Software Architecture

Index
* Introduction to Software Architecture

« Software Architecture Design
Project Overview

System Overview

ASR Analysis

Architecture Design & Evaluation
Documenting Design with Views
Detailed Component Design (Optional)
Architecture Traceability Summary

N kw2

Text and References

Lol

D . . Pattern- -Oriented :PHE UNIFIED MODELING
() | g n lllg Software Archltecture LANGUAGE USER GUIDE
Software

Architectures

A Practical Approach

Documenting Software

Software Architecture
Architectures in Practice

Third Edition

Second Edition

. Software
- Architectures

e, © Methods
y and
Case

so0ch |
JRGOBSON
AUKBAUGH

Studies . H
OREILLC 'Sl(g.gT%V-/I;REEAI;lCEI)ITlEJC%RE

A RISK-DRIVEN APPROACH
GEDRGE FAIRBANKS
FOREVIORD BY

Views
and
Beyond

>

]
z
3
-
o
z
a
z
u
-
[3
1
:
=
%
o
O]
z
L
w
«
[
()
-
“

SElI SERIES IN BOFTWARE ENGINEERING

_

SECOND EDITION Fundamentals of

Humberto Cervantes Paul Clements Software
: = | Rick Kazman .
Rick Kazman] Len Bass - Paul Clements - Rick Kazman Mark Klein ﬁLgEEEEFtu re

Mark Richards & Neal Ford

Soft ; 5 - '
Avofiaciure and APPLYING UML ' Desion Patte TEE et »
WAl Design lluminated (S] Tl d 1]15 Head First o
DAL T PATTERN-ORIENTED AND PATTERNS Ekmem\ of Reusable Desi n Clean Code Clean Architecture
I e T Ty SOFTWARE K """““'“""Wm‘""“"“’ﬂ“m Object-Oriented Software g ’ At . $
i ARCHITECTURE Rochard L Patterns 4

A Pattern Language for
Distributed Computing

R EFACTORING

Ralph |ohnson
lohn Viissides

Building Extensible
&Maintainable g
Object-Oriented
Software

patterns & practices

& ABrain-Friendly Guide Iy

[

Introduction to Software Architecture

Motivations

» Learning to design software architectures in a systematic, predictable, repeatable, and cost-
effective way.

* No silver bullet in designing software architecture

» But everyone can be a better designer
by structured methods supported by reusable sets of design help.

What is This?

What is This?

What is This?

[< R |

10

o?

o 25
o 3M)

ro o
a
o
\‘
0
3
Of
o
ot
mlo
h
|

What is Architecture Design?

Software (System)

Architecture Design

AEY: oot 25

%t 7k R0% (34)

M 9 0jol 7em 30|18 B
Q1Y ZUH §XE EH

Architecture Description (AD)

10

The 4W1H of Architecture Design

WHO Software Architect
with Systematic and Reusable Approaches
- Architecture Design
. . - Design Concepts
at High-Level Design Phase - Architecture Evaluation
WHEN ArcI;nte.ctu re HOW
ign
Sometimes, esig
at Requirements Analysis &
Detailed Component Design Phase
WHAT WHY
Architecture Design & To Address, Persuade, and Satisfy Stakeholders’ Concerns

Design Rationale

11

Software Architecture

“The software architecture of a system is the set of structures needed to reason about the system, which
comprise software elements, relations among them, and properties of both.”

“A software architecture is the set of significant decisions about the organization of a software system,
the selection of the structural elements and their interfaces by which the system is composed, together
with their behavior as specified in the collaborations among those elements, the composition of these
structural and behavioral elements into progressively larger subsystems, and the architectural style that

guides this organization - these elements and their interfaces, their collaborations, and their composition.”

Software
Architecture

in Practice
Third Edition

1 Len Bass - Paul Clements « Rick Karman

<
b

P
| 1 'HE UNIFIED MODELING

LANGUAGE USER GUIDE
Second Edition

GRADY BOOCH
JAMES RUMBAUGH
IVAR JACOBSON

ehly updated— [BIOOCH §
H 57008501 i
rnane |

12

Importance of Software Architecture

Golden Gate Bridge (1937) San Francisco - Oakland Bay Bridge (1936)
Collapsed in 1987 on 6.9 earthquake

e by L - . witmas it
b Q/-—‘ '1 .,.”“"_/\

o 13
San Francisco, USA

Software Architecture Life-Cycle Activities

A
vv

Documenting
¢ Software
: /Architectures

Views
and
Beyond

SECOND EDITION

. Evaluating .
& Software
¢ Architectures

. Methods
2 4and
Case
Studies

~

=7
-~

Paul Clements
Rick Kazman
Mark Klein

<<precedes>>

T SRS

Architectural | .
Requirements

Y
A

<<precedes>>
Y

Architectural
Design ¥

J

<<precedes>>

(" Architectural
Documentation

<<DW WS»

Architectural | [Architectural
Evaluation) cinfluencess> | Implementation

|

FIGURE 1.1 Software architecture life-cycle activities

Software
Architecture

in Practice
Third Edition

Len Bass - Paul Clements - Rick Kazman

& Designing
¥ Software

s

Humberto Cervantes

Rick Kazman

14

The Scope of Our CEP (Comprehensive Evaluating Project)

- -~

1
1 £
o Architectural \
- 1
/ _ Requirements :
7/
/ 1
, <<precedes>> !
L/ \ i I
7 7 1
Architectural !
L Design) I,’
,,’/ | <<precedes>> /I
<<precedes>> .1~ Architectural /
Documentation ol
// <<pW ws))
/7 ’
) - e
\ Architectural) . : J Architectural
\ Evaluation) ccinfluencess> _Implementation

~ <

FIGURE 1.1 Software architecture life-cycle activities

15

Architectural Requirements

» Architecturally Significant Requirements (ASR)

+ Afew requirements in SRS, that have special importance for the architecture

« Examples:

* Primary functionality : the most important functionality of the system
* QA (Quality Attribute) : quality attributes such as high performance, high availability, or ease of maintenance

» Other design constraints

 ASR Analysis
* |dentifying all ASRs from an SRS
° Transforming (or Mapping) ASR into AD (Architectural Drivers)

« SRS often provides very little information for architects.

» Architects need to be involved in requirements analysis.
» Stakeholder analysis
* Requirements elicitation
» Keeping traceability starting from stakeholders

<<precedes>>

SRS
®

(Architectural
| Requirements

J

Y

Design

L <<precedes>>

Architectural

[Architectural
[Documentation

4

<<precedes>>

<<precedes>> <<precedes>>

_[Architectural }—,[
Evaluation <<influences>>

Architectural
Implementation

|

i

FIGURE 1.1 Software architecture life-cycle activities

16

Architectural Design

« The process of translation from the world of requirements to the world of solutions
* Producing a set of structures composed of code, frameworks, and components

« Example :
* ADD (Attribute Driven Design) 3.0 with Design Concepts

SRS
» A good design is one that satisfies all AD (Architectural Drivers). s}

Y

__(Architectural
| Requirements

J

<<precedes>>

Design

L <<precedes>>

<<precedes>> Architectural

Documentation |

«pr‘ecedes/ws»
_[Architectural Architectural
Evaluation <<influencess> Implementation

FIGURE 1.1 Software architecture life-cycle activities 17

[Architectural

Architectural Documentation

* Preliminary documentation of the structures should be created as part of architectural design.

» Architecture Description (AD)

« ISO/IEC/IEEE 42010:2011 SRS
“Systems and Software Engineering - Architecture Description”)

Y

J Architectural
| Requirements |

<<precedes>>
y

Architectural
Design

<<precedes>>

<<precedes>> Architectural
Documentation |

<<pW AWS»
_[Architectural Architectural
Evaluation <<influencess> Implementation

FIGURE 1.1 Software architecture life-cycle activities 18

Architectural Evaluation

- Evaluate your architectural design to ensure that the decision made are appropriate to address
all ASRs

» Typically done informally and internally.
« But for important project, it is advisable to have a formal evaluation done by an external team.

« Example :

SRS
* ATAM (Architecture Trade-off Analysis Method)

Y

J Architectural
| Requirements |

<<precedes>>
y

Architectural
Design

<<precedes>> Architectural

Documentation |

<<precws»
_‘[Architectural Architectural
Evaluation <<influencess> Implementation

FIGURE 1.1 Software architecture life-cycle activities 19

L <<precedes>>

Architectural Implementation

* Implementing the architecture that you have created and evaluated

» Low-level design and coding are often very closely intertwined.
* Low-level design : Detailed component designs
* OOD (Object-Oriented Design)
» SD (Structured Design)

. . SRS
* Implementation (Coding) : ®
+ OOD — Object-Oriented Programming (C++ / Java) !
« SD — Procedural Programming (C / Fortran) o[Architectura
| Requirements |
<<precedes>>
* Refactoring [Architectural
. . - Design
» Considering reuse of codes for Maintainability
] L <<precedes>>
. Ag||e <<precedes>> [Architectural
« Code Review, TDD, CI/CD, Refactoring Documentation)

« Design Patterns «DM

_[Architectural Architectural
Evaluation <<influencess> Implementation

A

®

FIGURE 1.1 Software architecture life-cycle activities

CI/ICD : Continuous Integration / Continuous Deployment
TDD : Test Driven Development

Scope of Software Architecture Design

Requirements /7
Analysis %

SRS

NN

Design

7

AD

SDS

Implementation

System Test

SRS : Software Requirement Specification

SDS : Software Design Specification
AD : Architecture Description

Requirement Engineering
» Stakeholder analysis

 Identifying user requirements and specifying system requirements
* Analyzing ASR

Architectural Design
» Design of structures that allow architectural drivers to be satisfied

Element Interaction Design
» |dentification of additional elements and their interfaces

Deployment of System Elements (artifacts) into Hardware

Element Internals Design (Detailed Component Design)
* Interface implementation through OOD/SD

21

Interactions between Architecture and Component Designs

» Sometimes architecture design is affected by component design in reverse direction.
» Then details of the component design will become the concerns of software architects.

Importance of Architectural Design

» There is a very high cost to a project of not making certain design decisions, or of not making them
early enough.

» Without doing some architectural thinking and some early design work, you cannot confidently predict
project cost, schedule, and quality.

* The architecture will influence, but not determine, other decisions that are not in and of themselves
design decisions.
« E.g. Selection of tools, structuring of development environment

« A well-designed, properly communicated architecture is key to achieving agreements that will guide
the team.
« The most important kinds to make are agreements on interfaces and shared resources.

Software Architecture Design in a Nutshell

, =
1 -
I <cselects and IEI'I FI.I IEJ.]
: hstanlia‘tses» i — | |i
' BEEEES
. 1 e | el el
design -
<<Uses>> <<produces>> -___f::
[scsr o =
- (Documented) Structures
resulting from
Architectural Drivers The Architect design decisions

FIGURE 2.1 Overview of the architecture design activity
(Architect image © Brett Lamb | Dreamstime.com)

Software Architecture Design in a Nutshell

- Reference Architecture
- Deployment Pattern
- Architecture Style

- Tactics
\ - Externally Developed Components
\
| ' 5 Design Concepts ! = -
Vi
: ; B
! : fe | ! Structure View
! I ccselects and :'-“"’”"' Pl o))
: : instantiates>> ,
1
! ! =1 N
1 1 s 5
| v e
! ST LTS N
! \
! 1 =) [—|_-._ e
: Candidate ! Tt ol el vl]
\ design ! -
| == decisions § el
' =
1 . .
| <cuses>> /é<produoes>> e Behavioral View
e i N W
| -
| _
1
1
1
: e
1 " P
1 a — ";—
I P Deployment View
: ==k
! - ATAM '
1
1 oS s=ss==s======s-——==a
! ' (Documented) Structures |
| ! resulting from | ISO/IEC/IEEE 42010:2011 Std.
= - - . .. 1 : H H
Architectural Drivers | The Architect \ design decisions i With Multiple Views
1

N e e e, ————————

from ASR in SRS

25

Software Architecture Design Approach in a Nutshell

Design Primary functional Quality attribute Constraints Architectural
purpose requirements scenarios Concerns

__________________ ‘___________________

¥

asianien > :

1

: v
1

1

" g

| !

‘ :
lm

=

12

13

1E

£ !
15

w

&

12

Iterate if necessary
am

Legend:

L - Driver

o
system (brownfield development)

D Architecture design

I

I

I

1

I }

1 1

I T D Process Step
|

I

I

(Refined) Software
‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Architecture Design

FIGURE 3.1 Steps and artifacts of ADD version 3.0

—p Precedence

- g Artifact flow

Iteration Goal Design concepts
Establishing Reference architectures
1 an initial
overall system Deploymg:'} patterns
structure | sesanelesnsann,, et
......... c Ompﬂnen!g T Legend
_______________ 4__‘_‘_“_‘_A“___A_‘_H___‘_‘AA‘_H_‘_—HC > DBSIQI'IEBI’\C?D[
Design concept
{optional)
Identifying “Influences the
structures to selaction of"
2 support
primary
functionality
Refining
created Architeclural pattams
3.n structures to

fully address
the
remaining
drivers

Deployment patterns '

Externally developed
wmponents

FIGURE 3.2 Design concept selection roadmap for greenfield systems

26

Our Software Architecture Design Process in CEP

2.

Project System
Overview Overview
Business Context System Context
Diagram Diagram

Stakeholders > System Features

I

Business Goals

Primary
Functionality
(UC+SSD)

Domain Model

——» : Keeping Traceability is required

3.
ASR Analysis
Primary
g Functionality
(UC+SSD)
> QAS
P Constraints

.

e

L

4 Architecture
Design &
Evaluation

Candidate Designs
per QA

Candidate Designs
Evaluation for all
QAs

Design Decision

5. .
Documenting
Design with
Views

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Architecture Description

QOur Overall Process in CEP

Requirements Engineering Process (with SRS)

Stakeholders +
Business Goals

| “‘Requirements"“_>

(Goal)

System Features

| "Requirements A

Elicitation" -

(User Requirements)

7~ Analysis ™/

Domain Model

Architecture Design Process

Primary
Functionality (3.1)

System
Requirements

/

QAS (3.2)

) . 'Requirements*

Coqstraints 5

(ASR in SRS)

Constraints (3.3)

~Specification -

Architecture Documentation Process

Design Decision

Architecture

(4.3)

Architecture
Design Decision

~Documentation _

A,

Architecture
Overview (5.1)

Structure View
(5.2)

Behavior View
(5.3)

i

Deployment View
(5.4)

Architecture
Design Document

Architectural Drivers

Detailed Component Design Process

" Detailed

Component.. —>

Component
Structure Model (6.1.2)

. Design /
- O0D (Object-Oriented Design)

- SD (structured Design)

Component
Behavior Model (6.1.5)

Component
Design Document

—|—>"'/Aré'hitecture)

<<precedes>>

Candidate Designs
per QA (4.1)

Candidate Designs

Evaluation for all QAs
(4.2)

Design & —p
Evaluation -~
L@

Design Decision
(4.3)

Architecture
Design Decision

_[

FIGURE 1.1 Software architecture life-cyele activities

28

Architecture Description (AD)

« ISO/IEC/IEEE 42010:2011 “Systems and Software Engineering - Architecture Description”
» Specifying requirements to be an architectural description (AD)

* AD should demonstrate how an architecture meets
the needs of the system’s diverse stakeholders.

R Architecture
P

Correspondence

System-of- exhibits P N
Interest 1 -
! « identifies 1
A has interests in A oxprosses
= 1 1
4 identifies g -
hold e
* 1.t ’ Description
g ol
has <« identifies
v
e
Correspondence
Rule
Concern
1.
frames A A addresses
Tt
Arch governs P]
i 1 1 View
b o -
1 1.F
Model
Kind Model
governs b

[

Organizing Our Architecture Description

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders
1.4 Business Goals

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality
3.2 Quality Attribute Scenario
3.3 Constraints

4. Architecture Design & Evaluation
4.1 Candidate Designs per QA
4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision

5. Architecture Design Description
5.1 Architecture Overview
5.2 Structure View
5.3 Behavior View
5.4 Deployment View

7. Architecture Traceability Summary

What Matters Most in Architecture Design?

We should be able to check this question with full traceability.

Stakeholders and Concern

= °|°H*—*74|X} | OI5HS AFRE

'I"I'

-EE U AN 71

- 1178 (Customer)

- 17 A} (Client)

- 2H|X} (Consumer)

- HRt
oA SRt

TH4d (Traceability)

7t £2 (The Best) @& 2 Ot + AX[T,
ST AZESO|ZSOIN M + U= 1Y 5

7V Feasible St QI EL|Ct,

F7}Mo R, £HYS THHOE BEHA

B A

“Safety Case”2} Z2 Demonstration2 & &

oL,

32

How well does our architecture design address all stakeholders’ concerns?

(FR + QA)

%% z@ Architectural Drivers
Stakeholders
Requirements Analysis

g% %z

Architecture Design with

Primary Functionality
(Use Case + SSD)

QA

- Usability (AMt84)

- Reliability (412|4)
- Availability (7t8%)
- Security (29Hd)

- Performance (4d%5)

- Maintainability (8X|=254)

- Testability
- Modifiability
- Interoperability

v

Architecture Description

Design Decision

Multiple Design Views

ADD 3.0 + ATAM

Constraints

»
»

Design Rationale

UML Diagrams

31

32

Software Architecture Design

Software Architecture Design

through a set of Views
(Structure, Behavior, Deployment)

* The process of creating a specification of software elements, intended to accomplish goals,
subject to constraints.

ASR - Architectural Drivers

ASR - Architectural Drivers (Primary Functionality, QAS)

(Constraints)
AD (Architecture Description)

34

The Software Architecture Design Process in CEP

2.

Project System
Overview Overview
Business Context System Context
Diagram Diagram

Stakeholders > System Features

I

Business Goals

Primary
Functionality
(UC+SSD)

Domain Model

——» : Keeping Traceability is required

ASR Analysis

Primary
Functionality
(UC+SSD)

QAS

Constraints

Lo

e

L

4 Architecture
Design &
Evaluation

Candidate Designs
per QA

Candidate Designs
Evaluation for all
QAs

Design Decision

5. .
Documenting
Design with
Views

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Architecture Description

36

1. Project Overview

1. Project Overview

Project
Overview

System
Overview

Business Context
Diagram

System Context
Diagram

Stakeholders

I

Business Goals

» System Features

Primary
Functionality
(UC+SSD)

_________________________ 1 v

Domain Model

——» : Keeping Traceability is required

—

—p

ASR Analysis

Primary
Functionality
(UC+SSD)

QAS

Constraints

.

O
* Architecture > Documenting
Design & Design with
Evaluation Views

Architecture

Candidate Designs Overview

per QA

Structure View

Candidate Designs (Component Diagram)

Evaluation for all

QAs Behavior View

(UC+ Sequence Diagram)

Design Decision
Deployment View
(Deployment Diagram)

Architecture Description

38

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders -~ 1
1.4 Business Goals &7 R

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features &t
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality &

4. Architecture Design & Evaluation

——————— » 4.1 Candidate Designs per QA

4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision e------m---roremeereenr

5. Architecture Design Description -
5.1 Architecture Overview
5.2 Structure View e----coooeeee

3.3 Constraints

» 5.3 Behavior View e
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model <«
6.1.5 Component Behavior Model «-----------}

7. Architecture Evaluation Summary

39

1.1 Project Background

» Describes the project, its purpose, and scope
« Background information on the system domain to help stakeholders understand the project and the system

1.2 Business Context Diagram

- Stakeholder Analysis

+ ldentifying all stakeholders of the system and what their goals, which will have a profound influence on the

system architecture

« Example : Business Context Diagram

« Systems are created to satisfy the business goals of stakeholders.

Architect’s Influences

Business

Technical

Project

Professional

> Stakeholders

B

\J

Architect Q

41

Business Context Diagram

« An organizational-level view of
 How organizations/stakeholders are related to each other
* What information exchange between them

« Example: Building a software for a university

m I _, Request Research Projects
. "~ and Educational Services

IT Industry

Stakeholder
(Human)

Stakeholder
(Organization)

Provide Hardware
and Software

i

User Community

' Request Funding and
<—Regulatory Compliance
Checks

Government

University
(In Context)

Central Entity
(Stakeholder)

Obtain Student
History and Records

Participating University

Business Context Diagram : Examples

L FAMIE swES

)

SWAE 314

RS BUE

M|~

ZH o

AME|~ W3

H

Ol M| HZ

A XY I

gz BY x5
Al HS

A 70 A

43

1.3 Stakeholders

« Stakeholder is

* a person, group, or entity with an interest in or concerns about the realization of the architecture, or

« a party having a right, share or claim in a system or in its possession of characteristics that meet that
party’s needs and expectations.

 All entities that you identified in the business context diagram

Stakeholder List

« Explaining all stakeholders in business context diagram and their concerns/interests

« Example :

Description

[T i 1B
af- 581 U g
1= .
Sl XE |

7 30 M U

Stakeholder

D (ALEAL)

1.4 Business Goals

* Business goals are the primary influencing factors on the architecture.

« Should be captured explicitly because they often imply ASRs.

* No organization builds a system without a reason.

» Business Goals = Mission Objectives
« Example:
* “What are our ambitions about market share for this product?”

* “How could the architecture contribute to meet them?”

46

Category of Business Goals

Category

Goal Examples

Managing product’s quality and
reputation

System helps improve
- Branding, reduce recalls, support certain types of users, quality and testing support. and strategies

Meeting financial objectives

System meets financial objectives through
- Revenue generation, business process efficiency, reduced training costs, higher shareholder dividends

Organization’s growth and continuity

System promotes growth and continuity through
- Market share increase, product line creation and success, international sales, long-term business sustenance

Meeting responsibility to employees

System fulfills responsibilities to employee through
- Improved operator safety, reduced workload, and opportunity for learning new development skills

Meeting responsibility to society

System fulfills responsibilities to a society through
- Compliance with laws and regulations, those related to ethics, safety, security, privacy, and green computing

Meeting responsibility to country

System fulfills responsibilities to a country through
- Compliance with export controls and regulatory conformance

Expressing Business Goals

 All business goals should be expressed clearly in a consistent fashion and contain sufficient information
to enable their shared understanding by relevant stakeholders.

 Expressed for each stakeholder

« Traceability : Stakeholder — Business Goal

« Examples:

« Owner : “His family's stock in the company will rise by 5%.”

« Portfolio manager : “The company will make the portfolio 30% more profitable.”
» Project manager : “Customer satisfaction will rise by 10%.”

Business Goal
Stakeholder
ID Statement Importance
P neoy | BEAE YEX O FH 23 YU S HUNY FAY /oM O BIAR TN ZYE TI0E. N
. ZAES &0, QB U YAt HH AZHS 20% EHE317| S Yt

48

49

2. System Overview

2. System Overview

Project
Overview

System
Overview

Business Context
Diagram

System Context
Diagram

Stakeholders

I

Business Goals

Primary
Functionality
(UC+SSD)

Domain Model

——» : Keeping Traceability is required

» System Features 1

—

—p

ASR Analysis

Primary
Functionality
(UC+SSD)

QAS

Constraints

e

L

4 Architecture
Design &
Evaluation

Candidate Designs
per QA

Candidate Designs
Evaluation for all
QAs

—»| Design Decision

5. .
Documenting
Design with
Views

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Architecture Description

51

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders s~ E
1.4 Business Goals &--252

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features =
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers

4. Architecture Design & Evaluation

——————— » 4.1 Candidate Designs per QA

4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision e----------wrmmmrennory

5. Architecture Design Description -
5.1 Architecture Overview
5.2 Structure View e----coooeeee

3.3 Constraints

» 5.3 Behavior View e----—oeeoeeoeeeees
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model <«
6.1.5 Component Behavior Model «-----------}

7. Architecture Traceability Summary

52

2.1 System Context Diagram

* The system tries to implement the business goal within system context (boundary).
« A good system context model is an essential part of an effective architecture document.

« System Context Diagram defines
« Whatis in scope? — System Features (2.4)
» What is out of scope? — External Entities (2.2)
» How the system related to its environment? — External Interfaces (2.3)
[1000..2000] External Interface; , (.4

External Entity, External Interface, External Entity,

External Interface; ,

Syste m External Interface, ,
71 [0..*]

External Entity, External Interface, External Entity,

External Interface, ,
External Interfaces
[

External Entity;
53

System Context Diagram : Examples

Patron
A
meal order
and meal
changes
payroll 9
Menu deduction meal order a
Manager registration
delivery request

Cafeteria
Staff

Consumer
Web Site

menu contents

Cafeteria
Ordering
System

payroll deduction

2 . delivery request
registration request W g

meal status
update

payment request

purchase order;
track order

/ payroll deduction

Meal
Deliverer

response
Payroll . food item delivery
payment food item o confirmation
System [4— requiest priern availability
information
Cafeteria
Inventory
System

Notation
(Gane-Sarson)

Process
(system)

External
entity

——3p Data flow

Order
Processing
Center
(OPC)

verify credit card

>

place order

__ order confirmation

Bank

-

place order

Lodging
Provider

Y

__ order confirmation

-

place order

Airline
Provider

_ order confirmation
<

Activity
Provider

54

Guidelines for System Context Diagram

* NOT disclose any architecture detail about the system
It just appears as an undecomposed block.
 |In practice, it may show some internal structure of the system being put in context. — Domain Model (2.5

« NOT show any temporal information
« E.g., order of interactions, flow of data

« NOT show the conditions under which data is transferred, stimuli fired, and messages transmitted
« Each interface needs to be just “assigned” to one of the system’s architecture elements.

55

2.2 External Entity

« An external entity is any person, system, or device with which the system directly interacts.
» User : User, a class of user, or some other person or role
« External system : Another system that runs in another organization
 Internal system : Another system that runs in the same organization as the system being modeled

« Gateway component : Gateway or other implementation component that has the effect of hiding other
systems (internal or external)

« Data store : Data store that is external to the system (e.g., a shared database, data warehouse)

[1000..2000] External Interface; , [1.4]

External Entity, External Interface, External Entity,

External Interface; ,

SySte m External Interface, ,
7] [0-1

External Entity, External Interface, External Entity,

External Interface, ,
External Interfaces
[

External Entity,
56

External Entities Affect System Architecture

» The quality of external entities (e.g., reliability, availability, or performance) may significantly affect the architecture
of the system.

+ Example :

A travel booking system exchanges information with many other systems located around the world.

Some of these systems may be only intermittently available, because of time zone differences or
because they are more liable to failure.

The travel system’s interfaces with external systems will therefore need to be carefully designed for
reliable operation.
« All failed interactions should be automatically retried a configurable number of times.
» These retry attempts should be logged to a database so that operational staff can monitor trends.
* It should be possible to restart very large transfers that fail partway through from the point of
failure rather than having to retransmit the whole file.

57

External Entity : Examples

« All quality attributes that may affect the system architecture shall be described in detail.
« All assumptions on H/W and systems

R

r ot
MH mjH oto

H>do
M
=
1> 1>
r_lo HJI[IJ
08 ofm
o rot

x>
s

mH

i)
ok
Ho
0
>

>
[>
o
mjo
ofm
Ot
ke
ke
fo
>
mn
1o
=)
ofo
-OF
ot
1o
|$|
12
ot
kI
e
n
Ot
N
i
o
oot
ne
E_|
o
o
Jal
>
n>
=)
nx
0=
Ot
N
-

1%
0=
N

IE > Y)Y
of OH Ot

2y
N 0
nk
0=
o
X
o
i
>
N
=
=2
1=
12
ot
kl
P
>t
Ot
N
mjn
[0
0%t

Mr =
ro-v
M
)

D A|AHE

CA|AEIOA =AF 3 AR Q8 Al ZHE 1T 9 7bE HA| A|AHO] ZH UL X2 CfHSTE oE A|AH
Stakeholder: ZX CHA |

Bl A2 Cloud AH|A 2 7Hs B M

ZXI A
EH &

- 718°8:99.9% (7t

re a8 qo
| > o ot ogt

Rl
|>
o2
lo

t
2 o A~

In
x for

-

HESPN

R 22U AX|E|0f A|ARIO] OHLYSI AX} S= LH8S LEDE &3
Stakeholder: ZHH| I E{, SW7{ &S| A

K| ARQ

- Control H/W: Ot5=0| = ==

- LED Display board (At #7|: ot=2/F&/<At 28 7ts5)

- Connectivity: Ethernet, Wi-Fi

Ao 22 FE:

- 2F 41012 O[Ljof| QLY EHO| =3

oXrk 18 do
i ot ogt

o
-
~

it
-
o
=
rH

=

2.3 External Interface

« All interfaces between the system and each external entity should be identified.

« Data provider or consumer : The external entity supplies data directly to the system or receives data directly
from it.

« Event provider or consumer : The external entity publishes events that this system wishes to be notified of, or
this system publishes events that the external entity wishes to be notified.

» Service provider or consumer : The external entity is requested to perform some action by the system or
requests some action of the system, and the system may return data and/or status information in response to
the request.

External Interface; , [.4

[1000..2000]

External Entity, External Interface, External Entity,

External Interface; ,

Syste m External Interface, ,
7 [0..4]

External Entity, External Interface, External Entity,

External Interface, ,

External Interface;

(11

External Entity;

External Interfaces Affect System Architecture

» The quality and characteristics of external interface may have a significant effect on the architecture
of the system.

» Data : the content, scope, and meaning of the data to be transferred
« Event : events of interest, their meaning and content, and the volume and timing of their occurrence

» Service : Syntax of the request(name and any parameters), the actions to be taken, any data to be returned, any
ack, status, or error information that may be returned, any exception actions to be taken by either side

ojgh oA ME NYo| FA 2| AAHOR FAY 2F HYS /Y
User interface: Console (Web Ul)
. System interface: HTTPS

get parking status EM-

-AMEBA 8l HEs 213 B
-12] 98 g 1020 FAH sz

0
rar
0

e 00| AR E WY o ZAINO|0|X], SHY)E X2
User Interface: Mobile app Ul
System Interface: HTTPS
£4:
Track errand - A 2E 7tsY
2 1H O DAU(Daily Active User) 22,0008 0| 1L AEE 1
- 6t CHREE 22,000 74 * (Z[CH 10 *1MB +@ 4 271 * 10MB) = 660GB
- I3 60Mbps (& 7.65mb/s) CHR2 ZE 28}
- & O 3EY S 7HESHHE 100Mbps Ol & CHREE £3t 7t

olr

60

2.4 System Features

- System features are the high-level capabilities of the system that are required to deliver by us.
- System features are refined from Business goals which we must realize.
« System requirements (FR/QAR) are derived from system features.

Stakeholders
(1.3)

Business Goals
(1.4)

ASR
(<10% of FR)

\

Functional

System Features
(2.4)

Requirements
/ (3.1)

Domain Model

(2.5)

NN

Constraints (3.3)

\ Quality Attributes

Requirements (3.2)

System Requirements in SRS

61

Business Goal to System Features

* Business goals are refined into system features.

Busm%sf) Goals > Systerr:zi;eatures

« Examples:

Business Goals System Features

(I wish to) Expand (our business) by entering Support international languages

new and emerging geographic markets Comply with regulations that have an impact on life-critical systems such as fire alarms

(I wish to) Open new sales channels in the Support hardware devices from different manufacturers

form of Value-Added Resellers (VARS)

Support conversions of nonstandard units used by the different hardware devices

ID Title Description I Related BG

SF-06 YH 2L HY FAFC Z4F H|(‘H= T FH| 2L XHE F0f7], QELfEhH2

S MHE ZUHY St= 7|5 2 BG-03

System Features to System Requirements

« System Features

+ Informal statements of capabilities of the system used often for marketing and product-positioning purposes,
as a shorthand for a set of behaviors of the system

« Useful when discussing the system in casual settings
» Not useful when defining the behavior of the system in precise enough to design, develop, or test the system

« System Requirements
 Individual statements of conditions and capabilities to which the system must conform
» Each software requirement is the specification of an externally observable behavior of the system.

» Detailed and unambiguous requirements that are specific enough to direct the implementation and testing of
the system
» Functional requirements , Non-Functional requirements (Quality attribute requirements, Constraints)

II' ”””” \,‘--‘"‘_-\,’—-\\\"\\\ FR
i q /I I
‘ Requirements System
System Features —.._ is ™ . QAR
y [~ Analysis Requirements L
R Constraints
in Requirements Engineering
User Requirements in RE System Requirements in RE

63

* QAR is not a widely used term. It’s usually referred to as QA or Quality Requirements.

2.5 Domain Model

« Domain model is a conceptual model for understanding functional requirements.
« Any kind of model is possible: naive diagrams, UML component/deployment diagram
» Decomposing the system into subsystems and components logically, functionally, or physically
» To satisfy important functional requirements, i.e., ASR — Primary functionality
» Playing as a preliminary version of architecture diagram like the domain model in OOAD
+ Based on the information architects have known so far

[1000..2000] External Interface, , 0]

External Entity, External Interface, External Entity,

External Interface,

System External Interface, Domaln M Odel

[0..7]

External Enti
tys DB

External Entity, External Interface,

External Interface, Server

il Client Load Web S:r‘?vper
. Al Balancer Server
System Context Diagram PP - Master

App
Server
- Slave

64

Domain Model: An Example

Taxi Service
Provider

Map Service
Provider

Payment
Service
Provider

System

Y

Mobile applications

Desktop applications

Kiosk applications for hospital

Web application for
system administrator

Load Balancer

h 4

Web server

A

[) 4

App servers <

Y VY

\ 4

Caching service

Database

65

2.6 Assumptions

« Several assumptions that are not specified in the AD but are necessary for the system architecture
design

« Assuming all functionalities identified in the CEP Guide should be implemented.

« Example :

1 g7t Z=2Es SEY I 48 Qo =¥ Jtst TE 20t e 2R, ¥H T2 7|t & SHRUCL (ZHH 2| 7|
=, HE/ZRI|/ER/2E/EL/EE S)

2) HMEE FE &F, 0M0|L; Yol ADtEEC| FYe mhil|/UM/SAUE7F HEfO| TYSHX| =0t 7PHSICE &, R E
T F0| A|AED ADEE AO|O] 27 E7t5% &4 FH dEi= LUSHX| Y=Ct

3) QAF A|AHIQI AEH ALY, 2 ALY BE GRS OH|/AT/SA =7 HENO| TIYSHR| =T 7P eeh

4) ARBAZE AHEo = FEE = s HAIX| Z0|= 22 7|F 1,000RHZ[C] 3Kbyte) O|St2tal 7HE BHCY.,

5) A/t HREE MY EN 8oz HEE & £ U= 0|00 Tl Meh2, o|o|X|m 170 Z[Ch 1MB, Z|tH 10% / B
A It Z[C§ 10MB Z[Cf 22 KBS

66

67

3. ASR Analysis

3. ASR Analysis

Project
Overview

System
Overview

Business Context
Diagram

System Context
Diagram

Stakeholders >

I

Business Goals

System Features

Primary
Functionality
(UC+SSD)

Domain Model

——» : Keeping Traceability is required

I 1
1 1
1B i
! i
v ASR Analysis ||
1
= |
! 1
! 1
! 1
! 1
! i
I Primary H
™ Functionality m
¥ (UC+SSD) I
/ 1
! :
)]
g QAS :
@: |
/A 1
A I
1
ﬂ:> Constraints =
= i
i ————-

.

e

L

4 Architecture
Design &
Evaluation

Candidate Designs
per QA

Candidate Designs
Evaluation for all
QAs

Design Decision

5. .
Documenting
Design with
Views

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Architecture Description

69

Where We are Now in AD

1. Project Overview 4. Architecture Design & Evaluation
1.1 Project Background poemmeneeneees » 4.1 Candidate Designs per QA
1.2 Business Context Diagram 4.2 Candidate Designs Evaluation for all QAs

1.3 Stakeholders e : 4.3 Design Decision e------------wweemee- i
1.4 Business Goals &= S ’

5. Architecture Design Description <«
5.1 Architecture Overview
5.2 Structure View e----coooeeee
---- » 5.3 Behavior View «
5.4 Deployment View

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features &
2.5 Domain Model

2.6 Assumptions i i 6. Component Design Description
' 6.1.2 Component Structure Model <«
3. Architectural Drivers ! 6.1.5 Component Behavior Model <

3.1 Primary Functionality *

: 7. Architecture Traceability Summary
3.3 Constraints

70

Architectural Driver

» Architectural Drivers (AD) are the key requirements that are most likely to affect the fundamental
structure of the implementation.

» AD will determine the structure (architecture) of the system.
* Uncovering the ADs as early as possible is critical to the stable architecture design.
» ADs are a part of requirements, called by ASR (Architecturally Significant Requirements).

* 5 Architectural Drivers Design Concepts

* Primary Functionality
« Quality Attribute
» Design Purpose
* Architectural Concerns (candidate

Quaily Atibutes
s '
« Constraints —— Prove i
 Consane

<«<selects and
instantiates>>

PO SR et

<cUses»> <<produces>>

* QOur ADs consist of Architectural Concerns

* Primary Functionality
* Quality Attribute Scenario (QAS)
« Constraints

(Documented) Structures
resulting from
Architectural Drivers The Architect design decisions

FIGURE 2.1 Overview of the architecture design activity
(Architect image © Brett Lamb | Dreamstime.com)

71

ASR to Architectural Drivers

* Mapping AS R(Architecturally Significant Requirements) in SRS to AD(ArchitecturaI Drivers) in AD(Architecture Description)
* Functionality — Primary Functionality (Use Case + SSD(system Sequence Diagram))
* Quality Attribute — QAS (Quality Attribute Scenario)

« Scenario-based requirements analysis in RE is quite helpful for architecture design.
» Functional requirements — (Select & Refine) — Use Case + SSD
* Quality attribute requirements — (@aw) — QAS

* It’s important, but out of the scope of the CEP for now.

72

Use Cases as Scenarios-based Analysis

 Scenario = Use Case = User Story

l

« We can use scenarios in many ways within the architecture definition process.
» Providing input to architecture definition
« Evaluating the architecture: Scenarios are a primary input into almost any process of architectural evaluation.

« Communicating with stakeholders: discussion of a scenario and how the system can meet the situation
described is a very useful vehicle for communicating with all types of stakeholders.

« Finding missing requirements: Another benefit of creating scenarios is that they often reveal what is missing
as well as the suitability of what already exists.

« Driving the testing process: Scenarios help highlight the things that are important to your stakeholders, thus
providing a tremendously useful guide for where to focus testing activity.

Requirements Architecture
Analysis Design

Use Cases
Scenario

73

3.1 Primary Functionality

Functionality is the ability of the system to do the work for which it was intended.
» Software architecture does not normally influence functionality.
» Functionality can often be satisfied with any software architecture.

Primary functionality is the functionality that is critical to achieve the business goal.
» Implying a high level of technical difficulty or requiring the interaction of many architectural elements

» Approximately 10 percent of use cases (user stories) in SRS are likely to be primary.

Functionality —> (Select & Refine) — Primary Functionality (Use Case + SSD(System Sequence Diagram))

Why we need to consider primary functionality when designing an architecture?
1. May need to plan work assignments
2. Some quality attributes are directly connected to the primary functionality in the system.

74

Use Cases

 Use cases are text stories of some actors using a system to meet goals.

« A mechanism to capture (analyze) requirements

« An example (Brief format):

* Process Sale: “A customer arrives at a checkout with items to purchase. The cashier uses the POS system to record each

purchased item. The system presents a running total and line-item details. The customer enters payment information, which the

system validates and records. The system updates inventory. The customer receives a receipt from the system and then leaves
with the items.”

» Use case is not a diagram, but a text.

e Brief

« Causal
* Fully-Dressed

Use Case Section

Comment

Use Case Name

Start with a verb.

Scope

The system under design.

Level

"user-goal” or "subfunction”

Primary Actor

Calls on the system to deliver its services.

Stakeholders and Interests

Who cares about this use case, and what do they want?

Preconditions

What must be true on start, and worth telling the reader?

Success Guarantee

What must be true on successful completion, and worth
telling the reader.

Main Success Scenario

A typical, unconditional happy path scenario of success.

Extensions

Alternate scenarios of success or failure.

Special Requirements

Related non-functional requirements.

Technology and Data
Variations List

Varying I/O methods and data formats.

Frequency of Occurrence

Influences investigation, testing, and timing of
implementation.

Miscellaneous

Such as open issues.

75

. APPLYING UML
Use Case : An Example AND PATTERNS

Use Case UC1: Process Sale

Scope: NextGen POS application

Level: user goal

Primary Actor: Cashier

Stakeholders and Interests:

— Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short-
ages are deducted from his/her salary.

— Salesperson: Wants sales commissions updated.

— Customer: Wants purchase and fast service with minimal effort. Wants easily visible
display of entered items and prices. Wants proof of purchase to support returns.

— Company: Wants to accurately record transactions and satisfy customer interests.
Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo-
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

— Manager: Wants to be able to quickly perform override operations, and easily debug
Cashier problems.

— Government Tax Agencies: Want to collect tax from every sale. May be multiple agen-
cies, such as national, state, and county.

— Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Payment authorization approvals are recorded.

76

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment information to the external
Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, Manager requests an override operation:
1. System enters Manager-authorized mode.
2. Manager or Cashier performs one Manager-mode operation. e.g., cash balance
change, resume a suspended sale on another register, void a sale, etc.
3. System reverts to Cashier-authorized mode.
*b. At any time, System fails:
To support recovery and correct accounting, ensure all transaction sensitive state
and events can be recovered from any step of the scenario.
1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.
2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean
state.
2. Cashier starts a new sale.
1a. Customer or Manager indicate to resume a suspended sale.
1. Cashier performs resume operation, and enters the ID to retrieve the sale.
2. System displays the state of the resumed sale, with subtotal.
2a. Sale not found.
1. System signals error to the Cashier.
2. Cashier probably starts new sale and re-enters all items.

3. Cashier continues with sale (probably entering more items or handling payment).

2-4a. Customer tells Cashier they have a tax-exempt status (e.g., seniors, native peo-
ples)
1. Cashier verifies, and then enters tax-exempt status code.
2. System records status (which it will use during tax calculations)
3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:
2a. There is a human-readable item ID (e.g., a numeric UPC):
1. Cashier manually enters the item ID.
2. System displays description and price.
2a. Invalid item ID: System signals error. Cashier tries alternate method.
2b. There is no item ID, but there is a price on the tag:
1. Cashier asks Manager to perform an override operation.

2. Managers performs override.

3. Cashier indicates manual price entry, enters price, and requests standard
taxation for this amount (because there is no product information, the tax
engine can't otherwise deduce how to tax it)

2¢. Cashier performs Find Product Help to obtain true item ID and price.
2d. Otherwise, Cashier asks an employee for the true item ID or price, and does
either manual ID or manual price entry (see above).
3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.
3c. ltem requires manual category and price entry (such as flowers or cards with a price
on them):
1. Cashier enters special manual category code, plus the price.
3-6a: Customer asks Cashier to remove (i.e., void) an item from the purchase:
This is only legal if the item value is less than the void limit for Cashiers, otherwise a
Manager override is needed.
1. Cashier enters item identifier for removal from sale.
2. System removes item and displays updated running total.
2a. ltem price exceeds void limit for Cashiers:
1. System signals error, and suggests Manager override.
2. Cashier requests Manager override, gets it, and repeats operation.
3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.
3-6¢. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS register.
2. System presents a “suspend receipt” that includes the line items, and a sale ID
used to retrieve and resume the sale.
4a. The system supplied item price is not wanted (e.g., Customer complained about
something and is offered a lower price):
1. Cashier requests approval from Manager.
2. Manager performs override operation.
3. Cashier enters manual override price.
4. System presents new price.
5a. System detects failure to communicate with external tax calculation system service:
1. System restarts the service on the POS node, and continues.
1a. System detects that the service does not restart.
1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.
5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.
5¢. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.
6a. Customer says they intended to pay by cash but don’t have enough cash:
1. Cashier asks for alternate payment method.
1a. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

7a. Paying by cash:

1. Cashier enters the cash amount tendered.

2. System presents the balance due, and releases the cash drawer.

3. Cashier deposits cash tendered and returns balance in cash to Customer.

4. System records the cash payment.

7b. Paying by credit:

1. Customer enters their credit account information.

2. System displays their payment for verification.

3. Cashier confirms.
3a. Cashier cancels payment step:

1. System reverts to “item entry” mode.

4. System sends payment authorization request to an external Payment Authoriza-
tion Service System, and requests payment approval.
4a. System detects failure to collaborate with external system:

1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

5. System receives payment approval, signals approval to Cashier, and releases
cash drawer (to insert signed credit payment receipt).
5a. System receives payment denial:

1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.
5b. Timeout waiting for response.
1. System signals timeout to Cashier.
2. Cashier may try again, or ask Customer for alternate payment.

6. System records the credit payment, which includes the payment approval.

7. System presents credit payment signature input mechanism.

8. Cashier asks Customer for a credit payment signature. Customer enters signa-
ture.

9. If signature on paper receipt, Cashier places receipt in cash drawer and closes it.

7c. Paying by check...
7d. Paying by debit...
7e. Cashier cancels payment step:

1. System reverts to “item entry” mode.

7f. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.
9a. There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible):

1. Cashier requests gift receipt and System presents it.

9c. Printer out of paper.

1. If System can detect the fault, will signal the problem.

2. Cashier replaces paper.

3. Cashier requests another receipt.

Our Use Case Format

WHY SHOULD LIBRARIES INVEST IN
A LIBRARY MANAGEMENT SOFTWARE SYSTEM?

* The casual format use cases
* The system is considered as a black box.
* No design/implementation details are considered.

* Example : LMS (Library Management System)

Use Case 1. Make Reservation

Actor Librarian

Description A librarian requests LMS to make a reservation for a book.
Stakeholders User, Librarian, System Manager

Preconditions Borrower should have an id_card.

(A) : Actor, (S): System

1. (A) A librarian requests the reservation of a title
Main Scenario 2. (S) Check if a corresponding title exists

3. (S) Check if a corresponding borrower exists

4. (S) Create a reservation information

[Out of date information]

3: (S) If the borrower’s information is out of date, request for the update.
Alternative Scenario (A) A librarian updates up-to-date information of the borrower.

[Invalid Input]

1~3: If invalid reservation information is entered, indicate an error.

78

Use Case Diagram

« Use case diagram illustrates the name of use cases and actors and the relationships between them.
» System context diagram

* A summary of all use cases Use case

system boundary NexiGen POS _ - communication

-~

Ao i ProcessSale) t ’ alternate
notation for

/'Gﬂsmfﬂﬂr Ve . e a g?”;f”‘;;
g 5 actor
Actor : ¥ '

Authorization o .

PO : . : . Service F
R ; i i . ' Handle Retu LV /
Something with behavior, such as a person, computer system, i N i =
e \ ol : - wachon
or organization CLC L - o : Tax Calcutator
- Primary Actor : having user goals fulfilled through using i i
services of the SuD (System Under Discussion) , €.g., cashier ~,] Cash In) Accounting
. Syslem
- Supporting Actor : providing a service to the SuD, Manoget .
e.g., payment authorization service Py {” Analyze Activity H;agurln
Sales Activity : : yEiem
- Offstage Actor : having an interest in the behavior of the use Syilen _
case, but is not primary or supporting, e.g., tax agency ¢ Manage Security | o
System " Manage Usars \ System boundary
Adminkgtrator USE GHse

79

General Guidelines for Modeling Use Cases

« Use cases are written in narrative language that can be understood by all stakeholders.
» Use cases are not models for functional decomposition.

* Use case models describe what is needed in a system in terms of functional responses to given stimuli.

» Ause case is initiated by an actor, and then goes on to describe a sequence of interactions between
actors and the system that, when taken together, model systemic functional requirements.

» Use cases may also include variants of the normal operation that describe error occurrences, detection,
handling and recovery, failure modes, or other alternative behaviors.

* Focus on interactions which involve quality attributes such as performance, modifiability and security.

* Include each interaction with all the actors associated with the use case.
« Each step should be written in active voice with the subject of the system or an associated actor.
» Each step should describe the behavior of the system or an associated actor, but not both.
« Each step should describe the interaction clearly.

« Use terms that can be understood by stakeholders. Don’t use technical terms that can be only
understood by developers.

80

APPLYING UML
AND PATTERNS

AnIntroducion to ObjectOriented Anaysis and Desgn
and lerative Development

System Sequence Diagram

e s o4

» Use cases describe how external actors interact with the software system.
* During this interaction, an actor generates system events to a system,
usually requesting some system operation to handle the event. Ao o5
CRAIG LARAY

+ System sequence diagram (SSD)
« A picture that shows the events that external actors generate, their order, and inter-system events, for one

particular scenario of a use case.
* In the sequence diagram notation, there are
the external actors that interact directly with the system,

+ the system (as a black box), and
the system events that the actors generate.

» Depict system behavior in terms of what the system does, not how it does it

* Used as an input to system design — System operations / System interfaces

81

System Sequence Diagram

 One SSD for each use case
* The identified system operations/interfaces will be linked to behavior viewss.3).
« Keeping traceability is important.

:System

Use Case 1. Make Reservation Librarian
Actor Librarian
Description A librarian requests LMS to make a reservation fora book. Make a reservation
Stakeholders User, Librarian, System Manager >
Preconditions Borrower should have an id_card.

(A) : Actor, (S): System [Invalid Input]

1. (A) A librarian requests the reservation of a title “Errorl!”
Main Scenario 2. (8) Check if a corresponding title exists

3. (S)Check if a corresponding borrower exists

4. (S) Create a reservation information

[Out of date information]

3: (S) If the borrower’s information is out of date, request for the update. [Out of date information]
Alternative Scenario (A) A librarian updates up-to-date information of the borrower. .

[Invalid Input] Update User Information

1~3: Ifinvalid reservation information is entered, indicate an error. g

[Normal]

“Reservation OK!”

82

System Sequence Diagram : An Example in O0OAD APPLYING UML
AND PATTERNS

AnIntroducion to ObjectOriented Anaysis and Desgn
and lerative Development

AN
Process Sale Scenario :
: Cashier ‘System

!]

: makeNewSale >}
Simple cash-only Process Sale scenario: !

. loop) [more items]

1.Customer arrives at a POS checkout ; enterltem(itemlD, quantity)

with goods and/or services to purchase. i
2. Cashier starts a new sale. |
3. Cashier enters item identifier. : description, total |
4.System records sale line item and (eSS ST e S s e e
presents item description, price, and

i

|
1

running total. : :

Cashier repeats steps 3-4 until indicates | I

done. ! endSale o

5.System presents total with taxes : :

calculated. I) I

6.Cashier tells Customer the total, and emmmmeee_Jotalwithtaxes ____________ I

asks for payment. : I

7.Customer pays and System handles | I

payment. : makePayment(amount) P:

. I

: |

. I

| change due, receipt |

LI S :

Use Case System Sequence Diagram

83

3.2 Quality Attribute Scenario

* Quality Attribute (Requirement) is a measurable or testable properties of a system, that used to
indicate how well the system satisfies the needs of its stakeholders.

« Among ADs, quality attributes are the ones that shape the architecture the most significantly, because,
* Functionality does not determine architecture.
* Numerous architectures to satisfy that functionality
* You could divide up the functionality in any number of ways and assign them to different architectural elements.
+ If functionality were the only thing that mattered, you wouldn't have to divide the system into pieces at all.

» Instead, we design our systems as structured sets of cooperating architectural elements (layers, components, classes,
databases, apps, threads, peers, tiers, and so on) {0 support a variety of other purposes (i.e., quality attributes).

« Systems are frequently redesigned not because they are functionally deficient, but because
« They are difficult to maintain, port, or scale. — Maintainability, Portability, Scalability, Modifiability, Extensibility
* They are too slow. — Performance, Efficiency
« They have been compromised by hackers. — Security, Confidentiality

84

Quality Attribute Requirements : Examples

 |n practice, quality attribute requirements and functionality are usually intimately intertwined.
 Itis impossible and meaningless to say a system “shall have high performance.”

« Without associating the performance to some specific behavior in the system, architects cannot hope to
design a system to satisfy this need.

« Examples :
« Afunctional requirement : “The game shall change view modes when the user presses the <C> button”
» Performance : “How fast should the function be?”
* Modifiability : “How modifiable should the function be?”

System Features QA Quality Attribute Requirements

A developer should be able to package a version of the system with new language

rt int tional | Modifiabilit
Support international languages odifiability support in 80 person-hours.

Comply with regulations that have an impact A life-critical alarm should be reported to the concerned users within 3s of the

. " . Performance
on life-critical systems such as fire alarms occurrence of the event that generated the alarm.
Support hardware devices from different Modifiabilit A field engineer is able to integrate a new field device into the system at runtime with
Manufacturers y no downtime or side effects.
Support conversions of nonstandard units Modifiability A system administrator configures the system at runtime to handle the units from a

used by the different hardware devices newly plugged in field device with no downtime or side effects.

Describing Quality Attribute Requirements

 Architects require more detailed and unambiguous descriptions of quality attribute requirements.
« But it is not easy since requirements are driven and written in natural languages.

* For examples,

* “A system shall be modifiable.”
— Ambiguous, because every system is modifiable or not with respect to some changes.

* “A system shall have high performance.’
— Ambiguous, because what kind of performance does this refer to? Response time, throughput, or others?

)

* How to express the qualities unambiguously?
« Solution is QAS(QuaIity Attribute Scenarios) through QAW(QuaIity Attribute Workshop), UtiIity Tree, or Quality Attribute Tree.

86

Quality Attributes Scenarios (QAS)

* QAS (Quality Attribute Scenario) is a short description of how a system is required to respond to
some stimulus.

» Describing the system’s response to some stimulus
» Specifying the response measure you would like to achieve in response to a specific stimulus
N

B B
Stimulus Response

Source Environment Response
of Stimulus Measure

FIGURE 2.2 The six parts of a quality attribute scenario

87

The QAS Template

Requirement-ID | QA ###

2t &l Quality Attributedt 22121 J|=& (0ll: Performance, Reliability,

Category Security =)
Source StimulusE £ 3 AI2|= FHIt RAX I8
Stimulus ANAE0 LAHE = HelS X3S0 RAelX J|=8
Artifacts StimulusS| JEE 2= AARS R 28, ZXUHE, S22 AA" &
Envitonment ioH;:* Strm)ulus LMAl AIAES EZ(RI2EY =5 A1, O 2 TSt
Response :Z%Ef%lrznoﬁ?tﬁlki ArtifactO| StimulusE 2'0t=2! = F 5t= Action

$12| Responsel] E2=8 £Fot= &It SXQX J|=8 (M: =& Ol0]
(=]

Measure _
Response B Holgk, B2 A2 A2t A2 hour, minute, secondO#—‘?— =

Priority Quality Attribute Tree 20| M2 & ==

£/ 0fl J|=<! SourceS E Response MeasureltX|2| LIEE &6tLIS S&2

Description = QorEi M | o Et

The QAS Example : Availability

Avalilability

Raw Scenario: |n the event of hardware failure, search
service is expected to return results during normal working
hours for US services representatives.

Response Measure:
5 sec response, 12
average QPS

i =" Failed search server ~~~ """ "-~""="===-=soossmmmmmmmmT
1 I
| Source Artifact Response :
1 I
; User L —— SearF:h Returns results !
: search service I
; - — ;
: Stimulus :
: l
1 I
] I
1 I
1 I
1 I
1 I

Refined Scenario: In the event of hardware failure, search service is expected to return results
within 5 sec, in 12 average QPA (Queries Per Sec)

The QAS Example : Modifiability

Raw scenario: FrameworkOf| 4 SA| HE 7|s& F7i5t2{ 0 & <
A =& 4= Q10 OF L} (Modlflablllty)
Env: Framework?} 2Z HZE 7|50 X| &
Source Artifact Response
JHLER} Stimulus | Framework | HE A HE
= v HF ALZ= " = X IJ|LE|
7t

Response Measure:

3MM O|Li 2 70| 7+=3HOof S}
0, SA HEY 7|s0 2lsiM A7
=024 x| I A|Z+O] 1% O| LY {OF

T_I

|..

el

Refined Scenario: Framework0| SA| HE 7|
=

=
SHOF Stl, SA| BE 7|50 SsiM d7|= ™ X HA|ZHO[128 OfL{ OfOF ohCt

£ Z7iste{a 0, 3MM O|Li 2 70| 7Hs
X

90

The QAS Example : Robustness

Scenario Refinement: Robustness

Raw Scenario: E20| 2742 & 24

Source

Artifact

WOLE CEA| A|ZHA|Z|EH CrEHE HAH

=X}

A 4

=25
Stimulus -~

SA[&2| AU H

A 4

HtAZ ChA| HH=C)

Environment:
Gavt B e

Refined Scenario :
220|272 BRYL2 B

2zf QX0 £ Tl HaHoz A

Response Measure:
HMEEE AE 3|5 <33

20 23| O|LH| A E

91

Quality Attribute Tree : Examples

No. | Category Response Measure EESE o4AE
AE EXF A 1 Core SystemO| A 4 Core System= X|#35}l= system2 2 HZEAE 22, H4XHQ OperationZ +HsI=
1 Al2E F3 Hz
- - ™ o flofM 22gl= H20] 1 Core System2| Z 22} H| W30 35%2| Hz+& Z2{510{0f Shct.
2 Communication 2=, YAl Operation® $H3H= O R!0{A Core ZH Communication 22 Q13 ‘W’ dE|= Overhead F7H2
Communication H|0|E{ | 2 10% O[L§0|0{OF Btct.
3 AFEE Memory 8% HAEQl Operation® TH8t= O A memory ALE™ 57 =& 70 % O[Ljo|ofof Fhct,
4 | Performance | T3 % Core®2| | BUHel Operation® +UsH: ol I0|M T systeme] 2B A7t F 2 CoreB0| Idle HEf0f 0R2=
Idle Time AlZH2 15% O|LH 0] ofoF hct,
HHEQ operationdt0]| M Video Data Decoding 452 7| & 1 Core System2| 3bf F =2l 2.5 Data
5 Data Frames/Second Frames/Second & THSA|# OF FhC}.
6 stHo| 712 M2 H4E Q! Operationt}0f| A Video Decoder?t X 7t £8 3tH2| 37|& 7| & 1 Core System2| FE
= £ of OpEkZEX| 2 1280X720 T A4ntx|o|ct .
7 Bit rate B4H?Q operationdt0| M| Video Decoder?t E35t= 32| 312 & F 5= Bit rate= 7| & 1 Core
System2| Z22} OHEEZHX| 2 20MbpsE XI¥ 7HS5HC{0F Bhef,
4 Core SystemO|A| F 1 0]42| 7|52 Core X7t EH'E 242, 4 Core System 7|H2| Architecture
8 Modifiability W HEHHE H|F A0l A HAE|E Component?} Connector2| H| &2 Parallel Node2] %t0f| SH2E|E Instance 25 57t
£ Helsta 50% 0| 2H0[0{OF BHCt.
A‘léﬂ jlg 7"%'2' A x Bl= [=] B O T AFXiO| ion ol A
9 K| 7| 74 ChH| 1 Core SystemO|A| 4 Core System= I;ﬂ l= system2 2 HZEE 76‘-'-_: a2 Q1 OperationSHof| A
c : "-7|_2_ Il ‘;T'a' Video Decoder?} X|E3tH 7|5 T 7IE8 7|52 100%E UFA|#0f THC}
unctionality s /IS
10 SHSHAbE g1 Video Decoder2| input data stream S0 error7} 2! & input frame0| Y& Z 2, Video Decoders i
SRS 2 frame2| decodingE THIX| 1 passtt F CIS frameS U SO{Of BiCh,
Alﬁﬂ 7'% 7l"§§' 5 ol . i | . o5 74O E{AFEIO| iondtOl A Vi
11 Portability KK 7| 7H4 oy Cache memory size 7} 32K2! Deviceli| 1 16KQ! DeviceZ HAE B2, YLEQ Operationdto| A Video
“-7}2_ ;.|‘h" ;-|§' Decoder?t H33tE 7|15 T 7t83T 7|52 100%E WS A|70} Tt
=] =]

92

Quality Measures Example : Performance

» Performance requirements
+ Defining the extent or how well, and under what conditions, a function or task is to be performed

« Example:
* “In case of 6,000 rpm and one cycle is 20 msec, timing precision of the ignition should be 10 usec.’

b

20msec
The calculation of the fuel
injection volume must be
|<—)| 10usec finished
intake ; . aee intake
@ injection ignition @
I \ ¥ 4

exhaust

© 0 ©

The calculation of the ignition timing must be finished

Quality Measures Example : Availability

« Availability requirements
» Defining the degree to which a system or component is operational and accessible when required for use

[IEEE 610].

MTTE ~ MTTF : Mean Time To Failures 7t A7t Zof A|ZH Zot Tof Az
Availability - MTTR : Mean Time To Repair 98% 7.3Y 3A|ZF 228
| MTTF + MTTR | MToF e e o res 99% 3.65% 1412t 412
99.8% 17412t 302 20% 10X
99.9% 8AIZH 455 108 5%
99.99% 528 30% 12
‘ Failure Recovery Failure 99.999% SE25% 6%

‘ } i { _
MTTR MTTF

94

QAS Example - Availability

Portion of Possible Values

Scenario
. Source Internal/external: people, hardware, software, physical infrastructure,
physical environment
A aA Stimulus Fault: omission, crash, incorrect timing, incorrect response
Artifact: V" Artifact Processors, communication channels, persistent storage, processes
Stimulus: Process Response:
Server Hiom ' Environment Normal operation, startup, shutdown, repair mode, degraded operation,
s _ Unresponsive Epyironment: Operator Response ovancacad bpaion
e Normal Continue Rhianiite: Response Prevent the fault from becoming a failure
Monitor Operation o Operate No Downtime Detect the fault:
* Log the fault
* Notify appropriate entities (people or systems)
FIGURE 5.3 Sample concrete availability scenario Recover from the fault:

Disable source of events causing the fault

Be temporarily unavailable while repair is being effected

Fix or mask the fault/failure or contain the damage it causes
Operate in a degraded mode while repair is being effected

Response Time or time interval when the system must be available

Measure Availability percentage (e.g., 99.999%)
Time to detect the fault
Time to repair the fault
Time or time interval in which system can be in degraded mode
Proportion (e.g., 99%) or rate (e.g., up to 100 per second) of a certain
class of faults that the system prevents, or handles without failing

95

Quality Attributes Workshop (QAW)

» A facilitated brainstorming session

« A group of system stakeholders cover the bulk of the activities of eliciting, specifying, prioritizing, and
achieving consensus on quality attributes.

* Output: a set of QASs

» Scenarios should be prioritized (L/M/H).
» With respect to the success of the system - by the customer
« With respect to the technical risk associated with the scenario = by the architect

\ . o !
|
ERAY W

96

Quality Attributes Workshop (QAW)

« QAW Steps
QAW Presentation and Introductions
» Business Goals Presentation
» Architectural Plan Presentation
 |dentification of Architectural Drivers
« Scenario Brainstorming
» Scenario Consolidation
« Scenario Prioritization
» Scenario Refinement

* Mini QAW
* Mini-QAW Introduction
* Introduction to Quality Attributes, Quality Attributes Taxonomy
» Scenario Brainstorming : “Walk the System Properties Web” activity
« Raw Scenario Prioritization: Dot Voting
« Scenario Refinement
* Review Results with Stakeholders

Utility Tree

» One way to organize your thoughts
» Useful when no stakeholders are readily available to consult
« Helps to articulate your quality attribute goals in detail, and then to prioritize them

Latency (M, M) User displays time server event history. The list of events
from the last 24 hours is displayed within 1 second.
—— Performance

(H, H) The management system collects data from time server during
Peak peak load. All data collected within 5 minutes.
load (M, H) Time servers send traps to the management system at peak

load. 100% of the traps are successfully processed and stored.

Learnability (L.L) A new user can configure their account and be operating with
less than 8 hours of training
— Usability
Feedback (H.L) Critical events are reported and visible to the user in <
seconds
Utility —
SW failure (H, H) A failure occurs in the management system. The management

system resumes operation in less than 30 seconds.

——Availability

L

Network failure

Authentication __(H. M) Authentication ensures 99.999% of unauthorized login
. attempts can be detected.
L Security
(H, L) A user changes a system configuration. The change is logged

Audit trail 100% of the time.

Software Quality Model : ISO/IEC 9126

external and
internal

quality

functionality

reliability

usability

efficiency

maintainability|

portability

suitability

accuracy
interoperability

security

functionality
compliance

maturity
fault tolerance
recoverability

reliability
compliance

understandability|
learnability
operability
attractiveness

usability
compliance

time behaviour
resource
utilisation

efficiency
compliance

analysability
changeability
stability
testability

maintainability
compliance

adaptability
installability
co-existence
replaceability

portability
compliance

Figure 4 — Quality model for external and internal quality

FINAL
DRAFT

INTERNATIONAL ISO/IEC
STANDARD FDIS
9126-1

Information technology — Software
product quality —

Part 1:

Quality model

Technologies de Pnformation — Qualité des produts logiciels

Partie 1. Modéie de qualité

notes on page ii-1

99

Conventional Quality Categories in ISO/IEC 9126

UHLH O 2 Architect?} 12{3l= Quality2] H

Software Effect of software
Development v product in use
Process Software Product (user impact)
= 1
Process t [Internal External \ | Quality in
Quality i Quality Quality [Use
! E s :
! Product Quality i
et e s “
HHE == =2t
TR & % Quality 9% ABXFE 14 7H5 3 Quality

Internal/External Quality7t 2t s}A| AEE|X| %2 + A2

100

ISO/IEC 25010:2011 SQuaRE - System and Software Quality Model

« ISO/IEC 25010:2011 Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models

‘ Product Quality |
----------------------------------- e T T
1 I
I Functional i Performance || L i St . i i 1
i Suitability Reliability Efficiency i Usability i Mainmmahullty‘i Security Compatibility Portability i
Architecture I Functonal i - i i - ——1 ISO/IEC 25010:2011
Design = e > :‘ completeness | ‘ e | | Tins Bt I%I‘ Modulrky I:l wormdantinlly H Co-existence ” Adaptability I} 25010:2023
i fiona 1 1 1
| otonal || avataviy || Teeowoe N[Leamabiity || Reusabimty || gty || insroperabiy || instaaviity |!
1 1 1
1 qomenona os | | Faulttolerance | [capaciy i| Operability |\ Analysabilty i Non-repudiation | Replaceabilty i
i
1

I ! -
i = el I
1
1

I["Userinteriace |! ; H =
v i[aesthetics i[Testabilty lil Autherricly ‘ _____ !
I)| Accessibity !
y - 1
Architecture Design0| X2 {
cxet HAE|EX| B He | 7?7 | | Quality in use |
— A|EL2 QASEE N v ‘\\ -
N T ! Freedom for Context
i Effectiveness risk Efficlency Coverage
1 ISO/IEC 25010:2011 + 25022:2016
i conamic s Conte 25019:2023
1 mitigation completeness

Health and safet _—
riek mitigation Flexibility

101

ISO/IEC 25023:2016 SQuaRE - Product Quality Measurement

» ISO/IEC 25023:2016 Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Measurement of system and software product quality

 Based on ISO/IEC 25010:2011

Characteristics Sub-characteristics Measure

: INTERNATIONAL ISO/IEC
Mean Response Time STANDARD 25023
Response Time Adequacy

" . - Firscediton
Time Behavior Mean Turnaround Time 20160615

Turnaround Time Adequacy

Mean Throughput

Perfor_mance Mean Processor Utilization Systems and software engineering —
Efficiency Mean Memory Utilization Systems and software Quality
Resource Utilization Requirements and Evaluation
Mean /0 Devices Utilization (SQuaRE) — Measurement of system
and software product quality
Bandwidth Utilization

Exigences de qualité et
(SQuaRE) — Mesurage de la
e

Transaction Processing Capacity

Capacity User Access Capacity

User Access Increase Adequacy

ID Name Description Measurement function

PTb-1-G Mean response time How long is the mean time taken X = Z (A)/n
by the system to respond to a user) i
task or system task? i=lton
A; = Time taken by the system to respond
to a specific user task or system task at i-th
measurement

n = Number of responses measured

PTb-2-G Response time How well does the system X=A/B
adequacy response time meet the
specified target?

Refere: er
ISO/IEC 250: E)

©1S0/IEC 2016

A = Mean response time measured by
PTb-1-G

B = Target response time specified 102

Measures for Product Qualities

in ISO/IEC 25010:2011

Characteristics

Sub-characteristics

Measure

Characteristics

Sub-characteristics

Measure

Functional
Suitability

Functional Completeness

Functional Coverage

Functional Correctness

Functional Correctness

Functional Appropriateness

Functional Appropriateness of Usage Objective

Functional Appropriateness of the Systems

Performance
Efficiency

Time Behavior

Mean Response Time

Response Time Adequacy

Mean Turnaround Time

Turnaround Time Adequacy

Mean Throughput

Resource Utilization

Mean Processor Utilization

Usability

Mean Memory Uilization

Mean I/O Devices Uilization

Bandwidth Utilization

Capacity

Transaction Processing Capacity

User Access Capacity

User Access Increase Adequacy

Compatibility

Co-Existence

Co-Existence with Other Products

Interoperability

Data Formats Exchangeability

Data Exchange Protocol Sufficiency

External Interface Adequacy

Appropriateness
Recognizability

Description Completeness

Demonstration Coverage

Entry Point Self-Descriptiveness

Learnability

User Guidance Completeness

Entry Fields Defaults

Error Messages Understandability

Self-Explanatory User Interface

Operability

Operational Consistency

Message Qarity

Functional Customizability

User Interface Customizability

Monitoring Capacity

Undo Capacity

Understandable Categorization of Information

Appearance Consistency

Input Device Support

User Error Protection

Avoidance of User Operation Error

User Entry Error Correction

User Error Recoverability

User Interface Aesthetics

Appearance Aesthetics of User Interfaces

Accessibility

Accessibility for Users with Disabilities

Supported Languages Adequacy

Measures for Product Qualities in ISO/IEC 25010:2011

Characteristics Sub-characteristics Measure Characteristics Sub-characteristics Measure
Fault Correction Coupling of Components
Modularity
Mean Time Between Failure (MTBF) Cyclomatic Complexity Adequacy
Maturity
Failure Rate Reusability Assets
Reusability
Test Coverage Coding Rules Conformity
System Availability System Log Completeness
Availability
Reliability Mean Down Time Analyzability Diagnosis Function Effectiveness
Failure Avoidance Maintainability Diagnosis Function Sufficiency
Fault Tolerance Redundancy of Components Modification Eficiency
Mean Fault Notification Time Modifiability Modification Correctness
Mean Recovery Time Modification Capability
Recoverability
Backup Data Completeness Test Function Completeness
Access Controllability Testability Autonomous Testability
Confidentiality Data Encryption Correctness Test Restartability
Strength of Cryptographic Algorithms Hardware Environmental Adaptability
Data Integrity Adaptability System Software Environmental Adaptability
Integrity Internal Data Corruption Prevention Operational Environmental Adaptability
Security Buffer Overflow Prevention Installation Time Eficiency
Installability
Non-Repudiation Digital Signature Usage Portability Ease of Installation
User Audit Trial Completeness Usage Similarity
Accountability
System Log Retention Product Quality Equivalence
Replaceability
Authentication Mechanism Sufficiency Functional Inclusiveness
Authenticity
Authentication Rules Conformity Data Reusability/Import Capability

Lists of System Quality Attributes (Wikipedia)

Quality attributes [edit]

Motable quality attributes include:

» accessibility » degradability ® integnty » provability » stability

s accountability » determinability s interchangeability s recoverability s standards compliance
& accuracy « demonstrability s interoperability [Erl] s redundancy s survivability

& adaptability ¢ dependability (see Common subsets below) s lzarnability s relevance & sustainability

& administrability « deployability & localizability o reliability s tailorability

o affardability o discoverability [Erl] « maintainability e repeatability o testability

e agility (see Common subsets below) o distributability * manageability » reproducibility o timeliness

e auditability o durability * mobility e resilience o traceability

* autonomy [Erl] e offectivensss » modifiability ® responsivensss e transparsncy

e availability e =fficiency « modularity e reusability [Ed] + ubigquity

compatibility

evolvahility

L]

ohservability

robustness

understandability

¢ composability [Erl] e extensibility « operability e safsty * upgradability
o confidentiality o failure transparency » orthogonality e scalability o usahility

¢ configurability ¢ fault-tolerance = portability e seamlessness e yulnerability
s correctness o fidelity ® precision o self-sustainability

o credibility o flexibility « predictability e serviceability (ak.a. supportability)

s customizability s inspectability s process capabilities ¢ securability (see Common subsets below)

s debugaability » installability o producibility » simplicity

Many of these quality attributes can also be applied to data quality.

105

Tactics

» Tactics are the building blocks of design and the raw materials, from which patterns, frameworks,
and styles are constructed.

« Techniques that architects have been using for years to manage quality attribute response goals
» Design decisions that influence the control of a quality attribute response
 Building blocks of architectural patterns

« If architects decides to use a tactics for a quality attribute, then a corresponding architecture should
be accompanied.

 Availability
 Interoperability
« Modifiability

* Performance
« Security

» Testability

« Usability

Y Tactics &HE #3

106

Example : Tactics for Availability

Tactics
to Control
Availability

Fault Fault Masked

or Repair Made

FIGURE 5.4 Goal of availability tactics

Techniques and Principles
> Tactics

Fault

Detect Faults

Ping / Echo
Maonitor
Heartbeat
Timestamp

Sanity
Checking

Condition
Meonitoring
Voting

Exception
Detection

Self-Test

Availability Tactics

Recover from Faults

Preparation

and H[tpafr

Active
Redundancy

Passive
Redundancy

Spare

Exception
Handling

Rollback

Software
Upgrade

Retry

Ignore Faulty
Behavior

Degradation

Reconfiguration

Reintroduction

|

Shadow

State
Resynchrenization

Escalating
Restart

Non-Stop
Forwarding

Prevent Fauits

Removal from
Service

Transactions

Predictive
Model

Exception
Prevention

Increase
Competence Set

Fauilt
Masked
or
Repair
Made

3.3 Constraints

Constraint
» Restrictions on the design or implementation choices available to the developer
Can be imposed by external stakeholders and by other systems that interact with the system

Should be respected and generally non-negotiable

Design Purpose
Architectural Concerns
Constraints

Deslgn (:OHCOD‘S mﬁvé— - —-!
' EEE e
e

(Documented) Structures

resulting from
Architectural Drivers The Architect design decisions

FIGURE 2.1 Overview of the architecture design activity
(Architect image © Brett Lamb | Dreamstime.com)

108

Design Purpose

« Should be clear about the purpose of the design that you want to achieve
* “When and why are you doing this architecture design?”

* “Which business goals is the organization most concerned about at this time?”

 Examples:
* You may be doing architecture design as part of a project proposal.
* You may be doing architecture design as part of the process of creating an exploratory prototype.
* You may be designing your architecture during development.

109

Architectural Concerns

- Additional aspects that need to be considered as part of architectural design but that are
not expressed as traditional requirements.
* General concerns
+ “Broad” issues that one deals with in creating the architecture

» Examples: establishing an overall system structure, the allocation of functionality to modules, the allocation of
modules to teams, organization of the code base, startup and shutdown, and supporting delivery, deployment, and
updates

» Specific concerns
» More detailed system-internal issues

« Examples: exception management, dependency management, configuration, logging, authentication, authorization,
caching, and so forth that are common across large numbers of applications

* Internal requirements

» Usually not specified explicitly in traditional requirement documents, as customers usually seldom express them.
Address aspects that facilitate development, deployment, operation, or maintenance of the system.

» Called “derived requirements”

* |Issues
» Results from analysis activities such as design review.
* May not be present initially.

Constraints

 Decisions over which you have little or no control as an architect:
« Mandated technologies
» Other systems with which your system needs to interoperate or integrate
» Laws and standards that must be complied with
« The abilities and availability of your developers
» Deadlines that are non-negotiable
« Backward compatibility with older versions of systems, and so on.

111

Our Constraints

» A constraint is fixed decisions premade before design begins
Business constraints limit decisions about people, process, costs, and schedule.

Technical constraints limit decisions about the technology we may use in the software system.
« Externally imposed limitation on system requirements, design, implementation, or the process used to develop or

modify a system

Constraints limit choice, but some constraints simplify the problem and can make it easier to design a

satisficing architecture.

Examples :

Technical Constraints

Business Constraints

Programming Language Choice
- Anything that runs on the JVM

Team Composition and Makeup
- Team X will build the XYZ component.

Operating System or Platform

- It must run on Windows, Linux, and BeOS.

Schedule or Budget
- It must be ready in time for the Big Trade Show and cost less than $80,000.

Use of Components or Technology
- We own DB2 so that’s your database.

Legal Restrictions
- There is a 5GB daily limit in our license.

Business Constraints

* Business constraints are indirect constraints on the design space.
» Not specify that a particular technology is used to design or build a system

« But impose cost, schedule, regulatory, legal, marketing, and other similar demands that will influence the
design of the system

Kind

Description

Cost limitations

How much over what period (time) can be spent on the system or product?

Schedule limitations

What are the delivery schedules? One delivery? Incremental? What functionality must be delivered at what point in time?

Regulatory restrictions
and demands

Are there any regulations imposed on the system, product, or organization designing and building the system, or the customer
stakeholders’ organization?

Legal restrictions and
demands

Are there any legal impositions placed on the system, product, or organization designing and building the system, or the customer
stakeholders’ organization?

Market restrictions and
demands

Does the target market impose any restrictions or demands on the system or product, especially if it could prevent entry into
another market?

Organizational
restrictions and demands

Do any of the organizations involved in the project have policies, processes, resources or lack thereof, or structural issues that
could impose restrictions or demands on the design or construction of the system or product?

Logistical issues

Are there logistical issues such as deployment, transportation, supplier/supply chain, and similar that could impact the design of the
system?

Technical Constraints

« Technical constraints have direct influence on the design.
» Specific technologies, tools, languages, and databases that must be used or avoided
» Required development conventions or standards

Kind

Description

Operating system

Are there any constraints to use a particular OS? Are there any constraints to support multiple OSs?

Platform

Are there any constraints to use a particular platform?

Programming languages

Is there a constraint to use a particular programming language?

Peripheral or network hardware

Are there any constraints that specify that particular peripheral devices or network hardware be used?

Commercial products

Is there a constraint that specific commercial hardware and software products be used?

Tools and methods

Are there any constraints that specify that certain tools (e.g., design/programming tools) or technical methods be used?

Protocols, interfaces,
standards

Are there any constraints that specify that certain protocols, interfaces, or standards be used or adhered to during
development?

Legacy hardware and software

Are there any constraints that indicate that the new system/product must utilize or interact with any legacy hardware or
software systems or elements?

Technical Constraints : Examples

5|8 =zt

2% ol =2y =7
MISRA SCR-G JPL JSF HIS
37| Lines of Code(LOC) 80 200 60 200 50
Comment Frequency 50% 30% - - -
Cyclomatic Complexity(CC) 15 20 - 20 10
SET Number of Execution Paths(NPath) 75 - - - 80
Number of Structuring Levels 6 6 - - 4
Number of Parameters - 8 6 6 5
Adgte) Fan In - 8 - - 5
2E3} Fan Out - 10 - - 7
Number of Calling Levels 8 - - - 4

* MISRA: MISRA Report 5, Software Metrics

*SCR-G: 7| HA 2= EQof 7ifet & 2| Ojlw &, 2T EQO 2| d/2 kg Al BRt
* JPL: JPL(Jet Propulsion Lab.) Coding Standard for the C

* JSF: Joint Strike Fighter Air Vehicle C++ Coding Standards

* HIS: HIS(Audi, BMW & 57 At& At &4 21 &) Source Code Metrics

116

4. Architecture Design & Evaluation

4. Architecture Design & Evaluation

Project
Overview

System
Overview

Business Context
Diagram

System Context
Diagram

Stakeholders >

I

Business Goals

System Features

Primary
Functionality
(UC+SSD)

Domain Model

——» : Keeping Traceability is required

3.
ASR Analysis
Primary
g Functionality
(UC+SSD)
> QAS
P Constraints

4 Architecture
Design &
Evaluation

per QA

Candidate Designs
Evaluation for all

]

]

]

]

]

(]

b

1

]

1

]

]

]

]

]

]

]

]

]

! Candidate Designs
]

1

]

]

]

]

]

]

1

1

1

1

! QAs
1
]
]
]
[|

5. .
Documenting
Design with
Views

Architecture
Overview

Structure View
(Component Diagram)

Behavior View
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Architecture Description

118

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders e--------------- ;
1.4 Business Goals &

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface

2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers

4. Architecture Design & Evaluation

------- » 4.1 Candidate Designs per QA

4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision -y

5. Architecture Design Description -
5.1 Architecture Overview
5.2 Structure View e----coooeeee

3.1 Primary Functionality &

3.2 Quality Attribute Scenario gz

3.3 Constraints

» 5.3 Behavior View e----—oeeoeeoeeeees
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model <«
6.1.5 Component Behavior Model «-----------}

7. Architecture Traceability Summary

119

Typical Architecture Design Approach in a Nutshell

Design Primary functional Quality attribute Constraints Architectural
purpose requirements scenarios Concerns

__________________ '___________-_______

v

_____ .
>

& ‘

&

&

3

E

£

3

o=

£t 2

£3 |§

£a 4

=0

K =

=] s

(=]

33 |

a'S 2

@ =

88 v

28

E-.-

ol

Eg

oo

g L

(Refined) Software
-------------- Architecture Design

Legend:

- Driver

D Architecture design
D Process Step

—p Precedence

- g Artifact flow

FIGURE 3.1 Steps and artifacts of ADD version 3.0

Iteration

Goal

Design concepts

Establishing
an initial
overall system
structure

Identifying
structures to
support
primary
functionality

Refining
previously
created
structures to
fully address
the
remaining
drivers

Reference architectures

components e Legend:

____________________________ C_—__-_:) Design concept
Design concept
{optional)

“Influences tha
selection of”

Deployment patterns '

Architeclural pattams

Externally developed
oumpnnents

FIGURE 3.2 Design concept selection roadmap for greenfield systems

120

Our Architecture Design Process

Architecture

Design

(High-Level)

Detailed

Design

(Low-Level)

—~

System Level
Design

Decomposition + Design

Concepts

L
‘\‘) Iteration

Component Level
Design

Specific Analysis

Detailed Design

:

«component»
Component,

o

«component»
Component,

o

«component»
Component;

X
Class1
a
op;()
f Class4
Class2 Class3 op4()
b < ¢
opz() ops() A
Class5 Class6
e d
ops() ops()

Architecture Design
Description

Architecture
Overview (5.1)

Structure
View (5.2)

Behavior
View (5.3)

Deployment
View (5.4)

Detailed Component
Design Description

Component
Structure
Diagram (6.1.2)

Component

Behavior
Diagram (6.1.5)

121

Qur Architecture Design Output : Architecture Description (5.1~ 5.4)

 Architectural design is described through multiple views.
* Architecture Overview (5.1) < UML Deployment Diagram (Component / Class Diagram)

e Structure View (5.2) «— UML Component Diagram
* Behavior View (5.3) «— UML Sequence Diagram (+ Use Case)
° Deployment View (5.4) — UML Deployment Diagram

_ «component»
Component1

4

e

«component»
Component2

gl
LI

«component» '
Component3

Component 1 |

Component 2 |

op1_1()

op2_1()

op3_2()

op3_1()

Component 3

A A 4

Client

Web Client

«artifact»
ClientComp.jar

]
]
]

i

HTTP

TCP/IP

Server

A4

«execution Environment»

Android 8

Application Server

«artifact»
ServerComp.jar

T
]
1

N

/4

«execution Environment»

Ubuntu 20.04

122

Design Concepts

« Design concepts are the building blocks for creating structures.
» Reference Architecture
* Deployment Pattern

A HEo| 2 WCH(Frame)

* Architectural Style — Reference Architecture
H — Deployment Pattern
* Tactics — Architecture Style

« Externally Developed Components

Bepe & oos|= £ Stakeholders’
— Tactics Concern
/ 242 SR IISH 1XE
— Reference Architecture

“KO[E Lf BZIOJA= {37} — Deployment Pattern " i
HEof of ZoH T — = Tactics : e

Stakeholders \

“UY @ 22 A= 50| ;
LZ + 2ER & OEr0F Sl 123

Design Concepts

Reference Architecture

- Blueprint for overall architecture

- Logical structure for specific
application types

- Embodying architecture styles

Examples:

- Mobile applications

- Rich client applications

- Rich internet applications
- Service applications

- Web applications

are
chitectures

o
©
@

Deployment Pattern

- How to deploy logical into physical
- Physical structure

- Essential for many QAs
(Performance, Security, Availability, ...)

Examples:

- Nondistributed

- Distributed

- Performance

- Reliability
- Security

igning

itectures

g‘?-«

&7

Architecture Style

- General and reusable structural
layout and its properties

- Not domain-specific

- Logical >> Physical structure

Examples:

- MVC, MVP, MVVM, Layered

- Client-Server, SOA, Microservices
- Pipes and Filters, Blackboard

Software
Architecture and

: Documenting
Design Illuminated

chitectures

OREILLY

PATTERN-ORIENTED
SOFTWARE

Fundamentals of
Software
Architecture

An Engineering Approach

Mark Richards & Neal Ford

Tactics

- Building blocks of other patterns
- Widely-used techniques to manage

QAs by architects

- Quickly evolved

Examples:

- Availability

- Interoperability
- Modifiability

- Performance

- Security

- Testability

- Usability

Software
Architecture

in Practice
Third Bdition

Externally Developed
Components

- Generally called COTS software
(Commercial Off-The-Shelf)

Examples:
- Technical family
- Products (COTS)
- Application framework
(Hibernate, Rest, Spring, Swing, etc.)
- Platform
(Java, .Net, Google Cloud, etc.)

igning
tware
hitectures

°
a
£
=
o
©
Q

124

Design Concepts 1. Reference Architectures

» Blueprints that provide an overall logical structure for particular types of applications
* Mobile applications
« Rich client applications Softpare
* Rich internet applications :
+ Service applications
 Web applications

%
[}
o
i
©
©
o
(5]
%
=
=
[}
4=
=
©
oL

» Reference architectures and architectural styles are different.

* Architectural styles (such as “Pipe and Filter” and “Client Server’) define types of components and connectors in a
specified topology that are useful for structuring an application either logically or physically.
» Such styles are technology and domain independent.
+ Reference architectures provide a structure for applications in specific domains, and they may embody
different styles.
» While architectural styles tend to be popular in academia, reference architectures seem to be preferred by practitioners.

125

Summary of Application Types

Mobile applications

» Applications of this type can be developed as thin client or rich client applications. Rich client mobile applications can
support disconnected or occasionally connected scenarios. Web or thin client applications support connected scenarios
only. The device resources may prove to be a constraint when designing mobile applications.

Rich Client applications

» Applications of this type are usually developed as stand-alone applications with a graphical user interface that displays
data using a range of controls. Rich client applications can be designed for disconnected and occasionally connected
scenarios because the applications run on the client machine.

Rich Internet applications

» Applications of this type can be developed to support multiple platforms and multiple browsers, displaying rich media or
graphical content. Rich Internet applications run in a browser sandbox that restricts access to some devices on the client.

Service applications

» Services expose complex functionality and allow clients to access them from local or remote machine. Service operations
are called using messages, based on XML schemas, passed over a transport channel. The goal in this type of application
is to achieve loose coupling between the client and the server.

Web applications

» Applications of this type typically support connected scenarios and can support different browsers running on a range of
operating systems and platforms.

Example : Mobile Application Reference Architecture

« A mobile application will normally be structured as a multilayered application consisting of user
experience, business, and data layers.

¥ Designing (5 s ' MICROSOFT

N Software Mobile device ‘ Individual User APPLICATION

§ Architectures R e S e N e e e ARCHITECTURE
N) ! (from Presentation Layer) | | Cross-Cutting | GUlbE

] ‘Mobile Application ‘ J ,,,,,,,,,,

User Interface I

Ul Process Logic* ‘ Device

n Bt Lm ﬂ Presentation Layer | Viowa ‘ ‘ Presentons [

Application Facade* |

Business Business
Logic* Entities

(from Data Layer)

i
I
i
i
|
i
|
Hzlﬁrs Service :
1
Uiilties® St i
i
1
|
i

Business Layer
(e | [St | |

Occasionally Connected
Services

Queues Text
REST Services Messages
SOAP Services {SMS)

Communication

Operational Management

Cross-Cutting
Security
Operational Management
Communication / Connectivity

Security

A
) I i E
* = optional component
b Data Unreliable
.ocal Data a ¢ i
Replication Networks
Cachie Unreliable
fosdiri Data Sources ‘
Data Synchronization

Business Logic
Data Synchronization

] -
Mobile support infrastructure Business Data

Configuration Data

Services
Data Sources Figure 1 Mobile application archetype

FIGURE A.4 Mobile Application reference architecture (Key: UML)

127

Design Concepts 2. Deployment Patterns

* Deployment patterns model how to physically structure the system to deploy it.
« Provide guidance on how to structure the system from a physical standpoint.

« An initial structure for the system is obtained by mapping the logical elements that are obtained from
reference architectures (and other patterns) into the physical elements defined by deployment patterns.

» Good decisions with respect to the deployment of the software system are essential to achieve important
quality attributes such as performance, usability, availability, and security.

» Deployment patterns:
* Nondistributed
* Distributed
« Performance
* Reliability
« Security

128

Example : Nondistributed vs. Distributed

Web / App Server Database Server
Presentation Web Server Application Server Database Server
Layer Eibi
usiness
Components Layer -
Presentation Companents
Database
Business VS. & Layer S
Layer omponents == atabase
Components Layer
Components
Data
Layer ey
Comp’én et FIGURE A.7 Distributed deployment example (Key: UML)

FIGURE A.6 Nondistributed deployment example (Key: UML)

Techniques and Principles
> Deployment Patterns 129

Design Concepts 3. Architectural Design Patterns

- Software Architecture Style/Pattern is a description of general and reusable structural layout and
its properties to a commonly occurring structural problems in software architecture.

Catalog of architectural patterns ;edit;

o Multitier architecture

* Model-view—controller

» Domain-driven design

o Blackboard pattern

» Sensor—controller-actuator

» Presentation-abstraction—control

« Component-based

» Monohithic application

e layered

® Pipes and filters

s Database-centric

& Blackboard

s Rule-based

¢ Event-driven aka implicit invocation
o Publish-subscribe

* Asynchronous messaging

* Microkernel

» Reflection

o Client-server (multitier architecture exhibits this style)
s Shared nothing architecture

» Space-based architecture

e Object request broker

* Peer-to-peer

* Representational state transfer (REST)
e Service-orented

s Cloud computing pattemns =

: Documenting" & Designing
| Archiies | Architee Pattern-Orie_nted
Software Architecture

DUMMIES

¢ /Architectures 3 A‘rc hi

Views
and
Beyond

Learn to:

Software
Architecture and
Design I[lluminated

OREILLY

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Language for
Distributed Computing

Fundamentals of
Softqu re
Architecture

An Engineering Approach

Mark Richards & Neal Ford

Z 2 A+Dpl. Patterns ' H #4 130

Architectural Design Patterns by CMU

» Architecture Styles

* Module Style

« Component-and-Connector Style

 Allocation Style
« Hybrid Style

when applied to a

View ™~ system, yields a Style o
(Prologue Section P'3U‘ 1 (Prologue Section P4) | chosen for
Y use by
1 architect to
{'achleve
Quality Attributes
may may may may combines
be be be be one or
v v v v |more
Module Style Component-and- Allocation Style Hybrid Style
(Chapters 1 and 2) Connector Style (Chapter 5) (Section 6.6)
(Chapters 3 and 4)
such as such as such as
Decompasition Pipe-and-Filter Deployment
| Style | Style =p Style
(Section 2.1) (Section 4.2.1) (Section 5.2)
Uses Style Client-Server Install Style
(Section 2.2) | Style (Section 5.3)
(Section 4.3.1)
Generalization V\/or_k
> Style PoentoiPear Ly Assignment
(Section 2.3) - Style Style.
(Section 4.3.2) [Section 5.4)
Layered Style [Ea 0
(Section 2.4) e Ay ther Allocations
et IR
Bl S . (Section 5.5)
Aspects Style Style
(Section 2.5) (iSectiond33)y)
Publish-
Lataldode] | Subscribe Style
(Section 2.6) (Section 4.4.1)
Shared-Data
| Style Key
(Section 4.5.1)

(e T s
Multi-tier Style
> (Section 4.6.2)

A) label
abol

Concept A has relationship “label” with Concept B.

o
z
@
.
o
z
"
x
<
z
o
o
z
a

Documenting
Software
Architectures

Views
and
Beyond

SECOND EDITION

131

Architectural Design Patterns by Others

Copyrighted Material

Architectural Quanta and Granularity 92
Case Study: Going, Going, Gone 95
8. Component-Based Thinking. ... 99
Component Scope 99
Architect Role 101
Architecture Partitioning 102
Case Study: Silicon Sandwiches: Partitioning 105
Developer Role 108
Component Identification Flow 108
Identifying Initial Components 108
Assign Requirements to Components 109
Analyze Roles and Responsibilities 109
Analyze Architecture Characteristics 109
Restructure Components 109
Component Granularity 110
Component Design 110
Discovering Components 110
Case Study: Going, Going, Gone: Discovering Components 112
Architecture Quantum Redux: Choosing Between Monolithic Versus
Distributed Architectures 115
Partll. Architecture Styles
9. Foundations. .. w19
Fundamental Patterns 119
Big Ball of Mud 120
Unitary Architecture 121
Client/Server 121
Monolithic Versus Distributed Architectures 123
Fallacy #1: The Network Is Reliable 124
Fallacy #2: Latency Is Zero 125
Fallacy #3: Bandwidth Is Infinite 126
Fallacy #4: The Network Is Secure 127
Fallacy #5: The Topology Never Changes 128
Fallacy #6: There Is Only One Administrator 129
Fallacy #7: Transport Cost Is Zero 130
Fallacy #8; The Network Is Homogeneous 131
Other Distributed Considerations 131

Copyrighted Matarial

Table of Contents | il

10. Layered Architecture Style

1

1

13.

1

=

=~

v

Iy

Copyrighted Material

Topology

Layers of Isolation

Adding Layers

Other Considerations

‘Why Use This Architecture Style
Architecture Characteristics Ratings

Pipeline Architecture Style, ..vusiveasrsriveranrnssiiiinmassinesnniinsassas

Topology
Pipes
Filters
Example
Architecture Characteristics Ratings

Microkernel Architecture Style.....oovviiiiiiiniiiiiiiiiiiiiiiiiiann

Topology
Core System
Plug-In Components
Registry
Contracts
Examples and Use Cases
Architecture Characteristics Ratings

Service-Based Architecture Style. ..o vveiviiiiiiiiiia

Topology

Topology Variants

Service Design and Granularity
Database Partitioning

Example Architecture

Architecture Characteristics Ratings
‘When to Use This Architecture Style

Event-Driven Architecture Style.ovvvineiiiiniineinrininnniiiins

Topology

Broker Topology
Mediator Topology
Asynchronous Capabilities
Error Handling
Preventing Data Loss

viii | Tableof Contents

Copyrighted Material

133
135
136
138
139
139

143
144
144
145
146

149
149
150
153
157
158
158
160

163
163
165
167
169
172
174
177

179
180
180
185
196
197
201

15.

16.

1

&

=

=

Copyrighted Material

Broadcast Capabilities

Request-Reply

Choosing Between Request-Based and Event-Based
Hybrid Event-Driven Architectures

Architecture Characteristics Ratings

Space-Based Architecture Style.oveiiniiniiiiiiniiinnns

General Topology

Processing Unit

Virtualized Middleware

Data Pumps

Data Writers

Data Readers
Data Collisions
Cloud Versus On-Premises Implementations
Replicated Versus Distributed Caching
Near-Cache Considerations
Implementation Examples

Concert Ticketing System

Online Auction System
Architecture Characteristics Ratings

Orchestration-Driven Service-Oriented Architecture................

History and Philosophy

Topology

Taxonomy
Business Services
Enterprise Services
Application Services
Infrastructure Services
Orchestration Engine
Message Flow

Reuse...and Coupling

Architecture Characteristics Ratings

Microservices Architecture
History

Topology
Distributed
Bounded Context

Copyrighted Material

203
204
206

m

226
227
230
231
231
232
233

235
235
236
236
237
237

245
246
247
247

| i

OREILLY

Fundamentals of
Softvyore
Architecture

An Engineering Approach

Mark Richards & Neal Ford

132

Architectural Design Patterns by Others

4.6
4.7
4.8
4.9
4.10

Chapter 5
5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8
5.9

Chapter 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Chapter7
7.1
7.2
7.3
7.4

Copyrighted Material

Design Principles 103

4.5.1 Principle of Decoupling 103
4.52 Ensuring Cohesion 105
4.5.3 Open-Closed Principle 107
Summary 108

Self-Review Questions 109
Exercises 111

Design Exercises 111

Challenge Exercises 111

Data Flow Architectures 113
Overview 114

Batch Sequential 115

Pipe and Filter Architecture 119
Process Control Architecture 127
Summary 128

Self-Review Questions 129
Exercises 130

Design Exercises 131

Challenge Exercises 131

Data-Centered Software Architecture 133
Overview 134

Repository Architecture Style 135
Blackboard Architecture Style 143

Summary 150

Self-Review Questions 150

Exercises 152

Design Exercises 152

Challenge Exercise 153

Hierarchical Architecture 155
Overview 156
Main-Subroutine 157
Master-Slave 161

Layered 162

Copyrighted Material

7.5
7.6
7.7
7.8
7.9
7.10

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Chapter 9
9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8

Chapter 10
10.1
10.2
10.3
10.4

Copyrighted Material

Virtual Machine 168
Summary 173
Self-Review Questions 173
Exercises 175

Design Exercises 175
Challenge Exercises 176

Implicit Asynchronous Communication Software
Architecture 177

Overview 178

Nonbuffered Event-Based Implicit Invocations 179
Buffered Message-Based Software Architecture 187
Summary 194

Self-Review Questions 195

Exercises 196

Design Exercises 197

Challenge Exercise 197

Interaction-Oriented Software Architectures 199
Overview 200

Model-View-Controller (MVC) 201

921 MVC-1 202

922 MVC-IT 205
Presentation-Abstraction-Control (PAC) 210
Summary 215

Self-Review Questions 216

Exercises 217

Design Exercises 218

Challenge Exercises 218

Distributed Architecture 221
Overview 222

Client-Server 222
Multi-tiers 224

Broker Architecture Style 224

Copyrighted Material

10.6
10.7
10.8
10.9
10.10

Chapter 11
11.1
11.2
113

11.4
11.3
11.6
11.7
11.8

Chapter 12
12.1
12.2
12.3
124
12,5
12,6

Copyrighted Material
Contents

10.4.1 Broker Implementation in the Common Object
Request Broker Architecture (CORBA) 230

10.4.2 Message Broker Architecture 232

Service-Oriented Architecture (SOA) 234

10.5.1 SOA Implementation in Web Services 237

10.5.2 SOA Implementation for Grid Service
Computing 241

Summary 242

Self-Review Questions 243

Exercises 244

Design Exercises 244

Challenge Exercise 244

Component-Based Software Architecture 247
Overview 248

What Is a Component? 249

Principles of Component-Based Design 253
11.3.1 Connections of Components 253
11.3.2 Component-Level Design Guidelines 255
Summary 261

Self-Review Questions 261

Exercises 263

Design Exercises 263

Challenge Exercises 264

Heterogeneous Architecture 265

Overview 266

Methodology of Architecture Decision 266

Quality Attributes 268

Selection of Architecture Styles 270

Evaluation of Architecture Designs 270

Case Study: Online Computer Vendor 275

12.6.1 Overall Architecture Design of OCVS 277

12.6.2 Architecture Design of Order Processing
Component 282

Copyrighted Material

Software
Architecture and
Design Illuminated

133

Architectural Design Pattern : Layers, Domain Object

Name

Layers

Problem and
context

Solution

Structure

Conseguences
and related
patterns

When transforming a Domain Model (182) into a set of modules Name

Domain Object

that can be allocated to teams, [...] we need to support several
concerns: the independent development of the modules, the
independent evolution of the modules, the interaction among the
modules.

Problem and
context

Define two or more layers for the software under development, Solution

where each layer has a distinct and specific responsibility. To make
the layering more effective, the interactions between the layers
should be highly constrained. The strictest layering, as shown
below, allows only unidirectional dependencies and forbids layer-

bridging.

Structure

ServiceB

Layer 1

ServiceA

i ServiceF ServiceG

Layer 2

Consequences
and related
patterns

Y
|
| ServiceK H Servicel H ServiceM H ServiceN

Layer 3

Legend:

: Layer/Service/Module S Data store
:Ism-:emmnammmuu ———————» Calsfinvokes

Typically, each self-contained and coherent responsibility within

When realizing a Domain Model (182) in terms of Layers (185),
a key concern is to decouple self-contained and cohesive
application responsibilities.

Encapsulate each distinct, nontrivial piece of application
functionality in a self-contained building block called a domain

object.
[

Domain Object
Implementation

Domain
Object 2

The partitioning of an application’s responsibilities into domain
objects is based on one or more granularity criteria. There can
be different types of domain objects that encapsulate business
features, domain concepts, or infrastructure elements. For exam-
ple, domain objects might be a function such as an income tax
calculation or a currency conversion, or a domain concept such
as a bank account or a user. Domain objects can also aggregate
other domain objects.

When designing domain objects, you need to distinguish an
Explicit Interface (281), which exports some functionality, from its
Encapsulated Implementation (313), which realizes that function-
ality. The separation of interface and implementation is the key
to modularization. It minimizes coupling—each domain object
depends only on explicit interfaces, not on encapsulated imple-
mentations. This makes it possible to create and evolve a domain
object implementation independently from other domain objects.

Damain Object
Interface

Domain
Object 1

Method 4

Domain
Object 3

a layer is realized as a separate domain object. Domain objects
are the containers (modules) that can be developed and evolved
independently.

Designing
Software

¥ Architectures

A Practical Approact

Humberto Cervantes

Rick Kazman

134

General Category of Architecture Styles

» Structure
« Component-based
» Monolithic application
« Layered
* Pipes and Filters

» Shared Memory
» Data-centric
» Blackboard
* Rule-based

 Messaging
« Event-driven
* Publish-Subscribe
« Asynchronous messaging

Techniques and Principles
> Architecture Styles / Patterns

Software
Architecture and
Design Illuminated

« Adaptive Systems
* Plug-ins
* Microkernel
» Reflection
« Domain specific language

* Distributed systems
» Client-Server (2-tier, 3-tier, n-tier)
* Peer-to-Peer
» Object request broker
+ REST (Representational State Transfer)
» Service-Oriented
* Microservice
» Cloud computing patterns

135

Design Concepts 4. Tactics

» Tactics are the building blocks of design and the raw materials, from which patterns, frameworks,
and styles are constructed.

« Techniques that architects have been using for years to manage quality attribute response goals
» Design decisions that influence the control of a quality attribute response.
 Building blocks of architectural patterns

« If architects decides to use a tactics for a quality attribute, then a corresponding architecture should
be accompanied.

. Availability Aot
* Interoperability in Practice
. Modifiability -

* Performance

» Security

« Testability

1 Len Bass - Paul Clements - Rick Kazman

+ Usability

136

Design Concepts 5. Externally Developed Components

Technology families
» Atechnology family represents a group of specific technologies with common functional purposes.
» Examples: RDBMS, ORM (Object-Oriented to Relational Mapper)

Products

» A product (or software package) refers to a self-contained functional piece of software that can be
integrated into the system that is being designed. Requires only minor configuration or coding. - COTS

« Examples: Oracle, MS SQL Server, MySQL

Application frameworks

« An application framework (or just framework) is a reusable software element, constructed out of patterns
and tactics, that provides generic functionality addressing recurring domain and quality attribute concerns
across a broad range of applications.

« Examples: Hibernate, Rest, Spring, Swing

Platforms
» A platform provides a complete infrastructure upon which to build and execute applications.
« Examples: Java, .Net, Google Cloud

137

Technology Family: Big Data Domain

Big Data Analytics Catalog
Apache Flume
Data Callector Logsiash
Flusnid
Messaging - Apache Kafka
Integration Distrbuted Message Broker Hibalie
Amazon SQS
Apache ActiveMQ
StreamSets
ETUELT ETL/Data | Engine Talend
Infarmatica
HDFS
Distributed File Syatem-| CassandraFs
Riak
Key-Value Aedis
Berkeley DB
Document-Oriented Mongol8
NoSQL Database - S HBase
Data Storage Lanminte
Graph-Oriented
HP Vertica
Teradal:
MPP Analylic RDBMS i
MS PDW
Amazon Redshift
Analytic RDEMS - MS SQL Sarver
Traditional Analytic RDBMS Oracle ADBMS
18M DB2

QfikView
Microstrategy
Bl Platiorm Tableau
Tiboo JasperSoft
Pentaho
Splunk
Visualization & Reporting |- v Dashboard Bt
Zoomdaia
D3js
Graphic Library GalS
Highcharts
Impalz
Interactive Query Engine Apache Hive (Stinger}
Processing and Spark SOL
Analytics Search & Query - - Sphunk
Distributed Search Engine Elasticsearch
Apache Sofr
Hadoop MapReduce
D Gomp Engine Apache Spark
Apache Tez
Apache Storm
= Event Stream Processor 73’”“ BN
: g Apache Samza
Amazon Kinesis
Legend: D Grocaamg
P 4 Apache Crunch
Straight text — a ta-chnok)gy family Data Processing Framework 7@&*9 =
Halkc text — a specific technology 7’%% P

FIGURE 2.10 A technology family tree for the Big Data application domain

138

Application Framework : Hibernate

Framework

Name Hibernate

Technology Object-oriented to relational mapper

family

Language Java

URL http://hibernate.org/

Purpose Simplify persistence of objects in a relational database.

Overview Hibernate allows objects to be easily persisted in a relational data-
base (and it supports different database engines). Object-relational
mapping rules are described declaratively in an XML file called
hibernate.cfg or using annotations in the classes whose objects
need to be persisted.

Hibernate supports transactions and provides a query language
called HQL (Hibernate Query Language) that is used to retrieve
objects from the database. Hibernate utilizes multilevel caching
schemes to improve performance. It also provides mechanisms

to allow lazy acquisition of dependent objects to improve perfor-
mance and reduce resource consumption. These mechanisms are
configured declaratively in the configuration files.

Implemented Patterns:

design patterns = Data Mapper

and tactics * Resource Cache
= Lazy Acquisition
Tactics:
= Availability: Transactions
= Performance: Maintain multiple copies of data (cache)

Benefits * Greatly simplifies the persistence of objects in relational

database

Limitations = Complex API

Slower than JDBC (Java Database Connectivity)
Difficult to map to legacy database schemas

Structure

Hibernate <aml flie>>
Runtime

I <<use>> I hibernate,cfg

-

- -
a S e
<<database
<<java table>>

This diagram represents an entity that is persisted to a database
by the Hibernate runtime using the information in the configuration
file (Key: UML)

139

4.1 Candidate Designs per QA

 Why we need to document design decisions?
» The process of developing a complex software architecture involves making hundreds of big and small
decisions.

* The results of these decisions are reflected in the views later: the structures with the elements and relations and
properties, and the interfaces and behavior of those elements.

» Understanding the design decisions(i.e., the rationales) is essential for us to acknowledge and improve the
design.
» Most decisions are made in a complex context and almost always involve trade-offs.

» Just like documenting the architecture helps you design the architecture, documenting the decisions helps
you make decisions correctly.

Candidate Design Decision

« Candidate Design
» A candidate of partial architecture design which satisfies with all QASs in a specific QA(Quality Attribute).

» Proposed, evaluated, and selected by architects for each QA
» Refining the domain model first is highly recommended.

Quality Attribute Factor

Architectural Drivers

QA1

>

QAS-01

QAS-02

-

~

\7 -—

T T I
¥ ¥

{" Architecture

Design& _ °

{~ Evaluation .-

—p

.

* Design Goal ;
i «+ Candidate Design Approaches |

i « Decision and Rationale

]
L

* CDA (Candidate Design Approach) is not a widely used term, but only used in this class.

Candidate Design Approach 1 (CbA-01)
» Candidate Design Approach 2 (cDA-02) | |
Selected
Candidate Design
Candidate Design Approach 3 (CDA-03) QA1_CD-01
141

Design Goal

* Provides a detailed goal of the design decision to achieve a specific QA
« Stating the architectural design issue being addressed
» Usually, it is a more elaborated description than the corresponding QAS

142

Candidate Design Approach (CDA)

* lllustrates with naive figures various design alternatives that have been considered with

the objective of solving the problem under consideration.

|t is okay if some architecture problems have only one alternative and that is the one chosen

as the solution (but it is rare.)

« Each design approach is described in detail along with its pros and cons.

Practical

Software -

Architecture

Moving from System Context to Deployment

o

&
=™,
: Q;‘ D
W&

7N v » T
:V')“ 78 ?\\\
> d

Tilak Mitra

Foreword by Grady Booch

CDAID

Title of the approach

Candidate Design
Approach (CDA)

* Present and describe the design with diagrams
+ Describe design concepts applied. They include reference architectures, architectural
styles/patterns, architectural tactics, principles.

Description * Use naive/UML diagrams or View models
Pros Discuss architectural drivers promoted by the design alternative
Cons Discuss architectural drivers inhibited by the design alternative

143

Decision and Rationale

» Describe any design trade-offs relevant to the design decisions in terms of ADs.

» Describes the rationale behind choosing the solution among the various alternatives, substantiated by a list
of architecture design principles that the solution complies with, along with a potential list of principles that

may be in noncompliance (substantiated by an explanation for the deviations).

» Select one candidate design approach for the QA.

Candidate Design :

QA Name Candidate Design _ _
Analysis Approach (CDA) #1 Candidate Design
Approach #n
ID Title (Selected)

Pros (+) Description

QAS-01
Cons (-)
Pros (++)

QAS-02
Cons (-)

QA QAS CD Description
QA1: QAS-01 .
Performance | QAS-02 QA1_CD-01 (+ Title)

144

4.2 Candidate Designs Evaluation for All QAs

» Architecture Evaluation
» Use any approach, technique, and method such as ATAM (Architecture Trade-off Analysis Method)
« Evaluate all candidate designs (CD) with respect to all QA/QASSs together, and select a set of CDs

Candidate Design QA1 CD-2 w QA5 CD1 ¢

QA QAS Analysis (CD) #1

QA1_CD-01 + Title * Title + Title
QAS-01 Pros (+) Description (+) (+4)
QA1 Cons (-) (--) (-)
Performance Pros —+ + "
QAS-02 () (*+) (++)
Cons (-)) ()
QA2 QAS-03
- (NA)
QA3 QAS-04

QA4

QA5

4.3 Design Decision

» Collect all the selected CDs to complete the final design decision (DD).

 All design decisions that are considered architecturally important to satisfy the business, technical, and
engineering goals are captured and summarized.

» The entire DD is described through a naive picture(s). — An upgrade version of Domain Model (2.5)

» Details of the entire DD will be explained through three views in Section 5.
* 5.1 Architecture Overview <« A UML Deployment version of the Domain Model
« 5.2 Structure View
« 5.3 Behavior View
* 5.4 Deployment View

146

Design Decision : An Example

O (ALS R

[

N&EE2IF
BELE ohy

desie
Al

Al 22
PC

DHME pC

A Al
(=2atel

ATE
adE)

DN NN T

QA5_CD-01 Single & I XHEH A2

2HHY E|oL A
DHY A

Broswer Rendering ‘&4
Rich internet Application %4} 2.5 x| &
QA4_CD-01 MVVM Style

Firewall)

Tmoney 7tE&H| 0] A| AR

All Active
(Multiplicity 2

LoadBalancer
QA1_CD-02 Load|

QA2_CD-
Buffered |

Service Tier

/ Applicaitn Server (+Web Server)

[QA4_CD-01 MVVM Snb
presentation layer \

sevice layer

DB Tier n
QA1_CD-01 Application/Web E& HH{ +
DB MH Partition + memory Cache A2
DB Partition#1

Cache DB#1

DB Storage
A | Active

! Redundancy
DB Partition#1
Cache DB#1 backup

backup |¢—»

DB Storage

CD-01 Layered Architgctyre
‘ business layer

[e]e]e]

| DB Partition#10
data layer Cache DB#10
tbalapced Cluster R
A | Active
;' Redundancy
DB Partition#10
All Active Cache DB#10 backup
(Multiplicity 10) backup |l¢—> -
'& f QA3_CD-01 Management Server +

Management Tier

heartbeat +
DB Active Redundancy

Management Server
2 Management Sever

Message-Based Style +

Client/Serjver component

Management Server
backup

Passive

Redundancy

147

148

5. Documenting Design with Views

9. Documenting Design with Views

Project
Overview

System
Overview

Business Context
Diagram

System Context
Diagram

Stakeholders >

I

Business Goals

System Features

Primary
Functionality
(UC+SSD)

Domain Model

——» : Keeping Traceability is required

3.
ASR Analysis
Primary
g Functionality
(UC+SSD)
> QAS
P Constraints

LN —
* Architecture > Documenting
Design & Design with
Evaluation Views

Architecture

Overview
per QA

Structure View

——————— >
Candidate Designs (Component Diagram)
Evaluation for all
| QAs Behavior View >

(UC+ Sequence Diagram) |

1
1
]
]
]
|
¥
1
]
]
]
]
]
]
]
]
]
]
Candidate Designs i
]
]
]
]
]
I
]
]
]
]
]
1
I
]
]
]
—» Design Decision i
]

Deployment View
(Deployment Diagram)

Architecture Description

150

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders e-------------- 1
1.4 Business Goals &= S

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features &t
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality &

4. Architecture Design & Evaluation
poemmeneeneees » 4.1 Candidate Designs per QA
‘ 4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision e

5. Architecture Design Description <«
5.1 Architecture Overview
5.2 Structure View o

» 5.3 Behavior View e
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model <«
6.1.5 Component Behavior Model «-----------}

3.3 Constraints

7. Architecture Traceability Summary

151

Our Architecture Design Process (Revisited)

Architecture

Design

(High-Level)

Detailed

Design

(Low-Level)

—~

System Level
Design

Decomposition

+ Design i
Concepts i

Q Iteration

Component Level
Design

Specific Analysis

Detailed Design

:

«component»
Component1

o

«component»
Component2

«component»
Component3
A, \\\‘A
Class1
a
op4()
f Class4
Class2 Class3 opy()
b <O ¢
opa() ops() A
Class5 Class6
e d
ops() ops()

Architecture Design
Description

Architecture
Overview (5.1)

Structure
View (5.2)

Behavior
View (5.3)

Deployment
View (5.4)

Detailed Component
Design Description

Component
Structure
Diagram (6.1.2)

Component

Behavior
Diagram (6.1.5)

152

Architecture Design View Styles by CMU and Ours

Documenting
Software

when applied to a

View oreenvsase | Stle Architectures
(Prologue Section P3) (Prologue Section P4) chosen for
b)
3 architot t0
achieve
Quality Attributes
Set of A Tiew
may ‘may may may | | combines Views icws
be be be be one or and
el ety fenleslente, alecfeniey | plln Sttt moro e
Module Style Componentand- | I Allocation Style T (hybrid style
(Chapters 1 and 2) Connector Style 1j| (Chapter 5) 1| (Section 6.6)
— (Chapters 3and 4) | Iy [J e S
Iy 1
such as such as :I such as :
1
1
Decomposition e rn | e
| sty B/ sty I s . H
lyle lyle tyle
(Section 2.1) (Section 4.2.1) :: (Section 5.2) : Deployment Views
1 1
Uses Style Client-Server : Iy Install Style 1 5-4
(Section 2.2) B»| Style (Section6.3) | |
(Section4.3.1) | ===
Peerto-Peer
(Section 2.3) M| Style
(Section 4.3.2)
Layered Style | = g i
(Section 2.4) Service-Oriented Ssucasss Designed

Architecture

]
]
1
1
1
1
1
1
1
xd 1
Aspects Style Style 1
m (section433) | | T
]
]
[.
1
1
1
1
1
1
1
1
1

Concept A has relationship “label” with Concept B. ™~

.
Structure Views
(5.2)

= S=ments and Ther “mo==s (Chapters 1-5)
= S==tons and Ther Poo=—== (Chapters 1-5)
= S=ment Interfzcss iChapter 7) Key

Behavior Views (5.3) «

Domain Model

: 2 Ssment Bohove IChapeer 8} =" —
(2.5 — 4.3) Com=c Diagrem (SecSon 63 4 | S IB

. . ==ty Guide (Secion 6.4 == v
Architecture Overview (5.1) < T S ——

153

Our Architecture Design Views

Architecture Overview (5.1
« Architecture Overview Diagram : Sketching overall architecture design with UML Deployment(+Componenty Diagram
» An official version of domain models developed through sections 2.5 and 4.3

Structure View (5.2)
« Static Structure Model : Describing static structures with UML Component Diagram
« Component Specification : Specifying all interfaces of components

Behavior View (5.3)

« Behavior Model : Specifying the interactions of systems and components to satisfy the system’s behavior with
UML Sequence Diagram (+Use Case)

Deployment View (5.4)

* Deployment Model : Mapping software units to elements of an environment in which the software executes with
UML Deployment Diagram

154

Documenting Architecture Design with Qur Views

Structure View (5.2)

«component»
Component,

Architecture Overview (5.1)

<<Client>>
PC App

E:l/

3.5

<<Server>>
App Server

N\

10,000..12.000

e

«component»
Component,
1

«component»

2

<<DB>>
Shared Data

Behavior View (5.2)

: Component,

: Component,

: Component;

System_OP()

>

OP()

OP’()

OP”()

vy

Ack

form Primary

Functionality (3.1)

Deployment View (5.2)

Architecture

Design
(High-Level)

Web Client

«artifact»
ClientComp.jar

V

«execution Environment»

Android 8

TCPIP

System Level
Design

Decomposition

C) Iteration

+ Design
Concepts

Component Level

Design

Application Server

«artifact»
ServerComp.jar

W

«execution Environment»

Ubuntu 20.04

155

5.1 Architecture Overview

* An official version of domain models described with UML

» Describing the overall architecture captured in the domain model (2.5) and the Design Decision 4.3)
with the UML deployment diagram

 Similar with “Infrastructure Diagram”

» Detailed description will be specified with Deployment View (5.4).

* A high-level representation of system architecture

» |In case of large systems, describing the physical infrastructure in detail
(Node, Execution Environment, Communication Path)

Node

Deployment target which represents computational resource upon which artifacts may be deployed for execution
- Placement and scope of key system infrastructure elements (node, networks, sensors, workstations, etc.)

Execution Environment

A (software) node that offers an execution environment for specific types of artifacts
- The choice of specific technology to implement the components

Communication Path

Association between two deployment targets, through which they can exchange signals and messages

156

Architecture Overview Diagram

| . 1 AopS 1 User PC Application Server Database Server
nternet I ppServer w) @)
user PC Internet
1
HTTP
1 Database «executionEnviro... TCP/IP)
g «executionEn...
server WeblLogic Server 12c MariaDB 10.4
Intranet - 2
! T
I
. [
Admin AppServer2 1 T \/
user PC 1 HTMLS Browser
. . wexecutionkn...
. wexecutionEnviro... RedHat
ﬁﬁirron. Ubuntu 3
. REST
wexternal»
PaymentServer
P}

157

Architecture Overview Diagram : Node

* Node is a deployment target which represents computing resource.

« Examples of node stereotypes :

» «application server», «client workstation», «mobile device», «xembedded device»

Application
Server

«application server» «database server»
IBM System x3755 M3 Sun SPARC Server

<<Computer>>
Job PC
{ Vendor = “Acer”
CPU = “AMD Phenom X4”
Memory = “4 GB DDR2 }

«Computer»
Vendor = “Acer”
CPU = "AMD Phenom X4~

Memory = “4 GB DDR2"

T
\

158

Architecture Overview Diagram : Execution Environment

» A (software) node offers an execution environment for specific types of artifacts (executables)

« Example stereotypes of execution environment :
«OS», «workflow engine», «database system», «J2EE container», «web servery», «web browsery, etc.

«executionEnvironment»
J2EE Container

«device»
Sun Fire X4150 Server

3

(OS»
SUSE Linux Ent 10

«OS»
SUSE Linux Ent 10

pol::::
«database system»
Oracle 10g

«JSP servers
Apache Tomcat Server 5.5

159

Architecture Overview Diagram : Communication Path

* An association between two deployment targets, through which they can exchange signals and
messages

« Communication path between several application servers and database server

«device» 1.3 1.2 «device»
Application Database
Server Server

» Gigabit Ethernet as communication path between application and database servers

«application server» «ethernet» «database server»
IBM System 1000BASE-T Sun Fire
x3755 M3 X4600 Server

« TCP/IP protocol as communication path between J2EE server and database system

«devicen «device»
Sun Fire Sun SPARC Server
X4150 Server
— «database system»
3 ")rCP'IP Oracle 11g RAC

«j2ee server»
WebSphere 7 @ @

160

Architecture Overview Diagram : An Example

Presentation Tier

Integration Tier

Auto ratry, Backoff % &
IrBoUA=BS
Periodic Polling & Caching

161

“devican
Android Mobile
{0.:3200000}

#executionEnviranments
Android 0S >= 8.0

s A
#executionEnviro,
HTMLS Browser

Architecture Overview Diagram : An Example

wexternal»
58 S/\W AP
)

Rest API (https)
]

4% System

Broker Server

Kubernetes Node
)

-
Rest API (htips)

wdevices N
i0S Mobile
{0.3200000}

«executionEnvironment»
ios>= 140

e

wexacutionEnviro

HTMLS Browser

=7
Rest API (htips)

Rest AP (https)

Rest AP| (htips)

t APl (https)

wexecutionEnvironmenty
Rest API (hitp

|

wexecutionEnviranmenty
Ubuntu 20.04

wexecutionEnvironmenty

A
Kubernetes 1.29 lﬂ

zexecutionEnvironment»
Ubuntu 20.04

wexecutionEnvironments

e
Ubuntu 20.04 !

Rest API (https)

Rest API (https)

WebU| Server

adevices
Kiosk
{14400}

s 4
wexecutionEnviro..
HTMLS Browser |

adevicen

Admin PC

sexecutionEnvi
HTMLS Browser

. 4
@executionEnvironmant»
Ubuntu 20.04

7 [\

7/ N
Rest AP| (https] Rest AP (https) Rest AP (hitps) Rest AP (https)

FCM Puish API
1)

2ERLAP 33 AP
k)

162

5.2 Structure View

« Structure View
« Static Structure Model : Describing static structures with UML Component Diagram
« Component Specification : Specifying all interfaces of components

_ «component» L «component»
Component1 Component2 P’°":i°'e°' E:] «component»
1

Component2

1

i j—; Required
«component» .
Component3 Component Specification (5.2.2)

Static Structure Model (5.2.1)

163

IHolidayRes

Static Structure Diagram

» Describe components that implement the functionalities and QAs
» Develop one static structure diagram for each node in the architecture overview diagram

LoyaltyProgram

]

ILoyaltyProgram

Holiday ﬂ
Reservation HotelRes CreditCardBilling
Session —@— —@—
IHotelRes 1Billing
ICarRe
1 g
CarRes 8:] AirRes

~axternal- €| ~extemals €] =extemale §1
Customer Care ‘ Customer Web Catalog Admin
Interface Browser Web Browser
{ty ML | oo
a . A Customer
concurrent = i&‘:’]f‘o-‘ M“nm [protoc HTTP 5 f[')i Weblnterface
| Customer concurrent = *10007) [o
& C]‘ QueryCustomer
Information Systam"ig Weh Shop
-
~
i B ‘ {type = ‘HTML_UT,
=) protocol = 'HTTF", L Employes
TJO!oorManngomenl | QueryCatalog concurrent = '15'] T Weblnterface
|] Catalog £
Order Processor :;ol::;ﬂ —G—————— Management
Lo 8 | Manage __Interface
- 8 ~ Catalog
| spublsub topics ! P
“* OrdesChanges | {type = ‘RPC’,
r 'f‘gﬁsd, protocol = ‘LU-6.2'] ? IventoryCheck
Order message .
propagated via sexternalr O soxtomol
PUR1T EAl message | Order Fulfillment Stock Inventory
endpoint 1o

order fulfiliment

Layer-1

. Interface2_1

Interface3_2
Component2 E -

pPort3

/J\ 1nterface4_1

Layer-3 = Ihterface4_1

Interface5_1 QA’ S Interface5_1

pPort:
Interface4_1

Component4 E

pPort:
Interface5_1

Component5 5

164

Static Structure Diagram - Element List

» Describe each element in the static structure diagram

Element Name Responsibility Relevant ADs

Layer-1

Layer-2

Layer-3

Component1

Component5

Static Structure Diagram - Component

« Acomponent is a well-defined functional part of the system which
« Has particular responsibilities and

gcomponents E
WeatherServices UserServices

» Exposes well-defined interfaces(Provided/Required) that allow it to be connected to other elements.

Weather IOrd?r
Forecast 2 | 2 | Senvices
F—— WeatherServices UserServices —C

» Stereotypes are used to denote the type of the view-specific component.

U Reqg Rep
Pub | Sub Client [*] Server [1. 5],_1_I

LTI
«Client» {I «Servern E ((Reposﬂory” Adipiin A“Daﬁ'::aal?tiaosﬁ EI
Client Teller Account Server Account Database AdFr:?inistrati:e
] 1

LI
Se% DB%)
Req =) Rep

166

Static Structure Diagram - Interface

* An interface is a well-defined mechanism by which the functions of an element can be accessed by
other elements.

* Provided interfaces
+ Interface that the component realizes (provided services)
« Other components and classes interact with a component through its provided interfaces.

* Required interfaces
+ Interface that the component needs to function (expected services)
« The component needs another class or component that realizes that interface to function.

IMovementControl ISensor

- Garage
Door —

Required interface
Provided interface

167

Static Structure Diagram - Interface

* An interface is defined by the inputs, outputs, and semantics of each operation offered, and the
nature of the interaction needed to invoke the operation.

«interface»
IMovement Control

ascend()
descend()
halt()

» Stereotype notation for interfaces :

DisplayConverter

FeedProvider
«component»

ConversionManagement
1

I DataSource

Provided interface

A A

<<interface>>
FeedProvider

<<interfage=>
DisplayConverter

+ getFeed{String id) : Feed

+ getView({String id) : View

Required and provided interfaces
are shown using the stereotyped
class notation

T -
Y o ‘----,.'.-;-.'-_-.-s.-u-._.@
armw
<<cgmponent== E
ConversionManagement
I. -
I Dependency
I ki AT
1
V
<<Interface==
DataSource

+ lookup{String id) : Record

L < Required interface

168

Static Structure Diagram - Port

« Ports represent interaction points through which a component communicates with other
components and its environment.

« Component interactions take a variety of forms :
* Function or method calls
» Remote procedure calls
» Web service requests
« Data streams, shared memory, and message passing

i SearchBooks Library
SearchEngine Eoaoi

ProductSearch SearchVideo

O—[l] searchPort searchPort

Inventory

169

Static Structure Diagram - Port

» Various notations for ports

searchPort[1..6]

Library Library

i Services
Services searchPort:

SearchBooks

| T

SearchBooks

SearchVideo

Inventory

» Multiple ports with stereotypes are used for

Cohesive set of interfaces
Communication protocols
Reduced coupling

ICheckout

IQuery Z «sockep

Library
Services

searchPort

SearchBooks, Library
SearchVideo Services

>C|]searchl30rt[1 .6

Inventory

pDesk

pWeb
1Query O0———]

«REST»

’ Library System

rPeople
1— IPeople

«RM|»

170

Static Structure Diagram - Port

» The port behavior can be specified with the UML State (Statechart) Diagram.

ICart

Mobile
Cart

pCart

«interface »
ICart

newCart()
addltem(ltem)
removeltem(ltem)
checkout()

additem(ltem)

newCart()

Cart

checkout() =
Exists =@

removeliem(liem)

UML Statechart Diagram

171

The UML Composite Structure Diagram - Connectors

« Assembly connector defines that one component provides the services that another component requires.
|t must only be defined from a required interface to a provided interface.
* An assembly connector is notated by a “ball-and-socket” connection.

. 4oomponents
wcomponents £] #Components =] | Weh Store

Web Store Web Store - «components |
T | l— :Authentication

EJ,I { $__,| ICustomers {l ICustomers E

wcomponents | - {1 wcomponents scomponents [(C []1 «compaonents E— 1] scomponents

:Authentication :Customers :Authentication :Customers £ :Customers
aComponants

:Orders

« Delegation connector links the external contract of a component to the internal realization.
» Represents the forwarding of signals
It must only be defined between used interfaces or ports of the same kind.

wcomponents acomponents
WahpStura 3] Web Store 2
ISearch ICustomers
Q—CNO_SearchAT &] /D—C
| «components wcomponents
l :SearchEngine :Authentication {:
|ICustomers

172

Static Structure Diagram - Components Working Together

 If a component has a required interface, then it needs another class or component in the system
that provides it.

« At a higher-level view, this is a dependency relation between the components.

FeedProvider =
O <<(omponent=> E L DataSource Gs _} : DataSource e.:{q:umpnnent}}E

O DI—S[.'IIM'{‘?”‘IE'HH ConversionMa nagement EIogDataSour:e

FeedProvider
O——- | DataSource
<< component== E f"O {{cnmpnnent:»:»{l i

DisplayConverter | ConversionManagement | " BlogDataSource
B |

ConversionManagement |~~~ """77"77 } BlogDataSource

<<Component>> E << (omponent>: EI

173

Static Structure

internal structure
compartment

Diagram : Examples

/ structured classifier — subsystemn component \

asubsystem» WebStore

|

ProductSearch

port

provided
interface

OnilineShopping

provided

interface

UserSession

Oo—L

internal structure

€]

:SearchEngine

delegation
connector

role, part component

£]

:Shopping Cart

I 1

UserSession

—

ball-and-socket

€]

:Authentication

wsubsystem» Warehouses

g1

provided
interface

internal structure

£]

:Inventory

Manage
Inventory

O+

asubsystems» Accounting

€]

Search
Inventory
- —=3>0—
required
interface
Manage
Orders
(- —>0—1.

dependency

assembly connector

Manage
Customers

(T -=0—L

internal structure

£]

:Orders

I 1

—

dependency

Manage
Inventory

reguired
interface
Manage assembly connector

Customers

&]

:Customers

ball-and-socket

delegation connector

I
delegation connector

174

Static Structure Diagram : Examples

«layer»
User interface D pPort1
«client,subscrib... E
Component1
]
pPort2 |-|—| pPort3

Interface2_1 _A\ A\

-

«layer» -7

business Oﬁc«so L cets

Interface3_1 ~~~~~-_

“~~~<loterface3_1
O «REST»

Interface2_ pPort1:
Interface2_1

L
«publisher» E Interface3_2
Component2 | [—(-
N} pPort2

J_‘ pPort1:
Interface3_1
L

Interface3 2 E
Component3

pPort2:

Interface3 2 pPort3

«layer» Ipterfaced 1
data

A

IV Interface5_1

-
.
.

Interface5_1 ?

= pPorttnterfaced_1
LI

Component4 E

POTT_INTETTaces_

Component5 E

b ——

r

]
Performance “—

=

—~ Performance
L (]
DialogControl & Dialog
'\C.Lif
DTO
Legend
ABB = Application building block
DBB = Domain building block
PerformanceABB DTO = Data transfer objects
IBB = Integration building block
s £7Y
\/ \Y
/ i
O O
DTO ‘ oTO |
Change 1:1—‘
PerformanceDBB RequestDBB
f@: (/(-)\‘\
£

]

i
PerformancelBB

Change E

1
C

=

Performance

=

5177
ms
Database

RequestiBB
£~
fe)
=
2]
IMS

175

Static Structure D

lagram : Examples

e 0] [
*Mobsle Apps Q e, sWeblhents g
therApp whortd: phor2:
ke e
INFCTagy J ﬂ
ik
hifes> phortls
Wiekpphotificaton -
S o
1Uses ication iComatHandie
Central Server i "
1) :
slayers i |
Cantial Server Comm Intedace (are
: e
T \ConscleHasdie
T phorts: o s
oS S S S e ; ;
: Wil MR L L I
\

|
HehechinHandie i
’ '

tshareRefervationinfa 1
H

|
s e

176

Component Specification

» Specifies all provided interfaces of components and all evident operations for each interface

» The required interfaces are specified by other providing components.

Provided interface

ICarControl ICarApproaching
pCarControl: pApproaching:
ICarControl ICarApproaching
- g
IHealthChack CarController
o—] {N}
pCheck:
IHealthCheck
]]
pCarOperation r I pLog
ICarOperationMgt |ICarOperationLogSave

«interface»
ICarControl

«interface»
ICarApproaching

+ o+ o+

isMoving(): boolean
startMoving(): void
stopMoving(): void
openDoor(Floor): void
closeDoor(Floor): void

«interface»
IHealthCheck

+ processApproaching(Floor): void

+ check(): boolean

Operation

Responsibility

isMoving()

startMoving()

stopMoving()

openDoor()

closeDoor()

177

Component Specification : An Example

class Management Console /

«interface»
IConsoleUl

4

controlBarrier(parkingLotld: String, gateType: GateType, command: Command): void
+ getDiagnosisReport(): List<DiagnosisData>

Operation

Responsibility

controlBarrier()

Console0f| A X}EH7| 2124 X|O|E 2% H= operation

cmp Management Console)

IConsoleUl

«gui» Port1:

IConsoleUl

Port3

Console

INotify

INotify

g]

Port2:
|[ConnectConsole

|ConnectConsole

getDiagnosisReport() Console0f| A ZH| SZ} Aef (TITh A1t QoF HH)E @ F 5= operation
class Management Console/
«interface»
INotify
+ notify(content: NotificationContent): void
Operation Responsibility
Notify() Console UIZ 22 L|-8S £tz operation

Interface Name Kind Responsibility
IConsoleUl Provided Console 2t#9| UIE HE 3= interface
INotify Provided ConsoleZ &H| 1% L& MESHE interface
I Mai AtO|O] EAIS Tioale | x
IConnectConsole Required Consoleit Main Server At0|2| & 8t interface 2 M,

Console2 2 2%& Main Server2 &

Component Design Principles

a
« Component Design Principles Clean Architectuee
» Cohesion
» To what extent are the functions provided by an element strongly related to each other?
Coupling
» How strong are the element interrelationships? To what extent do changes in one element affect others?
Extensibility
» Will the architecture be easy to extend to allow the system to perform new functions in the future?
* Functional Flexibility
* How amenable is the system to supporting changes to the functions already provided?
Separation of Concerns
» To what extent is common processing performed in only one place?
« Consistency
+ Are mechanisms and design decisions applied consistently throughout the architecture?

Z & Design Principles &3 #5

179

Component Interface Design Principles

« Component Interface Design Principles

» Separate Interface
+ |ISP(Interface Segregation Principle)
» Use Abstract Name
» Use outcome-revealing name
* Use implementation-free name
+ Make Interface Abstract
« Data Abstraction: introduce parameter object, preserve whole object, introduce abstract data type
» Functional Abstraction: introduce facade function

* Implementation abstraction: encapsulate collection, replace parameter with method, replace parameter with explicit
method, parameterize method

* Minimize Dependency
» DIP(Dependency Inversion Principle)
« Law of Demeter; Hide delegation

180

5.3 Behavior View

 Behavior View

 Behavior Model :

Specifying the interactions of systems and components to satisfy the system’s behavior

» For each use case (3.1) marked as ASR, analyze interactions among system components through the UML

Sequence Diagram.

System

106

from Primary
Functionality (3.1)

Use Case Model (3.1)

Starting from the SSD and its system operations/interfaces

System Sequence Diagram

pS

: System

System_OP()
>

»
Ack

Use-Case Descriptions

o

«component»
Component,
1

Interface,

«component»
Component;

<<interface>>
Interface,

OP’()

o

«component»

Component,
1

«component»
-]
| Component,

T
lg Interface,

«component»
Component,
«component»
Component;

Structure Model (5.2)

<<interface>>
Interface,

oP"()

S

6%0|l M Detailed Component Design

: Component,

: Component,

: Component;

System_OP()

Ack

»

OP()

OP”()

OP’()

A A 4

Behavior Model (5.3)

181

A B
+d

Behavior Diagram

 The UML Sequence Diagram

» Describing interactions among component instances of static structure model through ports

» But ports can be omitted if they seem irrelevant or not important.

» Should correspond exactly to the use cases and system sequence diagrams from (3.1)

:Act

|
|
|
1
e

:User PC

:Application Server

% cl: Componentl c2: Component2 c3: Component3 N c4: Componentd
orl
/pPortl /pPort2 /pPort1: /pPort2 H /pPort3 /pPort2: 1 | /Port /pPort:
lnterface2 1 fetariaead D] lntarfaced 1
T T T = T = 3
- 1]
nter order info() :)

o T

olpl[value: int)l

1

opl(distance.: Distance,
i value: int)
1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
i ! i
' 1 : | - 1
:I‘I‘l I !
1 :) ! 1
P al ! ! i
1 I 1 :
' i [distancéI > 10km] i !
1 . H 1
] i i opl(location: Location): boolean !
s i i [a il
] T T
' R !
L e U CRRUR—— A TN, S —— 34
1 : lelse] ! 1 ! : 1
] ! € op2(offset: int): Location ! !
b i [!
1 ! 1 1 ! 1
1 1 1
oy 1 1 1]!
1 I 1 ! 1 N
I : 1 1 H 1 1 |
2 : Poor b

182

Behavior Diagram : Examples

sd UC-01 Behavior Diagram)

cl: c2:

Actor1 LComponentl Compt?nentz

opl()

op2()

msgl(distance : Distance)

c3:
Component3
T

S sy
meionne:d

msg2()

c4:
IComponentd

sd createRoom(UUID, UUID): UUID

0] AZ £/ 2= SENE IIE
T
1.0 createRoom

(UUID, UUID):
O uuID -

) —

‘ChatServiceManager

Host 7jcreateService() 5 Host Session

IProvideDestSession

\from 3. Statefl Service
Server)
I

break /

[Chat Room already exists]

11
O < uuID

:ChatRoom

«createn

1.3 set Host Session by
[setSession(UUID,
IChatSession)

D, (-

1.4 getDestinationChatSession():

A\ 4
C._<____<_____<_____<____<<_____<____<_____<__

SessionInfo
i

T
|
i
alt : 1
] i
[Destinatjon session exists on Local Server] |
i
i 1
1.5 find dest session from localSessions HashMap()
!
)) |
i i
1.6 setSession(UUID, _ 1 !
[~ IChatSession) (@) '
N i
i |
I
1 |
! N
[D session exists on Remotk Server]
' ‘RemoteSession
i 17
_______________ A
1 createn
i
1.8 setSession(UUID, |
[IChatSession) (@)
T
i
i
[Destinatjon session not exists]

; 1.10 store ChatRoom on chatRooms

HashMap()

111
O < uuiD

|
|
i
i
|
|
|
i
|
|
|
|
L
i
i
:
|
[] 190 nothing) !
] !
i
|
i
|
i
i
|
|
|
i
|
|
|
i
|
i
i
|

183

184

£ 5 m E
;
2 g m
L~ (S~ S " JUUS. - SU - R . S ! SO " S———
it 5
K
=
[} ¥ o et ===}

«Service Layern
‘RequestTaxiCallaP|

reply(boolean, object)

g f
Of i L 1 NS [Sme | ERRC EESOWTH S S SO S O SO HEN [A
£ g —
W i
K
2
M o
5| = %
g 7 4
e i
&]
O.Xm -t DR o .S SR Y A - | SSIE I S

T
i
[Taxi Call s rejebtect]
i
break
fwatting time >
\
i
I
|
i
i
!
LT
i
i
T

loop /)
[While Taxi Callis
a /

41 7|4 App

2: 94 % o F S(EER, £AX)

| : ROHE W TE WA ALY |

18] HEET, 21T

break [7|7 228 S3FE O] J
i

: EEX App

Toop [EEE2 SAI7t U W])

Behavior Diagram : Examples

% :"ﬁ_'e—" c .I:frﬂl_:'; . UserDao :Logger

:User I ' I

Iﬂ"—’.l Iogint) ' I

[l:heclt:Pde.‘i L I

| R T |
new : o iUser

[[©| Session I

| P | I I |

[maismr User Loginll...i s I

{< € --------- ' |

Key (UML)

. Synchronous

massage

% Actor

Execution
ocourrence

Object : Lifeline U

= Asynchronous

N Return

meassage message

|
|

sdProcessOrder |

N
Key: UM

|
I
|
|
I
|
|
|
|
|

|
|
|
|
|
|
|
|
|
L

L]

processSubOrder(SuljOrder)

‘Process Stock :External
(GWT :Order
= OrderRPC :DaoQrder . Controller Reseller
% ClientApp “BeHica FillerMDB el Pr
:Customer I | I I
| i createOrder
- (OrderDto) _ | ' |] ’
| click - createOrder(OrderDto)
“Process
Order” e === Order I I ’
ref i | |
{1..5s} . o
| CreditCardValidation i I ’
| -I_! processOrder(Order) | |] ’
— <o '
“Order loop for each new (Order, | |
confirmed” order item item#) :Sub
saveSubOrder ~| Order I ’
(SubOrder) l
D o |
alt [item is from external part]ner reseller] | REST/SOAP call

specific to each

| ® partner’s intf
I | e
e e s e S S o

""""" e - e

processSubOrder(SubOrder)

! =]

B N —

Iupdme()fdeNCIr\:IerJ

185

Consistency between Structure and Behavior Views

Structure View

«interface» «interface» «interface»
Interface2_1 Interface3_2 Interface4_1
Layer-1 + opl(int): void + opl(Distance): void + op1(_Location):.boo|ean
+ op2(string): void + op2(Location): void + op2(int): Location
+ op3(Time): Time
:User PC :Application Server

Interface2_1 __/I‘\ (L_‘
—|, -

Interface3 1 T _Irﬁ{rfaceB_‘l % c1: Componentl c2: Component2 c3: Component3 N c4: Component4

pPort1: :Actorl
. Interface3_1

/pPortl

/pPort2 /pPort1: /pPort2 |_| /pPort3 /pPort2:
interfacez1

Interface3_2

Component3 E

1

:

1

! & T
————————————— enter order info() E !
pPort2: o:pl(value: int):

Interface3_2 L4

g

oy s

o 1[distance.: Distance,

fJ\ Interface4_1 ‘A\ value:lint) _
Layéw-3 i} ‘i) I|‘wterface41 Interface5_1 QA” Interface5_1 !
N — 1
pPort: pPort: alt 1
1

Behavior View

Interface4 1 Interface5 1

1
i
1
[distancd > 10km] !
1

fomponent4 E Component5 E

1

i opl(location: Location): boolean
' |

! i

: h
op2(offset: int): Loc
1

Structure View

B et [l S

186

Consistency between Structure and Behavior Views

An Example

Pg Sdriice Lijer-cp. ./ . kel Servica
IMospitalService: | IHospitalManage:)

IHospitalservice user Smapp HospitalService | P | E ‘

|
o t |
Portl3 1 chekHospRalSearchiutton '
i, i oL Y i
&) |
HospitaiService 2 reauesthospitainto !
3 enterHospalinfo 3! i
4 tinfo) i
Pofta1 v S processFindHospitalihostpitainfo)
e o / ataGetHospitallhospRatinfo)
IHasnitalMAnase ITaxiManas / 7 dataloadirequestData. key) i
9 ResultData i
Operitione / 0 Hospaalust A '
ol H
< 11 Hosprallist i
<<interface>> 12 showScreenHospitiallist :
IHospitalService £
P"t Det o n| ¥
+ BookTaxi(Location, Hospitalinfo): RecommandTax 13 cheiHospttal '
+ CheckParking(Hospitalinfo): ParkingList = e :
+ FindHospital(Hospitalinfo): HospitalList 14 findPharmacy [hoggtalinto) i
+ fo): ist i
+ GetDirections(Location, Hospitalinfo): PathList _18 processFindPhamacy (hostpalinfo) |
+ RegisterHospital(Hospitalinfo): ResultService v 16 go! HUDestination) }
3 it

s 17 Phamaytist
/

kg Business Layer -cmp / 41 T i]
iHospitalManage T - T
20 Chec A
r—L‘Pol:-lE 2 21 processCheciP arkinglhostpitalinfo) i
y_ljfmgil‘almanagem\ g! /// 22 dataGetHospital (haspitalinfo)
£ _23 dataload(requestData, key) !
G 3 ResuEncrypt |
Foft63 nolr:w 2 il Pt] t
X) // !
> e .
class with Operations / / SetDirectionsicur_lotation. haspitalinfo)
A 29 processGemirnetionsicur location, hospitalinfo) i
i
P 30 getRecommandOirection{Origin. Destination) :
<<interface>> g B0 Ottt I
IHospitalManage 32 Pantndesc | .
+ processCheckParking(Hospitalinfa): ParkingList B Pathust !

+ processFindHospital(Hospitalinfo): Hospitallist +
+ proc dPh P st 34 showScreenHospalinfoDetal | '
b PrRcEEee. : prbio) Par Ly &Rapp IHospitalservice: | IHospitalManage: | :

| It O g : H YP!
+ proc pital(Q HospitalService | Ener

187

9.4 Deployment View

* One or more components are manifested by an artifact, and then the artifacts are deployed to its

execution environment.

* Artifact Definition Model

 Artifact Deployment Model

«artifact»
webstore.jar

«component» | -_¢ manifest» _ |
Catalog
«artifact» D «deploy»

webstore.jar

«linux quad»
app-srv2a

188

Artifact Definition Model

* Artifact
» Physical packaging of components

» A physical implementation unit of components

«artifact» D
web-app.war

dibrarys 1)
commons.dll

web-tools-lib.jar

«artifact» D
book-club.war

_____>

web-tools-lib.jar

« Artifact Definition Model describes how the physical artifacts maps to logical components.
+ <<manifest>> relationship between an Artifact and a Component

wComponents
Order

2]

i
! smanifests

«artifacts
Order.jar

N

189

Artifact Definition Model vs. Static Structure Model

Layer-1

pPort2

Component1 E]

Interface2_1 ‘/L\ J‘\

Layer-2 -~ _-1~~ -

Interfaces 1~ ~=-~- Interface3 1

Interface2_1

Component2

pPort1:
Interface2_1

gl Interface3_2 Interface3_2

pPort1:
. Interface3_1

Component3 E

Component2 {I

Component3 @

fj_ Interface4_1

Layer-3 ‘i) I|-|‘cerface4_1

Component4 ﬂ

pPort:
Interface4_1
L1

pPort:
Interface5_1

Component4 @

Component5 {'

Static Structure Model

(Structure View)

«manifests

Artifactl B

«manifest»

v

Artifact2 D

«manifest:

V

«manifest:

Artifact3 |-

Artifact Definition Model
(Deployment View)

190

Artifact Definition Diagram - Examples

. «dir artifact» 0
«Win task» C:\Program Files\SoundRecorder
: SRmain [N-._
«m‘anifgg;j»
1 cartifacty O «dir artifact» O
SR.exe \config
‘:':”,anifQSt” «artifacts 0O «a!rtifalc’[» . D «artifact_» , O
B |l 11 sound.di application.ini updater.ini
«Win process» «manifés’t‘n’
: SRservices |-~
«artifact» O «dir artifacty» O
-~ updater.exe \log
E «m’anifestn D «artifact» D «artifact» D
N processy & «dir artifact» install.log SR.log
: SRupdater \dat
) . «artifact» O «artifact» N
license.txt readme.html
«manifésty 2= £

«file repository» |/- Notation: UML
: SR repository "..." indicates that there are
other elements not shown

191

Artifact Definition Diagram - Examples

[| i
| | | ® I
: CE"N'-"""':"?'R‘P':["El"'igl 777777777 CarNumberRecognizer.ja 1 : : FeeCalculator E‘:_ ____________ FeeCalculatorjar EI| !
: {40} amanifests : | {1..20 smanifests } I
! |
| A | L
| i = \
I - jar Bl
| DeviceMonitor E] : : PaymentManag-lerfO:I et e PaymentManager.jar =/ - :
: ‘G‘“amanﬂeg» : : {120} amanifests : } :
: = Monitor.jar B : : E \:{ : } :
' ST - E 0o
| DiagnusisManag@ feo =T : : PaymentConnect e e PaymentConnector.jar 1l :
: ‘ : ! | {1..20) amanifests : } |
I I |
| | ' ' Lk
I Ea \ : : ResemationManagerE ionM e V4 :
: MonitorDBConne Vi | | i TR ReservationManager.jar : } "
I <-=== i] : " amanifests C
1 -{'""'-DBCDnnectur.JarE] | | ; oor
! R - i i i i depends on
: iceDBC ct E:' e : : CarEnterManagerE 77777777 CarEnterManager.jarE‘l : : } :
| pevicebacomectofle -maniest ;L A .
|
! : : ke 1L :
| | 1 $:|] B 1y
: = : B) | | CarExitManager _iCarExitManager.jar I [1 | ot
| |DeviceControl DeviceController.jar = |- — - : : A <" _'§_¥__ = : : : ! :
_____________ Wl «maniiest:
: smanifests : : : ! : : : } :
' | ! I I £ i
! : . o
: BarrierC mﬂ VY B | : : De\riceDlagnosuDBConned@ } : : Lo :
| arrierCon . . [E | Lond i
S ; - — — JBarrierConnector.jar [| = |
l [1R il
' : I I - A il i ¥
I i) ! ' |Histo BConnec!a emanifests IERVEY R
: CameraComnecta] R — Camera B _‘::_: : : 9 = __ T LA g J' : !
! (1.40 B Connector.jar ! ! emanifests ~~~ | DBConnector.jar é: = !
! | | A |
! 2] - I I ParkingLDtDBCunnecaé" emanifests -~ !
" InfoBoardConnector I InfoBoard B 5 : : o :
! {1.40) emanifosts Connector.jar : : _.,{’ :
| \ |] ’,«manl ests !
N e e e £ | UserDBConnector - \
________________________ I \
; I
| |
|

192

Artifact Deployment Model

« The distribution of artifacts on a set of nodes so that they can be installed, configured, and
hosted on physical nodes.

wdevicen
Internet wartifacts «dEploy»} A;iiﬁ:i::‘lr:at ApplicationServer
* ioowar |
user PC - postiolio.war Server 5.5
1 «\{Vm 'server» aartifacts D
sinternety Application server portfolio.ear
«execution SlonEaran
1 ?\?\:’Iilgg)gn‘l"]eer:g «linux servers
DNEDSPIETE Database server
. wdevicen
«}\;Vél:nc:ﬁsllfzzin Rt A Sun Fire X4150 Server
1 i
EE i
deplo o
K « 3,3 y» SUSE Linux Ent 10

ude'p‘loy» ,
i «JSP servers
Yy Apache Tomcat Server 5.5

«artifacts) wartifact» 0 Notation:
L EnterpriseWebApp.ear ‘ LY

app-client.jar P PP UML shopplngawar

JAR : Java Archive (5 & &%)
WAR : Web Archive (JSP A{H 2Q)
EAR : Enterprise Archive (Java Enterprise Edition A{Hf 2 Q) 193

Artifact Deployment Diagram - Examples

User PC Application Server Database Server
U} N} {2}
Artifact1 D Artifact3
«de{:l)loy» . D « 5 :
HTTP i Artifact2 TCP/IP deploy \i/
— i > .
: : «execution...
sefacufio... : MariaDB 10.4
WebLogic -
Server 12¢c “deF|3|OY” ,
«exec... \:/ \:/ Y
HTML5)
Browser «executionEnvironment» «EX:C;EO:E"'
Ubuntu e

Artifact Deployment Diagram - Examples

deployment Deployment Diagram

MedicallistServer

_pBMedicallistinterface.jar [£]
F'n&ep\nyn
=-—_____|MedicallistReceiver.jar [5]
JS - adeploys

«executionEnyi.. ‘
Tomcats

<external> ~iedeployi
Frontend service \ S MedicallistPusher.jar [
1.4 «eXECutionEnyi.. ©, sdeploy>
i HTTPS: OpenlDK1L S -
— , 2.1 7 wdeployt =
«EXeCutionEnvi... terndh % Medicalistjar__[5)
wexternaly
Tomcatd / by
Message Broker f———
" - «executionEnyi.. 3 Tce/Ie
Ubuntu 20.04 { MedicalRegister.jar
HTTPS
8
/ wdeployn
«Masters
1 1 i
MzinServer . Wating Database Server
2 .
e «devicer cexternals —
User PC, Smartphone AP| Gateway 21 «executionEn _ | mfoManagerjar B eexacationEnVL.
N} {1} Tomeatd MariaDB10.6
L: <| .
1 I iaEn DBinterfacejar [F] Teafip
HTTPS S [==2]
HTTPS 11
Texilnterface.jar
-~ HTTPS
adevices /
Hospital PC, Smartphone | [+ HITR i ‘ Mapliterface jar ‘
o OpenDK11
i
Z 1 1 1 1 /
wexecution
* Web:Hrowser cexternals Ubuntu 20.08 ™ certi jar i
Load Balancer) Lo
m Medical Database Server
1 1 1 .5
«devices S y HTTPS
Kok TCeP/IP
0.2200) | L prrps 4 EXECUIONENVi...
. HTTPS: 1% MariaDB10.6
wexecutionE: PP |
Web Browser HTTPS
1 \ / sexecutionEny..
Ubuntu 20.03
) / / % /
cexternab «extemals wexternal» d
HospitalQueueSystem ResgrvalmnTa)uSvlemvx ParkingInfosystem
0..2200} | 7 B
wexternaln «extemaly
Maplinfosystem CandidateSystem
a} HTTPS
K 195

196

6. Detailed Component Design

6. Detailed Component Design

Project
Overview

System
Overview

Business Context
Diagram

System Context
Diagram

Stakeholders >

I

Business Goals

System Features

Primary
Functionality
(UC+SSD)

Domain Model

——» : Keeping Traceability is required

ASR Analysis

Primary
Functionality
(UC+SSD)

QAS

Constraints

e

L

4 Architecture
Design &
Evaluation

Candidate Designs
per QA

Candidate Designs
Evaluation for all
QAs

—»| Design Decision

5. .
Documenting
Design with
Views

Architecture
Overview

Structure View
(Component Diagram)

Behavior View ...
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Architecture Description

198

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders e-------------- 1
1.4 Business Goals &= S

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features &t
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers
3.1 Primary Functionality &

4. Architecture Design & Evaluation

——————— » 4.1 Candidate Designs per QA

4.2 Candidate Designs Evaluation for all QAs
4.3 Design Decision e

5. Architecture Design Description -
5.1 Architecture Overview
5.2 Structure View o

3.3 Constraints

» 5.3 Behavior View e«
5.4 Deployment View

6. Component Design Description
6.1.2 Component Structure Model <-----
6.1.5 Component Behavior Model <«

7. Architecture Traceability Summary

199

Our Architecture Design Process (Revisited)

«component» L «component»
Component1 Component2
1
L]

Architecture
Design
(High-Level)

Detailed
Design
(Low-Level)

—~

System Level
Design

Decomposition

+ Design i
Concepts i

Q Iteration

Component Level
Design

Specific Analysis

Detailed Design

:

«component»
Component3

e
Class1
a
op4()
f Class4
Class2 Class3 opy()
b <O ¢
op,() op;() i
Class5 Class6
e d
ops() ops()

Architecture Design
Description

Architecture
Overview (5.1)

Structure
View (5.2)

Behavior
View (5.3)

Deployment
View (5.4)

Detailed Component
Design Description

Component
Structure
Diagram (6.1.2)

Component

Behavior
Diagram (6.1.5)

200

The Scope of Detailed Component Design from Behavior View

The scope of Detailed Component Design

1
1
1
<<interface>>)
«component» Interface,
Component, i
. {1 OP’() P
System Sequence Diagram ‘I“ H «component» A
1 _—]
System :Inter'acq com?:nenta <<int l:fd/;; i
% . interface
) syStem Interface, _—interface,
«component» =g : Component, : Component,
Componen _— oP”
System_OP() N F,,_| t2 //// 0
> I‘ _— N System_OP()
== >
" i OP()

A 4

OP’()

vy

Ack / N
///
_—

Ack
-
-______-_________-_--_-_--___l //
1 —
! — _.[q «component» «component»
:1/ i Component, Component,

i
! {
from Primary . i i Behavior Model (5.3
Use-C D t H .
Functionality (3.1) se-L-ase Descriptions i e ey o I ‘:::gnr:lg:::::)’ [O€- ()
____________________________ - 3

Use Case Model (3.1)
Structure Model (5.2)

201

Detailed Component Design

Structure Model (5.2)

<<interface>>
Interface,

Interface,

«component»
Component;
i |

OP’()

<<interface>>

Behavior Model (5.3)

z Interface, Interface,
OP”()
Component Structure Model (6.1.2)
Class1
a
OP4()

f <<interface>>
<<interface>> Class3 Class4
Class2 OP’()

b —<> c
Class5 Class6
d
OP¢()

Use Case Model (3.1)

% : Component, : Component, i i
| |
1 1
1 1
System_OP() H H
OP() i i
oP() i Use-Case Descriptions i
> L H
oP”() o -
Ack "
Component Behavior Model (6.1.5) ™. P
A X
Comp , Comp 3
% % : Class4 : Class2 : Class3 : Class5
oP'()
> oP()
> OP;()
OP4()
Ack
OP”()
>
OPy() _
Ack

202

Detailed Component Design Description

« For each component,
« Component Structure Model

<<interface>>

i Interface,
+ Static Structure Diagram : UML Class Diagram ; —
. i «component»
* Element list ot Component,
. . ! e {1 <<interface>>
i DeS|gn rationale | 3 Interface, Interface,
oP"()
« Component Behavioral Model - °
» Component Behavior Diagram : UML Sequence Diagram
‘//,«'/ n\\‘
CIaSS1 : Clas: . Class. < Class. - Class:
= % % : Class4 Class2 Class3 Class5
OP4() or
f <<interfaces> " b » OPy()
<<interface>> Class4 oPd
Class? Class3 oP') .
b < C Ack
OP™() oFsl H
1 oP”()
Class5 Class6 T -
€ d Ack
OPs() OPg()

Static Structure Diagram

Component Behavior Diagram

203

Component Structure Model

» Represents the decomposition of the component

+ Design Rationale : Explains specific component decomposition techniques (e.g., SOLID, Design Patterns) tO

UML Class Diagram
A list of all elements

promote QAs

<<interface>>
Interface,

«component»
Component,
Interface, —

OP()

Z Interface;

<<interface>>
Interface,

OP”()

Class1

a
OP()

f

interface>>

<<interface>>

Class2

Class3

Class4

b
OP"()

—)

c
OP4()

OP'()

Class5

e

OPs()

A

Class6

d
OPg()

Static Structure Diagram

» For all provided interfaces of the component, behavior models need to be analyzed.
Component Behavior Diagram — UML Sequence Diagram

204

Component Behavior Model

» Describes how each operation of the provided interface can be realized with the collaboration of
class instances

Use Case Model (3.1)

Static Structure Diagram (6.1.2)

Class1
a
OP4()
4
<<interface>> Class4
Class3 ;
Clabssz = OP’()
oP”() OP54() 7
Class5 Class6
e d
OPs() OPg()

Behavior Model (5.3)

Component Behavior Diagram

%

System_OP()
»

: Component,

: Component,

Component, Component,

% 2

: Class4 : Class2 : Class3 : Class5
oP'()
> OP()
—> OPy()
OP;()
Ack <- ---------------------
oP”()
OPy() N
Ack

»

OP’()

Ack

vYy

205

Component Decomposition

« A component consists of several fine-grained elements including smaller components and/or classes.
« Use component decomposition strategies

Interface2_1

Online
Services[1..5]
&l pPort1
Search DataAccess c = ‘2 a
omponen
«component» P .
Cottlog Interface3_2
Authorized i N
ItemEnt } Port2
g User i T P
Admin prf‘B
Services[1] 5 |
\ Component
Interface4_1 \ Decomposition
g ' N
"’/ «interface»
x‘ i Interface2_1 |« - ____. .
4 <t I
Online | + opl(int): void L -
Services[1..5] «component» {I + op2(String): void Class21 «interface»
Catalog A o Interfaced_1
E‘ ' : gp;EiS:ti);w))'isoid + opl(Location): boolean
E «component» P 8k + op2(int): Location
Search R R O DataCache + op3(Time): Time
SearchEngine
n
«interface»
E DataAccess Class22 Internal_2__ 1 Class25
i ngar{};a)ﬁg:&t)»; + op;{;:Tirlr;edLocation + opi(Location): Location + opl(TimedLocation): void
+ op2(): voi
ltemEntry «component»
CatalogMgr ,V b
C /// ‘\
. \
Admi i = b «interface»
min Authorized
Services[1] User Class23 Class24 |~ Interface3_2
+ opl(Location): Location + opl(Location): Location + opl(Distar.lce):void
+ op2(Location): void

JUST ENOUGH

Component Decomposition Strategies gt

Decomposition Strategy Description

» Decomposing a system based on functionality is perhaps the most obvious strategy.

Functionality * You can invent the required functionality and clump together with related functions.

» Archetypes / core types are salient types from the domain, such as a Contact, Advertisement, User, or Email

Archetypes » Characteristics of an archetype include having an independent existence and having few mandatory associations to other types
» A system can be decomposed so that its components are elements defined by an architectural patterns, design patterns,
Patterns GRAPS, and design principles (SOLID).
» Choosing an architectural pattern is highly effective at achieving quality attribute goals because each style has known qualities
that it promotes.
Achievement of certain QA » For example, to support Modifiability (—Maintenainability), impact of any one change is localized.

+ Some modules may be bought in the commercial marketplace, reused intact from a previous project, or obtained as open-

Build-versus-buy decisions
source software.

+ Itis essential to distinguish between common components, used in every or most products, and variable components, which
differ across products.

Product line implementation

« To allow implementation of different responsibilities in parallel, separate components that can be allocated to different teams

Team allocation should be defined

207

>

. Desion Patterns
Design Patterns of GoF (Gang of Four) ey

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

=

ONILNNC

The 60F launthed the so'g{:wa'rc
?a‘{:ﬁcrns movement, but many others
have made sign’n;itan{ tontributions,]
intluding Ward Cunningham, Kent
Beek, Jim Coplien, Grady Booth, Brute
Andevson, Rithard Gabriel, Doug Lea,

SIS

Today
there are more

Shoot for practical

OREILLY Q;%

- extensibility, Don't oo (2 : %
: atterns than in the ; . Go for simplicity Head First
Peter Coad, and D005 Sehmidt, to GpoF book: learn about P"“Wdﬁl hypothetical) and don't become over-excited, D .
ame just 3 Few. them as well, generality: be extensible If you can come up with a esign 7
n J in ways that matter. simpler solution without using a Patterns 97

pattern, then go for it.

fos
_ Ralph
- John!on

Building Extensible
& Maintainable
Object-Oriented
Software

Eric Freeman &
Elisabeth Robson

Patterns are tools not
rules—they need to be

tweaked and adapted to
your problem.

@;3} ABrain-Friendly Guide |y

John Vlissides” i

TN) Pk
I.

"John Vlissides passed away in 2009. A great loss to the Design Patterns commurity.

Z % Design Pattens & H #6 208

23 Design Patterns of GoF

Abstract Factory
[5] ssemer
[5] e
=] sueer

=] roe

[E] Foctory ot

[=] Fweion:

[r—

Opsener
[E] Sogein
se

Memenio

Type: Behavioral

mlle =

What itis:
Withaut viclating encapsulation, capture
and xtemalize an object’s infermal stats
P restored to this

Adapter
Type: Stuctursl
What tis:

Comvert the intesface of a class inla
anotner interface cients expect. Lets

Proxy
Type: Siructurs!

Whatitis:
Provide a surogate or placshalder for

Interpreter

Type: Behavioral

Whatitis:

Given a language, define a represantation

for ts grammar along with an interpreter
that o interpret

Strategy

Type: Behaviaral

Whatit

Dafine & famiy of slgorithm,

‘encapsulate each one. and make them
interchangeable. Lets the aigonthm vary.

uses
sentances in the language.

chients thatuse &

Iterator

Type: Banavioral

What itis:
Provide 3 way o acoess the slements of

Template Method

Type: Behavioral

Whatit
Define the skeieton of an sigonthm in an

ation. deferring some steps fo subdasses
L

expesing its underlying

of an aigorithm without changing the

S = : another cbject 1D Conrol aoess (.
Chain of Responsiti erator (5] staeey = clssses work togather that couldin't
sty] Sailer S i e r omenpiin
Commang Medator Temalss histnod == . s
[+=ethemeniofin m - Memenia]
P
. e
suecesser Chain of Responsibility Observer Subject Bridge Abstract Factory
+aftach{in o - Observer)
Type: Behaviorsi Type: Benavoral ‘aetchiin o Observer) Type: Swuetural S
'ype: Creational
Fiaditls: Whaits: I What itis: _—
‘Avoid coupiing the sender of 3 request to ne a one-io-many dependency e "
i recmtver by v more toan e cbject | OGS 50 hat when ane abject changes ? e | Frovam aninsrc o ceaing
“snamce 15 handie the request Chaimhe | state, =l s ceperslenis ars notfed and mies
3 chanes to handle the reque: ain the i = Tndeperderly. objects without specifying their
along the chain anserves oomorete ciass
[-subjectSiate — 1
{
+updats() |
e,
\ Ctient }—.(Invoker \ Command State Companent Composite Builder
i anldren
Type: Behaviocal Type: Behaviral K s Tyne: Stuctural Type: Crmations!
Wnatitis: What e Whatitis: What 2
Encapsulate a request as an object. ‘Aliow an abject o aler ts behavior when Composs abjects into tree structures to i ——
thereby letling you parameterize clients ts intemal state changes. The object wil represent pari-whole hierarchies. Lets ‘complex object from its represanting
Wity iFerent requests, queue or log ampearto change s dass. ")
requests, and support undoable operations. ‘ 1 of objects uriformly. rocess Sin Gredtis Gliesent
Composite. represeniations.
[tesr Sopeton)
IW“ ‘ |+atidn < : Composite)
Composits)
[+g=tChildiin i - nty

Decorator

Type: Sructural

‘What it is:

Aitach addifionsl responsiilties 1o 3n
‘object dynamioaly. Frovide a flexble

functonalfy.

Factory Method

Type: Creatonal

Whatit
‘Define an interfaoe for creating an
Object, butlet subsiasses decide which
class o instantiate. L ets 3 olass defer
Insiantation ta subclasses.

=

Facade
Type: Stuctural

Whatitis:
Provide a unified interface 10 3 sat of
interiaces in 3 subsystsm. Defines 3 high-
level inferfane that makes the subsysiem
sasier o use.

Prototype

Type: Crestions

What it is:

Specey the Kinds of objects 1o create
using 2 prototypial instane, and
craate now cbjects by copying this
protype.

algortrmis sructure
e e A e |
nfcrms - .
‘ Mediato ez Mediator Visitar
Sotour Type: Behaieral Type: Bensarsl
st Whatitis: R
Disine an cbject thst encapsuistes how s = i
= on the slzments of an
set of objeets interact. Promotes loose perfarm |
Lot you cefine o e
coupling by keeping abjects from refeming ets you | ‘ |
updates o sach other sxplicity and R lets youvary | g o0 = . Vo

‘which operates.

Flyweight
Type: Siustural
Whatitis:

Use sharing 1o support large numbers of
fine grained objects eciently.

Singleton
Type: Graatonal
Whatit is

Ensure a class only has one instance and
provide a global point of scosss o it

[-static unigueinstance
=ngieionDiata

[+SingletonCperation()

209

A Brain-Friendly Guide

Head First

Object-Oriented Design Principles in HFDP Design Patterns

Design Principle

Identify the aspects of your
application that vary and separate
them from what stays the same.

R ey

Program to an interface, not an
implementation. E

B

; Design Principle
§

Design Principle {

Favor composition over inheritance. |

A class should have only one
reason to change.

@ Design Principle

Techniques and Principles
> Design Patterns

=

Design Principle

Depend upon abstractions. Do not
depend upon concrete classes.

The Hollywood Principle

Don'’t call us, we'll call you.
Design Principle

Strive for loosely coupled designs
between objects that interact.

Design Principle

T Principle of Least Knowledge -
esign Principle talk only to your immediate friends.

Classes should be open
for extension, but closed for
modification.

210

Object-Oriented Design Principles - SOLID

« SOLID : 5 basic principles object-oriented design for maintainable and extensible systems

SRP : Single Responsibility Principle
OCP : Open Closed Principle

LSP : Liskov Substitution Principle
ISP : Interface Segregation Principle
DIP : Dependency Inversion Principle

Name Full Name Description Ways to Apply with
SRP Single Responsibility A module should have one, and only one, reason to Separate the module into multiple ones for each
Principle change. reason.
ISP Int.erf.ace Segregation Client should not be affected by the interface it does Make fine grained interfaces that are client specific.
Principle not use.
OCP Open Closed Principle Yc_>u should t_)e _ablt_a to extend a module behavior, Provide extension points for any possible change.
without modifying it.
LSP Liskov Substitution Derived modules must be substitutable for their base | Subclasses should conform to pre/post condition
Principle classes. of its superclass
DIP Dependency Inversion Do not depend on what are prone to change

Principle

Depend on interface, not on implementation.

Techniques and Principles
> SOLID

211

Component Structure Model : Examples

« CarController Component

ICarApproaching

pApproaching:
ICarApproaching

ICarControl
pCarControl:
ICarControl
IHealthCheck CarController
pCheck:
IHealthCheck

g]

N}

—
pCarOperation r
ICarOperationMgt

]

pLog

«interface»
Interface::ICarControl

+ o+ o+ o+ o+

isMoving(): boolean
startMoving(): void
stopMoving(): void 5

«interface»

Interface::ICarApproaching

openDoor(Floor): void
closeDoor(Floor): void

|ICarOperationLogSave

«interface»
Interface::ICarOperationMgt

+ getMoveDirection(int): CarMoveDirection
+ needToStop(int, Floor): boolean
+ updateOperationData(CarOperationData): void

A

processApproaching(Floor): void

«interface»
ICarMove

A\

CarControllerimpl

«thread»

«interface»
Interface::
ICarOperationLogSave

+ save(CarOperationData): void

«thread»
OperationDataMgr

«thread-safe»

- carld: int {readOnly}

- operationStatus: CarOperationStauskind = IDLE
- currentFloor: Floor = 1

+ stop(): void
+ move(CarMoveDirection): void

)

/A

«thread»
SamsungCarMotor

+ stop(): void
+ move(CarMoveDirection): void

isMoving(): boolean
startMoving(): void
stopMoving(): void
openDoor(Floor): void
closeDoor(Floor): void
processApproaching(Floor): void

o+ o+ o+ o+ o+

«thread-safe,singleton»
OperationDataQueue

+ close(Floor): void

- save(): void

- data: CarOperationData [1..N]

«interface»
IDoorControl

+ add(Floor, CarOperationEventkind): void
+ remove(): CarOperationData

+
o

Q"J

open(Floor): void
close(Floor): void

+ open(): void
+ close(): void

«facade,thread»
SimpleDoorController «interface»
ICarDoorControl
+ open(Floon;: void |=> —or2Cortontro e

«interface»
IFloorDoorControl

+ open(Floor): void
+ close(Floor): void

SamsungCarDoor

carld: int {readOnly}

+ open(): void
+ close(): void

SamsungFloorDoor

carld: int {readOnly}

x
3

open(Floor): void
close(Floor): void

212

Component Structure Model : Examples

winterface»
ICarDoorControl

+ open(): void
close(): void

I
I
| +
I
I

wsingleton»
AbstractDoorFactory

+ createCarDoor(): ICarDoorControl
+ creoteFloorDoor{): IFloorDoorControl

SamsungCarDoor

HyundaiCarDoor

- carld: int {readOnly}

- carid: char {readOnly}

+ open(): void
+ close(): void

+ open(): void
+ close(): void

SamsungDoorFactory

HyundaiDoorFactory

+
+

createCarDoor(): ICarDoorControl
createFloorDoor(): IFloorDoorControl

+
+

createCarDoor(): ICarDoorControl
createFloorDoor(): IFloorDoorControl

«interfaces
IFloorDoorControl

F
2E

open(Floor): void
close{Floor): void

!
/
Fa

g B

£ A\

A

A
A

SamsungFloorDoor

State Pattern

wthread»
CarControllerimplContext

CarStateHandler

- carldL: int {readOnly}
«thread-safe»

- currentFloorl: Floor=1

- operationStatusl: CarOperationStausKind = IDLE

ok ok o+

isMoving(): boolean
startMoving(): void
stopMaoving(}: void
openDoar(Floor): void
closeDoor(Floor): void
processApproaching|{Floor): void

ok

isMoving({): boolean
startMoving(): void
stopMoving(): void
openDoor(Floor): void
closeDoor{Floor): void
processApproaching(Floor): void

-currentStateHandler

«singletons
CarldleStateHandler

usingleton»
CarMovingStateHandler

I

isMoving(): boolean
startMoving(}: void
stopMoving(): void
openDoor{Floor): void
closeDoor(Floor): void
processApproaching(Floor): void

isMoving(): boolean
startMoving(): void
stopMoving(): void
openDoor(Floer): vaid
closeDoor(Floor): void
processApproaching(Floor): void

+ 4+ o+ o+

winterface»

q__

«threads»
CarControllerHealthCheckimpl

«thread-safe,singleton»
CarControllerHeartBeatData

IHealthCheck

¥

check(): boolean

+ check{): boolean =

HyundaiFloorDoor

- carld: int {readOnly}

«thread»
CarControllerimpl

- carld: char {readOnly}

+ open(Floor): void
+ close({Floor): void

+ open(Floor): void
+ close{Floor): void

Abstract Factory Pattern

ok ok

isMoving(): boolean
startMoving(): void
stopMoving(): void
openDoaor{Floor): void
closeDoor(Floor): void
processApproaching{Floor): void

Using <<thread>>

controllerHBTime: Time
carMotorHBTime: Time
doorControllerHBTime: Time
operationDataMgrHBTime: Time

SimpleDoorController

«facade,thread»

+ open{Floor): void
+ close(Floor): void

wthread»
SamsungCarMotor

wthread»
OperationDataMgr

+

stop(): void

+ move(CarMoveDirection): void

- save(): void

Component Structure Model : Examples

dass Structure Model

cdataTyper
User

*Interface] *

+ address: String 1 Intefaces| HEle (TR 2 AT
+ ageiint
+ checkin: boolean COass i
+ companionAddress: String =1 _
+ companionName: Strin 1 abstactms intedace Aaits T ms ximpl = g
+ companionPhoneNumber: String 2 ofmsiPatems AL SHEK| EBicl7| 28] 37 0|2 20| gicH
+ identification: String _|Usergm o Pattern 20 Mg
: + name: String sz qmEn
h + phoneNumbar: String
R — + visitedHospitalidentifications: List<Strirg>
E— Usart from DataType) N
+ getwaitingPersonCount(String): int SO——— Bridge Pattern*
5 i : % A AR, 45|72 o] Az e o
+ requesthppaintment|s ring, Use: it o et e A B S0 A SO 501 HE e FE 42 T2 U2 R e Bolel M2l el wa Al g
concrete Implementorot i st wro o 2 [QA04] =oi0) 4 20
'DBSEN""'E\V Observer Pattern Bridge Pattern
sinterfacen ainterfacer /—
i wabstractn dinterface’
isendAppointmentRequestObservable o] APROImEntRequestObserver Ssbstraction pppointmentabstraction shridge| IAppointmentimplementor
-obss =0
+ | notifyObserver(string, User): int K2 chseneniinotly 7|+ UpdatelString, User):int + handieRequest{string, User)s int + makeAppointmient(String, User): int
+ invalid(String, User]: boolean
A ZS 1
T T]
; ! 3. conerete implementor £3 !
|
| | i
i i i
i |
|
i i] 5 .
sendAppointmentRequestObservableimpl AppointmentRequestobserverimpl ek
—observable
+ notifyObserver{String, User): int + User: int = e [+ erit] |+] |+ Userjint]
+ registerObserver(lAppointmentRequestObserver): void
+ _removeQl). void
- N 4. Required Interface® B2 T
* Concrete Observerojf A ify 441 OfA| *
AN eyt T — Adapter pattem
int Update(String hospalid, User user) { ~atapter
if (user==null}{
cinterfacen cinterfaces
abstmetan heck(]) i {HospitalDBAdapter
else { * Adapter Pattern* + editUser(String, User): hodean adapter aprer] addUser{String, User); int
if (user.checkin == true) ® JjQiE = DB ol u DBo| Interface A A, + getUser(String): User < + eraseUser{String, User}: int
i bs = concrete adapteroot oigte = o = [QA-0Al = eig) A 4 imsertUser(User): String ‘getUserNumber(String): int:
else
abstraction = P tout])); 80|
! T T
retum abstraction.handieRequestihospialld, user); i i
} : :
PrivacyDBAdapterimpl HospitalDBAdapterimpl
N + editUser(string, User|: bodean + sdduser(string, User): int
* DesignPatternyl 74x 52| * + getUser(string): User + eraseUser(ring, User): int
eibarser: Raktaris + _insertUser{User): String + getUserNumber (Sring): int
« observable : IsendAppointmentRequestObservable
« observer: IAppointmentRequesiObserver taptee cadejtee
- e observar: Observerimpl winterfaces
Bridge Pattern sinterfacen IHospitalDBRequest
* abstaction : AppointmentAbstraction IPrivacyDBRequest
* refined abstraction : RefinedAppoinimentAbstraction - + addUser(String, User):int
* implementor : IAppointmentimplementor + edituser(String, U‘mmm + eraseUser(String, User): int
. e impl . Out, hack 4 User + getHospitallnfo(String): Hospitalinfo
Adapter Pattern e + insertUser{User}: String + getUserNumber{String}: int
. + IPrivacyDBAdapter, + reqe it
° pter Privacy prerimp), Hospralo: '
* adaptee: IPrivacyDBRequest, | HospitalDBRequest B e

214

Component Behavior Model : Examples

“Medicalservice HospitalSearch -imageGenerator JPEGImage }'

MedicalirfoController Medical Medical Center SysterTMap System Gateway
: T : T : T : : Gateway :
! i i i i i i i ! i
i i i i i i i i i !

getHospitalinfo(string, double, doublej: Object ! ! | ! | |] |

i | i i ! i]
! QA1 Performance 7§ M 5 | 1 1 ¢ ! i

I i i i :
searchistring): Obg 1| SBENE ArE ol ! ;] |] i
RO =TT : ; !
S zzesas : ! ! i ' i
[feslitt == nui ! ! ! i | | {
findinfo(String): String | AL | i ! 1 !
‘ ! search{string): String ! ! ot ! 1
[' : | | i ! i '
N i i extApiGetHospitalinfofst dauble): String | | I i
T T T T > i
[Templte Method Pattem] | | | \ j (] i
witelnfo(string) | | ! | |
Search dass 0| ZE 7|45 (FhA| £44, |52 Al } | write{String) i - i !
28 3318 Foioh T, Hospalsearch, - T i i i 51 i]
PharmarcySearcho] i 21/t 20l A BB = || T L L i I ! i ;
0| Bt [Sate aesteNecessaryinto | | | ; i] i ! i !
= R createNecessarylnfo(string): String | : : i ! i
B (ueto gl 2 55 7 FI i i : I ! i !
b I i i : 1 ;
i i i i ! i !
i i
' | | ! 1 ! |
: |] | | 1 ; |
generate(Object): Object !] ! | i]]
i b i i i f |
generate(Object): Object A H ! i
i ! i] i
! i ! i
generate(Object): Object ; Y 1 1
MapGeneratorti A{ 2l 54 ! 1 !)
o| MapimageE 22 3H= 7| {Object): Object] \ !

B i
= =3t 9|0, Decorator Class : | |
(HeifDecodeGenerator, double): Objest |

TextGenerator,
imageGenerator) Of A{ &2 =1
Map Imageg F715 02
HEsETE FT

(Hef decode 5} f RGBA 3t 2,
EEREREE | L
ImageFormate = Xj44) 7

T decode(Object);
| (] Object|

| RGBA Object J |

i e T2

i

i

Map Object

<

merge(Object): Object
Text J i
7
i
i
i
i
i
|

RGBA Object wi
\Objecty

i
strategy atter i
Interface Image= 2|5k '
i

setStrategy |

;I (PEGimage)!

\ ‘

createimage(Object): Object

createimage 3-8 dass
1PEGImage, PNGImage, BMPImage
dlass 0 4| 7-545}0fImage Format2.
g5 A=SHAS

A 0| 23t imageFomatg
seisuategy g2 S0 2| 511

ceateimage 2 55

JPEG Object

.IPEG with hospital information

{IPEG with hospital information

215

Component Structure Model - Element List

» Describe each element comprising the component with its responsibility.

Element Name Responsibility

Class21

Class22

Internal_2_1

Class23

Class24

Class25

Component Structure Model - Design Rationale

» Describe the rationale for the decomposition.

« Explain your specific component decomposition strategies in detail
Design patterns, OO design principles (SOLID)

 If possible, relate your component design decisions to the quality requirement by describing how each
quality requirement are promoted by the decomposition.

Not all QA/QAS are relevant to the specific detailed component design at the class/object level.

QA Relevant Elements Description

QA1
(Performance)

QAS-03

218

1. Architecture Traceability Summary

1. Architecture Traceability Summary

Project
Overview

System
Overview

Business Context
Diagram

System Context
Diagram

Stakeholders >

I

Business Goals

System Features

Primary
Functionality
(UC+SSD)

Domain Model

——» : Keeping Traceability is required

3.
ASR Analysis
Primary
g Functionality
(UC+SSD)
> QAS
Constraints

e

L

4 Architecture
Design &
Evaluation

Candidate Designs
per QA

Candidate Designs
Evaluation for all
QAs

—»| Design Decision

5. .
Documenting
Design with
Views

Architecture
Overview

Structure View
(Component Diagram)

Behavior View Lo
(UC+ Sequence Diagram)

Deployment View
(Deployment Diagram)

Where We are Now in AD

1. Project Overview
1.1 Project Background
1.2 Business Context Diagram
1.3 Stakeholders s~ :
1.4 Business Goals &=

2. System Overview
2.1 System Context Diagram
2.2 External Entity
2.3 External Interface
2.4 System Features ¢
2.5 Domain Model
2.6 Assumptions

3. Architectural Drivers

4. Architecture Design & Evaluation

--------------- » 4.1 Candidate Designs per QA
4.2 Candidate Designs Evaluation for all QAs

4.3 Design Decision e

5. Architecture Design Description «--
5.1 Architecture Overview
5.2 Structure View e«

3.1 Primary Functionality &

3.3 Constraints

+ 5.3 Behavior View e

5.4 Deployment View

6. Component Design Description

6.1.2 Component Structure Model «------
6.1.5 Component Behavior Model <-——-——-

7. Architecture Traceability Summary

221

The Overall CEP Process

Requirements Engineering Process (with SRS)

Stakeholders +
Business Goals

Architecture Design Process

Domain Model

Primary
Functionality (3.1)

| “Requirements"‘ >

Elicitation" -

(Goal)

QAS (3.2)

Candidate Designs
per QA (4.1)

—|—>""Aré'hitecture)

Design &
Evaluation -~

Architecture Documentation Process

Design Decision

Architecture
} Overview (5.1) B
Architecture k Structure View { Detailed)i
— —P (5.2) —{ Component. ——P»

(4.3)

Architectural
Design Decision

@

P
~'Requirements" System
m F r —) ST | QAR b
System Features = Analysis - Requirements >
; ' "' —| Constraints [~
(User Requirements) ; N B - !
’ /~Requirements- .

(ASR in SRS)

Constraints (3.3)

~Specification -

Architectural Drivers

Detailed Component Design Process

~Documentation .

Component

Structure Model (6.1.2)

Behavior View
(5.3)

4|—> _ Design /
- O0D (Object-Oriented Design)

- SD (structured Design)

A,

Component

Behavior Model (6.1.5)

Deployment View
(5.4)

Architecture
Design Document

Component
Design Document

—»

Candidate Designs

Evaluation for all QAs
(4.2)

Design Decision
(4.3)

Architecture
Design Decision

222

The Overall CEP Process

Requirements Engineering Process (with SRS)

Stakeholders +
Business Goals

| “Requirements"‘ >

Elicitation" -

(Goal)

System Features

| /" Requirements*
7~ Analysis ™/

(User Requirements)

Domain Model

’ /~Requirements-
~Specification -

(ASR in SRS)

Architecture Design Process

Primary
Functionality (3.1)

QAS (3.2)

—|—>""Aré'hitecture)

—»

Design &
Evaluation -~

@

Constraints (3.3)

Architectural Drivers

Architecture Documentation Process

Detailed Component Design Process

Component
Structure Model (6.1.2)

Component
Behavior Model (6.1.5)

=

Component
Design Document

<. Design

Detailed
Component .

- OOD (Object-Oriented Design)

-SD

(Structured Design)

3

Candidate Designs
per QA (4.1)

Candidate Designs

Evaluation for all QAs
(4.2)

Design Decision
(4.3)

Archi’tecture
Design|Decision

Architecture
Overview (5.1)

Structure View
(5.2)

< * Architecture -

Behavior View
(5.3)

~Documentation /

<«

Deployment View
(5.4)

Architecture

Design Document

223

Architecture Traceability

« ISO/IEC/IEEE 42010:2011 “Systems and Software Engineering - Architecture Description

« AD should demonstrate how an architecture meets R axtibls b
the needs of the system’s diverse stakeholders. intorest [1 =
1 identifies 1
A has interests in enth A expresses
P 1 1
4 identifies 1 . %
Siskahiald 1.0 Description 0\
1 Architecture
g Bl 1.* Rationale
has « identifies (ﬁ R\
. - v
* Architecture traceability starts from Stakeholders. 0. 0.
Correspondence
« Stakeholders — v Correspondence
« Concerns —
* Architecture Views i S Jithasses
« Architecture Rationale . ®)
33 overns P P
AViewm:ilm= 1 d 1 View
T o
;P 1
Model 1 1
Kind governs P Model

L4

1.1 Architecture Traceability Graph

« A full-scale graph tracing from stakeholders up to components (and classes)
» Any notation (graph or table) is possible.
« Every individual item in the graph should be traceable bidirectionally.

“Component / Interface Design Principles” applied

Structure View
(5.2)

Component
Structure Model (6.1.2)

Domain Model > Behavior View >

(5.3)

Component
Behavior Model (6.1.5)

Y Primary
! Functionality (3.1)

Business Goals Requirements (4.3)

Stakeholders + »| System Features > System } QAS (3.2) > Design Decision

‘-J» Constraints (3.3)

“Design Concepts” applied

“Design Patterns” applied

225

7.2 Summary of Traceability ltems

« Explains all elements which take part in the architecture traceability briefly and clearly

Traceability Items
ID Title

Description

1.3 Safety Case

« Demonstrate reasonably that your claim is successfully satisfied by your architecture design

« Examples of claims :
» “Customers will not wait more than 5 minutes.”
» “The system will not expose any customer information.”

» Choose a claim and demonstrate their satisfaction with your traceability, reasonably.

228

