2738
Requirements Engineering

JUNBEOM YOO
KONKUK UNIVERSITY
http://dslab.konkuk.ac.kr

apPg 8

hob=

o

7.
8.

9.

Requirements Engineering - Overview
Requirements
Feasibility Study
Requirements Elicitation

— Exercise 1: Requirements Elicitation
Requirements Negotiation

— Exercise 2: Requirements Negotiation
Requirements Analysis

— Exercise 3: Use Case Analysis

— Exercise 4: Goal-Tree Analysis

— Exercise 5: Basic Prioritization & Selection
Requirements Specification
Quality Attributes

— Exercise 6: Mini-QAW
Requirements Validation

10. Requirements Change Management

EPENDABLE SOFTWARE
LABORATORY

KU

KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 3
LABORATORY

1. Requirements Engineering - Overview

NKUK
UNIVERSITY

o UP AND FiNOD ovr
HAT THAY NeeDd Anp THe

REST oF YoU SIART caoirig |

W

B

EPENDABLE SOFTWARE
LABORATORY

Q HERE YOU ARE

How the customer
explained it

How the project leader| How the engineer
ynderstood it designed it

How the programmer
wrote it

How the project was What operations How the customer
documented installed was billed

How the helpdesk
supported it

K KONKUK
UNITVERSITY

How the sales
executive described it

What the customer
really needed

i< l l KONKUK
UNIVERSITY

Requirements Engineering

 Requirements Engineering (RE) is a set of activities concerned with identifying and communicating
the purpose of a software-intensive system, and the contexts in which it will be used.

Hence, RE acts as the bridge between the real world needs of users, customers, and other
constituencies affected by a software system, and the capabilities and opportunities afforded by
software-intensive technologies.

RE (Requirements Engineering)

* Requirements engineering is the process of establishing
— System services that the customer requires from a system and

— Constraints under which it operates and is developed.

* Requirements are

— Descriptions of the system services and constraints, generated from the RE processes.

User-level facility descriptions

Detailed specifications of expected system behavior
A general system properties

Specific constraints on the system

Information on how to carry out some computation
Constraints on the development of the system

— System services — Functional requirements (FR)
— Constraints — Non-functional requirements (NFR)

j;i _’iﬂ:}EPENDABLE SOFTWARE
N LABORATORY

KU

KONKUK
UNIVERSITY

]}EPEN

SDLC and RE Process

Requirements engineering process should be adapted to a specific SDLC.
— RE process + Development process (SDLC)

Software development life-cycle (SDLC) models
— Waterfall
— lterative
* Incremental , Evolutionary
» Agile , XP
- UP

DABLE SOFTWARE
LABORATORY

KU

KONKUK
UNIVERSITY

Waterfall Model

perceived
need
K

*-{requirements
-
“1 design

—)

“1 code

&

“1 test
= 1

integrate

EPENDABLE SOFTWARE 1 O
LABORATORY

B

Ilterative Models

EPENDABLE SOFTWARE
LABORATORY

Rell 1
£eae - Incremental development
desagn code test lntegrafe O&M (each peleage adds more
B release 2 functionality)
®
€ [—7| design | code | test |integrate] O&M
S
g release 3
%’ > design | code test |integrate| O&M
.......... relecse 4
P design | code test [integrate] O&M
version 1
reqts design code test |integrate | O&M
lessons IeLrnf
version 2
reqts design code test | integrate O&M
Evolutionary development . i 3 , | [essors ’et’""* ,
(each version incorporates : :
. reqts design code test |integrate
new requirements)

KU

11

KONKUK
UNIVERSITY

B

Agile Models and UP

« Basic Philosophy of Agile

Individual over processes and tools
Working software over documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

 Evolved into UP (Rational Unified Process)

development cycle

. . & A
iteration phase

f/\ A

r
[]
inc. elarorat jon construcition trangition
milestone release increment final production
release

An iteration end-point
when some significant
decisionor evaluation
OCCUrs.

EPENDABLE SOFTWARE

LABORATORY

A stable executable subset
of the final product. The
end of each iteration is a
minor release.

The difference (delta)
between the releases
of 2 subsequent
iterations.

At this point, the system
is released for
production use.

i '.\f_'\
W
Initial

Planning

Evaluation

Sample
UP Disciplines
//7 . o
[Business Modeling
Focus J
of this <

Planning

Requirements

Analysis & Design

Implementation

Deployment

Testing

A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending in a stable executable.

N
AR

| Requirements l

book ‘
Design

.
Implementation

K‘LJ’ KONKUK
UNTVERSITY

Note that
although an
iteration includes
work in most
disciplines, the
relative effort and
emphasis change
over time.

This example is
suggestive, not
literal.

Test

Deployment

Configuration & Change
Management

Project Management |-

Environment

Iterations

12

KU sy

Requirements Engineering Processes

* Requirement engineering processes vary depending on
— Application(target) domain
— People involved
— Organization developing the requirements
— Software development processes used

« Generic activities common to all RE processes :

() DEPENDABLE SOFTWARE

(Design Phase)

J— Requirements .)
Fegf:ll:;hty Elicitation and chlt,lll;glelll :nts
Yy Analysis
Requirements User/System
. . F/NF/Q
Specification .
Requirements
Requirements
M Change t Requirements Requirements Specification
anagemen Validation (IEEE 830.1998)

|

1. Feasibility Study

* Decides whether or not the proposed system is worth to develop

* A short-focused study to check

“If the system contributes to organizational objectives”
“If the system can be engineered using current technology and within budget”
“If the system can be integrated with other systems that are used”

e Questions

What if the system was not implemented?

What are the problems in the current process?

How will the proposed system help to satisfy customer’s requirements?
What will be the integration problems?

Is new technology needed? What skills?

What facilities must be supported by the proposed system?

' DEPENDABLE SOFTWARE

LABORATORY

KU sy

14

B

2. Requirements Elicitation and Analysis

« Called also Requirements Discovery to find out
— Application domain, services that the system should provide : FR
— System’s operational constraints : NFR (QA)

« Should involve various stakeholders (Stakeholder Analysis)
— end-users, managers, engineers, domain experts, trade unions, etc.

» 4 activities performed iteratively
— Requirements Discovery
— Requirements Classification and Organization
— Requirements Negotiation and Prioritization
— Requirements Documentation

EPENDABLE SOFTWARE
LABORATORY

Requirements
Classification and
Organization

KU KONKUK
UNTVERSITY

Requirements
Prioritization and
Negotiation

Requirements
Discovery

Requirements
Documentation

15

3. Requirements Specification

KU KONKUK
UNTVERSITY

« Write elicited, analyzed, negotiated, prioritized and selected requirements into documents according to

the IEEE Std 830-1998

IEEE Std 830-1998
(Revision of
IEEE Std 830-1993)

IEEE Std 830-1998

IEEE Recommended Practice for
Software Requirements
Specifications

IEEE Computer Society

Sponsored by the
Software Engineering Standards Committee

20 Ociober 1998 SHE4E54

EPENDABLE SOFTWARE
L ABORATORY Austhored kcansad se leited 10 Konkuk Uriv. Doanioaded on Apri 16201931 07 1 13 UTC from IEEE Xglom Restrictons apply

Table of Contents

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview
2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing
this section of the SRS.)

Appendixes
Index

Figure 1 —Prototype SRS outline

16

KU KONKUK
UNTVERSITY

4. Requirements Validation

* Demonstrate whether the requirements we defined are what the customer really wants

« Requirements validation checks:
— Validity : Does the system provide the functions which support the customer s needs well?
— Consistency : Are there any requirements conflicts?
— Completeness : Are all functions required by the customer included?

— Realism : Can the requirements be implemented with available budget and technology?
— Verifiability : Can the requirements be checked?

* Requirements validation tools:
— Requirements reviews
— Prototyping
— Test case generation

)
) DEPENDABLE SOFTWARE 1 7
\ LABORATORY

KU KONKUK
UNTVERSITY

9. Requirements Change Management

» The process of managing requirements change during the RE process and the overall system
development

— Requirements are inevitably incomplete and inconsistent.

— New requirements emerge during the process, as business needs change and a better understanding of the
system is developed.

Identified

Revised
Problems [5, s blem Analysis and Change Analysis Change BefRments
Change Specification and Costing Implementation

« Traceability is the heart of requirements management and all functional safety standards. ' iec 61508

— Source <> Requirements <> Design <> Code <> Test IEsr\?sf)ﬁzz%Z

DO 178B, 178C
IEC 60880, 62138

j;i 3 mEPENDABLE SOFTWARE 1 8
N LABORATORY

Requirements Engineering Process

Feasibility
Study

Requirements
Change
Management

EPENDABLE SOFTWARE
LABORATORY

Requirements
Elicitation and
Analysis

Requirements
Specification

Requirements
Validation

Requirements

Models

User/System

F/NF/Q

Requirements

Requirements Specification

(Design Phase)

(IEEE 830.1998)

KU KONKUK
UNTVERSITY

19

EPENDABLE SOFTWARE 2 O
LABORATORY

2. Requirements

K‘LJ’ KONKUK
UNTVERSITY

Requirements

+ Requirements range from a high-level abstract statement of service or system constraint
to detailed mathematical functional specification

» Types of requirements

— User requirements
« Statements in natural language, diagrams of the services the system provides and its operational constraints
+ Written for (from) customers
» Defined
— System requirements
» Structured document setting out detailed descriptions of the system’s functions, services and operational constraints
» Define what should be implemented to support user requirements

» Specified Requirements
User Req. Elicitation

Requifements Analysis
through Models
Requirements
Specification

]}EPENDABLE SOFTWARE SyStem Req L] 2 2

LABORATORY

User and System Requirements

User Requirement Definition

System Requirement Specification

EPENDABLE SOFTWARE 2 3

KU sy

Functional vs. Non-Functional Requirements

* Functional requirements
— Statements of services which the system should provide
— How the system should react to particular inputs
— How the system should behave in particular situations

* Non-functional requirements

— Constraints on the services or functions offered by the system
» Constraints on the development process or in operation
* Complying to standards (MISRA C, ISO 25010, ISO 26262, etc.)
— Quality Attributes
» Timing constraints, Performance, Safety, Security, Reliability, etc.
* ISOJ/IEC 25010 (9126)

() DEePENDABLE SOFTWARE 24
b LABORATORY

Non-Functional Requirements (Quality)

 The challenge of NFRs
— Hard to model

external and

KU KONKUK
UNTVERSITY

internal
: ualit
— Usually stated informally dua’ty
— Hard to make them measurable requirements ' ' ' ' ' '
functionality reliability usability I efficiency I maintainabilityI portability I
« Often called Quality Attributes sultabiity maturity | |understandabiltyl | o pepayiy, | | analysabilty | | adaptabilty
Q I 't R - t . accuracg‘ll fault tolerance Iearnall;oyll‘\ty resource changeability installability
interoperability recoverabili operability SOour stability co-existence
or uall v eQUIremen S security Y attractiveness utilisation testability replaceability
functionality reliability usability efficiency maintainability portability
compliance compliance compliance compliance compliance compliance

Figure 4 — Quality model for external and internal quality

* Non-functional requirements may be more critical than functional requirements.

— If these are not met, the system is totally useless.

— Safety Critical systems often include non-functional requirements into mandatory (i.e., functional) requirements.

+ |EC-61508, ISO 26262 (Functional Safety)

=
(} DEeEPENDABLE SOFTWARE
\ LABORATORY

25

Classifying Functional and Non-Functional Requirements

At the early phase :

Requirements

User Req. Elicitation

Requigements Apalysis

h Model
Several cycles of RE tirough Miodels Requirements

Specification
System Req.

« At the end of RE :

NFR

a >

EPENDABLE SOFTWARE 2 6
LABORATORY

KU sy

Goals and Verifiable Non-Functional Requirements

* Non-functional requirements may be very difficult to state precisely and to verify.
— Write a “Goal’ first — transform into “Verifiable non-functional requirements”

 Goal
— Ageneral intention of the user

— Example of QA : “ease of use”
— “The system should be easy to use by experienced controllers and should be organized in such a way that user errors

are minimized.”

» Verifiable non-functional requirement
— A statement using some measure that can be tested objectively

“Experienced controllers shall be able to use all the system functions after a total of two hours training.
After this training, the average number of errors made by experienced users shall not exceed two per day.”

- by QAS (Quality Attribute Scenario)

LABORATORY

S 'DEPENDABLE SOFTWARE 27

KU sy

Requirements Completeness and Consistency

« Problems arise when requirements are not precisely stated.
— Ambiguous requirements may be interpreted in different ways.

* In principle, requirements should be both complete and consistent (C&C).
— Complete : Should include descriptions of all facilities required
— Consistent : Should be no conflicts or contradictions in the descriptions of the system facilities

 |n practice, it is impossible to produce a complete and consistent requirements document with
natural lanquaqges.
— Needs for (formal/informal/semi-formal) requirements models to aid

28

() DEePENDABLE SOFTWARE
LYY LABORATORY

EPENDABLE SOFTWARE 2 9
LABORATORY

3. Feasibility Study

K‘LJ’ KONKUK
UNTVERSITY

Requirements Engineering Process

Feasibility Re.'q.ulr?“lents Requirements
Study Elicitation and Models
Analysis) "
. User/System
Requirements . /‘\. F/ Q
Specification . ?
Requirements
Requirements
Ma‘x:il::a::llglf ent Requirements Requirements Specification
8¢ Validation (IEEE 830.1998)

(Design Phase)

EPENDABLE SOFTWARE 3 1
LABORATORY

KU sy

Why a Feasibility Study?

* Objectives:

— To find out if a system development project can be done:
* “Isit possible?”
* “Is it justified?”

— To suggest possible alternative solutions.

— To provide management with enough information to know:
* Whether the project can be done
* Whether the final product will benefit its intended users
* What the alternatives are
* Whether there is a preferred alternative

A management-oriented activity:
— After a feasibility study, management makes a “go/stop” decision.
— Need to examine the problem in the context of broader business strategy

} DEPENDABLE SOFTWARE 32
LABORATORY

KU sy

Content of Feasibility Study

* Things to be studied in the feasibility study:
— The present (existing) organizational system
» Stakeholders, users, policies, functions, objectives
— Problems with the present system
* inconsistencies, inadequacies in functionality, performance
— Goals and other requirements for the new system
* Which problems need to be solved?
* What would the stakeholders like to achieve?
— Constraints
* Including nonfunctional requirements on the system
— Possible alternatives
+ “Sticking with the current system” is always an alternative
+ Different business processes for solving the problems
+ Different levels/types of computerization for the solutions
— Advantages and disadvantages of the alternatives

* Things to conclude:
— Feasibility of the project (Go / Stop)
— A preferred alternative

() DEePENDABLE SOFTWARE 33
b LABORATORY

R

4 Types of Feasibility Study

' DEPENDABLE SOFTWARE
LABORATORY

Technical Feasibility

“Is the project possible with current technology?”
What technical risk is there?

Availability of the technology
* Is it available locally?
» Can it be obtained?
+ Will it be compatible with other systems?

Economical Feasibility

“Is the project possible, given resource constraints?”

What are the benefits?
» Both tangible and intangible
 Quantification requires

What are the development and operational costs?
Are the benefits worth the costs?

Schedule Feasibility

“Is it possible to build a solution in time to be useful?”
What are the consequences of delay?

Any constraints on the schedule?

Can these constraints be met?

Operational Feasibility

“If the system is developed, will it be used?”

Human and social issues:

Potential labor objections?

Manager resistance?

Organizational conflicts and policies?
Social acceptability?

Legal aspects and government regulations?

KU sy

34

KU KONKUK
UNTVERSITY

Comparing Alternatives

* Feasibility Analysis Matrix
— Each cells contains the feasibility assessment notes for each candidate.
» Can be assigned a rank or score for each criterion
— Afinal ranking or score is recorded in the last row.

Candidate 1 Name | Candidate 2 Name |Candidate 3 Name

Description
Operational
Feasibility
Technical
Feasibility
Schedule
Feasibility
Economic
Feasibility
Ranking

EPENDABLE SOFTWARE 3 5
LABORATORY

KU KONKUK
UNIVERSITY

Feasibility Analysis Matrix

e —re——————= == — E——
Feasibility Criteria Wit. Candidate 1 Candidate 2 Candidate 3 Candidate ... |
Operational Feasibility 30% | Only supports Member | Fully supports user Same as candidate 2.
Services requirements required functionality.
Functionality. Describes to and current business
what degree the alternative processes would have to
would benefit the organization be modified to take
and how well the system advantage of software
would work. functionality
Political. A description of
how well received this
solution would be from both
user management. user, and
anization tive. Score: 60 Score: 100 Score: 100
Technical Feasibility 309% | Current production Although current Although current
release of Platinum technical staff has only | technical staff is
Technology. An assessment Plus package is version | Powerbuilder comfortable with
of the matunty, availability (or 1.0 and has only been experience, the senior Powerbuilder,
ability to acquure), and on the market for 6 analysts who saw the management is
desirability of the computer weeks. Maturity of MS Visual Basic concemed with recent
technology needed to support product is a nisk and demonstration and acqusition of
this candidate. company charges an presentation, has Powerbwilder by
additional monthly fee | agreed the transition Sybase Inc.
Expertise. An assessment to for technical support. will be simple and MS SQL Server is a
the technical expertise needed finding experienced current company
to develop. operate, and Required to hire or train | VB programmers will | standard and competes
maintain the candidate system. C++ expertise to be easier than finding | with SYBASE in the
perform modifications Powerbuilder Client/Server DBMS
for integration programmers and at a market. Because of
requirements. much cheaper cost. this we have no
guarantee future
MS Visual Basic 5.0 versions of
is a mature technology | Powerbuilder will
based on version “play well” with our
number. current version SQL
Server.
Score: 50 Score: 95 Score: 60

EPENDABLE SOFTWARE

B

Feasibility Analysis Matrix

EPENDABLE SOFTWARE
LABORATORY

Feasibility Criteria Wt. Candidate 1 Candidate 2 Candidate 3 Candidate ...
Operational 30% Score: 60 Score: 100 Score: 100
Feasibility
Technical 30% Score: 50 Scare: 95 Scare: 100
Feasibility
Economic Feasibility 30%
Cost to develop: Approximately | Approximately Approximately
$350.,000. $418.040. $400.000.
Payback period
(discounted): Approximately | Approximately 3.5 | Approximately 3.3
4.5 years. years. years.
Net present value: Approximately | Approximately Approximately
$210.000. $306,748. $325.500.
Detailed calculations: See Attachment | See Attachment A. | See Attachment A.
A
Score: 60 Score: 85 Score: 90
Schedule Feasibility 10% | Less than 3 9-12 months 9 months
months.
An assessment of how
long the solution will take
to design and implement. Score: 80 Scaore: 85
Score: 95
Ranking 100% 60.5 92 83.5

I(I]’ KONKUK
UNIVERSITY

37

EPENDABLE SOFTWARE 3 8
LABORATORY

4. Requirements Elicitation

K‘LJ’ KONKUK
UNTVERSITY

Requirements Engineering Process

Feasibility Rt.-'q.l S Requirements
Study Elicitation and Models
Analysis) ‘
Requirements ‘ sel/S\q tem
: z F/NF/Q
Specification . _
Requirements
Requirements
M Change t Requirements Requirements Specification
e Validation (IEEE 830.1998)
(Design Phase)

EPENDABLE SOFTWARE 40
LABORATORY

R

Requirements Elicitation

* There should be a “problem” that needs solving.

« Collect enough information to |dentify the “problem” and “opportunity’

Dissatisfaction with the current state of affairs
New business opportunity
Potential saving of cost, time, resource usage, etc.

Which problem needs to be solved? (identify problem Boundaries)
Where is the problem? (understand the Context/Problem Domain)
Whose problem is it? (identify Stakeholders)

Why does it need solving? (identify the stakeholders’ Goals)

How might a software system help? (collect some Scenarios)
When does it need solving? (identify Development Constraints)
What might prevent us solving it? (identify Feasibility and Risk)

' DEPENDABLE SOFTWARE

LABORATORY

KU sy

41

B

Challenges in Requirements Elicitation

But what do you
want to do with
the software?

As an analyst, I need
to know what do you
want?

[want vou to design
the software for me.

I don’t know until Well. I can design Can you design the
you tell me what the the software to do software to tell you
software can do. anything! my requirements?!

bt b

Copyright {c} 2014 bv the McGraw-Hill Companies, Inc. All rights Reserved.

PENDABLE SOFTWARE
LABORATORY

42

K

Problems of Requirements Elicitation

Vague problem stated by the customer (stakeholders)
— Stakeholders don’t know what they really want.
— Stakeholders express requirements in their own terms.
— Different stakeholders may have conflicting requirements.
— New stakeholders may emerge and the business environment changes.

Organizational and political factors influence the system requirements.

The requirements keep changing during the analysis process itself.

DEPENDABLE SOFTWARE
LABORATORY

43

K

Stakeholders

- Stakeholder analysis
— ldentify all the people who must be consulted during information acquisition

— No specific form of analysis

« Typical stakeholders :

DEPENDABLE SOFTWARE
LABORATORY

User

Designer

System Analyst

Training and User Support
Business Analyst
Technical Author

Project Manager

Customer

Concerned with the features and functionality of the new system
Want to build a perfect system, or reuse existing code

Want to “get the requirements right”

Want to make sure the new system is usable and manageable
Want to make sure “we are doing better than the competition”

Will prepare user manuals and other documentation for the new system

Wants to complete the project on time, within budget, with all objectives met.

Wants to get best value for money invested

44

KU KONKUK
UNTVERSITY

The Requirements Elicitation Activities

1. Requirements Discovery
— Interacting with stakeholders to discover their requirements
— Domain requirements are also discovered at this stage.

2. Requirements Classification and Organization Requirements Requirements
)) . Classification and Prioritization and
— Groups related requirements and organizes them into coherent clusters Organization Negotiation

3. Negotiation and Prioritization
— Resolving requirements conflicts (for user requirements)
— Prioritizing requirements (for system requirements, actually)

Requirements Requirements

4. Requirements Documentation Discovery Documentation
— Document requirements in a form of annotated requirements list
— Input it into the next round of the spiral

EPENDABLE SOFTWARE 4 5
LABORATORY

S DEPEN

Things to Remember When Eliciting Requirements

1. Don’t Lose Sight of the Goal

Think Who'’s Smart

A Single Stakeholder Can’t Speak for All
Use Appropriate Elicitation Methods

Accept Requirements Changes

o a0 A W Db

Manage Elicited Requirements

DABLE SOFTWARE
LABORATORY

KU sy

1. Don'’t Lose Sight of the Goal

» Establish the system’s vision and scope to reduce the risk of building the wrong system
» Try to obtain early commitment from stakeholders

2 Ad-hoc requirements given to Project Team

E Requirements specification ?
Rejected by Customer
o a

Reworked specification
Customer Project Team

Rejected again

-

g Reworked specification /

\ Customerapproved

-

DEPENDABLE SOFTWARE 4 7
) LABORATORY

KU vy

2. Think Who's Smart

« Don’t try to convince stakeholders that YOU are smart.
* Instead take everybody to show you think the STAKEHOLDER is smart

 Contrast these 2 cases:

1. My Elevators Are
Too Slow!

2-1. | See.
Tell Me Why You Feel
They Are Too Slow.

("*_ N
ﬁ‘ -

3 .- A
r“\ \\‘ \‘_\.\“\‘

\JB

2-2. | Don’t Think So.
I Think You Have an Elevator
Throughput Problem, not a Speed
Problem.

EPENDABLE SOFTWARE 48
LABORATORY

3. A Single Stakeholder Can’t Speak for All

Stakeholder R

User
Customer

Marketing

Subject Matter Experts (SME)

Developer
Development Managers

Tester

Loser Users

Technical Writers
Trainers / Customer Support

EPENDABLE SOFTWARE
LABORATORY

Users of the system and the results of the system
ALWAYS included
Often many classes - make sure all are represented

People with decision making authority

ALWAYS included; no project otherwise!

Often many classes - make sure all are represented
Closely aligned with marketing function

ESSENTIAL; The experts in the “market”
Too easy for development to dismiss them
In a commercial setting, they know the pulse of customers

Helpful to learn foundation requirements
Helpful to alleviate disagreements among stakeholders

Helpful to learn system implications
Helpful to learn evolution / maintenance requirements

Knows the development capability and resources

Useful a bit later in project
Knows which requirements are testable

People who loses power as a result of the project
Useful if a system has “loser users”

Can also help
Experts in making the system easy to use/teach/explain

KU KONKUK
UNTVERSITY

49

4. Use Appropriate Elicitation Methods

Methods for requirements elicitation:
Interviews

[Ru==x]
%)
i i
5] o @ul
= Brainstorming —
Surveys / Document
Questionnaire
01
Role Playing
— Brainstorming
— Requirements Workshop
— Prototyping
— Storyboard
— Survey/Questionnaire
— Use Case

Analysis
Requirement

Workshops 09

g *

Prototype

o040

07
A single method may not be sufficient

Process
Maodelling

PENDABLE SOFTWARI

LABORATORY

=
[s]
R

— Consider requirements’ size, complexity, etc., and select several ones.

Interviews
Observation

50

9. Accept Requirements Changes

« Requirements change is inevitable.
— Clients have right to change requirements.

— The more features the product has, the more customers want.

» Don'’t ever ask “Okay, is that your final requirement?”

« Change is not a threat, it's an opportunity.

PENDABLE SOFTWARE
LABORATORY

KU sy

51

K‘(]’ KONKUK
UNIVERSITY

6. Manage Elicited Requirements

* Record the rationale of each requirement
— Reason why requirement is necessary
— Assumptions on the requirement

* Managing the rationale with annotated requirements lists
— Do not simply rewrite the requirement
— Make it unique for each requirement
— Keep it simple

 Example:
— Requirements : “The truck shall have a height of no more than 14 feet.”
— Rationale : “99% of all U.S. Interstate highway overpasses have a 14-foot or greater clearance.”

EPENDABLE SOFTWARE 5 2
LABORATORY

]}EPEN

Techniques for Eliciting Stakeholder Needs

 Requirements Elicitation Methods
Requirements workshop
Brainstorming

Storyboards

Interviews

Survey/Questionnaires

Role playing

Prototypes

Use-Case

© Nk

DABLE SOFTWARE
LABORATORY

53

K KONKUK
UNITVERSITY

1. Requirements Workshop

« Gather all stakeholders together for an intensive and focused period
— Create consensus on the scope, risks and key features of the software system
— Results immediately available

— Outputs:
* Problem statement , Key features , Initial business object model, Use-case diagram , Prioritized risk list, etc.

« Provide a framework for applying other elicitation techniques such as
— Brainstorming, use-case workshops, storyboarding, etc.

EPENDABLE SOFTWARE 54
LABORATORY

K‘LJ’ KONKUK
UNTVERSITY

2. Brainstorming

* Rules for Brainstorming
— Clearly state the objective of the session
— Generate as many ideas as possible
— Let your imagination soar
— Do not allow criticism or debate
— Even the impractical, absurd ideas should not be neglected
— Merge the various ideas to create new ideas

 Express freely
— Do not explain or specify the ideas
— Do not evaluate or argue about the ideas
— Do not put names on the ideas
— Encourage the unexpected and imaginative

* Put up ideas openly
— Ideas should be put up on a whiteboard where all can see
— Participants themselves may put up ideas on the board
— Put tabs of Post-Its on the center table

EPENDABLE SOFTWARE 5 5
LABORATORY

B

3. Storyboards

* Visually tell and show:
— Who/what the players are (actors)
— What happens to them
— When it happens

* Benefits

Help gather and refine customer requirements
Encourage creative and innovative solutions
Encourage team review

Prevent features that no one wants

Ensure that features are implemented
in an accessible and intuitive way

Ease the interviewing process
Help to avoid blank-page syndrome

EPENDABLE SOFTWARE

LABORATORY

K‘LJ’ KONKUK
UNTVERSITY

SCENE #. PAGE /
NOTE DIALCGUE | TIME
W HCEH O M. | a0t sorct
i=
~
— 3
s
Anelt O el
% HH|H 2 23 ZeA| Yo"
702t $IA| Sk
‘@]),
M2 S0t
BIE T LA
Akt
W HHE| 2 ZHHA
| 2
| el [EACHK| M2t
E0rR 1 2I8.

56

KU KONKUK
UNTVERSITY

4. Interviews

« Provide a simple and direct technique to gain understanding of problems and solutions

* Types of interviews

— Open interview
* No pre-set agenda
* lIrrelevant data can be gathered
* Needs time and training

— Closed interview
* Fairly open-questions agenda
* Needs extended preparation
* Prevents biases

* Interview tips
— Avoid asking people to describe things they don’t usually describe
+ Example: Describe how to tie your shoes
— Avoid “Why...?” questions
— Ask open-ended (context-free) questions
* High-level abstract questions

EPENDABLE SOFTWARE 5 7
LABORATORY

B

5. Survey/Questionnaires

« Give access to a wide audience
— Apply to broad markets where questions are well-defined

- Statistical analysis is applicable.
— Powerful, but not a substitute for an interview

* Assumptions:
— Relevant questions can be decided in advance
— Questions phrased, so reader hears as intended

EPENDABLE SOFTWARE
LABORATORY

K‘(]’ KONKUK
UNIVERSITY

R FUPS MUK 0 20 @ ¥ @
B EEZMYE
B I T 2 7 =+
1L DWHA 2D s TN 0ORE o, . ,
AL = A:E Ch B:¥ & C:Lh=ct
2. IWHME BATOE HEB SIS G B, . .
P =87 SOE stEaUb AlE O B2 B C:liwg
3. AAMME HAIES] HBO UE SUUNT A0 F B:E B C: EOUF
4. SApe] HBO| 04 wM Al DMHM &7, . ,
2 Hg 0 As (20| AASLIP A:dgC B:2 B C:opld
. BEDAGM SZUASS 2F0) Ao o, . .
A e e A:d 8l B:5 9 C:3 9
® U O o+ A:20 B:15 C:10 & A
L EAEE MOl 2EstAl K0l o0 o
1 Eg;i@gﬂ:ﬂﬁ“% zol O aiz oos:m om C:umg
2. Blabee) HA7|20) Qo] BF @Ael 7, . -
] g+E2 0l- FEan MU Ard HB:E M C: A
A =
= E ga;?l;ill:_;?ﬂia Hu2Ee B OROK .. un 5w om C:oug
=
4 M7 HAE He Al ZEH vIEE O, . .
MEYLH 2 U™l B g1 YaUh A:IRE B: R & C:oY
B EF A:25 B: 20 C:15 A 3
LogMel U E4ES ol- FE2lD Mze A :80%014 B : 50%0|4
ALnp C : 50905
B ?E?Arel HE4PE BEACI SAMUY Ly 5 g.w s ci0 B
L EAES] MEIARIEE) S5 0t H .
3 ?"‘;a‘i}ﬂﬂ;}g' el BEE Az g oe:w B oC:usmg
[+]
4 E¥ U HBN SEUD e A=stsd |, . .
o i A:O%CH B:2 & C:oOpCH
W OE o+ A:25 B:20 C:15 2 7
i | =
s A 3 E
58

UNIVERSITY

6. Role Playing

» Perform requirements elicitation from the viewpoint of the roles
— Learns and performs user’s job
— Performs a scripted walkthrough

« Advantages
— Gain real insights into the problem domain
— Understand problems that users may face

EPENDABLE SOFTWARE 5 9
LABORATORY

s

1. Prototypes

KU KONKUK
UNIVERSITY

« Demonstrate some or all externally observable behaviors of a system through building prototypes
quickly

 Used to:

Demonstrate understanding of the problem domain

Gain feedback on proposed solution

Validate known requirements

Discover unknown requirements

Create simulations

Elicit and understand requirements

Prove and understand technology

Reduce risk

Enhance shared understanding

Improve cost and schedule estimates and feature definitions

PENDABLE SOFTWARE

LABORATORY

Actonws ov A TweeT

i g’ |

AcTens on A FICEL

—

60

Rl

8. Use-Case

+ Text stories of some actors using a system to meet goals
— A mechanism to capture and analyze requirements (from elicitation to analysis)
— Use case is not a diagram, but a text.
— Use cases are requirements, primarily functional (behavioral) requirements.

system boundary NexiGen POS : _ -~ communication

r'- -", : ~= 'r’ i

NS e B . i

\ o /. _Process Sala) - [oy alternate

NN A Te—— T W A notation for

Customer s e a computer
/ Payment systgm actor Use Case : Process Sale

o~ A NN Authorization o ¢

/ . fi Handle Retums) N i Main Success Scenario (or Basic Flow):
T Ll 77— — '- . sactors o 1. Customer arrives at POS checkout with goods and/or services to purchase.
Cashier | Tax Caleulator i

el 2. Cashier starts a new sale.

L ~— NT o 3. Cashier enters item identifier.

e . Ceshin L “ Accounting 4. System records sale line item and presents item description, price, and running total.

— ~— =E iy e Price calculated from a set of price rules.
T, ~J e | Cashier repeats steps 3-4 until indicates done.
i . | ™ Ha L&] s
3 u;:cnm:_ 1 Analyze Adtivity | " HR System 5. System presents total with taxes calculated.
iy r -~ %
Syslem y — = 6. Cashier tells Customer the total, and asks for payment.
N 7. Customer pays and System handles payment.
,_Manage Security) »._ 8. System logs completed sale and sends sale and payment information to the external
e as, p pay
| = "= Accounting system (for accounting and commissions) and Inventory system (to
System [Manage Users) update inventory).

Adralnlstrstor e use case 9. System presents receipt.

\ 10. Customer leaves with receipt and goods (if any).

EPENDABLE SOFTWARE 6 1
LABORATORY

KU sy

Which Techniques to Use?

* No single technique is sufficient for realistic projects.

— Catch Up A
* Role Playing
* Interview
— Fuzzy Problem
* Requirements Workshops
* Brainstorming
» Storyboards
— Selling / Teaching
* Use-Case
— Mature
* Questionnaires
* Prototyping Low

=

| F ”
“Catch Upﬂ Mature

Customer/User
Experience

“Fuzzy Problem” “Selling/Teaching”

Low Developer Experience Hi

() DEePENDABLE SOFTWARE 62
b LABORATORY

KU sy

What to Do with Elicited Requirements?

* Maintain requirements in lists
— Maintaining a list of requirements can support all activities of requirements.

« Enables you to answer questions such as:
— How many requirements do you have?
— How many high priority requirements do you have?
— What percentage of the requirements deemed high priority by customer X are you satisfying with?
— What percentage of the candidate requirements have you chose to satisfy in your next release? (Actually later)

} DEPENDABLE SOFTWARE 63
LABORATORY

3

Example of Elicitation Results : A list of (annotated) requirements

DEPENDABLE SOFTWARE
LABORATORY

] ‘ Requiremnent Text

951 Ma farmal training shall be required to operate the BLM.

L] Arw new releazes or versions of the software shall be zald az new products. Users must p...
954 I1zer zoftware will not be modified or upgraded.

a1z The BLM shall return to the refuel location or dump area to within 10 cm of the user-define. .
432 Prezzing the screen in an area without a command zhall make no zound nor zhall it be int...
415 The zcreen zhall be capable of dizplaying alphanumernic data in blocked, uppercasze char...
B00 | The ALM zhall accept lawn and obstacle programming from the user. During programming, th...
31 The BLM shall intiate communications with the GPS through estermal interface EL-GPS
300 The BLM shall interface with bao different external systems, The GPS and the Electronically 5.
30 Esternal interfaces include the receipt of location data from GPS and detection of obstacles. .
511 The BLM shall ot overcut or undercut the border and wzer defined obstacles by more tha...
510 The BLM zhall cut the lawn only within the area defined by the user during the programming.
aa0 Border programming shall be required to be completed by the user prior to accepting the oth...
411 The Screen zhall be 16,25 mm [high] by 105 mm [wide) and capable of digplaying two row..
445 Seriouz errorz [for example, blade fouling, Reguirerent 173] zhall not have a button an th...
ah3 Frogramming border data zhall be terminated by a uszer request, or when the RLM retumns t.
ahd After the termination, the BLM zhall be ready to receive anather cammand.

4118 The zcreen shall be uzed to dizplay infarmation from the BLM ta the user and accept dire...
BE1 Idzer zhall guide the RLM ta the obstacle and indicated that the baundary of obstacle will ...
AEZ RLM zhall record sufficient data [e.q. from GPS] to meet the accouracy requirements stated. .
L ALK zhall record sufficient data [e.q. from GPS) to meet accuracy requirements stated in .
551 I1zer zhall guide the LM to the border of the lawn and indicate that the boundary will be .

EPENDABLE SOFTWARE 6 5
LABORATORY

Exercise 1: Requirements Workshop - Requirements Elicitation

— (1) Stakeholder Analysis for finding all relevant stakeholders around 8 ~ 15

Let’s do Requirements Workshop to develop a new advanced OOO digital watch next season

Stakeholder (Role) Goals S|YALSE
. E|A}S 0] to IE—;';—’“E,O:,_'-g o slol _’g_ﬂlt
Pk AR | OnTime! EIMEL | [ime hoxe siaa sl aop o A
7|2l B (AP B0l 1 I|AEE 1
SHEE EE 1 HAELY
S23F(AHEX Argd r Heldr 714 |

— (2) Brainstorming for eliciting new requirements with markers and Post-1ts®

Y &7 w994 (“TuE
/% bl \ '

122105

% ZUL1510 | ™ 52

Role playing
Eliciting about 20~30 ideas

Organize into 20 requirements

Categorize with different colors (FR, NFR, Q)

0556 2047 _

Basic HW features :
- 4 Buttons , 1 Buzzer, 1 LCD , 1 SW downloadable

- GPS, LTE, Wi-Fi , Bluetooth, 5G, Camera, Sensors
- Any addition/extensions are available.

66

The Brainstorming Result after Consolidation (after discussion)

Stakeholders

Requirements

A A AZ AR ALO[Of SeXt OF7t A RIOH B AlZH/Zl==0f Chot &

1]
<
o
hs
0! n
oy
=
I
nf
il
e

User (IAtAIAH 523 CHE)

AN HEA o
=

21 |Zlx 670 O|&o| HiFzZ| =Y 2%
Edl)s 2
HESLE ThOf EIR [3] |extensible hw Off Ci$t Al K|
[4] |baseball game 2| A|A AR 0| CHH O+ XIS
Watehface 283 2LS3i0F ot
dE7(2EY [5] [&4F 7tZ{0| 202tI0| EX| Qtotof &t
[6] |Chest AO{(EA 1074=) E K|SOk &
oF 5
HW/UX Designer [71 |0l AHE0| He|sioF &
8 |[2E® WM 7t5
[9] |140of 1= 0|2t @XHE EESHE H/W clock H O] & &83517| {3t QIELo|A X ER
SW Engineer [10] |7-segment display®2 B3 7ts%t 210{0f CHSiM Tt X[75
[11] |58 HIAHZL ME 7Y CHA THS Qs HIAEE LF Y O|Lfof b= E == UA0{0f &
Product Quality Manager [12] 100 O00OCHE 1CHO| 2EHES #3T == U0{of T
X o = S AlAalsl X~ O 5
[13] [Smart Watch A2l Al BRES 20%0|4 BRE == A0{of &t
CEO [14] 109 O|LHQ| 7HLH|Z J4LO| @tz =|OfOF &
A (o] E=N=4 0, A ZF A Ol kel
[15] |Additional module 2 37l O|3t2 H|gt
HW Engineer =R =
[16] [HiEZ| M= 27ts
[17] |color X| &
Ul Designer Sy o
[18] |animatable ui X| &l
= i_—‘— O|l&LE & al S|
SW Tester [19] |AAHE BHES&L/2tHT S £ &7t ELAL digital A|A| CHH| 24=3l{OFgt
[20] [HHE{Z2] AF2A[ZHO] idle AHEHO|A] 50| AHE|Of OF %t

67

EPENDABLE SOFTWARE 68
LABORATORY

5. Requirements Negotiation

K‘LJ’ KONKUK
UNTVERSITY

Requirements Engineering Process

Feasibility Rt?q.lul't.enlents Requirements
Stud Elicitation and Models
¥ Analysis) '
. User/System
Requirements F/N e /Q
Specificaticn Requirements
Requirements
M Changs t Requirements Requirements Specification
g Validation (IEEE 830.1998)

(Design Phase)

EPENDABLE SOFTWARE 70
LABORATORY

KU vy
Needs for Requirements Negotiation

* Requirements are negotiated to achieve mutually satisfactory agreements.

— Users, customers, managers, domain experts, and developers share different skills, backgrounds and
expectations.

— Requirements emerge from a process of co-operative learning in which they are explored, prioritized,
negotiated, evaluated, and documented.

Second Edition with
. « . ” The Answers toTen Questions People Ask
« [Fisher & Ury, “Getting to Yes,” 1981] Intemational
“ P 9y Bestseller GE I IING TO
Negotiating an agreement without giving in

— 4-step solution approach geﬂ.lng 1.0

» Separate the people from the problem
* Focus on interests, not positions
* Invent options for mutual gain

* Insist on using objective criteria e
negotiating an | Neoytiating Agreement

agreement without . e
< giving in Without Giving In
Roger Fisher and Wllllam L‘r\f
ROGER FISHER & WILLIAM URY the Second Edition, Bruce P

]E and for the revised editions Bruce Patton ()f Iht‘ H‘c‘ll"\dl'd Wldtm PI'O]E(.‘[

EPENDABLE SOFTWARE 7 1
LABORATORY

K konkuk |
UNIVERSITY

WinWin Negotiation
Using the WinWin
Spiral Model:
A Case Study

Fifteen teams used the WinWin spiral model to prototype, plan, specify, and

« The WinWin approach
— A et of principles, practices and tools

— Enabling a set of interdependent stakeholders to work out
a mutually satisfactory (win-win) set of shared commitments

— Win-lose generally becomes Lose-lose.
* Nobody wins in these situations. Barry Boobm

build multimedia applications for USC's Integrated Library System. The
authors report lessons learned from this case study and how they extended

the model’s utility and cost-effecti ina d round of proj

t the 1996 and 1997 International Con-
Alexander ferences on Software Engineering, three
Egye d of the six keynote addresses identified

negotiation technicjues as the most critical
Julie Kwan sticcess factor in improving the outcome

What mig ht be don e Dan Port of software prajects. At the USC Center for Software

Engineering, we have been developing a negotiation-

What is wrong

EPENDABLE SOFTWARE
LABORATORY

In

Real
World

resolving problem. about what might

be done.

What's wrong? Step IV. Action ideas
What are current
symptoms? What specific steps
What are disliked

situation?

Step L. Problem v

What might be done?

might be taken to deal

WinWin, a groupware tool that makes it easier
for distributed stakeholders to negotiate muitu-
ally satisfactory (win-win) system specifications.?

In this article, we describe an experimental valida-
tion of this approach, focusing on the application of
the WinWin spiral model. The case study involved
extending USC’s Integrated Library System to access
multimedia archives, including films, maps, and
videos. The Integrated Library System is a Unix-based,
text-oriented, client-server COTS system designed to

spiral model to build applications written by USC
graduate student teams. The students developed the
applications in concert with USC library clients, who
had identified many USC multimedia archives that
seemed worthy of transformation into digitized, user-
interactive archive management services.

0018-9162/98/$10.00 © 1998 IEEE

Archita Shah based approach to software system requirements engi-
University of neering, architecture, development, and management.
In Southern Our approach has three primary elements:
California
. . » Theory W, a management theory and approach,
eor Step II. Analysis Step III. Approaches Rav Madach Theory W, h d h
y Dlagnose the pr°b|em: What are possible Li(u;)r/:Dz\ta 1y I.:/hic:lals(:\yhs L:\at l:n-‘lkiﬂg winnersdof rfl;r .systtem's
. . ey stakeholders is a necessary and sufficient con-
Sort symptoms into strategies or %vstams andf dityion for project success.’ v
categories. prescri pt|ons? S;ﬁ:’ﬁ:‘ny © + The WinWin spiral model, which extends the spi-
suggest causes. What are some ot W acivis t n bt o o, T st
Observe What is lacki ng. theoretical cures? “Elements of the WinWin Spiral Model” describes The study showed that the WinWin spiral model is
Note barriers to Generate broad ideas these extensions and their goals in more detail. a goad match for multimedia applications and is likely

to be useful for ather applications with similar char-
acteristics—rapidly moving technology. many candi-
date approaches, little user or developer experience
with similar systems, and the need for rapid comple-
tion. The study results show that the model has three
main strengths.

+ Flexibility. The model let the teams adapt to accom-
panying risks and uncertainties, such as a rapid pro-
ject schedule and changing team composition.

Discipline. The modeling framework was suffi-

facts contrasted with the pro blem? manage the acquisition, cataloging, public access, and ciently formal to maintain fofus on achieving
t he . circulation of library material. The study’s specific goal three main, or “anchor-point,” milestones: the
with a preferred was to evaltate the feasibility of using the WinWin life-cycle objectives, the life-cycle architecture, and

the initial operational capability. (Table A in the
sidebar describes these milestones.)

Trust enhancement. The model provided a means
for growing trust among the project stakeholders,
enabling them to evolve from adversarial, con-
tract-oriented system development approaches

iy 1966 N |

K‘LJ’ KONKUK
UNTVERSITY

Key Concepts in WinWin

« Win Condition: objective which makes a stakeholder feel like a winner
« Issue: conflict or constraint on a win condition

« Option: a way of overcoming an issue

* Agreement: mutual commitment to an option or win condition

* WinWin Equilibrium State
— All Win Conditions are covered by Agreements
— No outstanding Issues

Win Condition | Issue “
involves
covers addresses
Agreement Option
" adopts o

EPENDABLE SOFTWARE 7 3
LABORATORY

Steps of WinWin

1. Identify success-critical stakeholders

2. ldentify stakeholders’ win conditions

3. Identify issues conflicting win conditions
4

. Negotiate top-level win-win agreements
— Invent options for mutual gain
— Explore option tradeoffs
— Manage expectations
5. Embody win-win agreements into specs and plans
6. Elaborate steps 1-5 until product is fully developed
— Confront, resolve new win-lose, lose-lose risk items

EPENDABLE SOFTWARE
LABORATORY

uscedu,

[asnE asao s | © csse website L]

2O #TE =MW =
G Google [NAVER i3 wioje AR [oy Xi= [243

e =20 =2TO

D SES D ofElel 20| D M4EURSToHE Scratch 9 2017 ¢T [l eCampus

B
(<]
(e
[
flo
e
]
o
i
flo
e

P

W About us
News
History
People

M Events
Upcoming
Highlights
Past

M Publication
Tech. Report
TR by Author

M Research
Projects

W Tools

M Courses

M Education
Degrees
Admissions

W Affiliates
List of

Affiliates
Private Area

M Other Resources

University of Southern California

Home Contact Us [] seachTechReporis [| SearchSite
USC Viterbi

School of Engineering
Celebrating 10° Years

Center for Systems and Software Engineering

Rescarch Main Page Alphabetical Project List

EasyWinWin:
A Groupware-Supported Methodology For Requirements Negotiation

nwin

BT B g ol Rl Heosttion

What is EasyWinWin? | | Events | Publ | Contact | Download
News
- Tutorial at the [EEE Joint | Requi E Conference (Dortmund, Germany)

- Tutorial at the XP2002 conference (May 26, Alghero, Sardinia, Italy)

- Read the article "Developing G for R i Lessons Learned” at IEEE Distributed Systems Online

- Download Sample Chapter of Process Guide
What is EasyWinWin?

EasyWinWin is a requirements definition methodology that builds on the win-win negotiation approach and leverages collaborative technology fo
improve the involvement and interaction of key stakeholders. With EasyWinWin, stakcholders move through a step-by-step win-win negotiation where
they collect, elaborate, and prioritize their requirements, and surface and resolve issues to come up with mutually satisfactory agreements

Motivation. The success or failure of a new system rests squarely on the always shifting, task of definition. Many of
the failures, delays. and budget overruns in software engineering can be traced directly to shortfalls in the requirements process. There is no complete set
of requirements out there just waiting to be discovered. Different stakeholders — users, .. managers, domain experts, and developers — come to a
project with different expectations and interests. Developers learn more about the customer’s and user’s world, while customers and users learn more
about what is technically possible and feasible. Requirements must be negotiated among the success-critical stakeholders who are often unsure of their
own needs, much less the needs of others. Requirements negotiation is based on stakeholder co-operation and active involvement in decision-making to
achieve mutually satisfactory agreements

The WinWin negotiation model. The particular WinWin system we have evolved is based on a negotiation model for converging to a WinWin

and a WinWin equili condition 1o test whether the negotiation process has converged. The model guides 1
stakeholders in elaborating mutually satisfactory agreements: Stakeholders express their goals as win conditions. If everyone concurs, the win conditions
become agreements. When stakeholders do not concur, they identify their conflicted win conditions and register their conflicts as issues. In this case,
stakeholders invent options for mutual gain and explore the option trade-offs. Options are terated and tumed into agreements when all stakeholders
concur. A domain taxonomy is used to organize WinWin artifacts. Important terms of the domain are captured in a glossary.

EasyWinWin methodelogy. EasyWinWin defines a set of activities guiding stakeholders through a process of gathering, claborating, prioritizing, and
negotiating requirements. EasyWinWin uses group facilitation techniques that are supported by collaborative tools (clectronic brainstorming,
categorizing, polling, <tc). The activities are as follows (follow the hyperlinks for more details):

* Review and expand negotiation topics: Stakeholders jointly refine and customize the outline of negotiation topics based on a domain taxonomy of
#100% v

http://csse.usc.edu/csse/research/easy_win_win/ 7/

EPENDABLE SOFTWARE 7 5
LABORATORY

Exercise 2 : Requirements Workshop - Requirements Negotiation

» Let's do Requirements Workshop
— To develop a new advanced OOO digital watch next season

— (1) Stakeholder Analysis
— (2) Brainstorming

— (3) Negotiating Requirements (WinWin Negotiation)
* Role playing
* Preparation for the Workshop :
— List-up the requirements derived from the previous requirements workshop
— Vote for each requirement : O, X
* Preparation for the WinWin negotiation :
— For each, clarify the reason (issue) and possible solutions (option) for your “X”
* Negotiation :
— Discuss to find out what others think about the requirements | proposed
— Revise requirements by agreement or discard to reach WinWin equilibrium state

amo0d [TuE
/% biubihlih,

2210 %

20101510 | ‘» 52

"\ 05564 2047 _,

76

The Brainstorming Result after Consolidation (Discussion)

Stakeholders

Requirements

A2 AHZRE Atolof At oFt A ol CHol AlZt/Sl==0f CHot A0{3 & A A|2H KR

User (RIXIAIA S=2| T &)

A Al HEA o
=

2] |Zl2 670 ol¢2of HiHE| =3 B
ECft =
Ui oL ko ElE [3] [|extensible hw Off CH&F A X| 2
[4] |baseball game 2| A|AAFE O] CiTH O =& AS
Wateh-face 2+ HZA- 2F5 8|02
dEI|ZEHY [5] |AHZ 7tZ0| 202H@0] HX| grotof gt
[6] |CHEot 210{(X|A 1070=) & X|RIsHof &
SFOROFBE
HW/UX Designer [71 |07 A0l H2|siof &
8] |2E® uK 7ts
[9] |10 12 O|2to| RXE HASH= H/W clock & 0|2 &8317| 2|3t QI mHo|A X ER
SW Engineer [10] |7-segment display2 E3 753 A0 CHSHA T X[Tts
E-agok e SOt 2k 3l Crosscompiler A8
[11] |5BQ HIAHZI ME 7Y CHA TlS 2ot HIAEE AF Y O|Lfof &tz & == U0j0f &t
Product Quality Manager [12] |100,000CHZ 1CHS| EFES T T 5= UOOF T
A B A-CHS- B8 S 2 alor = Rlojor Bt
[13] [Smart Watch AlE2| AIE HRES 20%0|d ERe = A{OF &
CEO [14] [109 O|LHO| JH'LH| 2 JH'L0| @t= &|0{Of &
A (o] == 0, A ZE A O |
[15] |Additional module 2 37l O|3I2 K|t
HW Engineer = 174k B =
[16] [HHIEZ] uHM= 27ts
[17] |color X|-&
Ul Designer Sf AR
[18] |animatable ui X|-&
= ﬁi* ol g ?é
SW Tester [19] |AAHE BrESEE/otHTS K5 7f EFAL digital A|A| CHH| 2==3{OFgt
[20] [HHE{2| AF2A|ZHO] idle &HEHO|A] 50| & x| Of OF %t

77

The WinWin Analysis for Each Requirement for Each

Candidate Requirements

Stakeholders
[1] (2] (3] [4] [51 [6] [71 (8l [9]
CEO (o]
Marketing Manager 0
Project Team Leadel X
SW Engineer X
HW Engineer A
Designer A
Others, if any
Stakeholders Candidate Requirement [1]
[1] Issues Options Agreements Total Agreement
for each requirement, CEO o
Marketing Manager o
Project Team Leader X
SW Engineer " Reqtﬁf::::t [
HW Engineer A
Designer A
Others, if any

78

The WinWin Analysis for Each Requirement for Each

Candidate Requirements

Stakeholders
[1 [2] 3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]
User (MXIAIA 533] &) o) o) o 0 0 o) o} o) o) X o o o o X X o) o o o
HHolE mHOfEIE]]] o]] (] o] o o X o o o o X X o o o o
dEIYEE (]]] X] (] ¢} o [¢] X o o X o X X o e} o o
HW/UX Designer [0 o 0 0 o 0 o o o) o 0 o X o 0 0 o o) o
SW Engineer X (0] (0]) (0] X) (0] (0] (0] X X (0] X (0] (0]) X X X
Product Quality Manager (0] X X () (0] X () (0] (0] (0] (0] () (0] (0] (0] (0]) (0] X)
CEO o) o X 0 o o) 0 o o) 0 o 0 0 o) 0 0 o) 0 o) o)
HW Engineer 0 X o 0 X o 0 X 0 0 o X o X 0 o X 0 0 X
Ul Designer X 0 o X 0 X 0 o o) X o 0 o o) 0 o 0 o o o
SW Tester X o o) o o) X o) o o) o) X o) o X o) o X X o o
\ [2] Z|& 670 o|&o| H{E{2| =B HEL|H EHSLCL
Stakeholders
[2] Issues Options Agreements Total Agreement
User ADLE 9IX|o| B2 AM
e o elaL H| w3 ool 3-4
XA A SS9 (0]
Gy 1 e=s o B E 0| HiE{2| $%Ho|
o HIOIS QY £ QS

v S| FhOf E] X (o}

AbZ 7| 3 ELE} (o}

HW/UX Designer o

- ol .
SW Engineer (o] 1< 1*'? O|LH2| Display
AHS SHOIN, 42|

Product Quality . “A| 2 67HE ALB”S S 1Y AL OOAIZH ALRSH 1Y 1A1ZH A2 Z/ 7| | HIE2] A8 AT X[

Manager o 4 9l Wo| gick. |Che 7| 0| Qlofof ot o2 Bt} I

CEO (0]

IAdditional module O] B | oy
, #7|&2E, 3 SHo
HW Engineer X 7| i =of *E Jt'|..?..7|- = = o 40'7 7|_=‘- =
o A HI-O" =i = o
Ul Designer o
SW Tester (o)

The WinWin Negotiation Table

Original requirements

Positive opinions may be affected
after discussion

/

[2] |2 6712 Ol 2| BiE{2| =¥ BFE|H SHUSLICEL
Stakeholders ¥
[2] Issues Options Agreemen\ Total Agreement
User U{tﬁ SHIXI:I'I §:||0||
oy LR=Un| 3-1Imis) £ 3
b =
(T S22 o @ H o] BiE{2] $30
i) &nqﬁon +918
w4 5h Eoj e E 0
AE7|8ET o
HWI/UX Designer (o]
SW Engineer 0 12 14|t O| L} 2| Display
12 &M, 4ol
Product Quality X “EA GTIE AIRYS ZH MY ¢ O0A|ZH AR S 1Y 1A|ZHAIRE EX HiE{2| A A|ZH X[&
Manager /4 9l= wol gict\ [che 7|F0| glofop sich (Fo 2 $tct. “r ~—
Additional module 0] ADL S XX O Modified requirements
HW Engineer X Z\Ef 20 A2 BHFI} ZJEEO'T' oS in a full sentence
2\ siol gl SR

Ul Designer o \ / \ / \ /
SW Tester (o] P \/

/ \

The reason why I dislike this requirement My own solution
for my dislike

Modified solution
reflecting other’s opinion

80

The Negotiation Result (for reference, but not correct)

Stakeholders Req. ID Requirements

AF OF7t A Oi| CHOH AlZH/S4=0ff Cigh 7Hel A30{E & HF A AE X2

User (AIXHAIA =3 CHE)

]
21 |1 1A|ZF O|LiQ| Display AHE ZHZO|A 4L 9O| HIE{2| AME AZH X[
st TOf)R 3] (A= F=2 iz A| & 100 H3HE 2|3 extensible hw Off Cist Al X[(AF2AL= ZHEIOF 71S)
[4] |baseball game 2| A|AAFE R0 Ciot 22t M7 XS
AFE |2 ElR} [5] |GPT, LTE, WIfiE E=2 E3st= && 7+240| 338HI0] HX| gtotofF &t
cEImEe 6] [SWHY 7|22 170 A™SHe ZHC R, CHst A0(XA 1070=) E A[JsHofF & 470= 210 22 &E T 0|= X|A=7t 0] EF
7 = AFEO| mEZ|5lj0
HW/UX Designer (7|t A8l Ha[ohof & _ _
8] |nA 7tss AEMZ 27) MEATCE M EA| 2 MG AEWZ XSO R T UL
S B 9] [1=0] 1 D|Zto| QXIS HAESHE H/W clock U 0|E 283817| 9/t AEHHO|A X 2R
ngineer Ty —
g [10] |(Drop. AbR: LCD E 4 2 FALE) 7-segment display2 B 75t A0{0f T M D X[7Hs

(1] [59%2 HAHI} HE WY BHA TdS S HAES 82 O|Ljof t2E 4= AO{OF 8t sW /W Xt= 112 Lo S S ZS{OF BHCt

Product Quality Manager
Quality Manag [12] |HW SZE2 80,0000 1C1= THBICE, sW SZ=2 W2 AUYoID 22 LAA| jX|= £510] YH0[E= x| QBCf,

[13] |Smart Watch A|&2| A|Z HRE2 20%0|4 e = A0{of &t

CEO -
[14] [M=H| 7|Z22 10 O|Ljo| 7 UH|Z 7§ L0| 2tz X[0{OF &
, [15] |Additional module & 47} O|3I2 |t
HW Engineer =
[16] |EFZ&Al HYEZ| wet OX| 3. 0L S X[A MH|A HHE Sot =2 HEZ| X XA
Ul Designer [17] |color X|&. (72 H|E 19 S7t, HW 7iE 27 4%F S7h HAE AF 153 7))
e [18] |animatable ui X|& (SW &%t 2H *7f HUHE L 2702 AE H2AE ™ 1F B7h
SW. Toster [19] |AAHE BHES /3t HTS £t HIESH= EFAL digital A|A| C{H| 58 =& 24

[20] [HHE{2| AFEAIZHO] idle & EHOIA SOE'OISEI(HOFE‘

EPENDABLE SOFTWARE 8 2
LABORATORY

6. Requirements Analysis

KU tavemsery
Requirements Engineering Process

* Requirements analysis through requirements models
* Requirements prioritization
+ Requirements selection (Triage)

o ias Requirements .
Feasibili A Re e ts
e Elctionand Poirsments
* Analysis) '
" User/Syste
Requirements “‘I,“ o by
Specification VR
p Requirements
Requirements
Ma?lt:a:lgleent Requirements Requirements Specification
AEgEN Validation (IEEE 830.1998)

(Design Phase)

EPENDABLE SOFTWARE 84
LABORATORY

Requirements Modeling

* Requirement models to understand the requirements well

Help stakeholders to understand the requirements
Guide elicitation

Provide a measure of progress

Help to uncover problems

Help us check our understanding

* Features of good requirements models

Complete
* Modeling guides elicitation
+ Completeness of the model leads to completeness of elicitation
Consistency
* Modeling uncovers problems
* Inconsistency in modeling implies omission, conflict, disagreement and ambiguity

— Testability

* Modeling checks for expected qualities and predicts end result

j;i 3 mEPENDABLE SOFTWARE

LABORATORY

KU KONKUK
UNTVERSITY

85

KU sy

A Traditional Survey on Modelling Techniques

Modelling Enterprises Organization modelling:

— Goals & objectives i* SSM., ISAC
— Organizational structure Goal modelling:
— Tasks & dependencies KAQS, Korea

— Agents, roles, intentionality

« Modelling Information & Behavior Information modelling:
: E-R, Class Diagrams
— Information Structure s
— Behavioral views SADT, SSADM, JSD — SASD
» Scenarios and Use Cases Object Oriented Analysis:
« State machine models OOA, OOSE, OMT — OOAD & UML
¢ |nformation flow Formal Methods:

— Timing/Sequencing requirements SCR, NuSCR, Statecharts, MSC, SDL, Z, Larch, VDM...

* Modelling System Qualities (NFRs) Quality tradeoffs:
— All the ‘ilities’: QFD, win-win, AHP
- usability, reliability, evolvability, safety, Specific NFRs:
security, performance, interoperability, Timed Petri nets (performance)

Task models (usability)
Probabilistic MTTF (reliability)

) DEPENDABLE SOFTWARE 86
b LABORATORY

KU KONKUK
UNTVERSITY

The State-of-the-Art Requirements Modeling Methods

1. Structured analysis

— Data Flow Diagram (DFD)
+ Finite State Machine (FSM)

— Entity-Relation Diagram (ERD)

2. Use-Case analysis

— Use-Case Modeling (UC)
+ Sequence Diagram (SD)

3. Goal and Scenario based analysis
— Goal-Scenario Modeling (GS)
— Goal-Tree Analysis

EPENDABLE SOFTWARE
LABORATORY

FR - Procedural System

FR - Procedural System

FR - Object Oriented System

FR - Business Things

FR - All Systems

NFR - Quality

87

KU vy
1. Structured Analysis

« Structured analysis [Kendall 1996]

— A set of techniques and graphical tools
+ Allowing the analysts to develop a new kind of system specification that are easily understandable to the users.

— Data/Functional modeling: DFD, ERD
— State-oriented modeling: STD (FSM)

» Analysts attempt to divide large, complex problems into smaller, more easily handled ones.
— Top-Down Divide and Conquer approach

& Design:
Approach

EPENDABLE SOFTWARE A 8 8
LABORATORY

B

Data Flow Diagram (DFD)

* Provides a means for functional decomposition
— Composed of hierarchies (levels) of DFDs

e Model Elements

Data Process

- ——

\
() Control Process

- -

Terminator

Data Store

EPENDABLE SOFTWARE
LABORATORY

/7 Data Flow

.
.
s
s

.
s
.
.

» Control Flow

K‘LJ’ KONKUK
UNTVERSITY

89

B

DFD Level 0 - RVC Example

« System context diagram

EPENDABLE SOFTWARE
LABORATORY

Front Sensor Front Sensor Input

Left Sensor
R,

i Control
Right Sensor ﬁ,'g:tt Senso 0

Direction

Dust Sensor Dust Sensor Input Cleaner

Tick

Digital Clock

[E=—|

90

DFD Level 0 - RVC Example

* (A kind of) Data Dictionary

Input/ Output _

Front Sensor Input
Left Sensor Input
Right Sensor Input

Dust Sensor Input
Direction

Clean

EPENDABLE SOFTWARE
LABORATORY

Detects obstacles in front of the RVC
Detects obstacles in the left side of the RVC periodically
Detects obstacles in the right side of the RVC periodically

Detects dust on the floor periodically

Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle)

Turn off / Turn on / Power-Up

K KONKUK
UNITVERSITY

True / False , Interrupt
True / False , Periodic
True / False , Periodic

True / False , Periodic
Forward / Left / Right / Stop

On / Off / Up

91

| KU vy

DFD Level 1 - RVC Example

Front Sensor Input

Direction

Left Sensor
\mpm\) Obstacle & Cleaner &
Dust Obstacle & Dust Motor
__Right Sensor. Detection Location Control
Input

1

2

Dust Sensor Input

Tick

EPENDABLE SOFTWARE 9 2
LABORATORY

B

DFD Level 2 - RVC Example

Front
Sensor
Interface Front Obstacle

11

Front Sensor Input

Left Sensor Input Left Determine
Sensor Left Obstacle Obstacle

. Obstacle

Interface Location Location

......... 1.2 1.5 -
Right
Right Sensor Input Sensor Right Obstacle
Interface
1.3 Determine
————— Dust Dust
Existence Existence

Dust 1.6

Dust Sensor Input Sensor Dust Existence
Interface

EPENDABLE SOFTWARE
LABORATORY

| KU vy

93

B

DFD Level 2 - RVC Example

EPENDABLE SOFTWARE
LABORATORY

Obstacle
Location

Dust
Existence

Direction
Motor
Motor Command Interface
2.2

Main
Control
2.1

Tick

Cleaner
Cleaner Command Interface
2.3

| KU vy

94

| KU vy

DFD Level 3 - RVC Example

i Move Motor Command
Tick ar
\ - Forward >
\ Enable _.-"" _7 21.2
Obstacle ’/,/:/ Disable
Location \ e
Controller Trigger
211 - Motor Comma\nd
7
Dust / ~

Existence

Motor Command

N
7

Cleaner Command

EPENDABLE SOFTWARE 9 5
LABORATORY

KU vy

DFD Level 4 - RVC Example

« FSM for Controller 2.1.1

| Enable “Move Forward”, Cleaner Command (On)

Tick [F && L]
| Disable “Move Forward”,
Cleaner Command (Of
Trigger “Turn Left”

Tick [F && IR]

| Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Right”

able “Move Forward’

Turn Left

Turn Right

Tick [F && L && R]
| Disable “Move Forward”,
Cleaner Command (Off),

This model has many seeded problems
1. “Stop” state is not normal

2. Do not consider “Dust”

3.

EPENDABLE SOFTWARE 9 6
LABORATORY

DFD - RVC Example

Front
Sensor
Interface
1.1

Left
Sensor

Interface
1.2

EPENDABLE SOFTWARE
LABORATORY

Determine
Obstade
Location

1.5

Determine
Dust
Existence
1.6

Motor Command

Motor Command

Motor Command

Cleaner Command

97

KU sy

E-R Modeling

« A graphical representation of the data layout of a system at a high level of abstraction
— Defines data elements and their inter-relationships in the system.
— Similar with the class diagram in UML.

e Model Elements

— O

Entity Relationship Relation Attribute
Type

LABORATORY

S‘ ' DEPENDABLE SOFTWARE 98

E-R Modeling

Shopping process at Malls

£

rE
7o
L
mE B
o U
jof| RF
e L\
Hio =
Hio oy 0
<0 i <1
- 1l K-
513
oo
< 1o
= fof <k
— | &
T | i
oH
Kk -
- =
orl
o]
ol &
Fd il
o 8
= K- <
m Kk
frapy go
K0 Qlzo
{0
——
=

99

DEPENDABLE SOFTWARE
LABORATORY

K

B

2. Use Case Analysis

« Use cases are text stories of some actors using a system to meet goals.
— A mechanism to capture (analyzes) requirements
— Use case is not a diagram, but a text.

» Use cases are requirements, primarily functional (behavioral) requirements.

EPENDABLE SOFTWARE
LABORATORY

Use Case Section

Comment

Use Case Name

Start with a verb.

Scope

The system under design.

Level

"user-goal” or "subfunction”

Primary Actor

Calls on the system to deliver its services.

Stakeholders and Interests

Who cares about this use case, and what do they want?

Preconditions

What must be true on start, and worth telling the reader?

Success Guarantee

What must be true on successful completion, and worth
telling the reader.

Main Success Scenario

A typical, unconditional happy path scenario of success.

Extensions

Alternate scenarios of success or failure.

Special Requirements

Related non-functional requirements.

Technology and Data
Variations List

Varying I/O methods and data formats.

Frequency of Occurrence

Influences investigation, testing, and timing of
implementation.

Miscellaneous

Such as open issues.

KU vy

100

B

Use Case Diagram

KU KONKUK
UNTVERSITY

* Use case diagram illustrates the name of use cases and actors, and the relationships between them.
— System context diagram
— A summary of all use cases

EPENDABLE SOFTWARE
LABORATORY

Something with behavior, such as a person,
computer system, or organization

- Primary Actor : has user goals fulfilled
through using services of the SuD (system
Under Discussion), €.4., cashier

- Supporting Actor : provides a service to the
SuD, e.g., payment authorization service

- Offstage Actor : has an interest in the behavior
of the use case, but is not primary or
supporting, e.g., tax agency

systam boundary

w
e
-~

Actor / Customer

L.
'
L] \
actor .
Cashier

Manager

wactors
Sales Activity
System

System
Adminkstrator

{ Analyze Activity

Use-Case

_ = communication

altlernate
natation for
a computer
Payment sysigm actor
Authorization o .~
Service 7
i
waciors v
Tax Calculator
waclors
Accounting
System
agctors
HR System
.. -
\\\‘
use Case

101

K‘LJ’ KONKUK
UNTVERSITY

Three Common Use Case Formats

» Brief:
— Terse one paragraph summary, usually the main success scenario or a happy path

« Casual:
— Informal paragraph format.
— Multiple paragraphs that cover various scenarios.
* Main
* Alternatives
+ Exceptional

Handle Returns

Main Success Scenario: A customer arrives at a checkout with items to return. The cashier
uses the POS system to record each returned item ...

Alternate Scenarios:

If the customer paid by credit, and the reimbursement transaction to their credit account is
rejected, inform the customer and pay them with cash.

If the item identifier is not found in the system, notify the Cashier and suggest manual entry
of the identifier code (perhaps it is corrupted).

If the system detects failure to communicate with the external accounting system, ...

]}EPENDABLE SOFTWARE 1 02
LABORATORY

B

* Fully Dressed :

— Includes all steps, variations and supporting sections (preconditions, postconditions)

EPENDABLE SOFTWARE
LABORATORY

Use Case Section

Comment

Use Case Name

Start with a verb.

Scope

The system under design.

Level

"user-goal" or "subfunction”

Primary Actor

Calls on the system to deliver its services.

Stakeholders and Interests

Who cares about this use case, and what do they want?

Preconditions

What must be true on start, and worth telling the reader?

Success Guarantee

What must be true on successful completion, and worth
telling the reader.

Main Success Scenario

A typical, unconditional happy path scenario of success.

Extensions

Alternate scenarios of success or failure.

Special Requirements

Related non-functional requirements.

Technology and Data
Variations List

Varying I/O methods and data formats.

Frequency of Occurrence

Influences investigation, testing, and timing of
implementation.

Miscellaneous

Such as open issues.

KU vy

103

| KU vy

Example: Process Sale, Fully Dressed Style

Use Case UC1: Process Sale

Scope: NextGen POS application

Level: user goal

Primary Actor: Cashier

Stakeholders and Interests:

— Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short-
ages are deducted from his/her salary.

— Salesperson: Wants sales commissions updated.

— Customer: Wants purchase and fast service with minimal effort. Wants easily visible
display of entered items and prices. Wants proof of purchase to support returns.

— Company: Wants to accurately record transactions and satisfy customer interests.
Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo-
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

— Manager: Wants to be able to quickly perform override operations, and easily debug
Cashier problems.

— Government Tax Agencies: Want to collect tax from every sale. May be multiple agen-
cies, such as national, state, and county.

— Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Payment authorization approvals are recorded.

“EPENMBLE SOFTWARE 1 04
LABORATORY

B

EPENDABLE SOFTWARI
LABORATORY

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment information to the external
Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, Manager requests an override operation:
1. System enters Manager-authorized mode.
2. Manager or Cashier performs one Manager-mode operation. e.g., cash balance
change, resume a suspended sale on another register, void a sale, etc.
3. System reverts to Cashier-authorized mode.
*b. At any time, System fails:
To support recovery and correct accounting, ensure all transaction sensitive state
and events can be recovered from any step of the scenario.
1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.
2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean
state.
2. Cashier starts a new sale.
1a. Customer or Manager indicate to resume a suspended sale.
1. Cashier performs resume operation, and enters the ID to retrieve the sale.
2. System displays the state of the resumed sale, with subtotal.
2a. Sale not found.
1. System signals error to the Cashier.
2. Cashier probably starts new sale and re-enters all items.

3. Cashier continues with sale (probably entering more items or handling payment).
2-4a. Customer telis Cashier they have a tax-exempt status (e.g., seniors, native peo-
ples)

1. Cashier verifies, and then enters tax-exempt status code.
2. System records status (which it will use during tax calculations)
3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:
2a. There is a human-readable item ID (e.g., a numeric UPC):
1. Cashier manually enters the item ID.
2. System displays description and price.
2a. Invalid item ID: System signals error. Cashier tries alternate method.
2b. There is no item ID, but there is a price on the tag:
1. Cashier asks Manager to perform an override operation.

2. Managers performs override.

3. Cashier indicates manual price entry, enters price, and requests standard
taxation for this amount (because there is no product information, the tax
engine can’t otherwise deduce how to tax it)

2¢. Cashier performs Find Product Help to obtain true item ID and price.
2d. Otherwise, Cashier asks an employee for the true item ID or price, and does
either manual ID or manual price entry (see above).
3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.
3c. ltem requires manual category and price entry (such as flowers or cards with a price
on them):
1. Cashier enters special manual category code, plus the price.
3-6a: Customer asks Cashier to remove (i.e., void) an item from the purchase:
This is only legal if the item value is less than the void limit for Cashiers, otherwise a
Manager override is needed.
1. Cashier enters item identifier for removal from sale.
2. System removes item and displays updated running total.
2a. Item price exceeds void limit for Cashiers:
1. System signals error, and suggests Manager override.
2. Cashier requests Manager override, gets it, and repeats operation.
3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.
3-6¢. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS register.
2. System presents a “suspend receipt” that includes the line items, and a sale ID
used to retrieve and resume the sale.
4a. The system supplied item price is not wanted (e.g., Customer complained about
something and is offered a lower price):
1. Cashier requests approval from Manager.
2. Manager performs override operation.
3. Cashier enters manual override price.
4, System presents new price.
5a. System detects failure to communicate with external tax calculation system service:
1. System restarts the service on the POS node, and continues.
1a. System detects that the service does not restart.
1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.
5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.
5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.
6a. Customer says they intended to pay by cash but don’t have enough cash:
1. Cashier asks for alternate payment method.
1a. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

105

K KONKI
UNIVE

B

EPENDABLE SOFTWARI
LABORATORY

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.
7b. Paying by credit:
1. Customer enters their credit account information.
2. System displays their payment for verification.
3. Cashier confirms.
3a. Cashier cancels payment step:
1. System reverts to “item entry” mode.
4. System sends payment authorization request to an external Payment Authoriza-
tion Service System, and requests payment approval.
4a. System detects failure to collaborate with external system:
1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.
. System receives payment approval, signals approval to Cashier, and releases
cash drawer (to insert signed credit payment receipt).
5a. System receives payment denial:
1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.
5b. Timeout waiting for response.
1. System signals timeout to Cashier.
2. Cashier may try again, or ask Customer for alternate payment.
6. System records the credit payment, which includes the payment approval.
7. System presents credit payment signature input mechanism.
8. Cashier asks Customer for a credit payment signature. Customer enters signa-
ture.

[9)]

9. If signature on paper receipt, Cashier places receipt in cash drawer and closes it.

7c. Paying by check...
7d. Paying by debit...
7e. Cashier cancels payment step:

1. System reverts to “item entry” mode.

7f. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.
9a. There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible):

1. Cashier requests gift receipt and System presents it.

9c. Printer out of paper.

1. If System can detect the fault, will signal the problem.

2. Cashier replaces paper.

3. Cashier requests another receipt.

T OUIITIHIUW, WT waii IL IUUUSL revuvely wiien access lU emno
tory system is failing.

- Language internationalization on the text displayed.

— Pluggable business rules to be insertable at steps 3 and 7.

Technology and Data Variations Li

riations Li

(3
*a. Manager override entered by swi

antoring an ai1tharizatinn fodae i
entenng an aumndoriZaiudn coae vi

3a. Item identifier entered by bar code laser scanner (if bar code is present) or key-
board

ing an ovemde card through a card reader, or

55T in

, or SKU coding scheme.

7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt. But within iwo years, we pre-
dict manv ocustomearg will want dinital ginnatiira nantiira
dict many customers will want digital signature capture.

106

KU KONKUK
UNTVERSITY

Use-Case (Brief)
Use Case 1. Make Reservation

Actors Librarian

- This use case begins when a borrower arrives at the counter and then requests
reservation.
Description - For a registered borrower, it makes a reservation slip (software-wise). System Operation
- For an unregistered borrower, the librarian registers the person and makes a
reservation for the person.

:System
Use-Case (Casual) Librarian

Use Case 1. Make Reservation

Actor Librarian (Evident) makeReservation() R
Purpose (As in the Inception)

Overview (As in the Inception)

o2 &h
Type Primary and Casual

Display(“Error!!!”)

System Functions: R1.1, R3.1

5 EEIENED Use Case: “Add Borrower”

Pre-Requisites Borrower should have an id_card.

(A) : Actor, (S): System
1. (A) Alibrarian requests the reservation of a title
2. (S) Check if a corresponding title exists

[Alternative 42

updateUserinformation()

v

Typical Courses of

)
SRt 3. (S) Check if a corresponding borrower exists
4. (S) Create a reservation information (KA AFEH
Alternative Courses Line 3: (S) If the bc_>rrower’s information is_out of dgte, request for the update. Display(“Reservation OK!”)
of Events (A) A librarian updates up-to-date information of the borrower.

Exceptional Courses

Line 1~3: If invalid reservation information is entered, indicate an error.
of Events

System Sequence Diagram (SSD) 107

PENDABLE SOFTWARE
LABORATORY

Use-Case (Fully Dressed)
Use Case 1. Make Reservation
Actor Librarian
Purpose Create a new reservation
Overview (As before)
Type Primary and Fully-Dressed et R

System Functions: R1.1, R3.1

O Bl O Use Case: “Add Borrower”

Pre-Requisites A borrower should be registered.

(A) : Actor, (S): System
A) A librarian inputs an isbn and ssn of the title

Design Class Diagram

1.
2. (S) Find a corresponding title
Typical Courses of Events 3. (S) Find a corresponding borrower B Reserve Title ol x|
4. (S) Create a new reservation
5. (S) Store the new reservation _
6. (S) Increase reservationCount in the borrower Title |'-”V"-C++ Find Title |
7. (S) Increase reservationCount in the title
Author |cjkim
Alternative Courses of Line 3: (S) If the borrower’s information is out of date, request for the update.
Events (A) A librarian updates up-to-date information of the borrower.
. : - - - Barrawer ICJkim Find Borrower |
Exceptional Courses of Line 2: If the title does not exist, display an error message.
Events Line 3: If the borrower does not exist, display an error message.

QK {Confirm reservation) | Close |

Ul (Prototype)

]&EPENDABLE SOFTWARE 1 08
LABORATORY

Use-Case Diagrams : An Example with Subsystems

Biz Watch OjL| &

]

Hx| A7 2

--_-_'_‘—‘—-—-—-_.___
WiFi ££= GPS 7|5 24 3l H|2Hdat

X YE YUY S5 22

Tl

25 BEE 2 opaxolA 28

714 4 HE

87
51 {124

HiEf2] =T

s

OFZEk O 2 OFE!

e

EPENDABLE SOFTWARE
LABORATORY

i
=

ll]

Ty Hg

KU KONKUK
UNIVERSITY

fRED Rreois ik

GPS 24

714 A My

O 2 A

ZEH M

109

]}EPENBABLE SOFTWARE 1 1 O
LABORATORY

90d [TUE
15

Exercise 3 : Use Case Analysis

« Identify actors and use cases for the new OOO advanced digital watch
— Sketch a use-case diagram and descriptions for some important use cases, as detail as possible (casual format).
— Use a UML tool
— Each use case should link to user requirements defined at the Exercise 1 and 2.

UCO1: Setting current time

3z e 27
DWSs F2 o User
A=A AlAE0| S F0|0], ®xf AlZte EAIStD UCH LA0| 2|1 AKX 2 HEfOICE
i A,

ot .t Mg md | AAol onl Azl o BEe, B Y AL B & agt
etting current time e
1 Usere AIAES Azt BHE HES| SIoh ANES UAuCE

- Setting alarm time 3 Users AESIEE AlZt Hmol $S8 HEsH| SIsf CHES

gejei, 4 AAHES CE AZ Hu 82 Nedn, HuE 992 7Y

ol Heic
Usert SRS A7 Hu 80| Mol GFE 348 WS
sict.
OnOff alarm 5 Users Meisl 820 2tg WRell 9l BHES Yt

- ANAHS MeE g2o 28 ZHAIZID, OIF o) SHEC

— s U=

Stop alarm st}

B AIAES ST AIZ MEE F2ekD, $A) AIZIe FsiCh
aa AlLz|e
1-6a. MHER], User?t BX) A2t HEE BROIE Hots 39
\ Use StopWatch

; Useris MBS 0] g0l Atitol £ Wt 128
Turn on backlight roe B wol Aol S2d

. Users MEieh 50| gto| Hgstais ato =2 Watx| 1- ,I ,I ,I

ul

o
e
A
L
0%
&

User

‘/\\

1. Users AHES 2{oict,

2. NARR HXf AlZ HF8 e, oX AlZS Eoict
5-6a. UserZt MEiSH gt=o] gto| #Fsta{= gte xitet g2
1. Users ASish 920l 28 WHe| Sl BHES Yarpich
2. AABE MElEl 5l20| 2t FIHAI7|D, 0| 20| Z2{etrt

TUE
15

2
[

2 1l \

112

m o o
o o j o
7 K To ol
T O = o
¢ B =z O
o T ¢ Bl
il o
ol MLI ml._1_| -
W T ol . o
ol Bl 1o oy T H ._4_._
=<4 o] I
o= % prn=<d
= O|fl K|o == KF
A MBI KX o
u_.._w.n_n_xo A HBI .
- X = K0 a2
A g o HE Mz 2
—$H oo O >M+o Tod
N < Hop ok =
o1 N o A A QR . H
L of A8 g N ol L. oo ol
g Al o Of T R162 LT K N
10° S 1 Ty A_>ou.AO o7 %7 o0 OK =<
KO0 — Tod oy = = Ar fady o R —
R A T RIOD goOU T = | of- WWRIONTT (f T . =
on M E S A BRSO sy o BBl BT S
°) A == o____o:__H_”:o._ o ou o ny 7 < ﬁo&_.m*.ﬁe_._m
E| | ZTEEY o (HAREL L W o 5
I R gl |TeEmm| o TET i
o Ra_.a_.a_.._mo = mEMAAM = u| _.__m.._E_.__/uﬂMDE_.__A
5 |/=_mumumuma o o__m_.@_._.@_._._Mo A m,_m.*a_emﬂ._%o_.x._mm_.e
S| | Tnwmie 3 %%%%%Lgmﬁﬁwwﬂﬂéﬁm
5| o | WroRORORO = H___ﬂﬂﬂ_% R | I o Ko R B0 T
| o | Bdur 5 @ | + | %0 %0 KO RO = =
a3 wir wir Zm n| o AL [s el ()
oo al3 B r wir wr J_M._ LONDLNDLDFEI™
____.61......../w.
23456789m
[2) 2
= c
4 o]
= = o o [
o
2 5 i s | B
@ 2 = ° | o
Y S o g | 8
—
5| o = o 8 3 3 3
1+ (0] = c B = O
O|l8| o a 2|8 S = 3 O =
1 5 s Gy a o O [} ©
ol L S Qlo|e = Q = = 5
313 < g ARAE: 2 o] 5 |2
A a 21312 3 o 8 € | g
< o o > Q9 o
= g x
i

]}EPENBABLE SOFTWARE 1 1 3
LABORATORY

KU sy

3. Goal-Scenario Based Analysis

« An analysis using goal and scenario models to express and refine requirements
— Provides rationale for the requirements

— Supports requirements analysis through scenarios
+ Story-line and example-based description

— Refines goals through scenarios

e Model Elements

G Sc
Name ScXX...... | - > «— € >
ScX.X......
: . Co-achieve ‘(AD’ .
Goal Scenario Refined OR’ Relation

the parent goal

S ' DEPENDABLE SOFTWARE 1 1 4
LABORATORY

1] Ut
Goal & Scenario

 Goal
— High-level abstraction requirements
— Example: “R24/FE[2 7]/=0] HEEATM Alb|2 S X Z St}

 Scenario
— Purposeful interaction between entities
— Example: “At8XH=ATMCZBE/ 3152 oI F 3}

. . : Requirement chunk
* The relationship between goal and scenario ™ Goal
. . G0 | SO+ giscovery—| !
— Goals are achieved by scenarios LN ,-é
— Goals are explained by scenarios s
* Goals are abstract Scenario 5

5 G2

» Scenarios are concrete authoring

S‘ ' DEPENDABLE SOFTWARE 1 1 5
LABORATORY

KU sy

Goal & Scenario Modeling

* Inputs: Initial requirements (high-level user requirements)
* OQOutputs: Goal-Tree
— Abstraction levels provide separation of concern and levels of goal & scenario modeling

* The 4 abstraction levels
— Business : represents the ultimate purpose of a system
— Service : represents the services that a system should provide to an organization and the rationale
— Interaction : represents the interaction between system and external agent (user or external system)
— Internal : represents what the system needs to perform the interactions selected at the user level

Business
i D
Service
____________________7./__ _____ 74 N ____________
Interaction
A system boundary ... 5555555 RS ES it L, e i

Internal

LABORATORY

S‘ ' DEPENDABLE SOFTWARE 1 1 6

l,< l ' NKIJK

Example of G&S Modeling

» A partial example of an ATM system

Business Level SHHEA 24 S X| /st ATM AH|AE M| S SHCt
RC1.1 R e RC12 ———
. MEEZS 0|85l iz Q& . 7t ATML| QIX|HEE
Service Level MH|AE H|Z8tC}, “| M3%tct.
RC1.11 ,’ RC1.1.2 RC1.1.3
Interaction MEZg ojgstoj mo| | [WEEZojgsty | [E#HM gEE
Level 248 =olstrt - | 38 Qs 230 HEastct
RC1.1.31 .~
RC1.1.2.1 K
o 2d0 HAZAD
o = =& A B o = k<]
Internal Level = Zof| ATMAH| A 3}H2 LT RC113.2
RC1.1.2.2 EaE N HHE
Ha st
QIE7|sS MEiCt
RC1.1.2.3 RC1.1.2.4 RC1.1.2.5
AESHUSE . QIEEQ HAIX|E |, kL b
HAXSIC}. > Mz " S22 MEHSiC

- O - —O02 -2 = I'
DEPENDABLE SOFTWARE
LABORATORY

117

K

DEPENDABLE SOFTWARE
LABORATORY

RC1.1.2
(ﬂEE"% olg'-al'o:l)wa (ATMBE%"E-I)direction SC11
(siznl%)t (1= S}, |
— arget — action /
. — == (=] |
1. (ATMOI) e (R4 #E ZOl)g oo (ATM AHIZ SHHE), oo (HEFTH, 0,
- — A e o e .
2. (?lIEH;E:)subject ('7';7_'" Oiglléﬁrection (ATMAH| 2 2FH 2, gor (FHE T chon
3. (1% ol)subject (?—I E7IEE)target (o E:i%.ECI;ZIancinE:I o
ol — N o =3 N
4. (OLHE%EOI)Subject ('Tl—y_i'lo"}")direction (?—IE o= -4 _'gl-nd E)target (EEJ' ol_l-l:l-)a‘:tm"
5.

. — = 3 (=) |
(_TI_7—||II OI)Eg%Ct (?l' Eﬁl—holll)direction(?—l Eg—o_llll E)target (oEI E_1| ol—l-l:l')action
aref oI55 A0 FHfE H (state)
e — e A =
(?_H E;:E %)subject (-_'L7—I|II 0'" 7‘")direction (?_I %g!'?—l I}II *ﬂ:l! %)target (H _c.’_ o'—l- I:'I-)action
e o -~
(ATM OI)subject (-T'—7—||I 0'" 7")direction ('oj E.E)target ($LI = o‘—l- I:I-')action

KU sy

Goal (Goal-Tree) Analysis

* Goal-Tree Analysis
— Focus on why a system is required, expressing the ‘why’ as a set of stakeholder goals

— Goal refinement to arrive at specific requirements
+ Document, organize and classify goals

— Goal evolution
* Refine, elaborate, and operationalize goals

— Goal hierarchies show refinements and alternatives
— Goal-Tree visualizes goal analysis

* Pros

— Reasonably intuitive
» Explicit declaration of goals provides sound basis for conflict resolution

« Cons

— Captures a static picture - what if goals change over time?
» Can regress forever up (or down) the goal hierarchy

| L‘;“-’EZIJEPENDABLE SOFTWARE 1 '] 9
LYY LABORATORY

3

Example :

DEPENDABLE SOFTWARE
LABORATORY

Goa-Tree Modeling

Or-decomposition . .
Crucial plannin
decision be made
/mee made

Decision be made
by email discussion

/’\ Agenda be

efined

face-to-face

Meeting be

scheduled Minutes be

circulated

Meetin
be hel

Date and

looat + Attendees Changes
Moot ocarion se know details be handled
eeting be
requested
room) change
availability Meeting requegfs
determined announced accepted
Attendee AV & other attendees' facilities
list needs preferences booked p;zﬁr;g;g%e Participants
obtained defined known notified

KU sy

Goal-Tree Analysis

 Goal Elaboration
— “Why” questions explore higher goals (context)

— “How” questions explore lower goals (operations) earn an get good
— “How else” questions explore alternatives income grade
A /’ +
+ Relationships between goals v ml'f’
— One goal helps achieve another (+)
— One goal hurts achievement of another (-) get full -
— One goal makes another (++) fime job

* Achievement of goal A guarantees achievement of goal B
— One goal break another (--) -

* Achievement of goal A prevents achievement of goal B attend
lectures

LABORATORY

S 'DEPENDABLE SOFTWARE 121

l,< l ' NKIJK

Goal-Tree Analysis on Quality Attributes

* Quality Attributes for “Train System” :
— Convenience, Benefit, Cost, Safety

» Goals identified from requirements elicitation :

Maintain

passenger Serve more Minimize Improve
comfo?'t passengers costs safety
Minimize Minimize Maintain Clearer
operation development safe sianalin
costs cost distance g 9
Reducing
staffing

S DEPENDABLE SOFTWARE 1 22

LABORATORY

I< l] KONKUK
UNIVERSITY

Goal-Tree Analysis

. . Minimize
» After requirements analysis : costs Improve
~

/\ safety

Minimize Minimize
operation development

Maintain Serve more costs cost
R Maintain
passenger ssengers \ ekt Clearer
passenge . \ , f
comfort \ / safe . .
. signaling
g \ * distance

A ¥ TS U Reducing .
) V4 ~x 3

I 3
! “\ ! ~~. -
I ' e ff . \
| \ ! \ 3 staffin " , >
| | . Ny . X , \
H \ | - % N, /
H - N / \
1 , 1 s Y ’ Y
~. - N, ‘. 1
H N i - /S - \
1 ~. P \, v
1 N, 1 ~.. AY e
i AN 1 \, S~ FER e " '
H \ | 3 N -
S~ 1 .’ s 1
! . ! ++ . Y s A L \
i AN e \ R R S \ . m .)
/ / \
] \ i el \ \ / \
' . ! TN \ \
H R ! P 1 \ 4)
i N, - ~<) % \ \
. | /
\ ' P ! o \, \
! -, ! - i NS Y \
1 1 i N \ 1
\ . i i T N \
H ~
|- . ' - ! ~. ; N \
\, [l e ! 3, 4 \
. | - i \ / \
I e [\ / \
R 1 e i \, 7 \,
, | - i \ ~ a AN B
4 1 S~ o
| . \ b d
N ! \ ! -~ e \ uy orand-new
N, 1 N] S ’ Ay
N1 ~ [~s. 4 "\
! / S \ .
N | e \
\ ! \
H ! \
1 \ \

‘-. Increase train i More frequent
"- speed trains

AutoEn_a\ted Hire more Buy new rolling
collision
. operators stock
avoidance

Automate
braking

123

EPENDABLE SOFTWARE
LABORATORY

]}EPENBABLE SOFTWARE 1 2 4
LABORATORY

Exercise 4: Goal-Tree Analysis

* Perform goal-tree analysis for the NEW OOO Advanced Digital Watch
— Select 5~6 soft goals(Quality) from the Exercise 1-1 and 2-1
— Construct a goal-tree for each quality goal with the detail functional requirements derived from Exercise 3-1
— Construct a combined goal-tree marked with (+ - ++ --)

AN
PR PN

125

]}EPENBABLE SOFTWARE 1 2 6
LABORATORY

KU sy

Requirements Prioritization

* Need to select what to implement, after analyzing requirements
— Customers (usually) ask for too much
— Balance time-to-market with amount of functionality
— Decide which features go into the next release

» For each requirement/feature, ask:
— How important is this to the customer?
— How much will it cost to implement?
— How risky will it be to attempt to build it?

 Perform Triage:
— Some requirements must be included
— But, some requirements should definitely be excluded

LABORATORY

S ' DEPENDABLE SOFTWARE 1 27

K‘LJ’ KONKUK
UNTVERSITY

A Cost-Value Approach

« Calculate return on investment (ROI)
1. Assess each requirement’s importance (value) to the project as a whole
2. Assess the relative cost of each requirement
3. Compute the cost-value trade-off:

A

071 High .
: . .T ..-
£ 254 priority
3
5 20+ Medium
= priority
@ 15= ot
_:;
g o4 5 L

515 L Low priority

L] L] L | | L] | |
5 10 15 20 25 30
Cost (percent)

]}EPENDABLE SOFTWARE 1 2 8
LABORATORY

KU KONKUK
UNIVERSITY

Visualizing Value by Stakeholder

10 Stakeholders:

I m3
E : O M5
S . b > O Mmé
+ N e, I M7 M10
o K 5%
% SN H M8 H v
Variation coefficient
& (right hand scale) B M9
& .. . EMIO
- Level of disagreement|
S for each feature”
e 1
o
a

I M4
! = 15%

10%

= L0 g

o Zl8 Features
PZMHKCALDEBJONI| QF G~ (labeled A-Q+Z)

]}EPENDABLE SOFTWARE 1 2 9
LABORATORY

KU sy

Estimating Cost & Value

 Two approaches:

— Absolute scale (e.g., dollar values)
* Requires much domain experience
— Relative values (e.g., less/more; a little, somewhat, very)
* Much easier
* Prioritization becomes a sorting problem
— Bubble sort
— Binary sort
— MST (Minimum Spanning Tree)

| --"‘:I}EPENDABLE SOFTWARE 1 30
W LABORATORY

Complications on Estimation

Hard to quantify differences quantitatively
— Easier to say “x is more important than y” than to estimate by how much

* Not all requirements comparable
— E.g., different levels of abstraction
— E.g., core functionality vs. customer enhancements

* Requirements may not be independent
— No point selecting between X and Y if they are mutually dependent

- Stakeholders may not be consistent
— E.g.,ifX>Y,andY >Z, then presumably X >Z?

- Stakeholders might not agree
— Different cost/value assessments for different types of stakeholder

DEPENDABLE SOFTWARE
LABORATORY

B

Analytic Hierarchy Process (AHP)

1. Create n x n matrix for n requirements

— For element (X, y) in the matrix enter:
« 1:ifxandy are of equal value
. if x is slightly more preferred than'y

KU KONKUK
UNTVERSITY

. if X is very strongly more preferred than y

3

+ 5:ifxis strongly more preferred than y
7
9 : if x is extremely more preferred than y

— For (y, x), enter the reciprocal.

2. Estimate the eigenvalues:

— Use your own approach (strategy, heuristics)

— E.g., “averaging over normalized columns”
1. Calculate the sum of each column
2. Divide each element in the matrix by the sum of its column
3. Calculate the sum of each row
4. Divide each row sum by the number of rows

— This gives a value for each requirement:
» Giving the estimated percentage of total value of the project

EPENDABLE SOFTWARE
LABORATORY

Req1 | Req2 | Req3 | Req4
Reql| 1 13 2 4 Reql - 26% of the cost
Req2 - 50% of the cost
Req2| 3 1 5 3 Req3 - 9% of the cost
Normalise Req4 - 16% of the cost
Req3 | 1/2 | 1/5 1 13 columns
Reqd | 1/4 | 113 3 1
Result
Req1 | Req2 | Req3 | Req4 c sum | sum/4
um
Req1| 0.21 | 0.18 | 0.18 | 0.48 the
rows 1.05 | 0.26
Req2 | 0.63 | 0.54 | 0.45 § 0.36
1.98 | 0.50
Req3 | 0.11 | 0.11 | 0.09 | 0.04
034 | 0.09
Reg4 | 0.05 | 0.18 | 0.27 | 0.12
062 | 0.16
132

Considerations in Requirements Prioritization

* Find factors that affects priority:
— How much does the customer want it?
— How much cost to develop?
— How much time to deliver?
— How technologically difficult?
— How organizationally difficult?
— How much will the business benefit?
— Relevant quality factors

* Not all factors apply to all projects
— Each factor’s importance varies from project to project
— ‘Relative’ importance is different to everyone

* Include all major stakeholders:
— We need to prioritize the requirements in collaboration with the customers and developers
— We must decide on a subset of requirements to be first implemented among various stakeholder interests
— We need to remember that more influence is exercised by a particular group of stakeholders

LABORATORY

S DEPENDABLE SOFTWARE 1 3 3

KU sy

Requirements Prioritization Methods

« Ranking
— When you rank requirements on an ordinal scale, you give each one a different numerical value based on its

importance.
* For example, the number 1 can mean that the requirement is the most important and the number n can be assigned to the
least important requirement, n being the total number of requirements.

* Numerical Assignment (Grouping)

— This method is based on grouping requirements into different priority groups with each group representing
something stakeholders can relate to.
* For example, requirements can be grouped into critical priority, moderate priority and optional priority.

* MoSCoW Technique

— Instead of numbers, this method uses four priority groups:
* MUST (Mandatory)
+ SHOULD (High priority)
+ COULD (Preferred but not necessary)
« WOULD (Can be postponed and suggested for future execution)

S‘ ' DEPENDABLE SOFTWARE 1 34

LABORATORY

K‘(]’ KONKUK
UNIVERSITY

 Bubble Sort Technique
— To prioritize requirements using bubble sort, you take two requirements and compare them with each other.

— If you find out that one requirement should have greater priority over the other, you swap them accordingly. You
then continue in this fashion until the very last requirement is properly sorted. The result is a list of requirements
that are ranked.

Bubble Sorting
First Pass Second Pass Third Pass
'd 4

%—\swapping rnn swap-] 1 I,-nn Swzp-] 1
/—I 5(1]|4|2]|8 /—I 1/14|2|5|8 /-I 1|/2(4|5|8

r\swapping r\‘swapping rnn sw:q:«|
\;“—| 1(5|4|2|8 >—| 1(4|2|5)|8 >—| 1(2|4|5|8

K—\swspping rnn swap-] rnn Swap-]
;*_I 1/14|5|2|8 \}_I 1(2]|4|5)|8 ;‘*_| 1({2|4|5|8
r-lm swapj 1o swap-, o swap-
;“_| 1(4|2|5|8 >“_| 1(2]|4(5]|8 >“_| 1({2|4(5|8
*|1 4|2|5]|8 *|1 24|58 \|1 2 4[58
(C waresourte,com

]}EPENDABLE SOFTWARE 1 3 5
LABORATORY

KU sy

e Hundred Dollar Method

— This simple method is useful anywhere multiple stakeholders need to democratically vote on which
requirements are the most important.

— All stakeholders get a conceptual 100 dollars, which they can distribute among the requirements. As such, the
stakeholder may choose to give all 100 dollars to a single requirement, or the person may distribute the points
more evenly.

— At the end, the total is counted, and the requirements are sorted based on the number of points received.

 Five Whys
— With five whys, the analyst asks the stakeholder repeatedly (five times or less) why the requirement is
necessary until the importance of the requirements is established.

— The answers reveal whether the requirement is really necessary or can be cancelled/postponed once the
priority is determined.

The Five Whys

-

AREWEDOING ITWRONG

By Mike Rother and Constantin May

| --"‘:I}EPENDABLE SOFTWARE 136
y LABORATORY

K KONKUK
UNITVERSITY

 Overall AHP (Analytical Hierarchy Process)
— Step 1. List all features and use cases that must be prioritized
— Step 2. Estimate the relative benefit if each feature is included
— Step 3. Estimate the relative penalty if each feature is not included
— Step 4. Estimate the relative cost of implementing
— Step 5. Estimate the relative degree of technical or other risk
— Step 6. Calculate a priority number for each feature
— Step 7. Sort the list of features

Relative Weights 2.0 1.0 1.0 0.5 0.5
Foctire Relcﬂ_/e Relative | Relative | Cost Relgﬁve Risk Total Valuve

Benefit Penalty Cost 7 Risk To Value o

Print a material safety data sheet 2 4 1 2.7 1 3.0 8 5.2
Query status of a vendor order 5 3 2 5.4 1 3.0 13 8.4
Generate a Chemical Stockroom inventory 9 7 5 13i5 3 9.1 25 16.1
See history of a specific chemical container 5 5 3 8.1 2 6.1 15 9.7
Search vendo;ﬁg::il(c:)gls for a specific 9 8 3 8.1 8 24.9 26 16.8
Maintain a list of hazardous 3 9 3 8.1 4 12.1 15 9.7

]}EPENBABLE SOFTWARE 1 3 7
LABORATORY

KU KONKUK
UNTVERSITY

Requirements Triage

« Selecting the “right” features to include in next release Requirgyy schedule
en C
— Arriving at an answer is not easy. 3
— It's either Win-Win or Lose-Lose. COS/
 Requirements vs. Schedule/Cost Risk
— Basic triage

* An Engineering View
+ Balancing between requirements and Cost/Risk/Schedule

— Advanced triage
* A Business View
» Balancing between requirements and Cost, Risk, Schedule, Market, Sales, Revenues, Pricing, Profit, and ROI

« Tips for requirements triage
— Maintain requirements in lists
— Annotate requirements by at least relative priority and cost-to-satisfy
— Involve representatives from all key groups (stakeholders)

j ‘;:‘D EPENDABLE SOFTWARE 1 38
- LABORATORY

KU sy

Requirements Triage

Customers & Competltlon

Cust. Rep. or Marketing
Development Finance

Cust. Rep. or Cust. Rep. or Cust. Rep. or
Cust. Rep.or - _ : 1 . Rep.
Marketing M.arl.(c.:.-hn-g: | . Marketing 3 Marketing ®
Priorifization _ . ' -
Bug g - Il s -
Reports | " | " .
Unsatisfied | . 1 = M -
From Previous >| | . | - .
Release Development: I - - C
Estimation | . J 3 .
Development || | . " 100% .
. " Baseline =
List of List of " §°% i ' .
Candidate Annotated aseline >
Requirements Candidate SRS & Estimation Refinement

Requirements

Y

Product Development

Technology

ig“‘é}:}EPENDABLE SOFTWARE 1 3 9
LYY LABORATORY

KU KONKUK
UNTVERSITY

Annotated Requirements Lists

* Maintain sound advice to support all activities on requirements

— Enables you to answer questions such as:
* How many requirements do you have?
* How many high priority requirements do you have?
* What percentage of the candidate requirements have you chosen to satisfy in your next release?
* What percentage of the requirements deemed high priority by customer X are you satisfying?
» If Sally quits, which requirements are affected?
* What percentage of the requirements for this release have been validated?
* Andsoon...

* Find relevant importance to stakeholders

— What should we annotate?
» [Effect and cost
* In which release?
e Duration (optional)
e Technical risk (optional)

* Requirements should be in a database.
— Access, Excel, RequisitePro, CaliberRM, RTM, DOORS, etc.

]&EPENDABLE SOFTWARE 1 40
LABORATORY

3

Annotate Requirements Example

DEPENDABLE SOFTWARE
LABORATORY

We’ve ANNOTATED the features.

[n] Requirement Text Eg\lgl ;ii A Priority | Rel.. ~ I ?slates Copfments | Child of | Lewvel ‘ ;I
. 9561 Mo farrmal training shall be required to operate the BLM. 0.00 . 1 High l 1.5 \ [960 3
.| 955 Any new releases or versions of the software shall be sold as new products. Users must p... 0.00 1 High 1.5 950 3
.| 954 Uszer zoftweare will nat be madified or upgraded. 0.00 1 High 15 950 3
.| 512 The RLM shall return to the refuel location or dump area bo within 10 cm of the user-define... 10.00 6 Medi... TBD 510 3
| 432 Pressing the screen in an area without 2 command shall make no sound nor shall it be int... 12.00 4 Medi.. TBD 430 3
../ 4158 The zcreen thall be capable of digplaving alphanumeric data in blocked, uppercaze char... 1.00 1 High TBD 410 3
.| 500 | The RLM shall accept lawn and obstacle programming fram the user. During programming, th... 35.00 7 High TBD 10 |
|33 The BLM zhall initiate communications with the GPS through external interface EL-GPS 2200 5 High TBD 320 3
.1 300 | The ALM shall interface with bwo different extermal systems, The GPS and the Electronically 5... 0 120.00 9 High TBD 1
.| 310 Extemal interfaces include the receipt of location data from GPS and detection of obstacles. . 22.00 9 High TEBD a0a 2
.| BN The RLM zhall not overcut or undercut the barder and user defined obstacles by more tha... 10.00 4 High TBD 510]
.| 510 The RLH shall cut the lawn only within the area defined by the user during the programming. 22.00 5 High TBD 500 2
.| 550 Border programming shall be required to be completed by the user prior to accepting the ath... 4.00 3 High TBD 500 2
KA The Screen shall be 16.25 mm [high] by 105 mm [wide] and capable of dizplaying bwo row... 2.00 1 High TBD 410 3
... 446 Serious ermars [for example, blade fouling, Requirernent 179) shall not have a button on the screen. I:IEI 1 Medi.. TBD 173 Unclear 440 3
.| 553 Programming border data shall be terminated by a uzer request. or when the BLM returns t.. 4.00 3 High TBD 550]
.| BR4 After the termination, the RLM shall be ready to receive anather command. 4.00 3 High TBD 5RO 3
.| 418 The zoreen zhall be used to dizplay information fram the RLM ta the uzer and accept dire... 5.00 1 High TEBD 10 3
.. | BE1 Uzer shall guide the BLM ta the obstacle and indicated that the boundany of obstacle will .. 11.00 6 High TBD 560 3
.| BB2 FLM shall record sufficient data [e.g. from GPS] to meet the accuracy requirements stated... 11.00 6 High TBD 510.5... 560 3
... 552 FRLM zhall record sufficient data [e.g. from GPS] to meet accuracy requirements stated in . 4.00 3 High TED 510.5... 550 3
... | 551 User shall guide the RLM to the border of the lawn and indicate that the boundary will be .. 3.00 3 High TBD 550 3
... &70 Programmming refuel location shall be invoked by user during the initial state of programming ... 11.00 5 Med... TBD 500 z2
| B4 Uzer shall guide the RLM ta the refuel location and indicate that the location of BLM iz th... 13.00 5 Medi.. TBD 570 3
.| 572 FLM shall record sufficient data to meet the accuracy requirernents 510, 511, 512, and 5... 5.00 5 Medi.. TBD 510, 5... 570 3
| 573 Programming refuel location shall be terminated after RLM records itz location. E.00 4 Medi.. TBD Unclear 570 3
.| 574 After the termination, the RLM shall be ready bo receive another command. 2.00 5 Medi.. TBD 570 3
.| 447 In these cases, the RLM must be shut off and the error conected by the user. 2.00 1 Medi.. TBD 440 3
EOq 11 L= =l il bl D] Bd b bl A = = o b bl mb bl b =i A-p E bl A 200 o b I00 |=(u]u] 2 b

]}EPENBABLE SOFTWARE 1 4 2
LABORATORY

Exercise 5: Basic Prioritization & Selection

» Prioritize the collected stakeholder requirements and select a subset of requirements doable

within 3 months
— Project Title: “Custom Mass Transportation System” in 1990s

— Purpose: Increase the usage ratio of regional/suburban mass transportation system

« Justify your selection quantitatively

PTSPC

(Public
Transportation

Service
Provider Center)

Order mass transportation through SMS, call center, internet (Notify
departing location, destination, time of departure/arrival, etc.)

X
/

Find optimal travel route, fare, ETA,
and other traffic information

143

5 persons are available as workforce.
— The project should be under 15 man-month if to complete within 3 months.
— Assume that the Internet was booming.

Use 4 columns of annotations.
— Define each column (i.e., evaluation criteria - quality factor) clearly
— Use 4 different prioritization methods, respectively
— Keep in mind the purpose of your selection

Reduirements Value c Total | Selected
q (1~10) Rank) | (O/X)
1

Req. 1. The system should have features such as Register, Sign-in, Sign-out.

Req. 2. The Driver should be able to view Passenger requests. 3
Req. 3. The system should accept orders through the internet. 2
Req. 4. The Customer should be able to designate the route in advance. 3
Req. 5. The system should accept orders through SMS. 2
Req. 6. The system should accept orders through the call center. 2
Req. 7. Managers should be able to manage orders through the internet. 1
Req. 8. Manager should be able to configure User profile through the call center. 2
Req. 9. Data transfer between a taxi and traffic manager should be possible. 3
Req. 10. Manager should be able to configure User profile through the internet. 1

144

]}EPENBABLE SOFTWARE 1 4 5
LABORATORY

7. Requirements Specification

K‘LJ’ KONKUK
UNTVERSITY

Requirements Engineering Process

Feasibility R(?q,l ur?nlents Requirements
Study Elicitation and Models
e Analysis . :
Requirements e ;]/ /\Sl‘;(l; =
Specification N)
Requirements
Requirements
Maﬁl;a:lglfen § Requirements Requirements Specification
8 Validation (IEEE 830.1998)

(Design Phase)

]gEPENDABLE SOFTWARE 1 47
LABORATORY

K‘LJ’ KONKUK
UNTVERSITY

Software Requirements Document

« SRS (Software Requirements Specification) OF SRD (Software Requirements Document)

» The official statement of what is required of the system developers
— Should include both a definition of user requirements and a specification of the system requirements
— NOT a design document
— As far as possible, it should set of WHAT the system should do rather than HOW it should do it.

» The goal of requirements engineering:

— “Not to write the perfect requirements specification, but create the best possible product at the right time”

]}EPENDABLE SOFTWARE 1 48
LABORATORY

KU sy

SRS Contents

- Software Requirements Specification should address:
— Functionality
» What is the software supposed to do?
— External interfaces
* How does the software interact with people, the system's hardware, other hardware, and other software?
+ What assumptions can be made about these external entities?
— Required performance
+ What is the speed, availability, response time, recovery time of various software functions, and so on?
— Quality attributes
» What are the portability, correctness, maintainability, security, and other considerations?
— Design constraints imposed on an implementation

» Are there any required standards in effect, implementation language, policies for database integrity, resource limits,
operating environment(s) and so on?

S‘ ' DEPENDABLE SOFTWARE 1 49

LABORATORY

KU sy

Requirements Document Variability

« Information in requirements document depends on the type of system and the approach to
development used.

— If systems are developed incrementally, it will typically have less detail in the requirements document.

* Requirements documents standards have been designed.
— E.g., I[EEE standards
— Mostly applicable to the requirements for large systems engineering projects

S 'DEPENDABLE SOFTWARE 150

LABORATORY

SRS Standard: IEEE STD 830-1998

IEEE Std 830-1998
(Revision of
IEEE Std 830-1983)

IEEE Std 830-1998

IEEE Recommended Practice for
Software Requirements
Specifications

IEEE Computer Society

Sponsored by the
Software Engineering Standards Committee

20 Octobor 1998 SHO4654

EPENDABLE SOFTWARE
L AR Korkuk Urwv on Apeil 16,2019 at 07:16:13 UTC from IEEE Xplore. Restrichons apply

Table of Contents
1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview
2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing
this section of the SRS.)

Appendixes
Index

Figure 1—Prototype SRS outline

KU KONKUK
UNIVERSITY

151

KU KONKUK
UNIVERSITY

SRS Templates: IEEE STS 830-1998

A.1 Template of SRS Section 3 organized by mode: Version 1 A.2 Template of SRS Section 3 organized by mode: Version 2

3. Specific requirements 3. Specific requirements
3.1 External interface requirements 3.1. Functional requirements
3.1.1 User interfaces 3.1.1 Mode 1
3.1.2 Hardware interfaces 3.1.1.1 External interfaces
3.1.3 Software interfaces 3.1.1.1.1 User interfaces

3.1.1.1.2 Hardware interfaces
3.1.1.1.3 Software interfaces

3.14 Communications interfaces

9y ~tional reanirements
- ?;ﬁll()ﬂ;i{:;iqcu;lcmnnts 3.I.l._l 4 Comn_luniculinnsimcrl'uccs
3.2.1.1 Functional requirement 1.1 =112 Emmucngnd requirements
FR 3.1.1.2.1 Functional requirement 1
3.2.1.n Functional requirement l.n
3.2.2 Mode 2 3.1.1.2.n Functional requirement n
3.1.1.3 Performance
3.1.2 Mode?2
3.2.m Mode m
3.2.m.1 Functional requirement /. 1 i Nodsi
32 Design constraints
33 Software system attributes
. 34 Other requirements
3.2.m.n Functional requirement m.n
QA 3.3 Performance requirements
NFR 34 Design constraints
QA 3.5 Software system attributes

=
=)}

Other requirements

NFR 3
]}E S—— 152

B

SRS Templates: IEEE STS 830-1998

A.3 Template of SRS Section 3 organized by user class

3. Specific requirements
34 External interface requirements
3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces
3.2 Functional requirements
3:2:1 User class 1

3.2.1.1 Functional requirement 1.1

3.2.1.n Functional requirement 1.n

3.2 User class 2

3.2.m User class m

3.2.m.1 Functional requirement m.1

3.2.m.n Functional requirement ni.n

33 Performance requirements
34 Design constraints

3.5 Software system attributes
3.6 Other requirements

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

A.4 Template of SRS Section 3 organized by object

3. Specific requirements
.1 External interface requirements

3.1.1 User interfaces

3.1.2 Hardware interfaces

3.1.3 Software interfaces

3.1.4 Communications interfaces
3.2 Classes/Objects

3.2.1 Class/Object 1

(73]

3.2.1.1 Attributes (direct or inherited)
3.2.1.1.1 Auribute 1

3.2.1.1.n Attribute n
Functions (services, methods, direct or inherited)
3.2.1.2.1 Functional requirement 1.1

=
[
2

3.2.1.2.m Functional requirement 1.m
3.2.1.3 Messages (communications received or sent)
3.2.2 Class/Object 2

3.2.p Class/Object p
Performance requirements
Design constraints
Software system attributes
Other requirements
) 153

KU KONKUK
UNIVERSITY

SRS Templates: IEEE STS 830-1998

A.5 Template of SRS Section 3 organized by feature A.6 Template of SRS Section 3 organized by stimulus
3. Specific requirements 3. Specific requirements
3.1 External interface requirements 3.1 External interface requirements
3.1.1 User interfaces 3.1.1 User interfaces
3.1.2 Hardware interfaces 3.1.2 Hardware interfaces
3.1.3 Software interfaces 3.1.3 Software interfaces
3.1.4 Communications interfaces 3.1.4 Communications interfaces
3.2 System eatures 32 Functional requirements
3.2.1 System Feature 1 321 Stimulus 1

3.2.1.1 Introduction/Purpose of feature

.1.2 Stimulus/Response sequence

.1.3 Associated functional requirements
3.2.1.3.1 Functional requirement |

3.2.1.1 Functional requirement 1.1

‘o
[A |

o

3.2.1.n Functional requirement 1.n
322 Stimulus 2

3.2.1.3.n Functional requirement n

3.22 System feature 2

3.2.m Stimulus m
) 3.2.m.1 Functional requirement 1.1
3.2.m System feature m

3.2.m.n Functional requirement m.n

3.3 Performance requirements 3:3 Performance requirements
34 Design constraints 3.4 Design constraints
3.5 Software system attributes 35 Software system attributes
3.6 Other requirements 3.6 Other requirements

]}EPENDABLE SOFTWARE 1 5 4
LABORATORY

SRS Templates: IEEE STS 830-1998

3.2.1.n.2 Pertinent processes

3.2.1.n.3 Topology
3.2.2 Process descriptions

3.2.2.1 Process |

3.2.2.1.1 Input data entities
1.2 Algorithm or formula of process
. . . . 3.2.2.1.3 Affected data entities
A.7 Template of SRS Section 3 organized by functional hierarchy 3222 Process 2

3.2.2.2.1 Input data entities

.2 Algorithm or formula of process
3 Affected data entities

3. Specific requirements

3.1 External interface requirements
3.1.1 User interfaces .
. - 3.2.2.m Process m
) P e srfarpc
3.1.2 Hlll:(l wal L_ Il][Ll'] aces 3.2.2.m.1 Input data entities
3.1.3 Software interfaces 3.2.2.m.2 Algorithm or formula of process
~ . . e e 3.2.2.m.3 Affected data entities
3.14 Communications interfaces 3.2.3 Data construct specifications
3.2 Functional requirements 3230 Construct |
. . 3.2.3.1.1 Record type
S T 5 YF
3.2.1 Information flows 35315 Constimentfelds
3.2.1.1 Data flow diagram | 3232 Construct 2
. s 3.2.3.2.1 Record type
2 atq e p g Y
3.2.1.1.1 Data entities 3.2.3.2.2 Constituent fields
3.2.1.1.2 Pertinent processes
3.2.1.1.3 Topology)
3.2.1.2 Data flow diagram 2 3.23p Constructp
o sy 3.2.3.p.1 Record type
2712 ata e g u ype
3.2.1.2.1 Data entities 2.3.p.2 Constituent fields
3.2.1.2.2 Pertinent processes Data dictionary
3.24.1 Dataclement |
3.2.1.2.3 Topology 3.2.4.1.1 Name
2.4.1.2 Representation
2.4.1.3 Units/Format
3.2.4.1.4 Precision/Accuracy
. 3.2.4.1.5 Range
. 3.24.2 Dataclement 2
3.2.1.n Data flow diagram n 32421 Name
3.2.4.2.2 Representation
3.3 Performance requirements 2423 Units/Format

2.4.2.4 Precision/Accuracy

3.2.4.25 Range

[’
>

Design constraints

3.5 Software system attributes
3.6 Other requirements

3.244 Dataclement g

3.2.4.4.1 Name
2.4.4.2 Representation
2.4.¢.3 Units/Format

2.4.94 Precision/Accuracy
EPENDABLE SOFTWARE 32.4.0.5 Range 1 55
LABORATORY b il 4

]}EPENBABLE SOFTWARE 1 5 6
LABORATORY

8. Quality Attributes

K‘LJ’ KONKUK
UNTVERSITY

Requirements Engineering Process

Feasibility R(?q,l ur?nlents Requirements
Study Elicitation and Models
e Analysis . :
Requirements e ;]/ /\Sl‘;(l; =
Specification N)
Requirements
Requirements
Maﬁl;a:lglfen § Requirements Requirements Specification
8 Validation (IEEE 830.1998)

(Design Phase)

]gEPENDABLE SOFTWARE 1 5 8
LABORATORY

KU KONKUK
UNTVERSITY

Non-Functional Requirements

« ISO/IEC 9126 / 25010

— “A Software requirement that described not what the software will do, but how the software will do it, for example,
software performance requirements, software external interface requirements, design constraints, and software quality
attributes.”

« Sommerville
— “Constraints on the services or functions offered by the system such as timing constraints, constraints on the development
process, standards, etc.”

« Wikipedia
— “A requirement that specifies criteria that can be used to judge the operation of a system, rather than specific behaviors.
They are contrasted with functional requirements that define specific behavior or functions. The plan for implementing
functional requirements is detailed in the system design. The plan for implementing non-functional requirements is detailed
in the system architecture, because they are usually architecturally significant requirements.”

DEPENDABLE SOFTWARE 1 5 9
LABORATORY

Boehm's NFR

, p—a <~ Design criferia ~ ~
Boehm S’NFR l'iszl- . l, device-independence

3

1
SourceS€ Blum, 1992, p176 g 1
< > self-containedness | 1
’ portability I
,’ accuracy I
I
,’ completeness I
/ reliability |
/ robustness/integrity |
/ I
‘ — consistency I
General efficiency — I
utility > As-is utility A accountability |
I
- device efficienc
: usability y :
1 accessibility I
\
\ communicativeness :
\
\ y self-descriptiveness :
\
I
63%/, Maintainability understandability structuredness I
N y conciseness ;
\ I
% — T, |
NS modifiability legibility |
s e ’ > augmentability !

DEPENDABLE SOFTWARE
LABORATORY

— —_

McCall's NFR

McCall's-NFRlist-~__

Source:Hee van Viiet 2000, ppl11-3 T g communicatativeness |
i usability >

7’ o I/0 volume
P
. . N
£ integrity U rate

g : fict N

! Product operation efficiency ﬁj Storage efficiency |
} \ execution efficiency |
/ correctness

/ }
reliability < A

error tolerance |

!

I

' - - TH

| maintainability

1 . simplicity

\ Product revision - .

\ testability | conciseness

\)1 instrumentation |
\ flexibility (< +—> expandability

generality

Self-descriptiveness |

Design criteria
e S S S e S U S S R p———

¥ modularity
comms. commonality |

\ reusability —
| Product transition e P < machine independence |
~ portability
~
\Czua/’fy interoperability data commonality | ”

s/w system independence |

DEPENDABLE SOFTWARE
LABORATORY

KU sy

Quality Attributes

» Measurable or testable properties of a system
— Used to indicate how well the system satisfies the needs of its stakeholders
» Availability, configurability, modifiability, performance, reliability, reusability, security, portability, maintainability, efficiency, usability
— Emergent properties : not a measure of software in isolation

» Measures the relationship between software and its application domain

+ Cannot measure this until you place the software into its environment
— Quality will be different in different environments

« Software quality is all about fithess to purpose of stakeholders.
“Does it do what is needed?”
— “Does it do it in the way that its users need it to?”
— “Does it do it reliably enough? fast enough? safely enough? securely enough?”
— “Will it be affordable? will it be ready when its users need it?”

— “Can it be changed as the needs change?”

S ' DEPENDABLE SOFTWARE 1 62

LABORATORY

K KONKUK
UNIVERSITY

Quality Attributes : Taxonomies

WIKI;;; A List of system quality attributes

The Free Encyclopedia oE x -
From Wikipedia, the free encyclopedia
Main page o g : X ;
o This article has multiple issues. Please help improve it or discuss these issues on the talk page. {Leam how an: n to [hide]
ont
e Q remove these template messages)
Random article This article is in list format but may read better as prose. (September 2015}
About Wikipedia » This article needs additional citations for verification. Janvary 2017)
Contact us
Donate Within systems engineering, quality attributes are realized non-functional requirements used to evaluate the performance of a system. These are sometimes named architecture

e characteristics, or "llities” after the suffix many of the words share. They are usually Architecturally Significant Reguirements that require architects’ attention.
ontribute

Help Contents [hicke]
Learn to edit 1 Quality attributes
Bty por 2 Common subsets
Recent changes o |
Upload file see s

4 References
Tools 5 Further reading

What links here
Related changss % .
e pages Quality attributes (et
Permanent link

Motable quality attributes include:
Page information

Cite this page ® accessibility * deployability * modifiability * seamlessness
Wikidata item « accountability + discoverability [Erl] * modularity » self-sustainability
Print/export » accuracy + distributability « abservability » serviceability (a.k.a. supportability)
* adaptability + durability « aperability ® securability (see Comman subsets below)

Download as PDF

Printable version * administrability + effectivensss « orthogonality * simplicity

« affordability » efficiency » portability stability
Languages o « agility (see Comman subsets belo + evalvability « precision « standards compliance
nMay RS « auditability o cxtensibility o predictability o survivability

« autonomy [Erl] failure transparency * process capabilities ® sustainability

® availability o fault-tolerance o producibility ® tailorability

« compatibility « fidelity o provability « testability

« composability [Erl] o flexibility o recoverability o timeliness

« confidentiality * inspectability » relevance » traceability

« configurability o installability o reliability ® transparency

® correctness * integrity » repeatability * ubiquity

o credibility « interchangeability s reproducibility « understandability

* customizability + interoperability [Erl] « resilience » upgradability

» debuggability * learnability * responsiveness « usability

* degradability * localizability » reusability [Erl] ® vulnerability
« determinability « maintainability s robustness

+ demenstrability + manageability safety

» dependability (see Comman subsets below) + mability * scalability

Many of these quality attributes can also be applied to data quality.
EPENDABLE SOFTWARE 1 63
LABORATORY

K KONKUK |
UNIVERSITY

Quality Attributes from Stakeholders

N

Stakeholder Quality Attribute
Needs Requirements
“Increase market share” ---------—---—-—-—---—------> Modifiability, Usability
“Maintain a quality reputation” ----------=------- > Performance, Usability, Availability
“Introduce new capabilities seamlessly” -------------- > Performance, Availability, Modifiability
“Provide a programmer-friendly framework” =========cccccemeuuax > Modifiability
“Integrate with other systems easily” - ---------wco-- > Interoperability, Portability, Modifiability

]}EPENDABLE SOFTWARE 1 64
LABORATORY

]}EPEN

Quality Attributes to Software Architecture

« The degree to which a system satisfies quality attribute requirements is directly dependent on
architectural structure.

Quality Attribute Software Architecture
Requirements Design

» Architects need to have a solid understanding of the quality attribute requirements for a system, when

they are designing the system’s software architecture.

DABLE SOFTWARE
LABORATORY

165

KU sy

Problematic Features of Quality Attribute

* Non-Operational requirements
— “The system must be easy to use.”
— “The system must have high performance.”
— “The system must be portable.”

 Debating the quality attribute to which a system behavior belongs
— “The system must process 10,000 messages per second.”

 Vocabulary variations
— Everyone knows what “high performance” means, but different each others.

« Various inter-dependency among quality attributes
— Trade-off
— No 100% satisfied

S‘ ' DEPENDABLE SOFTWARE 1 66

LABORATORY

Quality Requirements: Examples

. S22 IS Y3 TRMM ST RAM S0A 20% = A/ Th £SHAIE O A = ALRE|X| QHofo} BhCt

. ZAFEZ W3 JIE RHRO| D2 AKIEE £ 4 Yt

. AMBRF DY S M| M BE|0) 027t LAt HE S0|H RE HAL]S o2 52 H x|z 21
st}

. O IO

2= 7|s2Ctri+LHE 7| & AHE5ts BHE7(7F J 2| &| O OF Bt
3 A Ol & SHEE|X| =L

9| Cyclomatic Complexity= 202 HX| &=Lt

. RLME| FI|E 0.8% O|LHOM =TI

- B2E ¥ HO|X|&= 10Mbps LAN &0 A 5% O|L| 2 Ct2ZE stC}

LABORATORY

S DEPENDABLE SOFTWARE 1 67

ISO/IEC 9126

Quality
Characteristics

Subcharacteristics

[S09126-2:

External Metrics

Suitability
ﬁ.&ccuracy

Functionality

Interoperabiity

ﬁSecuﬁw

Functionality Compliance —

hiatrity

Irternal and
External Qualiy

EPENDABLE SOFTWARE
LABORATORY

Reliability

[Faultiolarance

-__._________Remwerahiliw

Reliahility Compliance

s ability

——Undestandabiity ———

| Learrahility
Operabilt\,l

“——-—.__‘_‘_.Ntractwa NesF———

Usabiity Compliance

Efficie ncy

1 ———Time behavior
———Resource utilizatian

—————Effitiency Compliance

Maintainability

Snalyzability
ﬁi Changeability

Stability

T~ Testanilty

Waintainability Compliance —

Porzbility

—daptatily
T ——Installability
Cl:l exislence

“—‘-‘__‘_‘— Replac_e_ahllty

Pottability Complance

Metrics

150 3126-3
Internal Metrics

KU KONKUK
UNTVERSITY

FINAL INTERNATIONAL ISO/IEC
DRAFT STANDARD FDIS
9126-1

Secretariat: ANSI

Voting begins on
2000-01-20

Voting terminates on
2000-03-20

RECIPENTS OF THIS DOCUMENT ARE INVITED

SUPPORTING Docwewur oN.

N ADOTION TO THER EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
LOGICAL. COMMERCIAL AND USER FURPOSES.

LIGHT OF THEIR POTENTIAL TO BECOME STAN-
DARDS TO WHCH REFERENCE MAY BE MADE IN
NATIONAL REGULATIONS.

Information technology — Software
product quality —

Part 1:
Quality model

Technologies de I'information — Qualité des produits logiciels —
Partie 1: Modéle de qualité

Please see the administrative notes on page ii-1

Reference number

150]1EC

ISONEC FDIS 9126-1:2000(E)

©1SO/EC 2000

168

KU sy

ISO 9126-1 : Information Technology
- Software Product Quality - Part 1: Quality Model

external and
internal

quality

functionality reliability usability efficiency maintainability portability

suitability maturity understandability time behaviour analysability adaptability

accuracy fault tolerance |eal’nabi|ity Changeability |nSta"abI||ty
interoperability recoverability operability resource stability co-existence

security attractiveness utilisation testability replaceability
functionality reliability usability efficiency maintainability portability
compliance compliance compliance compliance compliance compliance

Figure 4 — Quality model for external and internal quality

LABORATORY

S‘ ' DEPENDABLE SOFTWARE 1 69

ISO/IEC 25010

System Software

Product Quality

Functional
suitability

Performance

efficiency Portability

Compatibility Reliability Maintainability

Functional
completeness Appropriateness

Time behavior Coexistence S
recognizability

Maturity Confidentiality Modularity Adaptability

Functional
correctness Resource

utilization Interoperability Learnability Availability Integrity Reusability Installability

Functional
appropriateness

Capacity Operability Fault tolerance Nonrepudiation Analyzability Replaceability

User error

prediction Recoverability Accountability Modifiability

User interface
aesthetics

Authenticity Testability

Accessibility

EPENDABLE SOFTWARE 1 7 O
LABORATORY

Bﬂ FIGURE 12.1 The ISO/IEC FCD 25010 product quality standard

KU s
Microsoft Application Architecture Guide

* Quality attributes are the overall factors that affect run- time behavior, system design, and user
experience.
— They represent areas of concern that have the potential for application wide impact across layers and tiers

— When designing applications to meet any of the quality attributes requirements, it is necessary to consider the
potential impact on other

« 4 Categories of Quality Attributes
— Design Qualities : Conceptual Integrity, Maintainability, Reusability
— Run-time Qualities : Availability, Interoperability, Manageability, Performance, Reliability, Scalability, Security
— System Qualities : Supportability, Testability
— User Qualities : Usability

wv
@
o
-
o
©
-
o
o
w
c
-
[}
—
P
©
Q.

o .
]}EPENDABLE SOFTWARE 1 7 1
LABORATORY

KU KONKUK
UNTVERSITY

CMU SEI Quality Attributes

* Dependablllty ‘%:: (Smii'l;‘éggli:;ering Institute

° Secu rity Patsburgh, PA 15213-3890

» Modifiability Quality Attribute
- Workshop

* Interoperability Participants

 Performance Handbook

CMU/SEI-2000-SR-001
ECS-SR-2000-01

Marnio R. Barbacci
Robert J. Ellison
Charles B. Weinstock
William G. Wood

January 2000

Architecture Tradeoff Intitiative

Unlimited distribution subject fo the copynght

PENDABLE SOFTWARE 1 72
LABORATORY

K KONKUK

Wikipedia - Quality Attributes

& Not logged in Talk Contributions Create account Log in

Article Talk Read Edit View history | | Search Wikipedia Q|

WIK.I}.’EDI A List of system quality attributes

The Free Encyclopedia)
From Wikipedia, the free encyclopedia
Main page — L . . - - .
o This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Leam how and when to [hidg]
S Q remove these tempiate messages)
Random article o This article is in list format but may read better as prose. (September 2015)
About Wikipedia o This article needs additional citations for verification. (January 2017)
Contact us
Donate Within systems engineering, quality attributes are realized non-functional requirements used to evaluate the performance of a system. These are sometimes named architecture
characteristics, or "ilities” after the suffix many of the words share. They are usually Architecturally Significant Requirements that require architects’ attention.
Contribute
Help Contents [hidz]
Learn to edit 1 Quality attributes

Community portal
Recent changes

2 Common subsets

3 see also
Upload file

4 References
Tools 5 Further reading

What links here

Related changes .)
Special pages Quality attributes [edit)

Permanent link
Page information

Motable quality attributes include:

Cite this page accessibility « deployability » modifiability * seamlessness
Wikidata item « accountability « discoverability [Erl] « modularity w self-sustainability
Printrexport * accuracy o distributability * cbservability » serviceability (a.k.a. supportability)
e » adaptability o durability « operability » securability (see Commen subsets below)
i » administrability » effectiveness « orthogonality » simplicity

« affordability o efficiency « portability » stability
Languages o « agility (see Common subsets below) L VPR AR sl
i rh » auditability » extensibility predictability » survivability

* autonomy [Erl] « failure transparsncy & process capabilities sustainability

* availability & fault-tolerance ® producibility = tailorability

« compatibility « fidelity « provability « tastability

« composability [Erl] « flexibility o recoverability « timeliness

« confidentiality & inspectability e relevance o traceability

e configurability o installability o reliability * transparency

= correctness o integrity o repeatability = ubiquity

« credibility « interchangeability o reproducibility » understandability

 customizability « interoperability [Erl] o resilience » upgradability

 debuggability o learnability e responsiveness » usability

« degradability « localizability « reusability [Erl] « vulnerability

 determinability « maintainability « robustness

® demonstrability « manageability o safety

« dependability (see Common subsets below) « mobility « scalability

Many of these quality attributes can also be applied to data quality.
EPENDABLE SOFTWARE 1 7 3
LABORATORY

Making All Requirements Measurable

* How to turn vague ideas about quality into measurables or verifiable
— Quality M&M (metric & Measure)

examples. ..
The Quality Factors

(abstract notions of reliability complexity usability
quality properties)

Measurable Criteria mean time fiI"f°Lm$*i°" ﬁ:‘el taken
. . to failur'e? ow between 0 |learn
(define some metrics) modules? how to use?
Counts taken from run it and count ,r""i"”*fs
Design Representations | count crashes procedure S:mznu s‘:;
(realization of the metrics) |_Per hour??? calls??? task>??

PENDABLE SOFTWARE 1 74

LABORATORY

KU KONKUK
UNIVERSITY

Quality Metric & Measure

- Processed transactions/second

Speed - User/event response time
- Screen refresh time
Size - Mbytes

- Number of ROM chips

- Training time

SESES - Number of help frames
- Mean time to failure
Reliability - Probability of unavailability

- Rate of failure occurrence
- Availability

- Time to restart after failure
Robustness - Percentage of events causing failure
- Probability of data corruption on failure

- Percentage of target dependent statements

Portability - Number of target systems

- Volume of data recorded in operation
Maintainability - Number of failures estimated
- Correction time / software size

]}EPENDABLE SOFTWARE 1 7 5
LABORATORY

Quality Attribute Tree : Examples

No. | Category Response Measure EXFZE oA
| AAE X Hz & 1 Core SystemOi| A 4 Core System= X| 3= system2 2 HAE A2, HHQ Operationg +H3=
—=e" T ol 2AHM 22EE 20| 1 Core System2| Z L2} H| 2510 35%2] HZ')F% E350{0F BhCt.
2 Communication 2%, YAl Operation® TH3HE= O LA Core ZF Communication 22 Q13 WYL= Overhead 72
Communication HIO|E{ | & 10% OIL{O|O{OF ZC}.
3 AF2E Memory % HAEQl Operation® $H8HE O RL0{A memory AHEY 7} HELE 70 % O|L{0|0{OF StC},
4 Performance 3“ % Z core% I xg'gx—]‘?_l Operation% —‘I&—aﬁua}f E“ 2101)‘1 xIjt‘" s)'StemgI %% J‘I " COI'EEOI Idle Al‘EH‘}“ DI E
Idle Time AlZH2 15% OIL{ O] OfOF hCE.
H4HQ OperationstOl| A Video Data Decoding 452 7|& 1 Core System2| 3B HEQ! 2.5 Data
5 Data Frames/Second Frames/Second 9HEA|7Of SHC}.
6 3HO| 7t2 42 F4=Eel operationdt0f| A Video Decoder?t X| &l 7t58 £3 3tE2| 37|= 7|&E 1 Core System2| BF
EIPPS 9} opEH7FX| 2 1280X720 T/d7tX|O|C} .
- Bit rate B4l Operationdt0f| A Video Decoder?t E2{6t= 32| 312 & £S5l Bit rate= 7| & 1 Core
System2| Z 22} OHEH7HX| 2 20MbpsE X| @ 7+53}0{OF StLt.
4 Core SystemO|A] F 1 0| 42| 7{=2 Core TX}7t E0|{'H Z 2, 4 Core System 7|2t2| Architecture
8 Modifiability TH HEHE H|F A0l M HALZ|E Component?} Connector2| H| &2 Parallel Node2| X0 s E|= Instance 7ZH 57t
£ H2Istn 50% 0] 2+0| 0O Fhct.
M2 715 7HEE e
9 HH| 7|5 WA ChH| 1 Core SystemO|A] 4 Core System& X|¥&t= system2 2 HAE Z L, HHEHQ Operations}of| A
* S o Video Decoder?t HZ3tH 7|5 & 718% 7|52 100%E WFA|F0} Tt
Functionality 7tg 7|15 HIE
10 SHCHALE 218 Video Decoder2| :nput data stream S0 error?t 1= input frame0l Y& F2, Video Decoderc= i
S s = frame2| decoding= S}X| 21 passth £ CHS frame 210] E010F B},
AAY 7|5 718 B el i i i
1 Portability FH| 7| 742 ch| Cache memory size }32£i DewceU'|'|_1 16K?! DeviceZ HZAE ZAF, X2 OperationdlO|A| Video
: e 7= ;-Ii- Decoder?t H|B3tH 7|5 & 718 7152 100%E UFA|7{0f gic},
o =]

EPENDABLE SOFTWARE
LABORATORY

l< l l KONKUK
UNIVERSITY

176

K

Quality Attribute Scenarios

« QAS (Quality Attribute Scenario) is an effective way of identifying and specifying quality-attribute-
specific requirements.
— Specific to the particular system under considerations
— Instantiated from the attribute characterizations of general scenarios

—
—/
i > | Artifact > | | B]
Stimulus ITaCtl | Response
Environment iif i
Source of Stimulus Response
Measure

DEPENDABLE SOFTWARE
LABORATORY

177

KU KONKUK
UNTVERSITY

A QAS Example for Availability

* “An unanticipated message is received by a process during normal operation. The
process informs the operator of the receipt of the message and continues to operated with no
downtime.”

Artifact: W =
Process, Storage, >
Processor, J
Stimulus: | Communication | Response:
(Fault) Record, Notify,
Omission, Environment: Disable, Continue
Crash, Normal, (Normal/Degraded), Response
Internal Timing, Degraded Be Unavailable Measure:
External Response Operation Repair Time,
Availability,
Available/
Degraded
Time Interval

]&EPENDABLE SOFTWARE 1 78
LABORATORY

The QAS Template

Requirement-ID | QA ###
o= i - 2040 =5 (0l - T
Category ZeE Q’f""y Attribute)t S 2101 X| J|=% (0ll: Performance, Reliability,
Security)
Source StimulusE £ M AI2|= =Mt 22X I
Stimulus AIABO LEE = LIS X=0] R J|1=&
Artifacts Stimulus2) S &S L= ANL2B2 S 28, EUE, E2 A28 X

Environment

Response

J|= € Environment0i| A ArtifactO| StimulusE 202! £ | 5l= Action
Ol DO‘IE)U leHcl-

Response Measure

12| Response2 8 =8 S&ot= =0t A J=& (6: =% GO
BH ™2l etS A2 Al2tY B2 hour, minute, second S S

Priority

Quality Attribute Tree 20| M2 S =<

Description

£ 0l J1=< SourceSEf Response Measure)tX|2 LHES &tLtS 2&2
Z QA =8

Qo g:DEPENDABLE SOFTWARE

LABORATORY

KU KONKUK
UNTVERSITY

179

KU KONKUK
UNTVERSITY

QAS Example - Availability (Reliability)

* “An unanticipated message is received by a process during normal operation. The
process informs the operator of the receipt of the message and continues to operated with no
downtime.”

Artifact w .
Process, Storage, " ==
Processor, J
Stimulus: | Communication | Response:
(Fault) Record, Notify,
Omission, Environment: Disable, Continue
Crash, Normal, (Normal/Degraded), Response
Internal Timing, Degraded Be Unavailable Measure:
External Response Operation Repair Time,
Availability,
Available/
Degraded

Time Interval

D EPENDABLE SOFTWARE 1 8 O
¥ LABORATORY

KU KONKUK
UNTVERSITY

QAS Example - Modifiability (Adaptability)

« ‘A wishes to change the user interface to make a screen’s background color blue.
This change will be made to the code at design time. It will take less than three hours to make
and test the change and no side effect changes will occur in the behavior.”

i w
Artifact: y = 1

User Interface -
Stimulus: Response:
Wishes to Modification is
changes Environment: made with no side

At design time effects Response

Measure:

Developer

In three hours

L &%?EPENDABLE SOFTWARE 1 81
al LABORATORY

l< l l KONKUK
UNIVERSITY

QAS Example - Performance

e - initiate 1,000 transactions per minute stochastically under normal operations, and these
transactions are processed with an average latency of two seconds.”

) —
Artifact: p |
] System J
Stimulus: Response:
Initiate Transactions are
transactions Epvironment: processed
stochastically Under normal Response
. Measure:
Users operations With an
average
latency of two
seconds

]&EPENDABLE SOFTWARE 1 82
LABORATORY

KU KONKUK
UNTVERSITY

QAS Example - Usability

e wanting to minimize the impact of an error, wishes to cancel a system operation at
runtime; cancellation takes place in less than one second.”

) =
Artifact: > Cr:J —
_ System
Stimulus: Response:
Minimize Wishes to cancel
impact of Environment: current operations
errors at runtime Response
T Measure:'
Cancellation
takes less
than one
second

]&EPENDABLE SOFTWARE 1 83
LABORATORY

[RU =]

Tactics

« Techniques that architects have been using for years to manage quality attribute response goals.
— Design decisions that influence the control of a quality attribute response

Software
Architecture

in Practice
Third Edition

Len Bass - Paul Clements - Rick Kazman

B]EPENBABLE SOFTWARE 1 84
LABORATORY

Quality Attribute - Availability

» Ability of a system to mask or repair faults such that the cumulative service outage period does not exc
eed a required value over a specified time interval

« The availability of a system can be calculated as the probability that it will provide the specified services
within required bounds over a specified time interval.

» When referring to hardware, there is a well-known expression used to derive steady-state availability:
— MTBF : the mean time between failures
— MTTR : the mean time to repair

L &%?EPENDABLE SOFTWARE 1 85
al LABORATORY

Quality Attribute Scenario - Availability

KU KONKUK
UNTVERSITY

Source:
Heartbeat
Monitor

(7

_—
Process

Stimulus:
Server
Unresponsive

Artifact:

Environment:
Normal
Operation

Response:
Inform
Operator
Continue

to Operate

Response
Measure:
No Downtime

FIGURE 5.3 Sample concrete availability scenario

B

EPENDABLE SOFTWARE
LABORATORY

Portion of Possible Values
Scenario
Source Internal/external: people, hardware, software, physical infrastructure,
physical environment
Stimulus Fault: omission, crash, incorrect timing, incorrect response
Artifact Processors, communication channels, persistent storage, processes
Environment MNormal operation, startup, shutdown, repair mode, degraded operation,
overloaded operation
Response Prevent the fault from becoming a failure
Detect the fault:
* Log the fault
* Notify appropriate entities (people or systems)
Recover from the fault:
* Disable source of events causing the fault
* Be temporarily unavailable while repair is being effected
* Fix or mask the fault/failure or contain the damage it causes
* QOperate in a degraded mode while repair is being effected
Response Time or time interval when the system must be available
Measure Availability percentage (e.q., 99.999%)

Time to detect the fault

Time to repair the fault

Time or time interval in which system can be in degraded mode
Proportion (e.g., 99%) or rate (e.qg., up to 100 per second) of a certain
class of faults that the system prevents, or handles without failing

186

KU sonn
Tactics for Availability

Availability Tactics
Detect Faults Recover from Faults PreventiFauls
: Preparation Reintroduction
Tactics and Repair
to Control
Fault Availability Fault Masked
or Repair Made Ping / Echa Active Shadow Removal from

Redundancy Service

Monitor State)
Passive Resynchronization Transactions Fault

Heartbeat Redundancy Masked

. Escalating Predictive or
Timestamp :
FIGURE 5.4 Goal of availability tactics Fault | o i Rastar Mool Eﬂ‘zg‘:”
— | Sanity Exception Exnont S
’ y ption

Cheoking Handling i) Prevention

Condit Forwarding

Monitoriny e Increase

d
Competence Set

Voting Software
Upgrade

Exception Retry

Detection
Ignore Faulty

Self-Test Behavior
Degradation
Reconfiguration

EPENDABLE SOFTWARE I ts /
LABORATORY

]& T

KU KONKUK
UNTVERSITY

Quality Attribute - Interoperability

« The degree to which two or more systems can usefully exchange meaningful information via interfaces

in a particular context

* The definition includes

— Syntactic interoperability: The ability to exchange data
— Semantic interoperability: The ability to correctly interpret the data being exchanged

DABLE SOFTWARE 1 88

LABORATORY

KU tevemsery
Quality Attribute Scenario - Interoperability

Portion of Scenario Possible Values

Source A system initiates a request to interoperate with another
system.
Stimulus A request to exchange information among system(s).
Artifact The systems that wish to interoperate.
Artifact: Environment System(s) wishing to interoperate are discovered at runtime or
Traffic Monitoring known prior to runtime.
Stimulus: System Response: Response One or more of the following:
ol it rare o * The request is (appropriately) rejected and appropriate
Source Sent Environment: Location with Other Response entities (people or systems) are notified. o
of Stimulus: Systems known Information, Measure: * The reguest is (appropriately) accepted and information is
Our Vehicle prior to run-time Overlays on Google Our Information exchanged successfully.
Information g:;icaar;?s g‘;gigegf%zfgﬁnﬂg * The request is logged by one or more of the involved
System s systems.
Response Measure One or more of the following:
FIGURE 6.1 Sample concrete interoperability scenario * Percentage of information exchanges correctly processed

* Percentage of information exchanges correctly rejected

]}EPENDABLE SOFTWARE 1 8 9
LABORATORY

KU KONKUK
UNTVERSITY

Tactics for Interoperability

* Locate
— Discover service: Locate a service through searching a known directory service.
 Manage Interfaces

— Orchestrate: Uses a control mechanism to coordinate and manage and sequence the invocation of particular se
rViCes (which could be ignorant of each other).

— Tailor interface: Adds or removes capabilities to an interface.

Interoperability Tactics

Tactics
Information to Control Request
Exchange Interoperability | Correctly Locate Manage Interfaces
Request Handled
Information Request
Exchange) Caorrectly
FIGURE 6.2 Goal of interoperability tactics Request Discover Orchestrate Handled
Service

Tailor Interface

1 %JEPENDABLE SOFTWARE 1 90
y L ABORATORY

KU KONKUK
UNTVERSITY

Quality Attribute - Modifiability

» The ability to quickly make changes to a system at a higher performance-to-price ratio
— Often based on some specific changes and is measured by examining the costs of these changes.
* What can change?
* What is the likelihood of the change?
* When is the change made and who makes it?
* What is the cost of the change?

| DEPENDABLE SOFTWARE 191
y LABORATORY

KU KONKUK
UNIVERSITY

Quality Attribute Scenario - Maodifiability

Portion of Scenario Possible Values

Source End user, developer, system administrator
Stimulus A directive to add/delete/modify functionality, or change a
quality attribute, capacity, or technology
Artifacts Code, data, interfaces, components, resources, configurations,
Environment Runtime, compile time, build time, initiation time, design time
- ég‘(‘f;‘“’ b Response One or more of the following:
Stimulus: Response: » Make modification
Wigr;.es Change Made » Test modification
to ange i L ¥
S— the UI 9 Environment; and Unit Tested Response = Deploy modification
Developer Design Measure: Response Measure Cost in terms of the following:
P Time In Three ; : :
o * Number, size, complexity of affected artifacts
ours
Effort
Calendar time

FIGURE 7.1 Sample concrete modifiability scenario Money (direct outlay or opportunity cost)
Extent to which this modification affects other functions or
quality attributes

* New defects introduced

]}EPENDABLE SOFTWARE 1 9 2
LABORATORY

Tactics for Modifiability

Tactics
to Control > Arrives

Modifiability | Change Made within
Time and Budget

Change
Arrives

FIGURE 7.2 The goal of modifiability tactics

EPENDABLE SOFTWARE
LABORATORY

Change
—_—

Modifiability Tactics

Reduce Size Increase Reduce Defer
of a Module Cohesion Coupling Binding
Increase Encapsulate

Split Module ggmantic ps

Co Use an
herence |hiermediary

Restrict
Dependencies
Refactor
Abstract Common
Services

I(I]’ KONKUK
UNIVERSITY

Change Made
=

within Time
and Budget

193

KU sy

Quality Attribute - Performance

« About time and the software system’s ability to meet timing requirements
— When events occur, the system or some element of the system must respond to them in time.
 interrupts, messages, requests from users or other systems, or clock events marking the passage of time

— Characterizing the events that can occur (and when they can occur) and the system or element’s time-based re
sponse to those events is the essence is discussing performance.

| --"‘:I}EPENDABLE SOFTWARE 194
y LABORATORY

K‘(]’ KONKUK
UNIVERSITY

Quality Attribute Scenario - Performance

Portion of Scenario Possible Values

O Source Internal or external to the system
Stimulus Arrival of a periodic, sporadic, or stochastic event
Artifact System or one or more components in the system
Artifact: Environment Operational mode: normal, emergency, peak load, overload
Stimulus: System Response: Response Process events, change level of service
Initiate Transactions " . .
Transactions o t Are Processed Response Measure Latency, deadline, throughput, jitter, miss rate
. nvironment: Response
S:el,:;ce. Normal Measure:
Operation Average
Latency
of Two
Seconds

FIGURE 8.1 Sample concrete performance scenario

]}EPENDABLE SOFTWARE 1 9 5
LABORATORY

Tactics for Performance

Tactics
— | to Control e ———

Event Performance | Response
Arrives Generated
within Time

Constraints

FIGURE 8.2 The goal of performance tactics

EPENDABLE SOFTWARE
LABORATORY

Event
Arrives

Performance Tactics

Control Resource Demand

|

Manage Sampling Rate
Limit Event Response
Prioritize Events
Reduce Overhead
Bound Execution Times

Increase Resource
Efficiency

Manage Resources
Increase Resources
Introduce Concurrency

Maintain Multiple
Copies of Computations

Maintain Multiple
Copies of Data

Bound Queue Sizes

Schedule Resources

K‘(]’ KONKUK
UNIVERSITY

Response

Generated within
Time Constraints

196

]gEPEN

Quality Attribute - Security

A measure of the system’s ability to protect data and information from unauthorized access while still pr

oviding access to people and systems that are authorized

« The simplest approach to characterizing security has 3 characteristics (CIA):

— Confidentiality
— Integrity
— Availability

» Other characteristics that are used to support CIA are these:

— Authentication
— Nonrepudiation
— Authorization

DABLE SOFTWARE 1 97
LABORATORY

Quality Attribute Scenario - Security

KU KONKUK
UNIVERSITY

Portion of
Scenario

Possible Values

Artifact:
Data within
Stimulus: S C— Response:
N
P— Rate E;\:;;?nment: Audit Trail
Disgruntied Operations

Employee from
Remote Location

Response
Measure:

Correct Data Is
Restored within a
Day and Source
of Tampering
Identified

FIGURE 9.1 Sample concrete security scenario

EPENDABLE SOFTWARE
LABORATORY

Source

Stimulus

Artifact

Environment

Response

Response
Measure

Human or another system which may have been previously
identified (either correctly or incorrectly) or may be currently
unknown. A human attacker may be from outside the organization or
from inside the organization.

Unauthorized attempt is made to display data, change or delete
data, access system services, change the system’s behavior, or
reduce availability.

System services, data within the system, a component or resources
of the system, data produced or consumed by the system

The system is either online or offline; either connected to or
disconnected from a network; either behind a firewall or open to a
network; fully operational, partially operational, or not operational.

Transactions are carried out in a fashion such that

* Data or services are protected from unauthorized access.

* Data or services are not being manipulated without authorization.

* Parties to a transaction are identified with assurance.

* The parties to the transaction cannot repudiate their
involvements.

* The data, resources, and system services will be available for
legitimate use.

The system tracks activities within it by

* Recording access or modification

* Recording attempts to access data, resources, or services

* NMotifying appropriate entities (people or systems) when an
apparent attack is occurring

One or more of the following:

* How much of a system is compromised when a particular
component or data value is compromised

How much time passed before an attack was detected
How many attacks were resisted

How long does it take to recover from a successful attack
How much data is vulnerable to a particular attack

[E=—|

Tactics for Security

Security Tactics
Detect Attacks Resist Attacks Heact to Hecover
l Attacks from Attacks
Tactics l |dentify |
to Coptrol —> Detect Actors E$:§ Méntain Restore
Attack Security System Detects, Resists, Aok Intrusion Authenticate Audit Trail St Detects
Reacts, or Recovers C Detect Sarvice Actors Lock l y : 1
Denial Authorize Computer . Hesists, Reacts,
Verify Message aqiors Availabil or Hecovers
Integrity Inform ty
imi Actors
Detect Message Mt ACCESS
FIGURE 9.2 The goal of security tactics Delay Limit Exposure
Encrypt Data
Separate
Entities
Change Default
Settings

]}EPENDABLE SOFTWARE 1 9 9
LABORATORY

KU KONKUK
UNTVERSITY

Quality Attribute - Testability

« The ease with which software can be made to demonstrate its faults through (typically execution-based)
testing

— Specifically, testability refers to the probability, assuming that the software has at least one fault, that it will fail o
n its next test execution.

— Intuitively, a system is testable if it “gives up” its faults easily.

]& EPENDABLE SOFTWARE 2 O O
LABORATORY

KU KONKUK
UNTVERSITY

Quality Attribute Scenario - Testability

Portion of Scenario Possible Values

Source Unit testers, integration testers, system testers, acceptance
testers, end users, either running tests manually or using

increment such as a class layer or service, the completed
integration of a subsystem, the complete implementation of the
whole system, or the delivery of the system to the customer.

Environment Design time, development time, compile time, integration time,
deployment time, run time

Artifacts The portion of the system being tested

Hesponse One or more of the following: execute test suite and capture
results, capture activity that resulted in the fault, control and
maonitor the state of the system

Response Measure One or more of the following: effort to find a fault or class of
faults, effort to achieve a given percentage of state space
FIGURE 10.2 Sample concrete testability scenario coverage, probability of fault being revealed by the next
test, time to perform tests, effort to detect faults, length of
longest dependency chain in test, length of time to prepare
test environment, reduction in risk exposure (size{loss) x
prob(loss))

Artifact:

automated testing tools
Stimulus A set of tests is executed due to the completion of a coding
—_—

Code Unit

Response:
Results Captured

Stimulus:

Code Unit
Completed

Environment: Response
Development Measure:
85% Path Coverage
in Three Hours

Source:
Unit Tester

]}EPENDABLE SOFTWARE 2 O 1
LABORATORY

Tactics for Testability

Tactics

#’ to Control T’
ests g aults
Executed Testablllty Detected

B

FIGURE 10.3 The goal of testability tactics

EPENDABLE SOFTWARE
LABORATORY

Tests

Executed

Testability Tactics

Control and Observe Limit Complexity
System State

Specialized
Interfaces

Record/
Playback

l

Limit Structural
Complexity

Limit
MNondeterminism

Localize State

Storage

Abstract Data

Sources
Sandbox

Executable
Assertions

I(I]’ KONKUK
UNIVERSITY

Faults

Detected

202

KU KONKUK
UNTVERSITY

Quality Attribute - Usability

» Concerned with how easy it is for the user to accomplish a desired task and the kind of user support th
e system provides

« Usability comprises the following areas:
— Learning system features.
— Using a system efficiently.
— Minimizing the impact of errors.
— Adapting the system to user needs.
— Increasing confidence and satisfaction.

PENDABLE SOFTWARE 2 O 3

LABORATORY

Quality Attribute Scenario - Usability

K‘(]’ KONKUK
UNIVERSITY

0>

Artifact:

System

Stimulus: Response:

Downloads User Uses

a New - Application
Source: Application Env!ronment. Productively
User Runtime

Response
Measure:

Within Two
Minutes of
Experimentation

Portion of Scenario

Possible Values

FIGURE 11.1 Sample concrete usability scenario

EPENDABLE SOFTWARE
LABORATORY

Source
Stimulus

Environment
Artifacts

Response

Response Measure

End user, possibly in a specialized role

End user tries to use a system efficiently, learn to use the
system, minimize the impact of errors, adapt the system, or
configure the system.

Runtime or configuration time

System or the specific portion of the system with which the
user is interacting

The system should either provide the user with the features
needed or anticipate the user's needs.

One or more of the following: task time, number of errors,
number of tasks accomplished, user satisfaction, gain of user
knowledge, ratio of successful operations to total operations,
or amount of time or data lost when an error occurs

204

Tactics for Usability

Tactics
to Control

User User Given

Request Usability Appropriate
Feedback and
Assistance

FIGURE 11.2 The goal of runtime usability tactics

EPENDABLE SOFTWARE
LABORATORY

User

—_—
Hequest

Usability Tactics

Support User
Initiative

Cancel
Undo

Pause/Resume

Aggregate

Support System
Initiative

Maintain Task
Model

Maintain User
Model

Maintain System
Model

KU KONKUK
UNIVERSITY

User Given

Appropriate

Feedback and
Assistance

205

KU sy

Quality Requirements and Architecture Evaluation

* Quality requirements gives important information such as
— “Is the architecture suitable for the system for which it was devised?”

— “Which of two competing architectures is most suitable for the system at hand?”

« An architecture is suitable if,

— The system that results from it will meet its quality goals.
+ A system is modifiable or not wrt. a specific kind of change.
* Asystem is secure or not wrt. a specific kind of threat.
» Asystem is reliable or not wrt. a specific kind of fault occurrence.
» A system performs well or not wrt. specific performance criteria.
* An architecture is buildable or not wrt. specific time and budget constraints.

* Questioning techniques for architecture evaluation
— Rely on thought experiments to check architecture suitability
— Scenario-based style: ATAM (Architecture Tradeoff Analysis Method)
— Checklist-based style

S‘ ' DEPENDABLE SOFTWARE 2 O 6

LABORATORY

KU KONKUK
UNTVERSITY

Quality Attribute Workshop (QAW)

* Quality Attribute Workshop (QAW)

— Facilitated method
» System-centric
* Used before the software architecture has been created

— Engages system stakeholders early in the life-cycle

— Reveals the driving quality attribute requirements of a software-intensive system
+ Scenario-based

« Qutputs of a QAW
— Quality attribute requirements for the system, documented as refined and prioritized QAS.

— The quality attribute scenarios can then be used as the basis for designing the software architecture for the
system.

| 3 %DEPENDABLE SOFTWARE 207
N L ABORATORY

]}EPEN

The QAW Steps

1. QAW Introduction

Business/Mission Presentation
Architectural Plan Presentation
Identification of Architectural Drivers
Scenario Brainstorming

Scenario Consolidation

Scenario Prioritization

© N o o &~ O DB

Scenario Refinement

DABLE SOFTWARE
LABORATORY

208

The QAW Steps in Detail

1. QAW Presentation and Introduction

— QAW facilitators describe the motivation for the QAW and explain each step of the method.
2. Business/Mission Presentation

— A stakeholder presents the business and/or programmatic drivers for the system.
3. Architectural Plan Presentation

— Atechnical stakeholder presents the system architectural plans as they stand with respect to early documents, such as high-
level system descriptions, context drawings, or other artifacts that describe the system’s technical details.

4. Identification of Architectural Drivers
— Architectural drivers often include high-level requirements, business/mission concerns, and various quality attributes.
— During this step, the facilitators and stakeholders reach a consensus about which drivers are key to the system.

5. Scenario Brainstorming

— Stakeholders generate real-world scenarios for the system. Scenarios comprise a related stimulus, an environmental condition,
and a response.

— Facilitators ensure that at least one scenario addresses each of the architectural drivers identified in Step 4.
6. Scenario Consolidation

— Scenarios that are similar in content are consolidated.
7. Scenario Prioritization

— Stakeholders prioritize the scenarios through a voting process.
8. Scenario Refinement

— For the top four or five scenarios, the following are described: the business/mission goals that are affected by those scenarios,
the relevant quality attributes associated with those scenarios

DEPENDABLE SOFTWARE
LABORATORY

S DEPEN

Mini-QAW

1. Mini-QAW Introduction
2. Introduction to Quality Attributes, Quality Attributes Taxonomy
3. Scenario Brainstorming

— “Walk the System Properties Web” activity

4. Raw Scenario Prioritization
— Dot voting

5. Scenario Refinement

— While time remains

6. Review Results with Stakeholders

DABLE SOFTWARE
LABORATORY

I< l l KONKUK
UNIVERSITY

1. Mini-QAW Introduction

» First, sketch a rough architecture and major objectives/functions

» Take into account specific roles of all stakeholders.
— For example, “Accessary Service Framework” may have 6~8 different stakeholders and goals.

Stakeholders Fa ozt S|UALE - Goal

« 9tE 20| E InterfaceS & SIX| AU H E7C}
- L + Interface0l| adapterLt wrapper t
bSlC 2 3

St= 5 HaletC. . (FHs 31 XEAIBHA))

otE 20| E OS 2| X} =

11
m
k=]
A
&2
;O
|

r2
OH¥
b
inl

]}EPENDABLE SOFTWARE 2 1 1
LABORATORY

KU sy

2. Introduction to Quality Attributes, Quality Attributes Taxonomy

» Define your own system properties web
— Select appropriate quality factors for your system under consideration.

Upgrade-ability

Reusability Availability
Manageability Reliability
Security : _ . Crawl-ability
Build-ability - / - Query-ability
Maintainability \ Deploy-ability
Modifiability Scalability

S 'DEPENDABLE SOFTWARE 212

LABORATORY

K

3. Scenario Brainstorming

* ldentify raw quality attribute scenarios
— Timing: 30 minutes to 2-3 hours

« Steps:
1. Start with a Scenario on the web, ask “Is this Quality attribute relevant to your system?”
2. If Yes, spend 5 minutes brainstorming scenarios / concerns on that scenario.
3. Write raw scenarios on stickies and put on web
4. After 5 minutes, move to next scenario

DEPENDABLE SOFTWARE
LABORATORY

213

KU navessmry

Raw Quality Attribute Scenario

* Informally describes a stakeholder’s concern and concrete instances of quality attributes

EPENDABLE SOFTWARE 2 1 4
LABORATORY

B]EPENEABLE SOFTWARE 2 1 5
LABORATORY

I(KONKUK
UNIVERSITY

“Walk the System Properties Web” Activity

3 5
]}EPENBABLE SOFTWARE i, - 2 1 6
LABORATORY

217

K konkuk |
UNIVERSITY

A0l = S e

= s =S ZZE|0f BAIEH
i%sﬂ oloé,*fo;é;?r ol2| Szo| o HEe ZLHEO| 7t55EE %ﬁclm =
2| =[Of OF BCt. 4% Tjelsio o =ACH CCTV SHHE SA|0f

L= MG &
QU0 OF shet,

AZ0| M 80|
HarsiH == 7(of
Sk} 0} ShC

Maintainability Reliability

Upgrade-ability AZEY 0] 0|7t U8 o2y #Y A UM Safety
Al eS| g 7t 2= FH|7}
AT ZE 2| K= £[O1OF SHCt
®12)|0| =7} 7+ of
st
SR g4 Al 21351
SEHet 5 9lofof st}

]}EPENBABLE SOFTWARE 2 1 8
LABORATORY

KU s |

Performance Usability

A8 S0 ZHT 2 &Kt At
© LHE0| ZOtA0{OFetCY,

AHE X2} Viewlt DiagramS Ho}A|
oS 4= AO{OF BHCL

[

ADL =& A| Diagram #Z0| 20| A=W O AHZHFO| = A
“*I’fgﬁ E|O{OF 2t O et

AHEAHOH| 7| Cod tion210{ S
A Cade generaton o Open SourceS A B¢t o2 S0l choi
ot Seug R st
Modifiability Extansibility

]}EPENBABLE SOFTWARE 2 1 9
LABORATORY

KU sy

4. Raw Scenario Prioritization

» ldentify Highest Priority Scenarios using dot voting
— Timing : 5 minutes

« Steps:
— Dot Voting:
» Each stakeholder gets n/ 3 + 1 dots for scenarios where n = # scenarios
+ 2 votes to choose “top quality attribute”

LABORATORY

S‘ ' DEPENDABLE SOFTWARE 22 O

KU wovess

221

KU o
Raw Quality Attribute Scenario

= fsHore 2 2250 HYST
40| Ellaﬁ_ﬂ_ o] 20 Al 52 O] oggl_ ale II?C-IE EXN 25| &2
M o T =i == x.l I:Il-AH* A7
= Azte aig) L= Zof Lf £ FJ|5o= Hy | 2 Al 2
o CHA| & & 22 MMS 2 B, 12 ol = H 7|5
Il‘—l EHT|E— &5 2t sfF= CHe & = =10t b
o &aict O EL|-|0|: St} g O ® 0| 7t= difof &
xEH XX
B0 A o [yzeexsx shiof of2{7f
S xx=3 72 g E ot O HIAZ EA| 13 48 2
S =3 4l0F = B H =XIo
3t I YT FLA of MRSHA A 2 S&E
A Hzo2 | |Zuez e A Alzte Fe Start/Stop & <
- = (=] - = of &
o7 =o|e [LE =4 glo|
=21U= Fm % A IH)\l HFA AI’ ;-XOI'OHAE ?_I-Id %El'al 81
2|CH7F MlA ©l - GUI =42
|f|'|_'i._ |I:I|_|_7|-O-IO| 0| 2= X+ot Of
Al Q22 =X} Al EY0|ME | 22Xt} 2
0| T At EI010F 6H:f st~ Qlo = d0}|71| A
=] 2l A O 5
ZIZ HolZa O ZIC} 7= UO{Of SHC}

]}EPENDABLE SOFTWARE 2 2 2
LABORATORY

KU KONKUK
UNTVERSITY

5. Scenario Refinement

» Generate Quality Attribute Scenarios based on raw notes
— Timing : 30 - 60 minutes

« Steps:
1. Start with high priority scenario
2. Fill out the worksheet, identifying the components of a quality attribute scenario
3. Complete and present to stakeholders

'''' Environment ~—TTTTTTTTTTTT T e

Source Artifact Response :

I >

. Stimulus

Response Measure:

mm

]& EPENDABLE SOFTWARE 2 2 3
LABORATORY

KU KONKUK
UNIVERSITY

Availability

Raw Scenario: In the event of hardware failure, search
service is expected to return results during normal working
hours for US services representatives.

Response Measure:
5 sec response, 12
average QPS

"~ " Failed search server ~~~~~"~"~"~"~"--~---~---=-=-=-=----=---3
]]
! Source Artifact Response !
]]
! User Executes a Searf:h Returns results i
: search service "
! > —> |
: Stimulus ;
: :
] I
] 1
] I
]]
] I
] I

Refined Scenario: In the event of hardware failure, search service is expected to
]} S return results within 5 sec, in 12 average QPA (Queries Per Sec)

224

LABORATORY

Raw scenario: Framework0|

o =

HE A HE 7|sE F715e{ L g &
A F=7tg = A0{0F SHCH (Modifiability)
Env: Framework’t 2Z HZ% 7|58 X|{
Source Artifact Response
7}t R} Shmulus | Framework | A4 sA| HE
= > 3
THe A 7|150| =7}
sA B o|sg| NEHES 50l #7t8
Fored

Response Measure:

3MM O|L{ 2 7§ 20| 7}55HOF 5t
0, SAIBE 7150 25 4]
'9l3f X|®A|ZHO| 1 O|Lj o4 OF
C

rotrir |—

Refined Scenario: Framework0f| SA| HE 7|52 F7i5t2{n
=

SljiOfF SF 1,

EPENDABLE SOFTWARE
LABORATORY

SA BE 7|50 2Bt 47]= &

2, 3MM O|LH = 7HE 0] 7ts
22 X|HAZFO] 125 O|LYj O OF ohLh

KU

225

KONKUK
UNIVERSITY

K‘LJ’ KONKUK
UNTVERSITY

Scenario Refinement: Robustness

Raw Scenario: 2£0| 7

He EREO0IE CHA AEA|Z7|B OS2 Aoz M=t
Source Artifact Response
=X y 22 » HFAE [CIA| A=
St Sfois s A8 CHA HEL
SISEE D)
E

—

Environment: Response Measure:
STt HR Y YYEY A= 85 <33

Refined Scenario :
ZEO| E2HE FEMS

S AL LEXI 2EE ™K1 reset HES S2M 25| O|LHOf| BfIAE
Al X0 &2 EMI THAE oz AEr}

EPENDABLE SOFTWARE
LABORATORY

226

]}EPENBABLE SOFTWARE 2 2 7
LABORATORY

Exercise 6: Mini-QAW

& mmooq [TUE)

AN

* Perform the Mini-QAW for your “Advanced OOO Digital Watch System” [2210

— Follow the steps of Mini-QAW NG
— Refine 4 QASs

* The Mini-QAW steps :

5. Scenario Refinement
Generate 4 well-refined QASs
Find an appropriate tactics for each QAS

6. Review Results with Stakeholders

228

]}EPENBABLE SOFTWARE 2 2 9
LABORATORY

9. Requirements Validation

K‘LJ’ KONKUK
UNTVERSITY

Requirements Engineering Process

Feasibility R(.:q.l ur(‘ﬂnents Requirements
Study Elicitation and Models
‘ Analysis .)
. User/Syste
Requirements g ;]/\ 1‘ /"‘Q(=
Specification Requirements
Requirements
Maﬁla:aglglfen " Requirements Requirements Specification
8 Validation (IEEE 830.1998)

(Design Phase)

]gEPENDABLE SOFTWARE 2 3 1
LABORATORY

K KONKUK
UNTVERSITY

B]EPENEABLE SOFTWARE 2 3 2
LABORATORY

[RU =]

Verification and Validation in SDLC

» Validation: “Does the software system meets the user's real needs?”
— Are we building the right software?
— Does our problem statement accurately capture the real problem?
— Did we account for the needs of all the stakeholders?

» Verification: “Does the software system meets the requirements specifications?”
— Are we building the software right?
— Does our design meet the spec?
— Does our implementation meet the spec?
— Does the delivered system do what we said it would do?
— Are our requirements models consistent with one another?

SW
Specs

Actual
~ Requirements

S~

“EPENMBLE SOFTWARE Validation Verification 233
LABORATORY

KU tvnsry

V&V Depends on the Specification

« Unverifiable (but validatable) specification: “If a user presses a request button at floor i, an available
elevator must arrive at floor i soon.”

« \Verifiable specification: “If a user presses a request button at floor i, an available elevator must arrive
at floor i within 30 seconds®

EPENDABLE SOFTWARE 2 3 4

LABORATORY

B

V-Model of V&V Activities in SDLC

EPENDABLE SOFTWARE
LABORATORY

Actual Needs and y 0
Delivered
Constraints ff\ , User Acceptance (alpha, beta test) o e
1 System
System [\ System Test Integration
Specifications | ,
\._‘ Analysis / Review
b Dsel;ilz;s:fsstf::cs <: Integration Test Subsystem
/'l_
\1 Analysis / Review
Unit/ .
Unit /
e Con;g:::nts \ Module Test Components
/ ‘ <

\ User review of external behavior as it is determined or

becomes visible

KU KONKUK
UNTVERSITY

Verification

=

35

K‘LJ’ KONKUK
UNTVERSITY

V&V for Requirements Models

» Verification
— “Is the model well-formed?”

— “Are the parts of the model consistent with one another?”

- Validation:
— Animation of the model on small examples is possible.

— ‘What if’ questions:
* Reasoning about the consequences of particular requirements;
» Reasoning about the effect of possible changes
* “Will the system ever do the following,”

— State exploration
+ E.g., use model checking to find traces that satisfy some property

» (Generation techniques for requirements validation
— Prototyping (Simulation)
— Test-case generation
— Review

]}EPENDABLE SOFTWARE 2 3 6
LABORATORY

KU tavemsery
Reviews, Walkthroughs, Inspections

- Management Reviews
— Preliminary design review (PDR), critical design review (CDR), formal technical review (FTR), formal business
review (FBR), etc.
— Used to provide confidence that the design is sound

— Attended by management and sponsors (customers)

 Walkthroughs
— Developer technique (usually informal)
— Used by development teams to improve quality of product
— Focusing on finding defects

 (Fagan) Inspections
— A process management tool
— Used to improve quality of the development process
— Collect defect data to analyze the quality of the process
— Written output is important

237

} DEPENDABLE SOFTWARE
LABORATORY

]}EPENBABLE SOFTWARE 2 3 8
LABORATORY

10. Requirements Change Management

K‘LJ’ KONKUK
UNTVERSITY

Requirements Engineering Process

Feasibility Re.q.l um—ements Requirements
Study Elicitation and Models
Analysis - '
Requirements s e.ll/ “.S‘V'Stﬂn
Specification i
P Requirements
Requirements
Maﬁga:ﬁﬁa“ ¢ Requirements Requirements Specification
g Validation (IEEE 830.1998)

(Design Phase)

]gEPENDABLE SOFTWARE 2 4 O
LABORATORY

l,< l ' NKIJK

Laws of Program Evolution

Continuing Change
— Any software that reflects some external reality undergoes continual change or becomes progressively less useful
» Change continues until it is judged more cost effective to replace the system

* Increasing Complexity
— As software evolves, its complexity increases

 Fundamental Law of Program Evolution

— Software evolution is self-regulating
« With statistically determinable trends and invariants

« Conservation of Organizational Stability

— During the active life of a software system, the work output of a development project is roughly constant,
regardless of resources

» Conservation of Familiarity
— The amount of change in successive releases is roughly constant

LABORATORY

S DEPENDABLE SOFTWARE 241

Requirements Growth Model

 Davis’s model (198s):
— User needs evolve continuously

May not be linear or continuous (hence no scale shown)

— Traditional development always lags behind needs growth

EPENDABLE SOFTWARE
LABORATORY

First release implements only part of the original requirements
Functional enhancement adds new functionality

Eventually, further enhancement becomes too costly, and a replacement
is planned

The replacement also only implements part of its requirements,
and so on...

KU KONKUK
UNTVERSITY

conventional
development

User needs

s ----Impp priateness

Funcﬁonalih‘_

242

Software Aging

« Causes of Software Aging

— Failure to update the software to meet changing needs
» Customers switch to a new product, if benefits outweigh switching costs

— Changes to software tend to reduce its coherence

« Costs of Software Aging
— Owners of aging software find it hard to keep up with the marketplace
— Deterioration in space/time performance due to deteriorating structure

— Aging software gets more buggy
« Each “bug fix” introduces more errors than it fixes

« Ways of Increasing longevity
— Design for change
» Design patterns
* Architecture styles
— Document the software carefully
— Requirements and designs should be reviewed by those responsible for its maintenance
— Software Rejuvenation

DEPENDABLE SOFTWARE
LABORATORY

KU sy

Software Maintenance

« Maintenance philosophies
— “Throw-it-over-the-wall” : someone else is responsible for maintenance
* Investment in knowledge and experience is lost
* Maintenance becomes a reverse engineering challenge
— “Mission orientation” : development team make a long-term commitment to maintaining/enhancing the software

- Basili’s maintenance process models:

— Quick-fix model
+ Changes made at the code level, as easily as possible
* Rapidly degrades the structure of the software

— Iterative enhancement model
» Changes made based on an analysis of the existing system
+ Attempts to control complexity and maintain good design

— Full-reuse model
» Starts with requirements for the new system, reusing as much as possible
* Needs a mature reuse culture to be successful

S‘ ' DEPENDABLE SOFTWARE 244

LABORATORY

B

Managing Requirements Change

 Managers need to respond to requirements change

Adding new requirements during development
Modifying requirements during development
Removing requirements during development

* Key techniques

Change Management (Process)
Release Planning
Requirements Prioritization
Requirements Traceability
Architectural Stability

PENDABLE SOFTWARE

LABORATORY

KU KONKUK
UNTVERSITY

245

KU KONKUK
UNTVERSITY

Change Management

» Configuration Management
— Each distinct product is a Configuration Item (ClI)
— Each configuration item is placed under version control
— Control which version of each CI belongs to which build of the system

- Baseline

— A stable version of a document or system
+ Safe to share among the team

— Formal approval process for changes should be incorporated into the next baseline

L &%?EPENDABLE SOFTWARE 246
al LABORATORY

B

Change Management Process

 Change Management Process
— All proposed changes are submitted formally as change requests
— Areview board reviews these periodically and decides which to accept

l Originator submitted an issue

Submitted

l Evaluator performed impact analysis

Evaluated notto makethe , Rejected
change

l CCB decide to make the change

— Approved change was canceled

Verification failed
1 Modifier has made the change and

requested verification

change was /
——— Change Made —rcerea Canceled

l Verifier has confirmed the change

No verification required; e
modifier has installed Verified change was canceled

product

l Modifier has installed product

I Closed

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNTVERSITY

247

K

Requirements Traceability

* From IEEE-STD-830.1998:
— Backward traceability

To previous stages of development
The origin of each requirement should be clear

— Forward traceability

To all documents spawned by the SRS
Facilitation of referencing of each requirement in future documentation

* From DOD-STD-2167A:
— Arequirements specification is traceabile if:

DEPENDABLE SOFTWARE
LABORATORY

1)
2)
3)
4)

5)

It contains or implements all applicable stipulations in predecessor document

A given term, acronym, or abbreviation means the same thing in all documents

A given item or concept is referred to by the same name in the documents

All material in the successor document has its basis in the predecessor document, that is, no untraceable material has
been introduced

The two documents do not contradict one another

248

KU sy

Traceability Difficulties

« Cost
— Very little automated support
— Full traceability is very expensive and time-consuming

« Delayed gratification

— The people defining traceability links are not the people who benefit from it
* Development vs. V&V

— Much of the benefit comes late in the lifecycle
+ Testing, integration, maintenance

« Size and diversity
— Huge range of different document types, tools, decisions and responsibilities
— No common schema exists for classifying and cataloging these
— In practice, traceability concentrates only on baselined requirements

| L-:“:é]:}EPENDABLE SOFTWARE 249
N LABORATORY

K

Traceability in Practice

« Coverage

— Forward: Links from requirements forward to designs, code, test cases,

Backward: Links back from designs, code, test cases to requirements
links between requirements at different levels

« Traceability process

Assign each sentence or paragraph a unique id number
Manually identify linkages
Use manual tables to record linkages in a document
Use a traceability tool (database) for project wide traceability
Tool then offers ability to

* Follow links

* Find missing links

* Measure overall traceability

DEPENDABLE SOFTWARE

LABORATORY

250

KU sy

Example : Requirements Traceability

« When a high-level artifact derives a refined artifact, Traceability link should be generated between two
artifacts.

User needs Needs

< <trace>> 4
1

Product space

(Set of all legal behaviors) Features

<<trace>> 4
1

Actual product’s SOf!ware | _ctrace>> | Test Case
behavior Requirements

A
<<trace>> |
1

Analysis model
Or architecture model

<<trace>> ?

Architecture/data flow

Module specifications Design model

<<trace>> f

Implementation
model

Algorithms/code

S‘ 'DEPENDABLE SOFTWARE 251

LABORATORY

K‘LJ’KON’KUK
Traceability link in DOORS

UNIVERSITY

File Miew

E Traceability Explorer - ‘fATM example/Problem Analysis/Z2| 2 AT HIA® - DO... E”E”‘S__q
@ 5ol SE BRAE
@

51,0-1: FEAT_0O0 21=0Withdraw): 080 ATM222E A2 H=HH S
—-4 32,1 UC_0001: Withdraw cash
-4 4.3, 1! Account

2% A=t — [~ | Feature
A
& 315 Accounting mamn i <<trace>>
& 312 Persistent clags L
& 311 dcocount — | Use Case
—-@ 4.2 1: Withdrawal
& 314 Transaction manager $<<trace>>
&+ 37 Withdrawal L,) '
- 4,12 Cashier Interface Analysis model
&+ 313 Client manager
& 3.3 Card reader ' <<trace>>
- 3.1 display ~ .
& 3.2 keypad DeSIQn model
-4 4,1, 1: Dispeser -
@+ 3,13 Client manager
@& 36 Cash counter
& 3.5 Dispensor feeder

& 3.4 Dispensor sensor

+-@ 5. 1.0-2) FEAT_000Z2 2 2(Deposity: DMO] ATME E5ll ARN2] HEHH 225 2 3EHH
+-gp 5,1,0-3: FEAT_0003 O (Transfer): D20 ATME Eaf ZHM2] HEHH 2= FE2E TIE HTIE £3FH0
+-p 5 1,0-4: FEAT_0004 =Z|(Inquiry): 2H0] aTMdmf E5f ARM2 HE2 MW= S =T
o F 5 oHl TI=T 9 LE b’
£ ?
Object 217 in "/&TH example/Problem Analysis/ =252 AR H M

EPENDABLE SOFTWARE
LABORATORY

252

l (KONKUK
UNIVERSITY

Requirements Management Tools

« IBM Rational DOORS - ESG PRACTICA RM+

I Rootllocalhost] - System
@ https://wwwibm.com/kr-ko/marketplace/requirements-m: -a&c| |z Pakd -
Welcome ~ Dashboard | ftems | Projects
(& Rational DOORS - 7H2 - L #4 Find Ve XaLibr User R
3 @ . ind - 7 Versions ~ . ioraries . s
Tep B 2w BATIA £R0 SsTH (€) By Copy - & tributes W New issue G Add note
8 @ @ W =5 - N d 8 & - P status Move items | " Functional Requirements [Impacted c
v G 3 oy A [220%a @ Aes cE O & - BHUNR . OG- - @ Back Fo open N Overview 3, '
5 G Google {4 Requirements Engineerin_. &% CSC340F Course Informa... [[] NAVER 8] HOJs AR [} 2305 @ 452 i) C - HONE - 2WE- S0 - @ ac PN ew | Open VIR Ly parts By Complete Status | 21 55UES TNOteS)\ fbraries | 1 Traceabi
— Navigation Items. Edit Find o™ Issues and Notes Security Functional Requirements | Function Requi
= o A
o] oA v = A Al
F EELIES 1BM DF E2|012 244 a A = Y
. » Project - Default~ Edit - 5 Overview~ |
Rational DOORS Jhzistol 3 Pojst7|
Name Stotus [Version [Next Ve [Lost Changea [Last Changed By [Creation Date_[Access Ouner Status Version
=8 Digital Watch Work m 2017-04-01 test 2017-03-30 Read/Write test ‘Work (V]
2= Requirements Spedificat... Work (1) s
S§ UserRequirements Work (1) i~
§ Az EA Work (1) Descrptis
8 O e e 31 T ol o OGRS § azaEz Work (1) UCOI® Sefting current ime
- T R R STt - § szan work () == FERE
Q7 AR 3| - = =) T TR § os work (1) E3:a 1 B Neey
) & e Al -l = § zzez ‘Work m
i - v e et] B 7 ENEID A0 TH0 T9 AN 9
el o1 e o 1 e 5 W5 § mezw Wore () T | NG00 £ SO0, a0 A2S ENE A0, Z50 241 9N 92 a0
s Hr ez & Functonal Requrem. Work (1) WE | NZGu an N0 08 S9E. €. 2, A ¥, £ 5201 280
Q7AHE B3| 224 [BM Rational DoorsE 0| 83}0] AJAH0|L} 23 IT e 30] | At rem i et e o @ otk AT
_ - RN ST et | 3 = HWAZEN Work (1) -
OfE2|FH 0|80 Fie g2 A, pa], B4 4= S L eracen o) | Sl § MAZEE work (1) T User= N2 N2 295 Z250] 99 ANEES gaat

IN8 9,386,000 = - ERE = L

§ FEANLEN wok (1)
§ EBANZET wok (1)
§EREEay w0 3 users BESIAE N EHS B2 NI U CHES
§ zEsE Work (1) s 3 NAGE (2 N2 EY 222 NUED, HeE 2EE 2uD
§ zzam Work (1) Wz
§ uco: Setting... Work (1)
§ ucosonoir.. work () _Userz 9ESIAE N7 Y B0 ST UIK 34T B
§ ucostopal.. Work (1) e
2z an Work (1) 5 Useris B $22 212 WS A BHES LU
STENEA o
§ UCosiUsest. work () User= Mets ¥291 200 WEsRAE 20 TIL WA s52
e Work (1) =
= . § == ez Work (1) 7, Users &
HI=LIAOH Ol 2 A B 25LM Q Sl v n
§ OEES wok ()
° . sg o o ::: 8 NAUE W N2 THS SEHD, W NS TR0
- = - R £2 Desion Archtecture Won
OE oA vV 1BM ORI E 20| A HA Q A 2B logica Architect.. Work () TS

SDOTSetting .. Work (1) T6a, GWEA, Userl G0 A2 SE2 SEEIIE WA= 27

U Test Spedification Work (1) _
Rational DOORS Next Gener. e M 22 HE Alao7| 1 users S BEE
2 NA@E B NY 232 325D 8N A2 SHAC

S6a. User)l NEE D29 20| BESAE A2 29 85

1, Useris Metel 922 212 WAS| 9% BHES LEHC

c oA 2| = < wars w=el 20l 5 o 22 u
- ~ - e s o 2 e o 1 0
Rational DOORS Next Generation : Tl s e e 2 g semes 00
230 22\510] | BB B B2l H22 B2 Al =

£ 8. S TR0~ E SaaSE AFRE & LTt =E 8 Users il 932l 201 83 A0 ST WHN | 4 222 HoE 229 U2 A2V BB
1-28 Qe
=E 213,300 25
=5 OTAE

—E N7 29 O2d g=0 §8E0

22 HY Al

2.8 2 YH SYOR. 2T AN N B 2
- 292029 2 9ENE ANED

YRY S HEY O HEY TY $2Y: e, BRY TH BRY:FR E2Y: 54

Tssues
1D Name Status

< 5

K KONKUK
UNIVERSITY

Requirements Management Tools

* JFeatures
€ PR p— SOK. (L]
Be (R Nevome Segch Bomc B Wndow beb
L1 $-0-Q- BFG: M7 * e FRERLEEN =i 270
] i i s e CEE £
Home S
: Requirement Coverage Report Number of Requirements: 0
All Categories Unique Test Methads i
() sl Dete Entry 2 Misrraal Duta Ertry. st have Syskem shak support the manual dska entr o Requirement Coverage Summary nf:"_::"“ e |:|
[Pnksin Ful drtifact Tt 3 Maintan Full artfoct Tet st have Comgleted 1.0 System shal stare for edting the Ful text ¢ Advanced (68.67%) Ratio
[Binsry Fie it achments 4 Binary Fie Attacments Musthave Comgieted 10 System shak suppoet e attachment of bie Basic 5H) Summary (8) L Mssing Test Methods e
r 5 Tpert Requirements Importarit Complebed 1.1 System shall import extend raguinements (12.5%) Unmapped Test Methads z
[Impart Requirsments
[} Speikheck 3 Custom Database Fislds Matrecuired dpproved 1.1 System shal slw ser dsfinkion of artifac
[} Esterraly Linkad Documents | | 7 Spelched: Mot required Approved 1.1 System shal support spell checking on datd Requirement Coverage Details
" P L] Externdly Linked Documents Pt have Comgleted 1.0 Systenn shab suppert ks from the anifsct
) Uniquely MerkiFy Artifacks ; i 2
T Dot At Hisarty s Unicushy ety detferts thothove Comgleted 1L Syskem shel rucuely iderify each antifact | All Requirements R, T
[} detifact ekl Lt n Dafing ActFact Hiearchy Mt have Compieted 1.0 System shall cupport artifacts cepreserted. i e s fo00) 1. Advanced (3} | ———— Y T —— 103339
= 2 1 User Definad Fislds st have Comgleted 1.0 System shakl support user dsfined artfacts Subtract the fum. (200%) £3 Basic (4)
23 Sysiem Mavigation i sk = Weivgty the ren. . (200%)
S N .
Lo n iy i 13 Greap ond Sort ArtFacts Ieportont Compicted 1.1 System shal aliow etFacks b e sorted o= 00%)
L) terty Source o Origh 14 Pk List of Artfacts Ieportant Complsted 1.1 System shal low the st of artFaxts talbs, Genorate R .. 109%)
L] Trace Esternal Artfacts 15 A hee Queries Ieportert Submited 1.1 Syskem shel pesform ad hoe queries b ret epor geearsed i Hon, 08 g 2007 22 8043 GHT-0830
() Trace archacts 16 Trateabity
() Mertfy Uniraced Requremend | 17 Idontfy Sowrcaand Orgn Masthave Comcloted 1D Systom shall b ablo ta Hertry the sourcs
[View Rioked detifacts 1& Teace Externdl Artifacs Impertant Submited L1 System shall dow lraceabiity to esternal i
5109 Canfigursticn Mansgemant i) Trate drtiacts Bhust have Complsted 1.0 Syskem shal s mantenance of racesb|
23 System Output = Identfy Uniraced Requirements [mportant Comgleted 1.0 System shall dertfy untraced requremes
Custrrpization 21 Confiraon Managenent
2 Teack Requirement History Important Comgleted 1.0 System shall track ertie history of artil,
2 Version artFacts Muthave Compieted L0 System shall o e versianng of atfost
24 Niews Relatad Artfacts Iepostant Comgleked 1.0 System shal liow allelated artfacts to
= Change Contral Process Submitted 1.1 Syehem ehal diow for & change cortrel pr |
5 Baseine artfacts st have Compieked 1.1 mﬂmﬁdﬂb«eﬂaﬂmxmkbmk;
‘ T
I z x| I
= T Reguirement Editor Butens.
quitement Editor
calculator_requirements.jrq - Ectpse
Reauremens | Detais | Bachground ' Use Case | Relations | History |
Godl: [Craste, retreive, update and delets hierarchy of artifacts| |
Conkest: [atfacts: Features, Requirements, esign, Implementation, Test Cases et
Precondtion: lew product crasted
User selects a product =
Do rearmens e
Lssat selects an artifact of the desired type iy e
o Usar erastes 5 new chid srtfact ot acuirmantlsh et
System displays a data entry form For the seicted bype 5] oot Rocuicoment Boowe et
User encers and saves the now data dlements e fquremrt fhore st
8y e Rqkertlils CuletP Ao
2, e Cutegoen v
Requirement
Editor Popup
Usar updates an exsting artifact
e t i Requirsment Coverage
User moves an artifack £ & new artifact of the same type Ruport View
i et creatas vlationship betwean two rtfacts a -
Probioms Jevodoc Decrotion Corcoke b Lo) Fosture 2
Requirement Coverage Report
= 1. Assodiate ane
Posteandtion: | System saves antifact in hierarchy 2. Run the unt test(s)
s ~ 3. Refrash the Coverage Repart,
o o I e
EPENDABLE SUT TYWARE 2 54

LABORATORY

KU KONKUK
UNTVERSITY

CTIP

« Continuous Integration (Cl)

— A software development practice where members of a team integrate their work frequently, usually each person
integrates at least daily, leading to multiple integrations per day.

— Each integration is verified by an automated build (including test) to detect integration errors as quickly as
possible.

« Continuous test & integration platform (CTIP)
— Continuous integration + continuous test

» CTIP consists of several (semi-)automatic tools
— Continuous integration management
— Version control
— Build automation
— Issue tracking (communication)
— Static analysis
— Testing tool (automation, management)
— Etc.

j;i L‘ %JEPENDABLE SOFTWARE 2 5 5
A LABORATORY

K KONKUK
UNITVERSITY

CTIP Process

. Y
Source Code Development F':;S'O'ftr; Run ﬁj\utomated
T Functlo ests
Version Control Provision and Deploy to
System . Test Environment
Continuous
Integration H
& 9
Source Code Build
Set-up Test
‘Fixtures’
Static Code Run Automated Code Coverage
Analysis Unit Tests Analysis
_ S

]}EPENBABLE SOFTWARE 2 5 6
LABORATORY

B

Recent Cl Tools

EPENDABLE SOFTWARE
LABORATORY

Open source

Ease of use
& setup

Built-in features

Integration

Hosting

Free version

Build Agent
License Pricing

Supported 0Ss

(2022)

@ Jenkins D ccircleci
Yes No
Medium Medium
3/5 4[5

EEEE * *

On premise & Cloud

Yes

Free

Windows, Linux,
macO0sS, Unix-like OS

On premise & Cloud

Yes

From $39
per month

Linux or MacOS

H TeamCity

No

Medium

4/5

* * * *
On premise

Yes

From $299
one-off payment

Windows, Linux,
macO0S, Solaris,
FreeBSD and more

KU vy

¢ Bamboo Ay GitLab
No No
Medium Medium
4/5 4/5
* * W * * * *
On premise & .
Bitbucket as Cloud BRI LA
Yes Yes
From $10 From $4

one-off payment

Windows, Linux,
macO0S, Solaris

per month per user

Linux distributions:
Ubuntu, Debian,
Cent0S, Oracle Linux

https://lwww.katalon.com/resources-center/blog/ci-cd-tools/

257

EPENDABLE SO RE
LABORATO!

CTIP Examples (2021)

Advanced CTIP Environment checksty e

l\ a Google
O GitHub 2 | /A nwure
Jenkins
glt (—,
JUnit JﬂGradIe

Test
Link
: : AN o
~ pyautogui @Nouon > ..l slack

258

4

KU vy

CTIP Examples (2021)

[
: -
i ST T =
’ y N
| r : ! sonarqube :
i 1 I I I
- - L :
! : ! I 1 p=>checkstye
: Grad| 1 3 My : : :
radle 1 h S - i
, || e |\ Zapier L e
. . I
i lUn't : &AL 2| Tool i | Buid qtslack 9 e i
: Test N 2 : He L : 1 DONT SIOT THE MISSENR :
: | T mmm———— i -, Communication | I 1
I . I b Tool i I I
{ uni@) | N T Pl e
| : | REDMINE <—— ®p TestLink ! | (Tndbees |
. e ; i . i
| Unit Test ' \ ssue Tracking Tool System Test ¢ 1 StaticAnalyzer |
\ N\ 4 \ 7/
A -’ e e o o - N ———— -

©Saebyeol Yu. Saebyeol's PowerPoint

]}EPENDABLE SOFTWARE 2 5 9
LABORATORY

Overall Structure #2

/_ I T\ (Control
a git

A

CTIP Examples (2021)

Version

Q.

GitHub |

Build
Mradle ‘ K

Team
Communication

- slack

Unit Test

JUnit @
| VI

/gv

docker

Jenkins

_ MGradle /

*e

Bug Tracking/ &y °
Requirements [

Management REDM|NE
N T

(CI Server
l‘a |

Build ‘

Test
jF—L.

.

Static Analysis
/ sonarqube\\ N
FindBug;

checkstyle

DONT SHOOT THE MESSENGER

S

System
lﬂk Testing

B

CTIP Examples (2021)

Software V&V cves =

Overview

.. =
CS

il

SmBugs

sonarcloud

L CTeol g
e
&. O
OO

GitHub Actions

Build

Testing &
Visualizati

Visualization

Version control

),

GitHub

Requirement
Management

Mradle
JUnit@

QA

e 2730l 3 Sprint 2

EPENDABLE SOFTWARE
LABORATORY

| KU v |

261

CTIP Examples (2021)

o
Jenkins
L *

v
r 3

— Team Communication —

h— e —

JUnit@ JACoCo

— Buid
MRSradle

O :

GitHub

2021 Software V&V

.———
sonarqube\\\

FII!Q, Fiﬂéﬁyis

DONT SHOOT THE

checksty e

262

]}EPENBABLE SOFTWARE 2 6 3
LABORATORY

Summary

Requirements Engineering Process

Feasibility R‘?q.lur?lnents Requirements
Study Elicitation and Models
Analysis i -
. User/Syst
Requirements "l(:l/ /\.I';;an
Specification : ,
Requirements
Requirements
Mailz:a::l:glfen t Requirements Requirements Specification
g Validation (IEEE 830.1998)

(Design Phase)
Next Step : Architecture Design

]}EPENDABLE SOFTWARE 2 6 5
LABORATORY

