fitters [+ novmalired veesions) Transfer functions
15 © 2013 ANSYS, Inc. July 14,2013 @ Esterel Technologies - An 150 9001:2008 Certified Company - Confidential & Proprietary

lg:)EF'ENDAEILE SOFTWARE 204
L ABORATORY

[KU xonkux |

SCADE Rapid Prototyper Ty

» Graphical panels for quick & comfortable model debug &
simulation

o Features a library of interactive & display predefined widgets
o Library of widgets can be user-customized/augmented

B 3 S et b ok e T
CENS rmie ®8 TR FEUE d4ees SR mIRE
T 1

¥ @Esterel Technologies - An 150 9001:2008 Ce rtified Company - Confidential & Proprietary

EFENDABLE SOFTWARE 205
LABORATORY

KU Sovemsmy

Modelica/SCADE Suite Co-simulation - Eee”)

Modelica
Car multi-physics Model

VLt e bocksanCanstant
.....

Ioill|

\
\
el SlREd. PEE SRE L
— W

= C
r " - T T g \ =Rl
v \ -
. -
. / \
\
7 \
f . "
(I = A}
1 SR \
. .
- =] 3
i “
3 B A — - ¢
A EPPOUTUI " S R .
| TESES)
\
" It

SCADE Suite .

BIOAAL_ERES . k . o '. --.
[P Pacejka

N

% Controller Model
DYMOLA (Dassault Systémes) J’i* _
and SCADE Co-simulation is a result White box (debug)
of CESAR Project ‘

" Black box
&) CESAR p——h . 2

28 © 2013 ANSYS, Inc. July 14, 2013 © Esterel Technologies - An 150 9001:2008 Certified Company - Confidential & Proprietary

]}EFENDAEILE SOFTWARE 206
LABORATORY

K KONKUK
UNIVERSITY

" e

USell SCADE Product Family ¢ ESIEREL”)

e

System

Design

.

System Architecture, ’ Y HMI
System Verification e

Control
Software Design

Prototyping, Design,
Verification, Qualified
Code Generation

Software Design

-~ . T ——

Prototyping, Design,
Verification, Qualified

stem & Software ",
. k. Code Generation

Lifecycle Mgt

'

.

Certification Plans, Metrics,
Requirements, Configuration
Management,
Documentation
Generation

111 @ 2013 ANSYS, Inc. July 14, 2013 _esterel Technologies - An 150 9001:2008 Certified Company - Confidential & Proprietary

lg:)EF'ENDAEILE SOFTWARE 207
L ABORATORY

B

MDE Example : NuDE

EFENDABLE SOFTWARE
LABORATORY

PLC
Implementation

Requirements B
| Analysis

Quick Checker ~|

FBD Checker

FBD Simulator

FBDtoC

C Simulator
FBD-C Comparator

C Program f—

€COTS Compiler

r
HW-CBMC”

!

NuSRS RS
NuSCR
NuSCRtoSMV
+ SMV*
NuSCRtoFBD
FBD Editor g
FBD_FTA —
FBD FBDtoVerilog 1.0
+ VIS & smv*
FBDtoVerilog 2.6/2.1

FBDtoVerilog 1.0

Verification

Verification

Co-Simulation

Model checking

Executable
Code

l

PLC

In Commercial
| PLC Software Engineering Tools

/FBDtOVHDL

Safety Analysis

NuDE Navigator

Fault Tree Analysis

STAMP/STPA

Safety Analysis

Verification
Model checking

Safety Analysis

Fault Tree Analysis

Verification

Equivalence checking
Model checking

VIS Analyzer

Verilog/VHDL
Libero Linker

FPGA
Implementation

Verilog
/VHDL

COTS Synthesizer

Verification

CVEC

(Equivalence Checking)

Verification

Netlist
(EDIF)

PER

Layout

FPGA

IST-FPGA
(Co-Simulation)

w

Scenario Generator

& Co-Simulator
+ ModelSim’

In Commercial
FPGA Software Synthesis Tools)

| 4

(7
o
=
o
-
<
Q
3
=
<
.
n

“5;" NuFTA*

juawdojanaqg

NuSRS*_ I

Requirements Analysis

T
I
1
I
I
|
1
1
I
1
1
I
1
1
1
1
1
I
1
1
I
1
I
1
1
1
v

0

NuSCRtoFBD*

Design

7Jrep FTA*

¥
-

FBD Editor* l

.
"

| KU KONKUK
UNIVERSITY

Implementation
1
1
1
]
1

Simulator &

C t
P

e e e e e e e ~

1 . : ” N
» Verilog '

Y 1
HW- =] — x o
cs?h\/l}c < ! Executable

: Code for
1 c 1 o’ 4 PLC

] Program \
I
] |
I
Y
-

FBDtocC*

- - ——— -

NuSCRtoSMV\

uonesLIaA

EFENDABLE SOFTWARE

Quick
checker

Safety Analysis

FBDtoVerilog*

G :
\Q,f FBD Checker*s,

VIS

L5 i
N

1
FBDtoW'ﬂJJ‘

5 s
FBD Tester 3FBDtoVerilog*

Development

A I-J' & : :
IST-FPGA H ! EDIFtoBLIF-MV*

' L.>l e ¢/

Verification "-} : XpS HE

5 NusRS - Edlipse

File Edit Navigate Search Project NUDE NuSRS Run Window Help

NUHG e oR S HEE|

[PA D DR I T R

Quick Access

-
@ Common Navigator 5 =
Bg ¥
4 1z New_Nude
(= FBDtoC

(= FBDtoVerileg
(= NuSCRioFBD
4 (= NuSRS
& (NuSCR) RPS BP (20130718).xm|

0 ftems selected

EFENDABLE SOFTWARE

LABORATORY

= Hierarchy Window 3

=]

¢ (= Root

298P
&9 0_LO_SG1_LEVEL
o g_VAR_OVER_PWR
o3 g_HI_LOG_POWER
o7 g_LO_PZR_PRESS
o [J0_SG1_LO_FLOW
o[g_HI_LOCAL_POWER

escription Window 53 =B

¢ O 0_VAR_OVER_PWR

¢ [Description
[718 Dieet EE (EHISI2E
9 [TemplateNumber

9 =] Input
[} £.VAR_OVER_PWR_PV - 0.30
[} 1_VAR_OVER_PWR_Manu_Te
[} _VAR_OVER_PWR_MT_Quer}

[T £_VAR_OVER_PWR_Trip_Stat|

[} L.VAR_OVER_PWR_Pirp_Stat

[} 1_Mod_Err: boolean

[} £_VAR_OVER_PWR_Chan_En

[} 7_VAR_OVER_PWR_Op_Byp._|
[Output

[} _VAR_OVER_PWR_Val_Out

[} _VAR_OVER_PWR_Ptrp_SP

D f_VAR_OVER_PWR_Trip_SP :[|

[th_VAR_OVER_PWR_Ptrp_Lo
[T} th_VAR_OVER_PWR_Trip_Lot
[1_VAR_OVER_PWR_PV_Er

[»

[} . VAR_OVER_PWR_Trip_Out
I I Dl

) Diagram Window 52

3 0_VAR_OVER_PWR x

VAR_OVER_PWR_P’

VAR

VA

VAR

HDOODIE

f.vaR

R_OVER_PWR_Manu,

R_OVER_PWR_MT_guery

R_OVER_PWR_Trip

_OVER_PIWR_Pirp_g

ot L.{R,OVER,PWRJ;\ out

RR_OVER_PWR_Int_SP

fR_OVER_PWR_TripSP

{1

Ll

[Type Window 52

Problems

f_Mod_Err : boolean
T_VAR_OVER_PWR_Chan_ErT : boolean
_VAR_OVER_PWR_MT_Query : boolean
f_VAR_OVER_PWR_Manu_Test : 030000
T_VAR_OVER_PWR_Op_Byp_lnit: boolean
f_VAR_OVER_PWR_PV : 0.30000
_VAR_OVER_PWR_PV_EIT: boolean
T_VAR_OVER_PWR_Pirp_Out : boolean
f_VAR_OVER_PWR_Ptrp_SP : 0.30000
f_VAR_OVER_PWR_Ptrp_Status : boolean
T_VAR_OVER_PWR _Trip_Out : boolean
_VAR_OVER_PWR_Trip_SP : 0..30000

I

NuSRS - NuSCR Modeling Environment

| KU s |

210

Homework / Activity #5

“Digital Twin (C|X|E E2l)2| B2|& &5 B4, L] HE Al S ot EM K.

Samples from SE Undergraduate (KU 2021)

CAL= D
- TME_(‘D_E

CIAY ER0| 58 29 €87|e Az 882 HolHE 7tadel #&0| 290 A~ YA
A H&ECHL 2H HERE OlF 7|¢Hoz ¥S0| ZEoM ChgTt At AlZ2ojds THE + A2
e 220l L#EB Ol& ’SHJE LX) Mi%% %‘ZLE{IOIE%’ + Ut FxCL ojF B3 H A2
AUs 9 of 2 &3 o
EE 7[gt

FILSUHS I LA HE2 CXEY EAS PIT AWMUK MY MY AAHS N2 =
Z 280 SO\t 0| Sof HSUHE ABXSA) 7WIeS $8Y A8HY CRoz AN U
Sy AEE HYGD O/F MM 4HE IS 3D U0 YAAIZ F HudeE pelY + YUs
OXEEY 752 U AAdoz 22 9 ehuZau|o) o Y0 BalZ 4+ UA ot
A YAHoLL, 2o AN, IO S Hu|2 EANY| SHO|CE ML Ist stojelz

4.2.1 General Electric 2] ‘Predix’ [9]

GE: 2016 M ZZ0| AYUS 22PC J|U F BAEQ T2 T A(PrediE
Y ZA A B0 NF XFNA 20 Yo AXEYO HUA} T A BNES
Sl 44 sjo| MRS OfB2H0IM MelAF PEUCD], 55| HLAY GE YAl TYHYAF
g8 2017 JIF02 808 O] Lot CIXTY EAS Hets XY E ol
oEMD Utk

4.2.3 GE 2232 “"Command Center” [10]
0= EAF7IAYHS GEEAA O & 'Cx|Y EY 'HUE ME (Command Center)' &
HYOo| 7Hx| 1

TS3CL XY ERE e HOIE[RZ Ztee] e TE1 2FE oFo=

o g2Fc g 2ds S dAlZtez Y
ACL Ol= Zofo| izt HETH TR2JHS Y 4+ ATE YA ok
GE @A AH0{o] HMEME
X @st7| 2fel 24 AlZH LAWY Al 7= 86 S8 SLUEHESID 4 T2 ¥ S M=ol

Lot &Sl dFe duo A olzTe XATCL Y WSER2 Ue-YYd-+=

MESE S o2 7tX] EEi2 O|R0{H Aon, CXEY ER Al220|H88 EZE A4ES
QXIS 9IS o=l EX|otct QEQE HO|A X 'E(The Joint Commission Journal)@| 2&

=20 =28, o] A|lAHS S5 EAZFUAYRO AT AP £8H2 2% 7L 324

7| AlZHe 35% ZARct

Samples from SE Undergraduate (KU 2021)

4.2.1 General Electric 2| ‘Predix’ [9]
GEE 2016 d MA Z|xo] A8 Zet2C J|H @ E ZSiE0Q| ‘IS A (Predix) &

SARUCE YA S HF XSMA| S+ Ho| 2T ELYO JHERIL L

Ofm
of

o=t JHol LB ofE2|AH0lY YEHAHE A=

g8l 20174 7122 80T 70| 2= CIXIE ERE 7HEdIn CX[E ER o

HO
o}

M3 9t

AN

4.2.3 GE 270{2] “Command Center” [10]

0= E257AEd

r|o

GEH
TEAUC OXE EAZ Y0 7IX| 1 2
o ge&t) sig 24
QUCH 0= ZAxfof wet HE T2 QUs +AS
GEZAAOjo] AUMEMEHE T MA 3007 Ol4ol HAM =] AT ZEo| &xt X2 &

KI2ot7] 2feH 24 AlZE LiL) Al 7|22 8¢ Qg ZUEZotD 7 Z2dls dE9

Ir

Eot MSTSEHO| 4Fs Mo A= clzfls X S thSEHE t=-Ay

o

o] AlZHS 359% Zach

O A

213

lg:)EF'ENDAEILE SOFTWARE 21 4
L ABORATORY

An Introduction to

Structured Analysis and Structured Design
(SASD)

I(I l' KONKUK
UNIVERSITY

References

* Modern Structured Analysis, Edward Yourdon, 19809.
* Introduction to System Analysis and Design: a Structured Approach, Penny A. Kendall, 1996.

]}EFENDAEILE SOFTWARE : AL 2,] 6
LABORATORY

KU KONKUK
UNIVERSITY

Structured Analysis

» Structured analysis [kendall 1996]

— Aset of techniques and graphical tools
» Allowing the analysts to develop a new kind of system specification that are easily understandable to the users.

— Data/Functional modeling: DFD, ERD
— State-oriented modeling: STD (FSM)

* Analysts attempt to divide large, complex problems into smaller, more easily handled ones.
— Top-Down Divide and Conquer approach

M% EEEEEEEEE SOFTWARE 2 1 7
LABORATORY

Histo ry of SASD (Structured Analysis and Structured Design)

Developed in the late 1970s by DeMarco, Yourdon and Constantine after the emergence of structured

programming.

IBM incorporated SASD into their development cycle in the late 1970s and early 1980s.

Yourdon published the book “Modern Structured Analysis” in 1989.

The availability of CASE tools in 1990s enabled analysts to develop and modify the graphical SASD

models.

EFENDABLE SOFTWARE

small world BY ToM BRISCOE
PID You SEE IT6 GoT A FIGUREPD OUT
THIS, JAKE? CALENDAR, DATE- HOW To TURN
T THE PALMOPEX BOOK, E'MAIL- \TON YET?
2000 POCKET PC! CLIENT, WEP
BROWSER, VoICE
RECORDER ML A
BoDY ODOR ALARM!

r } ‘-lf-’;

W priSpoe. ond

5@ 001 BRISCOE wWwvw!. briscog. org

218

An Overview of SASD

SA

Environmental Model

Behavioral Model

Data Dictionary

State Transition
Diagram

EFENDABLE SOFTWARE
LABORATORY

Time

219

Structured Analysis (SA)
- An Example of RVC SW Controller

]}EFEN DABLE SOF TWARE 2 2 O
LABORATORY

Statement of Purpose

» Aclear and concise textual description of the purpose for the system to develop
— Should be deliberately vague.
— Intended for top level management, user management and others who are not directly involved in the system.

() DEFENDABLE SOFTWARE 22 ']
y LABORATORY

Statement of Purpose - RVC Example

* User Requirements (Business Requirements)

- PFR (Preliminary Functional Requirements) E £|I-Ao-I

Robot Vacuum Cleaner (RVC) SW Controller

* An RVC automatically cleans and mops household surface.

* |t goes straight forward while cleaning.

« |If its sensors found an obstacle, it stops cleaning, turns aside left or right, and goes forward with cleaning.

« If there are obstacles in both front, left and right, it move backward and turn aside left or right, and goes forward.
» If it detects dust, power up the cleaning for a while.

* We do not consider the detail design and implementation on HW controls.

* We only focus on the automatic cleaning function.

b
i ngEFEN DABLE SOFTWARE 2 2 2
N LABORATORY

System Context Diagram

» A special case of DFD (pata Flow Diagram)
— DFD Level 0
— Highlights the boundary between the system and outside world.
— Highlights the people, organizations and outside systems that interact with the system under development.

* Notation :

Process : represents the proposed system

Flow : represents the in/out data flows

- Terminator : represents the external entities

mgn EEEEEEEEE corrwane 223
LABORATORY

System Context Diagram - RVC Example

RVC
Control

Sensor

Cleaner

EFENDABLE SOFTWARE 224

Event List

» Alist of the event/stimuli outside of the system to which it must respond.
— Used to describe the context diagram in detail.

» Types of inputs events
— Flow-oriented event : triggered by incoming data
— Temporal event : triggered by internal clock
— Control event : triggered by an external unpredictable event

225

K KONKUK
UNIVERSITY

Event List - RVC Example

Front Sensor Input Detects obstacles in front of the RVC
Left Sensor Input Detects obstacles in the left side of the RVC periodically
Right Sensor Input Detects obstacles in the right side of the RVC periodically

Dust Sensor Input Detects dust on the floor periodically

Direction commands to the motor

DUEE I (go forward / go backward / turn left with an angle / turn right with an angle)

Clean Turn off / Turn on / Power-Up

Direction
Front Sensor Input

Left Sensor Input
Right Sensor Input
Dust Sensor Input

RVC RVC

Control

Control

Cleaner

LABORATORY

]}EFENDABLE _— Context Diagram for RVC 226

KU vy

System Context Diagram - RVC Example

Direction
Front Sensor Input

Left Sensor Input
Right Sensor Input
Dust Sensor Input

RVC

Sensor
Control

Cleaner

EFENDABLE SOFTWARE 227

K KONKUK

UNIVERSITY

Data Flow Diagram (DFD)

* Provides a means for functional decomposition.
— Composed of hierarchies(levels) of DFDs.

* Notation (akind of cDFD)

Data Process

/ Data Flow

Control Process

Data Store

> Control Flow

]}EFENDAEILE SOFTWARE 228
LABORATORY

B

DFD Level 0 - RVC Example

EFENDABLE SOFTWARE
LABORATORY

Front Sensor Front Sensor Input

Left Sensor
R,

i Control
Right Sensor E,'g:,‘tt Senso 0

Direction

Dust Sensor Dust Sensor Input

Tick

Digital Clock

K KONKUK
UNIVERSITY

229

KU KONKUK
UNIVERSITY

DFD Level 0 - RVC Example

(A kind of) Data Dictionary

Front Sensor Input Detects obstacles in front of the RVC True / False , Interrupt
Left Sensor Input Detects obstacles in the left side of the RVC periodically True / False , Periodic
Right Sensor Input Detects obstacles in the right side of the RVC periodically True / False , Periodic

Dust Sensor Input Detects dust on the floor periodically True / False , Periodic

. . Direction commands to the motor .
I (go forward / turn left with an angle / turn right with an angle) PR RSl (e (gt

Clean Turn off / Turn on / Power-Up On / Off/ Up

IQZ)EFEN DABLE SOF TWARE 2 3 O
LABORATORY

DFD Level 1 - RVC Example

Front Sensor Input

Direction

Left Sensor
\Iﬁplﬁ\ Obstacle & Cleaner &
Dust Obstacle & Dust Motor
Right Sensog Detection Location Control
Input

1

2

Dust Sensor Input

Tick

lg:)EFENDABLE SOFTWARE 2 3 1
L ABORATORY

K KONKUK
UNIVERSITY

DFD Level 2 - RVC Example

Front
Sensor
Interface Front Obstacle

1.1

Front Sensor Input

Left Sensor Input Left Determine
Sensor Left Obstacle Obstacle

. Obstacle

Interface Location Location
_________ 1.2 1.5 -
Right
Right Sensor Input Sensor Right Obstacle
Interface
1.3 Determine
Dust Dust
Existence Existence

Dust 1.6
Dust Sensor Input Sensor Dust Existence
Interface
1.4

EFENDABLE SOFTWARE 2 3 2
LABORATORY

K KONKUK
UNIVERSITY

DFD Level 2 - RVC Example

Direction

Motor
Motor Command Interface

2.2
Obstacle
Location
Main
Control
2.1
Dust
Existence Cleaner

Cleaner Command Interface
2.3

Tick

BDEF'ENDAEILE SOFTWARE 2 3 3
L ABORATORY

DFD Level 3 - RVC Example

Enable

1
1
1
1
1
1
1
[l
]
1
1
]
1
i
]
[l
1
1
|

Motor Command

1
1
1
- !
- - I|
R E— a"” f"’ \
H 1
Obstacle Location _ Disable .‘
FIL/IR ‘
:
1
\
Controller Trigger :
09 Motor Command
e ‘
Tick <_
Dust ~ ~
Existence Tick -
\~~\ \\\
\\
~N
\\
N, S
.~

.o
EFENDABLE SOFTWARE
LABORATORY

Motor Command
—>

Move
Backward

215

Motor Command

234

K KONKUK
UNIVERSITY

DFD Level 4 - RVC Example

FSM for Controller 2.1.1

/ Enable “Move Forward”, Cleaner Command (On)

Move
Forward
Tick [F && IL]
/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Left”

Tick [F && IR]

/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Right”

able “Move Forward”, / Enable “Move
eaner Command (On) Cleaner Command

Turn Left Turn Right

Tick [F && L && R]
/ Disable “Move Forward”,

Cleaner Command (Off), Problems in this model:

1. “Stop” state (deadlock)

2. Not consider “Dust”

3. No Priority for left/right turn
4. Not consider “Backward”

]}EFENDAEILE SOFTWARE 2 3 5
LABORATORY

DFD Overview - RVC Example

(Problems Are Not Resolved Yet)

ey,

Direction
Front Sensorinput

Left Sensorinput
Right SensorInput
Dust Sensor Input

RVC
Control

(e
o/

Cleaner

Front
Sensor
Interface Front Obstacle

1.1

Front SensorInput

Tick
L Y

Left Sensor Input Left Determine Motor Command

Left Obstacle _
Sensor Obstacle porem—

Interface Location Location
_________ 1.2 1.5 -
Sontrolier Motor Command Motor Birscton
2141 Turn Left
Right 21.3 Intezrfzace
Right SensorInput Sensor Right Obstacle 3
Interface
1.3 Determine
""""""" Dust Dust
Existence Existence
Dust 1.6 Motor Command
Dust Sensor Input Sensor Dust Existence
Interface
1.4
Tick ==~
KONKUK University 30
Cleaner Command Cleaner
Interface

23
EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

Process Specification

* Shows process details which are implied but not shown in a DFD.
— Specifying the input, output, and algorithm of a module in a DFD
— Normally written in pseudo-code or table format
— Specifying all (upper/lower) processes in DFD hierarchies

« Example : Left Sensor Interface

Front
Sensor
Interface Front Obstacle

11

Front Sensor Input

Ref. No. 1.2
Left Sensor Input Left Determine Name Left Sensor Interface
S Left Obstacle Obstacle _— - - -
lnfeﬁ::e Location f’:;;j; Input Left Sensor Input (+Data structure if possible) , Tick
----------- 1.2 15
Output Left Obstacle (+Data structure)
bt Process “Left Sensor Input” process reads an analog value of the left
NS o gt . g Obaiade Description sensor periodically, converts it into a digital value such as
Interface True/False, and assigns it into output variable “Left Obstacle.”
2 13 Determine
""""""" Dust Dust
' Existence _ Existence
Dust 16
Dust Sensor Input Sensor Dust Existence
Interface
1.4 237

Tiek ==

| 4

Data Dictionary

Defines data elements to avoid different interpretations.

— Often used in a simple form like below

EFENDABLE SOFTWARE
LABORATORY

Front Sensor Input
Left Sensor Input
Right Sensor Input

Dust Sensor Input
Direction

Clean

Front Obstacle
Left Obstacle
Right Obstacle
Dust Existence
Obstacle Location

Dust Existence (2)

Detects obstacles in front of the RVC

Detects obstacles in the left side of the RVC periodically
Detects obstacles in the right side of the RVC periodically
Detects dust on the floor periodically

Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle)

Turn off / Turn on / Power-Up

SEULSERN inout Output Event Format / Type

True / False , Interrupt
True / False , Periodic
True / False , Periodic

True / False , Periodic
Forward / Left / Right / Stop

On/ Off/ Up

KU KONKUK
UNIVERSITY

238

Entity Relationship Diagram (ERD)

» A graphical representation of the data layout of a system at a high level of abstraction
— Defines data elements and their inter-relationships in the system.
— Similar with the class diagram in UML.

* Notation (Original) Associated Obiect
SSsoclale jeC

Data Element Cardinality — Exactly one

<> Relationship

Cardinality — Zero or one

Cardinality — Mandatory Many

dhatl

Cardinality — Optional Many

| _' ?IDEFENDABLE SOFTWARE 23 9

LABORATORY

Entity Relationship Diagram - Example

Accounts

<Contains>

Cards

N
U< Payments
O—<Bills
2
I
0<] Transactions

F %

Transaction_

prod

ucts

l{l]' KONKUK
UNIVERSITY

240

KU KONKUK
UNIVERSITY

Entity Relationship Diagram - Example

17H FoHs dF F4 H
¥ SIHS e-mail
M
Entity
SEHS I F
B EL
1
M 1 3|8l 1 M
S () 2l Atz
Relationship 1
HEHS ER 88
M Z oIt
48 FA4 AR =
O e-mail
TS HEHs &8 144
Attribute Lk 2ol =A

DEPENDABLE SOFTWARE 241
LABORATORY

KU KONKUK
UNIVERSITY

State Transition Diagram

* Shows the time ordering between processes.
— More primitive than the Statecharts Diagram in UML
— Different from the State transition diagram (FSM) used in DFD

— Similar with the UML Activity Diagram
— Not widely used now.

* Notation:

/

Objects Transitions
(Process)

o
‘ (0 DerenpaBLE SOFTWARE 242
Ny LABORATORY
g

KU S
State Transition Diagram - Example

Customer
Customer Active pays bills
makes purchase Account,
Acgoun_wt Balance Customer
application makes purchase
Customer

Create request to
ew Accountl. close account Customer
No Balancs pays balan does I.‘lOt
ay bills

Bad Debt
Account.
Balance

Closed
Account.
No Balancg

N ;}?E)EFENDABLE SOFTWARE 243
y LABORATORY

Homework / Activity #6

» Structured Analysis for the RVC Control Software
— Complete the analysis for the RVC Controller in more details.

— Resolve the problems identified
+ “Stop” state (deadlock)
* Not consider “Dust”
* No Priority for left/right turn
* Not consider “Backward”
* Inconsistent design of Cleaner Interface with Motor Interface

— Complete full versions of process specifications and data dictionary

+ System Context Diagram /
- Ahierarchy of DFDs + FSM R - /
+ Process Specifications ‘"@ e S E e e

« Data Dictionary — A @ = @“‘"‘mﬁ,@“ﬁ“
-

— PPT 2 A3IA Q. -y~
/ 244

Homework #6

- SA7|'HZS &8dlA Mt RVC Control SWO]| LSt 2 7 ALSHE M| M (SRS)E IEEE Std 830-19985

E4510] EME 2M5HM Q.
— X3t Templates= AL 3HA| .

IEEE Std 830-1998
EEE Sx t.; 1 w

IEEE Sid 830-1998

IEEE Recommended Practice for
Software Requirements
Specifications

IEEE Computer Society

Table of Contents
1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview
2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing
this section of the SRS.)

Appendixes
Index

Figure 1—Prototype SRS outline

245

lg:)EF'ENDAEILE SOFTWARE 246
L ABORATORY

Structured Design (SD)
- An Example of RVC SW Controller

]}EFEN DABLE SOFTWARE 247
LABORATORY

KU KONKUK
UNIVERSITY

Structured Design

* Needs transform analysis
— No data comes, being processed, and goes out by itself.
— Somebody should call input/output processes to do something.

* Needs to design functional decomposition according to SA
— Information hiding
— Modularity
— Low coupling
— High internal cohesion

* Many models were proposed, but not widely used except
— Structured Charts

il] :{_:?E)EFENDABLE SOFTWARE 248
! i LABORATORY

Structured Design - Transform Analysis

Determine
Obstade
; Obstaclz
Location omtien

1.5

Petermine
Bust Dust
Existence Existencs

1.6

Interface
14

Cleaner Command

Central Transformation
(Control)

Afferent Flow
(Input)

EFENDABLE SOFTWARE
LABORATORY

KONKUK |
UNIVERSITY

K

Motor Command

Motor Command

Motor Command

Efferent Flow
(Output)

249

Structured Design - Transform Analysis

Input Process Output
(Afferent Flow) (Central Transformation) (Efferent Flow)

Data Flow Data Flow

Control

Module Call Module Call

Module Call

Process

EFENDABLE SOFTWARE 2 5 O

KU Sovemsmy

Structured Charts - Notation

Basic Notation [Yourdon 1989
/ \ _—— Variations ——
- Data module
v Asynchronous

———— module call

Module call
Iteration

Decision

o N
K ./ Control Flow/ \ /X /

EFENDABLE SOFTWARE 2 5 1

Structured Charts - Example

(L Payment Process Payment Control

‘ PaymEernrgr Payme nt?

Payment? Process - !
Today | Write Payment

Process Payment

Get Payment

Payment ?
Raw (L Payment Payment?
Payment Error - :
i raw $ [& Update Insert
Payment ¢ Payment
: Account Payment
Read Edit Event
Record Record

Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002)

| _' ';IDEFENDABLE SOFTWARE 252

LABORATORY

Structured Charts - RVC Example

Frre S ot

Determine
Obstade
Logation

Leh e

Determine
Dust
Existence
16

Motor Command

Cleaner Command

Obstacle Location

OoO—

Dust Existence

Oo—

Controller

(Basic)

Determine

Obstacle Location

Front Sensor Left Sensor
Interface Interface

EFENDABLE SOFTWARE
LABORATORY

Determine
Dust Existence

Dust Sensor

Interface

Enable
Disable

Move Forward

Trigger

Trigger

253

Structured Charts - RVC Example (Advanced)

Frre S ot

Determine
Obstade
Logation

Right S ot
Determine
Dust
Existence
16

Motor Command

Cleaner Command

Controller

< %

Obstacle Location

O/'

Dust Existence

Determine Determine E Trigger
q . nable
Obstacle Location Dust Existence Disable \
Trigger
Dust Sensor Move Forward Turn Left Turn Right

Right Sensor

Left Sensor
Interface

Interface

Front Sensor
Interface

Interface

254

EFENDABLE SOFTWARE
LABORATORY

Homework / Activity #7

Complete the RVC structured design.
— Complete a full version of Structured Charts on your own.

Implement a C program as detail as possible.

— C program (might be executable with libraries emulated)
Based on the DFD and Structured Charts

Structured Chart

Determine.
‘Obstacie Location

| \ = S
EIEIES B i

DFD + Process Specifications

C Program

void main()

int obstacle_Location;
bool dust_Existence;

while(1)

i(...)

wait(200ms);

obstacle_Location = Det_OL();
dust_Existence = Det_DE();

255

]93EF'EN DABLE SOFTWARE 2 5 6
L ABORATORY

6. Architectural Design

KU KONKUK
UNIVERSITY

Architectural Design

* Architectural design is concerned with understanding how a software system should be organized
and designing the overall structure of that system.
— Acritical link between requirements engineering and design
— lIdentifies the main structural components in a system and the relationships between them

* Architecture model describes how the system is organized as a set of communicating components.

il] :{_:?E)EFENDABLE SOFTWARE 2 5 8
! i LABORATORY

The Architecture of Packing Robot Control System

Vision
system l
_ Opj_ect_ Arm Gripper
identification —— controller controller
system
A
Packaging
selection
system
A
>
Y
- < |
Packing _| Conveyor

system “1 controller

_ ‘E- EFENDABLE SOFTWARE 2 5 9
LABORATORY

R e
Architectural Abstraction

* Architecture in the large

— Concerned with the architecture of complex enterprise systems that include other systems, programs and
program components
» Enterprise systems are distributed over different computers, which may be owned and managed by different companies.

* Architecture in the small
— Concerned with the architecture of individual programs
— Concerned with the way that an individual program is decomposed into components

i] ‘S:?E)EFENDABLE SOFTWARE 260
y LABORATORY

Advantages of Architectural Design

« Stakeholder communication
— Architecture may be used as a focus of discussion by system stakeholders.

« System analysis
— Analysis of whether the system can meet its non-functional requirements is possible.

« Large-scale reuse
— The architecture may be reusable across a range of systems.
— Product-line architectures may be developed.

| _' ';IDEFENDABLE SOFTWARE 26 1

LABORATORY

KU KONKUK
UNIVERSITY

Architectural Models

* Representation of architecture models
— Simple, informal block diagrams
— Box and Line Diagrams
— Extensions of UML models

« Use architecture models

— As a way of facilitating discussion about the system design

* A high-level architectural view of a system is useful for communication with system stakeholders and project planning
because it is not cluttered with detail.

« Stakeholders can relate to it and understand an abstract view of the system. They can then discuss the system as a whole
without being confused by detail.

— As a way of documenting an architecture that has been designed

» To produce a complete system model that shows the different components in a system, their interfaces and their
connections.

LABORATORY

Th
” %@%EFEN DABLE SOFTWARE 2 6 2

KU KONKUK
UNIVERSITY

Architectural Representations

« Simple, informal block diagrams
— Showing entities and relationships simply
— The most frequently used method for documenting software architectures

— However, lack of semantics do not show the types of relationships between entities nor the visible properties of
entities in the architecture.

— The semantics of architectural models depend on how the models are used.

« Box and Line Diagrams

— Very abstract - not show the nature of component relationships nor the externally visible properties of the sub-
systems.

— However, useful for communication with stakeholders and for project planning.

+ Extensions of UML models
— Extending component diagrams including class diagrams, object diagrams, composite structure diagrams.
— Not widely used yet.

RN
‘ il DEPENDABLE SOFTWARE 263
Ny LABORATORY
L

Architectural Design Decisions

264

Architectural Design Decisions

* Architectural design is a creative process.

— The design process differs depending on the type of system being developed.

* However, several common design decisions span all design processes.
— Affect the non-functional characteristics of the system

EFENDABLE SOFTWARE
LABORATORY

Is there a generic application
architecture that can act as a
template for the system that is
being designed?

How will the system be
distributed across hardware
cores or processors?

What architectural patterns or
styles might be used?

What will be the fundamental
approach used to structure
the system?

How will the structural
components in the system be
decomposed into
sub-components?

What strategy will be used to
control the operation of the
components in the system?

What architectural organization
is best for delivering the
non-functional requirements
of the system?

How should the architecture
of the system be
documented?

KU

265

KONKUK
UNIVERSITY

KU KONKUK
UNIVERSITY

Architecture and System Characteristics

Performance
— Localize critical operations and minimize communications. Use large rather than fine-grain components

+ Security
— Use a layered architecture with critical assets in the inner layers

- Safety
— Localize safety-critical features in a small number of sub-systems

* Availability
— Include redundant components and mechanisms for fault tolerance

* Maintainability
— Use fine-grain, replaceable components

b
i ngEFEN DABLE SOFTWARE 2 6 6
N LABORATORY

KU KONKUK
UNIVERSITY

Architecture Reuse

+ Systems in the same domain often have similar architectures that reflect domain concepts.

— Application product lines are built around a core architecture with variants that satisfy particular customer
requirements.

» The architecture of a system may be designed around one of more architecture patterns or
architecture styles.
— Capture the essence of an architecture
— Can be instantiated in different ways

b
i ngEFENDABLE SOFTWARE 2 67
N LABORATORY

Architectural Views

268

KSR
Architectural Views

« Each architectural model only shows one view showing
— How a system is decomposed into modules,
— How the run-time processes interact, or
— Which system components are distributed across a network.

* We need multiple views of the software architecture for both design and documentation purposes.
— What views are useful when designing and documenting a system’s architecture?
— What notations should be used for describing architectural models?

i 1 ‘S:?E)EFENDABLE SOFTWARE 269
y LABORATORY

4 + 1 View Model of Software Architecture

processors in the system

* Related 4 views with use cases or scenarios (+1)

g

Logical
view

System
architecture

Development
view

EFENDABLE SOFTWARE
LABORATORY

Logical view : showing the key abstractions in the system as objects or object classes
Process view : showing how, at run-time, the system is composed of interacting processes
Development view : showing how the software is decomposed for development
Physical view : showing the system hardware and how software components are distributed across the

Physical
view

+ Use-Case Scenario

Process
view

*

KU KONKUK
UNIVERSITY

270

KU Sovemsmy
Representing Architectural Views

* Unified Modeling Language (umv)is a candidate notation for describing and documenting system
architectures.
— Component diagram, Package diagram, Class diagram, etc.
— However, UML does not include abstractions appropriate for high-level system description.

« Architectural description languages (ADLs) have been developed, but not widely used yet.

Client Telle

* Naive diagrams have been widely used.
— Example: C&C View

Key N
B Interface A
; - ~
Q Client Publish-subscribe - ™~
i | B =
\:‘ Server | Account Account
| Client-server Server-Main Server-Backup
request/reply
@ Database /v\ w{automatlc
- ~ failover
Database Database
application access

Account Administrative

M§EFENDABLE SOFTWARE Database 27 ']
LABORATORY

KU Sovemsmy
Describing Software Architectures

+ ISO/IEC/IEEE 42010:2011 “Systems and Software Engineering - Architecture Description”
— Specifies the requirements for (to be an) architecture descriptions (AD)

* Key Principles of the Architecture Description Standard
— AD should demonstrate how an architecture meets the needs of the system’s diverse stakeholders.

— The architectural concerns of the diverse stakeholders can be addressed by an AD constructed with multiple
architecture views of the system, where each view covers a subset of those concerns.

— The rules for well-formedness, completeness and analyzability of each architecture view should be explicit via
an architecture viewpoint.

M@D EEEEEEEEE corrwane 272
LABORATORY

EFENDABLE SOFTWARE
LABORATORY

Context of Architecture Description

Stakeholder

has interests in P

T
I
I
|

System
Concern

T

Purpose

exhibits P

Architecture
Description

expresses
A\

p P

System
0‘ .I
0"
¥V situated in
1
Environment

Architecture

| KU

273

KONKUK
UNIVERSITY

A Conceptual Model of Architecture Description

| 4

EFENDABLE SOFTWARE
LABORATORY

| KU

KONKUK
UNIVERSITY

exhibits P

System-of-
Interest 1 Architecture
! 4 identifies 1
A has interests in A expresses
25 1
Stakehold: e 1 Architecture
takeholder 1. Description
) Architecture
1.2 O Rationale
has 4 identifies
v
[fri
s I
i Correspondence
Rule
Concern
f P
frames A
1.7 e
Arahisectiig ikl Architecture
Viewpoint 1 View
y P 1.*
1 T
Model Architecture
Kind Model
governs P

274

Terminologies

Terminology Definition

« fundamental concepts or properties of a system in its environment, embodied in its elements,

Architecture relationships, and in the principles of its design and evolution

Architecture Description (AD) | « work product used to express an architecture

» conventions, principles and practices for the description of architectures established within a specific
domain of application and/or community of stakeholders

Architecture Framework * Examples

- Generalized Enterprise Reference Architecture and Methodologies (GERAM) [ISO 15704]

- Reference Model of Open Distributed Processing (RM-ODP) [ISO/IEC 10746]

* individual, team, organization, or classes thereof, having an interest in a system

Stakeholder _) L
* Examples: users, acquirers, developers, maintainers, etc.

» work product expressing the architecture of a system from the perspective of specific system
concerns

Architecture View

» work product establishing the conventions for the construction, interpretation and use of architecture

Architecture Viewpoint) e
views to frame specific system concerns

* interest in a system relevant to one or more of its stakeholders

* a concern pertains to any influence on a system in its environment, including developmental,
technological, business, operational, organizational, political, economic, legal, regulatory, ecological
and social influences

Concern

» conventions for a type of modelling
Model Kind + Examples: data flow diagrams, class diagrams, Petri nets, balance sheets, organization charts and
state transition models

EPENDABLE SOFTWARE

LABORATORY

Architectural Patterns

KU KONKUK
UNIVERSITY

276

KU KONKUK
UNIVERSITY

Architectural Pattern/Style

« Architectural pattern
— A stylized description of good design practice, which has been tried and tested in different environments
— Include information about when they are and when the are not useful.

— Examples: A series of POSA

* MVC (Model-View-Controller)) ”
° Layered "l SOFTWARE DESIGN PATTERNS

* Repository

« Client-Server PATTERN-ORIENTED
+ Pipe & Filter SOFTWARE
. etc. ARCHITECTURE

A Pattern Language for
Distributed Computing

Frank Buschmann
Kevlin Henney

Douglas C. Schmidt

Copyrighted Material

{; ‘E- EFENDABLE SOFTWARE 277
LABORATORY

Software
Architecture and

A Taxonomy of Architecture Patterns/Styles 2es qrlaimatc

. Data Flow Data-Centered
- . S
—— df . %'. — — I “""“’%
Batch Pipes & Process ‘ ol
Sequential Filters Control - Repository Blackboards
| Hierarchical
Main- Master- Virtual >
Subroutine Slave Layered Machine Microkernel
Asynchronous Communication Distributed Architecture
—r?_-#,-;-—* ‘—E-n\,b___v‘ ﬁt____ss———:ﬁf —~
. {M -%"‘evct_, .gﬁ"?’pﬂ ﬁ’ - \\T—Eﬁ"‘%—%‘%
Nonbuffered Event-Based Buffered Message- Client- Multi-tiers pe Retar
Implicit Invocation Based Server = b ‘
i Component-Based
Interactlon-Orlfanted —— —
— —‘*“'*-—h_:‘ Component SOA
1 MvC PAC T

]93EF'EN DABLE SOFTWARE 2 7 8
L ABORATORY

The Model-View-Controller (MVC) Pattern

Name MVC (Model-View-Controller)
Separates presentation and interaction from the system data. The system is structured into three logical components that interact
Describtion with each other. The Model component manages the system data and associated operations on that data. The View component
P defines and manages how the data is presented to the user. The Controller component manages user interaction (e.g., key
presses, mouse clicks, etc.) and passes these interactions to the View and the Model.
Example Figure 6.4 shows the architecture of a web-based application system organized using the MVC pattern.
When used Used when there are multiple ways to view and interact with data. Also used when the future requirements for interaction and
presentation of data are unknown.
Advantaqges Allows the data to change independently of its representation and vice versa. Supports presentation of the same data in different
v g ways with changes made in one representation shown in all of them.
Disadvantages Can involve additional code and code complexity when the data model and interactions are simple.
Controller View View
selection
Maps user actions » Renders model
to model updates Requests model updates
Selects view < Sends user events to
User events controller
A
Change
notification
cﬁtaar;[ge State query

Model

Encapsulates application
— > state

= Notifies view of state
1 ?EFENDABLE SOFTWARE changes 279

A

LABORATORY

| 4

Example : Web Application Architecture

Browser

EFENDABLE SOFTWARE
LABORATORY

Controller

HTTP request processing
Application-specific logic
Data validation

AN

Form to e

display » Dynamic page

generation

-

User events

Forms management

A
Change
notification
Update
request
Model

Business logic
Database

A

Refresh request

KU KONKUK
UNIVERSITY

280

The Layered Architecture Pattern

Name Layered architecture
Describtion Organizes the system into layers with related functionality associated with each layer. A layer provides services to the layer above it so
P the lowest-level layers represent core services that are likely to be used throughout the system.
Example A layered model of a system for sharing copyright documents held in different libraries.
When used Used when building new facilities on top of existing systems; when the development is spread across several teams with each team re
sponsibility for a layer of functionality; when there is a requirement for multi-level security.
Allows replacement of entire layers so long as the interface is maintained. Redundant facilities (e.g., authentication) can be provided in
Advantages

each layer to increase the dependability of the system.
In practice, providing a clean separation between layers is often difficult and a high-level layer may have to interact directly with lower-|
Disadvantages evel layers rather than through the layer immediately below it. Performance can be a problem because of multiple levels of interpretati
on of a service request as it is processed at each layer.

User interface

User interface management
Authentication and authorization

Core business logic/application functionality
System utilities

System support (OS, database etc.) A Generic Layered Architecture

() DEFENDABLE SOFTWARE 28 ']
y LABORATORY

KU Sovemsmy
Example : The iLearn System

Browser-based user interface iLearn app

Configuration services

Group Application Identity
management management management

Application services

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder
Spreadsheet Virtual learning environment History archive

Utility services

Authentication Logging and monitoring Interfacing
User storage Application storage Search

E§EFEN DABLE SOF TWARE 2 8 2
LABORATORY

KU KONKUK
UNIVERSITY

The Repository Pattern

Name Repository
Description All data in a system is managed in a central repository that is accessible to all system components. Components do not interact directly,
P only through the repository.
Example Each software tool generates information which is then available for use by other tools.
When used You should use this pattern when you have a system in which large volumes of information are generated that has to be stored for a long
time. You may also use it in data-driven systems where the inclusion of data in the repository triggers an action or tool.
Components can be independent. They do not need to know of the existence of other components. Changes made by one component
Advantages can be propagated to all components. All data can be managed consistently (e.g., backups done at the same time) as it is all in one

place.

Disadvantages

The repository is a single point of failure so problems in the repository affect the whole system. May be inefficiencies in organizing all
communication through the repository. Distributing the repository across several computers may be difficult.

DEPENDABLE SOFTWARE
LABORATORY

UML Code
editors generators
Java
Y Y editor
Design _ Project
translator - repository
\ Python
Y) editor
Design Report A Repository Architecture for an IDE
analyzer generator .

KU KONKUK
UNIVERSITY

The Client-Server Pattern

Name Client-Server

In a client—server architecture, the functionality of the system is organized into services, with each service delivered from a separate
server. Clients are users of these services and access servers to make use of them.

Example An example of a film and video/DVD library organized as a client—server system.

Used when data in a shared database has to be accessed from a range of locations. Because servers can be replicated, may also be

Description

When used used when the load on a system is variable.
Advantages The princip_al advantage_ of this model is that servers can be distributed across a network. General functionality (e.g., a printing service)
can be available to all clients and does not need to be implemented by all services.
Each service is a single point of failure so susceptible to denial of service attacks or server failure. Performance may be unpredictable
Disadvantages because it depends on the network as well as the system. May be management problems if servers are owned by different

organizations.

Internet

Catalog Video Picture Web
server server server server
Library Film store Photo store Film e!nd
DEPENDABLE SOFTWARE Cata|0gue phOtO |nf0. 284

A Client-Server Architecture for a Film Library

KU KONKUK
UNIVERSITY

The Pipe and Filter Pattern

Name Pipe and Filter
Describtion The processing of the data in a system is organized so that each processing component (filter) is discrete and carries out one type
pu of data transformation. The data flows (as in a pipe) from one component to another for processing.

Example An example of a pipe and filter system used for processing invoices.

When used Commonly used in data processing applications (both batch- and transaction-based) where inputs are processed in separate
stages to generate related outputs.
Easy to understand and supports transformation reuse. Workflow style matches the structure of many business processes.

Advantages

Evolution by adding transformations is straightforward. Can be implemented as either a sequential or concurrent system.

The format for data transfer has to be agreed upon between communicating transformations. Each transformation must parse its
Disadvantages input and unparse its output to the agreed form. This increases system overhead and may mean that it is impossible to reuse
functional transformations that use incompatible data structures.

Issue .
—> . Receipts
receipts

Find
payments
due

Read issued Identify
invoices payments
A

A

Issue
payment
reminder

Reminders

Invoices Payments

A Pipe and Filter Architecture Used in a Payments System

DEPENDABLE SOFTWARE 28 5
LABORATORY

Application Architectures

286

KU KONKUK
UNIVERSITY

Application Architectures

* Application architecture

— An architecture for a type of software system that may be configured and adapted to create a system that
meets specific requirements

— As businesses have much in common, their application systems also tend to have a common architecture that
reflects the application requirements.

— > Evolving into “Reference Architecture”

* Application Types
— Data processing applications
* Process data in batches without explicit user intervention during the processing
— Transaction processing applications
* Process user requests and update information in a system database
— Event processing systems
» Applications where system actions depend on interpreting events from the system’s environment
— Language processing systems
» Applications where the users’ intentions are specified in a formal language that is processed and interpreted by the system

RN
‘ () DEFENDABLE SOFTWARE 287
Ny LABORATORY
L

B

Reference Architecture by Microsoft

EFENDABLE SOFTWARE
LABORATORY

Application Architecture
Guide 2.0

Appéication Architacture Guide 2.0

Chapter 1, “Fundamentals of Application Architecture”
+ Chapter 2, “NET Platform Overview”
Chapter 3, “Architecture and Design Guidelines”

PartIl, "Design”

This part provides an approach to architecture design and discusses key architecture decisions
such as deployment, architecture style, quality attributes, and communication options. Part Il
includes the following chapters:

Chapter 4, “Designing Your Architecture”

Chapter 5, “Deployment Patterns”

Chapter 6, “Architecturs Styles”

Chapter 7, “Quality Attributes”

Chapter 8, “Communication Guidelines”

Part Ill, “Layers”

This part provides architectural and design approaches, as well as practices, for each layer,
including the presentation, business, service, and data access layers. Part Il in #udes the
following chapters:

Chapter 9, “Layers and Tiers”

Chapter 10, “Presentation Layer”

Chapter 11, “Business Layer Guidelines”

Chapter 12, “Data Access Layer Guidelines”

Chapter 13, “Service Layer Guidelines”

Part IV, “Archetypes”

This part provides patterns and design frames for each application archetype; including service
applications, Web applications, rich client applications, rich Internet applications, and mobile
applications. Part IV includes the following chapters:

Chapter 14, “Application Archetypes”

Chapter 15, “Web Applications”

Chapter 16, “Rich Internet Applications (RIA)

Chapter 17, “Rich Client Applications™

Chapter 18, “Services”

Chapter 19, “Mobile Applications”

Chapter 20, “Office Business Applications (OBA)”

Chapter 21, “SharePoint Line-Of-Business (LOB) Applications™

Approach Used in This Guide

How do you design successful applications on the \NET platform? This guide describes an
approach that starts with an understanding of the entire architectural process, and then
focuses in on the specific topics, techniques, practices, and application types to help you

288

KU KONKUK
UNIVERSITY

Transaction Processing Systems

« Transaction Processing Systems process user requests for information from a database, or process
requests to update the database.
— Users make asynchronous requests for service which are then processed by a transaction manager.
— Atransaction is any coherent sequence of operations that satisfies a goal.

— Example :
* Find the times of flights from London to Paris

— Atypical structure of the TPS applications :

/0 Application Transaction
/ PP > <> Database

processing logic manager

-

m !%@}g: EEEEEEEEE corrwase 289
bR LABORATORY

L P

I(I l' KONKUK
UNIVERSITY

Example : an ATM System

Input Process Output

ng cC:j::?:jer Print details
Validate card >

Update account
Dispense cash

ATM Database ATM

Return card

t
LG

]}EFENDAEILE SOFTWARE 290
LABORATORY

| 4

Information Systems Architecture

* Information systems have a generic architecture that can be organized as a layered architecture.

KU

— Also transaction-based systems as interaction with these systems generally involves database transactions.

« Layers often include
— User interface
— User communications
— Information retrieval
— System database

EFENDABLE SOFTWARE
LABORATORY

User interface

Authentication and

User communications atit!
authorization

Information retrieval and modification

Transaction management

Database

291

KONKUK
UNIVERSITY

Example : the Mentcare System

Web browser

Form and menu Data

Login Role checking manager validation

Security Patient info. Data import Report
management manager and export generation

Transaction management

Patient database

EPENDABLE SOF TWARE 2 9 2

Web-Based Information Systems

+ Web-based systems implement user interfaces using a web browser.
— Example : e-commerce systems are Internet-based resource management systems that accept electronic
orders for goods or services and then arrange delivery of these goods or services to the customer.

» The application-specific layer includes additional functionality supporting a ‘shopping cart’ in which users can place a
number of items in separate transactions, then pay for them all together in a single transaction.

Web-based information systems are often implemented as multi-tier client server/architectures.
— Web server: Responsible for all user communications, with the user interface implemented using a web browser

— Application server: Responsible for implementing application-specific logic as well as information storage and
retrieval requests

— Database server: Moves information to and from the database and handles transaction management

() DEFENDABLE SOFTWARE 293
y LABORATORY

KU Sovemsmy
Language Processing Systems

* Language Processing Systems accept a natural or artificial language as input and generate some
other representation of that language.
— May include an interpreter to act on the instructions in the language that is being processed
— Meta-case tools process tool descriptions, method rules, etc and generate tools.

Translator
Source
language »| Check syntax
Instructions Check semantics
Generate

A

Abstract m/c
instructions

|

Interpreter

Fetch -
Execute

Results

\J
\

Data

{; ‘E- EFENDABLE SOFTWARE 294
1 LABORATORY

KU KONKUK
UNIVERSITY

Compiler Components

» Compiler components for language processing systems
— Lexical analyzer : Takes input language tokens and converts them to an internal form

— Symbol table : Holds information about the names of entities (variables, class names, object names, etc.) used
in the text that is being translated

— Syntax analyzer : Checks the syntax of the language being translated
— Syntax tree : An internal structure representing the program being compiled

— Semantic analyzer : Uses information from the syntax tree and the symbol table to check the semantic
correctness of the input language text

— Code generator : ‘walks’ the syntax tree and generates abstract machine code

il] :{_:?E)EFENDABLE SOFTWARE 29 5
! i LABORATORY

KU KONKUK
UNIVERSITY

A Repository Architecture for a Language Processing System

Lexical Syntax Semantic
analyzer analyzer analyzer
Pretty- Abstract Grammar .

. <> . e <—> Optimizer
printer syntax tree definition
. Symbol Output Code
Editor |<=—> L <>
table definition generator

Repository

: ‘E- EFENDABLE SOFTWARE 2 9 6
LABORATORY

A Pipe and Filter Architecture for Compilers

Symbol table
> <

Syntax tree

Lexical Syntactic Semantic Code
analysis analysis analysis generation

: ‘E- EFENDABLE SOFTWARE 297
LABORATORY

K KONKUK

UNIVERSITY

References for Architecture Design

Views
and
Beyond

Frank Buschmann

:]Si)eftignillg : Documenting Software T

j Sottware : Software Archi

B) : chitecture

sl Architectures R A rchitectures . : PATTERN-ORIENTED
& | A Practical Approach : m Practlce so FTWARE

: TR ARCHITECTURE

= ; - 7 - A Pattern Language for

z Distributed Computing

A

Kevlin Henney

e
L
=]
m
z
n
W
- 4
("]
o
W
o

Douglas C. Schmidt

U S
Humberto Cervantes

SECOND EDITION

Rick Kazman Len Bass : Paul Clements - Rick Kazman

Copyrighted Material

]}EFENDAEILE SOFTWARE 298
LABORATORY

Homework #8

. 7|71'&%t RVC ControllerE E&3s}2{1 gL|Ct.
— YEE AppOlA| WiFiZ £3ll RVC Control SWel EA3tE 7|52 F71st2{ 1 gLt
- Microsoft Application Architecture Guide 2.02 352t £, H|A|El Application ArchitectureE &3l A, T H|
A|AB19| Overall ArchitectureE StL} H|2tstA| 2.
=250l MU EE5D, UM HLo| ABE 4 US WEE XS HHSML. (PPT 47)

Designing Applications on the .NET Platform

1%}
[
v
+—
o
©
e
Q.
o
1%}
e
—
[
)
+—
©
o

299

lg:)EF'ENDAEILE SOFTWARE 300
L ABORATORY

7. Design and Implementation

KU Sovemsmy
Design and Implementation

+ Software design and implementation
— The stage at which an executable software system is developed

« Software design and implementation activities are often inter-leaved.

— Software desiqgn is a creative activity in which you identify software components and their relationships, based
on a customer’s requirements.

— Implementation is the process of realizing the design as a program.

{; '15- EFENDABLE SOFTWARE 3 O 2
T LABORATORY

KU KONKUK
UNIVERSITY

Build or Buy

» ltis possible to buy commercial off-the-shelf systems (COTS) that can be adapted and tailored to
the users’ requirements.
— For example, if you want to implement a medical records system, you can buy a package that is already used in

hospitals. It can be cheaper and faster to use this approach rather than developing a system in a conventional
programming language.

* The design process becomes concerned with how to use the configuration features of that system to
deliver the system requirements.

— It requires different ways to develop software.

RN
‘ il DEPENDABLE SOFTWARE 303
Ny LABORATORY
L

Object-Oriented Design Using UML

RU=

304

KU KONKUK
UNIVERSITY

An Object-Oriented Design Process

» Structured object-oriented design processes (such as UP)
— Involve developing a number of different system models
— For small systems,
* Require a lot of effort for development and maintenance of these models, and may not be cost-effective
— For large systems developed by different groups,
* Design models are an important communication mechanism

» There are a variety of different object-oriented design processes.

— Common activities in all OO design processes

1. Define the context and modes of use of the system
Design the system architecture
Identify the principal system objects OOA
Develop design models
Specify object interfaces Oo0oD

Planning

o prwbd

RN
‘ () DEFENDABLE SOFTWARE 3 0 5
Ny LABORATORY

L

KU KONKUK
UNIVERSITY

1. System Context and Interactions

* Understanding the relationships between the software that is being designed and its external
environment is essential for deciding

— Essential for deciding how to provide the required system functionality and how to structure the system to
communicate with its environment

— Let you establish the boundaries of the system

« System context model
— A sstructural model that demonstrates the other systems in the environment of the system being developed
— System context diagram

* Interaction model
— Adynamic model that shows how the system interacts with its environment as it is used
— Use-case model

RN
‘ il DEPENDABLE SOFTWARE 306
Ny LABORATORY
L

KU KONKUK
UNIVERSITY

System Context for the Weather Station

Control
1 system 1
1 1..n
Weather
information | 1.n V;/;atflfgﬁr
system
1 1..n

: Satellite 1

System context diagram in UML class diagram

EPENDABLE SOF TWARE 3 07

Use-Case Model for the Weather Station

Use case

Actors

Description
Stimulus

Response

Comments

EFENDABLE SOFTWARE
LABORATORY

Report weather
Weather information system, Weather station

The weather station sends a summary of the weather data that has been collected from the
instruments in the collection period to the weather information system. The data sent are the
maximum, minimum, and average ground and air temperatures; the maximum, minimum, and
average air pressures; the maximum, minimum, and average wind speeds; the total rainfall; and
the wind direction as sampled at five-minute intervals.

The weather information system establishes a satellite communication link with the weather
station and requests transmission of the data.

The summarized data is sent to the weather information system.

Weather stations are usually asked to report once per hour but this frequency may differ from
one station to another and may be modified in the future.

Use-Case Model (Text + Diagram)

~ Weather
information
system

KU KONKUK
UNIVERSITY

Report
weather

Report status

Control
system

Reconfigure

Powersave

Remote
control

i

308

| 4

2. Architectural Design

Identify the major components that make up the system and their interactions

| KUREE

— Organize the components using an architectural pattern such as a layered or client-server model, if it needs

— Example : The weather station is composed of independent subsystems that communicate by broadcasting
messages on a common infrastructure.

1

1

«subsystem»
Fault manager

«subsystem»
Configuration manager

1

«subsystem»
Power manager

Data collection

Communication link

1

1

«subsystem»
Communications

«subsystem»
Data collection

EFENDABLE SOFTWARE
LABORATORY

1

«subsystem»
Instruments

Transmitter

Receiver

/

WeatherData

High-Level Architecture of the Weather Station

The Architecture of Data Collection System

309

KU KONKUK
UNIVERSITY

3. Object Class Identification

« Identifying object classes is a difficult part of object-oriented design.
— There is no 'magic formula' for object identification.
— It relies on the skill, experience and domain knowledge of system designers.

+ Object identification is an iterative process.
— Domain Model

» Approaches to object identification
— Use a grammatical approach based on a natural language description of the system.
+ Based on identifying tangible things in the application domain
— Use a behavioural approach.
+ Identify objects based on what participates in what behaviour
— Use a scenario-based analysis. (Use-case analysis)
» The objects, attributes, and methods in each scenario are identified

) :{_:?E)EFENDABLE SOFTWARE 3 '] O
y LABORATORY

The Weather Station: Object Classes

KU

Object class identification in the weather station system may be based on the tangible hardware and

data in the system.

Ground thermometer, Anemometer, Barometer

» ‘Hardware’ objects related to the instruments in the system

Weather station

» The basic interface of the weather station to its environment

» |t therefore reflects the interactions identified in the use-case model

Weather data

* Encapsulates the summarized data from the instruments

thermometer

Ground

gt_ldent
temperature

get ()
test ()

RN

ﬂ il %DEFENDABLE SOFTWARE
;

B)

LABORATORY

WeatherStation

WeatherData

identifier

Anemometer Barometer
an_ldent bar_ldent
windSpeed pressure
windDirection height
get () get ()
test () test ()

reportWeather ()
reportStatus ()

powerSave (instruments)
remoteControl (commands)
reconfigure (commands)

restart (instruments)

shutdown (instruments)

airfemperatures
groundTemperatures
windSpeeds
windDirections
pressures

rainfall

collect ()
summarize ()

311

KONKUK
UNIVERSITY

4. Design Models

* Design models show the objects and object classes and relationships between these entities.

« Two types of design models
— Structural (Static) model
» Describe the static structure of the system in terms of object classes and relationships
+ Class diagram, Object diagram, Package diagram
— Dynamic model
* Describe the dynamic interactions between objects
+ Segquence diagram, Communication diagram, Statechart diagram

]§EFENDABLE SOFTWARE 3 1 2
LABORATORY

Subsystem Models

* Subsystem Models shows how the design is organized into logically related groups of objects.

— Logical model

» The actual organization of objects in the system may be different.

— The UML package diagram are often used.

DEPENDABLE SOFTWARE
y LABORATORY

Presentation

Swing 0-1_‘

ProcessSale
Frame

not the Java

our GUI classes
based on Swing

*1..| Swing libraries, but

Text C].,'

ProcessSale
Console

""" fe.,| usedin quick
experiments

Domain |
Sales Pricing
‘ Register ‘ | Sale ‘ PricingStrategy «interface»
Factory |SalePricingStrategy
ServiceAccess Payments
Services «interface»
CreditPayment |CreditAuthorization
actory ServiceAdapter
Inventory POSRuleEngine Taxes
«interface» «interface»
‘ lInventoryAdapter ‘ ‘ ROSRulsEngmekacade ‘ ITaxCalculatorAdapter
Technical Services |
Persistence A general

DBFacade

LogdJ

Jess [reen

purpose third-
party rules
engine.

SOAP

KU

313

KONKUK
UNIVERSITY

KU Sovemsmy
Sequence Models

+ Sequence models show the sequence of object interactions that take place.

— The UML Sequence diagrams are used.
» Objects are arranged horizontally across the top.
+ Time is represented vertically so models are read top to bottom.
+ Interactions are represented by labelled arrows.
 Different styles of arrow represent different types of interaction.
» Athin rectangle in an object lifeline represents the time when the object is the controlling object in the system.

information system

— Example:
« SD for Data Collection . :SatComms :Weath:arStatlon :Commlsllnk :Weath:erData
. request (report) _: ; E :
acknowledge : E E
_____ reportWeather () 1 E ;
< acknowledge | | get (summary) ‘' summarize)
<_ ______
SRR D D
send (report) ! E
acknowledge ; ;
reply (report) | |— — — — — —>L] ; :
() =onm sormen | | acknowledge -

KU KONKUK
UNIVERSITY

State Machine Models

- State machine models are used to show how objects respond to different service requests and the
state transitions triggered by these requests.
— State diagrams are useful high-level models of a system or an object’s run-time behavior.
* Not usually needed for all objects in the system.
— The UML Statecharts diagram is used.

(Controlled)
— Example

A
» State diagram for Weather Station
Operation
shutdown() remoteControl()
I Y tStatus()
N\ reportStatus i
Shutdown restartQ =f Running) ’ (U2)
—j A ..
)) f transmission done test complete
configuration done Y
reconflsgure() Transmitting
Y powerSave() clock collection
done reportWeather()
Configuring L weather summary
y .. complete
Summarizing

(Collecting)

h Y
M / %:)EFENDABLE SOFTWARE 3 1 5

LABORATORY

KU KONKUK
UNIVERSITY

B. Interface Specification

« Object interfaces have to be specified so that the objects and other components can be designed in
parallel.
— Objects may have several interfaces which are viewpoints on the methods provided.
— The UML Class diagram is used.

— Example
* Interface specification (a part of class diagram) for Weather Station

«interface»

«interface» Remote Control

Reporting

startinstrument(instrument): iStatus
weatherReport (WS-Ident): Wreport stoplnstrument (instrument): iStatus

statusReport (WS-Ident): Sreport collectData (instrument): iStatus
provideData (instrument): string

Weather Station Interfaces

M%EFENDABLE SOFTWARE 3 1 6
LABORATORY

KU KONKUK
UNIVERSITY

OOAD for Object-Oriented Programming

* OOAD (Object-Oriented Analysis and Design, AKA Z{H| X| k7| et H =2
— “Identifying your requirements and creating a domain model, and then add methods to the appropriate classes and
define the messaging between the objects in order to fulfill the requirements”

— Object-Oriented Analysis (OOA)
» Discover the domain concepts/objects (pomain Model)
+ Identify requirements (Use-Case Model)

— Object-Oriented Design (OOD)
» Define software objects (Static model > Class Diagram)
» Define how they collaborate to fulfill the requirements (Dynamic model > Sequence Diagram)

— Various development process models are available.
+ Waterfall
* UP (lterative)

M§EFENDABLE SOFTWARE 3 1 7
LABORATORY

EFENDABLE SOFTWARE
LABORATORY

An OOAD Example - Dice Game

Define domain
model

Define use cases

Define interaction

Define design class
diagrams

diagrams

OOA

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.

- If the dice’s face value totals seven,

player wins; otherwise, player loses.

Flayel |1 Rolls 2 e
name faceValue
[2
Plays

1
DiceGame [1 Includes

Domain Model

OoOoD

Interaction Diagram

DicaGame ‘ A Die

| & :
Elkq(.) \ '
'___,_tsﬁll__u

e)

DiceGame Die

diel : Die |1

2 | faceValue : int
die2 : Die 4

getFaceValue() : int
play() roll()

Design Class Diagram

KU

318

KONKUK
UNIVERSITY

Sample Unified Process Artifact Relationships

Domain Model

Sale ‘ Captured-on Register ProductCatalog ‘) $4% | Domain Model

r |
i
dateTime 1 1 i ‘

3" domain concepts ‘\
/ by
’,“‘ / \ Use-Case Model
/ \
/ Q : System ‘
/ pr— N : T |
/ Process Sale Cashier ! ‘
| Q use | i make |
2 Sale ' 1. Customer i NewSale |
; e
’ S case | orives system | | Use-Case Model
names | 2 Cashier events | enterltem | {
| =% | akes rew = ;_@,_QLntitx)_,i
conceptual | sale. ! |
classes in 3. ... \‘——ﬂ
the = o ! .
domain \ Use Case Diagrams Use Case Text System Sequence Diagrams
inspire the | OO A
names of ‘ __________ o e
some y -
software use-case Design Model OO D
classes in \ realization with N o
the design | interaction : Register | | : ProductCatalog
\ diagrams | S : J |
I
I

makeNewSale = :
L __create | [sale .
L ; g Sequence Diagrams

\(| wquantmﬂi P !
| -+ !
‘ addLineltem(desc, quantity) e r :
S 5 H
. | i

/

1 while designing
‘ UCRs can be

‘ /' the design

| Register ‘ A/ i

‘ | ProductCatalog discovered H

| Class Diagram

makeNewSale() catalog getDescription(...) : ProductDescription summafized in
‘ | enterltem(...) | class diagrams

| .. [
e — /

OO Implementation

EFENDABLE SOFTWARE
LABORATORY

e .
I

A | DEPENDABLE SOl ARE
| A LABORATO

Design Patterns

320

Design Patterns

n

D es I g n I att e rn S Elements of Reusable
Object-Oriented Softwire
Erich Camma
Richard Helm

Ralph |ahnson
John Vlissides

* Design pattern is a way to describe best practices, good designs, and capture experience
in a way that it is possible for others to reuse this experience.
— Descriptions of the problem and the essence of its solution
— Sufficiently abstract to be reused in different settings

— Pattern descriptions usually make use of object-oriented characteristics
* Inheritance and Polymorphism

— 23 design patters of GoF are widely used.

* Elements of patterns

Element Description

Name A meaningful pattern identifier

Problem description | A detailed description on the problem

Not a concrete design, but a template for a design solution that can be

Solution description instantiated in different ways.

Consequences The results and trade-offs of applying the pattern

s h Y

EIQZ)EFENDABLE SOFTWARE 3 2 1
LABORATORY

K[]’ KONKUK
UNIVERSITY
| S——————————

23 Design Patterns of GoF

Absiract Facor Facade Pros
= " El I Memento Soelt emieraoes Adapter Proxy
E| Adapter E| Factory Method Observer ; Caretaker Fm Adapter m
(2] e] s o — sy
Whatitis: - -
Interpreter St Wahols iolating encepalistion, oRpie A i SO o= .
P c oo e reras s e anoer ercect Lets s :
Ghainof Responsiity f— sregy e P ! e
Commana Wedistar Tampis Metned e s e imartscas |
Gomposte Hem Visitor [roeiemeriot - Wemerie) e
e s ———— e
Dassrator e
suszszer Chain of Responsibility Observer Bridge Abstract Factory

Type: Behaviaral Type: Behavioral Type: Struetural

s
e mns
et
| +cresteProductB)
AN
e
)
e

Whatitis: Whattis:
Avcid coupling the sender of a requestto | D#fine 3 one-io-many dependency between
fts recsiver by giving more than oneobject | kjests 59 that when ene object changes
a chance to handle the request. Chain the. state, all its dependents are notified and

l pass the raquest updated suiomatically
along the chain unt an object Randles

What itis:
Decauple an sbstraciion from its
implementafion <o that the twe oan vary
independisntly

Whatit is:
Provides an interfsos for creating
families of related or deperdent
Gbjects without spacying their

Eree A ey ; | |] ConcreteFactory
|
= === ==
niertace
[owm o _moer | Command State Camponent Composite Builder [oot |
- chidren
Type: Behavioral Type: Behavioral i?;;:u:ﬂ Type: Siructural Yol Soadioedd _
» removeins Compoote)
Whatitis: What it s e s
Bl o, Al an bttt b aorwhen s o Compose cbjectsntotree Sructuresto. | Saparats he consirueion o 3
hereby I6fing You pramuanes diénts | Sintemal sate changes. The object wi Lets rom
with diferent requess, queue of g appear tochange it dass - rvhims sy
requests, and suppert undoable operations. ‘ 1 of objects unformiy o cruaie fforart
Composite representations.
‘ =t [+sperstion()
= acin - Composte)
== o Caonitn)
raetChidn: - int)
Interpreter Strategy Decorator Factory Method
Type: Bahsviorsl
Type: Benavioral Type: Strustural T cresiona
whatitis:
Define a family of algorithms, What it is: Whatitis:

Eitis.
Given 3 language, define a representation

| 4

EFENDABLE SOFTWARE|
LABORATORY

forits grammar slong with an interpreter

ncapsulaie ssch ans, and make them
inierchangeable. Lets the aigorthm vary

chject dynamizally. Provide 3 fiexble

Dafine an intarfaoe for creating an
object.but let subclasses decide which

st Uses e 1RpreSENIaCn 10 METREt | dapendendy iass o nstantate. Late 3 cass defer
anguage Gt thed wsa & functonsity instantiston to subsasees
[+operation(}
|+ accedsansion)
lterator Template Method P Facade Prototype
‘Complex system|
Type: Bshaviors! Type: Behsviorsl Type: Structural Type: Crestiona
Provide 3 way 5 accsss tha slements of Define the skeleton of an sigarithmin an Provide a unfied interface to a st of ‘Spacify tha kinds of objects 1o craste
st 10 subslzszas oec in a subsystem. Dafines 2 high- " i instance, and AN
expasing its underlying L : sieps level interface that makes the subsystem create new objecis by copying this
of an aigorithm without changing the easier fo use. prowtype.
Sigoranm stcurs T ‘ |
ot | [Commmmberer [e I =
e N === | [reonety |
informs. Visitor
Mediator
[medtor i y Flyweight Singleton
Colleague o e Type: Behvorsl P
— — l|> Type: Sructurs Type: Crastionsi
i [imueinetancs
Definean obec that encapsulates howa | REEresentan cperaton o be Glient Whatitis: Whatit is 2
SITSSIIERA | erems e e [B upportiange rumbersof | Eraur 8 ssss any nissans st an Frimes
ocping o ewning tyeen rom retering | O Sictur. Lets youcef [| 1 [Eesmne et i orriasinid i e
o to eack other explicity and it ets youvary | [t eos o ZAN ConcreteFlyweight
T]] which # cperstes e

[Facceptin v - Vistor)

322

The Observer Pattern

Pattern name Observer
Separates the display of the state of an object from the object itself and allows alternative displays to be
Description provided. When the object state changes, all displays are automatically notified and updated to reflect the
change.

In many situations, you have to provide multiple displays of state information, such as a graphical display and
a tabular display. Not all of these may be known when the information is specified. All alternative presentations
should support interaction and, when the state is changed, all displays must be updated.

This pattern may be used in all situations where more than one display format for state information is required
and where it is not necessary for the object that maintains the state information to know about the specific
display formats used.

Problem description

This involves two abstract objects, Subject and Observer, and two concrete objects, ConcreteSubject and
ConcreteObject, which inherit the attributes of the related abstract objects. The abstract objects include
general operations that are applicable in all situations. The state to be displayed is maintained in
ConcreteSubject, which inherits operations from Subject allowing it to add and remove Observers (each
observer corresponds to a display) and to issue a notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and implements the Update()
interface of Observer that allows these copies to be kept in step. The ConcreteObserver automatically
displays the state and reflects changes whenever the state is updated.

Solution description

The subject only knows the abstract Observer and does not know details of the concrete class. Therefore,
there is minimal coupling between these objects. Because of this lack of knowledge, optimizations that
enhance display performance are impractical. Changes to the subject may cause a set of linked updates to
observers to be generated, some of which may not be necessary.

Consequences

| DEPENDABLE SOFTWARE
LABORATORY

Multiple Displays Using the Observer Pattern

d

N

|

50

25
ch
0

Subject

.I Observer

Observer 1

Subject

E§EFEN DABLE SOFTWARE

LABORATORY

A: 40
B: 25
C: 15
D: 20

|

Attach (Observer)
Detach (Observer)

Notify () ======- as

T

for all o in observers
o -> Update ()

Observer 2

ConcreteSubject

Update ()

GetState ()

subjectState

return subjectState Iﬁ

ConcreteObserver

Update ()

observerState

| KU e

observerState =

subject -> GetState

0

324

Implementation Issues

325

KU KONKUK
UNIVERSITY

Implementation Issues

* Implementation issues that are often not covered in programming

— Reuse
* Most modern software is constructed by reusing existing components or systems.
* When you are developing software, you should make as much use as possible of existing code.

— Configuration management

» During the development process, you have to keep track of the many different versions of each software component in a
configuration management system.

— Host-target development
* Production software does not usually execute on the same computer as the software development environment.
* Rather, you develop it on one computer (the host system) and execute it on a separate computer (the target system).

DEPENDABLE SOFTWARE 3 2 6
LABORATORY

| E Lt
Reuse

* Adevelopment approach based on the reuse of existing software

— Until 1990s, most new software was developed from scratch, by writing all code in a high-level programming
language.

* Only the reuse of functions and objects in programming language libraries

* Reuse costs

— The costs of the time spent in looking for software to reuse and assessing whether it meets your needs

— The costs of adapting and configuring the reusable software components or systems to reflect the
requirements of the system that you are developing

— The costs of integrating reusable software elements with each other and with the new code that you have
developed

M% EEEEEEEEE SOFTWARE 3 2 7
LABORATORY

| E Lt
Reuse Levels

* Reuse levels
— The object level
* We directly reuse objects from a library rather than writing the code. (Programming language libraries)
— The component level
« Components are collections of objects and object classes that we reuse in application systems. (Component frameworks)
— The system level
* We reuse entire application systems. (COTS)
The abstraction level

* We don'’t reuse software directly but use knowledge of successful abstractions in the design of our software.
(like Architecture styles and Design patterns)

System

Application systems
(cots)

Abstraction Component

Archi_tectural and Software reuse Component

design patterns frameworks
Programming

language libraries

PENDABLE SOFTWARE 3 2 8
LABORATORY obiect

KU KONKUK
UNIVERSITY

Configuration Management

« Configuration management is the general process of managing a changing software system.

» Configuration management activities:
— Version management
* Keep track of the different versions of software components
* Include facilities to coordinate development by several programmers
— System integration

* Help developers define what versions of components are used to create each version of a system. This description is then
used to build a system automatically by compiling and linking the required components.

— Problem tracking

» Allow users to report bugs and other problems, and to allow all developers to see who is working on these problems and
when they are fixed

DEPENDABLE SOFTWARE 3 29
LABORATORY

KU Sovemsmy
Host-Target Development

* Most software is developed on a computer (the host) but runs on a separate machine (the target).
— Development platform vs. Execution platform

» A platform is more than just hardware.

* Includes the installed operating system and other supporting software such as database management systems or,
interactive development (environments for development platforms)

— Development platform usually has different installed software than execution platform.
* May have different architectures

Host Target
Development Execution
latform latform
P Download P
IDE software . Libraries
Compilers Related systems

Testing tools

[} DerenpaBLE SoFTWARE

Databases

Tools for Host-Target Development

* Tools for development platforms
— Integrated compiler and syntax-directed editing system: create, edit and compile code
— Language debugging system
— Graphical editing tools (UML tools)
— Testing tools (Junit) that can automatically run a set of tests on a new version of a program.
— Project support tools: organize codes for different development projects

* IDE (Integrated Development Environments)
— A set of software tools that supports different aspects of software development, within some common
framework and user interface
— IDEs are created to support development in a specific programming language such as Java.

331

() DEPENDABLE SOFTWARE
4 LABORATORY

Open-Source Development

332

KU KONKUK
UNIVERSITY

Open-Source Development

* Open-source development is an approach to software development in which

— the source code of a software system is published, and volunteers are invited to participate in the development
process through internet.

— Rooted on the Free Software Foundation (www.fsf.org)

» Advocates that source code should not be proprietary but rather should always be available for users to examine and
modify as they wish

» Popular examples of open-source systems
— The Linux operating system
— Java
— The Apache web server
— The mySQL database management system

il] :{_:?E)EFENDABLE SOFTWARE 3 3 3
! i LABORATORY

KU S
Open-Source Issues

« Questions on open-sources :
— “Should the product that is being developed make use of open-source components?”

“Should we use an open-source approach for the software’s development?”

* Business with opens source
— More and more product companies are using an open-source approach to development.

— Business model is not reliant on selling a software product but on selling support for that product.

» Believe that involving the open-source community will allow software to be developed more cheaply, more quickly and will
create a community of users for the software.

i] ‘S:?E)EFENDABLE SOFTWARE 3 34
y LABORATORY

KU KONKUK
UNIVERSITY

Open-Source Licensing

* Fundamental principle of open-source

— “Source code should be freely available.”

* License Models

— The GNU General Public License (GPL)
» So-called ‘reciprocal’ license
» If you use open-source software that is licensed under the GPL license, then you must make that software open source.

— The GNU Lesser General Public License (LGPL)
* Avariant of the GPL license
* You can write components that link to open-source code without having to publish the source of these components.

— The Berkley Standard Distribution (BSD) License
* Non-reciprocal license
* You are not obliged to re-publish any changes or modifications made to open-source code.
* You can include the code in proprietary systems that are sold

M%EFENDABLE SOFTWARE 3 3 5
LABORATORY

Homework #9

- Design Pattern3} Architecture StyleS Z=ASI1 H| R 2M LM 2. A4 10% (=x137] 10 013

— Ofgfel 7|2 wxiE Ct ¢S ERE UsL

Software
Architecture and
Design [lluminated

SOFTWARE DESIGN PATTERNS

Design Patterns

Elements of Reusable PATTERN-ORIENTED
Object-Orientéd Software SOFTWARE
ke ARCHITECTURE

A Pattern Language for
Distributed Computing

Ralph Johnson
John Vlissides

Frank Buschmann
Kevlin Henney
Douglas €. Schmidt

Foreword by Grady Booch

Copriahted haterial

]93EF'EN DABLE SOFTWARE 3 3 7
L ABORATORY

UML UNIFIED o

MODELING
LANGUAGE

« Unified Modeling Language for

— Visualizing, Specifying, Constructing and Documenting artifacts of software-intensive systems.

« Offer vocabulary and rules for communication R
— http://www.uml.org/

Unified Modeling Language: Infrastructure

version 2.0

« Combine the best of the best from S
— Data Modeling (Entity Relationship Diagrams)
— Business Modeling (workflow)
— Object Modeling
- Component Modeling (development and reuse - middleware, COTS)

de facto industry standard

OBJECT MANAGEMENT GROUP

{: ‘E- EFENDABLE SOFTWARE 3 3 9
1 LABORATORY

KU KONKUK
UNIVERSITY

The UML Semantics

* 4-layer metamodel architecture
— instance — model — meta model — meta-meta model

* MOF (Meta Object Facility) defines a four-layer meta model hierarchy.
— Layer M3: Meta-meta model layer (The MOF model)
— Layer M2: Meta model layer (The UML meta model)
— Layer M1: Model layer (The UML model)
— Layer MO: Information layer (the Application)

« MOF and UML are aligned.
— The UML infrastructure contains all the concepts needed for the specification of UML and MOF.

{_ | DEPENDABLE SOFTWARE 340
5 LASBORATORY

| KU KONKUK
UNIVERSITY

The Meta Model Hierarchy of the MOF (for UML)

Meta-meta model layer
(Layer M3):

Meta-meta models

Class < _________________ 1

............................ e T R Sy g
/N <<instanceOf>> l <<instanceOf>> 1 <<instanceOf>>
Al—‘ £ =oHEEE 2 Saaen 1 |
Meta model layer UML meta model | ! ! !
(Layer M2): | | |

Meta models Attribute Class classifier InstanceSpecification

1
77% 7% t 75
........... TN S S
I <<instanceOf>> ' <<instanceOf>> ; 1 <<instanceOf>>
Model-layer UML model : o - . !
(Layer M1): |) T |
1
I
Models <<instanceOf>> | Person <<snapshot>> : Albert:Person
b —_— o
L - - { name : string name = “Albert Einstein”
FAN

<<instanceOf>>

Run-time instances

Information-layer
(Layer MO):

Instances aPerson

E§EFEN DABLE SOFTWARE 3 4 1
LABORATORY

KU e

UML 2.0 Diagrams

13 UML diagrams

Diagram
[]
Structure Behaviour
Diagram Diagram
JA JA
| | |
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction State
Diagram Structure Diagram Diagram Diagram Machine
Diagram Diagram
UML 2.2 4
| | 1
Sequence || Communication || Interaction Timing
Notation: UML I Diagram Diagram Overview Diagram
Diagram

BDEF'ENDAEILE SOFTWARE 342
L ABORATORY

1. Use Case Diagram

* Use case diagram illustrates the name of use cases and actors, and the relationships between them.

— Use case : a collection of related success and failure scenarios in text, that describe how an actor uses the
system to achieve a goal

— Actor : something with behavior, such as a person, computer or organization

system boundary NexiGen POS ot communication
\""---l 4 .
) | ". o 4 .’ /
ki % % Process Sala x | s alternate:
NN b e sl) notation far
Customer ™, / man, o Use case: Handle Returns
— A .hmhorizatiu\n‘__.'?m
& = A o NN Service e . .
/7 A Handie Retums Vi Main Success Scenario:
acor e 13 ' N [£ 8 - A customer arrives at a checkout with items to return.
& ¥ b "W _ ' - The cashier uses the POS system to record each
U e). p i returned item ...
) p Y Syslem
Manager . .
=) T e o Alternate Scenarlos.. . .
Sa'seiﬁ;}"'fv ' % i - If the customer paid by credit, and the reimbursement
P : transaction to their credit account is rejected, inform the
1 Manage Security | g .
= S customer and pay them with cash ...
Sysle;rl [.Managﬁ Users *
Administrator : ~

~
use case

\ cew y
]§EFENDABLE SOFTWARE 343
LABORATORY

B

2. Class Diagram

Class diagram shows the classes of the system, their inter-relationships, and the operations and
attributes of the classes.

— Design class diagram (pcp)

Domain model

EFENDABLE SOFTWARE
LABORATORY

Store

Uses
address : Address 1 l/ 1
name : Text ProductSpecification
ProductCatalog
addSale(...)) description : Text
Contains et
P e— e _ >| price - Money
N 1 1.7 | temID: ltemID
getSpecification(._.)
Houses — B S T /7 1
Describes
1 1 Sale - i
. O . — *
Register : date - Date — SalesLineit
: iIsComplete : Boolean ges e
E Captures time : Time 1 Contains »>| quantity - Integer
endSale() L 1| becomeCom "
: plete()
makePayment(...
makePayment(...) getTotal()
Logs-completed® ® T 1 Payment

Paid-by

A dependency of Register knowing about
ProductSpecification.

Recommended when there is parameter,
global or locally declared visibility

amount : Money

KU

344

KONKUK
UNIVERSITY

| 4

3. Object Diagram

them.

— Shows instances of classes at a specific point of time (i.e., shapshot)

EFENDABLE SOFTWARE
LABORATORY

Author

name : String
age : Integer

Uses »

Computer

Bob: Author

name = "Bob J."
age = 32

name : String
memory : Integer

Bob' PC:
Computer

name = "Dell 466"

memory = 64

Bob's Home PC:
Computer

name = "Compaq

Pentium MMX"
memory = 32

Class Diagram

Object Diagram

KU KONKUK
UNIVERSITY

Object diagram is useful for exploring real world examples of objects and the relationships between

345

KU KONKUK
UNIVERSITY

4. Package Diagram

- Package diagram groups classes into packages and simplify complex class diagrams.
— A package is a collection of logically related UML elements.
— Logical architecture

Presentation ‘

Swing ©» L
* not the Java

S PPECT ey ..| Swing libraries, but
Frame our GUI classes
based on Swing

Text C} i

5 = *Fe..| used in quick
rocessSale experiments
Console

Domain ‘
Sales Pricing
‘ Register ‘ | Sale ‘ PricingStrategy «interface»
Factory |SalePricingStrategy

ServiceAccess Payments

Services «interface»
CreditPayment |CreditAuthorization
Factory

ServiceAdapter

Inventory POSRuleEngine Taxes

«interface» ; «interface»
lInventory Adapter EOSRuleEnginekacade ITaxCalculatorAdapter

Technical Services ‘

Persistence — —

A general ==
LogdJ Jess [+ PUrpOse third- SOAP
\ DBFacade party rules
?;?DEFENDABLE SOFTWARE engine.

346

LABORATORY

| 4

5. Component Diagram

software systems.
— lllustrate the structure and inter-dependency of arbitrarily complex systems

EFENDABLE SOFTWARE
LABORATORY

Apache @

Struts
<<framework=>

LY

Ordering

Online g

<<application>>

Shipping

£]

<<application>>

Copyright 2005 Scott W. Ambler

Component diagram depicts how components are wired together to form larger components or

2]

University DB
<<datastore>>

J)JDBC

<<requires>>7
1

IPersistence
7

IXML @
O Customer
ICustomer
[————
|
|
l 2]
I IXML
| O Order
I I0rder
I R <<component>>
I IXML
| F P —
| Delivery
| IDelivery

<<component>>

2 N
IPersistence

Persistence
<<jinfrastructure>>

IEncryption
O_

1AccessControl

@—

2]

Security
<<infrastructure>>

| KUREE

347

6. Composite Structure Diagram

Composite structure diagram is used to explore run-time instances of interconnected instances
collaborating over communications links.
— Show the internal structure (including parts and connectors) Of components.

<<(omponent>> E

ConversionManagement

FeedProvider FeedProvider
O I E] }O— E] Parser E]l DataSource DataSaurce
< <COMpanents = (O <<component>> e } O
: Controller \ : BlogParser

DisplayConverter

Assembly
connector

]§EFENDABLE SOFTWARE 348
LABORATORY

| 4

1. Deployment Diagram

Deployment diagram depicts a static view of the run-time configuration of hardware nodes and the

software components running on those nodes.

EFENDABLE SOFTWARE
LABORATORY

WebServer

<<RMI|=>

:ApplicationServer
=<fdevice=>
{08=Solaris}

<< JDBC>>

Student
Administration
<< JSPs=>

k

Copyright 2005 Scoft W. Ambler

i EIBContainer

<=gxecution environment>>

£]

Student

£]

Seminar

Schedule

:DBServer
{OS=LinuX}

University DB @
=<glatastore=>
{vendor=0racle}

<<message bus=>

<<deployment spec>>
Registration

exccution: thread

nested Transaction: true

Persistence D
<<infrastructure=>=
{vendor=Ambysoft}

Mainframe
JOS=NMVS}

Course
Management
=<legacy system=>

KU KONKUK
UNIVERSITY

349

8. Sequence Diagram

+ Sequence diagram models the collaboration of objects based on a time sequence.
— Show how the objects interact with others in a particular scenario of a use case

-Student -E-Learning ‘Database
System
i a i
I login(user, pw) I I
a - a
: : heck(user, '
| ey
i _____check:"ok’ |
|) i |
login: "ok"”
S a
| | |
getCourses() N: i
| |

EPENDABLE SOF TWARE 3 5 0

9. Communication Diagram

« Communication diagram is used to model the dynamic behavior of the use case. (called collaboration
diagram)
— = Sequence diagram
— More focused on showing the collaboration of objects rather than the time sequence.

:Student

1: login(user, pw)
2: getCourses()

:E-Learning —

:Database
System |4 4. check(user, pw)

b
i ngEFENDABLE SOFTWARE 3 5 ']
N LABORATORY

10. Timing Diagram

KU KONKUK
UNIVERSITY

« Timing diagram shows the behavior of the objects in a given period of time.
— A special form of a sequence diagram
— The time increases from left to right and the lifelines are shown in separate compartments arranged vertically.

= logged in
3
2 logged out | getCourses
2] login(user, pw) |
|
|
= ilogin; "ok"
c
€ E busy Y ' AN
&2 .
i3-S idle |
L check(user, pw) | check: "ok"
I
i
I
)] I
& |
= active A A
©
a

EFENDABLE SOFTWARE
LABORATORY

duration constraint

‘Web Serve

sd Website Timing \A_{zon 800 ms}
==

Waiting

Sending response
timeline
Processing \i

state or condition

state change

lifeline E timeline)
_‘ @ Processing Imedin
& \1 \
2] A
E Idle f T
\
HTTP request
E Waiting
EED Processing
] Seng ~~_eventor
@ Idle synchronous request \
= message stimulus \
v Show page
A
\
T
& URL \
lifeline o \
“]"% Idle Waiting X Viewing
=

/ 0 055 1s 15s \25 255

state, condition or value

tick mark value timing ruler

352

KU KONKUK
UNIVERSITY

11. Interaction Overview Diagram

* Interaction overview diagram focuses on the overview of the flow of control of the interactions.
— A variant of the Activity Diagram, where the nodes are the interactions or interaction occurrences.

sd Log In /

g :E-Learning .
:Student System :Database

| i
|login(user, pw) _ |

o — ' >i check(user, pw)

i
|
|

; |

I I

i check: "ok" 4:
:
|
|
|
|
|

[authorized]

| getCourses()

sd Forum /

LABORATORY

Th
” %@%EFENDABLE SOFTWARE 3 5 3

KU KONKUK
UNIVERSITY

12. State (Statechart) Diagram

- State diagram can show different states of an entity and how an entity responds to various events by

changing from one state to another. o o)
— Originated from the Statecharts formalism onBinClick | /| offBtnCiick
— The history of an entity is modeled by a finite state diagram. (on)

(Idle \

entry / speed := undefined
setBtnClick cancelBtnClick

Cruising

setBnclick [SetSpeed L o
/kentry / speed := currentSpeed)\

resumeBtnRelease. MaintainSpeed setBtnRelease

do / maintain(speed)

resumeBtnPress setBtnPress

Accelerate Decelerate

do / accelerate do / decelerate

brake
resumeBtnClick clutch

(Suspended \

l entry / releaseControl l

i gg:DEFENDABLE SOFTWARE \) 3 54

LABORATORY

KU KONKUK
UNIVERSITY

13. Activity Diagram

« Activity diagram helps to describe the flow of control of the target system.
— Exploring complex business rules and operations, describing the use case and the business process
— It is an object-oriented equivalent of flow-charts and DEDS (data flow diagrams).

Show
MessageBox
[disk full] "Disk full" on

screen

PrintFile()
&
' Show
[free disk space] MessageBox
"Printing" on
screen
/ \ APrinter.Print(file) /
5\J< Remove Create postscript

MessageBox file
M%EFENDABLE SOFTWARE 3 5 5
) LABORATORY

KU e

13 UML Diagrams

Diagram
[]
Structure Behaviour
Diagram Diagram
A A
| | |
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction State
Diagram Structure Diagram Diagram Diagram Machine
Diagram A Diagram
UML 2.2
[I]
Sequence Communication || Interaction Timing
Notation: UML | Diagram Diagram Overview Diagram
Diagram

BDEF'ENDAEILE SOFTWARE 3 5 6
L ABORATORY

]93EF'EN DABLE SOFTWARE 3 5 7
L ABORATORY

KU KONKUK
UNIVERSITY

Use Cases

« Use cases are text stories of some actors using a system to meet goals.
— A mechanism to capture (identify and analyze) requirements

— An example (Brief format).
* Process Sale: A customer arrives at a checkout with items to purchase. The cashier uses the POS system to record each
purchased item. The system presents a running total and line-item details. The customer enters payment information,
which the system validates and records. The system updates inventory. The customer receives a receipt from the system

and then leaves with the items.

— Use case is not a diagram, but a text.
« 3 formats (levels) : brief > casual - fully dressed

359

DEPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

Use Case Diagram

Use case

* Use case diagram illustrates the name of use cases and actors, and the relationships between them.
— System context diagram

— A summary of all use cases ot Hounsany NextGen POS wm COMRUAIcEION
T 5
- /‘.
Process Sale | - : alternate
: notation far
Cuslomer P ; = a computer
. Payment systgm actor
\ y A Authorization o, .-
/ gl Service B
i Y i { Handle Retumns J K
Actor ;m _ r A
actor I bt Tax Caleulator
. . . Cashi .
Something with behavior, such as a person, e g . .
computer system, or organization TS
~ Cash In © Accounting

- Primary Actor : has user goals fulfilled through using services e . i

of the SuD (system Under Discussion), .., cashier 4 Lo

aactors i Analyze Activity i ¢
) _ _ Sales Activity — : HR System

- Supporting Actor : provides a service to the SuD, e.g., payment System

authorization service ,

1. Manage Security | o _)
- Offstage Actor : has an interest in the behavior of the use case, - _ i
. . . System Manage Usars \‘x
but is not primary or supporting, e.g., tax agency Pz reele oL

e
M%EFENDABLE SOFTWARE 3 60
LABORATORY

| 4

' KU

3 Formats of Use Cases

e Brief:

— Terse one paragraph summary
— Usually the main success scenario or a happy path

Casual :

— Informal paragraph format
— Multiple paragraphs that cover various scenarios

EFENDABLE SOFTWARE
LABORATORY

Handle Returns

Main Success Scenario: A customer arrives at a checkout with items to returmn. The cashier
uses the POS system to record each returned item ...

Alternate Scenarios:

If the customer paid by credit, and the reimbursement transaction to their credit account is
rejected, inform the customer and pay them with cash.

If the item identifier is not found in the system, notify the Cashier and suggest manual entry
of the identifier code (perhaps it is corrupted).

If the system detects failure to communicate with the external accounting system, ...

361

KONKUK
UNIVERSITY

B

Fully Dressed :

— Includes all steps, variations and supporting sections (e.g., preconditions)

EFENDABLE SOFTWARE
LABORATORY

Use Case Section

Comment

Use Case Name

Start with a verb.

Scope

The system under design.

Level

"user-goal” or "subfunction”

Primary Actor

Calls on the system to deliver its services.

Stakeholders and Interests

Whao cares about this use case, and what do they want?

Preconditions

What must be true on start, and worth telling the reader?

Success Guarantee

What must be true on successful completion, and worth
telling the reader.

Main Success Scenario

A typical, unconditional happy path scenario of success.

Extensions

Alternate scenarios of success or failure.

Special Requirements

Related non-functional requirements.

Technology and Data
Variations List

Varying I/O methods and data formats.

Frequency of Occurrence

Influences investigation, testing, and timing of
implementation.

Miscellaneous

Such as open issues.

K KONKUK
UNIVERSITY

362

I}EFEN DABLE SOFTWARE

Case Study: The NextGen POS System

LABORATORY

The first case study is the NextGen point-of-sale (POS) system. In this apparently straightforward
problem domain, we shall see that there are interesting requirement and design problems to
solve. In addition, it's a real problemgroups really do develop POS systems with object
technologies.

A POS system is a computerized application used (in part) to record sales and handle payments;
it is typically used in a retail store. It includes hardware components such as a computer and bar
code scanner, and software to run the system. It interfaces to various service applications, such
as a third-party tax calculator and inventory control. These systems must be relatively fault-
tolerant; that is, even if remote services are temporarily unavailable (such as the inventory
system), they must still be capable of capturing sales and handling at least cash payments (so
that the business is not crippled).

A POS system increasingly must support multiple and varied client-side terminals and interfaces.
These include a thin-client Web browser terminal, a regular personal computer with something
like a Java Swing graphical user interface, touch screen input, wireless PDAs, and so forth.

Furthermore, we are creating a commercial POS system that we will sell to different clients with
disparate needs in terms of business rule processing. Each client will desire a unigue set of logic to
execute at certain predictable points in scenarios of using the system, such as when a new sale is
initiated or when a new line item is added. Therefore, we will need a mechanism to provide this
flexibility and custormization.

Using an iterative development strategy, we are going to proceed through requirements, object-
oriented analysis, design, and implementation.

APPLYING UML
AND PATTERNS

A ntroducion to Obfect Oriened Anaysis and Design
and Rerative Development

T b e B b et e B e g
har i e ey DO R s B o v i
e e o o S (et s Sy

CRALG | ARMAN

e

363

K KONKUK
UNIVERSITY

Example: Process Sale in Fully Dressed Style

Use Case UC1: Process Sale

Scope: NextGen POS application

Level: user goal

Primary Actor: Cashier

Stakeholders and Interests:

— Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short-
ages are deducted from his/her salary.

— Salesperson: Wants sales commissions updated.

— Customer: Wants purchase and fast service with minimal effort. Wants easily visible
display of entered items and prices. Wants proof of purchase to support returns.

— Company: Wants to accurately record transactions and satisfy customer interests.
Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo-
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

—Manager: Wants to be able to quickly perform override operations, and easily debug
Cashier problems.

— Government Tax Agencies: Want to collect tax from every sale. May be multiple agen-
cies, such as national, state, and county.

— Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Payment authorization approvals are recorded.

lg:)EF'ENDAEILE SOFTWARE 364
L ABORATORY

B

EFENDABLE SOFTWARE
LABORATORY

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total.

Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

. System presents total with taxes calculated.

. Cashier tells Customer the total, and asks for payment.

. Customer pays and System handles payment.

. System logs completed sale and sends sale and payment information to the external
Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

oo N O

Extensions (or Alternative Flows):
*a. At any time, Manager requests an override operation:
1. System enters Manager-authorized mode.
2. Manager or Cashier performs one Manager-mode operation. e.g., cash balance
change, resume a suspended sale on another register, void a sale, etc.
3. System reverts to Cashier-authorized mode.
*b. At any time, System fails:
To support recovery and correct accounting, ensure all transaction sensitive state
and events can be recovered from any step of the scenario.
1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.
2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean
state.
2. Cashier starts a new sale.
1a. Customer or Manager indicate to resume a suspended sale.
1. Cashier performs resume operation, and enters the ID to retrieve the sale.
2. System displays the state of the resumed sale, with subtotal.
2a. Sale not found.
1. System signals error to the Cashier.
2. Cashier probably starts new sale and re-enters all items.

3. Cashier continues with sale (probably entering more items or handling payment).

2-4a. Customer tells Cashier they have a tax-exempt status (e.g., seniors, native peo-
ples)
1. Cashier verifies, and then enters tax-exempt status code.
2. System records status (which it will use during tax calculations)
3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:
2a. There is a human-readable item ID (e.g., a numeric UPC):
1. Cashier manually enters the item ID.
2. System displays description and price.
2a. Invalid item ID: System signals error. Cashier tries alternate method.
2b. There is no item ID, but there is a price on the tag:
1. Cashier asks Manager to perform an override operation.

2. Managers performs override.

3. Cashier indicates manual price entry, enters price, and requests standard
taxation for this amount (because there is no product information, the tax
engine can’t otherwise deduce how to tax it)

2¢. Cashier performs Find Product Help to obtain true item ID and price.
2d. Otherwise, Cashier asks an employee for the true item ID or price, and does
either manual ID or manual price entry (see above).
3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.
3c. ltem requires manual category and price entry (such as flowers or cards with a price
on them):
1. Cashier enters special manual category code, plus the price.
3-6a: Customer asks Cashier to remove (i.e., void) an item from the purchase:
This is only legal if the item value is less than the void limit for Cashiers, otherwise a
Manager override is needed.
1. Cashier enters item identifier for removal from sale.
2. System removes item and displays updated running total.
2a. ltem price exceeds void limit for Cashiers:
1. System signals error, and suggests Manager override.
2. Cashier requests Manager override, gets it, and repeats operation.
3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.
3-6¢. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS register.
2. System presents a “suspend receipt” that includes the line items, and a sale ID
used to retrieve and resume the sale.
4a. The system supplied item price is not wanted (e.g., Customer complained about
something and is offered a lower price):
1. Cashier requests approval from Manager.
2. Manager performs override operation.
3. Cashier enters manual override price.
4. System presents new price.
5a. System detects failure to communicate with external tax calculation system service:
1. System restarts the service on the POS node, and continues.
1a. System detects that the service does not restart.
1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.
5h. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.
5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.
6a. Customer says they intended to pay by cash but don’t have enough cash:
1. Cashier asks for alternate payment method.
1a. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

365

B

EFPENDABLE SOFTWARE
LABORATORY

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.
7b. Paying by credit:
1. Customer enters their credit account information.
System displays their payment for verification.
3. Cashier confirms.
3a. Cashier cancels payment step:
1. System reverts to “item entry” mode.
. System sends payment authorization request to an external Payment Authoriza-
tion Service System, and requests payment approval.
4a. System detects failure to collaborate with external system:
1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.
. System receives payment approval, signals approval to Cashier, and releases
cash drawer (to insert signed credit payment receipt).
5a. System receives payment denial:
1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.
5b. Timeout waiting for response.
1. System signals timeout to Cashier.
2. Cashier may try again, or ask Customer for alternate payment.
System records the credit payment, which includes the payment approval.
System presents credit payment signature input mechanism.
. Cashier asks Customer for a credit payment signature. Customer enters signa-
ture.

n

N

o

®No

9. If signature on paper receipt, Cashier places receipt in cash drawer and closes it.

7c. Paying by check...
7d. Paying by debit...
7e. Cashier cancels payment step:

1. System reverts to “item entry” mode.

7f. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.
9a. There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible):

1. Cashier requests gift receipt and System presents it.

9c. Printer out of paper.

1. If System can detect the fault, will signal the problem.

2. Cashier replaces paper.

3. Cashier requests another receipt.

Special Requirements: =
_ Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.

— Credit authorization response within 30 seconds 90% of the time.)

— Somehow, we want robust recovery when access to remote services such the inven-
tory system is failing. }

— Language internationalization on the text displayed.

— Pluggable business rules to be insertable at steps 3and7.

Technology and Data Variations List:

*a. Manager override entered by swiping an override card through a card reader, or
entering an authorization code via the keyboard.

3a. Item identifier entered by bar code laser scanner (if bar code is present) or key-
board.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.

7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt. But within two years, we pre-
dict many customers will want digital signature capture.

Frequency of Occurrence: Could be nearly continuous.

Open Issues:

— What are the tax law variations?

— Explore the remote service recovery issue.

— What customization is needed for different businesses?

— Must a cashier take their cash drawer when they log out?

— Can the customer directly use the card reader, or does the cashier have to do it?

366

KU Sovemsmy
Guideline: Write in an Essential Style

« Essential writing style is to express user intentions and system responsibilities, rather than concrete
actions.

— Ul-free style
— Concrete use cases are better avoided during early requirements analysis.

— For example: Manage Users use case

Essential Style Concrete Style
1. Administrator identities self. 1. Administrator enters ID and PW in dialog box.
2. System authenticates identity. 2. System authenticates Administrator.
3.... 3. System displays the “edit user” window.
4. ...

M% EEEEEEEEE SOFTWARE 3 67
LABORATORY

| E Lt
Guideline: Write Black-Box Use Cases

« Don’t describe the internal working of the system, its components or design.
— Define what the system does (analysis), rather than how it does it (design).

| Black-box style Not

The system records the sale. The system writes the sale to a database.
...or (even worse):

The system generates a SQL INSERT
statement for the sale...

DEPEMDABLE SOFTWARE 3 68
LABORATORY

Are Use Cases Functional Requirements?

* Yes

* Use cases are requirements, primarily functional requirements.
— “F” (functional or behavioral) in terms of FURPS+ requirements types
— Can also be used for other types.

LABORATORY

b Y
=
S DEPENDABLE SOFTWARE

369

lg:)EF'ENDAEILE SOFTWARE 370
L ABORATORY

System Sequence Diagram

KU
System Sequence Diagram

+ System sequence diagram (SSD)
— A picture that shows the events that external actors generate, their order, and inter-system events, for one
particular scenario of a use case.
« the external actors that interact directly with the system,
* the system (as a black box), and
« the system events that the actors generate
— In the sequence diagram notation
— Depict system behavior in terms of what the system does, not how it does it
— Used as input to object design — System operations

KONKUK
UNIVERSITY

« Use cases describe how external actors interact with the software system we are interested in creating.

— During this interaction, an actor generates system events to a system, usually requesting some system
operation to handle the event.

[} DerenpaBLE SoFTWARE

LABORATORY 3 7 2

APPLYING UML
AND PATTERNS

Applying UML Sequence Diagrams S

+ The UML does not define something called ‘System Sequence Diagrams’.
— We use the general UML sequence diagram notation.

— The term ‘system’ in SSDs is used to emphasize the application of the UML sequence diagram to systems
viewed as black boxes.

— An SSD shows system events for one scenario of a use case.

x

CRAIG LARMAN

. Cashier Process Sale Scenario -System

I]

1 makeNewSale el

Simple cash-only Process Sale scenario: | "
T T

; loop / [more items])) I

1.Customer arrives at a POS checkout] enterltem(itemID, quantity) el
with goods and/or services to purchase. gl
2. Cashier starts a new sale. : Ty
3. Cashier enters item identifier. : description, total }
4.System records sale line item and (= =TT s ST mmm e I
presents item description, price, and }]
running total. | !
Cashier repeats steps 3-4 until indicates [|
done. Q . endSale el
5.System presents total with taxes : r%
calculated. |) I
6.Cashier tells Customer the total, and R____________Lo_ta_lgvﬂht_age_s ______________ !
asks for payment. } ;
7.Customer pays and System handles : - i i ;

] makePayment(amoun -

payment ‘ >
| 1

i |

EPENDASLE SOFTWARE [—— changedue, receipt____________ ! 373

| 1

LABORATORY

KU Sovemsmy

System Operation

+ System operations
— Operations that the system as a black box component offers in its public interface
— Show system events, which the SUD should have system operations to handle the system events.
— System Interfaces: the entire set of system operations across all use cases

Process Sale Scenario
System
- Cas’ior ys‘
H makeNewSale() ’:
1 I
- «: N
loop . [more items) '
- ! enterltem(itemID, quantity) - > theso input system events
| | invoke system operations
] L}
i | the syslem event enterftem
b i i i i description, total] invokes a gysiem operation
g : called enterltem and so forth
]]
E i this is the same as in object-
' i oriented programming when
i It > we say the message foo
1 ' invokes the method (handling
1]
e _ttalwithtaxes ! opariion) be
i i
]]
. makePayment(amount) ’:
" I
1)
] I
oo oo e change due recespt _ _ __ _ _ _____ '
]

EFENDABLE SOFTWARE
LABORATORY

! 374

KU KONKUK
UNIVERSITY

Guideline: How to Name System Events and Operations?

+ System events should be expressed at the abstract level of intention rather than in terms of the
physical input device.

 Example : scan(itemID) vs. enterltem(itemiD)
— The enterltem name is better, since it communicates intention rather than the input device.

/N

worse name k

: :System
: Ca$h|er .
better name k ! :
' : . enterltem(itemID, quantity) |
i >
| I
| I
| I
5 scan(item|D, quantity) :
> Y
| I
| I
| I
| I
| |

il] :{_:?E)EFENDABLE SOFTWARE 3 75
! i LABORATORY

The Relationship to Other Artifacts in UP (OOAD)

Sample UP Artifact Relationships

Domain Model

Sale 1 1.* Sales
Business Lineltem
Modeling date
quantity
g Use-Case Model \ Vision
I Process Sale
use 1.Customer |
| el n:"::s arrives ...
- 2.Cashier
makes new |
| - sale.
3o Glossary
Require- _ - parametersand
ments Use Case Diagram Use Case Text retum value details
system |
| levents
% [syseem |
Operation: : Cashier
make Supplementary
enterltem(...) sy
system NewSale() Specification
Post-conditions: operations
I i ‘ _enteritem
id, quanti
|

kOperation Contracts System Sequence DiagramS/

starting eventsto designfor

{

enterltem

1

1

| |

Design (itemID. quantity) ’: :

L spec = getProductSpec(item|D)]

I
EPENDABLE SOF TWARE :
T

I
LABORATORY : addLineltem(spec, quantity)
r

DesignModeI| : ProductCatalog ‘ ‘ : Sale |
T
I

»
»

376

Homework / Activity #10

« RVC SW Control& O0AD 7|22 2M(00A)EL|LCL.
— B = Use CasesE = =0t11, SSDE &9l System Operations=2 25 & &L},
- F7tUC: “HOo=2 2|t “2f A E MRSHA Ao “HOj =S 4 X|BHot”

— UMLEF AR
% System

\\
Front Sensor Hu o 2 Ex

X

Left Sensor

E% —] 2% o g YA

Right Sensor

/ Motor

s ZOHE EA

008
eee\ /°

e — i
// Vacuum Cleaner
L HBIWA(EH)

Dust Sensor

]

An Example Use-Case Diagram for the RVC Control SW 377

Samples of Use Cases and SSD

Use Case
Actor

Pre-Requisites

Typical Courses of Events

Alternative Courses of
Events

Exceptional Courses of
Events

Use Case2| 0| &
A E D E Actors

0| Use-Case’t 2 ¥ %|7| T 0| 2H5E|0j0F of= =AU Z

St Use-Case?} 71E 2| £ E|= A|LI2| 2 - Q59| Actor®t A| Al 7HO| InteractionS,

AlZt =M= H AIE0M 2 5= 2= 89 WOIA, AEMSHA 2Lt

Bl

N

IS T8 = AlLe|esS BRxos HYSL|CE (F AlLf2| 22 AlE T8 71 23)

LE/O|MLYOR FALI2 20| BE 40| SHY + Y B2

iy

Ad
249

Use-Case Description

O

A

: Front Sensor

1 : front_Obstacle()

System

System Sequence Diagram

378

lg:)EF'ENDAEILE SOFTWARE 379
L ABORATORY

8. Software Testing

KU KONKUK
UNIVERSITY

Program Testing

¢ Testing intends to show:
— “a program does what it is intended to do” and
— “discover program defects before it is put into use”.

* When you test software, you execute a program using artificial data.

— You check the results of the test run for errors, anomalies or information about the program’s non-functional
attributes.

— Can reveal the presence of errors, but NOT their absence.

« Testing is a part of general verification and validation (V&V) process and activities.

M@D EEEEEEEEE corrwane 381
LABORATORY

KU Sovemsmy
Two Types of Program Testing

« Validation testing

— To demonstrate to the developer and the customer that “the software meets its (users’) requirements.”
— A successful test shows that the system operates as intended.
* You expect the system to perform correctly using a given set of test cases that reflect the system’s expected use.

» Verification testing

— To discover situations in which “the behavior of the software is incorrect, undesirable or does not conform
to its specification.”

— Asuccessful test is a test that makes the system perform incorrectly and so exposes a defect in the system.
» The test cases are designed to expose defects.

— = Defect testing

{_ :- EFPEMDABLE SOFTWARE 3 82
¢ LABORATORY

KU e

Verification and Validation (V&V)

« Validation: Are we building the right software?

— “Does the software system meets the user's real needs?”

» Verification: Are we building the software rig ht? (with respect to requirements specification)
— “Does the software system meets the requirements specifications?”

Actual
Requirements I

Validation Verification

EFENDABLE SOFTWARE 3 8 3
LABORATORY

SOFTWARE TESTING

V-Model of V&V Activities , ﬁﬁ,?..ﬁ.!!ﬂkﬁ!ﬁ

Actual Needs and A i
Delivered
Constraints ":\ , User Acceptance (alpha, beta test) Package c—
Michal Young
System
System sttt Integration
Specifications | .
\l_l Analysis / Review
. Subsystem /] .
Design/Specs \l Integration Test Subsystem
/1_
i Analysis / Review Verification
Unit/ ;
Unit /
A\

\ User review of external behavior as it is determined or
becomes visible

]}EFENDABLE SOFTWARE 3 84
LABORATORY

KU KONKUK
UNIVERSITY

V&V Confidence

* Aim of V&V
— Establish confidence that the system is ‘fit for purpose’

V&V confidence depends on
— Software purpose
« The level of confidence depends on how critical the software is to an organisation.
— User expectations
» Users may have low expectations of certain kinds of software.

— Marketing environment
» Getting a product to market early may be more important than finding defects in the program.

DEPENDABLE SOFTWARE 3 8 5
LABORATORY

3 Axes of V&YV

| 4

Theorem proving:
Unbounded effort to
verify general
properties.

Perfect verification of
arbitrary properties by
logical proof or exhaustive
testing (Infinite effort)

Model checking:
Decidable but possibly
intractable checking of

simple temporal
properties.

Data flow
|analysis

Typical testing

techniques

Precise analysis of
simple syntactic
properties.

EFENDABLE SOFTWARE
LABORATORY

Optimistic
inaccuracy

Simplified
properties

Pessimistic
inaccuracy

KU KONKUK
UNIVERSITY

« Optimistic Inaccuracy

— We may accept some programs that do not possess
the property.

— It may not detect all violations.

— Example: Testing

* Pessimistic Inaccuracy

— It is not guaranteed to accept a program even if the
program does possess the property being analyzed,
because of false alarms.

— Example: Automated program analysis

- Simplified Properties
— It reduces the degree of freedom by simplifying the
property to check.

— Example: Model Checking

386

KU Sovemsmy
Software Testing Stages

+ Software testing stages
— Development testing
* The system is tested during development to discover bugs and defects.
— Release testing
» A separate testing team test a complete version of the system, before it is released to users.
— User testing
» Users or potential users of a system test the system in their own environment.

« Software testing process

Test Test - Test - Test
cases data | results “| reports

Y \i vy
Design test Prepare test Run program Compare results
cases data with test data to test cases

{tl DEPENDABLE SOFTWARE 3 87
LABORATORY

Development Testing

KU KONKUK
UNIVERSITY

388

KU KONKUK
UNIVERSITY

Development Testing

« All testing activities that are carried out by the team developing the system.

— Unit testing
* Individual program units or object classes are tested.
» Unit testing should focus on testing the functionality of objects or methods.

— Integrated testing
» Several individual units are integrated to create composite components.

* Integration testing should focus on testing interfaces and interactions among componentS.

— System testing
+ Some or all components in a system are integrated and the system is tested as a whole.
» System testing should focus on testing all functionalities as a whole.

— Regression testing
+ Testing a system to check that changes have not ‘broken’ previously working code
* In development or maintenance phase

"DEPENDABLE SOFTWARE 3 8 9
LABORATORY

| KU KONKUK
UNIVERSITY

Unit Testing

* Unit testing is the process of testing individual components in isolation.
— Defect testing

* Units may be:
— Individual functions or methods within an object
— Object classes with attributes and methods
» Testing all operations associated with an object

» Setting and interrogating all object attributes
+ Exercising the object in all possible states

— Composite components with defined interfaces used to access their functionality.

E§EFEN DABLE SOF TWARE 3 9 O
LABORATORY

KU KONKUK
UNIVERSITY

The Weather Station: Unit Testing for Objects

* Need to define test cases for all operations in all states of the object.

— State model can identify sequences of state transitions to be tested and the event sequences to cause these
transitions.

— For example:
* Shutdown -> Running-> Shutdown
* Configuring-> Running-> Testing -> Transmitting -> Running

* Running-> Collecting-> Running-> Summarizing -> Transmitting < Controlled >
-> Runnin
9 A A state mode for the WeatherStation object class
Operation
shutdown() remoteControl()
WeatherStation I Y
reportStatus()
. apn restart . 0
identifier sh@o—. Running >—> Testing
reportWeather () N T transmission done test complete
reportStatus () configuration done Y
powerSave (instruments) “’;:V“)I;‘i?:‘::g Transmitting)
remoteControl (commands) P clock collection h
reconfigure (commands) vreportWeather() "
restart (instruments) Configuring v - \é\éﬁplg Summary
shutdown (instruments) Summarizing
Collecting

:{_:?E)EFENDABLE SOFTWARE 3 9 1
y LABORATORY

KU KONKUK
UNIVERSITY

Automated Testing

 Whenever possible, unit testing should be automated.
— Tests are run and checked without manual intervention.

* Unit testing frameworks
— Provide generic test classes that you extend to create specific test cases.
— Can run all of the tests that you have implemented and report, often through some GUI, on the success of
otherwise of the tests.
— Example: JUnit, xUnit, etc.

— Composed of 3 parts
+ Setup part : initialize the system with the test case, namely the inputs and expected outputs.
+ Call part : call the object or method to be tested.

+ Assertion part : compare the result of the call with the expected result. If the assertion evaluates to true, the test has been
successful if false, then it has failed.

) %:j:)EFENDABLE SOFTWARE 3 9 2
y LABORATORY

l{ l]' KONKUK
UNIVERSITY

Developing Unit Test Cases

« Two types of unit test cases
— Positive
» Reflect normal operation of a program
» Should show that the component works as expected
— Negative
+ Based on testing experience of where common problems arise
* Use abnormal inputs to check that these are properly processed and do not crash the component

"DEPENDABLE SOFTWARE 3 9 3
LABORATORY

KU KONKUK
UNIVERSITY

Unit Testing Strategies

* Partition testing
— |dentify groups of inputs that have common characteristics and should be processed in the same way.
— Choose tests from within each of these groups.

* Guideline-based testing
— Use testing guidelines to choose test cases.
— These guidelines reflect previous experience of the kinds of errors that programmers often make when
developing components.
+ Brute-force testing (AKA 2} E|AE)

— Examples:
» Choose inputs that force the system to generate all error messages.
» Design inputs that cause input buffers to overflow.
* Repeat the same input or series of inputs numerous times.
» Force invalid outputs to be generated.
* Force computation results to be too large or too small.

s h Y

EIQZ)EFENDABLE SOFTWARE 3 94
LABORATORY

KU Sovemsmy
Partition Testing

» Input data and output results often fall into different classes where all members of a class are related.

— Each of these classes is an equivalence partition or domain where the program behaves in an equivalent way
for each class member.

— Test cases should be chosen from each partition.

Input equivalence partitions Output partitions
System —» \4
-
Possible inputs Correct outputs Possible outputs

DEPEMDABLE SOFTWARE 3 9 5
LABORATORY

KU Sovemsmy
Equivalence Partitions with Boundary Value Analysis

3 11
4 7 10
Less than 4 Between 4 and 10 More than 10

Number of input values

9999 100000
10000 50000 99999

N

Less than 10000 Between 10000 and 99999 More than 99999

Input values

{; '15- EFENDABLE SOFTWARE 3 9 6
T LABORATORY

B

SOFTWARE TESTING
AND ANALYSIS

Functional Testing - Techniques Overview ALEALBAN

EFENDABLE SOFTWARE
LABORATORY

Functional specifications
Brute force testing

Identify independently testable features Mauro Pezzé

Finite State Machine, Michal Young
Grammar,
Independently Testable Feature HlEEREE SlpEEinee o,
Logic Specification,
CFG/DFG
Identify representative values Derive a model
Representative Values
Senerate test case specificatio .
Semantic Constraint, Test selection
Combinational Selection, criteria
Exhaustive Enumeration, Test Case Specification
Random Selection
Generate test cases
Manual Mapping,
Symbolic Execution,
A-posteriori Satisfaction
Instantiate tests
Scaffolding
397

Integration Testing

« Software components are often composite components that are made up of several interacting
objects.
— Can access the functionality of these objects through the defined component interface

* Integration testing is the testing of composite components.
— Focus on showing that the component interface behaves according to its specification
— Focus on testing the interactions between components

Test
cases

— Assume that unit tests on the individual objects
within the component have been completed. \—

l} EEEEEEEEE corrwane 398
LABORATORY

Guidelines for Integration Testing

* Interface Testing Guidelines
— Design tests so that parameters to a called procedure are at the extreme ends of their ranges
— Always test pointer parameters with null pointers
— Design tests which cause the component to fail
— Use stress testing in message passing systems
— In shared memory systems, vary the order in which components are activated

| _' ';IDEFENDABLE SOFTWARE 3 99

o]
LABORATORY

KU KONKUK
UNIVERSITY

System Testing

« System testing during development involves integrating components to create a version of the system
and then testing the integrated system.

— The focus is testing the interactions between components. (Integration testing)
» Checks that components are compatible, interact correctly and transfer the right data at the right time across their
interfaces

— Tests the emergent behavior of a system (system testing)

» System testing is a collective process.
— Reusable components that have been separately developed and off-the-shelf systems may be integrated with
newly developed components. The complete system is then tested.
— Components developed by different team members or sub-teams may be integrated at this stage.
— System testing may involve a separate testing team with no involvement from designers and programmers.
- Release Testing

R
() DEPENDABLE SOFTWARE 400
W y LABORATORY

)

KU KONKUK
UNIVERSITY

Developing System Test Cases

+ Use-cases and Sequence diagrams can be used as a basis.
— Each use case usually involves several system components so testing the use case forces these interactions to
occur.

— Sequence diagrams associated with the use case document the components and interactions that are being
tested.
information system

SatComms WeatherStation Commslink WeatherData

>0

request (report) i

acknowledge E
_____ reportWeather () |

< acknowledge get (summary)

summarise ()

send (report)

acknowledge i
reply (report) | — — — — — - :

acknowledge

o R ”
ﬂi’? oot sooane Collect Weather Data Sequence Chart

401

KU KONKUK
UNIVERSITY

Testing Policies

« Exhaustive system testing is a;ways impossible.
— Testing policies define a required system test coverage.

« Examples of testing policies
“All system functions that are accessed through menus should be tested.”
— “Combinations of functions accessed through the same menu must be tested.”

— “Where user input is provided, all functions must be tested with both correct and incorrect input.”

"DEPENDABLE SOFTWARE 40 2
LABORATORY

KU KONKUK
UNIVERSITY

Regression Testing

* Regression testing
— Testing a system to check that changes have not ‘broken’ previously working code

* In a manual testing process, regression testing is expensive but, with automated testing, it is simple
and straightforward.

— All tests are rerun every time a change is made to the program.
— Tests must run ‘successfully’ before the change is committed as TFD in XP.

b
i ngEFENDABLE SOFTWARE 40 3
N LABORATORY

Test-Driven Development

404

KU KONKUK
UNIVERSITY

Test-Driven Development

* Test-driven development (TDD) is a program development approach inter-leaving testing and code
development.

— Tests are written before code and ‘passing’ the tests is the critical driver of development.
— Develop code incrementally, along with a test for that increment.
— Not move on to the next increment, until the code passes its test.

« TDD was introduced as part of agile methods such as XP.
— However, it can also be used in plan-driven development processes.

Identify new pass

functionality

fail Implement
Write test Run test functionality and
refactor

RN
‘ il DEPENDABLE SOFTWARE 405
Ny LABORATORY
L

Benefits of TDD

Code coverage
— Every code segment that you write has at least one associated test so all code written has at least one test.

Regression testing
— Avregression test suite is developed incrementally as a program is developed.

— Tests the system to check that changes have not ‘broken’ previously working code through rerunning the tests
every time a change is made to the program.

Simplified debugging
— When a test fails, it should be obvious where the problem lies.
— The newly written code needs to be checked and modified.

System documentation
— The tests themselves are a form of documentation that describe what the code should be doing.

-' @DEFENDABLE SOFTWARE 406
y LABORATORY

e .
I

A | DEPENDABLE SOl ARE
| A LABORATO

Release Testing

407

KU KONKUK
UNIVERSITY

Release Testing

* Release testing is the process of testing a particular release of a system that is intended for use
outside of the development team.
— To convince the supplier of the system that it is good enough for use.
+ Should show that the system delivers its specified functionality, performance and dependability
» Should show the system does not fail during normal use

* Release testing is usually a black-box testing process.
— Tests are only derived from the system specification.

RN
‘ A DEPENDABLE SOFTWARE 408
Ny LABORATORY

SR

KU KONKUK
UNIVERSITY

Release Testing vs. System Testing

Release testing is a form of system testing.

Important differences are
— A separate team that has not been involved in the system development should be responsible for release
testing.
« System testing by the development team should focus on discovering bugs in the system. (defect/verification testing)
* Release testing is to check that the system meets its requirements and is good enough for external use. (validation testing)

Performance tests

— Involve planning a series of tests where the load is steadily increased until the system performance becomes
unacceptable.

Stress testing
— Aform of performance testing where the system is deliberately overloaded to test its failure behavior.

) :{_:?E)EFENDABLE SOFTWARE 40 9
y LABORATORY

User Testing

410

KU
User Testing

« User or Customer testing is a stage in which users or customers provide input and advice on system
testing.

— Influences from the user’s working environment have a major effect on the reliability, performance, usability and
robustness of a system. These cannot be replicated in a testing environment.

» Types of user testing
— Alpha testing
* Users of the software work with the development team to test the software at the developer’s site.
— Beta testing

» Arelease of the software is made available to users to allow them to experiment and to raise problems that they discover
with the system developers.

— Acceptance testing

» Customers test a system to decide whether or not it is ready to be accepted from the system developers and deployed in
the customer environment.

* Primarily for custom systems

"DEPENDABLE SOFTWARE 41 1
LABORATORY

KONKUK
UNIVERSITY

Homework #11

« C}FSt Unit Testing FrameworkS 11, MM 2 8 7ts8t WHES olL MHsHM 2.

rx
o
rin

HIH 2 S Homework #70]| M 7H'2$t C programe CHA S 2 X 2514 K.
 Unit Test CasesS 2071l 0|4} 725, X HAR S A5 K.

« Unit Test ReportE A4 108 (2xta7 10 013h2 2 X/ 45HM| K.

List of C++ Unit Testing Frameworks (Wikipedia)

C++ [edit]
= 3 % Group ; _
Name # | License | xUnit # | Fixtures # fict % Generators ¥ Mocks % Exceptions # | Macros # | Templates ¥ Grouping * | Source # Remarks *
ures
Aeryn No Yes Yes No No Yes Yes Yes Yes =2
T I LEEL % Yes Yes . 131] Unit test generator for C/C++ libraries. Can automatically generate reasonable
AP| Sanity Checker GNU LG 25 . =5 i ’)
L’ {spectypes) | (spectypes) input data for every API function. LGPL.
ot s i v 5 - B Originally developed for the NetBSD operating system but works well in most
/ SC es es es 25 =5
& Unix-like platforms. Ability to install tests as part of a release.
No Yes Yes (MNested Yes (Mested | . g 5 . . -
Bandit MIT 2 poria | @ by | d be) No No Yes Yes No describe) =l Header only. Automatic test registration. Specifically developed for C++11
escribeyi escribe; escribe, lescribe
With additional U suit 4 Part of Boost. Powerful dataset concept for generating test cases. Different
. o . e ser Suites an Bt = .
Boost Test Library Boost Yas®? Yes!2l Yes!®2H34] Yas library Yes decisi Yes lab ‘b B3 levels of fixtures (global, once per test suite, once per each test case in a
. ecizion abels
Turtle™ suite). Powerful floating point comparison.
BugEye Boost Mo No Na No Ne Yes No Mo Yes Header-only. TAP output.
Commercial. Automated unit and integration testing teol for C++. Certified
QA Systems Cantata | Proprietary No Yes Yes Yes Yas Yes Yes Yes Yes testing for host or embedded systems. Code coverage and unigue call
interface control to simulate and intercept calls.
C++17, modeled after the Jasmine testing framework, type-safe tests, auto-
C . e A . o . < N o . v - o8] registration, BDD features, focused/disabled/pending tests, flexible
asmine L 2.0 o es =5 o o s es es es ‘ : SaEn
configuration (JSON), colored console reporter, extendable,
Windows/Linux/macOS
b Gt R o o o v N ¥ o 4 o 99] Header only, no external dependencies, auto-registration, tdd and bdd
atch or Catc 005 o es =5 CH o es es es CH ik
= “ features
CATCH-VC6 No Yes Yes Yes No Yes Yes Yes Yes i VIC6 port of CATCH
f v " N N 5 @ 5 o 137) Specialized for Windows development—both Win32 and NT kernel mode.
cfix a5 es o o o s es o 7 g
Compatible to WinUnit.
Cput Yes es ‘s ‘es Yes ‘es No Suites [T Library and MS Visual Studio add-in to create and run unit tests. Open Source.
Released Under Apache 2.0, Compliant with C++ 98 and C++ 11. Works for
CPPOCLftest A N e N o o 102 Linux and Windows 32/64 bit using gee, Cygwin, V52005 and V52015, Header
o o ftest Apache 2 o es o ‘es es LA i - & L e &
5 file only library. Provides ability to write performance tests in a similar way to
unit tests. Has some support for reporting memory leaks.
CppTest GNU LGPL Yes ‘Yes Suites {03} Released under LGPL
cpptest-lite MIT Yes Yes Yes Suites R, Released under MIT. Developed for C++11.

CppUnit GNU LGPL Yes Yes Yes Mo No Yes Yes No Suites [03]106] | Released under LGPL 413

List of C++ Unit Testing Frameworks (Wikipedia)

Name License

CppUTest

CppUniiLite
CPUnit

Criterion MIT

libcester MIT

crpeut

CUTE

cutee

CxxTest

doctest M4

Embunit

2]
)
o

Exercisix

Fakelt

=
=

FCTX

Fructose

xUnit

Yes

No
No
No

Fixtures

‘fas

Yes

Yes

Yes

No

Yes

Group
fixtures

Yes

Yes

No

No

No

Generators

No
No

Yes

Yes

No

Yes

No

No

No

No

Yes

Mocks

Yes

No
No

Ne

Yes®

No

No
Yes

No

Exceptions

No

Yes

Yes

Yes

Optional

Yes
Yes

Yes

No

Yes

Macros

Yes

Yes

Yes

Yes

Templates

No

Yes

No

Mo

Yes

Grouping

Suites

Suites

Yes

Suites

File

Suites within
Suites

Suites

Suites

Executables

Source

(o7

[o

niop

niz

nis

Remarks

Limited C++ set by design to keep usage easy and allow it to work on
embedded platforms. C++ is buried in macros so the leamning curve for C
pragrammers is minimal. Ported to Symbian. Has a2 mocking support library
CppUMock

Released under BSD.

Unit testing framework with automatic test registration. Meeds C++11
compiler support for the C++ AP|. Supports theories and parameterized tests.
Each test is run in its own process, so signals and crashes can be reportad.
Can output to multiple formats, like the TAP format or JUnit XML Supported
on Linux, OS X, FreeBSD, and Windows.

A robust header anly unit testing framework for C and C++ programming
language. Support function mocking, memory leak detection, crash report.
Works on various platorms including embedded systems and compatible with
various compilers. Qutputs to multiple format like TAR JunitXML, TAPV13 or
plain text.

BSD 2 clause. Runs each test in its own process, guaranteeing that the test
suite continues even in the event of an unexpected crash or infinite loop.

CUTE (C++ Unit Testing Easier) with Eclipse CDT integration. Single line

include, without inheritance. Mock support i1s provided by Mockator.

Uses a C++ parser and code generator {requining Python) for test registration.

* Has a framework for generating mocks of global functions, but not for

generating mocks of cbjects.

Light, feature rich C++ single header testing framework

Commercial. Create unit tests for C/C++ and Embedded C++

Aimed to make adding tests as fast and easy as possible.

Use the latest C++11 features to create an expressive, yet very simple, API

Fast and complete unit testing framework all in one header. Declare and write

your functiens in cne step. No dependencies. Cross platform.

A simple unit test framework.

414

List of C++ Unit Testing Frameworks (Wikipedia)

Group

Name License xUnit Fixtures fot: Generators Mocks Exceptions Macros Templates Grouping Source Remarks
ures
Google C++ e
4 Yes Mo Yes Yes et
Waocking Framework
Supports automatic test discovery, a rich set of assertions, user-defined
Google Test BSD Yes Yes Yes Yes Yes Yes assertions, death tests, fatal and non-fatal failures, various options for running
the tests, and XML test report generation.
Open source. Can test servers, libranes, and applications, and embedded
Hestia MIT Yes Yes ‘a5 Mo Mo Yes ‘Yes Yes Suites 12z software. Outputs to stdout, text, html, or xml files. Has several assertions for
messaging, warnings, and exceptions, as well as plain conditions.
Hippomocks Yes MNe Yes Yes
Yes Yes (nested | 1.4 - ey
Igloo (Contexts) Na No No Yes Yes Yes o gt BDD style unit testing in C++
ontexts contexts,
lest No Yes Mo Mo No Yes Yes Yes Mo Tiny header-only C++11 test framework
liblittletest is a portable, one file header-only C++ library for unit testing.
liblittletest Yes Yes Yes No Mo Yes Yes Yes Yes 26 Supports a rich set of assertions, automatic test discovering and various
options for running the tests.
libunittest Yes Yes Yes Mo Mo Yes Yes Yes Yes k2 libunittest is a portable C++ library for unit testing making use of C++11.
mettle BSD L5
Microsoft Unit : : oy
e % = o - v v o 5 o . 4 v 129] Commercial. Integrated into Microsoft Visual Studio 2012 IDE and later
esting Framewor roprietary es es as o o 25 es s CH s ’
¢ ,f o v versions,
or C++
Fully automated mock generation for C and C++. Based on clang, provides
Mimice Proprietary Yas the ability to compile header files straight into linkable mock object files and
control them with an accompanying AP
Header-only mock object library and an Eclipse plug-in to create test doubles
Mockatar Yes Mo Yes Yes (30 in a simple yet powerful way; leverages new C++11 language facilities while
still being compatible with C++03; has built-in support for CUTE
mock++/mockcpp Yes Yes No Yes ‘Yes Yes Yes Suites Simple testing framework for C++ {requires cmake)
mockitopp Yes A C++ mock object framework providing similar syntax to mockito for Java.
mockpp Yes Yes Yes Yes Yes Yes Yes Suites k] A C++ maocking framework hosted by Google

415

lg:)EF'ENDAEILE SOFTWARE 41 6
L ABORATORY

9. Software Evolution

KU KONKUK
UNIVERSITY

Software Change

« Software change is inevitable.
— New requirements emerge when the software is used.
— The business environment changes.
— Errors must be repaired.
— New computers and equipment is added to the system.
— The performance or reliability of the system may have to be improved.

« AKkey problem for all organizations is implementing and managing change to their existing software
systems.

— The majority of the software budget in large companies is devoted to changing and evolving existing software
rather than developing new software.

b
i ngEFENDABLE SOFTWARE 4’] 8
N LABORATORY

A Spiral Model of Development and Evolution

-

Specification

/ / Start
etc.

e

Implemention

Release 1

Operatlon

IR

O
/

)
/

Validation

Release 2

Release 3

-

419

KU KONKUK
UNIVERSITY

Evolution and Servicing

 Evolution

— The stage in a software system’s life cycle, where it is in operational use and is evolving as new requirements
are proposed and implemented in the system.

« Servicing
— At this stage, the software remains useful, but the only changes made are those required to keep it operational,
i.e., bug fixes and changes to reflect changes in the software’s environment.

— No new functionality is added.

* Phase-out (Retirement)
— The software may still be used but no further changes are made to it.

Software Software
development - |
P evolution Soft_/vgre
servicing Software
retirement

Time

5

m %{% EEEEEEEEE SOFTWARE 420
4 LABORATORY

R

Evolution Processes

KU KONKUK
UNIVERSITY

421

KU KONKUK
UNIVERSITY

Evolution Processes

- Software evolution processes depend on

Change ldentlflcatlon

— The type of software being maintained, process
— The development processes used, and
— The skills and experience of the people involved.
New system Change proposals
» Proposals for change are the driver for system evolution.
— Should be linked with components that are affected by the change
— Should allow the cost and impact of the change to be estimated
Software evolution
process j

« Change identification and evolution continues throughout the system lifetime.

DEFENDABLE SOFTWARE 42 2
LABORATORY

| E Lt
The Software Evolution Process

\J

Proposed Requirements Requirements Software
—> . .
changes analysis updating development

Change Impact Release Change System
requests analysis planning implementation release

\i \J
Fault repair Platform System
P adaptation enhancement

]}EFENBABLE SOFTWARE 42 3
LABORATORY

Urgent Change Requests

+ Urgent changes may have to be implemented without going through all stages of the software
engineering process.
— If a serious system fault must be repaired to allow normal operation to continue.
— If changes to the system’s environment (e.g., OS upgrade) have unexpected effects.
— If there are business changes that require a very rapid response (e.g., release of a competing product).

Change Analyze Modify Deliver modified
—
requests source code source code system

b
i ngEFENDABLE SOFTWARE 424
N LABORATORY

KU KONKUK
UNIVERSITY

Agile Methods and Evolution

« Agile methods are based on incremental development so the transition from development to evolution
is a seamless one.

— Evolution is simply a continuation of the development process based on frequent system releases.

— Automated regression testing is particularly valuable when changes are made to a system.
+ Changes may be expressed as additional user stories.

* Under the assumption that the Agile development teams have been maintained.
— Should avoid handover problems

Th
” %@%EFENDABLE SOFTWARE 42 5

LABORATORY

Handover Problems

* Where the development team have used an agile approach, but the evolution team is unfamiliar with
agile methods and prefer a plan-based approach.

— The evolution team may expect detailed documentation to support evolution, and this is not produced in agile
processes.

 Where a plan-based approach has been used for development, but the evolution team prefer to use
agile methods.

— The evolution team may have to start from scratch developing automated tests and the code in the system may
not have been refactored and simplified as is expected in agile development.

| _' ';IDEFENDABLE SOFTWARE 426

LABORATORY

Legacy Systems

-
Il) Y

B
i ngEFENDABLE SOFTWARE 427
Yy LABORATORY

Legacy Systems

Legacy systems

KU

— Older systems that rely on languages and technology that are no longer used for new systems development.

Legacy systems are often broader socio-technical systems.

May be dependent on older hardware such as mainframe computers
May have associated legacy processes and procedures

— Including hardware, software, libraries and other supporting software and business processes

— Elements of legacy systems:

Embeds
knowledge of

<
<

Business policies
and rules

Uses

Uses —
Support) Application
software y software
Runs-on Runs-on Uses
Y Y
System Application
hardware data

%‘t}EFEN DABLE SOFTWARE
il

LABORATORY

Constrains

Y

Business
processes

Socio-technical system

Business processes

Application software

Platform and infrastructure software

Hardware

428

KONKUK
UNIVERSITY

Components of Legacy Systems

Element

Description

System hardware

Legacy systems may have been written for hardware that is no longer available.

Support software

The legacy system may rely on a range of support software, which may be obsolete or
unsupported.

Application software

The application system that provides the business services is usually made up of a number of
application programs.

Application data

These are data that are processed by the application system. They may be inconsistent,
duplicated or held in different databases.

Business processes

These are processes that are used in the business to achieve some business objective.
Business processes may be designed around a legacy system and constrained by the
functionality that it provides

Business policies and rules

These are definitions of how the business should be carried out and constraints on the business.

Use of the legacy application system may be embedded in these policies and rules.

| DEPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

Legacy System Replacement and Change

* Legacy system replacement is risky and expensive.
— Because the system is still in use.

— Many reasons
» Lack of complete system specification
+ Tight integration of system and business processes
* Undocumented business rules embedded in the legacy system
* New software development may be late and/or over budget.

* Legacy system change (modification) iS alSo expensive.

— Many reasons
* No consistent programming style
» Use of obsolete programming languages with few people available with these language skills
* Inadequate system documentation
+ System structure degradation
* Program optimizations may make them hard to understand
+ Data errors, duplication and inconsistency

1 DEPENDABLE SOFTWARE 4 3 O
LABORATORY

KU Sovemsmy
Legacy System Management

» Organizations relying on legacy systems should decide one strategy:

— Scrap the system completely and modify business processes so that it is no longer required, or
— Continue maintaining the system, or

— Transform the system by re-engineering to improve its maintainability, or
— Replace the system with a new system.

« Legacy system assessment
— Assess the system quality and its business value to choose appropriate strategy

{; '15- EFENDABLE SOFTWARE 43 1
- LABORATORY

KU KONKUK
UNIVERSITY

Legacy System Assessment

 Legacy system assessment
— Business value assessment

— i High busi I . .
System quality assessment A igh business value High business value
Low quality . .
High quality
» 4 categories
— Low quality, low business value
* These systems should be scrapped g
. . . ™
— Low-quality, high-business value > Low business value Low business value
» These make an important business § Low quality High quality
contribution but are expensive to maintain G
(]

» Should be re-engineered or replaced
if a suitable system is available

— High-quality, low-business value
» Replace with COTS, scrap completely or maintain
— High-quality, high business value
+ Continue in operation using normal system maintenance

EIQZ)EFENDABLE SOFTWARE 43 2
LABORATORY

\J

System quality

s h Y

Software Maintenance

433

KU KONKUK
UNIVERSITY

Software Maintenance

+ Software maintenance
— Modifying a program after it has been put into use
— Mostly used for changing custom software
* Generic software products are said to evolve to create new versions.
— Changes are implemented by modifying existing components and adding new components to the system.
* Not normally involve major changes to the system’s architecture

h E,IQZ)EFENDABLE SOFTWARE 434
LABORATORY

g

Types of Maintenance

EPE]

Fault repairs

— Changing a system to fix bugs/vulnerabilities and correct deficiencies in the way meets its requirements

Environmental adaptation

— Maintenance to adapt software to a different operating environment
— Changing a system so that it operates in a different environment (computer, 0s, etc.) from its initial implementation

Functionality addition and modification

— Modifying the system to satisfy new requirements

MNDABLE SOFTWARE

LABORATORY

Fault repair
(24%)

Environmental
adaptation
(19%)

Functionality addition
or modification
(58%)

KU

435

KONKUK
UNIVERSITY

KU KONKUK
UNIVERSITY

Maintenance Costs

 Maintenance costs are usually greater than development costs
— 2% to 100* depending on the application
— Affected by both technical and non-technical factors

— Increases as software is maintained
+ Since maintenance corrupts the software structure so makes further maintenance more difficult.

— Aging software can have high support costs (e.g. old languages, compilers etc.).

h E,IQZ)EFENDABLE SOFTWARE 43 6
LABORATORY

KU KONKUK
UNIVERSITY

Maintenance Prediction

* Maintenance prediction is concerned with assessing which parts of the system may cause problems
and have high maintenance costs.
— Change acceptance depends on the maintainability of the components affected by the change.
— Implementing changes degrades the system and reduces its maintainability.
— Maintenance costs depend on the number of changes and costs of change depend on maintainability.

What parts of the system

will be the most expensive
What parts of the system are to maintain?

most likely to be affected by
change requests?

Predicting
maintainability

\/ What will be the lifetime

maintenance costs of this

Predicting system Predicting system?
changes maintenance
costs

What will be the costs of

How many change maintaining this system
requests can be over the next year?
expected?

RN
‘ () DEFENDABLE SOFTWARE 437
Ny LABORATORY

L

KU S
Change Prediction

« Change prediction
— Predicting the number of changes requires

— Predicting understanding of the relationships between a system and its environment
« Tightly coupled systems require changes whenever the environment is changed

* Factors influencing this relationship are
— Number and complexity of system interfaces
— Number of inherently volatile system requirements
— The business processes where the system is used

i 1 ‘S:?E)EFENDABLE SOFTWARE 43 8
y LABORATORY

KU 5o

Metrics for Change Prediction

* Process metrics may be used to assess maintainability
— If any or all of these is increasing, this may indicate a decline in maintainability.
* Number of requests for corrective maintenance
» Average time required for impact analysis
* Average time taken to implement a change request
* Number of outstanding change requests

« Complexity metrics of system components may be used to assess maintainability.
— Studies have shown that most maintenance effort is spent on a relatively small number of system components.

» Complexity of control structures
» Complexity of data structures
* Object, method (procedure) and module size

439

Q DEPENDABLE SOFTWARE
y LABORATORY

KU KONKUK
UNIVERSITY

Software Reengineering

* Reengineering: Restructuring or rewriting parts or all of a legacy system without changing its
functionality
— Applicable where some but not all sub-systems of a larger system require frequent maintenance

— Involves adding effort to make them easier to maintain
* The system may be re-structured and re-documented.

— Advantages

* Reduced risk: There is a high risk in new software development. There may be development problems, staffing problems
and specification problems.

* Reduced cost: The cost of re-engineering is often significantly less than the costs of developing new software.

) %:j:)EFENDABLE SOFTWARE 440
y LABORATORY

The Reengineering Process

Original Program Re-engineered Original data
program documentation program
Reverse
engineering
Y Y
Data
Source code Program reengineering
translation modularization
A
Program
structure
improvement
Y
Restructured Reengineered
program data

]§EFEN DABLE SOFTWARE 44 1
LABORATORY

Reengineering Process Activities

+ Source code translation
— Convert code to a new language
* Reverse engineering
— Analyze the program to understand it
* Program structure improvement
— Restructure automatically for understandability
* Program modularization
— Reorganize the program structure

* Data reengineering Automated program Program and data
— Clean-up and restructure system data restructuring restructuring
Automated source Automated restructuring Restructuring plus
code conversion with manual changes architectural changes

>

Increased cost

]}EFEN DABLE SOFTWARE 44 2
LABORATORY

KU KONKUK
UNIVERSITY

Refactoring

* Refactoring: The process of making improvements to a program to slow down degradation through
change

— ‘Preventative maintenance’ that reduces the problems of future change.

» Refactoring involves modifying a program to improve its structure, reduce its complexity or make it

easier to understand.
— When you refactor a program, you should not add functionality but rather concentrate on program improvement.

il] :{_:?E)EFENDABLE SOFTWARE 443
! i LABORATORY

KU S
Refactoring and Reengineering

* Re-engineering takes place after a system has been maintained for some time and maintenance costs
are increasing.

— Use automated tools to process and re-engineer a legacy system to create a new system that is more
maintainable

« Refactoring is a continuous process of improvement throughout the development and evolution process.
— To avoid the structure and code degradation that increases the costs and difficulties of maintaining a system

i 1 ‘S:?E)EFENDABLE SOFTWARE 444
y LABORATORY

‘Bad smells’ in Program Code

Code Smell

Duplicate code
— The same or very similar code may be included at different places in a program.
— This can be removed and implemented as a single method or function that is called as required.

Long methods
— If a method is too long, it should be redesigned as a number of shorter methods.

Switch (case) statements
— These often involve duplication, where the switch depends on the type of a value.

— The switch statements may be scattered around a program. In object-oriented languages, you can often use
polymorphism to achieve the same thing.

Data clumping

— Data clumps occur when the same group of data items (fields in classes, parameters in methods) re-occur in several
places in a program.

— These can often be replaced with an object that encapsulates all of the data.

Speculative generality

— This occurs when developers include generality in a program in case it is required in the future. This can often simply
be removed.

| _' ';IDEFENDABLE SOFTWARE 445

LABORATORY

Homework #12

« Clean Code0]| CHSH =A}St A4 5% (2xta7110 015hH2 2 ™| SHM| 8.

- C I EH static Code Analysis =& StLt 47Tt £, Homework #70| A 72t C Program0f & &35}M| 2.
Me|stM| 2.
— https://github.com/analysis-tools-dev/static-analysis

- =M Auje} BiE LI E (Ai/18)S A4 5T (2xt37110 0jsh2 2 FE[SHM K.

lg:)EF'ENDAEILE SOFTWARE 447
L ABORATORY

KU KONKUK
UNIVERSITY

Software Engineering

Software Development Life-Cycle Processes
Project Planning - Plan-driven (Waterfall) vs. Agile (lterative)
-SASD vs. OOAD

]] Requirements Engineering Structured Analysis for RVC
Requirements Analysis - SRS by IEEE Std 830-1998
- Spec. Review Writing an SRS

Architecture Design
Design - AD (Architecture Description) Object-Oriented Analysis for RVC
Detailed Design

- Models with UML Diagrams Object-Oriented Design for RVC
Reuse

-COTS and Open-Source SW

: . . Implementation
Project / Configuration Management

Reviews
Verification & Validation Levels of Testing

- Unit/ Component / System / Release / User

Software Maintenance Maintenance
Legacy System
Reengineering, Reverse Engineering, Refactoring

M%EFENDABLE SOFTWARE 449
LABORATORY

