
요구공학
Requirements Engineering

JUNBEOM YOO
KONKUK UNIVERSITY

http://dslab.konkuk.ac.kr

과정 구성

2

1. Requirements Engineering - Overview
2. Requirements
3. Feasibility Study
4. Requirements Elicitation

– Exercise 1: Requirements Elicitation
5. Requirements Negotiation

– Exercise 2: Requirements Negotiation
6. Requirements Analysis

– Exercise 3: Use Case Analysis
– Exercise 4: Goal-Tree Analysis
– Exercise 5: Basic Prioritization & Selection

7. Requirements Specification
8. Quality Attributes

– Exercise 6: Mini-QAW
9. Requirements Validation
10. Requirements Change Management

3

1. Requirements Engineering - Overview

5

6

HERE YOU ARE

Requirements Engineering

• Requirements Engineering (RE) is a set of activities concerned with identifying and communicating
the purpose of a software-intensive system, and the contexts in which it will be used.

Hence, RE acts as the bridge between the real world needs of users, customers, and other
constituencies affected by a software system, and the capabilities and opportunities afforded by
software-intensive technologies.

7

RE (Requirements Engineering)

• Requirements engineering is the process of establishing
– System services that the customer requires from a system and
– Constraints under which it operates and is developed.

• Requirements are
– Descriptions of the system services and constraints, generated from the RE processes.

• User-level facility descriptions
• Detailed specifications of expected system behavior
• A general system properties
• Specific constraints on the system
• Information on how to carry out some computation
• Constraints on the development of the system

– System services → Functional requirements (FR)
– Constraints→ Non-functional requirements (NFR)

8

SDLC and RE Process

• Requirements engineering process should be adapted to a specific SDLC.
– RE process + Development process (SDLC)

• Software development life-cycle (SDLC) models
– Waterfall
– Iterative

• Incremental , Evolutionary
• Agile , XP
• UP

9

Waterfall Model

10

Iterative Models

11

Agile Models and UP

• Basic Philosophy of Agile
– Individual over processes and tools
– Working software over documentation
– Customer collaboration over contract negotiation
– Responding to change over following a plan

• Evolved into UP (Rational Unified Process)

12

Requirements Engineering Processes

• Requirement engineering processes vary depending on
– Application(target) domain
– People involved
– Organization developing the requirements
– Software development processes used

• Generic activities common to all RE processes :

13

Feasibility
Study

Requirements
Elicitation and

Analysis

Requirements
Specification

Requirements
Validation

Requirements
Models

User/System
F/NF/Q

Requirements

Requirements Specification
(IEEE 830.1998)

(Design Phase)

Requirements
Change

Management

1. Feasibility Study

• Decides whether or not the proposed system is worth to develop

• A short-focused study to check
– “If the system contributes to organizational objectives”
– “If the system can be engineered using current technology and within budget”
– “If the system can be integrated with other systems that are used”

• Questions
– What if the system was not implemented?
– What are the problems in the current process?
– How will the proposed system help to satisfy customer’s requirements?
– What will be the integration problems?
– Is new technology needed? What skills?
– What facilities must be supported by the proposed system?

14

2. Requirements Elicitation and Analysis

• Called also Requirements Discovery to find out
– Application domain, services that the system should provide : FR
– System’s operational constraints : NFR (QA)

• Should involve various stakeholders (Stakeholder Analysis)
– end-users, managers, engineers, domain experts, trade unions, etc.

• 4 activities performed iteratively
– Requirements Discovery
– Requirements Classification and Organization
– Requirements Negotiation and Prioritization
– Requirements Documentation

15

3. Requirements Specification

• Write elicited, analyzed, negotiated, prioritized and selected requirements into documents according to
the IEEE Std 830-1998

16

4. Requirements Validation

• Demonstrate whether the requirements we defined are what the customer really wants

• Requirements validation checks:
– Validity : Does the system provide the functions which support the customer’s needs well?
– Consistency : Are there any requirements conflicts?
– Completeness : Are all functions required by the customer included?
– Realism : Can the requirements be implemented with available budget and technology?
– Verifiability : Can the requirements be checked?

• Requirements validation tools:
– Requirements reviews
– Prototyping
– Test case generation

17

5. Requirements Change Management

• The process of managing requirements change during the RE process and the overall system
development

– Requirements are inevitably incomplete and inconsistent.
– New requirements emerge during the process, as business needs change and a better understanding of the

system is developed.

• Traceability is the heart of requirements management and all functional safety standards.
– Source ↔ Requirements ↔ Design ↔ Code ↔ Test

18

IEC 61508
ISO 26262
EN 50128
DO 178B, 178C
IEC 60880, 62138

Requirements Engineering Process

19

20

2. Requirements

Requirements

• Requirements range from a high-level abstract statement of service or system constraint
to detailed mathematical functional specification

• Types of requirements
– User requirements

• Statements in natural language, diagrams of the services the system provides and its operational constraints
• Written for (from) customers
• Defined

– System requirements
• Structured document setting out detailed descriptions of the system’s functions, services and operational constraints
• Define what should be implemented to support user requirements
• Specified

22

User Req.

System Req.

Requirements Analysis
through Models

Requirements
Elicitation

Requirements
Specification

User and System Requirements

23

User Requirement Definition

1. The software must provide a means of representing and accessing external files created by other tools.

System Requirement Specification

1. The user should be provided with facilities to define the type of external files.
2. Each external file type may have an associated tool which may be applied to the file.
3. Each external file type may be represented as a specific icon on the user’s display.
4. Facilities should be provided for the icon representing an external file type to be defined by the user.
5. When a user selects an icon representing an external file, the effect of that selection is to apply the tool

associated with the type of the external file to the file represented by the selected icon.

Functional vs. Non-Functional Requirements

• Functional requirements
– Statements of services which the system should provide
– How the system should react to particular inputs
– How the system should behave in particular situations

• Non-functional requirements
– Constraints on the services or functions offered by the system

• Constraints on the development process or in operation
• Complying to standards (MISRA C, ISO 25010, ISO 26262, etc.)

– Quality Attributes
• Timing constraints, Performance, Safety, Security, Reliability, etc.
• ISO/IEC 25010 (9126)

24

Non-Functional Requirements (Quality)

• The challenge of NFRs
– Hard to model
– Usually stated informally
– Hard to make them measurable requirements

• Often called Quality Attributes
or Quality Requirements

• Non-functional requirements may be more critical than functional requirements.
– If these are not met, the system is totally useless.
– Safety Critical systems often include non-functional requirements into mandatory (i.e., functional) requirements.

• IEC-61508, ISO 26262 (Functional Safety)

25

Classifying Functional and Non-Functional Requirements

• At the early phase :

• At the end of RE :

26

FR
NFR

Q

FR NFR
Q

Several cycles of RE

Goals and Verifiable Non-Functional Requirements

• Non-functional requirements may be very difficult to state precisely and to verify.
– Write a “Goal” first → transform into “Verifiable non-functional requirements”

• Goal
– A general intention of the user
– Example of QA : “ease of use”

→ “The system should be easy to use by experienced controllers and should be organized in such a way that user errors
are minimized.”

• Verifiable non-functional requirement
– A statement using some measure that can be tested objectively
– “Experienced controllers shall be able to use all the system functions after a total of two hours training.

After this training, the average number of errors made by experienced users shall not exceed two per day.”

 by QAS (Quality Attribute Scenario)

27

Requirements Completeness and Consistency

• Problems arise when requirements are not precisely stated.
– Ambiguous requirements may be interpreted in different ways.

• In principle, requirements should be both complete and consistent (C&C).
– Complete : Should include descriptions of all facilities required
– Consistent : Should be no conflicts or contradictions in the descriptions of the system facilities

• In practice, it is impossible to produce a complete and consistent requirements document with
natural languages.

– Needs for (formal/informal/semi-formal) requirements models to aid

28

29

3. Feasibility Study

Requirements Engineering Process

31

Why a Feasibility Study?

• Objectives:
– To find out if a system development project can be done:

• “Is it possible?”
• “Is it justified?”

– To suggest possible alternative solutions.
– To provide management with enough information to know:

• Whether the project can be done
• Whether the final product will benefit its intended users
• What the alternatives are
• Whether there is a preferred alternative

• A management-oriented activity:
– After a feasibility study, management makes a “go/stop” decision.
– Need to examine the problem in the context of broader business strategy

32

Content of Feasibility Study

• Things to be studied in the feasibility study:
– The present (existing) organizational system

• Stakeholders, users, policies, functions, objectives
– Problems with the present system

• inconsistencies, inadequacies in functionality, performance
– Goals and other requirements for the new system

• Which problems need to be solved?
• What would the stakeholders like to achieve?

– Constraints
• Including nonfunctional requirements on the system

– Possible alternatives
• “Sticking with the current system” is always an alternative
• Different business processes for solving the problems
• Different levels/types of computerization for the solutions

– Advantages and disadvantages of the alternatives

• Things to conclude:
– Feasibility of the project (Go / Stop)
– A preferred alternative

33

4 Types of Feasibility Study

Technical Feasibility

• “Is the project possible with current technology?”
• What technical risk is there?
• Availability of the technology

• Is it available locally?
• Can it be obtained?
• Will it be compatible with other systems?

Economical Feasibility

• “Is the project possible, given resource constraints?”
• What are the benefits?

• Both tangible and intangible
• Quantification requires

• What are the development and operational costs?
• Are the benefits worth the costs?

Schedule Feasibility
• “Is it possible to build a solution in time to be useful?”
• What are the consequences of delay?
• Any constraints on the schedule?
• Can these constraints be met?

Operational Feasibility

• “If the system is developed, will it be used?”
• Human and social issues:

• Potential labor objections?
• Manager resistance?
• Organizational conflicts and policies?
• Social acceptability?
• Legal aspects and government regulations?

34

Comparing Alternatives

• Feasibility Analysis Matrix
– Each cells contains the feasibility assessment notes for each candidate.

• Can be assigned a rank or score for each criterion
– A final ranking or score is recorded in the last row.

35

Feasibility Analysis Matrix

36

Feasibility Analysis Matrix

37

38

4. Requirements Elicitation

Requirements Engineering Process

40

Requirements Elicitation

• There should be a “problem” that needs solving.
– Dissatisfaction with the current state of affairs
– New business opportunity
– Potential saving of cost, time, resource usage, etc.

• Collect enough information to Identify the “problem” and “opportunity”
– Which problem needs to be solved? (identify problem Boundaries)
– Where is the problem? (understand the Context/Problem Domain)
– Whose problem is it? (identify Stakeholders)
– Why does it need solving? (identify the stakeholders’ Goals)
– How might a software system help? (collect some Scenarios)
– When does it need solving? (identify Development Constraints)
– What might prevent us solving it? (identify Feasibility and Risk)

41

Challenges in Requirements Elicitation

42

Problems of Requirements Elicitation

• Vague problem stated by the customer (stakeholders)
– Stakeholders don’t know what they really want.
– Stakeholders express requirements in their own terms.
– Different stakeholders may have conflicting requirements.
– New stakeholders may emerge and the business environment changes.

• Organizational and political factors influence the system requirements.

• The requirements keep changing during the analysis process itself.

43

Stakeholders

• Stakeholder analysis
– Identify all the people who must be consulted during information acquisition
– No specific form of analysis

• Typical stakeholders :

44

User Concerned with the features and functionality of the new system

Designer Want to build a perfect system, or reuse existing code

System Analyst Want to “get the requirements right”

Training and User Support Want to make sure the new system is usable and manageable

Business Analyst Want to make sure “we are doing better than the competition”

Technical Author Will prepare user manuals and other documentation for the new system

Project Manager Wants to complete the project on time, within budget, with all objectives met.

Customer Wants to get best value for money invested

The Requirements Elicitation Activities

1. Requirements Discovery
– Interacting with stakeholders to discover their requirements
– Domain requirements are also discovered at this stage.

2. Requirements Classification and Organization
– Groups related requirements and organizes them into coherent clusters

3. Negotiation and Prioritization
– Resolving requirements conflicts (for user requirements)
– Prioritizing requirements (for system requirements, actually)

4. Requirements Documentation
– Document requirements in a form of annotated requirements list
– Input it into the next round of the spiral

45

Things to Remember When Eliciting Requirements

1. Don’t Lose Sight of the Goal

2. Think Who’s Smart

3. A Single Stakeholder Can’t Speak for All

4. Use Appropriate Elicitation Methods

5. Accept Requirements Changes

6. Manage Elicited Requirements

46

1. Don’t Lose Sight of the Goal

• Establish the system’s vision and scope to reduce the risk of building the wrong system
• Try to obtain early commitment from stakeholders

47

2. Think Who’s Smart

• Don’t try to convince stakeholders that YOU are smart.
• Instead take everybody to show you think the STAKEHOLDER is smart

• Contrast these 2 cases:

48

1. My Elevators Are
Too Slow!

2-1. I See.
Tell Me Why You Feel
They Are Too Slow.

2-2. I Don’t Think So.
I Think You Have an Elevator
Throughput Problem, not a Speed
Problem.

3. A Single Stakeholder Can’t Speak for All

Stakeholder Role

User
• Users of the system and the results of the system
• ALWAYS included
• Often many classes - make sure all are represented

Customer
• People with decision making authority
• ALWAYS included; no project otherwise!
• Often many classes - make sure all are represented
• Closely aligned with marketing function

Marketing
• ESSENTIAL; The experts in the “market”
• Too easy for development to dismiss them
• In a commercial setting, they know the pulse of customers

Subject Matter Experts (SME) • Helpful to learn foundation requirements
• Helpful to alleviate disagreements among stakeholders

Developer • Helpful to learn system implications
• Helpful to learn evolution / maintenance requirements

Development Managers • Knows the development capability and resources

Tester • Useful a bit later in project
• Knows which requirements are testable

Loser Users • People who loses power as a result of the project
• Useful if a system has “loser users”

Technical Writers
Trainers / Customer Support

• Can also help
• Experts in making the system easy to use/teach/explain

49

4. Use Appropriate Elicitation Methods

• Methods for requirements elicitation:
– Interviews
– Role Playing
– Brainstorming
– Requirements Workshop
– Prototyping
– Storyboard
– Survey/Questionnaire
– Use Case

• A single method may not be sufficient.
– Consider requirements’ size, complexity, etc., and select several ones.

50

5. Accept Requirements Changes

• Requirements change is inevitable.
– Clients have right to change requirements.
– The more features the product has, the more customers want.

• Don’t ever ask “Okay, is that your final requirement?”

• Change is not a threat, it’s an opportunity.

51

6. Manage Elicited Requirements

• Record the rationale of each requirement
– Reason why requirement is necessary
– Assumptions on the requirement

• Managing the rationale with annotated requirements lists
– Do not simply rewrite the requirement
– Make it unique for each requirement
– Keep it simple

• Example:
– Requirements : “The truck shall have a height of no more than 14 feet.”
– Rationale : “99% of all U.S. Interstate highway overpasses have a 14-foot or greater clearance.”

52

Techniques for Eliciting Stakeholder Needs

• Requirements Elicitation Methods
1. Requirements workshop
2. Brainstorming
3. Storyboards
4. Interviews
5. Survey/Questionnaires
6. Role playing
7. Prototypes
8. Use-Case

53

1. Requirements Workshop

• Gather all stakeholders together for an intensive and focused period
– Create consensus on the scope, risks and key features of the software system
– Results immediately available
– Outputs:

• Problem statement , Key features , Initial business object model, Use-case diagram , Prioritized risk list, etc.

• Provide a framework for applying other elicitation techniques such as
– Brainstorming, use-case workshops, storyboarding, etc.

54

2. Brainstorming

55

• Rules for Brainstorming
– Clearly state the objective of the session
– Generate as many ideas as possible
– Let your imagination soar
– Do not allow criticism or debate
– Even the impractical, absurd ideas should not be neglected
– Merge the various ideas to create new ideas

• Express freely
– Do not explain or specify the ideas
– Do not evaluate or argue about the ideas
– Do not put names on the ideas
– Encourage the unexpected and imaginative

• Put up ideas openly
– Ideas should be put up on a whiteboard where all can see
– Participants themselves may put up ideas on the board
– Put tabs of Post-Its on the center table

3. Storyboards

• Visually tell and show:
– Who/what the players are (actors)

– What happens to them
– When it happens

• Benefits
– Help gather and refine customer requirements
– Encourage creative and innovative solutions
– Encourage team review
– Prevent features that no one wants
– Ensure that features are implemented

in an accessible and intuitive way
– Ease the interviewing process
– Help to avoid blank-page syndrome

56

4. Interviews

• Provide a simple and direct technique to gain understanding of problems and solutions

• Types of interviews
– Open interview

• No pre-set agenda
• Irrelevant data can be gathered
• Needs time and training

– Closed interview
• Fairly open-questions agenda
• Needs extended preparation
• Prevents biases

• Interview tips
– Avoid asking people to describe things they don’t usually describe

• Example: Describe how to tie your shoes
– Avoid “Why…?” questions
– Ask open-ended (context-free) questions

• High-level abstract questions

57

5. Survey/Questionnaires

• Give access to a wide audience
– Apply to broad markets where questions are well-defined

• Statistical analysis is applicable.
– Powerful, but not a substitute for an interview

• Assumptions:
– Relevant questions can be decided in advance
– Questions phrased, so reader hears as intended

58

6. Role Playing

• Perform requirements elicitation from the viewpoint of the roles
– Learns and performs user’s job
– Performs a scripted walkthrough

• Advantages
– Gain real insights into the problem domain
– Understand problems that users may face

59

7. Prototypes

• Demonstrate some or all externally observable behaviors of a system through building prototypes
quickly

• Used to:
– Demonstrate understanding of the problem domain
– Gain feedback on proposed solution
– Validate known requirements
– Discover unknown requirements
– Create simulations
– Elicit and understand requirements
– Prove and understand technology
– Reduce risk
– Enhance shared understanding
– Improve cost and schedule estimates and feature definitions

60

8. Use-Case

• Text stories of some actors using a system to meet goals
– A mechanism to capture and analyze requirements (from elicitation to analysis)
– Use case is not a diagram, but a text.
– Use cases are requirements, primarily functional (behavioral) requirements.

61

Use Case : Process Sale

Which Techniques to Use?

• No single technique is sufficient for realistic projects.

– Catch Up
• Role Playing
• Interview

– Fuzzy Problem
• Requirements Workshops
• Brainstorming
• Storyboards

– Selling / Teaching
• Use-Case

– Mature
• Questionnaires
• Prototyping

62

What to Do with Elicited Requirements?

• Maintain requirements in lists
– Maintaining a list of requirements can support all activities of requirements.

• Enables you to answer questions such as:
– How many requirements do you have?
– How many high priority requirements do you have?
– What percentage of the requirements deemed high priority by customer X are you satisfying with?
– What percentage of the candidate requirements have you chose to satisfy in your next release? (Actually later)

63

Example of Elicitation Results : A list of (annotated) requirements

64

65

Exercise 1 : Requirements Workshop - Requirements Elicitation

• Let’s do Requirements Workshop to develop a new advanced OOO digital watch next season

– (1) Stakeholder Analysis for finding all relevant stakeholders around 8 ~ 15

– (2) Brainstorming for eliciting new requirements with markers and Post-Its®
• Role playing
• Eliciting about 20~30 ideas
• Organize into 20 requirements
• Categorize with different colors (FR, NFR, Q)

66

Stakeholder (Role) Goals 희망사항

개발팀장 개발노력 ↓ On Time ↑ 퇴사률 ↓ 퇴사율이 떨어지면 좋겠다. 야근을 덜 했으면 좋겠다.
나중에 요구사항 변경이 없어야만 한다.

기획/판매팀장(사장) 영업이익 ↑ 회사평판 ↑

품질팀장 품질 ↑ 테스트노력 ↓

동호회장(사용자) 사용성 ↑ 편의성 ↑ 가격 ↓

…

Basic HW features :
- 4 Buttons , 1 Buzzer , 1 LCD , 1 SW downloadable
- GPS , LTE , Wi-Fi , Bluetooth, 5G, Camera, Sensors
- Any addition/extensions are available.

67

Stakeholders Req. ID Requirements

[1] 시계 사용자 사이에 숫자 야구 게임에 대해 시간/횟수에 대한 스코어링 및 랭킹 시스템 지원

 수심 20M 방수 지원

[2] 최소 6개월 이상의 배터리 수명 보장

 트렌디한 디자인

[3] extensible hw 에 대한 시연 지원

[4] baseball game 외 시계사용법에 대한 메뉴얼 제공

 Watch face 가 변경 가능해야 함

[5] 상품 가격이 20만원이 넘지 않아야 함

[6] 다양한 언어(최소 10개국) 를 지원해야 함

 얇아야 함

[7] 메뉴 사용이 편리해야 함

[8] 스트랩 교체 가능

[9] 1년에 1초 미만의 오차를 보장하는 H/W clock 및 이를 활용하기 위한 인터페이스 지원 필요

[10] 7-segment display로 표현 가능한 언어에 대해서만 지원 가능

 C++ 를 활용한 개발이 가능하도록 관련 Tool 및 Cross compiler 지원

[11] 5명의 테스터가 제품 개발 단계 진행을 위한 테스트를 일주일 이내에 완료될 수 있어야 함.

[12] 100,000대당 1대의 불량률을 구현할 수 있어야 함

 시장 문제 대응 비용을 최소화할 수 있어야 함

[13] Smart Watch 시장의 시장 점유율을 20%이상 점유할 수 있어야 함

[14] 10억 이내의 개발비로 개발이 완료되어야 함

 영업 이익률을 30% 이상 가져갈 수 있어야 함

[15] Additional module 은 3개 이하로 제한

 Camera 는 1 개만 탑재 가능

[16] 배터리 교체는 불가능

[17] color 지원

 360X360 해상도 이상 지원

[18] animatable ui 지원

 hw features 를 테스트하기 위한 환경이 제공되어야함

[19] 시계버튼 반응속도/화면전환 속도가 타사 digital 시계 대비 우수해야함

[20] 배터리 사용시간이 idle 상태에서 5일이상되어야함

CEO

HW Engineer

UI Designer

SW Tester

User (전자시계 동호회 대표)

백화점 판매팀장

상품기획팀장

HW/UX Designer

SW Engineer

Product Quality Manager

The Brainstorming Result after Consolidation (after discussion)

68

5. Requirements Negotiation

Requirements Engineering Process

70

Needs for Requirements Negotiation

• Requirements are negotiated to achieve mutually satisfactory agreements.
– Users, customers, managers, domain experts, and developers share different skills, backgrounds and

expectations.
– Requirements emerge from a process of co-operative learning in which they are explored, prioritized,

negotiated, evaluated, and documented.

• [Fisher & Ury, “Getting to Yes,” 1981]
– “Negotiating an agreement without giving in”
– 4-step solution approach

• Separate the people from the problem
• Focus on interests, not positions
• Invent options for mutual gain
• Insist on using objective criteria

71

WinWin Negotiation

• The WinWin approach
– A set of principles, practices and tools
– Enabling a set of interdependent stakeholders to work out

a mutually satisfactory (win-win) set of shared commitments
– Win-lose generally becomes Lose-lose.

• Nobody wins in these situations.

72

Key Concepts in WinWin

• Win Condition: objective which makes a stakeholder feel like a winner
• Issue: conflict or constraint on a win condition
• Option: a way of overcoming an issue
• Agreement: mutual commitment to an option or win condition

• WinWin Equilibrium State
– All Win Conditions are covered by Agreements
– No outstanding Issues

73

Steps of WinWin

1. Identify success-critical stakeholders
2. Identify stakeholders’ win conditions
3. Identify issues conflicting win conditions
4. Negotiate top-level win-win agreements

– Invent options for mutual gain
– Explore option tradeoffs
– Manage expectations

5. Embody win-win agreements into specs and plans
6. Elaborate steps 1-5 until product is fully developed

– Confront, resolve new win-lose, lose-lose risk items

74http://csse.usc.edu/csse/research/easy_win_win/

75

Exercise 2 : Requirements Workshop - Requirements Negotiation

• Let’s do Requirements Workshop
– To develop a new advanced OOO digital watch next season

– (1) Stakeholder Analysis
– (2) Brainstorming

– (3) Negotiating Requirements (WinWin Negotiation)
• Role playing
• Preparation for the Workshop :

– List-up the requirements derived from the previous requirements workshop
– Vote for each requirement : O, X

• Preparation for the WinWin negotiation :
– For each, clarify the reason (issue) and possible solutions (option) for your “X”

• Negotiation :
– Discuss to find out what others think about the requirements I proposed
– Revise requirements by agreement or discard to reach WinWin equilibrium state

76

77

Stakeholders Req. ID Requirements

[1] 시계 사용자 사이에 숫자 야구 게임에 대해 시간/횟수에 대한 스코어링 및 랭킹 시스템 지원

 수심 20M 방수 지원

[2] 최소 6개월 이상의 배터리 수명 보장

 트렌디한 디자인

[3] extensible hw 에 대한 시연 지원

[4] baseball game 외 시계사용법에 대한 메뉴얼 제공

 Watch face 가 변경 가능해야 함

[5] 상품 가격이 20만원이 넘지 않아야 함

[6] 다양한 언어(최소 10개국) 를 지원해야 함

 얇아야 함

[7] 메뉴 사용이 편리해야 함

[8] 스트랩 교체 가능

[9] 1년에 1초 미만의 오차를 보장하는 H/W clock 및 이를 활용하기 위한 인터페이스 지원 필요

[10] 7-segment display로 표현 가능한 언어에 대해서만 지원 가능

 C++ 를 활용한 개발이 가능하도록 관련 Tool 및 Cross compiler 지원

[11] 5명의 테스터가 제품 개발 단계 진행을 위한 테스트를 일주일 이내에 완료될 수 있어야 함.

[12] 100,000대당 1대의 불량률을 구현할 수 있어야 함

 시장 문제 대응 비용을 최소화할 수 있어야 함

[13] Smart Watch 시장의 시장 점유율을 20%이상 점유할 수 있어야 함

[14] 10억 이내의 개발비로 개발이 완료되어야 함

 영업 이익률을 30% 이상 가져갈 수 있어야 함

[15] Additional module 은 3개 이하로 제한

 Camera 는 1 개만 탑재 가능

[16] 배터리 교체는 불가능

[17] color 지원

 360X360 해상도 이상 지원

[18] animatable ui 지원

 hw features 를 테스트하기 위한 환경이 제공되어야함

[19] 시계버튼 반응속도/화면전환 속도가 타사 digital 시계 대비 우수해야함

[20] 배터리 사용시간이 idle 상태에서 5일이상되어야함

CEO

HW Engineer

UI Designer

SW Tester

User (전자시계 동호회 대표)

백화점 판매팀장

상품기획팀장

HW/UX Designer

SW Engineer

Product Quality Manager

The Brainstorming Result after Consolidation (Discussion)

78

for each requirement,

The WinWin Analysis for Each Requirement for Each

79

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]

User (전자시계 동호회 대표) O O O O O O O O O X O O O O X X O O O O

백화점 판매팀장 O O O O O O O O O X O O O O X X O O O O

상품기획팀장 O O O X O O O O O X O O X O X X O O O O

HW/UX Designer O O O O O O O O O O O O O X O O O O O O

SW Engineer X O O O O X O O O O X X O X O O O X X X

Product Quality Manager O O X O O X O O O O O O O O O O O O X O

CEO O O X O O O O O O O O O O O O O O O O O

HW Engineer O X O O X O O X O O O X O X O O X O O X

UI Designer X O O X O X O O O X O O O O O O O O O O

SW Tester X O O O O X O O O O X O O X O O X X O O

Candidate Requirements
Stakeholders

Stakeholders
[2] 최소 6개월 이상의 배터리 수명 보장되면 좋겠습니다.

[2] Issues Options Agreements Total Agreement

User
(전자시계 동호회
대표)

O
스마트 워치의 경우 경쟁
모델과 비교했을 때에 3-4
일 정도의 배터리 수명이
면 받아들일 수 있음

1일 1시간 이내의 Display
사용 환경에서, 4일의

배터리 사용 시간 지원한
다.

백화점 판매팀장 O
상품기획팀장 O
HW/UX Designer O
SW Engineer O

Product Quality
Manager X “최소 6개월 사용”을 측정

할 수 있는 방법이 없다.
1일 연속 OO시간 사용한
다는 기준이 있어야 한다.

1일 1시간 사용을 품질기
준으로 한다.

CEO O

HW Engineer X
Additional module 이 많
기 때문에 소모 전류가 높
을 수 밖에 없음

현 기술로는, 한번 충전으
로 최대 4일 가능

UI Designer O
SW Tester O

The WinWin Analysis for Each Requirement for Each

X

80

The WinWin Negotiation Table

Original requirements

Modified requirements
in a full sentence

The reason why I dislike this requirement My own solution
for my dislike

Modified solution
reflecting other’s opinion

Positive opinions may be affected
after discussion

81

Stakeholders Req. ID Requirements

[1] 숫자 야구 게임에 대해 시간/횟수에 대한 개인 스코어링 및 랭킹 시스템 지원

[2] 1일 1시간 이내의 Display 사용 환경에서 4일의 베터리 사용 시간 지원

[3] 전국 주요 대도시 및 10대 백화점 위주 extensible hw 에 대한 시연 지원 (사용자는 관람만 가능)

[4] baseball game 외 시계사용법에 대한 온라인 메뉴얼 제공

[5] GPT, LTE, WIfi를 필수로 포함하는 상품 가격이 33만원이 넘지 않아야 함

[6] SW 개발 기간을 1개월 연장하는 조건으로, 다양한 언어(최소 10개국) 를 지원해야 함. 4개국 언어 품질 확보 후 이후 지원국가 언어 품질 확보.

[7] 메뉴 사용이 편리해야 함

[8] 교체 가능한 스트랩을 2개 선출시한다. 선 출시 후 신규 스트랩을 지속적으로 개발한다.

[9] 1년에 1초 미만의 오차를 보장하는 H/W clock 및 이를 활용하기 위한 인터페이스 지원 필요

[10] (Drop. 사유: LCD 필수 요구사항) 7-segment display로 표현 가능한 언어에 대해서만 지원 가능

[11] 5명의 테스터가 제품 개발 단계 진행을 위한 테스트를 8일 이내에 완료될 수 있어야 함. SW 개발자는 11일 내에 버그를 해결해야 한다.

[12] HW 불량률은 80,000대당 1대를 구현한다. SW 불량률은 별도로 산정하며 불량 발생시 패치를 통하여 업데이트를 지원한다.

[13] Smart Watch 시장의 시장 점유율을 20%이상 점유할 수 있어야 함

[14] 재료비 기준으로 10억 이내의 개발비로 개발이 완료되어야 함

[15] Additional module 은 4개 이하로 제한

[16] 탈착식 배터리 교환 미지원. 고속 충전 지원 및 서비스 센터를 통한 노후 베터리 교체 지원

[17] color 지원. (개발 비용 1억 증가, HW 개발 일정 4주 증가, 테스트 일정 1주 증가)

[18] animatable ui 지원 (SW 개발자 2명 추가 및 개발 일정 2개월 연장, 테스트 일정 1주 증가)

[19] 시계버튼 반응속도/화면전환 속도가 현존하는 타사 digital 시계 대비 동등 수준 달성

[20] 배터리 사용시간이 idle 상태에서 5일이상되어야함

CEO

HW Engineer

UI Designer

SW Tester

User (전자시계 동호회 대표)

백화점 판매팀장

상품기획팀장

HW/UX Designer

SW Engineer

Product Quality Manager

The Negotiation Result (for reference, but not correct)

82

6. Requirements Analysis

Requirements Engineering Process

84

• Requirements analysis through requirements models
• Requirements prioritization
• Requirements selection (Triage)

Requirements Modeling

• Requirement models to understand the requirements well
– Help stakeholders to understand the requirements
– Guide elicitation
– Provide a measure of progress
– Help to uncover problems
– Help us check our understanding

• Features of good requirements models
– Complete

• Modeling guides elicitation
• Completeness of the model leads to completeness of elicitation

– Consistency
• Modeling uncovers problems
• Inconsistency in modeling implies omission, conflict, disagreement and ambiguity

– Testability
• Modeling checks for expected qualities and predicts end result

85

A Traditional Survey on Modelling Techniques

• Modelling Enterprises
– Goals & objectives
– Organizational structure
– Tasks & dependencies
– Agents, roles, intentionality

• Modelling Information & Behavior
– Information Structure
– Behavioral views

• Scenarios and Use Cases
• State machine models
• Information flow

– Timing/Sequencing requirements

• Modelling System Qualities (NFRs)
– All the ‘ilities’:

• usability, reliability, evolvability, safety,
security, performance, interoperability,

86

Organization modelling:
i*, SSM, ISAC

Goal modelling:
KAOS, Korea

Information modelling:
E-R, Class Diagrams

Structured Analysis:
SADT, SSADM, JSD → SASD

Object Oriented Analysis:
OOA, OOSE, OMT → OOAD & UML

Formal Methods:
SCR, NuSCR, Statecharts, MSC, SDL, Z, Larch, VDM…

Quality tradeoffs:
QFD, win-win, AHP

Specific NFRs:
Timed Petri nets (performance)
Task models (usability)
Probabilistic MTTF (reliability)

The State-of-the-Art Requirements Modeling Methods

1. Structured analysis
– Data Flow Diagram (DFD)

+ Finite State Machine (FSM)
– Entity-Relation Diagram (ERD)

2. Use-Case analysis
– Use-Case Modeling (UC)

+ Sequence Diagram (SD)

3. Goal and Scenario based analysis
– Goal-Scenario Modeling (GS)
– Goal-Tree Analysis

87

FR - Procedural System

FR - Procedural System

FR - Object Oriented System

FR - Business Things

NFR - Quality

Software

Software System

Software System
FR - All Systems

1. Structured Analysis

• Structured analysis [Kendall 1996]

– A set of techniques and graphical tools
• Allowing the analysts to develop a new kind of system specification that are easily understandable to the users.

– Data/Functional modeling: DFD, ERD
– State-oriented modeling: STD (FSM)

• Analysts attempt to divide large, complex problems into smaller, more easily handled ones.
– Top-Down Divide and Conquer approach

88

Data Flow Diagram (DFD)

• Provides a means for functional decomposition
– Composed of hierarchies (levels) of DFDs

• Model Elements

89

Data Process

Control Process

Terminator

Data Store

Data Flow

Control Flow

DFD Level 0 - RVC Example

• System context diagram

90

RVC
Control

0

Front Sensor Motor

Cleaner

Direction

Clean

Left Sensor

Right Sensor

Dust Sensor

Front Sensor Input

Left Sensor
Input

Right Sensor
Input

Dust Sensor Input

Digital Clock

Tick

DFD Level 0 - RVC Example

• (A kind of) Data Dictionary

91

Input/ Output
Event Description Format / Type

Front Sensor Input Detects obstacles in front of the RVC True / False , Interrupt

Left Sensor Input Detects obstacles in the left side of the RVC periodically True / False , Periodic

Right Sensor Input Detects obstacles in the right side of the RVC periodically True / False , Periodic

Dust Sensor Input Detects dust on the floor periodically True / False , Periodic

Direction Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle) Forward / Left / Right / Stop

Clean Turn off / Turn on / Power-Up On / Off / Up

DFD Level 1 - RVC Example

92

Obstacle &
Dust

Detection
1

Front Sensor Input

Left Sensor
Input

Right Sensor
Input

Dust Sensor Input

Tick

Obstacle & Dust
Location

Cleaner &
Motor

Control
2

Direction

Clean

DFD Level 2 - RVC Example

93

Determine
Obstacle
Location

1.5

Front Sensor Input

Left Sensor Input

Right Sensor Input

Dust Sensor Input

Tick

Obstacle
Location

Front
Sensor

Interface
1.1

Left
Sensor

Interface
1.2

Right
Sensor

Interface
1.3

Dust
Sensor

Interface
1.4

Tick

Tick

Front Obstacle

Left Obstacle

Right Obstacle

Determine
Dust

Existence
1.6

Dust Existence

Dust
Existence

DFD Level 2 - RVC Example

94

Obstacle
Location

Dust
Existence

Main
Control

2.1

Motor Command

Cleaner Command

Motor
Interface

2.2

Cleaner
Interface

2.3

Tick

Direction

Clean

DFD Level 3 - RVC Example

95

Obstacle
Location

Dust
Existence

Controller
2.1.1

Motor Command

Cleaner Command

Tick Move
Forward

2.1.2

Turn Left
2.1.3

Turn
Right
2.1.4

Motor Command

Motor Command

Enable

Disable

Trigger

Trigger
Tick

Tick

DFD Level 4 - RVC Example

• FSM for Controller 2.1.1

96

Move
Forward

Turn RightTurn Left

/ Enable “Move Forward”, Cleaner Command (On)

Tick [F && !R]
/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Right”

Tick
/ Enable “Move Forward”,
Cleaner Command (On)

Tick [F && !L]
/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Left”

Tick
/ Enable “Move Forward”,
Cleaner Command (On)

Stop

Tick [F && L && R]
/ Disable “Move Forward”,
Cleaner Command (Off),

This model has many seeded problems
1. “Stop” state is not normal
2. Do not consider “Dust”
3. …

DFD - RVC Example

97

E-R Modeling

• A graphical representation of the data layout of a system at a high level of abstraction
– Defines data elements and their inter-relationships in the system.
– Similar with the class diagram in UML.

• Model Elements

98

Relation
Type

Entity AttributeRelationship

E-R Modeling

• Shopping process at Malls

99

고객

등록

회원

작성

구매 상품확인배송(장)

주문(서)

M

1
1 M

M

1

1M

주민번호 성명 주소 전
화번호 e-mail

ID PW 주민번호
성명 주소 연락처

e-mail

제품번호 분류 품명 규
격 단가

주문번호 제품번호 품명 규격
수량 금액 주소

송장번호 고객명 품
명 주소

2. Use Case Analysis

• Use cases are text stories of some actors using a system to meet goals.
– A mechanism to capture (analyzes) requirements
– Use case is not a diagram, but a text.

• Use cases are requirements, primarily functional (behavioral) requirements.

100

Use Case Diagram

• Use case diagram illustrates the name of use cases and actors, and the relationships between them.
– System context diagram
– A summary of all use cases

101

Actor

Use-Case

Something with behavior, such as a person,
computer system, or organization

- Primary Actor : has user goals fulfilled
through using services of the SuD (System
Under Discussion) , e.g., cashier

- Supporting Actor : provides a service to the
SuD, e.g., payment authorization service

- Offstage Actor : has an interest in the behavior
of the use case, but is not primary or
supporting, e.g., tax agency

Three Common Use Case Formats

• Brief :
– Terse one paragraph summary, usually the main success scenario or a happy path

• Casual :
– Informal paragraph format.
– Multiple paragraphs that cover various scenarios.

• Main
• Alternatives
• Exceptional

102

• Fully Dressed :
– Includes all steps, variations and supporting sections (preconditions, postconditions)

103

Example: Process Sale, Fully Dressed Style

104

105

106

107

Use Case 1. Make Reservation

Actors Librarian

Description

- This use case begins when a borrower arrives at the counter and then requests
reservation.

- For a registered borrower, it makes a reservation slip (software-wise).
- For an unregistered borrower, the librarian registers the person and makes a

reservation for the person.

Use Case 1. Make Reservation

Actor Librarian (Evident)

Purpose (As in the Inception)

Overview (As in the Inception)

Type Primary and Casual

Cross Reference System Functions: R1.1, R3.1
Use Case: “Add Borrower”

Pre-Requisites Borrower should have an id_card.

Typical Courses of
Events

(A) : Actor, (S) : System
1. (A) A librarian requests the reservation of a title
2. (S) Check if a corresponding title exists
3. (S) Check if a corresponding borrower exists
4. (S) Create a reservation information

Alternative Courses
of Events

Line 3: (S) If the borrower’s information is out of date, request for the update.
(A) A librarian updates up-to-date information of the borrower.

Exceptional Courses
of Events Line 1~3: If invalid reservation information is entered, indicate an error.

Librarian

makeReservation()

:System

Display(“Error!!!”)

Display(“Reservation OK!”)

[에러 상황]

[정상 상황]

updateUserInformation()
[Alternative 상황]

System Operation

System Sequence Diagram (SSD)

Use-Case (Brief)

Use-Case (Casual)

108

Use Case 1. Make Reservation

Actor Librarian

Purpose Create a new reservation

Overview (As before)

Type Primary and Fully-Dressed

Cross Reference System Functions: R1.1, R3.1
Use Case: “Add Borrower”

Pre-Requisites A borrower should be registered.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an isbn and ssn of the title
2. (S) Find a corresponding title
3. (S) Find a corresponding borrower
4. (S) Create a new reservation
5. (S) Store the new reservation
6. (S) Increase reservationCount in the borrower
7. (S) Increase reservationCount in the title

Alternative Courses of
Events

Line 3: (S) If the borrower’s information is out of date, request for the update.
(A) A librarian updates up-to-date information of the borrower.

Exceptional Courses of
Events

Line 2: If the title does not exist, display an error message.
Line 3: If the borrower does not exist, display an error message.

Database

-Title: Map
+Item: Map
+Borrower: Map
+Loan: Map
+Reservation: Map

+searchTitleDB(isbn: ISBNType): Title
+addTtileDB(titleRef: Title): Void
+removeTitleDB(titleRef: Title): Void
+updateTitleDB(titleRef: Title): Void
+searchItemDB(itemID: String): Item
+addItemDB(itemRef: Item): Void
+removeItemDB(itemRef: Item): Void
+updateItemDV(itemRef: Item): Void
+searchBorrowerDB(ssn: String): Borrower
+addBorrowerDB(borrowerRef: Borrower): Void
+removeBorrowerDB(borrowerRef: Borrower): Void
+updateBorrowerDB(borrowerRef: Borrower): Void
+searchLoanDB(itemID: String): Loan
+searchLoanDB(borrwerRef: Borrower): Loan
+addLoanDB(loanRef: Loan): Void
+updateLoanDB(loanRef: Loan): Void
+searchReservationDB(isbn: ISBNType): Reservation
+searchReservationDB(titleRef: Title): Reservation
+searchReservationDB(borrowerRef: Borrower): Resrvation[]
+addReservationDB(reservationRef: Reservation): Void
+removeReservationDB(reservationrRef: Reservation): Void
+validateDB(userID: String, password: String): Void

Item

+itemID: String
+available: Boolean
+lost: Boolean

+isBorrowed(): Boolean
+setLost(flag: Boolean): Void
+searchItem(itemID: String): Item
+addItem(itemRef: Item): Void
+updateItem(itemRef: Item): Void
+removeItem(itemRef: Item): Void
+setAvailable(flag: Boolean): Void
+getTitle(itemRef: Item): Title

Manages

1*

Loan

+checkInDate: Date
+checkOutDate: Date
+lateReturnFee: Integer
+validLoan: Boolean
+LoanCount: Long

+setValidLoan(flag: Boolean): Void
+calculateLateReturnFee(loanPeriod: Integer): Integer
+calculateReplacementFee(price: Float): Integer
+searchLoan(itemID: String): Loan
+searchLoan(borrowerRef: Borrower): Loan
+addLoan(loanRef: Loan): Void
+updateLoan(loanRef: Loan): Void
+decreaseLoanCount(): Void
+increaseLoanCount(): Void
+getNumOfLoan(): Void
+getItem(LoanRef: Loan): Item

Refer To

0..1

1

Librarian

+name: String
+userId: String
+password: String
+logInFlag: Boolean

+validate(userI: String, password: String)
+logOut(userID: String)

Manages

1

*

Manages 1

*

Borrower

+name: String
+ssn: String
+address: String
+reservationCount: Integer
+loanCount: Integer

+increaseLoanCount(): Void
+decreaseLoanCount(): Void
+increaseReservationCount(): Void
+decreaseReservationCount(): Void
+searchBorrower(ssn: String): Borrower
+addBorrower(borrowerRef: Borrower): Void
+removeBorrower(ssn: String): Void
+updateBorrower(borrwerRef: Borrower): Void

Has

1

0..*

Manages

1

*

Reservation

+reserveDate: Date

+searchReservation(isbn: ISBNType): Reservation
+searchReservation(titleRef: Title): Reservation
+searchReservation(borrowerRef: Borrower): Reservation[]
+addReservation(reservationRef: Reservation): Void
+removeReservation(reservationRef: Reservation): Void
+printNotifyCard(titleRef: Title): Void
+printCard(resrvationRef: Reservation): Void
+getTitle(reservationRef: Reservation): Title

Has

0..*

1

Manages+1

+*

Title

+name: String
+isbn: ISBNType
+price: Flot
+loanPeriod: Integer
+numOfItem: Integer
+availalbeCount: Integer
+reservationCount: Integer

+increaseAvailableCount(): Void
+decreaseAvailableCount(): Void
+increaseNumOfItem(): Void
+decreaseNumOfItem(): Void
+getNumOfItem(): Integer
+getPrice(): Float
+getLoanPeriod(): Integer
+getNewItemID(): String
+searchTitle(isbn: ISBNType): Title
+addTitle(titleRef: Title): Void
+removeTitle(titleRef: Title): Void
+updateTitle(titleRef: Title): Void
+isReserved(titleRef: Title): Boolean
+increaseReservationCount(): Void
+decreaseReservationCount(): Void

Manages

1 *

copy of

1

1..*

Refer to

1

0..*

Book

+author: String

Magazine

+publishCycle: String
+month: StringController

+mkaeReservation()
+removeReservation()
+LendItem()
+returnItem()
+getReplacementFee()
+addTitle()
+removeTitle()
+updateTitle()
+addItem()
+removeItem()
+updateItem()
+addBorrower()
+removeBorrower()
+updateBorrower()
+log-In()
+log-Out()
+countLoans()

Use-Case (Fully Dressed)

Design Class Diagram

UI (Prototype)

Use-Case Diagrams : An Example with Subsystems

109

110

Exercise 3 : Use Case Analysis

• Identify actors and use cases for the new OOO advanced digital watch
– Sketch a use-case diagram and descriptions for some important use cases, as detail as possible (casual format).
– Use a UML tool
– Each use case should link to user requirements defined at the Exercise 1 and 2.

111

UC01: Setting current time

수준 사용자 목적

주요 액터 User

사전 조건 시스템이 동작 중이며, 현재 시간을 표시하고 있다. 알람이 울리고 있지 않은 상태이다.

사후 조건 시스템에 현재 시간에 대한 정보(연, 월, 일, 시, 분, 초, 요일)가 갱신된다.

주요 시나리오

1. User는 시스템의 시간 정보를 설정하기 위해 A버튼을 입력한다.

3. User는 설정하려는 시간 정보의 항목을 선택하기 위해 C버튼을

입력한다.

User는 설정하려는 시간 정보 항목이 선택될 때까지 3-4를 반복

한다.

5. User는 선택한 항목의 값을 변경하기 위해 B버튼을 입력한다.

 User는 선택한 항목의 값이 변경하려는 값에 도달할 때까지 5-6

을 반복한다.

7. User는 원하는 시간 정보를 설정하였음을 확인하고 A버튼을 입력

한다.

2. 시스템은 시간 정보 항목 중 ‘초’ 항목이 변경 가능하도록 선택하

고, 해당 항목을 깜빡이게 출력한다.

4. 시스템은 다른 시간 정보 항목을 선택하고, 선택된 항목을 깜빡

이게 출력한다.

6. 시스템은 선택된 항목의 값을 증가시키고, 이를 화면에 출력한다.

8. 시스템은 현재 시간 설정을 종료하고, 현재 시간을 출력한다.

확장 시나리오

1-6a. 언제든지, User가 현재 시간 설정을 종료하기를 원하는 경우

 1. User는 A버튼을 입력한다.

2. 시스템은 현재 시간 설정을 종료하고, 현재 시간을 출력한다.

5-6a. User가 선택한 항목의 값이 변경하려는 값을 초과한 경우

1. User는 선택한 항목의 값을 변경하기 위해 B버튼을 입력한다.

User는 선택한 항목의 값이 최대값에 도달할 때까지 1-2를 반

복한다.

 3. User는 선택한 항목의 값이 최대값에 도달했음을 확인하고, B버

튼을 입력한다.

5. User는 선택한 항목의 값이 변경하려는 값에 도달할 때까지 1-

2를 반복한다.

2. 시스템은 선택된 항목의 값을 증가시키고, 이를 화면에 출력한다.

4. 시스템은 선택된 항목의 값을 최소값으로 변경한다.

112

Use Case 2. Set Current time

Actors User

Description

- 연/월/일/요일/시간을 설정한다
- 특정키 입력시 연 > 월 > 일 > 요일 > 시 > 분 > 초 순으로 입력 순서가 변경된다.
- 특정키 입력시 현재 선택된 입력 값이 순서대로 증가한다.
- 특정키 입력시 현재 편집된 시간을 적용하고 현재 시간 표시 화면으로 전환한다.
- 설정 중 일정시간 동안 입력이 없을 경우 설정을 취소한다.

Pre-Requisites 현재 시간 표시 모드일 경우

Typical Courses of Events

1. (A) : 편집모드 버튼을 누른다.
2. (S) : 편집모드 화면으로 전환된다.
3. (S): 커서를 연 위치로 이동한다.
4. (A): 증가 버튼을 눌러 연을 맞춘다.
5. (S) : 증가된 값을 표시한다.
6. (A): 커서 위치를 변경한다.
7. (S) : 커서 위치를 반복한다.
8. 위 내용을 초까지 반복한다.
9. (A) : 저장 버튼을 누룬다.
10. (S) : 시간을 저장하고 현재 시간을 표시한다.

Alternative Courses of Events
Line 1~8 : (S) : 다른모드의 이벤트가 발생함

(A) : 확인 버튼을 누른다.
(S) : 설정 화면을 보여준다.

Exceptional Courses of Events Line 1~8 : (S) : 일정시간 키 입력이 없을 경우 현재 입력된 값을 취소하고 원래 시간을 표시한다.
Line 1~8 : (S) : 취소 버튼을 누를 경우 현재 입력된 값을 취소하고 원래 시간을 표시한다.

Use Case 2. Set Current time

Actors User

Description

- 연/월/일/요일/시간을 설정한다
- 특정키 입력시 연 > 월 > 일 > 요일 > 시 > 분 > 초 순으로 입력 순서가 변경된다.
- 특정키 입력시 현재 선택된 입력 값이 순서대로 증가한다.
- 특정키 입력시 현재 편집된 시간을 적용하고 현재 시간 표시 화면으로 전환한다.
- 설정 중 일정시간 동안 입력이 없을 경우 설정을 취소한다.

Use-Case (Brief)

Use-Case (Casual)

113

3. Goal-Scenario Based Analysis

• An analysis using goal and scenario models to express and refine requirements
– Provides rationale for the requirements
– Supports requirements analysis through scenarios

• Story-line and example-based description
– Refines goals through scenarios

• Model Elements

114

Name

G

ScX.X……
ScX.X……
……………

Sc

ScenarioGoal Refined Co-achieve
the parent goal

‘OR’ Relation

Goal & Scenario

• Goal
– High-level abstraction requirements
– Example: “유비쿼터스 기술이 접목된 ATM 서비스를 제공한다.”

• Scenario
– Purposeful interaction between entities
– Example: “사용자는 ATM으로부터 현금을 인출한다.”

• The relationship between goal and scenario
– Goals are achieved by scenarios
– Goals are explained by scenarios

• Goals are abstract
• Scenarios are concrete

115

Goal & Scenario Modeling

• Inputs: Initial requirements (high-level user requirements)
• Outputs: Goal-Tree

– Abstraction levels provide separation of concern and levels of goal & scenario modeling

• The 4 abstraction levels
– Business : represents the ultimate purpose of a system
– Service : represents the services that a system should provide to an organization and the rationale
– Interaction : represents the interaction between system and external agent (user or external system)
– Internal : represents what the system needs to perform the interactions selected at the user level

116

Business

Service

Interaction

Internal
A system boundary

Example of G&S Modeling

• A partial example of an ATM system

117

Business Level

Service Level

Interaction
Level

Internal Level

유비쿼터스 환경을 지원하는 ATM 서비스를 제공한다

핸드폰을 이용하여 현금 인출
서비스를 제공한다.

핸드폰에 ATM서비스 화면을 구현한다.

인출기능을 선택한다

인출금액을
결정한다.

인출확인 메시지를
전송한다

고객에게
현금을 전달한다.

G1

RC1.1

RC1.1.1

RC1.1.2.1

RC1.1.2.2

RC1.1.2.3 RC1.1.2.4 RC1.1.2.5

핸드폰을 이용하여 고객의
유효성을 확인한다

핸드폰을 이용하여
현금을 인출한다

은행에 연결한다

트랜젝션 정보를
전송한다.

RC1.1.3.1

RC1.1.3..2

RC1.1.2

가까운 ATM의 위치정보를
제공한다.

RC1.2

트랜젝션 정보를
은행에 보고한다.

RC1.1.3

118

(핸드폰을 이용하여)way (ATM으로부터)direction
(현금을)target (인출한다)action

SC1.1

RC1.1.2

1. (ATM이)subject (고객의 핸드폰에)direction (ATM 서비스 화면을)target (전송한다)action
2. (핸드폰은)subject (고객에게)direction (ATM서비스 화면을)target (출력한다)action
3. (고객이)subject (인출기능을)target (선택한다)action
4. (핸드폰이)subject (고객에게)direction (인출금액 입력화면을)target (출력한다)action
5. (고객이)subject (핸드폰에)direction(인출금액을)target (입력한다)action

만약 인출금액이 올바르면 (state)
6. (핸드폰은)subject (고객에게)direction (인출확인 메세지를)target (전송한다)action
7. (ATM이)subject (고객에게)direction (현금을)target (전달한다.)action

Goal (Goal-Tree) Analysis

• Goal-Tree Analysis
– Focus on why a system is required, expressing the ‘why’ as a set of stakeholder goals
– Goal refinement to arrive at specific requirements

• Document, organize and classify goals
– Goal evolution

• Refine, elaborate, and operationalize goals
– Goal hierarchies show refinements and alternatives
– Goal-Tree visualizes goal analysis

• Pros
– Reasonably intuitive

• Explicit declaration of goals provides sound basis for conflict resolution

• Cons
– Captures a static picture - what if goals change over time?

• Can regress forever up (or down) the goal hierarchy

119

Example : Goa-Tree Modeling

120

Goal-Tree Analysis

• Goal Elaboration
– “Why” questions explore higher goals (context)
– “How” questions explore lower goals (operations)
– “How else” questions explore alternatives

• Relationships between goals
– One goal helps achieve another (+)
– One goal hurts achievement of another (-)
– One goal makes another (++)

• Achievement of goal A guarantees achievement of goal B
– One goal break another (--)

• Achievement of goal A prevents achievement of goal B

121

Goal-Tree Analysis on Quality Attributes

• Quality Attributes for “Train System” :
– Convenience, Benefit, Cost, Safety

• Goals identified from requirements elicitation :

122

Serve more
passengers

Minimize
costs

Minimize
operation

costs

Minimize
development

cost

Reducing
staffing

Improve
safety

Maintain
safe

distance

Clearer
signaling

Maintain
passenger

comfort

Goal-Tree Analysis

• After requirements analysis :

123

Serve more
passengers

Minimize
costs

Minimize
operation

costs

Minimize
development

cost

Reducing
staffing

Improve
safety

Maintain
safe

distance

Clearer
signaling

Maintain
passenger

comfort

Automate
braking

Add new tracksIncrease train
speed

More frequent
trains

Automated
collision

avoidance

Hire more
operators

Buy new rolling
stock

Buy brand-new
signals

-

++

+

-

++

++

-

+
-

- +

-

124

Exercise 4: Goal-Tree Analysis

• Perform goal-tree analysis for the NEW OOO Advanced Digital Watch
– Select 5~6 soft goals(Quality) from the Exercise 1-1 and 2-1
– Construct a goal-tree for each quality goal with the detail functional requirements derived from Exercise 3-1
– Construct a combined goal-tree marked with (+ - ++ --)

125

126

Requirements Prioritization

• Need to select what to implement, after analyzing requirements
– Customers (usually) ask for too much
– Balance time-to-market with amount of functionality
– Decide which features go into the next release

• For each requirement/feature, ask:
– How important is this to the customer?
– How much will it cost to implement?
– How risky will it be to attempt to build it?

• Perform Triage:
– Some requirements must be included
– But, some requirements should definitely be excluded

127

A Cost-Value Approach

• Calculate return on investment (ROI)
1. Assess each requirement’s importance (value) to the project as a whole
2. Assess the relative cost of each requirement
3. Compute the cost-value trade-off:

128

Visualizing Value by Stakeholder

129

Estimating Cost & Value

• Two approaches:
– Absolute scale (e.g., dollar values)

• Requires much domain experience
– Relative values (e.g., less/more; a little, somewhat, very)

• Much easier
• Prioritization becomes a sorting problem

– Bubble sort
– Binary sort
– MST (Minimum Spanning Tree)

130

Complications on Estimation

• Hard to quantify differences quantitatively
– Easier to say “x is more important than y” than to estimate by how much

• Not all requirements comparable
– E.g., different levels of abstraction
– E.g., core functionality vs. customer enhancements

• Requirements may not be independent
– No point selecting between X and Y if they are mutually dependent

• Stakeholders may not be consistent
– E.g., if X > Y, and Y > Z, then presumably X > Z ?

• Stakeholders might not agree
– Different cost/value assessments for different types of stakeholder

131

Analytic Hierarchy Process (AHP)

1. Create n x n matrix for n requirements
– For element (x, y) in the matrix enter:

• 1 : if x and y are of equal value
• 3 : if x is slightly more preferred than y
• 5 : if x is strongly more preferred than y
• 7 : if x is very strongly more preferred than y
• 9 : if x is extremely more preferred than y

– For (y, x), enter the reciprocal.
2. Estimate the eigenvalues:

– Use your own approach (strategy, heuristics)
– E.g., “averaging over normalized columns”

1. Calculate the sum of each column
2. Divide each element in the matrix by the sum of its column
3. Calculate the sum of each row
4. Divide each row sum by the number of rows

– This gives a value for each requirement:
• Giving the estimated percentage of total value of the project

132

Considerations in Requirements Prioritization

• Find factors that affects priority:
– How much does the customer want it?
– How much cost to develop?
– How much time to deliver?
– How technologically difficult?
– How organizationally difficult?
– How much will the business benefit?
– Relevant quality factors

• Not all factors apply to all projects
– Each factor’s importance varies from project to project
– ‘Relative’ importance is different to everyone

• Include all major stakeholders:
– We need to prioritize the requirements in collaboration with the customers and developers
– We must decide on a subset of requirements to be first implemented among various stakeholder interests
– We need to remember that more influence is exercised by a particular group of stakeholders

133

Requirements Prioritization Methods

• Ranking
– When you rank requirements on an ordinal scale, you give each one a different numerical value based on its

importance.
• For example, the number 1 can mean that the requirement is the most important and the number n can be assigned to the

least important requirement, n being the total number of requirements.

• Numerical Assignment (Grouping)
– This method is based on grouping requirements into different priority groups with each group representing

something stakeholders can relate to.
• For example, requirements can be grouped into critical priority, moderate priority and optional priority.

• MoSCoW Technique
– Instead of numbers, this method uses four priority groups:

• MUST (Mandatory)
• SHOULD (High priority)
• COULD (Preferred but not necessary)
• WOULD (Can be postponed and suggested for future execution)

134

• Bubble Sort Technique
– To prioritize requirements using bubble sort, you take two requirements and compare them with each other.
– If you find out that one requirement should have greater priority over the other, you swap them accordingly. You

then continue in this fashion until the very last requirement is properly sorted. The result is a list of requirements
that are ranked.

135

• Hundred Dollar Method
– This simple method is useful anywhere multiple stakeholders need to democratically vote on which

requirements are the most important.
– All stakeholders get a conceptual 100 dollars, which they can distribute among the requirements. As such, the

stakeholder may choose to give all 100 dollars to a single requirement, or the person may distribute the points
more evenly.

– At the end, the total is counted, and the requirements are sorted based on the number of points received.

• Five Whys
– With five whys, the analyst asks the stakeholder repeatedly (five times or less) why the requirement is

necessary until the importance of the requirements is established.
– The answers reveal whether the requirement is really necessary or can be cancelled/postponed once the

priority is determined.

136

• Overall AHP (Analytical Hierarchy Process)

– Step 1. List all features and use cases that must be prioritized
– Step 2. Estimate the relative benefit if each feature is included
– Step 3. Estimate the relative penalty if each feature is not included
– Step 4. Estimate the relative cost of implementing
– Step 5. Estimate the relative degree of technical or other risk
– Step 6. Calculate a priority number for each feature
– Step 7. Sort the list of features

137

Requirements Triage

• Selecting the “right” features to include in next release
– Arriving at an answer is not easy.
– It’s either Win-Win or Lose-Lose.

• Requirements vs. Schedule/Cost Risk
– Basic triage

• An Engineering View
• Balancing between requirements and Cost/Risk/Schedule

– Advanced triage
• A Business View
• Balancing between requirements and Cost, Risk, Schedule, Market, Sales, Revenues, Pricing, Profit, and ROI

• Tips for requirements triage
– Maintain requirements in lists
– Annotate requirements by at least relative priority and cost-to-satisfy
– Involve representatives from all key groups (stakeholders)

138

Requirements Triage

139

Annotated Requirements Lists

• Maintain sound advice to support all activities on requirements
– Enables you to answer questions such as:

• How many requirements do you have?
• How many high priority requirements do you have?
• What percentage of the candidate requirements have you chosen to satisfy in your next release?
• What percentage of the requirements deemed high priority by customer X are you satisfying?
• If Sally quits, which requirements are affected?
• What percentage of the requirements for this release have been validated?
• And so on …

• Find relevant importance to stakeholders
– What should we annotate?

• Effect and cost
• In which release?
• Duration (optional)

• Technical risk (optional)

• Requirements should be in a database.
– Access, Excel, RequisitePro, CaliberRM, RTM, DOORS, etc.

140

Annotate Requirements Example

141

We’ve ANNOTATED the features.

142

Exercise 5: Basic Prioritization & Selection

• Prioritize the collected stakeholder requirements and select a subset of requirements doable
within 3 months

– Project Title: “Custom Mass Transportation System” in 1990s
– Purpose: Increase the usage ratio of regional/suburban mass transportation system

• Justify your selection quantitatively

143

PTSPC
(Public

Transportation
Service

Provider Center)

Order mass transportation through SMS, call center, internet (Notify
departing location, destination, time of departure/arrival, etc.)

Find optimal travel route, fare, ETA,
and other traffic information

• 5 persons are available as workforce.
– The project should be under 15 man-month if to complete within 3 months.
– Assume that the Internet was booming.

• Use 4 columns of annotations.
– Define each column (i.e., evaluation criteria - quality factor) clearly
– Use 4 different prioritization methods, respectively
– Keep in mind the purpose of your selection

144

Requirements Value
(1~10) B C D Effort

(MM)
Total
(Rank)

Selected
(O / X)

Req. 1. The system should have features such as Register, Sign-in, Sign-out. 1

Req. 2. The Driver should be able to view Passenger requests. 3

Req. 3. The system should accept orders through the internet. 2

Req. 4. The Customer should be able to designate the route in advance. 3

Req. 5. The system should accept orders through SMS. 2

Req. 6. The system should accept orders through the call center. 2

Req. 7. Managers should be able to manage orders through the internet. 1

Req. 8. Manager should be able to configure User profile through the call center. 2

Req. 9. Data transfer between a taxi and traffic manager should be possible. 3

Req. 10. Manager should be able to configure User profile through the internet. 1

145

7. Requirements Specification

Requirements Engineering Process

147

Software Requirements Document

• SRS (Software Requirements Specification) or SRD (Software Requirements Document)

• The official statement of what is required of the system developers
– Should include both a definition of user requirements and a specification of the system requirements
– NOT a design document
– As far as possible, it should set of WHAT the system should do rather than HOW it should do it.

• The goal of requirements engineering:
– “Not to write the perfect requirements specification, but create the best possible product at the right time”

148

SRS Contents

• Software Requirements Specification should address:
– Functionality

• What is the software supposed to do?
– External interfaces

• How does the software interact with people, the system's hardware, other hardware, and other software?
• What assumptions can be made about these external entities?

– Required performance
• What is the speed, availability, response time, recovery time of various software functions, and so on?

– Quality attributes
• What are the portability, correctness, maintainability, security, and other considerations?

– Design constraints imposed on an implementation
• Are there any required standards in effect, implementation language, policies for database integrity, resource limits,

operating environment(s) and so on?

149

Requirements Document Variability

• Information in requirements document depends on the type of system and the approach to
development used.

– If systems are developed incrementally, it will typically have less detail in the requirements document.

• Requirements documents standards have been designed.
– E.g., IEEE standards
– Mostly applicable to the requirements for large systems engineering projects

150

151

SRS Standard: IEEE STD 830-1998

152

SRS Templates: IEEE STS 830-1998

FR

QA
NFR
QA
NFR

153

SRS Templates: IEEE STS 830-1998

154

SRS Templates: IEEE STS 830-1998

155

SRS Templates: IEEE STS 830-1998

156

8. Quality Attributes

Requirements Engineering Process

158

Non-Functional Requirements

• ISO/IEC 9126 / 25010
– “A Software requirement that described not what the software will do, but how the software will do it, for example,

software performance requirements, software external interface requirements, design constraints, and software quality
attributes.”

• Sommerville
– “Constraints on the services or functions offered by the system such as timing constraints, constraints on the development

process, standards, etc.”

• Wikipedia
– “A requirement that specifies criteria that can be used to judge the operation of a system, rather than specific behaviors.

They are contrasted with functional requirements that define specific behavior or functions. The plan for implementing
functional requirements is detailed in the system design. The plan for implementing non-functional requirements is detailed
in the system architecture, because they are usually architecturally significant requirements.”

159

Boehm’s NFR

160

McCall’s NFR

161

Quality Attributes

• Measurable or testable properties of a system
– Used to indicate how well the system satisfies the needs of its stakeholders

• Availability, configurability, modifiability, performance, reliability, reusability, security, portability, maintainability, efficiency, usability
– Emergent properties : not a measure of software in isolation

• Measures the relationship between software and its application domain
• Cannot measure this until you place the software into its environment

– Quality will be different in different environments

• Software quality is all about fitness to purpose of stakeholders.
– “Does it do what is needed?”
– “Does it do it in the way that its users need it to?”
– “Does it do it reliably enough? fast enough? safely enough? securely enough?”
– “Will it be affordable? will it be ready when its users need it?”
– “Can it be changed as the needs change?”

162

Quality Attributes : Taxonomies

163

Quality Attributes from Stakeholders

164

Quality Attributes to Software Architecture

• The degree to which a system satisfies quality attribute requirements is directly dependent on
architectural structure.

• Architects need to have a solid understanding of the quality attribute requirements for a system, when
they are designing the system’s software architecture.

165

Problematic Features of Quality Attribute

• Non-Operational requirements
– “The system must be easy to use.”
– “The system must have high performance.”
– “The system must be portable.”

• Debating the quality attribute to which a system behavior belongs
– “The system must process 10,000 messages per second.”

• Vocabulary variations
– Everyone knows what “high performance” means, but different each others.

• Various inter-dependency among quality attributes
– Trade-off
– No 100% satisfied

166

Quality Requirements: Examples

• 응용 프로그램을 위한 프로세서 용량과 RAM 중에서 20%는 최대 부하시점에서도 사용되지 않아야 한다

• 감사접속 권한을 가진 자만이 고객 거래자료를 볼 수 있다

• 사용자가 파일을 저장하기 전 편집기에 에러가 발생하면 편집 중이던 모든 변경내용을 에러발생 5분 전 까지로 복구
한다

• 메뉴 파일의 모든 기능은Ctrl+다른 키를 사용하는 단축키가 정의되어야 한다

• 함수 호출은 3 단계 이상 중첩되지 않는다

• 모듈의 Cyclomatic Complexity는 20을 넘지 않는다

• 온도관리 주기는 0.8초 이내에서 수행한다

• 모든 웹 페이지는 10Mbps LAN 접속에서 5초 이내로 다운로드 한다

167

ISO/IEC 9126

168

ISO 9126-1 : Information Technology
- Software Product Quality - Part 1: Quality Model

169

ISO/IEC 25010

170

Microsoft Application Architecture Guide

• Quality attributes are the overall factors that affect run- time behavior, system design, and user
experience.

– They represent areas of concern that have the potential for application wide impact across layers and tiers
– When designing applications to meet any of the quality attributes requirements, it is necessary to consider the

potential impact on other

• 4 Categories of Quality Attributes
– Design Qualities : Conceptual Integrity, Maintainability, Reusability
– Run-time Qualities : Availability, Interoperability, Manageability, Performance, Reliability, Scalability, Security
– System Qualities : Supportability, Testability
– User Qualities : Usability

171

CMU SEI Quality Attributes

• Dependability
• Security
• Modifiability
• Interoperability
• Performance

172

Wikipedia – Quality Attributes

173

Making All Requirements Measurable

• How to turn vague ideas about quality into measurables or verifiable
– Quality M&M (Metric & Measure)

174

Quality Metric & Measure

Quality Factor Metric & Measures

Speed
- Processed transactions/second
- User/event response time
- Screen refresh time

Size - Mbytes
- Number of ROM chips

Ease of Use - Training time
- Number of help frames

Reliability

- Mean time to failure
- Probability of unavailability
- Rate of failure occurrence
- Availability

Robustness
- Time to restart after failure
- Percentage of events causing failure
- Probability of data corruption on failure

Portability - Percentage of target dependent statements
- Number of target systems

Maintainability
- Volume of data recorded in operation
- Number of failures estimated
- Correction time / software size

175

Quality Attribute Tree : Examples

176

Quality Attribute Scenarios

• QAS (Quality Attribute Scenario) is an effective way of identifying and specifying quality-attribute-
specific requirements.

– Specific to the particular system under considerations
– Instantiated from the attribute characterizations of general scenarios

177

A QAS Example for Availability

• “An unanticipated external message is received by a process during normal operation. The
process informs the operator of the receipt of the message and continues to operated with no
downtime.”

178

The QAS Template

179

QAS Example – Availability (Reliability)

• “An unanticipated external message is received by a process during normal operation. The
process informs the operator of the receipt of the message and continues to operated with no
downtime.”

180

QAS Example – Modifiability (Adaptability)

• “A developer wishes to change the user interface to make a screen’s background color blue.
This change will be made to the code at design time. It will take less than three hours to make
and test the change and no side effect changes will occur in the behavior.”

181

QAS Example – Performance

• “Users initiate 1,000 transactions per minute stochastically under normal operations, and these
transactions are processed with an average latency of two seconds.”

182

QAS Example – Usability

• “A user wanting to minimize the impact of an error, wishes to cancel a system operation at
runtime; cancellation takes place in less than one second.”

183

Tactics

• Techniques that architects have been using for years to manage quality attribute response goals.
– Design decisions that influence the control of a quality attribute response

184

Quality Attribute - Availability

• Ability of a system to mask or repair faults such that the cumulative service outage period does not exc
eed a required value over a specified time interval

• The availability of a system can be calculated as the probability that it will provide the specified services
within required bounds over a specified time interval.

• When referring to hardware, there is a well-known expression used to derive steady-state availability:
– MTBF : the mean time between failures
– MTTR : the mean time to repair

185

Quality Attribute Scenario - Availability

186

Tactics for Availability

187

Quality Attribute - Interoperability

• The degree to which two or more systems can usefully exchange meaningful information via interfaces
in a particular context

• The definition includes
– Syntactic interoperability: The ability to exchange data
– Semantic interoperability: The ability to correctly interpret the data being exchanged

188

Quality Attribute Scenario - Interoperability

189

Tactics for Interoperability

• Locate
– Discover service: Locate a service through searching a known directory service.

• Manage Interfaces
– Orchestrate: Uses a control mechanism to coordinate and manage and sequence the invocation of particular se

rvices (which could be ignorant of each other).
– Tailor interface: Adds or removes capabilities to an interface.

190

Quality Attribute - Modifiability

• The ability to quickly make changes to a system at a higher performance-to-price ratio
– Often based on some specific changes and is measured by examining the costs of these changes.

• What can change?
• What is the likelihood of the change?
• When is the change made and who makes it?
• What is the cost of the change?

191

Quality Attribute Scenario - Modifiability

192

Tactics for Modifiability

193

Quality Attribute - Performance

• About time and the software system’s ability to meet timing requirements
– When events occur, the system or some element of the system must respond to them in time.

• interrupts, messages, requests from users or other systems, or clock events marking the passage of time
– Characterizing the events that can occur (and when they can occur) and the system or element’s time-based re

sponse to those events is the essence is discussing performance.

194

Quality Attribute Scenario - Performance

195

Tactics for Performance

196

Quality Attribute - Security

• A measure of the system’s ability to protect data and information from unauthorized access while still pr
oviding access to people and systems that are authorized

• The simplest approach to characterizing security has 3 characteristics (CIA):
– Confidentiality
– Integrity
– Availability

• Other characteristics that are used to support CIA are these:
– Authentication
– Nonrepudiation
– Authorization

197

Quality Attribute Scenario - Security

198

Tactics for Security

199

Quality Attribute - Testability

• The ease with which software can be made to demonstrate its faults through (typically execution-based)
testing

– Specifically, testability refers to the probability, assuming that the software has at least one fault, that it will fail o
n its next test execution.

– Intuitively, a system is testable if it “gives up” its faults easily.

200

Quality Attribute Scenario - Testability

201

Tactics for Testability

202

Quality Attribute - Usability

• Concerned with how easy it is for the user to accomplish a desired task and the kind of user support th
e system provides

• Usability comprises the following areas:
– Learning system features.
– Using a system efficiently.
– Minimizing the impact of errors.
– Adapting the system to user needs.
– Increasing confidence and satisfaction.

203

Quality Attribute Scenario - Usability

204

Tactics for Usability

205

Quality Requirements and Architecture Evaluation

• Quality requirements gives important information such as
– “Is the architecture suitable for the system for which it was devised?”
– “Which of two competing architectures is most suitable for the system at hand?”

• An architecture is suitable if,
– The system that results from it will meet its quality goals.

• A system is modifiable or not wrt. a specific kind of change.
• A system is secure or not wrt. a specific kind of threat.
• A system is reliable or not wrt. a specific kind of fault occurrence.
• A system performs well or not wrt. specific performance criteria.
• An architecture is buildable or not wrt. specific time and budget constraints.

• Questioning techniques for architecture evaluation
– Rely on thought experiments to check architecture suitability
– Scenario-based style: ATAM (Architecture Tradeoff Analysis Method)

– Checklist-based style

206

Quality Attribute Workshop (QAW)

• Quality Attribute Workshop (QAW)
– Facilitated method

• System-centric
• Used before the software architecture has been created

– Engages system stakeholders early in the life-cycle
– Reveals the driving quality attribute requirements of a software-intensive system

• Scenario-based

• Outputs of a QAW
– Quality attribute requirements for the system, documented as refined and prioritized QAS.
– The quality attribute scenarios can then be used as the basis for designing the software architecture for the

system.

207

The QAW Steps

1. QAW Introduction

2. Business/Mission Presentation

3. Architectural Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement

208

The QAW Steps in Detail

1. QAW Presentation and Introduction
– QAW facilitators describe the motivation for the QAW and explain each step of the method.

2. Business/Mission Presentation
– A stakeholder presents the business and/or programmatic drivers for the system.

3. Architectural Plan Presentation
– A technical stakeholder presents the system architectural plans as they stand with respect to early documents, such as high-

level system descriptions, context drawings, or other artifacts that describe the system’s technical details.
4. Identification of Architectural Drivers

– Architectural drivers often include high-level requirements, business/mission concerns, and various quality attributes.
– During this step, the facilitators and stakeholders reach a consensus about which drivers are key to the system.

5. Scenario Brainstorming
– Stakeholders generate real-world scenarios for the system. Scenarios comprise a related stimulus, an environmental condition,

and a response.
– Facilitators ensure that at least one scenario addresses each of the architectural drivers identified in Step 4.

6. Scenario Consolidation
– Scenarios that are similar in content are consolidated.

7. Scenario Prioritization
– Stakeholders prioritize the scenarios through a voting process.

8. Scenario Refinement
– For the top four or five scenarios, the following are described: the business/mission goals that are affected by those scenarios,

the relevant quality attributes associated with those scenarios

209

Mini-QAW

210

1. Mini-QAW Introduction

2. Introduction to Quality Attributes, Quality Attributes Taxonomy

3. Scenario Brainstorming
– “Walk the System Properties Web” activity

4. Raw Scenario Prioritization
– Dot voting

5. Scenario Refinement
– While time remains

6. Review Results with Stakeholders

1. Mini-QAW Introduction

• First, sketch a rough architecture and major objectives/functions
• Take into account specific roles of all stakeholders.

– For example, “Accessary Service Framework” may have 6~8 different stakeholders and goals.

211

Stakeholders 주요 역할 희망사항 - Goal

안드로이드 OS 관리자 안드로이드 OS가 안정되게 동
작하도록 관리한다.

• 안드로이드 Interface를 확장하지 않았으면 좋겠다.
• Interface에 adapter나 wrapper를 붙이지 않았으면 좋겠다.
• (가능하면 자세하게)

2. Introduction to Quality Attributes, Quality Attributes Taxonomy

212

• Define your own system properties web
– Select appropriate quality factors for your system under consideration.

3. Scenario Brainstorming

• Identify raw quality attribute scenarios
– Timing: 30 minutes to 2-3 hours

• Steps:
1. Start with a Scenario on the web, ask “Is this Quality attribute relevant to your system?”
2. If Yes, spend 5 minutes brainstorming scenarios / concerns on that scenario.
3. Write raw scenarios on stickies and put on web
4. After 5 minutes, move to next scenario

213

Raw Quality Attribute Scenario

• Informally describes a stakeholder’s concern and concrete instances of quality attributes

214

215

216

“Walk the System Properties Web” Activity

217

218

219

4. Raw Scenario Prioritization

• Identify Highest Priority Scenarios using dot voting
– Timing : 5 minutes

• Steps:
– Dot Voting:

• Each stakeholder gets n / 3 + 1 dots for scenarios where n = # scenarios
• 2 votes to choose “top quality attribute”

220

221

222

5. Scenario Refinement

• Generate Quality Attribute Scenarios based on raw notes
– Timing : 30 - 60 minutes

• Steps :
1. Start with high priority scenario
2. Fill out the worksheet, identifying the components of a quality attribute scenario
3. Complete and present to stakeholders

223

224

Refined Scenario: In the event of hardware failure, search service is expected to
return results within 5 sec, in 12 average QPA (Queries Per Sec)

225

226

227

Exercise 6: Mini-QAW

• Perform the Mini-QAW for your “Advanced OOO Digital Watch System”
– Follow the steps of Mini-QAW
– Refine 4 QASs

• The Mini-QAW steps :
1. Mini-QAW Introduction

• Assign different roles of stakeholders to all team members
• Define/share the overall context/boundary of the system under consideration (SUC)

2. Introduction to Quality Attributes, Quality Attributes Taxonomy
• Select 4~8 quality factors relevant to the SUC

3. Scenario Brainstorming
• Identify 20 raw quality attribute scenarios
• “Walk the System Properties Web” activity

4. Raw Scenario Prioritization
• Dot voting to select 4 scenarios

5. Scenario Refinement
• Generate 4 well-refined QASs
• Find an appropriate tactics for each QAS

6. Review Results with Stakeholders

228

229

9. Requirements Validation

Requirements Engineering Process

231

232

Verification and Validation in SDLC

• Validation: “Does the software system meets the user's real needs?”
– Are we building the right software?
– Does our problem statement accurately capture the real problem?
– Did we account for the needs of all the stakeholders?

• Verification: “Does the software system meets the requirements specifications?”
– Are we building the software right?
– Does our design meet the spec?
– Does our implementation meet the spec?
– Does the delivered system do what we said it would do?
– Are our requirements models consistent with one another?

233

V&V Depends on the Specification

• Unverifiable (but validatable) specification: “If a user presses a request button at floor i, an available
elevator must arrive at floor i soon.“

• Verifiable specification: “If a user presses a request button at floor i, an available elevator must arrive
at floor i within 30 seconds“

234

V-Model of V&V Activities in SDLC

235

V&V for Requirements Models

• Verification
– “Is the model well-formed?”
– “Are the parts of the model consistent with one another?”

• Validation:
– Animation of the model on small examples is possible.
– ‘What if’ questions:

• Reasoning about the consequences of particular requirements;
• Reasoning about the effect of possible changes
• “Will the system ever do the following,”

– State exploration
• E.g., use model checking to find traces that satisfy some property

• Generation techniques for requirements validation
– Prototyping (Simulation)
– Test-case generation
– Review

236

Reviews, Walkthroughs, Inspections

• Management Reviews
– Preliminary design review (PDR), critical design review (CDR), formal technical review (FTR), formal business

review (FBR), etc.
– Used to provide confidence that the design is sound
– Attended by management and sponsors (customers)

• Walkthroughs
– Developer technique (usually informal)
– Used by development teams to improve quality of product
– Focusing on finding defects

• (Fagan) Inspections
– A process management tool
– Used to improve quality of the development process
– Collect defect data to analyze the quality of the process
– Written output is important

237

238

10. Requirements Change Management

Requirements Engineering Process

240

Laws of Program Evolution

• Continuing Change
– Any software that reflects some external reality undergoes continual change or becomes progressively less useful

• Change continues until it is judged more cost effective to replace the system

• Increasing Complexity
– As software evolves, its complexity increases

• Fundamental Law of Program Evolution
– Software evolution is self-regulating

• With statistically determinable trends and invariants

• Conservation of Organizational Stability
– During the active life of a software system, the work output of a development project is roughly constant,

regardless of resources

• Conservation of Familiarity
– The amount of change in successive releases is roughly constant

241

Requirements Growth Model

• Davis’s model (1988):
– User needs evolve continuously

• May not be linear or continuous (hence no scale shown)
– Traditional development always lags behind needs growth

• First release implements only part of the original requirements
• Functional enhancement adds new functionality
• Eventually, further enhancement becomes too costly, and a replacement

is planned
• The replacement also only implements part of its requirements,
• and so on...

242

Software Aging

• Causes of Software Aging
– Failure to update the software to meet changing needs

• Customers switch to a new product, if benefits outweigh switching costs
– Changes to software tend to reduce its coherence

• Costs of Software Aging
– Owners of aging software find it hard to keep up with the marketplace
– Deterioration in space/time performance due to deteriorating structure
– Aging software gets more buggy

• Each “bug fix” introduces more errors than it fixes

• Ways of Increasing longevity
– Design for change

• Design patterns
• Architecture styles

– Document the software carefully
– Requirements and designs should be reviewed by those responsible for its maintenance
– Software Rejuvenation

243

Software Maintenance

• Maintenance philosophies
– “Throw-it-over-the-wall” : someone else is responsible for maintenance

• Investment in knowledge and experience is lost
• Maintenance becomes a reverse engineering challenge

– “Mission orientation” : development team make a long-term commitment to maintaining/enhancing the software

• Basili’s maintenance process models:
– Quick-fix model

• Changes made at the code level, as easily as possible
• Rapidly degrades the structure of the software

– Iterative enhancement model
• Changes made based on an analysis of the existing system
• Attempts to control complexity and maintain good design

– Full-reuse model
• Starts with requirements for the new system, reusing as much as possible
• Needs a mature reuse culture to be successful

244

Managing Requirements Change

• Managers need to respond to requirements change
– Adding new requirements during development
– Modifying requirements during development
– Removing requirements during development

• Key techniques
– Change Management (Process)
– Release Planning
– Requirements Prioritization
– Requirements Traceability
– Architectural Stability

245

Change Management

• Configuration Management
– Each distinct product is a Configuration Item (CI)
– Each configuration item is placed under version control
– Control which version of each CI belongs to which build of the system

• Baseline
– A stable version of a document or system

• Safe to share among the team
– Formal approval process for changes should be incorporated into the next baseline

246

Change Management Process

• Change Management Process
– All proposed changes are submitted formally as change requests
– A review board reviews these periodically and decides which to accept

247

Requirements Traceability

• From IEEE-STD-830.1998:
– Backward traceability

• To previous stages of development
• The origin of each requirement should be clear

– Forward traceability
• To all documents spawned by the SRS
• Facilitation of referencing of each requirement in future documentation

• From DOD-STD-2167A:
– A requirements specification is traceable if:

1) It contains or implements all applicable stipulations in predecessor document
2) A given term, acronym, or abbreviation means the same thing in all documents
3) A given item or concept is referred to by the same name in the documents
4) All material in the successor document has its basis in the predecessor document, that is, no untraceable material has

been introduced
5) The two documents do not contradict one another

248

Traceability Difficulties

• Cost
– Very little automated support
– Full traceability is very expensive and time-consuming

• Delayed gratification
– The people defining traceability links are not the people who benefit from it

• Development vs. V&V
– Much of the benefit comes late in the lifecycle

• Testing, integration, maintenance

• Size and diversity
– Huge range of different document types, tools, decisions and responsibilities
– No common schema exists for classifying and cataloging these
– In practice, traceability concentrates only on baselined requirements

249

Traceability in Practice

• Coverage
– Forward: Links from requirements forward to designs, code, test cases,
– Backward: Links back from designs, code, test cases to requirements
– links between requirements at different levels

• Traceability process
– Assign each sentence or paragraph a unique id number
– Manually identify linkages
– Use manual tables to record linkages in a document
– Use a traceability tool (database) for project wide traceability
– Tool then offers ability to

• Follow links
• Find missing links
• Measure overall traceability

250

Example : Requirements Traceability

• When a high-level artifact derives a refined artifact, Traceability link should be generated between two
artifacts.

251

• Traceability link in DOORS

252

Feature

Use Case

Analysis model

Design model

<<trace>>

<<trace>>

<<trace>>

• IBM Rational DOORS • ESG PRACTICA RM+

253

Requirements Management Tools

• OSRMT • JFeatures

254

Requirements Management Tools

CTIP

• Continuous Integration (CI)
– A software development practice where members of a team integrate their work frequently, usually each person

integrates at least daily, leading to multiple integrations per day.
– Each integration is verified by an automated build (including test) to detect integration errors as quickly as

possible.

• Continuous test & integration platform (CTIP)
– Continuous integration + continuous test

• CTIP consists of several (semi-)automatic tools
– Continuous integration management
– Version control
– Build automation
– Issue tracking (communication)
– Static analysis
– Testing tool (automation, management)
– Etc.

255

CTIP Process

256

Recent CI Tools (2022)

257

https://www.katalon.com/resources-center/blog/ci-cd-tools/

CTIP Examples (2021)

258

CTIP Examples (2021)

259

CTIP Examples (2021)

260

CTIP Examples (2021)

261

CTIP Examples (2021)

262

263

Summary

Requirements Engineering Process

265

Next Step : Architecture Design

