
Software Architecture

건국대학교 컴퓨터공학과
유준범

jbyoo@konkuk.ac.kr
http://dslab.knkuk.ac.kr

Index

• Introduction to Software Architecture

• Software Architecture Design
1. Project Overview
2. System Overview
3. ASR Analysis
4. Architecture Design & Evaluation
5. Documenting Design with Views
6. Detailed Component Design (Optional)

7. Architecture Traceability Summary

2

Text and References

3

4

Introduction to Software Architecture

5

Motivations

• Learning to design software architectures in a systematic, predictable, repeatable, and cost-
effective way.

• No silver bullet in designing software architecture

• But everyone can be a better designer
• by structured methods supported by reusable sets of design help.

6

What is This?

7

What is This?

8

What is This?

9

작품명: 엄마 구두

작 가: 유O민 (3세)

설 명: 엄마의 7cm 하이힐을 보고
인상 깊었던 특징을 표현

What is Architecture Design?

10

작품명: 엄마 구두

작 가: 유O민 (3세)

설 명: 엄마의 7cm 하이힐을 보고
인상 깊었던 특징을 표현

Architecture Design
Software (System)

+

Architecture Description (AD)

The 4W1H of Architecture Design

11

WHO

WHEN

WHAT

HOW

WHY

Architecture
Design

Software Architect

at High-Level Design Phase

Sometimes,
at Requirements Analysis &

Detailed Component Design Phase

Architecture Design &
Design Rationale

with Systematic and Reusable Approaches
- Architecture Design
- Design Concepts
- Architecture Evaluation

To Address, Persuade, and Satisfy Stakeholders’ Concerns

Software Architecture

12

“The software architecture of a system is the set of structures needed to reason about the system, which
comprise software elements, relations among them, and properties of both.”

“A software architecture is the set of significant decisions about the organization of a software system,
the selection of the structural elements and their interfaces by which the system is composed, together
with their behavior as specified in the collaborations among those elements, the composition of these
structural and behavioral elements into progressively larger subsystems, and the architectural style that
guides this organization - these elements and their interfaces, their collaborations, and their composition.”

Importance of Software Architecture

13
San Francisco, USA

San Francisco - Oakland Bay Bridge (1936)Golden Gate Bridge (1937)
Collapsed in 1987 on 6.9 earthquake

Software Architecture Life-Cycle Activities

14

SRS

The Scope of Our CEP (Comprehensive Evaluating Project)

15

SRS

Architectural Requirements

• Architecturally Significant Requirements (ASR)
• A few requirements in SRS, that have special importance for the architecture
• Examples :

• Primary functionality : the most important functionality of the system
• QA (Quality Attribute) : quality attributes such as high performance, high availability, or ease of maintenance
• Other design constraints

• ASR Analysis
• Identifying all ASRs from an SRS
• Transforming (or Mapping) ASR into AD (Architectural Drivers)

• SRS often provides very little information for architects.
• Architects need to be involved in requirements analysis.

• Stakeholder analysis
• Requirements elicitation
• Keeping traceability starting from stakeholders

16

SRS

Architectural Design

• The process of translation from the world of requirements to the world of solutions
• Producing a set of structures composed of code, frameworks, and components
• Example :

• ADD (Attribute Driven Design) 3.0 with Design Concepts

• A good design is one that satisfies all AD (Architectural Drivers).

17

SRS

Architectural Documentation

• Preliminary documentation of the structures should be created as part of architectural design.

• Architecture Description (AD)
• ISO/IEC/IEEE 42010:2011

“Systems and Software Engineering - Architecture Description”

18

SRS

Architectural Evaluation

• Evaluate your architectural design to ensure that the decision made are appropriate to address
all ASRs

• Typically done informally and internally.
• But for important project, it is advisable to have a formal evaluation done by an external team.

• Example :
• ATAM (Architecture Trade-off Analysis Method)

19

SRS

Architectural Implementation

• Implementing the architecture that you have created and evaluated

• Low-level design and coding are often very closely intertwined.
• Low-level design : Detailed component designs

• OOD (Object-Oriented Design)
• SD (Structured Design)

• Implementation (Coding) :
• OOD → Object-Oriented Programming (C++ / Java)
• SD → Procedural Programming (C / Fortran)

• Refactoring
• Considering reuse of codes for Maintainability

• Agile
• Code Review, TDD, CI/CD, Refactoring
• Design Patterns

20

SRS

CI/CD : Continuous Integration / Continuous Deployment
TDD : Test Driven Development

Scope of Software Architecture Design

21

• Requirement Engineering
• Stakeholder analysis
• Identifying user requirements and specifying system requirements
• Analyzing ASR

• Architectural Design
• Design of structures that allow architectural drivers to be satisfied

• Element Interaction Design
• Identification of additional elements and their interfaces

• Deployment of System Elements (Artifacts) into Hardware

• Element Internals Design (Detailed Component Design)
• Interface implementation through OOD/SD

Requirements
Analysis

Design

Implementation

System Test

SRS

SDS

AD

SRS : Software Requirement Specification
SDS : Software Design Specification
AD : Architecture Description

Interactions between Architecture and Component Designs

22

Architecture Design

Component Design

• Sometimes architecture design is affected by component design in reverse direction.
• Then details of the component design will become the concerns of software architects.

Importance of Architectural Design

• There is a very high cost to a project of not making certain design decisions, or of not making them
early enough.

• Without doing some architectural thinking and some early design work, you cannot confidently predict
project cost, schedule, and quality.

• The architecture will influence, but not determine, other decisions that are not in and of themselves
design decisions.

• E.g. Selection of tools, structuring of development environment

• A well-designed, properly communicated architecture is key to achieving agreements that will guide
the team.

• The most important kinds to make are agreements on interfaces and shared resources.

23

Software Architecture Design in a Nutshell

24

Software Architecture Design in a Nutshell

25
from ASR in SRS

- Reference Architecture
- Deployment Pattern
- Architecture Style
- Tactics
- Externally Developed Components

- ADD 3.0
- ATAM

ISO/IEC/IEEE 42010:2011 Std.
with Multiple Views

5

Structure View

Behavioral View

Deployment View

Software Architecture Design Approach in a Nutshell

26

Our Software Architecture Design Process in CEP

27

Project
Overview

System
Overview ASR Analysis

Architecture
Design &

Evaluation

Documenting
Design with

Views

Detailed
Component

Design

Starting from/with SRS in Requirements Analysis

Business Context
Diagram

Stakeholders

Business Goals

System Context
Diagram

System Features

Primary
Functionality

(UC+SSD)

Domain Model

Primary
Functionality

(UC+SSD)

QAS

Constraints

Candidate Designs
per QA

Candidate Designs
Evaluation for all

QAs

Design Decision

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Structure Model
(Class Diagram)

Behavior Model
(UC+ Sequence Diagram)

: Keeping Traceability is required

1. 2. 3. 4. 5. 6.

Architecture Description

Our Overall Process in CEP

28

System Features System
Requirements

FR

QAR

Constraints

Stakeholders +
Business Goals

Requirements
Elicitation

(ASR in SRS)

Requirements
Analysis

Requirements
Specification

Primary
Functionality (3.1)

QAS (3.2)

Constraints (3.3)

Architectural Drivers

Requirements Engineering Process (with SRS)
Domain Model

Architecture
Design &

Evaluation
(4)

Architecture
Design Decision

Candidate Designs
per QA (4.1)

Candidate Designs
Evaluation for all QAs

(4.2)

Design Decision
(4.3)

(Goal) (User Requirements)

Architecture Design Process

Architecture
Design Decision

Design Decision
(4.3)

Architecture
Overview (5.1)

Structure View
(5.2)

Behavior View
(5.3)

- OOD (Object-Oriented Design)
- SD (Structured Design)

Deployment View
(5.4)

Architecture
Documentation

Architecture
Design Document

Architecture Documentation Process Detailed Component Design Process

Detailed
Component

Design

Component
Structure Model (6.1.2)

Component
Behavior Model (6.1.5)

Component
Design Document

Architecture Description (AD)

• ISO/IEC/IEEE 42010:2011 “Systems and Software Engineering - Architecture Description”
• Specifying requirements to be an architectural description (AD)

• AD should demonstrate how an architecture meets
the needs of the system’s diverse stakeholders.

29

Organizing Our Architecture Description

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders
1.4 Business Goals

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality
3.2 Quality Attribute Scenario
3.3 Constraints

4. Architecture Design & Evaluation
4.1 Candidate Designs per QA
4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision

5. Architecture Design Description
5.1 Architecture Overview
5.2 Structure View
5.3 Behavior View
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model
6.1.5 Component Behavior Model

7. Architecture Traceability Summary

30

What Matters Most in Architecture Design?

• We should be able to check this question with full traceability.

31

How well does our architecture design address all stakeholders’ concerns?

Stakeholders and Concern

- 이해관계자 / 이해당사자
- 주주
- 표준 및 규제 기관

- 고객 (Customer)
- 고객사 (Client)
- 소비자 (Consumer)

- 개발자
- 마케팅 담당자

Architectural Drivers

Primary Functionality
(Use Case + SSD)

QAS

Constraints

Architecture Description

Design Decision
with

Multiple Design Views

Design RationaleQA

- Usability (사용성)
- Reliability (신뢰성)
- Availability (가용성)
- Security (보안성)
- Performance (성능)
- Maintainability (유지보수성)
- Testability
- Modifiability
- Interoperability
- …

Stakeholders
Requirements Analysis

(FR + QA) Architecture Design

ADD 3.0 + ATAM

UML Diagrams

가장 좋은 (The Best) 방법은 아닐 수 있지만,
현재 소프트웨어공학에서 제공할 수 있는 기법 중,
가장 Feasible 하다고 인정됩니다.

추가적으로, 추적성을 구체적으로 활용해서
“Safety Case”와 같은 Demonstration을 할 수 있어요.

추적성 (Traceability)

32

Software Architecture Design

33

Software Architecture Design

• The process of creating a specification of software elements, intended to accomplish goals,
subject to constraints.

34

AD (Architecture Description)

through a set of Views
(Structure, Behavior, Deployment)

ASR - Architectural Drivers
(Primary Functionality, QAS)ASR - Architectural Drivers

(Constraints)

The Software Architecture Design Process in CEP

35

Project
Overview

System
Overview ASR Analysis

Architecture
Design &

Evaluation

Documenting
Design with

Views

Detailed
Component

Design

Business Context
Diagram

Stakeholders

Business Goals

System Context
Diagram

System Features

Primary
Functionality

(UC+SSD)

Domain Model

Primary
Functionality

(UC+SSD)

QAS

Constraints

Candidate Designs
per QA

Candidate Designs
Evaluation for all

QAs

Design Decision

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Structure Model
(Class Diagram)

Behavior Model
(UC+ Sequence Diagram)

1. 2. 3. 4. 5. 6.

: Keeping Traceability is required

Architecture Description

Starting from/with SRS in Requirements Analysis

36

1. Project Overview

37

1. Project Overview

38

Project
Overview

System
Overview ASR Analysis

Architecture
Design &

Evaluation

Documenting
Design with

Views

Detailed
Component

Design

Business Context
Diagram

Stakeholders

Business Goals

System Context
Diagram

System Features

Primary
Functionality

(UC+SSD)

Domain Model

Primary
Functionality

(UC+SSD)

QAS

Constraints

Candidate Designs
per QA

Candidate Designs
Evaluation for all

QAs

Design Decision

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Structure Model
(Class Diagram)

Behavior Model
(UC+ Sequence Diagram)

1. 2. 3. 4. 5. 6.

: Keeping Traceability is required

Architecture Description

Starting from/with SRS in Requirements Analysis

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders
1.4 Business Goals

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality
3.2 Quality Attribute Scenario
3.3 Constraints

4. Architecture Design & Evaluation
4.1 Candidate Designs per QA
4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision

5. Architecture Design Description
5.1 Architecture Overview
5.2 Structure View
5.3 Behavior View
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model
6.1.5 Component Behavior Model

7. Architecture Evaluation Summary

39

1.1 Project Background

• Describes the project, its purpose, and scope
• Background information on the system domain to help stakeholders understand the project and the system

40

1.2 Business Context Diagram

• Stakeholder Analysis
• Identifying all stakeholders of the system and what their goals, which will have a profound influence on the

system architecture
• Example : Business Context Diagram

• Systems are created to satisfy the business goals of stakeholders.

41

Business Context Diagram

• An organizational-level view of
• How organizations/stakeholders are related to each other
• What information exchange between them

• Example: Building a software for a university

42

Central Entity
(Stakeholder)

Stakeholder
(Organization)

Stakeholder
(Human)

Business Context Diagram : Examples

43

주차장 관리 시스템 심부름 플랫폼

1.3 Stakeholders

• Stakeholder is
• a person, group, or entity with an interest in or concerns about the realization of the architecture, or
• a party having a right, share or claim in a system or in its possession of characteristics that meet that

party’s needs and expectations.
• All entities that you identified in the business context diagram

44

Stakeholder List

• Explaining all stakeholders in business context diagram and their concerns/interests

• Example :

45

DescriptionStakeholder

설명: 심부름 플랫폼 서비스를 이용하여 심부름을 의뢰하려는 사용자

관심사: 특정한 업무를 수행하기에 시간적, 거리적 한계가 있을 때, 요금 지불을 통해 직접 수행 불가한 업무를 대행(
심부름)할 대리자(헬퍼)를 찾고 싶음. 심부름에 대하여 합리적인 요금을 지불하기 원함. 대행 요청할 업무의 특성(카테
고리)에 따라 헬퍼를 쉽고 빠르게 찾기를 원하며, 대리자가 수행하는 심부름의 과정부터 결과까지 편리하게 관리/감
독하기를 기대함. 심부름의 결과 수준이 높기를 기대함.

고객(사용자)

1.4 Business Goals

• Business goals are the primary influencing factors on the architecture.
• Should be captured explicitly because they often imply ASRs.

• No organization builds a system without a reason.

• Business Goals = Mission Objectives
• Example:

• “What are our ambitions about market share for this product?”
• “How could the architecture contribute to meet them?”

46

Category of Business Goals

47

Goal ExamplesCategory

System helps improve
- Branding, reduce recalls, support certain types of users, quality and testing support. and strategies

Managing product’s quality and
reputation

System meets financial objectives through
- Revenue generation, business process efficiency, reduced training costs, higher shareholder dividendsMeeting financial objectives

System promotes growth and continuity through
- Market share increase, product line creation and success, international sales, long-term business sustenanceOrganization’s growth and continuity

System fulfills responsibilities to employee through
- Improved operator safety, reduced workload, and opportunity for learning new development skillsMeeting responsibility to employees

System fulfills responsibilities to a society through
- Compliance with laws and regulations, those related to ethics, safety, security, privacy, and green computingMeeting responsibility to society

System fulfills responsibilities to a country through
- Compliance with export controls and regulatory conformanceMeeting responsibility to country

Expressing Business Goals

• All business goals should be expressed clearly in a consistent fashion and contain sufficient information
to enable their shared understanding by relevant stakeholders.

• Expressed for each stakeholder

• Traceability : Stakeholder → Business Goal

• Examples :
• Owner :“His family's stock in the company will rise by 5%.”
• Portfolio manager : “The company will make the portfolio 30% more profitable.”
• Project manager : “Customer satisfaction will rise by 10%.”

48

Business Goal
Stakeholder

ImportanceStatementID

상
운전자는 입·출차 및 주차 요금 정산 등 전반적인 주차장 이용에서 더 만족스러운 주차 경험을 기대함.

- 주차장을 찾고, 입·출차 및 정산하는 전체 시간을 20% 단축하기를 원함.
BG-01운전자

49

2. System Overview

50

2. System Overview

51

Project
Overview

System
Overview ASR Analysis

Architecture
Design &

Evaluation

Documenting
Design with

Views

Detailed
Component

Design

Business Context
Diagram

Stakeholders

Business Goals

System Context
Diagram

System Features

Primary
Functionality

(UC+SSD)

Domain Model

Primary
Functionality

(UC+SSD)

QAS

Constraints

Candidate Designs
per QA

Candidate Designs
Evaluation for all

QAs

Design Decision

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Structure Model
(Class Diagram)

Behavior Model
(UC+ Sequence Diagram)

1. 2. 3. 4. 5. 6.

: Keeping Traceability is required

Architecture Description

Starting from/with SRS in Requirements Analysis

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders
1.4 Business Goals

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality
3.2 Quality Attribute Scenario
3.3 Constraints

4. Architecture Design & Evaluation
4.1 Candidate Designs per QA
4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision

5. Architecture Design Description
5.1 Architecture Overview
5.2 Structure View
5.3 Behavior View
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model
6.1.5 Component Behavior Model

7. Architecture Traceability Summary

52

2.1 System Context Diagram

• The system tries to implement the business goal within system context (boundary).
• A good system context model is an essential part of an effective architecture document.

• System Context Diagram defines
• What is in scope? → System Features (2.4)

• What is out of scope? → External Entities (2.2)

• How the system related to its environment? → External Interfaces (2.3)

53

System

External Entity3

External Entity4

External Entity5

External Entity1

External Entity2

External Interface1

External Interface2 External Interface4_1

External Interface4_2

External Interface3_1

External Interface5

External Interface3_2 [1..*]

[0..*]

[1]

[1000..2000]

[7]

System Context Diagram : Examples

54

Guidelines for System Context Diagram

• NOT disclose any architecture detail about the system
• It just appears as an undecomposed block.
• In practice, it may show some internal structure of the system being put in context. → Domain Model (2.5)

• NOT show any temporal information
• E.g., order of interactions, flow of data

• NOT show the conditions under which data is transferred, stimuli fired, and messages transmitted
• Each interface needs to be just “assigned” to one of the system’s architecture elements.

55

2.2 External Entity

• An external entity is any person, system, or device with which the system directly interacts.
• User : User, a class of user, or some other person or role
• External system : Another system that runs in another organization
• Internal system : Another system that runs in the same organization as the system being modeled
• Gateway component : Gateway or other implementation component that has the effect of hiding other

systems (internal or external)
• Data store : Data store that is external to the system (e.g., a shared database, data warehouse)

56

System

External Entity3

External Entity4

External Entity5

External Entity1

External Entity2

External Interface1

External Interface2 External Interface4_1

External Interface4_2

External Interface3_1

External Interface5

External Interface3_2 [1..*]

[0..*]

[1]

[1000..2000]

[7]

External Entities Affect System Architecture

• The quality of external entities (e.g., reliability, availability, or performance) may significantly affect the architecture
of the system.

• Example :

57

A travel booking system exchanges information with many other systems located around the world.
Some of these systems may be only intermittently available, because of time zone differences or
because they are more liable to failure.

The travel system’s interfaces with external systems will therefore need to be carefully designed for
reliable operation.

• All failed interactions should be automatically retried a configurable number of times.
• These retry attempts should be logged to a database so that operational staff can monitor trends.
• It should be possible to restart very large transfers that fail partway through from the point of

failure rather than having to retransmit the whole file.

External Entity : Examples

• All quality attributes that may affect the system architecture shall be described in detail.
• All assumptions on H/W and systems

58

유형: 시스템
역할: 시스템에서 주차 요금 결제 요청 시 각종 카드 및 간편 결제 시스템에 결제 및 지불을 대행해주는 외부 시스템
관련 Stakeholder: 결제 대행 업체
시스템 사양: Cloud 서비스 운영 가능한 서버
시스템의 품질 수준:

- 가용성: 99.9% (카드 회사, 간편 결제 회사 별 시스템 점검 시간 존재)
- 전자금융거래의 안전성과 신뢰성: 금융감독위원회가 정하는 기준을 준수

결제 대행 시스템

유형: 사용자
숙련도: 플랫폼 서비스를 통한 비즈니스 운영에 대한 전문성을 보유하고 있음.

플랫폼 서비스 운영을 위한 시스템 운용이 능숙함.
핵심 기대 사항: 시스템을 통하여 이용자들의 이용 현황을 파악하고, 관리하기를 원함. 헬퍼 중 범죄 사실이 발생하거나,

불법적인 거래가 발생할 경우 빠른 시간 내에 파악하고 조치하기를 원함.

플랫폼 운영자

유형: 장치
역할: 주차장 출입구에 설치되어 시스템이 안내하고자 하는 내용을 LED로 출력
관련 Stakeholder: 관제센터, SW개발회사
장치 사양:

- Control H/W: 아두이노 수준
- LED Display board (문자 표기: 한글/영문/숫자 출력 가능)
- Connectivity: Ethernet, Wi-Fi

장치의 품질 수준:
- 요청 수신 0.1초 이내에 안내판에 출력

입구/출구 안내판

2.3 External Interface

• All interfaces between the system and each external entity should be identified.
• Data provider or consumer : The external entity supplies data directly to the system or receives data directly

from it.
• Event provider or consumer : The external entity publishes events that this system wishes to be notified of, or

this system publishes events that the external entity wishes to be notified.
• Service provider or consumer : The external entity is requested to perform some action by the system or

requests some action of the system, and the system may return data and/or status information in response to
the request.

59

System

External Entity3

External Entity4

External Entity5

External Entity1

External Entity2

External Interface1

External Interface2 External Interface4_1

External Interface4_2

External Interface3_1

External Interface5

External Interface3_2 [1..*]

[0..*]

[1]

[1000..2000]

[7]

External Interfaces Affect System Architecture

• The quality and characteristics of external interface may have a significant effect on the architecture
of the system.

• Data : the content, scope, and meaning of the data to be transferred
• Event : events of interest, their meaning and content, and the volume and timing of their occurrence
• Service : Syntax of the request(name and any parameters), the actions to be taken, any data to be returned, any

ack, status, or error information that may be returned, any exception actions to be taken by either side

60

역할: 관제 센터 직원이 주차 관리 시스템으로 주차장 운영 현황을 요청
User interface: Console (Web UI)
System interface: HTTPS
특성:

- 사용자 요청 빈도는 일 1회 정도로 낮을 것으로 예상
- 1회 요청 당 10만개 주차장 현황을 조회하므로 시스템 부하 고려 필요

get parking status

역할: 고객이 심부름 내역 및 결과(이미지, 동영상)을 조회
User Interface: Mobile app UI
System Interface: HTTPS
특성:

- 수시 호출 가능함
- 헬퍼의 DAU(Daily Active User) 22,000명이 1일 심부름 1건 수주한다고 가정하였을 때, 약 22,000건의 심부름 수행 가능
- 하루 다운로드 22,000 건 * (최대 10장 * 1MB +영상 2건 * 10MB) = 660GB

- 평균 60Mbps (약 7.65mb/s) 다운로드 부하
- 낮 피크타임을 가정하면 100Mbps 이상 다운로드 부하 가능

Track errand

Domain Model
(2.5)

Constraints (3.3)

2.4 System Features

• System features are the high-level capabilities of the system that are required to deliver by us.
• System features are refined from Business goals which we must realize.
• System requirements (FR/QAR) are derived from system features.

61

Business Goals
(1.4)

Functional
Requirements

(3.1)

Quality Attributes
Requirements (3.2)

System Features
(2.4)

Stakeholders
(1.3)

ASR
(<10% of FR)

Architectural Drivers
(3)

System Requirements in SRS

Business Goal to System Features

• Business goals are refined into system features.

• Examples :

62

System FeaturesBusiness Goals

Support international languages(I wish to) Expand (our business) by entering
new and emerging geographic markets Comply with regulations that have an impact on life-critical systems such as fire alarms

Support hardware devices from different manufacturers(I wish to) Open new sales channels in the
form of Value-Added Resellers (VARs) Support conversions of nonstandard units used by the different hardware devices

Business Goals
(1.4)

System Features
(2.4)

Related BGIDescriptionTitleID

BG-03상주차장의 각종 장비(번호판 카메라, 차단 제어기, 안내판)의 동작 상태를 모니터링 하는 기능장비 모니터링SF-06

System Features to System Requirements

• System Features
• Informal statements of capabilities of the system used often for marketing and product-positioning purposes,

as a shorthand for a set of behaviors of the system
• Useful when discussing the system in casual settings
• Not useful when defining the behavior of the system in precise enough to design, develop, or test the system

• System Requirements
• Individual statements of conditions and capabilities to which the system must conform
• Each software requirement is the specification of an externally observable behavior of the system.
• Detailed and unambiguous requirements that are specific enough to direct the implementation and testing of

the system
• Functional requirements , Non-Functional requirements (Quality attribute requirements, Constraints)

63

System Features System
Requirements

FR

QAR

Constraints

Requirements
Analysis

in Requirements Engineering

User Requirements in RE System Requirements in RE

* QAR is not a widely used term. It’s usually referred to as QA or Quality Requirements.

2.5 Domain Model

• Domain model is a conceptual model for understanding functional requirements.
• Any kind of model is possible: naive diagrams, UML component/deployment diagram
• Decomposing the system into subsystems and components logically, functionally, or physically

• To satisfy important functional requirements, i.e., ASR → Primary functionality
• Playing as a preliminary version of architecture diagram like the domain model in OOAD

• Based on the information architects have known so far

64

DB
Server

App
Server

- Master

Load
Balancer

App
Server
- Slave

Client
App

Web
Server

+ Explanations required

+ External entities if need

Domain Model

System Context Diagram

Domain Model : An Example

65

2.6 Assumptions

• Several assumptions that are not specified in the AD but are necessary for the system architecture
design

• Assuming all functionalities identified in the CEP Guide should be implemented.

• Example :

66

1) 헬퍼가 프로필을 등록할 때 성별 외에도 수행 가능한 전문 분야가 있는 경우, 헬퍼 프로필에 기재하도록 하였다. (카테고리 기
준, 배달/장보기/설치/운반/청소/돌봄 등)

2) 심부름 수행 도중, 고객이나 헬퍼의 스마트폰이 영원한 파괴/방전/통신불가 상태에 진입하지 않는다고 가정한다. 즉, 심부름
수행 중에 시스템과 스마트폰 사이의 복구 불가능한 통신 두절 상태는 발생하지 않는다.

3) 외부 시스템인 경찰청 시스템, 은행 시스템 모두 영원한 파괴/방전/통신불가 상태에 진입하지 않는다고 가정한다.
4) 사용자가 채팅으로 전달할 수 있는 메시지 길이는 한글 기준 1,000자(최대 3Kbyte) 이하라고 가정한다.
5) 헬퍼가 심부름 진행 현황 보고 용으로 업로드 할 수 있는 미디어 파일의 제한은, 이미지파일 1개당 최대 1MB, 최대 10장 / 영

상 파일 최대 10MB 최대 2건으로 제한한다.

67

3. ASR Analysis

68

3. ASR Analysis

69

Project
Overview

System
Overview ASR Analysis

Architecture
Design &

Evaluation

Documenting
Design with

Views

Detailed
Component

Design

Business Context
Diagram

Stakeholders

Business Goals

System Context
Diagram

System Features

Primary
Functionality

(UC+SSD)

Domain Model

Primary
Functionality

(UC+SSD)

QAS

Constraints

Candidate Designs
per QA

Candidate Designs
Evaluation for all

QAs

Design Decision

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Structure Model
(Class Diagram)

Behavior Model
(UC+ Sequence Diagram)

1. 2. 3. 4. 5. 6.

: Keeping Traceability is required

Architecture Description

Starting from/with SRS in Requirements Analysis

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders
1.4 Business Goals

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality
3.2 Quality Attribute Scenario
3.3 Constraints

4. Architecture Design & Evaluation
4.1 Candidate Designs per QA
4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision

5. Architecture Design Description
5.1 Architecture Overview
5.2 Structure View
5.3 Behavior View
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model
6.1.5 Component Behavior Model

7. Architecture Traceability Summary

70

Architectural Driver

• Architectural Drivers (AD) are the key requirements that are most likely to affect the fundamental
structure of the implementation.

• AD will determine the structure (architecture) of the system.
• Uncovering the ADs as early as possible is critical to the stable architecture design.
• ADs are a part of requirements, called by ASR (Architecturally Significant Requirements).

• 5 Architectural Drivers
• Primary Functionality
• Quality Attribute
• Design Purpose
• Architectural Concerns
• Constraints

• Our ADs consist of
• Primary Functionality
• Quality Attribute Scenario (QAS)
• Constraints

71

ASR to Architectural Drivers

• Mapping ASR(Architecturally Significant Requirements) in SRS to AD(Architectural Drivers) in AD(Architecture Description)

• Functionality → Primary Functionality (Use Case + SSD(System Sequence Diagram))
• Quality Attribute → QAS (Quality Attribute Scenario)
• Constraints → Constraints *

• Scenario-based requirements analysis in RE is quite helpful for architecture design.
• Functional requirements → (Select & Refine) → Use Case + SSD
• Quality attribute requirements → (QAW) → QAS

72* It’s important, but out of the scope of the CEP for now.

Use Cases as Scenarios-based Analysis

• Scenario ≈ Use Case ≈ User Story

• We can use scenarios in many ways within the architecture definition process.
• Providing input to architecture definition
• Evaluating the architecture: Scenarios are a primary input into almost any process of architectural evaluation.
• Communicating with stakeholders: discussion of a scenario and how the system can meet the situation

described is a very useful vehicle for communicating with all types of stakeholders.
• Finding missing requirements: Another benefit of creating scenarios is that they often reveal what is missing

as well as the suitability of what already exists.
• Driving the testing process: Scenarios help highlight the things that are important to your stakeholders, thus

providing a tremendously useful guide for where to focus testing activity.

73

Use Cases
Scenario

Requirements
Analysis

Architecture
Design

3.1 Primary Functionality

• Functionality is the ability of the system to do the work for which it was intended.
• Software architecture does not normally influence functionality.
• Functionality can often be satisfied with any software architecture.

• Primary functionality is the functionality that is critical to achieve the business goal.
• Implying a high level of technical difficulty or requiring the interaction of many architectural elements
• Approximately 10 percent of use cases (user stories) in SRS are likely to be primary.

• Functionality → (Select & Refine) → Primary Functionality (Use Case + SSD(System Sequence Diagram))

• Why we need to consider primary functionality when designing an architecture?
1. May need to plan work assignments
2. Some quality attributes are directly connected to the primary functionality in the system.

74

Use Cases

• Use cases are text stories of some actors using a system to meet goals.
• A mechanism to capture (analyze) requirements

• An example (Brief format):
• Process Sale: “A customer arrives at a checkout with items to purchase. The cashier uses the POS system to record each

purchased item. The system presents a running total and line-item details. The customer enters payment information, which the
system validates and records. The system updates inventory. The customer receives a receipt from the system and then leaves
with the items.”

• Use case is not a diagram, but a text.
• Brief
• Causal
• Fully-Dressed

75

Use Case : An Example

76

77

Our Use Case Format

• The casual format use cases
• The system is considered as a black box.
• No design/implementation details are considered.

• Example : LMS (Library Management System)

78

1. Make ReservationUse Case

LibrarianActor

A librarian requests LMS to make a reservation for a book.Description

User, Librarian, System ManagerStakeholders

Borrower should have an id_card.Preconditions

(A) : Actor, (S) : System
1. (A) A librarian requests the reservation of a title
2. (S) Check if a corresponding title exists
3. (S) Check if a corresponding borrower exists
4. (S) Create a reservation information

Main Scenario

[Out of date information]
3: (S) If the borrower’s information is out of date, request for the update.

(A) A librarian updates up-to-date information of the borrower.
[Invalid Input]
1~3: If invalid reservation information is entered, indicate an error.

Alternative Scenario

Use Case Diagram

• Use case diagram illustrates the name of use cases and actors and the relationships between them.
• System context diagram
• A summary of all use cases

79

Actor

Use case

Something with behavior, such as a person, computer system,
or organization

- Primary Actor : having user goals fulfilled through using
services of the SuD (System Under Discussion) , e.g., cashier

- Supporting Actor : providing a service to the SuD,
e.g., payment authorization service

- Offstage Actor : having an interest in the behavior of the use
case, but is not primary or supporting, e.g., tax agency

System boundary

General Guidelines for Modeling Use Cases

• Use cases are written in narrative language that can be understood by all stakeholders.
• Use cases are not models for functional decomposition.
• Use case models describe what is needed in a system in terms of functional responses to given stimuli.
• A use case is initiated by an actor, and then goes on to describe a sequence of interactions between

actors and the system that, when taken together, model systemic functional requirements.
• Use cases may also include variants of the normal operation that describe error occurrences, detection,

handling and recovery, failure modes, or other alternative behaviors.
• Focus on interactions which involve quality attributes such as performance, modifiability and security.
• Include each interaction with all the actors associated with the use case.

• Each step should be written in active voice with the subject of the system or an associated actor.
• Each step should describe the behavior of the system or an associated actor, but not both.
• Each step should describe the interaction clearly.

• Use terms that can be understood by stakeholders. Don’t use technical terms that can be only
understood by developers.

80

System Sequence Diagram

• Use cases describe how external actors interact with the software system.
• During this interaction, an actor generates system events to a system,

usually requesting some system operation to handle the event.

• System sequence diagram (SSD)
• A picture that shows the events that external actors generate, their order, and inter-system events, for one

particular scenario of a use case.
• In the sequence diagram notation, there are

• the external actors that interact directly with the system,
• the system (as a black box), and
• the system events that the actors generate.

• Depict system behavior in terms of what the system does, not how it does it

• Used as an input to system design → System operations / System interfaces

81

System Sequence Diagram

• One SSD for each use case
• The identified system operations/interfaces will be linked to behavior views(5.3).
• Keeping traceability is important.

82

Librarian

Make a reservation

:System

“Error!!!”

“Reservation OK!”

[Invalid Input]

[Normal]

Update User Information
[Out of date information]

System Operation / Interface

System Operation / Interface

System Sequence Diagram : An Example in OOAD

83

Use Case System Sequence Diagram

3.2 Quality Attribute Scenario

• Quality Attribute (Requirement) is a measurable or testable properties of a system, that used to
indicate how well the system satisfies the needs of its stakeholders.

• Among ADs, quality attributes are the ones that shape the architecture the most significantly, because,
• Functionality does not determine architecture.

• Numerous architectures to satisfy that functionality
• You could divide up the functionality in any number of ways and assign them to different architectural elements.
• If functionality were the only thing that mattered, you wouldn't have to divide the system into pieces at all.

• Instead, we design our systems as structured sets of cooperating architectural elements (layers, components, classes,
databases, apps, threads, peers, tiers, and so on) to support a variety of other purposes (i.e., quality attributes).

• Systems are frequently redesigned not because they are functionally deficient, but because
• They are difficult to maintain, port, or scale. → Maintainability, Portability, Scalability, Modifiability, Extensibility
• They are too slow. → Performance, Efficiency
• They have been compromised by hackers. → Security, Confidentiality

84

Quality Attribute Requirements : Examples

• In practice, quality attribute requirements and functionality are usually intimately intertwined.
• It is impossible and meaningless to say a system “shall have high performance.”
• Without associating the performance to some specific behavior in the system, architects cannot hope to

design a system to satisfy this need.

• Examples :
• A functional requirement : “The game shall change view modes when the user presses the <C> button”
• Performance : “How fast should the function be?”
• Modifiability : “How modifiable should the function be?”

85

Quality Attribute RequirementsQASystem Features

A developer should be able to package a version of the system with new language
support in 80 person-hours.ModifiabilitySupport international languages

A life-critical alarm should be reported to the concerned users within 3s of the
occurrence of the event that generated the alarm.PerformanceComply with regulations that have an impact

on life-critical systems such as fire alarms

A field engineer is able to integrate a new field device into the system at runtime with
no downtime or side effects.ModifiabilitySupport hardware devices from different

Manufacturers

A system administrator configures the system at runtime to handle the units from a
newly plugged in field device with no downtime or side effects.ModifiabilitySupport conversions of nonstandard units

used by the different hardware devices

Describing Quality Attribute Requirements

• Architects require more detailed and unambiguous descriptions of quality attribute requirements.
• But it is not easy since requirements are driven and written in natural languages.

• For examples,
• “A system shall be modifiable.”

→ Ambiguous, because every system is modifiable or not with respect to some changes.
• “A system shall have high performance.”

→ Ambiguous, because what kind of performance does this refer to? Response time, throughput, or others?

• How to express the qualities unambiguously?
• Solution is QAS(Quality Attribute Scenarios) through QAW(Quality Attribute Workshop), Utility Tree, or Quality Attribute Tree.

86

Quality Attributes Scenarios (QAS)

• QAS (Quality Attribute Scenario) is a short description of how a system is required to respond to
some stimulus.

• Describing the system’s response to some stimulus
• Specifying the response measure you would like to achieve in response to a specific stimulus

87

The QAS Template

88

The QAS Example : Availability

89

Refined Scenario: In the event of hardware failure, search service is expected to return results
within 5 sec, in 12 average QPA (Queries Per Sec)

The QAS Example : Modifiability

90

The QAS Example : Robustness

91

Quality Attribute Tree : Examples

92

Quality Measures Example : Performance

• Performance requirements
• Defining the extent or how well, and under what conditions, a function or task is to be performed

• Example:
• “In case of 6,000 rpm and one cycle is 20 msec, timing precision of the ignition should be 10 μsec.”

93

Quality Measures Example : Availability

• Availability requirements
• Defining the degree to which a system or component is operational and accessible when required for use

[IEEE 610].

94

MTTFMTTR
Time

MTTF : Mean Time To Failures

MTTR : Mean Time To Repair

MTBF : Mean Time Between Failures
(= MTTR + MTTF)

Availability =
MTTF

MTTF + MTTR

FailureFailure Recovery

주당 장애 시간연간 장애 시간가용성

3시간 22분7.3일98%

1시간 41분3.65일99%

20분 10초17시간 30분99.8%

10분 5초8시간 45분99.9%

1분52분 30초99.99%

6초5분25초99.999%

QAS Example - Availability

95

조별 QAS 발표 #1

Quality Attributes Workshop (QAW)

• A facilitated brainstorming session
• A group of system stakeholders cover the bulk of the activities of eliciting, specifying, prioritizing, and

achieving consensus on quality attributes.
• Output: a set of QASs

• Scenarios should be prioritized (L/M/H).
• With respect to the success of the system à by the customer
• With respect to the technical risk associated with the scenario à by the architect

96

Quality Attributes Workshop (QAW)

• QAW Steps
• QAW Presentation and Introductions
• Business Goals Presentation
• Architectural Plan Presentation
• Identification of Architectural Drivers
• Scenario Brainstorming
• Scenario Consolidation
• Scenario Prioritization
• Scenario Refinement

• Mini QAW
• Mini-QAW Introduction
• Introduction to Quality Attributes, Quality Attributes Taxonomy
• Scenario Brainstorming : “Walk the System Properties Web” activity
• Raw Scenario Prioritization: Dot Voting
• Scenario Refinement
• Review Results with Stakeholders

97

Utility Tree

• One way to organize your thoughts
• Useful when no stakeholders are readily available to consult
• Helps to articulate your quality attribute goals in detail, and then to prioritize them

98

Software Quality Model : ISO/IEC 9126

99

Conventional Quality Categories in ISO/IEC 9126

100

개발자만 알 수 Quality 외부 사용자도 인식 가능한 Quality

외부 사용자가 SW 사용 時,
실제로 느끼는 효과

Internal/External Quality가 완벽하게 구별되지 않을 수 있음.

일반적으로 Architect가 고려하는 Quality의 범위

ISO/IEC 25010:2011 SQuaRE – System and Software Quality Model

101

• ISO/IEC 25010:2011 Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models

CX
(Customer eXperience)

Architecture
Design

???
Architecture Design이 실제로
CX와 연결되는지 분석 필요
→ 시작은 QAS부터!!!

ISO/IEC 25010:2011
25010:2023

ISO/IEC 25010:2011 + 25022:2016
25019:2023

조별 25010 발표 #2

ISO/IEC 25023:2016 SQuaRE – Product Quality Measurement

102

• ISO/IEC 25023:2016 Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Measurement of system and software product quality

• Based on ISO/IEC 25010:2011

Measures for Product Qualities in ISO/IEC 25010:2011

103

MeasureSub-characteristicsCharacteristics

Functional CoverageFunctional Completeness

Functional
Suitability

Functional CorrectnessFunctional Correctness

Functional Appropriateness of Usage Objective
Functional Appropriateness

Functional Appropriateness of the Systems

Mean Response Time

Time Behavior

Performance
Efficiency

Response Time Adequacy

Mean Turnaround Time

Turnaround Time Adequacy

Mean Throughput

Mean Processor Utilization

Resource Utilization
Mean Memory Utilization

Mean I/O Devices Utilization

Bandwidth Utilization

Transaction Processing Capacity

Capacity User Access Capacity

User Access Increase Adequacy

Co-Existence with Other ProductsCo-Existence

Compatibility
Data Formats Exchangeability

Interoperability Data Exchange Protocol Sufficiency

External Interface Adequacy

MeasureSub-characteristicsCharacteristics

Description Completeness
Appropriateness
Recognizability

Usability

Demonstration Coverage

Entry Point Self-Descriptiveness

User Guidance Completeness

Learnability
Entry Fields Defaults

Error Messages Understandability

Self-Explanatory User Interface

Operational Consistency

Operability

Message Clarity

Functional Customizability

User Interface Customizability

Monitoring Capacity

Undo Capacity

Understandable Categorization of Information

Appearance Consistency

Input Device Support

Avoidance of User Operation Error

User Error Protection User Entry Error Correction

User Error Recoverability

Appearance Aesthetics of User InterfacesUser Interface Aesthetics

Accessibility for Users with Disabilities
Accessibility

Supported Languages Adequacy

Measures for Product Qualities in ISO/IEC 25010:2011

104

MeasureSub-characteristicsCharacteristics

Fault Correction

Maturity

Reliability

Mean Time Between Failure (MTBF)

Failure Rate

Test Coverage

System Availability
Availability

Mean Down Time

Failure Avoidance

Fault Tolerance Redundancy of Components

Mean Fault Notification Time

Mean Recovery Time
Recoverability

Backup Data Completeness

Access Controllability

Confidentiality

Security

Data Encryption Correctness

Strength of Cryptographic Algorithms

Data Integrity

Integrity Internal Data Corruption Prevention

Buffer Overflow Prevention

Digital Signature UsageNon-Repudiation

User Audit Trial Completeness
Accountability

System Log Retention

Authentication Mechanism Sufficiency
Authenticity

Authentication Rules Conformity

MeasureSub-characteristicsCharacteristics

Coupling of Components
Modularity

Maintainability

Cyclomatic Complexity Adequacy

Reusability Assets
Reusability

Coding Rules Conformity

System Log Completeness

Analyzability Diagnosis Function Effectiveness

Diagnosis Function Sufficiency

Modification Efficiency

Modifiability Modification Correctness

Modification Capability

Test Function Completeness

Testability Autonomous Testability

Test Restartability

Hardware Environmental Adaptability

Adaptability

Portability

System Software Environmental Adaptability

Operational Environmental Adaptability

Installation Time Efficiency
Installability

Ease of Installation

Usage Similarity

Replaceability
Product Quality Equivalence

Functional Inclusiveness

Data Reusability/Import Capability

Lists of System Quality Attributes (Wikipedia)

105

Tactics

• Tactics are the building blocks of design and the raw materials, from which patterns, frameworks,
and styles are constructed.

• Techniques that architects have been using for years to manage quality attribute response goals
• Design decisions that influence the control of a quality attribute response
• Building blocks of architectural patterns

• If architects decides to use a tactics for a quality attribute, then a corresponding architecture should
be accompanied.

• Availability
• Interoperability
• Modifiability
• Performance
• Security
• Testability
• Usability

106조별 Tactics 발표 #3

Example : Tactics for Availability

107

Techniques and Principles
> Tactics

3.3 Constraints

• Constraint
• Restrictions on the design or implementation choices available to the developer
• Can be imposed by external stakeholders and by other systems that interact with the system
• Should be respected and generally non-negotiable

• Design Purpose
• Architectural Concerns
• Constraints

108

Design Purpose

• Should be clear about the purpose of the design that you want to achieve
• “When and why are you doing this architecture design?”
• “Which business goals is the organization most concerned about at this time?”

• Examples :
• You may be doing architecture design as part of a project proposal.
• You may be doing architecture design as part of the process of creating an exploratory prototype.
• You may be designing your architecture during development.

109

Architectural Concerns

• Additional aspects that need to be considered as part of architectural design but that are
not expressed as traditional requirements.

• General concerns
• “Broad” issues that one deals with in creating the architecture
• Examples: establishing an overall system structure, the allocation of functionality to modules, the allocation of

modules to teams, organization of the code base, startup and shutdown, and supporting delivery, deployment, and
updates

• Specific concerns
• More detailed system-internal issues
• Examples: exception management, dependency management, configuration, logging, authentication, authorization,

caching, and so forth that are common across large numbers of applications
• Internal requirements

• Usually not specified explicitly in traditional requirement documents, as customers usually seldom express them.
Address aspects that facilitate development, deployment, operation, or maintenance of the system.

• Called “derived requirements”
• Issues

• Results from analysis activities such as design review.
• May not be present initially.

110

Constraints

• Decisions over which you have little or no control as an architect:
• Mandated technologies
• Other systems with which your system needs to interoperate or integrate
• Laws and standards that must be complied with
• The abilities and availability of your developers
• Deadlines that are non-negotiable
• Backward compatibility with older versions of systems, and so on.

111

Our Constraints

• A constraint is fixed decisions premade before design begins
• Business constraints limit decisions about people, process, costs, and schedule.
• Technical constraints limit decisions about the technology we may use in the software system.

• Externally imposed limitation on system requirements, design, implementation, or the process used to develop or
modify a system

• Constraints limit choice, but some constraints simplify the problem and can make it easier to design a
satisficing architecture.

• Examples :

112

Business ConstraintsTechnical Constraints

Team Composition and Makeup
- Team X will build the XYZ component.

Programming Language Choice
- Anything that runs on the JVM

Schedule or Budget
- It must be ready in time for the Big Trade Show and cost less than $80,000.

Operating System or Platform
- It must run on Windows, Linux, and BeOS.

Legal Restrictions
- There is a 5GB daily limit in our license.

Use of Components or Technology
- We own DB2 so that’s your database.

Business Constraints

• Business constraints are indirect constraints on the design space.
• Not specify that a particular technology is used to design or build a system
• But impose cost, schedule, regulatory, legal, marketing, and other similar demands that will influence the

design of the system

113

DescriptionKind

How much over what period (time) can be spent on the system or product?Cost limitations

What are the delivery schedules? One delivery? Incremental? What functionality must be delivered at what point in time?Schedule limitations

Are there any regulations imposed on the system, product, or organization designing and building the system, or the customer
stakeholders’ organization?

Regulatory restrictions
and demands

Are there any legal impositions placed on the system, product, or organization designing and building the system, or the customer
stakeholders’ organization?

Legal restrictions and
demands

Does the target market impose any restrictions or demands on the system or product, especially if it could prevent entry into
another market?

Market restrictions and
demands

Do any of the organizations involved in the project have policies, processes, resources or lack thereof, or structural issues that
could impose restrictions or demands on the design or construction of the system or product?

Organizational
restrictions and demands

Are there logistical issues such as deployment, transportation, supplier/supply chain, and similar that could impact the design of the
system?Logistical issues

Technical Constraints

• Technical constraints have direct influence on the design.
• Specific technologies, tools, languages, and databases that must be used or avoided
• Required development conventions or standards

114

DescriptionKind

Are there any constraints to use a particular OS? Are there any constraints to support multiple OSs?Operating system

Are there any constraints to use a particular platform?Platform

Is there a constraint to use a particular programming language?Programming languages

Are there any constraints that specify that particular peripheral devices or network hardware be used?Peripheral or network hardware

Is there a constraint that specific commercial hardware and software products be used?Commercial products

Are there any constraints that specify that certain tools (e.g., design/programming tools) or technical methods be used?Tools and methods

Are there any constraints that specify that certain protocols, interfaces, or standards be used or adhered to during
development?

Protocols, interfaces,
standards

Are there any constraints that indicate that the new system/product must utilize or interact with any legacy hardware or
software systems or elements?Legacy hardware and software

Technical Constraints : Examples

115

허용 최대값

메트릭유형 근거

HISJSFJPLSCR-GMISRA

502006020080Lines of Code(LOC)
크기

---30%50%Comment Frequency

1020-2015Cyclomatic Complexity(CC)

복잡도 80---75Number of Execution Paths(NPath)

4--66Number of Structuring Levels

5668-Number of Parameters

결합도 /
모듈화

5--8-Fan In

7--10-Fan Out

4---8Number of Calling Levels

* MISRA: MISRA Report 5, Software Metrics
* SCR-G: 무기체계 소프트웨어 개발 및 관리 매뉴얼, 소프트웨어 신뢰성/보안성 시험 절차
* JPL: JPL(Jet Propulsion Lab.) Coding Standard for the C
* JSF: Joint Strike Fighter Air Vehicle C++ Coding Standards
* HIS: HIS(Audi, BMW 등 5개 자동차 업체 그룹) Source Code Metrics

116

4. Architecture Design & Evaluation

117

4. Architecture Design & Evaluation

118

Project
Overview

System
Overview ASR Analysis

Architecture
Design &

Evaluation

Documenting
Design with

Views

Detailed
Component

Design

Business Context
Diagram

Stakeholders

Business Goals

System Context
Diagram

System Features

Primary
Functionality

(UC+SSD)

Domain Model

Primary
Functionality

(UC+SSD)

QAS

Constraints

Candidate Designs
per QA

Candidate Designs
Evaluation for all

QAs

Design Decision

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Structure Model
(Class Diagram)

Behavior Model
(UC+ Sequence Diagram)

1. 2. 3. 4. 5. 6.

: Keeping Traceability is required

Architecture Description

Starting from/with SRS in Requirements Analysis

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders
1.4 Business Goals

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality
3.2 Quality Attribute Scenario
3.3 Constraints

4. Architecture Design & Evaluation
4.1 Candidate Designs per QA
4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision

5. Architecture Design Description
5.1 Architecture Overview
5.2 Structure View
5.3 Behavior View
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model
6.1.5 Component Behavior Model

7. Architecture Traceability Summary

119

Typical Architecture Design Approach in a Nutshell

120

Our Architecture Design Process

121

System Level
Design

Detailed Design

Architecture
Design

(High-Level)

Detailed
Design

(Low-Level)

Component Level
Design

«component»
Component1

«component»
Component2

«component»
Component3

Structure
View (5.2)

Behavior
View (5.3)

Deployment
View (5.4)

Architecture
Overview (5.1)

Decomposition

Specific Analysis

Class1
a

op1()

Class4
op4()Class3

c
op3()

Class2
b

op2()

Class5
e

op5()

Class6
d

op6()

Architecture Design
Description

Iteration

+ Design
Concepts

Component
Structure

Diagram (6.1.2)

Component
Behavior

Diagram (6.1.5)

Detailed Component
Design Description

Our Architecture Design Output : Architecture Description (5.1 ~ 5.4)

• Architectural design is described through multiple views.
• Architecture Overview (5.1) ← UML Deployment Diagram (Component / Class Diagram)

• Structure View (5.2) ← UML Component Diagram

• Behavior View (5.3) ← UML Sequence Diagram (+ Use Case)

• Deployment View (5.4) ← UML Deployment Diagram

122

op1_1()

Component 1 Component 2 Component 3

op2_1()

op3_1()

op3_2()

Web Client Application Server

«execution Environment»
Android 8

TCP/IP

«execution Environment»
Ubuntu 20.04

«artifact»
ClientComp.jar

«artifact»
ServerComp.jar

1..* 1

Client Server
HTTP

1..* 1

Design Concepts

• Design concepts are the building blocks for creating structures.
• Reference Architecture
• Deployment Pattern
• Architectural Style
• Tactics
• Externally Developed Components

123

부드러운 잘 여닫히는 도어
→ Tactics

Stakeholders

손쉬운 탈부착 가능한 구조물
→ Reference Architecture
→ Deployment Pattern
→ 또는 Tactics

전체 건물의 큰 뼈대(Frame)
→ Reference Architecture
→ Deployment Pattern
→ Architecture Style

“적어도 내 공간에서는 머리가
천정에 안 닿았으면 좋겠어!”

“내 방 문은 언제든지 뛰어
나갈 수 있도록 잘 여닫혀야 해!”

Stakeholders’
Concern

Design Concepts

124

Reference Architecture Deployment Pattern Architecture Style Tactics Externally Developed
Components

- Blueprint for overall architecture
- Logical structure for specific
application types

- Embodying architecture styles

Examples:
- Mobile applications
- Rich client applications
- Rich internet applications
- Service applications
- Web applications

- How to deploy logical into physical
- Physical structure
- Essential for many QAs
(Performance, Security, Availability, …)

Examples:
- Nondistributed
- Distributed
- Performance
- Reliability
- Security

- General and reusable structural
layout and its properties

- Not domain-specific
- Logical >> Physical structure

Examples:
- MVC, MVP, MVVM, Layered
- Client-Server, SOA, Microservices
- Pipes and Filters, Blackboard

- Building blocks of other patterns
- Widely-used techniques to manage
QAs by architects

- Quickly evolved

Examples:
- Availability
- Interoperability
- Modifiability
- Performance
- Security
- Testability
- Usability

- Generally called COTS software
(Commercial Off-The-Shelf)

Examples:
- Technical family
- Products (COTS)
- Application framework

(Hibernate, Rest, Spring, Swing, etc.)
- Platform

(Java, .Net, Google Cloud, etc.)

Design Concepts 1. Reference Architectures

• Blueprints that provide an overall logical structure for particular types of applications
• Mobile applications
• Rich client applications
• Rich internet applications
• Service applications
• Web applications

• Reference architectures and architectural styles are different.
• Architectural styles (such as “Pipe and Filter” and “Client Server”) define types of components and connectors in a

specified topology that are useful for structuring an application either logically or physically.
• Such styles are technology and domain independent.

• Reference architectures provide a structure for applications in specific domains, and they may embody
different styles.

• While architectural styles tend to be popular in academia, reference architectures seem to be preferred by practitioners.

125

Summary of Application Types

• Mobile applications
• Applications of this type can be developed as thin client or rich client applications. Rich client mobile applications can

support disconnected or occasionally connected scenarios. Web or thin client applications support connected scenarios
only. The device resources may prove to be a constraint when designing mobile applications.

• Rich Client applications
• Applications of this type are usually developed as stand-alone applications with a graphical user interface that displays

data using a range of controls. Rich client applications can be designed for disconnected and occasionally connected
scenarios because the applications run on the client machine.

• Rich Internet applications
• Applications of this type can be developed to support multiple platforms and multiple browsers, displaying rich media or

graphical content. Rich Internet applications run in a browser sandbox that restricts access to some devices on the client.

• Service applications
• Services expose complex functionality and allow clients to access them from local or remote machine. Service operations

are called using messages, based on XML schemas, passed over a transport channel. The goal in this type of application
is to achieve loose coupling between the client and the server.

• Web applications
• Applications of this type typically support connected scenarios and can support different browsers running on a range of

operating systems and platforms.

126

Example : Mobile Application Reference Architecture

127

• A mobile application will normally be structured as a multilayered application consisting of user
experience, business, and data layers.

Design Concepts 2. Deployment Patterns

• Deployment patterns model how to physically structure the system to deploy it.
• Provide guidance on how to structure the system from a physical standpoint.
• An initial structure for the system is obtained by mapping the logical elements that are obtained from

reference architectures (and other patterns) into the physical elements defined by deployment patterns.

• Good decisions with respect to the deployment of the software system are essential to achieve important
quality attributes such as performance, usability, availability, and security.

• Deployment patterns:
• Nondistributed
• Distributed
• Performance
• Reliability
• Security

128

Example : Nondistributed vs. Distributed

129

vs.

Techniques and Principles
> Deployment Patterns

Design Concepts 3. Architectural Design Patterns

• Software Architecture Style/Pattern is a description of general and reusable structural layout and
its properties to a commonly occurring structural problems in software architecture.

130조별 A.+Dpl. Patterns 발표 #4

Architectural Design Patterns by CMU

• Architecture Styles
• Module Style
• Component-and-Connector Style
• Allocation Style
• Hybrid Style

131

Architectural Design Patterns by Others

132

Architectural Design Patterns by Others

133

Architectural Design Pattern : Layers, Domain Object

134

General Category of Architecture Styles

135

• Structure
• Component-based
• Monolithic application
• Layered
• Pipes and Filters

• Shared Memory
• Data-centric
• Blackboard
• Rule-based

• Messaging
• Event-driven
• Publish-Subscribe
• Asynchronous messaging

• Adaptive Systems
• Plug-ins
• Microkernel
• Reflection
• Domain specific language

• Distributed systems
• Client-Server (2-tier, 3-tier, n-tier)
• Peer-to-Peer
• Object request broker
• REST (Representational State Transfer)
• Service-Oriented
• Microservice
• Cloud computing patterns

Techniques and Principles
> Architecture Styles / Patterns

Design Concepts 4. Tactics

• Tactics are the building blocks of design and the raw materials, from which patterns, frameworks,
and styles are constructed.

• Techniques that architects have been using for years to manage quality attribute response goals
• Design decisions that influence the control of a quality attribute response.
• Building blocks of architectural patterns

• If architects decides to use a tactics for a quality attribute, then a corresponding architecture should
be accompanied.

• Availability
• Interoperability
• Modifiability
• Performance
• Security
• Testability
• Usability

136

Design Concepts 5. Externally Developed Components

• Technology families
• A technology family represents a group of specific technologies with common functional purposes.
• Examples: RDBMS, ORM (Object-Oriented to Relational Mapper)

• Products
• A product (or software package) refers to a self-contained functional piece of software that can be

integrated into the system that is being designed. Requires only minor configuration or coding. → COTS
• Examples: Oracle, MS SQL Server, MySQL

• Application frameworks
• An application framework (or just framework) is a reusable software element, constructed out of patterns

and tactics, that provides generic functionality addressing recurring domain and quality attribute concerns
across a broad range of applications.

• Examples: Hibernate, Rest, Spring, Swing

• Platforms
• A platform provides a complete infrastructure upon which to build and execute applications.
• Examples: Java, .Net, Google Cloud

137

Technology Family: Big Data Domain

138

Application Framework : Hibernate

139

4.1 Candidate Designs per QA

• Why we need to document design decisions?
• The process of developing a complex software architecture involves making hundreds of big and small

decisions.
• The results of these decisions are reflected in the views later: the structures with the elements and relations and

properties, and the interfaces and behavior of those elements.

• Understanding the design decisions(i.e., the rationales) is essential for us to acknowledge and improve the
design.

• Most decisions are made in a complex context and almost always involve trade-offs.

• Just like documenting the architecture helps you design the architecture, documenting the decisions helps
you make decisions correctly.

140

Candidate Design Decision

• Candidate Design
• A candidate of partial architecture design which satisfies with all QASs in a specific QA(Quality Attribute).
• Proposed, evaluated, and selected by architects for each QA
• Refining the domain model first is highly recommended.

141

QA1 QAS-01

QAS-02

Candidate Design Approach 1 (CDA-01)
Architectural Drivers

Candidate Design Approach 2 (CDA-02)

Candidate Design Approach 3 (CDA-03) QA1_CD-01

Quality Attribute Factor

Selected
Candidate Design

• Design Goal
• Candidate Design Approaches
• Decision and Rationale

* CDA (Candidate Design Approach) is not a widely used term, but only used in this class.

Design Goal

• Provides a detailed goal of the design decision to achieve a specific QA
• Stating the architectural design issue being addressed
• Usually, it is a more elaborated description than the corresponding QAS

142

Candidate Design Approach (CDA)

• Illustrates with naive figures various design alternatives that have been considered with
the objective of solving the problem under consideration.

• It is okay if some architecture problems have only one alternative and that is the one chosen
as the solution (but it is rare.)

• Each design approach is described in detail along with its pros and cons.

143

Title of the approachCDA ID

• Present and describe the design with diagrams
• Describe design concepts applied. They include reference architectures, architectural

styles/patterns, architectural tactics, principles.

• Use naive/UML diagrams or View models

Candidate Design
Approach (CDA)
Description

Discuss architectural drivers promoted by the design alternativePros

Discuss architectural drivers inhibited by the design alternativeCons

Decision and Rationale

• Describe any design trade-offs relevant to the design decisions in terms of ADs.
• Describes the rationale behind choosing the solution among the various alternatives, substantiated by a list

of architecture design principles that the solution complies with, along with a potential list of principles that
may be in noncompliance (substantiated by an explanation for the deviations).

• Select one candidate design approach for the QA.

144

Candidate Design
Approach #n…

Candidate Design
Approach (CDA) #1

(Selected)
Analysis

QA Name

TitleID

(+) DescriptionPros
QAS-01

(-)Cons

(++)Pros
QAS-02

(-)Cons

DescriptionCDQASQA

QA1_CD-01 (+ Title)QAS-01
QAS-02

QA1:
Performance

Candidate Design :

4.2 Candidate Designs Evaluation for All QAs

• Architecture Evaluation
• Use any approach, technique, and method such as ATAM (Architecture Trade-off Analysis Method)

• Evaluate all candidate designs (CD) with respect to all QA/QASs together, and select a set of CDs

145

QA5_CD1
+ Title…QA1_CD-2

+ Title

Candidate Design
(CD) #1

QA1_CD-01 + Title
AnalysisQASQA

(++)(+)(+) DescriptionPros
QAS-01

QA1
Performance

(--)(--)(-)Cons

(++)(+)(++)Pros
QAS-02

(--)(-)(-)Cons

QAS-03QA2

- (NA)
QAS-04QA3

QA4

QA5

4.3 Design Decision

• Collect all the selected CDs to complete the final design decision (DD).
• All design decisions that are considered architecturally important to satisfy the business, technical, and

engineering goals are captured and summarized.

• The entire DD is described through a naive picture(s). → An upgrade version of Domain Model (2.5)

• Details of the entire DD will be explained through three views in Section 5.
• 5.1 Architecture Overview ← A UML Deployment version of the Domain Model

• 5.2 Structure View
• 5.3 Behavior View
• 5.4 Deployment View

146

Design Decision : An Example

147

148

5. Documenting Design with Views

149

5. Documenting Design with Views

150

Project
Overview

System
Overview ASR Analysis

Architecture
Design &

Evaluation

Documenting
Design with

Views

Detailed
Component

Design

Business Context
Diagram

Stakeholders

Business Goals

System Context
Diagram

System Features

Primary
Functionality

(UC+SSD)

Domain Model

Primary
Functionality

(UC+SSD)

QAS

Constraints

Candidate Designs
per QA

Candidate Designs
Evaluation for all

QAs

Design Decision

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Structure Model
(Class Diagram)

Behavior Model
(UC+ Sequence Diagram)

1. 2. 3. 4. 5. 6.

: Keeping Traceability is required

Architecture Description

Starting from/with SRS in Requirements Analysis

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders
1.4 Business Goals

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality
3.2 Quality Attribute Scenario
3.3 Constraints

4. Architecture Design & Evaluation
4.1 Candidate Designs per QA
4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision

5. Architecture Design Description
5.1 Architecture Overview
5.2 Structure View
5.3 Behavior View
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model
6.1.5 Component Behavior Model

7. Architecture Traceability Summary

151

Our Architecture Design Process (Revisited)

152

System Level
Design

Detailed Design

Architecture
Design

(High-Level)

Detailed
Design

(Low-Level)

Component Level
Design

«component»
Component1

«component»
Component2

«component»
Component3

Structure
View (5.2)

Behavior
View (5.3)

Deployment
View (5.4)

Architecture
Overview (5.1)

Decomposition

Specific Analysis

Class1
a

op1()

Class4
op4()Class3

c
op3()

Class2
b

op2()

Class5
e

op5()

Class6
d

op6()

Architecture Design
Description

Iteration
+ Design
Concepts

Component
Structure

Diagram (6.1.2)

Component
Behavior

Diagram (6.1.5)

Detailed Component
Design Description

Architecture Design View Styles by CMU and Ours

153

Structure Views
(5.2)

Deployment Views
(5.4)

Behavior Views (5.3)

Architecture Overview (5.1)

Domain Model
(2.5 → 4.3)

Our Architecture Design Views

• Architecture Overview (5.1)

• Architecture Overview Diagram : Sketching overall architecture design with UML Deployment(+Component) Diagram
• An official version of domain models developed through sections 2.5 and 4.3

• Structure View (5.2)

• Static Structure Model : Describing static structures with UML Component Diagram
• Component Specification : Specifying all interfaces of components

• Behavior View (5.3)

• Behavior Model : Specifying the interactions of systems and components to satisfy the system’s behavior with
UML Sequence Diagram (+Use Case)

• Deployment View (5.4)

• Deployment Model : Mapping software units to elements of an environment in which the software executes with
UML Deployment Diagram

154

Documenting Architecture Design with Our Views

155

<<Server>>
App Server<<Client>>

PC App <<DB>>
Shared Data

10,000..12.000

3..5

: Component1 : Component2 : Component3

System_OP()

OP()

OP’()

OP’’()

Ack

Architecture Overview (5.1)

Structure View (5.2) Behavior View (5.2) Deployment View (5.2)

form Primary
Functionality (3.1)

Use Cases

5.1 Architecture Overview

• An official version of domain models described with UML
• Describing the overall architecture captured in the domain model (2.5) and the Design Decision (4.3)

with the UML deployment diagram
• Similar with “Infrastructure Diagram”

• Detailed description will be specified with Deployment View (5.4).

• A high-level representation of system architecture
• In case of large systems, describing the physical infrastructure in detail

(Node, Execution Environment, Communication Path)

156

Deployment target which represents computational resource upon which artifacts may be deployed for execution
- Placement and scope of key system infrastructure elements (node, networks, sensors, workstations, etc.)Node

A (software) node that offers an execution environment for specific types of artifacts
- The choice of specific technology to implement the componentsExecution Environment

Association between two deployment targets, through which they can exchange signals and messages Communication Path

Architecture Overview Diagram

157

Architecture Overview Diagram : Node

• Node is a deployment target which represents computing resource.
• Examples of node stereotypes :

• «application server», «client workstation», «mobile device», «embedded device»

158

<<Computer>>
Job PC

{ Vendor = “Acer”
CPU = “AMD Phenom X4”
Memory = “4 GB DDR2 }

Architecture Overview Diagram : Execution Environment

• A (software) node offers an execution environment for specific types of artifacts (executables)
• Example stereotypes of execution environment :

• «OS», «workflow engine», «database system», «J2EE container», «web server», «web browser», etc.

159

Architecture Overview Diagram : Communication Path

• An association between two deployment targets, through which they can exchange signals and
messages

• Communication path between several application servers and database server

• Gigabit Ethernet as communication path between application and database servers

• TCP/IP protocol as communication path between J2EE server and database system

160

Architecture Overview Diagram : An Example

161

Architecture Overview Diagram : An Example

162

5.2 Structure View

• Structure View
• Static Structure Model : Describing static structures with UML Component Diagram
• Component Specification : Specifying all interfaces of components

163

«component»
Component1

«component»
Component2

«component»
Component3

«component»
Component2

ͻ

Static Structure Model (5.2.1)

Component Specification (5.2.2)

Provided

Required

Static Structure Diagram

• Describe components that implement the functionalities and QAs
• Develop one static structure diagram for each node in the architecture overview diagram

164

Static Structure Diagram – Element List

• Describe each element in the static structure diagram

165

Relevant ADsResponsibilityElement Name

Layer-1

Layer-2

Layer-3

Component1

…

Component5

Static Structure Diagram – Component

• A component is a well-defined functional part of the system which
• Has particular responsibilities and

• Exposes well-defined interfaces(Provided/Required) that allow it to be connected to other elements.

• Stereotypes are used to denote the type of the view-specific component.

166

Static Structure Diagram – Interface

• An interface is a well-defined mechanism by which the functions of an element can be accessed by
other elements.

• Provided interfaces
• Interface that the component realizes (provided services)
• Other components and classes interact with a component through its provided interfaces.

• Required interfaces
• Interface that the component needs to function (expected services)
• The component needs another class or component that realizes that interface to function.

167

Provided interface
Required interface

Static Structure Diagram – Interface

• An interface is defined by the inputs, outputs, and semantics of each operation offered, and the
nature of the interaction needed to invoke the operation.

• Stereotype notation for interfaces :

168

Provided interface

Required interface

«component»
ConversionManagement

ͻ

FeedProvider

DataSource

DisplayConverter

Static Structure Diagram – Port

• Ports represent interaction points through which a component communicates with other
components and its environment.

• Component interactions take a variety of forms :
• Function or method calls
• Remote procedure calls
• Web service requests
• Data streams, shared memory, and message passing

169

Static Structure Diagram – Port

• Various notations for ports

• Multiple ports with stereotypes are used for
• Cohesive set of interfaces
• Communication protocols
• Reduced coupling

170

Static Structure Diagram – Port

• The port behavior can be specified with the UML State (Statechart) Diagram.

171

Mobile
Cart

pCart

ICart

«interface »
ICart

newCart()
addItem(Item)
removeItem(Item)
checkout()

UML Statechart Diagram

The UML Composite Structure Diagram - Connectors

• Assembly connector defines that one component provides the services that another component requires.
• It must only be defined from a required interface to a provided interface.
• An assembly connector is notated by a “ball-and-socket” connection.

• Delegation connector links the external contract of a component to the internal realization.
• Represents the forwarding of signals
• It must only be defined between used interfaces or ports of the same kind.

172

Static Structure Diagram – Components Working Together

• If a component has a required interface, then it needs another class or component in the system
that provides it.

• At a higher-level view, this is a dependency relation between the components.

173

Static Structure Diagram : Examples

174

Static Structure Diagram : Examples

175

Static Structure Diagram : Examples

176

Component Specification

• Specifies all provided interfaces of components and all evident operations for each interface
• The required interfaces are specified by other providing components.

177

ResponsibilityOperation

…isMoving()

startMoving()

stopMoving()

openDoor()

closeDoor()

Provided interface

Component Specification : An Example

178

ResponsibilityKindInterface Name

Console 화면의 UI를 담당하는 interfaceProvidedIConsoleUI

Console로 장비 고장 알림을 전달하는 interfaceProvidedINotify

Console과 Main Server 사이의 통신을 담당하는 interface로서,
Console로 받은 요청을 Main Server로 전달

RequiredIConnectConsole

ResponsibilityOperation

Console에서 차단기 원격 제어를 요청하는 operationcontrolBarrier()

Console에서 장비 동작 상태 (진단 결과 요약 정보)를 요청하는 operationgetDiagnosisReport()

ResponsibilityOperation

Console UI로 알림 내용을 출력하는 operationNotify()

Component Design Principles

• Component Design Principles
• Cohesion

• To what extent are the functions provided by an element strongly related to each other?
• Coupling

• How strong are the element interrelationships? To what extent do changes in one element affect others?
• Extensibility

• Will the architecture be easy to extend to allow the system to perform new functions in the future?
• Functional Flexibility

• How amenable is the system to supporting changes to the functions already provided?
• Separation of Concerns

• To what extent is common processing performed in only one place?
• Consistency

• Are mechanisms and design decisions applied consistently throughout the architecture?

179

조별 Design Principles 발표 #5

Component Interface Design Principles

• Component Interface Design Principles
• Separate Interface

• ISP(Interface Segregation Principle)
• Use Abstract Name

• Use outcome-revealing name
• Use implementation-free name

• Make Interface Abstract
• Data Abstraction: introduce parameter object, preserve whole object, introduce abstract data type
• Functional Abstraction: introduce facade function
• Implementation abstraction: encapsulate collection, replace parameter with method, replace parameter with explicit

method, parameterize method
• Minimize Dependency

• DIP(Dependency Inversion Principle)
• Law of Demeter; Hide delegation

180

5.3 Behavior View

• Behavior View
• Behavior Model : Specifying the interactions of systems and components to satisfy the system’s behavior
• For each use case (3.1) marked as ASR, analyze interactions among system components through the UML

Sequence Diagram.
• Starting from the SSD and its system operations/interfaces

181

: Component1 : Component2 : Component3

System_OP()

OP()

OP’()

OP’’()

Ack

from Primary
Functionality (3.1)

: System

System_OP()

Ack

UC-01

UC-02

UC-03

Use Case Model (3.1)

System

UC-01

Use-Case Descriptions
Behavior Model (5.3)

System Sequence Diagram

Structure Model (5.2)

<<interface>>
Interface1

OP’()

<<interface>>
Interface2

OP’’()

6장에서 Detailed Component Design 수행

Behavior Diagram

• The UML Sequence Diagram
• Describing interactions among component instances of static structure model through ports

• But ports can be omitted if they seem irrelevant or not important.
• Should correspond exactly to the use cases and system sequence diagrams from (3.1)

182

Behavior Diagram : Examples

183

184

Behavior Diagram : Examples

185

Consistency between Structure and Behavior Views

186

Structure View

Behavior View

Structure View

Consistency between Structure and Behavior Views : An Example

187

5.4 Deployment View

• One or more components are manifested by an artifact, and then the artifacts are deployed to its
execution environment.

• Artifact Definition Model

• Artifact Deployment Model

188

Artifact Definition Model

• Artifact
• Physical packaging of components
• A physical implementation unit of components

• Artifact Definition Model describes how the physical artifacts maps to logical components.
• <<manifest>> relationship between an Artifact and a Component

189

Artifact Definition Model vs. Static Structure Model

190

Static Structure Model
(Structure View)

Artifact Definition Model
(Deployment View)

vs.

Artifact Definition Diagram - Examples

191

Artifact Definition Diagram - Examples

192

depends on

Artifact Deployment Model

• The distribution of artifacts on a set of nodes so that they can be installed, configured, and
hosted on physical nodes.

193

JAR : Java Archive (독립 실행)
WAR : Web Archive (JSP 서버 필요)
EAR : Enterprise Archive (Java Enterprise Edition 서버 필요)

Artifact Deployment Diagram - Examples

194

Artifact Deployment Diagram - Examples

195

196

6. Detailed Component Design

197

6. Detailed Component Design

198

Project
Overview

System
Overview ASR Analysis

Architecture
Design &

Evaluation

Documenting
Design with

Views

Detailed
Component

Design

Business Context
Diagram

Stakeholders

Business Goals

System Context
Diagram

System Features

Primary
Functionality

(UC+SSD)

Domain Model

Primary
Functionality

(UC+SSD)

QAS

Constraints

Candidate Designs
per QA

Candidate Designs
Evaluation for all

QAs

Design Decision

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Structure Model
(Class Diagram)

Behavior Model
(UC+ Sequence Diagram)

1. 2. 3. 4. 5. 6.

: Keeping Traceability is required

Architecture Description

Starting from/with SRS in Requirements Analysis

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders
1.4 Business Goals

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality
3.2 Quality Attribute Scenario
3.3 Constraints

4. Architecture Design & Evaluation
4.1 Candidate Designs per QA
4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision

5. Architecture Design Description
5.1 Architecture Overview
5.2 Structure View
5.3 Behavior View
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model
6.1.5 Component Behavior Model

7. Architecture Traceability Summary

199

Our Architecture Design Process (Revisited)

200

System Level
Design

Detailed Design

Architecture
Design

(High-Level)

Detailed
Design

(Low-Level)

Component Level
Design

«component»
Component1

«component»
Component2

«component»
Component3

Structure
View (5.2)

Behavior
View (5.3)

Deployment
View (5.4)

Architecture
Overview (5.1)

Decomposition

Specific Analysis

Class1
a

op1()

Class4
op4()Class3

c
op3()

Class2
b

op2()

Class5
e

op5()

Class6
d

op6()

Architecture Design
Description

Iteration
+ Design
Concepts

Component
Structure

Diagram (6.1.2)

Component
Behavior

Diagram (6.1.5)

Detailed Component
Design Description

The Scope of Detailed Component Design from Behavior View

201

: Component1 : Component2 : Component3

System_OP()

OP()

OP’()

OP’’()

Ack

from Primary
Functionality (3.1)

: System

System_OP()

Ack

UC-01

UC-02

UC-03

Use Case Model (3.1)

System

UC-01

Use-Case Descriptions Behavior Model (5.3)

System Sequence Diagram

Structure Model (5.2)

<<interface>>
Interface1

OP’()

<<interface>>
Interface2

OP’’()

The scope of Detailed Component Design

Detailed Component Design

202

: Component1 : Component2 : Component3

System_OP()

OP()

OP’()

OP’’()

Ack

Use Case Model (3.1)

UC-01

Use-Case Descriptions

Behavior Model (5.3)
Structure Model (5.2)

<<interface>>
Interface1

OP’()

<<interface>>
Interface2

OP’’()

Class1
a

OP1()

<<interface>>

Class4
OP’()Class3

c
OP3()

<<interface>>

Class2
b

OP’’()

Class5
e

OP5()

Class6
d

OP6()

Component Structure Model (6.1.2)

: Class4 : Class2 : Class3

OP’()

OP()
OP3()

OP3()

Ack

: Class5

OP’’()

Component2Component1

OP3()

Ack

Component Behavior Model (6.1.5)

Detailed Component Design Description

• For each component,
• Component Structure Model

• Static Structure Diagram : UML Class Diagram
• Element list
• Design rationale

• Component Behavioral Model
• Component Behavior Diagram : UML Sequence Diagram

203

Static Structure Diagram Component Behavior Diagram

Component Structure Model

• Represents the decomposition of the component
• UML Class Diagram
• A list of all elements
• Design Rationale : Explains specific component decomposition techniques (e.g., SOLID, Design Patterns) to

promote QAs

• For all provided interfaces of the component, behavior models need to be analyzed.
• Component Behavior Diagram → UML Sequence Diagram

204

Static Structure Diagram

Component Behavior Model

• Describes how each operation of the provided interface can be realized with the collaboration of
class instances

205

Component Behavior Diagram

: Component1 : Component2 : Component3

System_OP()

OP()

OP’()

OP’’()

Ack

Use Case Model (3.1)

UC-01

Use-Case Descriptions

Behavior Model (5.3)

Static Structure Diagram (6.1.2)

: Class4 : Class2 : Class3

OP’()

OP()
OP3()

OP3()

Ack

: Class5

OP’’()

Component2Component1

OP3()

Ack

Component Decomposition

• A component consists of several fine-grained elements including smaller components and/or classes.
• Use component decomposition strategies

206

Component
Decomposition

Component Decomposition Strategies

207

DescriptionDecomposition Strategy

• Decomposing a system based on functionality is perhaps the most obvious strategy.
• You can invent the required functionality and clump together with related functions.Functionality

• Archetypes / core types are salient types from the domain, such as a Contact, Advertisement, User, or Email
• Characteristics of an archetype include having an independent existence and having few mandatory associations to other typesArchetypes

• A system can be decomposed so that its components are elements defined by an architectural patterns, design patterns,
GRAPS, and design principles (SOLID).

• Choosing an architectural pattern is highly effective at achieving quality attribute goals because each style has known qualities
that it promotes.

Patterns

• For example, to support Modifiability (→Maintenainability), impact of any one change is localized.Achievement of certain QA

• Some modules may be bought in the commercial marketplace, reused intact from a previous project, or obtained as open-
source software.Build-versus-buy decisions

• It is essential to distinguish between common components, used in every or most products, and variable components, which
differ across products.Product line implementation

• To allow implementation of different responsibilities in parallel, separate components that can be allocated to different teams
should be definedTeam allocation

Design Patterns of GoF (Gang of Four)

208조별 Design Pattens 발표 #6

23 Design Patterns of GoF

209

Object-Oriented Design Principles in HFDP

210
Techniques and Principles

> Design Patterns

Object-Oriented Design Principles - SOLID

• SOLID : 5 basic principles object-oriented design for maintainable and extensible systems
• SRP : Single Responsibility Principle
• OCP : Open Closed Principle
• LSP : Liskov Substitution Principle
• ISP : Interface Segregation Principle
• DIP : Dependency Inversion Principle

211

Ways to Apply withDescriptionFull NameName

Separate the module into multiple ones for each
reason.

A module should have one, and only one, reason to
change.

Single Responsibility
PrincipleSRP

Make fine grained interfaces that are client specific.Client should not be affected by the interface it does
not use.

Interface Segregation
PrincipleISP

Provide extension points for any possible change.You should be able to extend a module behavior,
without modifying it.Open Closed PrincipleOCP

Subclasses should conform to pre/post condition
of its superclass

Derived modules must be substitutable for their base
classes.

Liskov Substitution
PrincipleLSP

Depend on interface, not on implementation.Do not depend on what are prone to changeDependency Inversion
PrincipleDIP

Techniques and Principles
> SOLID

Component Structure Model : Examples

• CarController Component

212

Component Structure Model : Examples

213

Abstract Factory Pattern

State Pattern

Using <<thread>>

Component Structure Model : Examples

214

Component Behavior Model : Examples

215

Component Structure Model - Element List

• Describe each element comprising the component with its responsibility.

216

ResponsibilityElement Name

Class21

Class22

Internal_2_1

Class23

Class24

Class25

Component Structure Model - Design Rationale

• Describe the rationale for the decomposition.
• Explain your specific component decomposition strategies in detail

• Design patterns, OO design principles (SOLID)

• If possible, relate your component design decisions to the quality requirement by describing how each
quality requirement are promoted by the decomposition.

• Not all QA/QAS are relevant to the specific detailed component design at the class/object level.

217

DescriptionRelevant ElementsQA
QA1

(Performance)

QAS-03

218

7. Architecture Traceability Summary

219

7. Architecture Traceability Summary

220

Project
Overview

System
Overview ASR Analysis

Architecture
Design &

Evaluation

Documenting
Design with

Views

Detailed
Component

Design

Business Context
Diagram

Stakeholders

Business Goals

System Context
Diagram

System Features

Primary
Functionality

(UC+SSD)

Domain Model

Primary
Functionality

(UC+SSD)

QAS

Constraints

Candidate Designs
per QA

Candidate Designs
Evaluation for all

QAs

Design Decision

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Structure Model
(Class Diagram)

Behavior Model
(UC+ Sequence Diagram)

1. 2. 3. 4. 5. 6.

: Keeping Traceability is required

Architecture Description

Starting from/with SRS in Requirements Analysis

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders
1.4 Business Goals

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality
3.2 Quality Attribute Scenario
3.3 Constraints

4. Architecture Design & Evaluation
4.1 Candidate Designs per QA
4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision

5. Architecture Design Description
5.1 Architecture Overview
5.2 Structure View
5.3 Behavior View
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model
6.1.5 Component Behavior Model

7. Architecture Traceability Summary

221

The Overall CEP Process

222

System Features System
Requirements

FR

QAR

Constraints

Stakeholders +
Business Goals

Requirements
Elicitation

(ASR in SRS)

Requirements
Analysis

Requirements
Specification

Primary
Functionality (3.1)

QAS (3.2)

Constraints (3.3)

Architectural Drivers

Requirements Engineering Process (with SRS)
Domain Model

Architecture
Design &

Evaluation
(4)

Architecture
Design Decision

Candidate Designs
per QA (4.1)

Candidate Designs
Evaluation for all QAs

(4.2)

Design Decision
(4.3)

(Goal) (User Requirements)

Architecture Design Process

Architectural
Design Decision

Design Decision
(4.3)

Architecture
Overview (5.1)

Structure View
(5.2)

Behavior View
(5.3)

- OOD (Object-Oriented Design)
- SD (Structured Design)

Deployment View
(5.4)

Architecture
Documentation

Architecture
Design Document

Architecture Documentation Process Detailed Component Design Process

Detailed
Component

Design

Component
Structure Model (6.1.2)

Component
Behavior Model (6.1.5)

Component
Design Document

The Overall CEP Process

223

System Features System
Requirements

FR

QAR

Constraints

Stakeholders +
Business Goals

Requirements
Elicitation

(ASR in SRS)

Requirements
Analysis

Requirements
Specification

Primary
Functionality (3.1)

QAS (3.2)

Constraints (3.3)

Architectural Drivers

Requirements Engineering Process (with SRS)
Domain Model

Architecture
Design &

Evaluation
(4)

Architecture
Design Decision

Candidate Designs
per QA (4.1)

Candidate Designs
Evaluation for all QAs

(4.2)

Design Decision
(4.3)

(Goal) (User Requirements)

Architecture Design Process

Architecture
Overview (5.1)

Structure View
(5.2)

Behavior View
(5.3)

- OOD (Object-Oriented Design)
- SD (Structured Design) Deployment View

(5.4)

Architecture
Design Document

Architecture Documentation Process

Detailed Component Design Process

Component
Structure Model (6.1.2)

Component
Behavior Model (6.1.5)

Component
Design Document

Architecture
DocumentationDetailed

Component
Design

Architecture Traceability

• ISO/IEC/IEEE 42010:2011 “Systems and Software Engineering - Architecture Description

• AD should demonstrate how an architecture meets
the needs of the system’s diverse stakeholders.

• Architecture traceability starts from Stakeholders.
• Stakeholders
• Concerns
• Architecture Views
• Architecture Rationale

224

7.1 Architecture Traceability Graph

• A full-scale graph tracing from stakeholders up to components (and classes)
• Any notation (graph or table) is possible.
• Every individual item in the graph should be traceable bidirectionally.

225

System FeaturesStakeholders +
Business Goals

Primary
Functionality (3.1)

QAS (3.2)

Constraints (3.3)

System
Requirements

Design Decision
(4.3)

Domain Model

Structure View
(5.2)

Behavior View
(5.3)

Component
Structure Model (6.1.2)

Component
Behavior Model (6.1.5)

“Design Concepts” applied

“Component / Interface Design Principles” applied

“Design Patterns” applied

7.2 Summary of Traceability Items

• Explains all elements which take part in the architecture traceability briefly and clearly

226

Description
Traceability Items

TitleID

7.3 Safety Case

• Demonstrate reasonably that your claim is successfully satisfied by your architecture design
• Examples of claims :

• “Customers will not wait more than 5 minutes.”
• “The system will not expose any customer information.”

• Choose a claim and demonstrate their satisfaction with your traceability, reasonably.

227

228

