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Design Concepts 4. Tactics

« Tactics are the building blocks of design and the raw materials, from which patterns, frameworks,
and styles are constructed.

« Techniques that architects have been using for years to manage quality attribute response goals
» Design decisions that influence the control of a quality attribute response.
 Building blocks of architectural patterns

« If architects decides to use a tactics for a quality attribute, then a corresponding architecture should
be accompanied.

« Availability e

* Interoperability Architecture
. Modifiability e
« Performance

« Security

+ Testability

ags
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Tactics for Availability
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Tactics for Availability

* Detect Faults

Ping/echo: An asynchronous request/response message pair exchanged between nodes is used to
determine reachability and the round-trip delay through the associated network path.

Monitor: A component is used to monitor the state of health of other parts of the system. A system monitor
can detect failure or congestion in the network or other shared resources, such as from a denial-of-service
attack.

Heartbeat: A periodic message exchange occurs between a system monitor and a process being monitored.
Timestamp: Detect incorrect sequences of events, primarily in distributed message-passing systems.

Sanity checking: Check the validity or reasonableness of a component’s operations or outputs; typically
based on a knowledge of the internal design, the state of the system, or the nature of the information under
scrutiny.

Condition monitoring: Check conditions in a process or device, or validates assumptions made during the
design.

Voting: Check that replicated components are producing the same results. Comes in various flavors, such
as replication, functional redundancy, analytic redundancy.

Exception detection: Detect a system condition that alters the normal flow of execution, such as a system
exception, parameter fence, parameter typing, or timeout.

Self-test: Procedure for a component to test itself for correct operation.
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Tactics for Availability

* Recover from Faults (Preparation and Repair)

Active redundancy (hot spare): All nodes in a protection group receive and process identical inputs in parallel,
allowing redundant spare(s) to maintain synchronous state with the active node(s).

Passive redundancy (warm spare): Only the active members of the protection group process input traffic; one
of their duties is to provide the redundant spare(s) with periodic state updates.

Spare (cold spare): Redundant spares of a protection group remain out of service until a failover occurs, at
which point a power-on-reset procedure is initiated on the redundant spare prior to its being placed in
service.

Exception handling: Deal with the exception by reporting it or handling it, potentially masking the fault by
correcting the cause of the exception and retrying.

Rollback: Revert to a previous known good state, referred to as the “rollback line.”

Software upgrade: Perform in-service upgrades to executable code images in a non-service-affecting
manner.

Retry: When a failure is transient, retrying the operation may lead to success.

Ignore faulty behavior: Ignore messages sent from a source when it is determined that those messages are
spurious.

Degradation: Maintain the most critical system functions in the presence of component failures, dropping
less critical functions.

Reconfiguration: Reassign responsibilities to the resources that continue to function, while maintaining as
much functionality as possible.
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Tactics for Availability

* Recover from Faults (Reintroduction)

Shadow: Operate a previously failed or in-service upgraded component in a “shadow mode” for a predefined time
prior to reverting the component back to an active role.

- State resynchronization: Passive redundancy; state information is sent from active to standby components, in this

partner tactic to active redundancy.

Escalating restart: Recover from faults by varying the granularity of the component(s) restarted and minimizing the
level of service affected.

Non-stop forwarding: Functionality is split into supervisory and data variants. If a supervisor fails, a router continues
forwarding packets along known routes while protocol information is recovered and validated.

* Prevent Faults

Removal from service: Temporarily place a system component in an out-of-service state for the purpose of
mitigating potential system failures.

Transactions: Bundle state updates so that asynchronous messages exchanged between distributed components
are atomic, consistent, isolated, and durable.

Predictive model: Monitor the state of health of a process to ensure that the system is operating within nominal
parameters; take corrective action when conditions are detected that are predictive of likely future faults.

Exception prevention: Prevent system exceptions from occurring by masking a fault, or prevent them via smart
pointers, abstract data types, and wrappers.

Increase competence set: Design a component to handle more cases, i.e., faults as part of its normal operation.
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Tactics for Interoperability
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Tactics for Interoperability

 Locate

« Discover service: Locate a service by searching a known directory service. There may be multiple levels of
indirection in this location process - that is, a known location may point to another location that in turn can
be searched for the service.

* Manage Interfaces

» Orchestrate: Use a control mechanism to coordinate, manage, and sequence the invocation of services.
Orchestration is used when systems must interact in a complex fashion to accomplish a complex task.

« Tailor interface: Add or remove capabilities to an interface such as translation, buffering, or data smoothing.



Tactics for Modifiability
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Tactics for Modifiability

* Reduce Size of a Module

Split module: If the module being modified includes a great deal of capability, the modification costs will likely be high.
Refining the module into several smaller modules will reduce the average cost of future changes.

* Increase Cohesion

Increase semantic coherence: If the responsibilities A and B in a module do not serve the same purpose, they should be
placed in different modules. This may involve creating a new module or moving a responsibility to an existing module.

* Reduce Coupling

Encapsulate: Encapsulation introduces an explicit interface to a module. This interface includes an API and its associated
responsibilities, such as “perform a syntactic transformation on an input parameter to an internal representation.”

Use an intermediary: Given a dependency between responsibility A and responsibility B (for example, carrying out A first
requires carrying out B), the dependency can be broken by using an intermediary.

Restrict dependencies: Restrict the modules that a given module interacts with or depends on.

Refactor: Refactoring is undertaken when two modules are affected by the same change because they are (at least partial)
duplicates of each other.

Abstract common services: When two modules provide not quite the same but similar services, it may be cost-effective to
implement the services just once in a more general (abstract) form.

» Defer Binding

Defer binding: Allow decisions to be bound after development time.
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Tactics for Performance
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Tactics for Performance

 Control Resource Demand

« Manage sampling rate: If it is possible to reduce the sampling frequency at which a stream of data is captured, then demand can
be reduced, albeit typically with some loss of fidelity.

« Limit event response: Process events only up to a set maximum rate, thereby ensuring more predictable processing when the
events are actually processed.

« Prioritize events: If not all events are equally important, you can impose a priority scheme that ranks events according to how
important it is to service them.

* Reduce overhead: The use of intermediaries (important for modifiability) increases the resources consumed in processing an
event stream; removing them improves latency.

* Bound execution times: Place a limit on how much execution time is used to respond to an event.

* Increase resource efficiency: Improving the algorithms used in critical areas will decrease latency.

 Manage Resources

* Increase resources: Faster processors, additional processors, additional memory, and faster networks all have the potential to
reduce latency.

» Increase concurrency: If requests can be processed in parallel, the blocked time can be reduced. Concurrency can be introduced
bytpr_?ce33|ng different streams of events on different threads or by creating additional threads to process different sets of
activities.

« Maintain multiple copies of computations: The purpose of replicas is to reduce the contention that would occur if all computations
took place on a single server.

* Maintain multiple copies of data: Keep copies of data (with one potentially being a subset of the other) on storage with different
access speeds.

* Bound gueue sizes: Control the maximum number of queued arrivals and consequently the resources used to process the arrivals.

« Schedule resources: When there is contention for a resource, the resource must be scheduled.
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Tactics for Security
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Tactics for Security

* Detect Attacks

 Detect intrusion: Compare network traffic or service request patterns within a system to a set of signatures
or known patterns of malicious behavior stored in a database.

 Detect service denial: Compare the pattern or signature of network traffic coming into a system to historic
profiles of known denial-of-service attacks.

« \erify message integrity: Use techniques such as checksums or hash values to verify the integrity of
messages, resource files, deployment files, and configuration files.

« Detect message delay: By checking the time that it takes to deliver a message, it is possible to detect
suspicious timing behavior.

 React to Attacks

» Revoke access: Limit access to sensitive resources, even for normally legitimate users and uses, if an attack
is suspected.

» Lock computer: Limit access to a resource if there are repeated failed attempts to access it.

« Inform actors: Notify operators, other personnel, or cooperating systems when an attack is suspected or
detected.
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Tactics for Security

* Resist Attacks
 ldentify actors: ldentify the source of any external input to the system.
« Authenticate actors: Ensure that an actor (user or a remote computer) is actually who or what it purports to be.
« Authorize actors: Ensure that an authenticated actor has the rights to access and modify either data or services.

- Limit access: Control what and who may access which parts of a system, such as processors, memory, and
network connections.

« Limit exposure: Reduce the probability of a successful attack, or restrict the amount of potential damage—for
example, by concealing facts about a system (“security by obscurity”) or by dividing and distributing critical
resources (“don’t put all your eggs in one basket”).

« Encrypt data: Apply some form of encryption to data and to communication.
« Validate input: Validate input from a user or an external system before accepting it in the system.

« Separate entities: Use physical separation on different servers attached to different networks, virtual machines, or
an “air gap.”
« Change default settings: Force the user to change settings assigned by default.

* Recover from Attacks

» In addition to the Availability Tactics for recovery of failed resources, an Audit may be performed to recover from
attacks.

« Maintain Audit Trail: Keep a record of user and system actions and their effects, to help trace the actions of, and
to identify, an attacker.
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Tactics for Testability
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Tactics for Testability

» Control and Observe System State

 Specialized interfaces: Control or capture variable values for a component either through a test harness or
through normal execution.

» Record/playback: Capture information crossing an interface and use it as input for further testing.

» Localize state storage: To start a system, subsystem, or module in an arbitrary state for a test, it is most
convenient if that state is stored in a single place.

« Abstract data sources: Abstracting the interfaces lets you substitute test data more easily.

« Sandbox: Isolate the system from the real world to enable experimentation that is unconstrained by the
worry about having to undo the consequences of the experiment.

« Executable assertions: Assertions are (usually) hand-coded and placed at desired locations to indicate when
and where a program is in a faulty state.

* Limit Complexity
« Limit structural complexity: Avoid or resolve cyclic dependencies between components, isolate and
encapsulate dependencies on the external environment, and reduce dependencies between components in

general.

» Limit nondeterminism: Find all the sources of non-determinism, such as unconstrained parallelism, and
weed them out as far as possible.
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Tactics for Usability
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Tactics for Usability

» Support User Initiative
« Cancel: The system must listen for the cancel request; the command being canceled must be terminated;
resources used must be freed; and collaborating components must be informed.
« Pause/resume: Temporarily free resources so that they may be reallocated to other tasks.
» Undo: Maintain a sufficient amount of information about system state so that an earlier state may be
restored at the user’s request.

« Aggregate: Aggregate lower-level objects into a group, so that a user operation may be applied to the group,
freeing the user from the drudgery.

« Support System Initiative
* Maintain task model: Determine the context so the system can have some idea of what the user is
attempting and provide assistance.

« Maintain user model: Explicitly represent the user’s knowledge of the system, the user’s behavior in terms
of expected response time, and other characteristics of the system.

« Maintain system model: The system maintains an explicit model of itself. This tactic is used to determine
expected system behavior so that appropriate feedback can be given to the user.

306



State-of-the-art Researches on Tactics
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State-of-the-art Researches on Tactics
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State-of-the-art Researches on Tactics

Table 5
Quality attributes addressed by tactics research.
QA Description # of studies

Adaptability Adaptability controls how easy it is to change the system if requirements have changed 1
(Tarvainen, 2008).

Dependability  Property of a system that delivers services at a specified reliability level and the system’s 1
ability to avoid failures that are serious and numerous (Avizienis et al., 2004).

Reliability The degree to which a system, product or component performs specified functions under 1
specified conditions for a specified period of time (ISO 25000 software and data quality,
2020).

Modifiability =~ The degree to which a product or system can be effectively and efficiently modified 1

without introducing defects or degrading existing product quality (1SO 25000 software
and data quality, 2020).

Interoperability The ability of systems to share data and enable the exchange of information and 1
knowledge between them (Bass et al.,, 2013).

Deployability  The time to get code into production after a commit (Bass, 2016).

w

Scalability This quality attribute represents a system's ability to handle an increasing amount of
work, or its potential to be expanded to accommodate growth (Kazman and Kruchten,
2012a).

Performance Performance concerns itself with a software system’s ability to meet timing requirements 4
(Bass et al., 2013).

Safety Attention to safety is required at each step of the software development process, 4
identifying which functions are critical to the system’s safe functioning and tracing those
functions down into the modules that support them (System Safety Engineering, 0000).

Availability Characteristic of architectures that measures the degree to which system resources are 4
available for use by end-users over a given time period (ISO 25000 software and data
quality, 2020).

Fault tolerance This quality attribute is related to a system’s ability to continue to function continuously 5
in the event of faults (ISO 25000 software and data quality, 2020).

Security The degree to which a product or system protects information and data so that 18
individuals or other systems have the appropriate degree of access to data according to
their types and levels of authorization (I1SO 25000 software and data quality, 2020).
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State-of-the-art Researches on Tactics
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State-of-the-art Researches on Tactics
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