Tactics

Design Concepts 4. Tactics

« Tactics are the building blocks of design and the raw materials, from which patterns, frameworks,
and styles are constructed.

« Techniques that architects have been using for years to manage quality attribute response goals
» Design decisions that influence the control of a quality attribute response.
 Building blocks of architectural patterns

« If architects decides to use a tactics for a quality attribute, then a corresponding architecture should
be accompanied.

« Availability e

* Interoperability Architecture
. Modifiability e
« Performance

« Security

+ Testability

ags
® U sa b I I Ity L:n fhu_A 1’_.m| CI:mmlz.LRi‘k Kazman

289

Tactics for Availability

Tactics
to Control
Availability

Fault

Fault Masked
or Repair Made

FIGURE 5.4 Goal of availability tactics

Fault

Detect Faults

Ping / Echo
Monitor
Heartbeat
Timestamp

Sanity
Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Availability Tactics

Recover from Faults

Preparation Reintroduction
and Repair l
Active Shadow
Redundancy
State
Passive Resynchronization
Redundancy
Escalating
Spare Restart
Exception
Handling Non-Stop
Forwarding
Rollback
Software
Upgrade
Retry
Ignore Faulty
Behavior
Degradation
Reconfiguration

Prevent Faults

Removal from
Service

Transactions
Predictive
Model

Exception
Prevention

Increase
Competence Set

Fauit
Masked
or
Repair
Made

290

Tactics for Availability

* Detect Faults

Ping/echo: An asynchronous request/response message pair exchanged between nodes is used to
determine reachability and the round-trip delay through the associated network path.

Monitor: A component is used to monitor the state of health of other parts of the system. A system monitor
can detect failure or congestion in the network or other shared resources, such as from a denial-of-service
attack.

Heartbeat: A periodic message exchange occurs between a system monitor and a process being monitored.
Timestamp: Detect incorrect sequences of events, primarily in distributed message-passing systems.

Sanity checking: Check the validity or reasonableness of a component’s operations or outputs; typically
based on a knowledge of the internal design, the state of the system, or the nature of the information under
scrutiny.

Condition monitoring: Check conditions in a process or device, or validates assumptions made during the
design.

Voting: Check that replicated components are producing the same results. Comes in various flavors, such
as replication, functional redundancy, analytic redundancy.

Exception detection: Detect a system condition that alters the normal flow of execution, such as a system
exception, parameter fence, parameter typing, or timeout.

Self-test: Procedure for a component to test itself for correct operation.

291

Tactics for Availability

* Recover from Faults (Preparation and Repair)

Active redundancy (hot spare): All nodes in a protection group receive and process identical inputs in parallel,
allowing redundant spare(s) to maintain synchronous state with the active node(s).

Passive redundancy (warm spare): Only the active members of the protection group process input traffic; one
of their duties is to provide the redundant spare(s) with periodic state updates.

Spare (cold spare): Redundant spares of a protection group remain out of service until a failover occurs, at
which point a power-on-reset procedure is initiated on the redundant spare prior to its being placed in
service.

Exception handling: Deal with the exception by reporting it or handling it, potentially masking the fault by
correcting the cause of the exception and retrying.

Rollback: Revert to a previous known good state, referred to as the “rollback line.”

Software upgrade: Perform in-service upgrades to executable code images in a non-service-affecting
manner.

Retry: When a failure is transient, retrying the operation may lead to success.

Ignore faulty behavior: Ignore messages sent from a source when it is determined that those messages are
spurious.

Degradation: Maintain the most critical system functions in the presence of component failures, dropping
less critical functions.

Reconfiguration: Reassign responsibilities to the resources that continue to function, while maintaining as
much functionality as possible.

292

Tactics for Availability

* Recover from Faults (Reintroduction)

Shadow: Operate a previously failed or in-service upgraded component in a “shadow mode” for a predefined time
prior to reverting the component back to an active role.

- State resynchronization: Passive redundancy; state information is sent from active to standby components, in this

partner tactic to active redundancy.

Escalating restart: Recover from faults by varying the granularity of the component(s) restarted and minimizing the
level of service affected.

Non-stop forwarding: Functionality is split into supervisory and data variants. If a supervisor fails, a router continues
forwarding packets along known routes while protocol information is recovered and validated.

* Prevent Faults

Removal from service: Temporarily place a system component in an out-of-service state for the purpose of
mitigating potential system failures.

Transactions: Bundle state updates so that asynchronous messages exchanged between distributed components
are atomic, consistent, isolated, and durable.

Predictive model: Monitor the state of health of a process to ensure that the system is operating within nominal
parameters; take corrective action when conditions are detected that are predictive of likely future faults.

Exception prevention: Prevent system exceptions from occurring by masking a fault, or prevent them via smart
pointers, abstract data types, and wrappers.

Increase competence set: Design a component to handle more cases, i.e., faults as part of its normal operation.

293

Tactics for Interoperability

Tactics
- > -
Information to Control Request
Exchange Interoperability | Correctly Information
Request Handled Exchange

Request

FIGURE 6.2 Goal of interoperability tactics

Interoperability Tactics

Locate Manage Interfaces
Discover Qrchestrate
Service

Tailor Interface

Request

Correctly

Handled

294

Tactics for Interoperability

 Locate

« Discover service: Locate a service by searching a known directory service. There may be multiple levels of
indirection in this location process - that is, a known location may point to another location that in turn can
be searched for the service.

* Manage Interfaces

» Orchestrate: Use a control mechanism to coordinate, manage, and sequence the invocation of services.
Orchestration is used when systems must interact in a complex fashion to accomplish a complex task.

« Tailor interface: Add or remove capabilities to an interface such as translation, buffering, or data smoothing.

Tactics for Modifiability

Tactics
to Control >

Modifiability | Change Made within
Time and Budget

Arrives
Change

Arrives

FIGURE 7.2 The goal of modifiability tactics

Change
——

Modifiability Tactics

Reduce Size Increase Reduce Defer
of a Module Cohesion Coupling Binding
Increase Encapsulate

Split Module ggmantic ps

Co Use an
herence |hiermediary

Restrict
Dependencies
Refactor
Abstract Common
Services

Change Made
=

within Time
and Budget

296

Tactics for Modifiability

* Reduce Size of a Module

Split module: If the module being modified includes a great deal of capability, the modification costs will likely be high.
Refining the module into several smaller modules will reduce the average cost of future changes.

* Increase Cohesion

Increase semantic coherence: If the responsibilities A and B in a module do not serve the same purpose, they should be
placed in different modules. This may involve creating a new module or moving a responsibility to an existing module.

* Reduce Coupling

Encapsulate: Encapsulation introduces an explicit interface to a module. This interface includes an API and its associated
responsibilities, such as “perform a syntactic transformation on an input parameter to an internal representation.”

Use an intermediary: Given a dependency between responsibility A and responsibility B (for example, carrying out A first
requires carrying out B), the dependency can be broken by using an intermediary.

Restrict dependencies: Restrict the modules that a given module interacts with or depends on.

Refactor: Refactoring is undertaken when two modules are affected by the same change because they are (at least partial)
duplicates of each other.

Abstract common services: When two modules provide not quite the same but similar services, it may be cost-effective to
implement the services just once in a more general (abstract) form.

» Defer Binding

Defer binding: Allow decisions to be bound after development time.

297

Tactics for Performance

Tactics

to Control e ———
Performance | Response
Generated
within Time
Constraints

—_—
Event
Arrives

FIGURE 8.2 The goal of performance tactics

Event
Arrives

Performance Tactics

Control Resource Demand Manage Resources

| l

Manage Sampling Rate Increase Resources
Introduce Concurrency

Maintain Multiple
Copies of Computations

Limit Event Response
Prioritize Events

Reduce Overhead

o Maintain Multiple
Bound Execution Times Copies of Data
Increase Resource

Efficiency Bound Queue Sizes

Schedule Resources

Response

Generated within
Time Constraints

298

Tactics for Performance

 Control Resource Demand

« Manage sampling rate: If it is possible to reduce the sampling frequency at which a stream of data is captured, then demand can
be reduced, albeit typically with some loss of fidelity.

« Limit event response: Process events only up to a set maximum rate, thereby ensuring more predictable processing when the
events are actually processed.

« Prioritize events: If not all events are equally important, you can impose a priority scheme that ranks events according to how
important it is to service them.

* Reduce overhead: The use of intermediaries (important for modifiability) increases the resources consumed in processing an
event stream; removing them improves latency.

* Bound execution times: Place a limit on how much execution time is used to respond to an event.

* Increase resource efficiency: Improving the algorithms used in critical areas will decrease latency.

 Manage Resources

* Increase resources: Faster processors, additional processors, additional memory, and faster networks all have the potential to
reduce latency.

» Increase concurrency: If requests can be processed in parallel, the blocked time can be reduced. Concurrency can be introduced
bytpr_?ce33|ng different streams of events on different threads or by creating additional threads to process different sets of
activities.

« Maintain multiple copies of computations: The purpose of replicas is to reduce the contention that would occur if all computations
took place on a single server.

* Maintain multiple copies of data: Keep copies of data (with one potentially being a subset of the other) on storage with different
access speeds.

* Bound gueue sizes: Control the maximum number of queued arrivals and consequently the resources used to process the arrivals.

« Schedule resources: When there is contention for a resource, the resource must be scheduled.

299

Tactics for Security

Tactics

>

to Control
Security

System Detects, Resists,
Reacts, or Recovers

Attack

Attack

FIGURE 9.2 The goal of security tactics

Security Tactics

Detect Attacks ~ Resist Attacks React to Hecover
Attacks from Attacks
l |dentify Jl
Detect Actors E&f’::’ Maintain Restore
Intrusion Authenticate Audit Trail System Detects
Detect Service Actors Lock g e
Denial _ Computer Resists, Reacts,
e Authorize See or Hecovers
enf-;_ essage antors Inform Availability
Integrity Act
- ctors

Detect Message il
Delay Limit Exposure

Encrypt Data

Separate

Entities

Change Default
Settings

300

Tactics for Security

* Detect Attacks

 Detect intrusion: Compare network traffic or service request patterns within a system to a set of signatures
or known patterns of malicious behavior stored in a database.

 Detect service denial: Compare the pattern or signature of network traffic coming into a system to historic
profiles of known denial-of-service attacks.

« \erify message integrity: Use techniques such as checksums or hash values to verify the integrity of
messages, resource files, deployment files, and configuration files.

« Detect message delay: By checking the time that it takes to deliver a message, it is possible to detect
suspicious timing behavior.

 React to Attacks

» Revoke access: Limit access to sensitive resources, even for normally legitimate users and uses, if an attack
is suspected.

» Lock computer: Limit access to a resource if there are repeated failed attempts to access it.

« Inform actors: Notify operators, other personnel, or cooperating systems when an attack is suspected or
detected.

301

Tactics for Security

* Resist Attacks
 ldentify actors: ldentify the source of any external input to the system.
« Authenticate actors: Ensure that an actor (user or a remote computer) is actually who or what it purports to be.
« Authorize actors: Ensure that an authenticated actor has the rights to access and modify either data or services.

- Limit access: Control what and who may access which parts of a system, such as processors, memory, and
network connections.

« Limit exposure: Reduce the probability of a successful attack, or restrict the amount of potential damage—for
example, by concealing facts about a system (“security by obscurity”) or by dividing and distributing critical
resources (“don’t put all your eggs in one basket”).

« Encrypt data: Apply some form of encryption to data and to communication.
« Validate input: Validate input from a user or an external system before accepting it in the system.

« Separate entities: Use physical separation on different servers attached to different networks, virtual machines, or
an “air gap.”
« Change default settings: Force the user to change settings assigned by default.

* Recover from Attacks

» In addition to the Availability Tactics for recovery of failed resources, an Audit may be performed to recover from
attacks.

« Maintain Audit Trail: Keep a record of user and system actions and their effects, to help trace the actions of, and
to identify, an attacker.

302

Tactics for Testability

Tactics

#’ to Control T
ests Hes aults
Executed Testablllty Detected

FIGURE 10.3 The goal of testability tactics

Tests

Executed

Testability Tactics

Control and Observe Limit Complexity
System State

Specialized
Interfaces

Record/
Playback

l

Limit Structural
Complexity

Limit
MNondeterminism

Localize State

Storage

Abstract Data

Sources
Sandbox

Executable
Assertions

Faults

Detected

303

Tactics for Testability

» Control and Observe System State

 Specialized interfaces: Control or capture variable values for a component either through a test harness or
through normal execution.

» Record/playback: Capture information crossing an interface and use it as input for further testing.

» Localize state storage: To start a system, subsystem, or module in an arbitrary state for a test, it is most
convenient if that state is stored in a single place.

« Abstract data sources: Abstracting the interfaces lets you substitute test data more easily.

« Sandbox: Isolate the system from the real world to enable experimentation that is unconstrained by the
worry about having to undo the consequences of the experiment.

« Executable assertions: Assertions are (usually) hand-coded and placed at desired locations to indicate when
and where a program is in a faulty state.

* Limit Complexity
« Limit structural complexity: Avoid or resolve cyclic dependencies between components, isolate and
encapsulate dependencies on the external environment, and reduce dependencies between components in

general.

» Limit nondeterminism: Find all the sources of non-determinism, such as unconstrained parallelism, and
weed them out as far as possible.

304

Tactics for Usability

Tactics
to Control

User User Given

Request Usability Appropriate
Feedback and
Assistance

FIGURE 11.2 The goal of runtime usability tactics

User
Hequest

Usability Tactics

Support User
Initiative

Cancel
Undo

Pause/Resume

Agaregate

Support System
Initiative

Maintain Task
Model

Maintain User
Model

Maintain System
Model

User Given

Appropriate

Feedback and
Assistance

305

Tactics for Usability

» Support User Initiative
« Cancel: The system must listen for the cancel request; the command being canceled must be terminated;
resources used must be freed; and collaborating components must be informed.
« Pause/resume: Temporarily free resources so that they may be reallocated to other tasks.
» Undo: Maintain a sufficient amount of information about system state so that an earlier state may be
restored at the user’s request.

« Aggregate: Aggregate lower-level objects into a group, so that a user operation may be applied to the group,
freeing the user from the drudgery.

« Support System Initiative
* Maintain task model: Determine the context so the system can have some idea of what the user is
attempting and provide assistance.

« Maintain user model: Explicitly represent the user’s knowledge of the system, the user’s behavior in terms
of expected response time, and other characteristics of the system.

« Maintain system model: The system maintains an explicit model of itself. This tactic is used to determine
expected system behavior so that appropriate feedback can be given to the user.

306

State-of-the-art Researches on Tactics

The Journal of Systems & Software 197 (2023) 111558

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems & Software

-

FI SEVIER journal homepage: www.elsevier.com/locate/jss

Architectural tactics in software architecture: A systematic mapping 1)
study” ot

Gastén Marquez **, Hernan Astudillo®, Rick Kazman ©

* Department of Electronics and Informatics, Universidad Técnica Federico Santa Maria, Concepcidn, Chile
b Department of Informatics, Universidad Técnica Federico Santa Maria, Santiago, Chile
 Department of Information Technology Management, University of Hawaii, Honolulu, HI, USA

ARTICLE INFO ABSTRACT

Article history: Architectural tactics are a key abstraction of software architecture, and support the systematic design
Received 16 September 2021 and analysis of software architectures to satisfy quality attributes. Since originally proposed in 2003,
Received in revised form 8 November 2022 architectural tactics have been extended and adapted to address additional quality attributes and

Accepted 12 November 2022

Available online 22 November 2022 newer kinds of systems, making quite hard for researchers and practitioners to master this growing

body of specialized knowledge. This paper presents the design, execution and results of a systematic

Keywords: mapping study of architectural tactics in software architecture literature. The study found 552 studies
Architectural tactics in well-known digital libraries, of which 79 were selected and 12 more were added with snowballing,
Systematic mapping study giving a total of 91 primary studies. Key findings are: (i) little rigor has been used to characterize and

Software architecture

Quall i define architectural tactics; (ii) most architectural tactics proposed in the literature do not conform
uality attributes

to the original definition; and (iii) there is little industrial evidence about the use of architectural
tactics. This study organizes and summarizes the scientific literature to date about architectural tactics,
identifies research opportunities, and argues for the need of more systematic definition and description
of tactics.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science
Board.
©2022 Elsevier Inc. All rights reserved.

307

State-of-the-art Researches on Tactics

Satisly security requirements s

Support security patterns +—

Mitigate security threats and vulnerabilities «—
Design secure mﬂ\\'an-‘—’—'&'curit\'l‘ﬁ

Select application frameworks <]

Describe formal notation for secure software <]

Include stakeholders in security design decisions <«

Design safety-based architectures +—

Support COTS selection +—
ppo M Satety

Quality attributes
and
tactics

Analysis of software architectures

Search design solutions

Improve software architecture models

Discuss scalability theory on software architectures

r—"[Smlnl)ilitv‘

Design microservices architectures

Design data-intensive systems

Adaptability Define general scenario for adaptability

Dependability] Probe the relationship between dependability and

Propose new safety tatics taxonomy <

Propose new safety patterns +—

Support fault tolerance patterns w
Represent fault tolerance requirements tolerance

Satisfy availability requirements T
¥ ¥ req Availability
Design cloud-based platforms

others quality attributes

e Facilitate the cohesion between tools and
—{Deployability }-—— " o

deployment environments
Reliability

T study Vi ion of qualities in services-
Modifiability Study the evolution of qualities in service

oriented systems

Represent test cases

tudy architectural strategies in software-

rability " .
intensive systems

Intero

Fig. 10. Taxonomy of purposes to achieve quality attributes using tactics.

308

State-of-the-art Researches on Tactics

Table 5
Quality attributes addressed by tactics research.
QA Description # of studies

Adaptability Adaptability controls how easy it is to change the system if requirements have changed 1
(Tarvainen, 2008).

Dependability Property of a system that delivers services at a specified reliability level and the system’s 1
ability to avoid failures that are serious and numerous (Avizienis et al., 2004).

Reliability The degree to which a system, product or component performs specified functions under 1
specified conditions for a specified period of time (ISO 25000 software and data quality,
2020).

Modifiability =~ The degree to which a product or system can be effectively and efficiently modified 1

without introducing defects or degrading existing product quality (1SO 25000 software
and data quality, 2020).

Interoperability The ability of systems to share data and enable the exchange of information and 1
knowledge between them (Bass et al.,, 2013).

Deployability The time to get code into production after a commit (Bass, 2016).

w

Scalability This quality attribute represents a system's ability to handle an increasing amount of
work, or its potential to be expanded to accommodate growth (Kazman and Kruchten,
2012a).

Performance Performance concerns itself with a software system’s ability to meet timing requirements 4
(Bass et al., 2013).

Safety Attention to safety is required at each step of the software development process, 4
identifying which functions are critical to the system’s safe functioning and tracing those
functions down into the modules that support them (System Safety Engineering, 0000).

Availability Characteristic of architectures that measures the degree to which system resources are 4
available for use by end-users over a given time period (ISO 25000 software and data
quality, 2020).

Fault tolerance This quality attribute is related to a system’s ability to continue to function continuously 5
in the event of faults (ISO 25000 software and data quality, 2020).

Security The degree to which a product or system protects information and data so that 18
individuals or other systems have the appropriate degree of access to data according to
their types and levels of authorization (I1SO 25000 software and data quality, 2020).

309

State-of-the-art Researches on Tactics

Detect intrusion

Detect service denial

—

Resist attacks ‘

Recover from
attacks

Limit exposure

Limit access

Limit access to computing resources

Authenticate actors

Authorize actors

Maintain integrity

Identify —» Audit /
S

Maintain confidentiality

Log events

Restore

Detect attacks

Stop or mitigate
attacks

|

pt messages

Deployability

A

c

Enable continuous
integration

—— Encapsulate

p———p Increase semantic coherence

Verify message integrity

Verify storage integrity

Maintain oudit trail

Hm‘nﬁ n !ru.!\laru

by signature by behavior

Authenticate subject

Authorize subject

Filter data

FViive v]

Hide data

P

by encryption by steganography

Recover from
attacks

Alert subjects
Apply institution policies

Manage security information

Verify origin of message

Establish secure channel

Audit actions

Apply nstitution policics

Fig. 11. Security tactics taxonomy proposed by S20 (a) and S48 (b).

\) Maintain existing interfaces

[

Enable test
automation

l———> Specialized access routines
l—— Record /playback (similar to)

—— Encapsulate

State synchronization and

resynchronization

Enable rapid
(7 deployment and

[——» Monitor

|————» Exception delection

E: handl

’m—m}m

— :dﬂ.niblc

f———> Defer binding

———>Sandbox (similar to)

» P
[Abstract common services
f——— Generalize module

[Maintain multiples copies
|————3 Increase available resources

» Increase I e ffi

>V I
[Condition Monitoring

———> Active redundancy

5 Rollback

___ Reduce overhead

Fig. 12. Deployability tactics taxonomy proposed by S39.

310

State-of-the-art Researches on Tactics

‘ v Y

l"nil\.lmlmﬂdam‘

Failure containment
Simplicily Timeout { { I 1 1
Substitution Timestamp = .
Redundancy Recovery Masking Barrier
Sanity checking
Condition maonitoring Replication Fix the errors Voting Firewall
Comparison Functional redundancy Rollback Inieriock
Analytic redundancy Degradation

Reconfiguration

)

Safety
_ — ;
*—‘ Failure avoidancoe | Failure detecion ‘ Failure containment

—> Simplicity _L

—> Subtitaion { { 1
Checking | l Comparison } Redundancy Recovery I [Masking 9 Barrier

Sanity check Replication redundancy Repair Voting

Condition monitoring Diverse redundancy Degradation Override

b)

Safety
. —]
Failure avoidance Failure detecion Failure containment

I — —y—

Acquisition process Diagnontics 1 ‘)
Hodusdancy ‘ e I Masking ‘

Safety case contracts Health management

Comparison Redundancy Dogrodation Foult management

Replication System reset

¢)

Fig. 13. Safety tactics taxonomy proposed by 52 (a), $30 (b) and 57 (c).

~———Fault detection

—— PingEcho

—— Heartbeat

~—— Ezceplions

Fault-tolerance

Preparation and
Repair

Reintroduction

[— Voting Shadow ¢—oy

[Active redundancy State resynchronization €—

—— Passive redundancy Checkpoint/Rollback €——

S——> Spare

Fig. 14. Fault-tolerance tactics taxonomy proposed by S4.

Fault prevention

Removal from service €——
Transactions 4—

Process monitor €——'

311

State-of-the-art Researches on Tactics

Scalability

v i | v

,—{ Building blocks I f—‘l Aggregation I — Interaction

[Modulanity Self-similar structure Ce shuffing
——> Self-description L3 Heterogeneity |——> Load balancing
N3 Enviroment models Paralleli Gossiping

“——> Abstract connections —— Tagging

a)

1 |

eteklea Cost effectivencss l

Increase resource cfficiency Virtualization of resources

Horizontal scaling

¢ i 3 Introducs concurrancy Reduce network cost
Sharding Master-slave Clustering Event-driven
replication dats
Consistent Renge-besed
hashing pirie
Load
Scale out Scale up
¢ : v
Response to Response to Response to Response to

increased load decreased load

Dynamic decrease Dynamic decrease
of server resources of cluster

b)

Fig. 15. Scalability tactics taxonomy proposed by S19 (a) and S79 (b).

power till runtime power

reach minimum

Dynomic increase Dynamic éncrease
of server resources of cluster

Modifiability

increased load decreased load
Add processor Decrease processor

Increase semantic coherence
Anticipate expected changes
Split medule

Generalize module

Runtime registration and

A
v 1
- Reduce coupling - Defer binding time
——— Use encapsulation 3
dynamic lookup
[Maintain existing interface
> Runtime binding
Restrict dependencies and
communication paths > Publish-subscribe
N—> Use an intermediary
[——> Start-up time binding
Abstract common functionality
—

Deployment time binding

N———> Compile time binding

Fig. 16. Modifiability tactics taxonomy proposed by S69.

3. ASR Analysis
> 3.2 QAS > Tactics

4. Architecture Design & Evalg?g'lon
> Design Concepts > 4. Ta

ics

