
Software Engineering

JUNBEOM YOO

KONKUK University
http://dslab.konkuk.ac.kr

2023.08.26 최종 수정

Text and References

2

Contents

1. An Introduction to Software Engineering
2. Software Development Process
3. Agile Software Development
4. Requirements Engineering
5. System Modeling

• Structured Analysis and Structured Design (SASD)
6. Architectural Design
7. Design and Implementation

• An Introduction to UML
• Object-Oriented Analysis and Design (OOAD)

8. Software Testing
9. Software Evolution

3

Lists of Homework/Activities

1. An Introduction to Software Engineering - Homework #1
2. Software Development Process - Homework #2
3. Agile Software Development - Homework #3
4. Requirements Engineering - Homework #4
5. System Modeling - Homework #5

• Structured Analysis and Structured Design (SASD) - Homework #6 #7
6. Architectural Design - Homework #8
7. Design and Implementation - Homework #9

• An Introduction to UML
• Object-Oriented Analysis and Design (OOAD) - Homework #10

8. Software Testing - Homework #11
9. Software Evolution - Homework #12

4

5

1. An Introduction to Software Engineering

6

Software Engineering

• Software engineering is concerned with theories, methods and tools for professional and
cost-effective software development.

– More and more systems are software-controlled.
– The economies of all developed nations are dependent on software.
– Software costs often dominate computer system (hardware) costs.
– Software costs is more to maintain than to develop.

• For systems with a long life, maintenance costs may be several times development costs.

7

여러 사람

큰 시스템

지속적인
유지 보수

• Large Systems
• Team Development
• Reuse

• Professional
• Cost-Effective

Types of Software Products

• Generic Software
– Stand-alone systems that are marketed and sold to any customer who wishes to buy them

• Most PC software : graphics programs, project management tools, CAD software
• Software for specific markets such as appointments systems for dentists

– Software requirements specification is owned by the software developer.
• Decisions on software change are made by the developer.

• Customized Software
– Software that is commissioned by a specific customer to meet their own needs

• Embedded control systems, air traffic control software, traffic monitoring systems
– Software specification is owned by the customer for the software.

• Customers make decisions on software changes that are required.

• Question:
– 은행에서 Teller가사용하는 “은행시스템”은어떤 SW 인가요?

8

Essential Attributes of Good Software Products

9

Product characteristic Description

Maintainability
Software should be written in such a way so that it can evolve to meet the changing needs of
customers. This is a critical attribute because software change is inevitable in changing business
environments.

Dependability
Software dependability includes a range of characteristics including reliability, security and safety.
Dependable software should not cause physical or economic damage in the event of system
failure. Malicious users should not be able to access or damage the system.

Efficiency Software should not make wasteful use of system resources such as memory and processor
cycles. Efficiency therefore includes responsiveness, processing time, memory utilization, etc.

Acceptability Software must be acceptable to the type of users for which it is designed. This means that it must
be understandable, usable and compatible with other systems that they use.

Software Engineering

• Software engineering is an engineering discipline that is concerned with all aspects of software
production from the early stages of system specification through to maintaining the system after it has
gone into use.

• “Engineering discipline”
– Using appropriate theories and methods to solve problems bearing in mind organizational and financial

constraints

• “All aspects of software production”
– Not just technical process of development, but also project management and the development of tools,

methods, etc. to support software production.

10

Typical Activities in Software Engineering

• Software Specification
– Customers and engineers define the software to produce and the constraints on its operation.
– Requirements Engineering

• Software Development
– The software is designed and programmed.
– Architecture Design, Detailed Design and Implementation
– CTIP (Continuous Test and Integration Platform)

• Software Validation
– The software is checked to ensure that it is what the customer requires.
– Software V&V (Verification & Validation) , Testing

• Software Evolution
– The software is modified to reflect changing customer and market requirements.
– Software Maintenance

11

Software Project Failures

• Software projects failures (The Software Crisis) due to
– Increasing system complexity

• Larger and even more complex and new systems are required.
• Systems must be built and delivered more quickly.

– Not use software engineering methods
• New software engineering techniques help us to build larger,

more complex systems, the demands change.
• But many companies do not use software engineering.

• A solution to overcome software project failures is
to adopt software engineering.

12

Software Engineering Diversity

• No silver bullet for software engineering
– There are many different types of software system.
– There is no universal set of software techniques applicable to all of these.

• The software engineering methods and tools used depend on
– the type of application being developed, the requirements of the customer, and the background of the

development team

13

“No single softw are engineering developm ent w ould
produce an order-of-m agnitude im provem ent to
program m ing productivity w ithin10 years.”

Fredrick Brooks 1986

Software Application Types

Type Features

Stand-alone applications Application systems that run on a local computer, such as a PC. They include all necessary functionality
and do not need to be connected to network

Interactive transaction-based
applications

Applications that execute on a remote computer and are accessed by users from their own PCs or
terminals, including web applications such as e-commerce applications (≈ Web-based System)

Embedded control systems Software control systems that control and manage hardware devices

Batch processing systems Business systems that are designed to process large numbers of individual inputs to create
corresponding outputs in large batches

Entertainment systems Systems that are primarily for personal use and which are intended to entertain the user

Systems for modelling and
simulation

Systems that are developed by scientists and engineers to model physical processes or situations, which
include many, separate, interacting objects (= M&S)

Data collection systems Systems that collect data from their environment using a set of sensors and send that data to other
systems for processing.

Systems of systems Systems that are composed of a number of other software systems (≈ CPS)

14

Fundamentals of Software Engineering

• Fundamental principles applicable to all types of software system, irrespective of the development
techniques used:

– “Systems should be developed using a managed and understood development process. Of course, different processes are
used for different types of software.”

• SLDC (Software Development Life-Cycle) , Development Process , Agile, Dev/Ops

– “Dependability and performance are important for all types of systems.”
• Software Quality

– “Understanding and managing the software specification and requirements are important.”
• Requirements Engineering

– “Where appropriate, you should reuse software that has already been developed rather than write new software.”
• Software Reuse , Open-Source Software

15

A Newcomer : Web-based Software Engineering

• The Web is now a platform for running various application.
– Web services allow application functionality to be accessed over the web.
– Cloud computing enables applications run remotely on the ‘cloud’.

• Web-based systems
– Complex distributed systems
– The fundamental principles of software engineering are applicable to web-based systems in the same ways.

• Software reuse
– When building these systems, you think about how you can assemble them from pre-existing software components and systems.

• Incremental and agile development
– Web-based systems should be developed and delivered incrementally.

• Service-oriented systems
– Software may be implemented using service-oriented software engineering, where the software components are stand-alone web services.

• Rich interfaces
– Interface development technologies such as AJAX and HTML5 have emerged that support the creation of rich interfaces within a web

browser.

16

10 FAQs about Software Engineering

17

Question & Answer

What is software?
Computer programs and associated documentation.
Software products may be developed for a particular customer or may be developed for a general market.

What are the attributes of good software?
Good software should deliver the required functionality and performance to the user and should be maintainable, dependable
and usable.

What is software engineering?
Software engineering is an engineering discipline that is concerned with all aspects of software production.

What are the fundamental software engineering activities?
Software specification, software development, software validation and software evolution.

What is the difference between software engineering and computer science?
Computer science focuses on theory and fundamentals.
software engineering is concerned with the practicalities of developing and delivering useful software.

10 FAQs about Software Engineering

18

Question & Answer

What is the difference between software engineering and system engineering?
System engineering is concerned with all aspects of computer-based systems development including hardware, software and
process engineering. Software engineering is part of this more general process.

What are the key challenges facing software engineering?
Coping with increasing diversity, demands for reduced delivery times and developing trustworthy software.

What are the costs of software engineering?
Roughly 60% of software costs are development costs, 40% are testing costs.
For custom software, evolution costs often exceed development costs.

What are the best software engineering techniques and methods?
While all software projects have to be professionally managed and developed, different techniques are appropriate for
different types of system. You can’t, therefore, say that one method is better than another.

What differences has the web made to software engineering?
The web has led to the availability of software services and the possibility of developing highly distributed service-based
systems. Web-based systems development led to the advances in programming languages and software reuse.

Homework / Activity #1

• 다음 논문을 읽고, 본인의 의견을 피력하세요.

19

과거 (1960s) 현재 (2020s) 미래 (2040s)

The Software
Crisis

SW개발 과제가 모두 실
패함.

Causes

Solutions

Samples from SE Undergraduate (KU 2021)

20

21

2. Software Development Process

22

Software Process

• Software process is a structured set of activities required to develop a software system.

• Many different software processes but all involve:
– Specification: defining what the system should do
– Design and implementation: defining the organization of the system and implementing the system
– Validation: checking that it does what the customer wants
– Evolution: changing the system in response to changing customer needs.

• Software process model is an abstract representation of a process, presenting a description of a
process from some perspectives.

– Waterfall
– Incremental
– Evolutionary
– Spiral
– CBD (Component-Based Development)

– Iterative - Agile
– Iterative - RUP (Rational Unified Process)

23

SW Process
Model

SW Process

Software Process Model

24

Software Process Model

• Software (Development) Process models
– Defining a distinct set of activities, actions, tasks, milestones, and work products that are required to engineer

high-quality software, systematically.
– Defining Who is doing What, When to do it, How to reach a certain goal.

= SDLC (SW Development Life-Cycle) models (SW생명주기모델)

25

Waterfall Model

Incremental Model

Evolutionary Model

Component-Based Development

Iterative Model (Agile)

(Rational) Unified Process

< 1960s ~ 2000s >

Waterfall Model

Iterative Model

< 2000s ~ Now >

Application Domain

Application Domain

…

Application Domain

Application Domain

…

tailored for

tailored for

Typical SDLC Models

• Widely used SDLC (SW Development Life-Cycle) models:
– Waterfall
– Incremental
– Evolutionary
– Spiral
– CBD (Component-Based Development)

– Iterative - Agile
– Iterative - RUP (Rational Unified Process)

26

The Waterfall Model

• A classic software development life-cycle model proposed in 1960s
– Suggests a systematic and sequential approach to software development
– Has distinct/separated phases

• In principle, a phase must be complete before moving onto the next phase.
– Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing customer

requirements.

27

The Waterfall Model

• The waterfall model is useful in situations where,
– Requirements are fixed early.
– Work can/should proceed to completion in a linear manner.
– Large systems engineering projects where a system is developed at several sites

• Only appropriate when the requirements are well-understood and changes will be fairly limited during
the design process.

28

The Incremental and Evolutionary Model

29

The Incremental and Evolutionary Model

• Often called “Incremental and Evolutionary Development”

• A number of increments are developed in parallel.
– Each increment is developed independent with each other, and integrated later.
 Incremental Development

– The last version is the final one to deliver.
 Evolutionary Development

– More rapid delivery and deployment of useful software to the customer is possible.

• The process is not visible.
– Many increments are developed concurrently.
– Documentations are not easy.

• System structure tends to degrade as new increments are added.
– Regular change tends to corrupt its structure.
– Incorporating further software changes becomes increasingly difficult and costly.

30

The Spiral Model

31

• An iterative version of the waterfall model with “risk analysis” added

CBD (Component-Based Development)

• Based on software reuse
– Systems are integrated from existing components or application systems.

• Using COTS (Commercial-off-the-shelf) systems/components.
– Reused elements should be configured to adapt their behaviour and functionality.

• Reuse is now conceptually the standard approach for building many types of business systems.

• Types of reusable software components:
– Stand-alone application systems (COTS):

• Configured for use in a particular environment
– Collections of objects:

• Developed as a package to be integrated with component frameworks such as .NET or J2EE
– Web services:

• Developed according to service standards and which are available for remote invocation

32

CBD

• Reuse-oriented software engineering process

• Advantages :
– Reduced costs and risks as less software is developed from scratch.
– Faster delivery and deployment of systems are possible.

• Disadvantages :
– Requirements compromises are inevitable, so system may not meet real needs of users.
– Loss of control over evolution of reused system elements

33

The Iterative Model - Agile

• Agile development is an umbrella term for a group of methodologies weighting rapid prototyping and
rapid development experiences.

– Lightweight in terms of documentation and process specification
– Example: XP (eXtreme Programming) , TFD (Test First Development)

• Agile methods attributes
– Iterative (several cycles)

– Incremental (not delivering the product at once)

– Actively involve users to establish requirements

• Agile Manifesto
– Individual over processes and tools
– Working software over documentation
– Customer collaboration over contract negotiation
– Responding to change over following a plan

34

The Iterative Model - RUP

• Rational Unified Process (RUP) or UP
– A software development approach that is

• Iterative (Incremental, Evolutionary)
– Each iteration includes a small waterfall cycle (3~4 weeks).

• Risk-driven / Client-driven / Architecture-centric
• Use-Case-driven

– A Well-defined and well-structured software engineering process
• 4 Phases and 9 Disciplines

– A de-facto industry standard for developing OO software

35

(Rational) Unified Process

• The UP encourages a combination of risk-driven and client-driven iterative planning.
– To identify and drive down the high risks (architecturally), and
– To build visible features that clients care most about.

• Risk-driven iterative development includes more specifically the practice of architecture-centric
iterative development.

– Early iterations in elaboration phase focus on building, testing, and stabilizing the core architecture.

36

Waterfall vs. Iterative

• The Waterfall process (= Plan-driven)
– All process activities are planned in advance.
– Progress is measured against this plan.

• The Iterative process (= Agile, UP)
– Planning is incremental and iterative.
– Easier to change the process to reflect changing customer requirements

• There are no right or wrong software development processes.
– In practice, most practical processes include elements of both waterfall and iterative approaches.

37

Process Activities

38

Process Activities

• The 4 basic process activities of specification, development, validation and evolution are organized
differently in different development processes.

39

1. Requirements Engineering Process

• RE (Requirements Engineering)
– The process of establishing what services are required and the constraints on the system’s operation and

development
• What services: functional requirements (FR)
• Constraints: non-functional (quality) requirements (NFR)

• Requirements engineering process
– Requirements elicitation and analysis

• What do the system stakeholders require or expect from the system?
– Requirements specification

• Defining the requirements in detail
– Requirements validation

• Checking the validity of the requirements

40

2. Software Design and Implementation

• The process of converting the system specification into an executable system
– Software design: Design a software structure that realizes the specification
– Implementation: Translate this structure into an executable program

41

Design Activities

• Architectural design
– Identify the overall structure of the system, the principal components (subsystems or modules), their relationships,

and how they are distributed
 AD (Architecture Description): ISO/IEC/IEEE 42010:2011 - Systems and Software Engineering - Architecture Description

• Interface design
– Define the interfaces between system components

• Component selection and design
– Search for reusable components. If unavailable, you design how it will operate

• Database design
– Design the system data structures and how these are to be represented in a database

42

Implementation Activities

• The software is implemented either by developing programs or by configuring application system.

– Programming
• An individual activity with no standard process
• Clean code + Refactoring + Unit Testing

– Debugging
• An activity of finding (locating) program faults and correcting these faults
• ≠ Testing : An activity of detecting program faults

• Design and implementation are interleaved activities for most types of software system.

43

3. Software Validation

• Verification and Validation (V&V) intends to show that a system conforms to its specification (→
Verification) and meets the requirements of the system customer (→Validation).

– Involves (static) code checking, review and system (dynamic) testing.

– Testing is the most commonly used V & V activity.
 IEEE 1012-2016 - IEEE Standard for System, Software, and Hardware Verification and Validation

44

Software Testing

• Stages of testing
– Component (Unit) Testing

• Unit testing / Module testing
• Individual components are tested independently.
• Components may be functions or objects or coherent groupings of these entities.

– System Testing
• + Integration Testing
• Testing of the system as a whole.
• Testing of emergent properties is particularly important.

– Acceptance Testing
• Testing with customer data to check that the system meets the customer’s needs.
• Validation activity

45

V-Model of Software Testing

46

V-Model of Software Testing

47

V-Model of Software Testing from IEC 61508

48

4. Software Evolution

• Software must also evolve and change, as requirements change through changing business circumstances.
– Software is inherently flexible and can change.
– Maintenance

• S3M (SW Maintenance Maturity Model)

49

Process Improvement

50

Process Improvement

• Process improvement
– Understanding existing processes and changing these processes to increase product quality and/or reduce

costs and development time.

• A way of enhancing the quality of their software and reducing costs
– The level of process maturity, such as CMMi, reflects the extent to which good technical and management

practice has been adopted in organizational software development processes.

– Activities of process improvement
• Analysis
• Change
• Measurement

51

Process Improvement Activities

• Process analysis
– The current process is assessed, and process weaknesses and bottlenecks are identified.
– Process models (process maps) that describe the process may be developed.

• Process change
– Process changes are proposed to address some of the identified process weaknesses.
– These are introduced and the cycle resumes to collect data about the effectiveness of the changes.

• Process measurement
– Measure one or more attributes of the software process or product
– These measurements forms a baseline that helps you decide if process improvements have been effective.

52

Process Measurement

• Wherever possible, quantitative process data should be collected.
– However, organizations often do not have clearly defined process standards.

• It is very difficult as we don’t know what to measure.
– A process should be defined before any measurement is possible.

• The organizational objectives should drive the process improvements.

• Examples of process metrics
– Time taken for process activities to be completed

• calendar time, effort to complete an activity or process
– Resources required for processes or activities

• total effort in person-days
– Number of occurrences of a particular event

• number of defects discovered

53

The SEI CMMi

• CMMi (Capability Maturity Model Integrated) of SEI (Software Engineering Institute) in CMU
1. Initial : Essentially uncontrolled
2. Repeatable : Product (Project) management procedures are defined and used.
3. Defined : Process management procedures and strategies are defined and used.
4. Managed : Quality management strategies are defined and used.
5. Optimizing : Process improvement strategies are defined and used.

54

22 Processes in CMMi

55

22 Processes in CMMi 1.3

56

Level Process Goal Practice Subpractice Work Product Concept Detailed Modular Info Map Usable Evidence Total
1 - Initial N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 - Managed 7 15 54 231 231 100% 100% 100% 100% 100% 100% 100%
3 - Defined 11 26 86 411 411 100% 100% 100% 100% 100% 100% 100%

4. Quan. Mgd. 2 3 12 66 66 100% 100% 100% 100% 100% 100% 100%
5- Optimizing 2 5 15 71 71 100% 100% 100% 100% 100% 100% 100%

Total 22 49 167 779 779 100% 100% 100% 100% 100% 100% 100%
1 - Initial N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Establish criteria for distinguishing
appropriate requirements providers

Lists of criteria for distinguishing
appropriate requirements providers 1 2 4 8 16 32 100%

Establish objective criteria for the
evaluation and acceptance of
requirements

Criteria for evaluation and acceptance of
requirements 1 2 4 8 16 32 100%

Analyze requirements to ensure that
established criteria are met

Results of analyses against criteria 1 2 4 8 16 32 100%

Reach an understanding of requirements
with requirements providers so that project
participants can commit to them

A set of approved requirements 1 2 4 8 16 32 100%

Assess the impact of requirements on
existing commitments

Requirements impact assessments 1 2 4 8 16 32 100%

Negotiate and record commitments Documented commitments to
requirements and requirements changes 1 2 4 8 16 32 100%

Document all requirements and
requirements changes that are given to or
generated by the project

Requirements change requests 1 2 4 8 16 32 100%

Maintain a requirements change history,
including the rationale for changes

Requirements change impact reports 1 2 4 8 16 32 100%

Evaluate the impact of requirement
changes from the standpoint of relevant
stakeholders

Requirements status 1 2 4 8 16 32 100%

Make requirements and change data
available to the project

Requirements database 1 2 4 8 16 32 100%

Maintain requirements traceability to
ensure that the source of lower level (i.e.,
derived) requirements is documented

Requirements traceability matrix 1 2 4 8 16 32 100%

Maintain requirements traceability from a
requirement to its derived requirements
and allocation to work products

Requirements tracking system 1 2 4 8 16 32 100%

Generate a requirements traceability
matrix

Requirements traceability report 1 2 4 8 16 32 100%

Review project plans, activities, and work
products for consistency with
requirements and changes made to them

Documentation of inconsistencies
between requirements and project plans
and work products, including sources and
conditions

1 2 4 8 16 32 100%

Identify the source of the inconsistency (if
any) Sources of inconsistency 1 2 4 8 16 32 100%

Identify any changes that should be made
to plans and work products resulting from
changes to the requirements baseline

Changes to resolve inconsistencies 1 2 4 8 16 32 100%

Initiate any necessary corrective actions Corrective actions 1 2 4 8 16 32 100%
Develop a WBS WBS 1 2 4 8 16 32 100%
Define the work packages in sufficient
detail so that estimates of project tasks,
responsibilities, and schedule can be
specified

Task descriptions 1 2 4 8 16 32 100%

Identify products and product components
to be externally acquired

Product and component list 1 2 4 8 16 32 100%

Identify work products to be reused Reusable work product list 1 2 4 8 16 32 100%
Determine the technical approach for the
project Technical approach 1 2 4 8 16 32 100%

Use appropriate methods to determine the
attributes of the work products and tasks
to be used to estimate resource
requirements

Estimating models and inputs 1 2 4 8 16 32 100%

Estimate the attributes of work products
and tasks

Attribute estimates 1 2 4 8 16 32 100%

D l

Establish
Estimates of

Work Product
and Task
AttributesEstablish

Estimates

Capability Maturity Model Integration© for Development Version 1.3 (CMMI-DEV-V1.3©)

Estimate the
Scope of the

Project

Manage
Requirements

Requirements
Management

(REQM)

Understand
Requirements

Obtain
Commitment

to
Requirements

Manage
Requirements

Changes

Maintain
Bidirectional

Traceability of
Requirements

Ensure
Alignment
Between

Project Work
and

Requirements

CMMI 2.1 (SE/SW/IPPD/SS) Process Evaluation Checklist

57

58

59

60

SW Development Methodology

61

Software Development Methodology

• Software Development ≈ Solving Problems with Software working on a Computer

62

Software Development ≈ ①②③ Procedural Programming

Object-Oriented Programming

SASD

OOAD

구조적 분석설계 개발방법론

객체지향 개발방법론

Procedural Programming

• A program is organized with procedures.
– Procedure/Function

• building-block of procedural programs
• statements changing values of variables

– Focusing on data structures, algorithms, and sequencing of steps
• Algorithm : a set of instructions for solving a problem (Control-centric)
• Data structure : a construct used to organize data in a specific way (Data-centric)

– Most computer languages (from FORTRAN to C) are procedural programming languages.

63

Procedure 1: Deposit() {...}

Procedure 2: Withdraw() {...}

Procedure 3: Transfer() {...}

struct account {
char name;
int accountId;
float balance;
float interestYTD;
char accountType;

};
<<Use>>

Data StructureProcedures (with Algorithms)

64

A Procedural Program

SASD for Procedural Programming

• SASD (Structured Analysis and Structured Design, 구조적분석설계 개발방법론)

– A traditional software development methodology for procedural programs
– Top-Down Divide and Conquer

• Divide large, complex problems into smaller, more easily handled ones
– Functional view of the problem using DFD (Data Flow Diagram)

65A level 3 DFD for RVC Control

An FSM for 2.1.1 Controller

An SASD Example - RVC Control

66

DFD Level 0

DFD Level 3
…

Structured Chart

Structured Analysis

Structured Design

(…)

Object-Oriented Programming

• A program is organized with objects.
– Providing system functionalities through object communications

• Object : consisting of data and operations
• Object communication : an object calls an operation of other objects with its data
• No explicit data flow, but only communication sequences among objects

67

Professor

-name: String
-age: Integer
-speciality: String

+getName(): String
+getAge(): Integer
+getSpeciality(): String

yoo : Professor

name = Yoo
age = 43
speciality = Software Engineering

Class

Object

What’s your name?

Professor Yoo
yoo.getName()

client

client yoo : Professor

1 : getName()

An Object-Oriented Program

68

OOAD for Object-Oriented Programming

• OOAD (Object-Oriented Analysis and Design, AKA 객체지향개발방법론)
– “Identifying your requirements and creating a domain model, and then add methods to the appropriate classes and

define the messaging between the objects in order to fulfill the requirements”

– Object-Oriented Analysis (OOA)
• Discover the domain concepts/objects (Domain Model)

• Identify requirements (Use-Case Model)

– Object-Oriented Design (OOD)
• Define software objects (Static model Class Diagram)

• Define how they collaborate to fulfill the requirements (Dynamic model Sequence Diagram)

– Various development process models are available.
• Waterfall
• UP (Iterative)

69

OOA - Domain Model

70

OOD Static Model - Class Diagram

71

OOD Dynamic Model - Sequence Diagram

72

An OOAD Example - Dice Game

73

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.
- If the dice’s face value totals seven,

player wins; otherwise, player loses.

Domain Model

Interaction Diagram

Design Class Diagram

OOA OOD

74

Domain Model

Use-Case Model

Sequence Diagrams

Class Diagram

OOA
OOD

OO Implementation

Homework / Activity #2

• CMMi의 적용에 대한 국내 신문기사를 찾아보세요.

• 본인이 최근에 수행한 (팀)프로젝트를 대상으로, CMMi 평가를 Rough하게 진행하고, 그 내용을 간단하게
정리하세요.

– 제공되는 CMMi 2.1 Checklist를 기준으로, 각 항목에 대해서 “상/중/하”로 평가합니다.

75

각 항목별 정성 평가
(상 / 중 / 하)

76

Samples from SE Undergraduate (KU 2021)

77

3. Agile Software Development

78

Rapid Software Development

• Rapid development and delivery is now often the most important requirement for software systems.
– Software must evolve quickly to reflect changing business needs.
– Plan-driven development does not meet these business needs.

• Agile development methods emerged in the late 1990s to radically reduce the delivery time for
working software systems.

• Features of Agile development
– The system is developed as a series of versions or increments with stakeholders involved in version

specification and evaluation.
– Frequent delivery of new versions for evaluation
– Extensive tool support (e.g., automated testing tools)
– Minimal documentation to focus on working code

79

Plan-Driven (Waterfall) vs. Agile Development

80

81

Agile Methods

82

Agile Methods

• Motivation
– Dissatisfaction with the overheads involved in software design methods of the 1980s and 1990s (Waterfall)
– To reduce overheads in the software process and to be able to respond quickly to changing requirements

without excessive rework

• Agile methods
– Focus on the code rather than the design
– Based on an iterative approach to software development
– Intend to deliver working software quickly and evolve this quickly to meet changing requirements

• Two types of Agile methods
– Agile Development Techniques
– Agile Project Management

83

Agile Manifesto

• “We are uncovering better ways of developing software by doing it and helping others do it. Through this work
we have come to value.”

84

Principles of Agile Methods

85

Applicability of Agile Method

• Development of small or medium-sized product for sale
– Almost all software products and apps are now developed using an agile approach.

• Custom system development within an organization where,
– Clear commitment from customers to become involved in the development process.
– Few external rules and regulations that affect the software

86

Agile vs. DevOps

87

Agile Development Techniques

88

Extreme Programming

• Extreme Programming (XP) takes an ‘extreme’ approach to iterative development.
– New versions may be built several times per day.
– Increments are delivered to customers every 2 weeks.
– All tests must be run for every build and the build is only accepted if tests run successfully.

89

XP Principles

• The XP principles
– Incremental development is supported through small, frequent system releases.
– Customer involvement means full-time customer engagement with the team.
– Collective ownership through pair programming
– Change supported through regular system releases
– Maintaining simplicity through constant refactoring

90

XP Practices

91

Principle or Practice Description

Incremental planning Requirements are recorded on story cards and the stories to be included in a release are determined by the
time available and their relative priority. The developers break these stories into development ‘Tasks’.

Small releases The minimal useful set of functionality that provides business value is developed first. Releases of the system
are frequent and incrementally add functionality to the first release.

Simple design Enough design is carried out to meet the current requirements and no more.

Test-first development An automated unit test framework is used to write tests for a new piece of functionality before that functionality
itself is implemented.

Refactoring All developers are expected to refactor the code continuously as soon as possible code improvements are
found. This keeps the code simple and maintainable.

Pair programming Developers work in pairs, checking each other’s work and providing the support to always do a good job.

Collective ownership The pairs of developers work on all areas of the system, so that no islands of expertise develop and all the
developers take responsibility for all of the code. Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into the whole system. After any such integration,
all the unit tests in the system must pass.

Sustainable pace Large amounts of overtime are not considered acceptable as the net effect is often to reduce code quality and
medium term productivity

On-site customer
A representative of the end-user of the system (the customer) should be available full time for the use of the
XP team. In an extreme programming process, the customer is a member of the development team and is
responsible for bringing system requirements to the team for implementation.

XP in Practice

• The XP method itself is not widely used now, since
– Extreme programming has a technical focus and is not easy to integrate with management practice in most

organizations.

• However, XP practices are widely used in other development methods.
1. User stories for specification
2. Refactoring
3. Test-first development (TFD)
4. Pair programming

92

1. User Stories for Requirements

• User requirements are expressed as user stories or scenarios.
– Written on cards and the development team break them down into implementation tasks.

Tasks are the basis of schedule and cost estimates.
– Customer or user is part of the XP team and is responsible for making decisions on requirements.

• The customer chooses the stories for inclusion in the next release.

93User Story

Tasks

2. Refactoring

• Conventional wisdom in software engineering is to design for change.
– It is worth spending time and effort anticipating changes as this reduces costs later in the life cycle.

• XP, however, claims that this is not worthwhile as changes cannot be reliably anticipated.

• XP proposes constant code improvement (Refactoring) to make changes easier when they must be
implemented.

– Changes are easier to make because the code is well-structured and clear.

– Examples of refactoring
• Re-organization of a class hierarchy to remove duplicate code.
• Tidying up and renaming attributes and methods to make them easier to understand.
• The replacement of inline code with calls to methods that have been included in a program library.

– Types/levels of refactoring
• Architecture > Design > Code > Data

94

“나중에 고치기 쉽게 설계하라.”
“나중에 쉽게 고칠 수 있는 자리를 미리 만들어 놔라.”

3. Test-First Development

• TFD (Test-First Development)

– Testing is central to XP.
– “The program should be tested after every change has been made.”

• Difficulties in TFD
– Programmers prefer programming to testing and sometimes they take short cuts when writing tests.
– Some tests can be very difficult to write incrementally.
– It is difficult to judge the completeness of a set of (a lot of) tests.

• Features of the XP testing
– Test-First development
– Incremental test development from scenarios
– User involvement in test development and validation
– Automated test harnesses are used to run all component tests each time that a new release is built.

(CTIP: Continuous Testing and Integration Platform)

95

CTIP Examples (KU 2021)

96

CTIP Examples (KU 2021)

97

CTIP Examples (KU 2021)

98

CTIP Examples (KU 2021)

99

CTIP Examples (KU 2021)

100

CTIP Examples (KU 2021)

101

Test-Driven Development

• TDD (Test-Driven Development)

– “Writing tests before code clarifies the requirements to be implemented.”

– Tests are written as programs rather than data so that they can be executed automatically.
– The test includes a check that it has executed correctly.

• Automated test execution environment is mandatory.
– All previous and new tests are run automatically when new functionality is added, thus checking that the new

functionality has not introduced errors.

102

Customer Involvement

• The customer is a part of the team in XP.
– Help develop acceptance tests for the stories that are to be implemented in the next release of the system.
– Writes tests as development proceeds.

• All new code is therefore validated to ensure that it is what the customer needs.
• test case ≠ test data

• However, customers have limited time available and so cannot work full-time with the development
team.

– They may feel that providing the requirements was enough of a contribution and so may be reluctant to get
involved in the testing process.

103

Test Case Description for ‘Dose Checking’

104

Test Automation

• Test automation
– “Tests are written as executable components before the task is implemented.”
– Automated test framework is required.
– Each testing component should

• Be stand-alone (independent),
• Simulate the submission of input to be tested, and
• Check that the result meets the output specification.

• Automated test framework
– A system that makes it easy to write executable tests and submit a set of tests for execution
– Examples:

• A series of xUnit (e.g., JUnit)
– As testing is automated, a set of tests is always ready to test quickly.

• Whenever any functionality is added to the system, the tests can be run and problems that the new code has introduced
can be caught immediately, as CTIP.

105

4. Pair Programming

• Pair programming
– “Involves programmers working in pairs, developing code together.”

– Programmers sit together at the same computer to develop the software.
• Pairs are created dynamically so that all team members work with each other during the development process.
• The sharing of knowledge that happens during pair programming is very important, as it reduces the overall risks to a

project when team members leave.

– Advantages:
• Helps develop common ownership of code and spreads knowledge across the team.
• Serves as an informal review process as each line of code is looked at by more than 1 person.
• Encourages refactoring as the whole team can benefit from improving the system code.

• Pair programming is not necessarily inefficient.
– Some evidence suggests that a pair working together is more efficient than 2 programmers working separately.

106

Agile Project Management

107

Agile Project Management

• The principal responsibility of software project managers is to manage the project so that the
software is delivered on time and within the planned budget for the project.

• The standard approach to project management is the plan-driven.
– Managers draw up a plan for the project showing

• What should be delivered,
• When it should be delivered, and
• Who will work on the development of the project deliverables.

• Agile project management requires a different approach.
– Should be adapted to incremental development and the practices used in agile (development) methods.
– Scrum

108

Scrum

• Scrum
– An agile method that focuses on managing iterative development rather than specific agile practices.
– The name of a short daily meeting

• All team members share information, describe their progress since the last meeting, problems that have arisen, and what is
planned for the following day.

• Everyone on the team knows what is going on and, if problems arise, can re-plan short-term work to cope with them.

• 3 phases in Scrum
– Initial phase

• An outline planning phase, where you establish the general objectives for the project and design the software architecture.
– A series of sprint cycles

• Each cycle develops an increment of the system. (2~4 weeks for each sprint)
– Project closure phase

• Wraps up the project, completes required documentation, and assesses the lessons learned from the project.

109

Scrum Terminology

Scrum term Definition

Development team A self-organizing group of software developers, which should be no more than 7 people. They are responsible for
developing the software and other essential project documents.

Potentially shippable
product increment

The software increment that is delivered from a sprint. The idea is that this should be ‘potentially shippable’ which
means that it is in a finished state and no further work, such as testing, is needed to incorporate it into the final
product. In practice, this is not always achievable.

Product backlog
This is a list of ‘to do’ items which the Scrum team must tackle. They may be feature definitions for the software,
software requirements, user stories or descriptions of supplementary tasks that are needed, such as architecture
definition or user documentation.

Product owner
An individual (or possibly a small group) whose job is to identify product features or requirements, prioritize these
for development and continuously review the product backlog to ensure that the project continues to meet critical
business needs. The Product Owner can be a customer but might also be a product manager in a software
company or other stakeholder representative.

Scrum A daily meeting of the Scrum team that reviews progress and prioritizes work to be done that day. Ideally, this
should be a short face-to-face meeting that includes the whole team.

Scrum Master

The ScrumMaster is responsible for ensuring that the Scrum process is followed and guides the team in the
effective use of Scrum. He or she is responsible for interfacing with the rest of the company and for ensuring that
the Scrum team is not diverted by outside interference. The Scrum developers are adamant that the
ScrumMaster should not be thought of as a project manager. Others, however, may not always find it easy to see
the difference.

Sprint A development iteration. Sprints are usually 2-4 weeks long.

Velocity
An estimate of how much product backlog effort that a team can cover in a single sprint. Understanding a team’s
velocity helps them estimate what can be covered in a sprint and provides a basis for measuring improving
performance.

110

The Scrum Sprint Cycles

111

The Scrum Sprint Cycles

112

The Scrum Sprint Cycles

• Sprints are fixed length, normally 2~4 weeks.

• The starting point for planning is the product backlog, which is the list of work to be done on the
project.

• The selection phase involves all project teams who work with the customer to select the features and
functionality from the product backlog to be developed during the sprint (sprint backlog).

– Once these are agreed, the team organize themselves to develop the software.
– During this stage, the team is isolated from the customer and the organization, with all communications

channelled through the so-called ‘Scrum master’.
– The role of the Scrum master is to protect the development team from external distractions.

• At the end of the sprint, the work done is reviewed and presented to stakeholders.
– The next sprint cycle then begins.

113

Homework / Activity #3

• Agile Development Techniques 사용에 대한 신문기사(사내)를 찾아 보세요.

• Agile Project Management 적용에 대한 신문기사(사내)를 찾아 보세요.

114

Samples from SE Undergraduate (KU 2021)

115

116

4. Requirements Engineering

117

Requirements Engineering

• The process of establishing the services that a customer requires from a system and the constraints
under which it operates and is developed.

– System requirements: descriptions of the system services and constraints that are generated during the
requirements engineering process

• Requirements
– Range from a high-level abstract statements of a service or of system constraints to a detailed mathematical

functional specification.
• Statements of services Functional requirements (FR)
• System constraint Non-functional requirements (NFR)

118

Types of Requirement

• User requirements
– Statements in natural language and diagrams of the services the system provides and its operational

constraints
– Elicited/Discovered from stakeholders
– Defined for customers

• System requirements
– A structured document setting out detailed descriptions of the system’s functions, services and operational

constraints
– Defines what should be implemented
– Specified for developers

119

User and System Requirements

120

System Stakeholders

• Any person or organization who is affected by the system in some way and so who has a legitimate
interest

• Typical stakeholders:

121

User Concerned with the features and functionality of the new system

Designer Want to build a perfect system, or reuse existing code

System Analyst Want to “get the requirements right”

Training and User Support Want to make sure the new system is usable and manageable

Business Analyst Want to make sure “we are doing better than the competition”

Technical Author Will prepare user manuals and other documentation for the new system

Project Manager Wants to complete the project on time, within budget, with all objectives met.

Customer Wants to get best value for money invested

Agile Methods and Requirements

• Many agile methods argue that
– “Producing detailed system requirements is a waste of time as requirements change so quickly.”
– The requirements document is therefore always out of date.

• Agile methods usually use incremental requirements engineering and may express requirements as
user stories.

– This is practical for business systems.
– This is often problematic for systems that require pre-delivery analysis (e.g., critical systems) or systems

developed by several teams.

122

Functional and Non-Functional Requirements

123

Functional and Non-Functional Requirements

• Functional requirements
– Statements of services the system should provide

• How the system should react to particular inputs.
• How the system should behave in particular situations.

– May state what the system should not do.

• Non-functional requirements
– Constraints on the services or functions offered by the system such as

• timing constraints, constraints on the development process, standards, etc.
– Often apply to the system as a whole rather than individual features or services.

• Domain requirements
– Constraints on the system from the domain of operation

124

Functional Requirements

• Describing functionality or system services depends on the type of software, expected users and the
type of system where the software is used.

– Functional User Requirements may be high-level statements of what the system should do.
– Functional System Requirements should describe the system services (user requirements) in detail.

• An example of Mentcare System
– Functional user requirement : “A user shall be able to search the appointments lists for all clinics.”
– Functional system requirement :“The system shall generate each day, for each clinic, a list of patients who are

expected to attend appointments that day.”

125

Requirements Imprecision

• Problems arise when functional requirements are not precisely stated.
– Ambiguous requirements may be interpreted in different ways by developers and users.

• For example, the term ‘search’ in the requirement :

“A user shall be able to search the appointments lists for all clinics.”

– User intention : Search for a patient name across all appointments in all clinics.
– Developer interpretation : Search for a patient name in an individual clinic. User chooses a clinic then search.

126

Requirements Completeness and Consistency

• In principle, requirements should be both complete and consistent (C&C).

• Complete
– They should include descriptions of all facilities required.

• Consistent
– There should be no conflicts or contradictions in the descriptions of the system facilities.

• In practice, it is impossible to produce a complete and consistent requirements document.

127

Non-Functional Requirements

• Define system properties and constraints
– Properties: reliability, response time and storage requirements, I/O device capability, system representations, etc.

• Quality Attribute Requirements
– Constraints: mandating a particular IDE, programming languages or development methods, or

standards compliance (IEC 61508, ISO 26262, IEEE 829,830,1012,1016,12207,25010, etc.)

• Non-functional requirements may be more critical than functional requirements.
– If these are not met, the system may be useless.

• Non-functional requirements may affect the overall architecture of a system.
– Generate a number of related functional requirements that define system services that are required.

128

Types of Non-Functional Requirements

129

Non-functional Classifications

• Product requirements
– Requirements which specify that the delivered product must behave in a particular way
– E.g., execution speed, reliability, etc.
– “The Mentcare system shall be available to all clinics during normal working hours (Mon-Fri, 0830-17.30). Downtime

within normal working hours shall not exceed five seconds in any one day.”

• Organizational requirements
– Requirements which are a consequence of organisational policies and procedures
– E.g., process standards used, implementation requirements, etc.
– “Users of the Mentcare system shall authenticate themselves using their health authority identity card.”

• External requirements
– Requirements which arise from factors which are external to the system and its development process
– E.g., interoperability requirements, legislative requirements, etc.
– “The system shall implement patient privacy provisions as set out in HStan-03-2006-priv.”

130

Quality Attributes

• Measurable or testable properties of a system
– Used to indicate how well the system satisfies the needs of its stakeholders

• Availability, configurability, modifiability, performance, reliability, reusability, security, portability, maintainability, efficiency,
usability, many others

– Emergent properties : not a measure of software in isolation
• Measures the relationship between software and its application domain
• Cannot measure this until you place the software into its environment

– Quality will be different in different environments

• Software quality is all about fitness to purpose of stakeholders.
– “Does it do what is needed?”
– “Does it do it in the way that its users need it to?”
– “Does it do it reliably enough? fast enough? safely enough? securely enough?”
– “Will it be affordable? will it be ready when its users need it?”
– “Can it be changed as the needs change?”

131

Quality Attributes : Taxonomies

132

• -ilities
– understandability, usability, modifiability, interoperability, reliability, portability, maintainability, scalability,

configurability, customizability, adaptability, variability, volatility, traceability, …

• -ities
– security, simplicity, clarity, ubiquity, integrity, modularity, …

• -ness
– user-friendliness, robustness, timeliness, responsiveness, correctness, completeness, conciseness,

cohesiveness, …

• others
– performance, efficiency, accuracy, precision, cost, development time, low coupling, …

ISO/IEC 9126

133

ISO 9126-1 : Information Technology
- Software Product Quality - Part 1: Quality Model

134

ISO/IEC 25010

135

Lists of System Quality Attributes (Wikipedia)

136

Goals and Requirements

• Non-functional requirements may be very difficult to state precisely.
– Imprecise requirements may be difficult to verify.
– Goals are helpful to developers as they convey the intentions of the system users.

• Goal
– A general intention of the user such as ‘ease of use’
– Often NFR (Quality Attributes)

• Verifiable Non-Functional Requirement
– A statement using some measure that can be objectively tested

137

Goal
(Non-Verifiable NFR)

Verifiable NFR

Goal Analysis

Example : Goal and Non-Functional Requirements

• Quality factor: Usability

• Goal:
– “The system should be easy to use by medical staff and should be organized in such a way that user errors are

minimized.”

• Verifiable non-functional requirement
– “Medical staff shall be able to use all the system functions after four hours of training. After this training, the average

number of errors made by experienced users shall not exceed two per hour of system use.”

138

Goal Analysis

• Goal Analysis
– Focus on why a system is required

• Express the ‘why’ as a set of stakeholder goals
– Goal refinement to arrive at specific requirements

• Document, organize and classify goals
– Goal evolution

• Refine, elaborate, and operationalize goals
– Goal hierarchies show refinements and alternatives

• Goal model visualizes goal analysis
– (Hard) Goal

• Describe functions that must be carried out.
• FR

– Soft Goal
• Cannot really be fully satisfied such as quality.

– Accuracy, Performance, Security, etc.
• NFR (Quality)

139

Example - Goal Elaboration

140

Goal Elaboration

• Goal Elaboration
– “Why” questions explore higher goals (context)
– “How” questions explore lower goals (operations)
– “How else” questions explore alternatives

• Relationships between goals
– One goal helps achieve another (+)
– One goal hurts achievement of another (-)
– One goal makes another (++)

• Achievement of goal A guarantees achievement of goal B
– One goal breaks another (--)

• Achievement of goal A prevents achievement of goal B

141

Soft Goals

• Soft Goals: Goals can never be fully satisfied.
– E.g., “system should be easy to use” , “access should be secure”
– Also known as NFR(Non-Functional Requirements) or Quality attributes/requirements
– We have to look for things that contribute to satisfying soft goals.

• Example: a train system, we identified 3 soft goals.

142

Soft Goals as Selection Criteria

143

• Goal Analysis

Requirements Engineering Processes

144

Requirements Engineering Processes

• The RE process varies widely depending on
– the application domain
– the software development process applied
– the people/organization developing the requirements

• 4 common activities common to all processes:
1. Requirements elicitation & analysis
2. Requirements specification
3. Requirements validation
4. Requirements change management

• In practice, RE is an iterative activity in which these processes are interleaved.

145

1. Requirements Elicitation

• Called requirements elicitation or requirements discovery.
– Software engineers work with a range of system stakeholders to find out about the application domain, the

services that the system should provide, the required system performance, hardware constraints, other
systems, etc.

• Difficulties in requirements elicitation:
– Stakeholders don’t know what they really want.
– Stakeholders express requirements in their own terms.
– Different stakeholders may have conflicting requirements.
– Organizational and political factors may influence the system requirements.
– The requirements change during the analysis process. New stakeholders may emerge and the business

environment may change.

146

Process Activities in Requirements Elicitation

• Requirements discovery
– Interacting with stakeholders to discover their requirements
– Domain requirements are also discovered at this stage.

• Requirements classification and organization
– Groups related requirements and organises them into coherent clusters

• Prioritization and negotiation
– Prioritizing requirements and resolving requirements conflicts

• Requirements specification
– Requirements are documented and input into the next round of the spiral.

147

Requirements Discovery

• Techniques for requirements discovery:
1. Requirements workshop
2. Brainstorming
3. Storyboards (Use-Case scenario)
4. Interviews
5. Questionnaires
6. Role playing
7. Prototypes
8. Customer requirement specification review

148

2. Requirements Specification

• The process of writing down the user and system requirements in a requirements document.
– User requirements have to be understandable by end-users and customers who do not have a technical

background.
– System requirements are more detailed requirements and may include more technical information.

• The requirements may be part of a contract for the system development.
– Requirements should state what the system should do, and the design should describe how it does this.
– In practice, requirements and design are often inseparable.

149

Ways of Writing a System Requirements Specification

150

Notation Description

Natural language The requirements are written using numbered sentences in natural language. Each sentence
should express one requirement.

Structured natural language The requirements are written in natural language on a standard form or template. Each field
provides information about an aspect of the requirement.

Design description languages
This approach uses a language like a programming language, but with more abstract features to
specify the requirements by defining an operational model of the system. This approach is now
rarely used although it can be useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define the functional
requirements for the system; UML use case and sequence diagrams are commonly used.

Mathematical specifications
These notations are based on mathematical concepts such as finite-state machines or sets.
Although these unambiguous specifications can reduce the ambiguity in a requirements
document, most customers don’t understand a formal specification.

Natural Language Specification

• Requirements are written as natural language sentences supplemented by diagrams and tables.
– Used for writing requirements because it is expressive, intuitive and universal.

• Difficulties in writing requirements in natural languages
– Lack of clarity

• Precision is difficult without making the document difficult to read.
– Requirements confusion

• Functional and non-functional requirements tend to be mixed-up.
– Requirements amalgamation

• Several different requirements may be expressed together.

• Guidelines :
– Invent a standard format and use it for all requirements.
– Use language in a consistent way.

• Use shall for mandatory requirements, should for desirable requirements.
– Use text highlighting to identify key parts of the requirement.
– Avoid the use of computer jargon.
– Include an explanation (rationale) of why a requirement is necessary.

151

Insulin Pump: Natural Language Specification

152

3.2 The system shall measure the blood sugar and deliver insulin, if required, every 10 minutes.
(Changes in blood sugar are relatively slow so more frequent measurement is unnecessary; less
frequent measurement could lead to unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with the conditions to be tested and the
associated actions defined in Table 1.
(A self-test routine can discover hardware and software problems and alert the user to the fact the
normal operation may be impossible.)

Structured Specification

• An approach to writing requirements where the freedom of the requirements writer is limited, and
requirements are written in a standard way.

– Works well for some types of requirements such as requirements for embedded control system.

• Examples:
– Form-based specification
– Tabular specification
– Use-Case (Description Table)

153

Use Cases

• Use-cases are a kind of scenario that are included in the UML.
– Identify the actors in an interaction and which describe the interaction itself

• A set of use cases should describe all possible interactions with the system.
– High-level graphical model (UML Use-Case Diagram) is used to summarize all use-cases.
– UML Sequence Diagrams may be used to add detail to use-cases by showing the sequence of event

processing in the system.

154

Library Management System: Use-Case Diagram

155

System

Librarian

2. Remove Reservation

1. Make Reservation

3. Lend Item

4. Retuen Item

5. Calculate Late-Return-Fee

6. Get Replacement Fee

7. Notify Availability

8. Add Title

9. Remove Title

10. Update Title

11. Add Item

12. Remove Item

13. Update Item

14. Add Borrower

15. Remove Borrower

16. Update Borrower

17. Log-In

18. Log-Out

19. Count Loans

Library Management System: Use-Case Description

156

Library Management System: System Sequence Diagram

157

Librarian

1: makeReservation()

:System

USE CASE: 1. Make Reservation

1. (A) A librarian requests the reservation
of title.

2. (S) Check if corresponding title exist.

3. (S) Check if corresponding borrower exist.

4. (S) If the borrower does not exist, invoke
“Add Borrower”.
(→ connect to the other Use Case)

5. (S) Create reservation information.

Display(“Error!!!”)

Display(“Reservation OK!”)

[에러 상황]

[정상 상황]

Advanced Smart Watch: Use-Case Diagram

158

The Software Requirements Document

• The software requirements document is an official statement of what is required of the system
developers.

– Should include both a definition of user requirements and a specification of the system requirements.
– It is NOT a design document.

• As far as possible, it should set of WHAT the system should do rather than HOW it should do it.

• Users of requirements documents

159

Features for Good Specifications

Features Considerations

Valid (Correct) - Expresses the real needs of the stakeholders (customers, users,…)
- Does not contain anything that is not “required”

Unambiguous - Every statement can be read in exactly one way

Complete

- All the things the system must do and all the things it must not do!
- Conceptual Completeness

• E.g., responses to all classes of input
- Structural Completeness

• E.g., no TBDs!!!

Understandable (Clear) - E.g., by non-computer specialists

Consistent - Doesn’t contradict itself
- Uses all terms consistently

Ranked - Indicates relative importance / stability of each requirement

Verifiable - A process exists to test satisfaction of each requirement

Modifiable - Can be changed without difficulty
• Good structure and cross-referencing

Traceable - Origin of each requirement is clear
- Labels each requirement for future referencing

160

SRS Contents

• Software Requirements Specification should address:
– Functionality

• What is the software supposed to do?
– External interfaces

• How does the software interact with people, the system's hardware, other hardware, and other software?
• What assumptions can be made about these external entities?

– Required performance
• What is the speed, availability, response time, recovery time of various software functions, and so on?

– Quality attributes
• What are the portability, correctness, maintainability, security, and other considerations?

– Design constraints imposed on an implementation
• Are there any required standards in effect, implementation language, policies for database integrity, resource limits,

operating environment(s) and so on?

161

Typical Mistakes in SRS

Mistakes Description
Noise text that carries no relevant information to any feature of the problem

Silence a feature that is not covered by any text

Over-Specification text that describes a detailed design decision, rather than the problem

Contradiction text that defines a single feature in a number of incompatible ways

Ambiguity text that can be interpreted in at least two different ways

Forward Reference text that refers to a terms or features yet to be defined

Wishful Thinking text that defines a feature that cannot possibly be verified

Requirements on Users Cannot require users to do certain things, can only assume that they will

Jigsaw Puzzles Distributing key information across a document and then cross-referencing

Duck Speak Requirements Requirements that are only there to conform to standards

Unnecessary Invention of Terminology e.g., ‘user input presentation function’

Inconsistent Terminology Inventing and then changing terminology

Putting the onus on the developers i.e., making the reader work hard to decipher the intent

Writing for the hostile reader There are fewer of these than friendly readers

162

Requirements Document Variability

• Information in requirements document depends on the type of system and the approach to
development used.

– If systems are developed incrementally, it will typically have less detail in the requirements document.

• Requirements documents standards have been designed.
– IEEE standards 830-1998

• Mostly applicable to the requirements for large systems engineering projects

163

164

SRS Standard: IEEE Std 830-1998

165

SRS Templates: IEEE Std 830-1998

166

SRS Templates: IEEE Std 830-1998

167

SRS Templates: IEEE Std 830-1998

168

SRS Templates: IEEE Std 830-1998

169

SRS Templates: IEEE Std 830-1998

3. Requirements Validation

• Concerned with demonstrating that the requirements define the system that the customer really wants.
– Requirements error costs are high, so validation is very important

• Fixing a requirements error after delivery may cost up to 100 times the cost of fixing an implementation error.

• Requirements checking
– Validity : Does the system provide the functions which best support the customer’s needs?
– Consistency : Are there any requirements conflicts?
– Completeness : Are all functions required by the customer included?
– Realism : Can the requirements be implemented given available budget and technology
– Verifiability : Can the requirements be checked?

170

Requirements Validation Techniques

• Requirements reviews
– Systematic manual analysis of the requirements

• Prototyping
– Using an executable model of the system to check requirements

• Test-case generation
– Developing tests for requirements to check testability

171

4. Requirements Change Management

• Requirements change management is the process of managing changing requirements during the
requirements engineering process and system development, and even after delivery

– We need to keep track of individual requirements and maintain links between dependent requirements so that
you can assess the impact of requirements changes.

– Need to establish a formal process for making change proposals and linking these to system requirements.
– Decides if a requirements change should be accepted or not.

• Requirement change management tools start traceability analysis from requirements to code and TC.
– CTIP (Continuous Testing and Integration Platform) is useful.

172

Homework / Activity #4

• 본인이 최근에 수행한 프로젝트 하나를 대상으로, ISO/IEC 9126(25010)이 제시하는 Software Quality 중
이 프로젝트에 해당되는 항목을 찾고 자세히 분석하세요.

– 해당되는 항목에 대한 Quality Requirements를 작성하세요.

173

프로젝트 개요 간단한설명

Quality Attributes QA1, QA2, QA3, … , Responsiveness (예)

QA
Reqmts

QA1 Quality Requirements

QA2
QA3
…

Responsiveness “이시스템은 5초내에무조건반응해야한다.”

174

5. System Modeling

175

System Modeling

• System modeling is the process of developing abstract models of a system, with each model
presenting a different view or perspective of that system.

– Helping analysts to understand the functionality of the system
– Helping analysts to communicate with customers

– Mostly based on notations in the Unified Modeling Language (UML)

• System perspectives (Views)
– External perspective: modeling the context or environment of the system
– Interaction perspective: modeling the interactions between a system and its environment, or between the

components of a system
– Structural perspective: modeling the organization of a system or the structure of the data processed by the

system
– Behavioral perspective: modeling the dynamic behavior of the system and how it responds to events

176

Use of Graphical Models - UML

• UML diagrams used for system modeling:
– Use case diagram : showing the interactions between a system and its environment
– Sequence diagram : showing interactions between external actors and the system, or between system components
– Class diagram : showing the object classes and the associations between these classes
– State (Statechart) diagram : showing how the system reacts to internal and external events
– Activity diagram : showing the activities involved in a process or in data processing

177

External Models

178

Context Models

• Context models illustrate the operational context (boundary) of a system.
– External perspective
– Show what lies outside the system boundaries

– Architecture models show the system and its relationship with other systems.

• Example: Mentcare System

179

Process Models

• Process models reveal how the system is used in business processes.
– Show how the other systems will be used in business environment.
– UML activity diagrams may be used to define business process models.

• System level > Component interaction level

• Example : Involuntary Detention (강제구금)

180

Interaction Models

181

Interaction Models

• Interaction models
– Modeling user interaction

• Helps to identify user requirements.
– Modeling system-to-system interaction

• Highlights the communication problems that may arise.
– Modeling component interaction

• Helps us understand if a proposed system structure is likely to deliver the required system performance and dependability.

• UML Use-Case diagram and UML Sequence diagram are often used.

182

Use Case Modeling

• Use case represents a discrete task that involves external interaction with a system.
– Use case is a text scenario.

• Represents a discrete task that involves external interaction with a system.
• Actors in a use case may be people or other systems.

– Use case diagrams provide an overview of all use cases.

• Example : “Transfer Data” use-case in Mentcare System

183

Mentcare System

Sequence Diagrams

• Sequence diagrams show the sequence of interactions that take place during a particular use case.
– The objects and actors involved are listed along the top of the diagram, with a dotted line drawn vertically from

these.
– Interactions between objects are indicated by annotated arrows.

• Example : “View Patient Information” use case in Mentcare System

184

Structural Models

185

Structural Models

• Structural models
– Represent the organization of a system in terms of the components that make up that system and their

relationships.

– Static models : show the structure of the system design
• Class diagram

– Dynamic models : show the organization (structure) of the system when it is executing (i.e., dynamics)
• Object diagram, Component diagram, Composite structure diagram

• Structural models are developed/created when you are designing the system architecture.

186

Class Diagrams

• Class diagrams show the classes in a system and the associations between these classes.
– (Object) Class: a general definition of one kind of system object
– Association: a link between classes indicating relationship between them
– Used when developing an object-oriented system model.

187Classes and Associations in the MHC-PMS

188

Generalization and Aggregation in Class Diagram

• Shared Aggregation / Composition• Generalization (Inheritance)

Behavioral Models

189

Behavioral Models

• Behavioral models
– Model dynamic behavior of a system as it is executing.
– Show what happens or what is supposed to happen when a system responds to a stimulus from its environment.

• Data: Some data arrives and has to be processed by the system.
• Events : Some event happens and triggers system processing. Events may have associated data.

• Behavioral models
– Data-driven model
– Event-driven model (State machine model)

190

Data-Driven Models

• Many business systems are data-processing systems that are primarily driven by data.
– Controlled by the data input to the system, with relatively little external event processing.
– Show the sequence of actions involved in processing input data and generating an associated output.

• Data flow diagram (DFD) and UML Activity diagram are also used.

191
An Activity Model of the Insulin Pump’s Operation

Event-Driven Models

• Real-time systems are often event-driven with minimal data processing.

• Event-driven modeling shows how a system responds to external and internal events.
– Based on the assumption that a system has a finite number of states and that events (stimuli) may cause a

transition from one state to another.
– Modeled well with FSM (Finite State Machine).

192

Statecharts Diagram of a Microwave Oven

State Machine Models

• State Machine models
– Model the behaviour of the system in response to external and internal events.
– Show the system’s responses to stimuli.

• System states : nodes
• Events : arcs between these nodes.
• Transitions : When an event occurs, the system moves from one state to another.

– UML Statecharts diagram

193

Microwave Oven - Operations State

Model-Driven Engineering

194

Model-Driven Engineering

• Model-driven engineering (MDE)
– An approach to software development where models rather than programs are the principal outputs of the

development process.
– The programs executing on a hardware/software platform are generated automatically from the models.

• Software engineers no longer should be concerned with programming language details or the specifics of execution
platforms.

• MDE is still at an early stage of development.
– Advantages

• Allows systems to be considered at higher levels of abstraction
• Generating code automatically means that it is cheaper to adapt systems to new platforms.

– Disadvantages
• Models for abstraction are not necessarily right for implementation.
• Savings from generating code may be outweighed by the costs of developing translators for new platforms.

195

Model-Driven Architecture

• Model-driven architecture (MDA) is a model-focused approach to software design and implementation.
– The precursor of more general MDEs
– Models at different levels of abstraction are created.

– From a high-level, platform independent model, it is possible, in principle, to generate a working program without
manual intervention.

• CIM (Computation Independent Model)
• PIM (Platform Independent Model)
• PSM (Platform Specific Models)

– Often use a subset of UML models to describe a system

196

Types of Models in MDA

• Computation Independent Model (CIM)
– Models the important domain abstractions used in a system
– CIMs are sometimes called domain models.

• Platform Independent Model (PIM)
– Models the operation of the system without reference to its implementation.
– PIMs are usually described using UML models that show the static system structure and how they respond to

external and internal events.

• Platform Specific Models (PSM)
– Transformations of the platform-independent model into a separate PSM for each application platform
– In principle, there may be layers of PSM, with each layer adding some platform-specific detail.

197

MDA Transformations

198

Multiple Platform-Specific Models

199

Adoption of MDA

• Limitations on adopting MDE/MDA
– Specialized tool support is required to convert models from one level to another
– There is limited tool availability and organizations may require tool adaptation and customization to their

environment

• Models are a good way of facilitating discussions about a software design.
– However, the abstractions that are useful for discussions may not be the right abstractions for implementation.
– For most complex systems, implementation is not the major problem – requirements engineering, security and

dependability, integration with legacy systems and testing are all more significant.

• The arguments for platform-independence are only valid for large, long-lifetime systems.
– For most software products and information systems, the savings from the use of MDA are likely to be

outweighed by the costs of its introduction and tooling.

200

MDE Example : SCADE

201

202

203

204

205

206

MDE Example : NuDE

207

NuSRS – NuSCR Modeling Environment
209

Homework / Activity #5

• “Digital Twin (디지털 트윈)”의 정의를 살펴 보고, 국내외 적용 사례를 찾아 보세요.

210

Samples from SE Undergraduate (KU 2021)

211

212

An Introduction to
Structured Analysis and Structured Design

(SASD)

213

References

• Modern Structured Analysis, Edward Yourdon, 1989.
• Introduction to System Analysis and Design: a Structured Approach, Penny A. Kendall, 1996.

214

Structured Analysis

• Structured analysis [Kendall 1996]

– A set of techniques and graphical tools
• Allowing the analysts to develop a new kind of system specification that are easily understandable to the users.

– Data/Functional modeling: DFD, ERD
– State-oriented modeling: STD (FSM)

• Analysts attempt to divide large, complex problems into smaller, more easily handled ones.
– Top-Down Divide and Conquer approach

215

History of SASD (Structured Analysis and Structured Design)

• Developed in the late 1970s by DeMarco, Yourdon and Constantine after the emergence of structured
programming.

• IBM incorporated SASD into their development cycle in the late 1970s and early 1980s.
• Yourdon published the book “Modern Structured Analysis” in 1989.
• The availability of CASE tools in 1990s enabled analysts to develop and modify the graphical SASD

models.

216

An Overview of SASD

217

SA

218

Structured Analysis (SA)
- An Example of RVC SW Controller

Statement of Purpose

• A clear and concise textual description of the purpose for the system to develop
– Should be deliberately vague.
– Intended for top level management, user management and others who are not directly involved in the system.

219

Statement of Purpose - RVC Example

• User Requirements (Business Requirements)
– PFR (Preliminary Functional Requirements) 로 작성

220

Robot Vacuum Cleaner (RVC) SW Controller

• An RVC automatically cleans and mops household surface.
• It goes straight forward while cleaning.
• If its sensors found an obstacle, it stops cleaning, turns aside left or right, and goes forward with cleaning.
• If there are obstacles in both front, left and right, it move backward and turn aside left or right, and goes forward.
• If it detects dust, power up the cleaning for a while.
• We do not consider the detail design and implementation on HW controls.
• We only focus on the automatic cleaning function.

System Context Diagram

• A special case of DFD (Data Flow Diagram)

– DFD Level 0
– Highlights the boundary between the system and outside world.
– Highlights the people, organizations and outside systems that interact with the system under development.

• Notation :

221

Process : represents the proposed system

Terminator : represents the external entities

Flow : represents the in/out data flows

System Context Diagram – RVC Example

222

RVC
ControlSensor

Motor

Cleaner

Event List

• A list of the event/stimuli outside of the system to which it must respond.
– Used to describe the context diagram in detail.

• Types of inputs events
– Flow-oriented event : triggered by incoming data
– Temporal event : triggered by internal clock
– Control event : triggered by an external unpredictable event

223

Event List – RVC Example

224

Input/ Output Event Description

Front Sensor Input Detects obstacles in front of the RVC

Left Sensor Input Detects obstacles in the left side of the RVC periodically

Right Sensor Input Detects obstacles in the right side of the RVC periodically

Dust Sensor Input Detects dust on the floor periodically

Direction Direction commands to the motor
(go forward / go backward / turn left with an angle / turn right with an angle)

Clean Turn off / Turn on / Power-Up

Context Diagram for RVC

System Context Diagram – RVC Example

225

RVC
ControlSensor

Motor

Cleaner

Front Sensor Input
Left Sensor Input
Right Sensor Input
Dust Sensor Input

Direction

Clean

Data Flow Diagram (DFD)

• Provides a means for functional decomposition.
– Composed of hierarchies(levels) of DFDs.

• Notation (A kind of CDFD)

226

Data Process

Control Process

Terminator

Data Store

Data Flow

Control Flow

DFD Level 0 – RVC Example

227

RVC
Control

0

Front Sensor Motor

Cleaner

Direction

Clean

Left Sensor

Right Sensor

Dust Sensor

Front Sensor Input

Left Sensor
Input

Right Sensor
Input

Dust Sensor Input

Digital Clock

Tick

DFD Level 0 – RVC Example

228

Input/ Output Event Description Format / Type

Front Sensor Input Detects obstacles in front of the RVC True / False , Interrupt

Left Sensor Input Detects obstacles in the left side of the RVC periodically True / False , Periodic

Right Sensor Input Detects obstacles in the right side of the RVC periodically True / False , Periodic

Dust Sensor Input Detects dust on the floor periodically True / False , Periodic

Direction Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle) Forward / Backward / Left / Right

Clean Turn off / Turn on / Power-Up On / Off / Up

(A kind of) Data Dictionary

DFD Level 1 – RVC Example

229

Obstacle &
Dust

Detection
1

Front Sensor Input

Left Sensor
Input

Right Sensor
Input

Dust Sensor Input

Tick

Obstacle & Dust
Location

Cleaner &
Motor

Control
2

Direction

Clean

DFD Level 2 – RVC Example

230

Determine
Obstacle
Location

1.5

Front Sensor Input

Left Sensor Input

Right Sensor Input

Dust Sensor Input

Tick

Obstacle
Location

Front
Sensor

Interface
1.1

Left
Sensor

Interface
1.2

Right
Sensor

Interface
1.3

Dust
Sensor

Interface
1.4

Tick

Tick

Front Obstacle

Left Obstacle

Right Obstacle

Determine
Dust

Existence
1.6

Dust Existence

Dust
Existence

DFD Level 2 – RVC Example

231

Obstacle
Location

Dust
Existence

Main
Control

2.1

Motor Command

Cleaner Command

Motor
Interface

2.2

Cleaner
Interface

2.3

Tick

Direction

Clean

DFD Level 3 – RVC Example

232

Obstacle Location
F / L / R

Dust
Existence

Controller
2.1.1

Motor Command

Cleaner Command

Tick Move
Forward

2.1.2

Turn Left
2.1.3

Turn
Right
2.1.4

Motor Command

Motor Command

Enable

Disable

Trigger

Trigger
Tick

Tick

Motor CommandMove
Backward

2.1.5

DFD Level 4 – RVC Example

233

Move
Forward

Turn RightTurn Left

/ Enable “Move Forward”, Cleaner Command (On)

Tick [F && !R]
/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Right”

Tick * 5
/ Enable “Move Forward”,
Cleaner Command (On)

Tick [F && !L]
/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Left”

Tick * 5
/ Enable “Move Forward”,
Cleaner Command (On)

Stop

Tick [F && L && R]
/ Disable “Move Forward”,
Cleaner Command (Off), Problems in this model:

1. “Stop” state (deadlock)
2. Not consider “Dust”
3. No Priority for left/right turn
4. Not consider “Backward”

FSM for Controller 2.1.1

DFD Overview – RVC Example
(Problems Are Not Resolved Yet)

234

Process Specification

• Shows process details which are implied but not shown in a DFD.
– Specifying the input, output, and algorithm of a module in a DFD
– Normally written in pseudo-code or table format
– Specifying all (upper/lower) processes in DFD hierarchies

• Example : Left Sensor Interface

235

Ref. No. 1.2

Name Left Sensor Interface

Input Left Sensor Input (+Data structure if possible) , Tick

Output Left Obstacle (+Data structure)

Process
Description

“Left Sensor Input” process reads an analog value of the left
sensor periodically, converts it into a digital value such as
True/False, and assigns it into output variable “Left Obstacle.”

Data Dictionary

• Defines data elements to avoid different interpretations.
– Often used in a simple form like below

• Example :

236

Input/ Output Event Description Format / Type

Front Sensor Input Detects obstacles in front of the RVC True / False , Interrupt

Left Sensor Input Detects obstacles in the left side of the RVC periodically True / False , Periodic

Right Sensor Input Detects obstacles in the right side of the RVC periodically True / False , Periodic

Dust Sensor Input Detects dust on the floor periodically True / False , Periodic

Direction Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle) Forward / Left / Right / Stop

Clean Turn off / Turn on / Power-Up On / Off / Up

Front Obstacle

Left Obstacle

Right Obstacle

Dust Existence

Obstacle Location

Dust Existence (2)

Entity Relationship Diagram (ERD)

• A graphical representation of the data layout of a system at a high level of abstraction
– Defines data elements and their inter-relationships in the system.
– Similar with the class diagram in UML.

• Notation (Original)

237

Data Element

Relationship

Associated Object

Cardinality – Exactly one

Cardinality – Zero or one

Cardinality – Mandatory Many

Cardinality – Optional Many

Entity Relationship Diagram – Example

238

Entity Relationship Diagram – Example

239

Entity

Attribute

Relationship

State Transition Diagram

• Shows the time ordering between processes.
– More primitive than the Statecharts Diagram in UML
– Different from the State transition diagram (FSM) used in DFD

– Similar with the UML Activity Diagram
– Not widely used now.

• Notation:

240

TransitionsObjects
(Process)

State Transition Diagram - Example

241

Homework / Activity #6

• Structured Analysis for the RVC Control Software
– Complete the analysis for the RVC Controller in more details.

– Resolve the problems identified
• “Stop” state (deadlock)
• Not consider “Dust”
• No Priority for left/right turn
• Not consider “Backward”
• Inconsistent design of Cleaner Interface with Motor Interface

– Complete full versions of process specifications and data dictionary
• System Context Diagram
• A hierarchy of DFDs + FSM
• Process Specifications
• Data Dictionary

– PPT 로작성하세요.

242

Homework #6

• SA 기법을 활용해서 분석한 RVC Control SW에 대한 요구사항명세서(SRS)를 IEEE Std 830-1998를
준수하여 문서로 완성하세요.

– 적절한 Templates을 사용하세요.

243

244

245

Structured Design (SD)
- An Example of RVC SW Controller

Structured Design

• Needs transform analysis
– No data comes, being processed, and goes out by itself.
– Somebody should call input/output processes to do something.

• Needs to design functional decomposition according to SA
– Information hiding
– Modularity
– Low coupling
– High internal cohesion

• Many models were proposed, but not widely used except
– Structured Charts

246

Structured Design – Transform Analysis

247

Afferent Flow
(Input)

Efferent Flow
(Output)

Central Transformation
(Control)

Structured Design – Transform Analysis

248

Input
(Afferent Flow)

Process
(Central Transformation)

Output
(Efferent Flow)

Control

ProcessInput Output

Data Flow Data Flow

Module Call Module Call
Module Call

Structured Charts – Notation

249

Modules

Library modules

Module call

Data Flow

Control Flow

Basic Notation [Yourdon 1989]

Asynchronous
module call

Data module

Iteration

Decision

Variations

Structured Charts – Example

250

Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002)

Structured Charts – RVC Example (Basic)

251

Determine
Obstacle Location

Determine
Dust Existence

Controller

Front Sensor
Interface

Left Sensor
Interface

Right Sensor
Interface

Dust Sensor
Interface Move Forward Turn Left Turn Right

Main

Obstacle Location Dust Existence

Enable
Disable

Trigger Trigger

Structured Charts – RVC Example (Advanced)

252

Determine
Obstacle Location

Determine
Dust Existence

Controller

Front Sensor
Interface

Left Sensor
Interface

Right Sensor
Interface

Dust Sensor
Interface Move Forward Turn Left Turn Right

Main

Obstacle Location

Dust Existence

Enable
Disable

Trigger

Trigger

Homework / Activity #7

• Complete the RVC structured design.
– Complete a full version of Structured Charts on your own.

• Implement a C program as detail as possible.
– C program (might be executable with libraries emulated)
– Based on the DFD and Structured Charts

253

DFD + Process Specifications

Structured Chart

C Program

254

6. Architectural Design

255

Architectural Design

• Architectural design is concerned with understanding how a software system should be organized
and designing the overall structure of that system.

– A critical link between requirements engineering and design
– Identifies the main structural components in a system and the relationships between them

• Architecture model describes how the system is organized as a set of communicating components.

256

The Architecture of Packing Robot Control System

257

Architectural Abstraction

• Architecture in the large
– Concerned with the architecture of complex enterprise systems that include other systems, programs and

program components
• Enterprise systems are distributed over different computers, which may be owned and managed by different companies.

• Architecture in the small
– Concerned with the architecture of individual programs
– Concerned with the way that an individual program is decomposed into components

258

Advantages of Architectural Design

• Stakeholder communication
– Architecture may be used as a focus of discussion by system stakeholders.

• System analysis
– Analysis of whether the system can meet its non-functional requirements is possible.

• Large-scale reuse
– The architecture may be reusable across a range of systems.
– Product-line architectures may be developed.

259

Architectural Models

• Representation of architecture models
– Simple, informal block diagrams
– Box and Line Diagrams
– Extensions of UML models

• Use architecture models
– As a way of facilitating discussion about the system design

• A high-level architectural view of a system is useful for communication with system stakeholders and project planning
because it is not cluttered with detail.

• Stakeholders can relate to it and understand an abstract view of the system. They can then discuss the system as a whole
without being confused by detail.

– As a way of documenting an architecture that has been designed
• To produce a complete system model that shows the different components in a system, their interfaces and their

connections.

260

Architectural Representations

• Simple, informal block diagrams
– Showing entities and relationships simply
– The most frequently used method for documenting software architectures
– However, lack of semantics do not show the types of relationships between entities nor the visible properties of

entities in the architecture.
– The semantics of architectural models depend on how the models are used.

• Box and Line Diagrams
– Very abstract - not show the nature of component relationships nor the externally visible properties of the sub-

systems.
– However, useful for communication with stakeholders and for project planning.

• Extensions of UML models
– Extending component diagrams including class diagrams, object diagrams, composite structure diagrams.
– Not widely used yet.

261

Architectural Design Decisions

262

Architectural Design Decisions

• Architectural design is a creative process.
– The design process differs depending on the type of system being developed.

• However, several common design decisions span all design processes.
– Affect the non-functional characteristics of the system

263

Architecture and System Characteristics

• Performance
– Localize critical operations and minimize communications. Use large rather than fine-grain components

• Security
– Use a layered architecture with critical assets in the inner layers

• Safety
– Localize safety-critical features in a small number of sub-systems

• Availability
– Include redundant components and mechanisms for fault tolerance

• Maintainability
– Use fine-grain, replaceable components

264

Architecture Reuse

• Systems in the same domain often have similar architectures that reflect domain concepts.
– Application product lines are built around a core architecture with variants that satisfy particular customer

requirements.

• The architecture of a system may be designed around one of more architecture patterns or
architecture styles.

– Capture the essence of an architecture
– Can be instantiated in different ways

265

Architectural Views

266

Architectural Views

• Each architectural model only shows one view showing
– How a system is decomposed into modules,
– How the run-time processes interact, or
– Which system components are distributed across a network.

• We need multiple views of the software architecture for both design and documentation purposes.
– What views are useful when designing and documenting a system’s architecture?
– What notations should be used for describing architectural models?

267

4 + 1 View Model of Software Architecture

• Logical view : showing the key abstractions in the system as objects or object classes
• Process view : showing how, at run-time, the system is composed of interacting processes
• Development view : showing how the software is decomposed for development
• Physical view : showing the system hardware and how software components are distributed across the

processors in the system

• Related 4 views with use cases or scenarios (+1)

268

+ Use-Case Scenario

Representing Architectural Views

• Unified Modeling Language (UML) is a candidate notation for describing and documenting system
architectures.

– Component diagram, Package diagram, Class diagram, etc.
– However, UML does not include abstractions appropriate for high-level system description.

• Architectural description languages (ADLs) have been developed, but not widely used yet.

• Naive diagrams have been widely used.
– Example: C&C View

269

Describing Software Architectures

• ISO/IEC/IEEE 42010:2011 “Systems and Software Engineering - Architecture Description”
– Specifies the requirements for (to be an) architecture descriptions (AD)

• Key Principles of the Architecture Description Standard
– AD should demonstrate how an architecture meets the needs of the system’s diverse stakeholders.
– The architectural concerns of the diverse stakeholders can be addressed by an AD constructed with multiple

architecture views of the system, where each view covers a subset of those concerns.
– The rules for well-formedness, completeness and analyzability of each architecture view should be explicit via

an architecture viewpoint.

270

Context of Architecture Description

271

A Conceptual Model of Architecture Description

272

Terminologies
Terminology Definition

Architecture • fundamental concepts or properties of a system in its environment, embodied in its elements,
relationships, and in the principles of its design and evolution

Architecture Description (AD) • work product used to express an architecture

Architecture Framework

• conventions, principles and practices for the description of architectures established within a specific
domain of application and/or community of stakeholders

• Examples
- Generalized Enterprise Reference Architecture and Methodologies (GERAM) [ISO 15704]
- Reference Model of Open Distributed Processing (RM-ODP) [ISO/IEC 10746]

Stakeholder • individual, team, organization, or classes thereof, having an interest in a system
• Examples: users, acquirers, developers, maintainers, etc.

Architecture View • work product expressing the architecture of a system from the perspective of specific system
concerns

Architecture Viewpoint • work product establishing the conventions for the construction, interpretation and use of architecture
views to frame specific system concerns

Concern

• interest in a system relevant to one or more of its stakeholders
• a concern pertains to any influence on a system in its environment, including developmental,

technological, business, operational, organizational, political, economic, legal, regulatory, ecological
and social influences

Model Kind
• conventions for a type of modelling
• Examples: data flow diagrams, class diagrams, Petri nets, balance sheets, organization charts and

state transition models
273

Architectural Patterns

274

Architectural Pattern/Style

• Architectural pattern
– A stylized description of good design practice, which has been tried and tested in different environments
– Include information about when they are and when the are not useful.

– Examples: A series of POSA
• MVC (Model-View-Controller)
• Layered
• Repository
• Client-Server
• Pipe & Filter
• etc.

275

A Taxonomy of Architecture Patterns/Styles

276

The Model-View-Controller (MVC) Pattern

Name MVC (Model-View-Controller)

Description
Separates presentation and interaction from the system data. The system is structured into three logical components that interact
with each other. The Model component manages the system data and associated operations on that data. The View component
defines and manages how the data is presented to the user. The Controller component manages user interaction (e.g., key
presses, mouse clicks, etc.) and passes these interactions to the View and the Model.

Example Figure 6.4 shows the architecture of a web-based application system organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also used when the future requirements for interaction and
presentation of data are unknown.

Advantages Allows the data to change independently of its representation and vice versa. Supports presentation of the same data in different
ways with changes made in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and interactions are simple.

277

Example : Web Application Architecture

278

The Layered Architecture Pattern

Name Layered architecture

Description Organizes the system into layers with related functionality associated with each layer. A layer provides services to the layer above it so
the lowest-level layers represent core services that are likely to be used throughout the system.

Example A layered model of a system for sharing copyright documents held in different libraries.

When used Used when building new facilities on top of existing systems; when the development is spread across several teams with each team re
sponsibility for a layer of functionality; when there is a requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is maintained. Redundant facilities (e.g., authentication) can be provided in
each layer to increase the dependability of the system.

Disadvantages
In practice, providing a clean separation between layers is often difficult and a high-level layer may have to interact directly with lower-l
evel layers rather than through the layer immediately below it. Performance can be a problem because of multiple levels of interpretati
on of a service request as it is processed at each layer.

279
A Generic Layered Architecture

Example : The iLearn System

280

The Repository Pattern

281

Name Repository

Description All data in a system is managed in a central repository that is accessible to all system components. Components do not interact directly,
only through the repository.

Example Each software tool generates information which is then available for use by other tools.

When used You should use this pattern when you have a system in which large volumes of information are generated that has to be stored for a long
time. You may also use it in data-driven systems where the inclusion of data in the repository triggers an action or tool.

Advantages
Components can be independent. They do not need to know of the existence of other components. Changes made by one component
can be propagated to all components. All data can be managed consistently (e.g., backups done at the same time) as it is all in one
place.

Disadvantages The repository is a single point of failure so problems in the repository affect the whole system. May be inefficiencies in organizing all
communication through the repository. Distributing the repository across several computers may be difficult.

A Repository Architecture for an IDE

The Client-Server Pattern

282

Name Client-Server

Description In a client–server architecture, the functionality of the system is organized into services, with each service delivered from a separate
server. Clients are users of these services and access servers to make use of them.

Example An example of a film and video/DVD library organized as a client–server system.

When used Used when data in a shared database has to be accessed from a range of locations. Because servers can be replicated, may also be
used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed across a network. General functionality (e.g., a printing service)
can be available to all clients and does not need to be implemented by all services.

Disadvantages
Each service is a single point of failure so susceptible to denial of service attacks or server failure. Performance may be unpredictable
because it depends on the network as well as the system. May be management problems if servers are owned by different
organizations.

A Client-Server Architecture for a Film Library

The Pipe and Filter Pattern

283

Name Pipe and Filter

Description The processing of the data in a system is organized so that each processing component (filter) is discrete and carries out one type
of data transformation. The data flows (as in a pipe) from one component to another for processing.

Example An example of a pipe and filter system used for processing invoices.

When used Commonly used in data processing applications (both batch- and transaction-based) where inputs are processed in separate
stages to generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style matches the structure of many business processes.
Evolution by adding transformations is straightforward. Can be implemented as either a sequential or concurrent system.

Disadvantages
The format for data transfer has to be agreed upon between communicating transformations. Each transformation must parse its
input and unparse its output to the agreed form. This increases system overhead and may mean that it is impossible to reuse
functional transformations that use incompatible data structures.

A Pipe and Filter Architecture Used in a Payments System

Application Architectures

284

Application Architectures

• Application architecture
– An architecture for a type of software system that may be configured and adapted to create a system that

meets specific requirements
– As businesses have much in common, their application systems also tend to have a common architecture that

reflects the application requirements.
– Evolving into “Reference Architecture”

• Application Types
– Data processing applications

• Process data in batches without explicit user intervention during the processing
– Transaction processing applications

• Process user requests and update information in a system database
– Event processing systems

• Applications where system actions depend on interpreting events from the system’s environment
– Language processing systems

• Applications where the users’ intentions are specified in a formal language that is processed and interpreted by the system

285

Reference Architecture by Microsoft

286

Transaction Processing Systems

• Transaction Processing Systems process user requests for information from a database, or process
requests to update the database.

– Users make asynchronous requests for service which are then processed by a transaction manager.
– A transaction is any coherent sequence of operations that satisfies a goal.

– Example :
• Find the times of flights from London to Paris

– A typical structure of the TPS applications :

287

Example : an ATM System

288

Information Systems Architecture

• Information systems have a generic architecture that can be organized as a layered architecture.
– Also transaction-based systems as interaction with these systems generally involves database transactions.

• Layers often include
– User interface
– User communications
– Information retrieval
– System database

289

Example : the Mentcare System

290

Web-Based Information Systems

• Web-based systems implement user interfaces using a web browser.
– Example : e-commerce systems are Internet-based resource management systems that accept electronic

orders for goods or services and then arrange delivery of these goods or services to the customer.
• The application-specific layer includes additional functionality supporting a ‘shopping cart’ in which users can place a

number of items in separate transactions, then pay for them all together in a single transaction.

• Web-based information systems are often implemented as multi-tier client server/architectures.
– Web server: Responsible for all user communications, with the user interface implemented using a web browser
– Application server: Responsible for implementing application-specific logic as well as information storage and

retrieval requests
– Database server: Moves information to and from the database and handles transaction management

291

Language Processing Systems

• Language Processing Systems accept a natural or artificial language as input and generate some
other representation of that language.

– May include an interpreter to act on the instructions in the language that is being processed
– Meta-case tools process tool descriptions, method rules, etc and generate tools.

292

Compiler Components

• Compiler components for language processing systems
– Lexical analyzer : Takes input language tokens and converts them to an internal form
– Symbol table : Holds information about the names of entities (variables, class names, object names, etc.) used

in the text that is being translated
– Syntax analyzer : Checks the syntax of the language being translated
– Syntax tree : An internal structure representing the program being compiled
– Semantic analyzer : Uses information from the syntax tree and the symbol table to check the semantic

correctness of the input language text
– Code generator : ‘walks’ the syntax tree and generates abstract machine code

293

A Repository Architecture for a Language Processing System

294

A Pipe and Filter Architecture for Compilers

295

References for Architecture Design

296

Homework #8

• 기개발한 RVC Controller를 확장하려고 합니다.
– 핸드폰 App에서 WiFi를 통해 RVC Control SW와 통신하는 기능을 추가하려고 합니다.

• Microsoft Application Architecture Guide 2.0을 공부한 후, 제시된 Application Architecture를 활용해서, 전체
시스템의 Overall Architecture를 하나 제안하세요.

– 논리적인 설명을 포함하고, 실제 개발에 사용될 수 있을 정도로 자세히 작성하세요. (PPT 4장)

297

298

7. Design and Implementation

299

Design and Implementation

• Software design and implementation
– The stage at which an executable software system is developed

• Software design and implementation activities are often inter-leaved.
– Software design is a creative activity in which you identify software components and their relationships, based

on a customer’s requirements.
– Implementation is the process of realizing the design as a program.

300

Build or Buy

• It is possible to buy commercial off-the-shelf systems (COTS) that can be adapted and tailored to
the users’ requirements.

– For example, if you want to implement a medical records system, you can buy a package that is already used in
hospitals. It can be cheaper and faster to use this approach rather than developing a system in a conventional
programming language.

• The design process becomes concerned with how to use the configuration features of that system to
deliver the system requirements.

– It requires different ways to develop software.

301

Object-Oriented Design Using UML

302

An Object-Oriented Design Process

• Structured object-oriented design processes (such as UP)
– Involve developing a number of different system models
– For small systems,

• Require a lot of effort for development and maintenance of these models, and may not be cost-effective
– For large systems developed by different groups,

• Design models are an important communication mechanism

• There are a variety of different object-oriented design processes.
– Common activities in all OO design processes

1. Define the context and modes of use of the system
2. Design the system architecture
3. Identify the principal system objects
4. Develop design models
5. Specify object interfaces

303

OOA

OOD

Planning

1. System Context and Interactions

• Understanding the relationships between the software that is being designed and its external
environment is essential for deciding

– Essential for deciding how to provide the required system functionality and how to structure the system to
communicate with its environment

– Let you establish the boundaries of the system

• System context model
– A structural model that demonstrates the other systems in the environment of the system being developed
– System context diagram

• Interaction model
– A dynamic model that shows how the system interacts with its environment as it is used
– Use-case model

304

System Context for the Weather Station

305

System context diagram in UML class diagram

Use-Case Model for the Weather Station

306

Use-Case Model (Text + Diagram)

2. Architectural Design

• Identify the major components that make up the system and their interactions
– Organize the components using an architectural pattern such as a layered or client-server model, if it needs

– Example : The weather station is composed of independent subsystems that communicate by broadcasting
messages on a common infrastructure.

307
High-Level Architecture of the Weather Station

The Architecture of Data Collection System

3. Object Class Identification

• Identifying object classes is a difficult part of object-oriented design.
– There is no 'magic formula' for object identification.
– It relies on the skill, experience and domain knowledge of system designers.

• Object identification is an iterative process.
– Domain Model

• Approaches to object identification
– Use a grammatical approach based on a natural language description of the system.

• Based on identifying tangible things in the application domain
– Use a behavioural approach.

• Identify objects based on what participates in what behaviour
– Use a scenario-based analysis. (Use-case analysis)

• The objects, attributes, and methods in each scenario are identified

308

The Weather Station: Object Classes

• Object class identification in the weather station system may be based on the tangible hardware and
data in the system.

– Ground thermometer, Anemometer, Barometer
• ‘Hardware’ objects related to the instruments in the system

– Weather station
• The basic interface of the weather station to its environment
• It therefore reflects the interactions identified in the use-case model

– Weather data
• Encapsulates the summarized data from the instruments

309

4. Design Models

• Design models show the objects and object classes and relationships between these entities.

• Two types of design models
– Structural (Static) model

• Describe the static structure of the system in terms of object classes and relationships
• Class diagram, Object diagram, Package diagram

– Dynamic model
• Describe the dynamic interactions between objects
• Sequence diagram, Communication diagram, Statechart diagram

310

Subsystem Models

• Subsystem Models shows how the design is organized into logically related groups of objects.
– Logical model

• The actual organization of objects in the system may be different.

– The UML package diagram are often used.

311

Sequence Models

• Sequence models show the sequence of object interactions that take place.
– The UML Sequence diagrams are used.

• Objects are arranged horizontally across the top.
• Time is represented vertically so models are read top to bottom.
• Interactions are represented by labelled arrows.
• Different styles of arrow represent different types of interaction.
• A thin rectangle in an object lifeline represents the time when the object is the controlling object in the system.

– Example:
• SD for Data Collection

312

State Machine Models

• State machine models are used to show how objects respond to different service requests and the
state transitions triggered by these requests.

– State diagrams are useful high-level models of a system or an object’s run-time behavior.
• Not usually needed for all objects in the system.

– The UML Statecharts diagram is used.

– Example
• State diagram for Weather Station

313

5. Interface Specification

• Object interfaces have to be specified so that the objects and other components can be designed in
parallel.

– Objects may have several interfaces which are viewpoints on the methods provided.
– The UML Class diagram is used.

– Example
• Interface specification (a part of class diagram) for Weather Station

314

Weather Station Interfaces

OOAD for Object-Oriented Programming

• OOAD (Object-Oriented Analysis and Design, AKA 객체지향개발방법론)
– “Identifying your requirements and creating a domain model, and then add methods to the appropriate classes and

define the messaging between the objects in order to fulfill the requirements”

– Object-Oriented Analysis (OOA)
• Discover the domain concepts/objects (Domain Model)

• Identify requirements (Use-Case Model)

– Object-Oriented Design (OOD)
• Define software objects (Static model Class Diagram)

• Define how they collaborate to fulfill the requirements (Dynamic model Sequence Diagram)

– Various development process models are available.
• Waterfall
• UP (Iterative)

315

An OOAD Example - Dice Game

316

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.
- If the dice’s face value totals seven,

player wins; otherwise, player loses.

Domain Model

Interaction Diagram

Design Class Diagram

OOA OOD

317

Domain Model

Use-Case Model

Sequence Diagrams

Class Diagram

OOA
OOD

OO Implementation

Design Patterns

318

Design Patterns

• Design pattern is a way to describe best practices, good designs, and capture experience
in a way that it is possible for others to reuse this experience.

– Descriptions of the problem and the essence of its solution
– Sufficiently abstract to be reused in different settings
– Pattern descriptions usually make use of object-oriented characteristics

• Inheritance and Polymorphism
– 23 design patters of GoF are widely used.

• Elements of patterns

319

Element Description
Name A meaningful pattern identifier

Problem description A detailed description on the problem

Solution description Not a concrete design, but a template for a design solution that can be
instantiated in different ways.

Consequences The results and trade-offs of applying the pattern

23 Design Patterns of GoF

320

The Observer Pattern
Pattern name Observer

Description
Separates the display of the state of an object from the object itself and allows alternative displays to be
provided. When the object state changes, all displays are automatically notified and updated to reflect the
change.

Problem description

In many situations, you have to provide multiple displays of state information, such as a graphical display and
a tabular display. Not all of these may be known when the information is specified. All alternative presentations
should support interaction and, when the state is changed, all displays must be updated.
This pattern may be used in all situations where more than one display format for state information is required
and where it is not necessary for the object that maintains the state information to know about the specific
display formats used.

Solution description

This involves two abstract objects, Subject and Observer, and two concrete objects, ConcreteSubject and
ConcreteObject, which inherit the attributes of the related abstract objects. The abstract objects include
general operations that are applicable in all situations. The state to be displayed is maintained in
ConcreteSubject, which inherits operations from Subject allowing it to add and remove Observers (each
observer corresponds to a display) and to issue a notification when the state has changed.
The ConcreteObserver maintains a copy of the state of ConcreteSubject and implements the Update()
interface of Observer that allows these copies to be kept in step. The ConcreteObserver automatically
displays the state and reflects changes whenever the state is updated.

Consequences

The subject only knows the abstract Observer and does not know details of the concrete class. Therefore,
there is minimal coupling between these objects. Because of this lack of knowledge, optimizations that
enhance display performance are impractical. Changes to the subject may cause a set of linked updates to
observers to be generated, some of which may not be necessary.

321

Multiple Displays Using the Observer Pattern

322

Implementation Issues

323

Implementation Issues

• Implementation issues that are often not covered in programming

– Reuse
• Most modern software is constructed by reusing existing components or systems.
• When you are developing software, you should make as much use as possible of existing code.

– Configuration management
• During the development process, you have to keep track of the many different versions of each software component in a

configuration management system.

– Host-target development
• Production software does not usually execute on the same computer as the software development environment.
• Rather, you develop it on one computer (the host system) and execute it on a separate computer (the target system).

324

Reuse

• A development approach based on the reuse of existing software
– Until 1990s, most new software was developed from scratch, by writing all code in a high-level programming

language.
• Only the reuse of functions and objects in programming language libraries

• Reuse costs
– The costs of the time spent in looking for software to reuse and assessing whether it meets your needs
– The costs of adapting and configuring the reusable software components or systems to reflect the

requirements of the system that you are developing
– The costs of integrating reusable software elements with each other and with the new code that you have

developed

325

Reuse Levels

• Reuse levels
– The object level

• We directly reuse objects from a library rather than writing the code. (Programming language libraries)
– The component level

• Components are collections of objects and object classes that we reuse in application systems. (Component frameworks)
– The system level

• We reuse entire application systems. (COTS)
– The abstraction level

• We don’t reuse software directly but use knowledge of successful abstractions in the design of our software.
(like Architecture styles and Design patterns)

326

Configuration Management

• Configuration management is the general process of managing a changing software system.

• Configuration management activities:
– Version management

• Keep track of the different versions of software components
• Include facilities to coordinate development by several programmers

– System integration
• Help developers define what versions of components are used to create each version of a system. This description is then

used to build a system automatically by compiling and linking the required components.
– Problem tracking

• Allow users to report bugs and other problems, and to allow all developers to see who is working on these problems and
when they are fixed

327

Host-Target Development

• Most software is developed on a computer (the host) but runs on a separate machine (the target).
– Development platform vs. Execution platform

• A platform is more than just hardware.
• Includes the installed operating system and other supporting software such as database management systems or,

interactive development (environments for development platforms)
– Development platform usually has different installed software than execution platform.

• May have different architectures

328

Tools for Host-Target Development

• Tools for development platforms
– Integrated compiler and syntax-directed editing system: create, edit and compile code
– Language debugging system
– Graphical editing tools (UML tools)
– Testing tools (Junit) that can automatically run a set of tests on a new version of a program.
– Project support tools: organize codes for different development projects

• IDE (Integrated Development Environments)
– A set of software tools that supports different aspects of software development, within some common

framework and user interface
– IDEs are created to support development in a specific programming language such as Java.

329

Open-Source Development

330

Open-Source Development

• Open-source development is an approach to software development in which
– the source code of a software system is published, and volunteers are invited to participate in the development

process through internet.

– Rooted on the Free Software Foundation (www.fsf.org)
• Advocates that source code should not be proprietary but rather should always be available for users to examine and

modify as they wish

• Popular examples of open-source systems
– The Linux operating system
– Java
– The Apache web server
– The mySQL database management system

331

Open-Source Issues

• Questions on open-sources :
– “Should the product that is being developed make use of open-source components?”
– “Should we use an open-source approach for the software’s development?”

• Business with opens source
– More and more product companies are using an open-source approach to development.
– Business model is not reliant on selling a software product but on selling support for that product.

• Believe that involving the open-source community will allow software to be developed more cheaply, more quickly and will
create a community of users for the software.

332

Open-Source Licensing

• Fundamental principle of open-source
– “Source code should be freely available.”

• License Models
– The GNU General Public License (GPL)

• So-called ‘reciprocal’ license
• If you use open-source software that is licensed under the GPL license, then you must make that software open source.

– The GNU Lesser General Public License (LGPL)
• A variant of the GPL license
• You can write components that link to open-source code without having to publish the source of these components.

– The Berkley Standard Distribution (BSD) License
• Non-reciprocal license
• You are not obliged to re-publish any changes or modifications made to open-source code.
• You can include the code in proprietary systems that are sold

333

Homework #9

334

• Design Pattern과 Architecture Style를 조사하고 비교분석 하세요. A4 10장 (글자크기 10 이하)

– 아래의 기본 교재를 다 읽을 필요는 없습니다.

335

An Introduction to UML

336

UML

• Unified Modeling Language for
– Visualizing, Specifying, Constructing and Documenting artifacts of software-intensive systems.

• Offer vocabulary and rules for communication
– http://www.uml.org/

• Combine the best of the best from
– Data Modeling (Entity Relationship Diagrams)

– Business Modeling (workflow)

– Object Modeling
– Component Modeling (development and reuse - middleware, COTS)

de facto industry standard

337

The UML Semantics

• 4-layer metamodel architecture
– instance → model → meta model → meta-meta model

• MOF (Meta Object Facility) defines a four-layer meta model hierarchy.
– Layer M3: Meta-meta model layer (The MOF model)

– Layer M2: Meta model layer (The UML meta model)

– Layer M1: Model layer (The UML model)

– Layer M0: Information layer (the Application)

• MOF and UML are aligned.
– The UML infrastructure contains all the concepts needed for the specification of UML and MOF.

338

The Meta Model Hierarchy of the MOF (for UML)

339

UML 2.0 Diagrams

• 13 UML diagrams

340

UML 2.2

1. Use Case Diagram

• Use case diagram illustrates the name of use cases and actors, and the relationships between them.
– Use case : a collection of related success and failure scenarios in text, that describe how an actor uses the

system to achieve a goal
– Actor : something with behavior, such as a person, computer or organization

341

Use case: Handle Returns

Main Success Scenario:
- A customer arrives at a checkout with items to return.
- The cashier uses the POS system to record each

returned item …

Alternate Scenarios:
- If the customer paid by credit, and the reimbursement

transaction to their credit account is rejected, inform the
customer and pay them with cash …

2. Class Diagram

• Class diagram shows the classes of the system, their inter-relationships, and the operations and
attributes of the classes.

– Domain model
– Design class diagram (DCD)

342

3. Object Diagram

• Object diagram is useful for exploring real world examples of objects and the relationships between
them.

– Shows instances of classes at a specific point of time (i.e., snapshot)

343

4. Package Diagram

• Package diagram groups classes into packages and simplify complex class diagrams.
– A package is a collection of logically related UML elements.
– Logical architecture

344

5. Component Diagram

• Component diagram depicts how components are wired together to form larger components or
software systems.

– Illustrate the structure and inter-dependency of arbitrarily complex systems

345

6. Composite Structure Diagram

• Composite structure diagram is used to explore run-time instances of interconnected instances
collaborating over communications links.

– Show the internal structure (including parts and connectors) of components.

346

7. Deployment Diagram

• Deployment diagram depicts a static view of the run-time configuration of hardware nodes and the
software components running on those nodes.

347

8. Sequence Diagram

• Sequence diagram models the collaboration of objects based on a time sequence.
– Show how the objects interact with others in a particular scenario of a use case

348

9. Communication Diagram

• Communication diagram is used to model the dynamic behavior of the use case. (called collaboration
diagram)

– ≈ Sequence diagram
– More focused on showing the collaboration of objects rather than the time sequence.

349

10. Timing Diagram

• Timing diagram shows the behavior of the objects in a given period of time.
– A special form of a sequence diagram
– The time increases from left to right and the lifelines are shown in separate compartments arranged vertically.

350

11. Interaction Overview Diagram

• Interaction overview diagram focuses on the overview of the flow of control of the interactions.
– A variant of the Activity Diagram, where the nodes are the interactions or interaction occurrences.

351

12. State (Statechart) Diagram

• State diagram can show different states of an entity and how an entity responds to various events by
changing from one state to another.

– Originated from the Statecharts formalism
– The history of an entity is modeled by a finite state diagram.

352

13. Activity Diagram

• Activity diagram helps to describe the flow of control of the target system.
– Exploring complex business rules and operations, describing the use case and the business process
– It is an object-oriented equivalent of flow-charts and DFDs (data flow diagrams).

353

13 UML Diagrams

354

355

Use Case Diagram

356

Use Cases

• Use cases are text stories of some actors using a system to meet goals.
– A mechanism to capture (identify and analyze) requirements

– An example (Brief format):
• Process Sale: A customer arrives at a checkout with items to purchase. The cashier uses the POS system to record each

purchased item. The system presents a running total and line-item details. The customer enters payment information,
which the system validates and records. The system updates inventory. The customer receives a receipt from the system
and then leaves with the items.

– Use case is not a diagram, but a text.
• 3 formats (levels) : brief casual fully dressed

357

Use Case Diagram

• Use case diagram illustrates the name of use cases and actors, and the relationships between them.
– System context diagram
– A summary of all use cases

358

Actor

Use case

Something with behavior, such as a person,
computer system, or organization

- Primary Actor : has user goals fulfilled through using services
of the SuD (System Under Discussion) , e.g., cashier

- Supporting Actor : provides a service to the SuD, e.g., payment
authorization service

- Offstage Actor : has an interest in the behavior of the use case,
but is not primary or supporting, e.g., tax agency

3 Formats of Use Cases

• Brief :
– Terse one paragraph summary
– Usually the main success scenario or a happy path

• Casual :
– Informal paragraph format
– Multiple paragraphs that cover various scenarios

359

• Fully Dressed :
– Includes all steps, variations and supporting sections (e.g., preconditions)

360

Case Study: The NextGen POS System

361

Example: Process Sale in Fully Dressed Style

362

363

364

Guideline: Write in an Essential Style

• Essential writing style is to express user intentions and system responsibilities, rather than concrete
actions.

– UI-free style
– Concrete use cases are better avoided during early requirements analysis.

– For example: Manage Users use case

Essential Style

1. Administrator identities self.
2. System authenticates identity.
3. …

Concrete Style

1. Administrator enters ID and PW in dialog box.
2. System authenticates Administrator.
3. System displays the “edit user” window.
4. …

365

Guideline: Write Black-Box Use Cases

• Don’t describe the internal working of the system, its components or design.
– Define what the system does (analysis), rather than how it does it (design).

366

Are Use Cases Functional Requirements?

• Yes

• Use cases are requirements, primarily functional requirements.
– “F” (functional or behavioral) in terms of FURPS+ requirements types
– Can also be used for other types.

367

368

System Sequence Diagram

369

System Sequence Diagram

• System sequence diagram (SSD)
– A picture that shows the events that external actors generate, their order, and inter-system events, for one

particular scenario of a use case.
• the external actors that interact directly with the system,
• the system (as a black box), and
• the system events that the actors generate

– In the sequence diagram notation
– Depict system behavior in terms of what the system does, not how it does it
– Used as input to object design → System operations

• Use cases describe how external actors interact with the software system we are interested in creating.
– During this interaction, an actor generates system events to a system, usually requesting some system

operation to handle the event.

370

Applying UML Sequence Diagrams

• The UML does not define something called ‘System Sequence Diagrams’.
– We use the general UML sequence diagram notation.
– The term ‘system’ in SSDs is used to emphasize the application of the UML sequence diagram to systems

viewed as black boxes.
– An SSD shows system events for one scenario of a use case.

371

System Operation

• System operations
– Operations that the system as a black box component offers in its public interface
– Show system events, which the SUD should have system operations to handle the system events.
– System Interfaces: the entire set of system operations across all use cases

372

Guideline: How to Name System Events and Operations?

• System events should be expressed at the abstract level of intention rather than in terms of the
physical input device.

• Example : scan(itemID) vs. enterItem(itemID)
– The enterItem name is better, since it communicates intention rather than the input device.

373

The Relationship to Other Artifacts in UP (OOAD)

374

Homework / Activity #10

375

• RVC SW Control을 OOAD 기법으로 분석(OOA)합니다.
– 모든 Use Cases를도출하고, SSD를통해 System Operations을모두찾습니다.
– 추가 UC : “장애물을회피한다.” “방전체를깨끗하게청소한다.” “장애물을감지한다.”
– UML도구사용

System

Front Sensor

Left Sensor

Right Sensor

Dust Sensor

Vacuum Cleaner

Motor

전 방 장 애 물 탐 지

좌 측 장 애 물 탐 지

우 측 장 애 물 탐 지

먼 지 탐 지

직 진

정 지

좌 회 전

우 회 전

진 공 청 소

진 공 청 소 터 보()

An Example Use-Case Diagram for the RVC Control SW

Samples of Use Cases and SSD

376

Use-Case Description

System

 : Front Sensor

1 : front_Obstacle()

2 : OK

System Sequence Diagram

377

8. Software Testing

378

Program Testing

• Testing intends to show:
– “a program does what it is intended to do” and
– “discover program defects before it is put into use”.

• When you test software, you execute a program using artificial data.
– You check the results of the test run for errors, anomalies or information about the program’s non-functional

attributes.
– Can reveal the presence of errors, but NOT their absence.

• Testing is a part of general verification and validation (V&V) process and activities.

379

Two Types of Program Testing

• Validation testing
– To demonstrate to the developer and the customer that “the software meets its (users’) requirements.”
– A successful test shows that the system operates as intended.

• You expect the system to perform correctly using a given set of test cases that reflect the system’s expected use.

• Verification testing
– To discover situations in which “the behavior of the software is incorrect, undesirable or does not conform

to its specification.”
– A successful test is a test that makes the system perform incorrectly and so exposes a defect in the system.

• The test cases are designed to expose defects.
– = Defect testing

380

Verification and Validation (V&V)

• Validation: Are we building the right software?
– “Does the software system meets the user's real needs?”

• Verification: Are we building the software right? (with respect to requirements specification)

– “Does the software system meets the requirements specifications?”

381

Actual
Requirements

SW
Specs

System

Validation Verification

V-Model of V&V Activities

382

V&V Confidence

• Aim of V&V
– Establish confidence that the system is ‘fit for purpose’

• V&V confidence depends on
– Software purpose

• The level of confidence depends on how critical the software is to an organisation.
– User expectations

• Users may have low expectations of certain kinds of software.
– Marketing environment

• Getting a product to market early may be more important than finding defects in the program.

383

3 Axes of V&V

• Optimistic Inaccuracy
– We may accept some programs that do not possess

the property.
– It may not detect all violations.
– Example: Testing

• Pessimistic Inaccuracy
– It is not guaranteed to accept a program even if the

program does possess the property being analyzed,
because of false alarms.

– Example: Automated program analysis

• Simplified Properties
– It reduces the degree of freedom by simplifying the

property to check.
– Example: Model Checking

384

Perfect verification of
arbitrary properties by
logical proof or exhaustive
testing (Infinite effort)

Model checking:
Decidable but possibly
intractable checking of

simple temporal
properties.

Theorem proving:
Unbounded effort to

verify general
properties.

Precise analysis of
simple syntactic
properties.

Typical testing
techniques

Data flow
analysis

Optimistic
inaccuracy

Pessimistic
inaccuracy

Simplified
properties

Software Testing Stages

• Software testing stages
– Development testing

• The system is tested during development to discover bugs and defects.
– Release testing

• A separate testing team test a complete version of the system, before it is released to users.
– User testing

• Users or potential users of a system test the system in their own environment.

• Software testing process

385

Development Testing

386

Development Testing

• All testing activities that are carried out by the team developing the system.

– Unit testing
• Individual program units or object classes are tested.
• Unit testing should focus on testing the functionality of objects or methods.

– Integrated testing
• Several individual units are integrated to create composite components.

• Integration testing should focus on testing interfaces and interactions among components.

– System testing
• Some or all components in a system are integrated and the system is tested as a whole.
• System testing should focus on testing all functionalities as a whole.

– Regression testing
• Testing a system to check that changes have not ‘broken’ previously working code
• In development or maintenance phase

387

Unit Testing

• Unit testing is the process of testing individual components in isolation.
– Defect testing

• Units may be:
– Individual functions or methods within an object
– Object classes with attributes and methods

• Testing all operations associated with an object
• Setting and interrogating all object attributes
• Exercising the object in all possible states

– Composite components with defined interfaces used to access their functionality.

388

The Weather Station: Unit Testing for Objects

389

• Need to define test cases for all operations in all states of the object.
– State model can identify sequences of state transitions to be tested and the event sequences to cause these

transitions.

– For example:
• Shutdown -> Running-> Shutdown
• Configuring-> Running-> Testing -> Transmitting -> Running
• Running-> Collecting-> Running-> Summarizing -> Transmitting

-> Running
A state mode for the WeatherStation object class

Automated Testing

• Whenever possible, unit testing should be automated.
– Tests are run and checked without manual intervention.

• Unit testing frameworks
– Provide generic test classes that you extend to create specific test cases.
– Can run all of the tests that you have implemented and report, often through some GUI, on the success of

otherwise of the tests.
– Example: JUnit, xUnit, etc.

– Composed of 3 parts
• Setup part : initialize the system with the test case, namely the inputs and expected outputs.
• Call part : call the object or method to be tested.
• Assertion part : compare the result of the call with the expected result. If the assertion evaluates to true, the test has been

successful if false, then it has failed.

390

Developing Unit Test Cases

• Two types of unit test cases
– Positive

• Reflect normal operation of a program
• Should show that the component works as expected

– Negative
• Based on testing experience of where common problems arise
• Use abnormal inputs to check that these are properly processed and do not crash the component

391

Unit Testing Strategies

• Partition testing
– Identify groups of inputs that have common characteristics and should be processed in the same way.
– Choose tests from within each of these groups.

• Guideline-based testing
– Use testing guidelines to choose test cases.
– These guidelines reflect previous experience of the kinds of errors that programmers often make when

developing components.
• Brute-force testing (AKA 막 테스트)

– Examples:
• Choose inputs that force the system to generate all error messages.
• Design inputs that cause input buffers to overflow.
• Repeat the same input or series of inputs numerous times.
• Force invalid outputs to be generated.
• Force computation results to be too large or too small.

392

Partition Testing

• Input data and output results often fall into different classes where all members of a class are related.
– Each of these classes is an equivalence partition or domain where the program behaves in an equivalent way

for each class member.
– Test cases should be chosen from each partition.

393

Equivalence Partitions with Boundary Value Analysis

394

Functional Testing – Techniques Overview

395

Functional specifications

Independently Testable Feature

Representative Values Model

Test Case Specification

Test Cases

Scaffolding

Identify independently testable features

Derive a modelIdentify representative values

Generate test case specifications

Generate test cases

Instantiate tests

Finite State Machine,
Grammar,

Algebraic Specification,
Logic Specification,

CFG / DFG

Test selection
criteria

Manual Mapping,
Symbolic Execution,

A-posteriori Satisfaction

Semantic Constraint,
Combinational Selection,
Exhaustive Enumeration,

Random Selection

Brute force testing

Integration Testing

• Software components are often composite components that are made up of several interacting
objects.

– Can access the functionality of these objects through the defined component interface

• Integration testing is the testing of composite components.
– Focus on showing that the component interface behaves according to its specification
– Focus on testing the interactions between components

– Assume that unit tests on the individual objects
within the component have been completed.

396

Guidelines for Integration Testing

• Interface Testing Guidelines
– Design tests so that parameters to a called procedure are at the extreme ends of their ranges
– Always test pointer parameters with null pointers
– Design tests which cause the component to fail
– Use stress testing in message passing systems
– In shared memory systems, vary the order in which components are activated

397

System Testing

• System testing during development involves integrating components to create a version of the system
and then testing the integrated system.

– The focus is testing the interactions between components. (Integration testing)

• Checks that components are compatible, interact correctly and transfer the right data at the right time across their
interfaces

– Tests the emergent behavior of a system (System testing)

• System testing is a collective process.
– Reusable components that have been separately developed and off-the-shelf systems may be integrated with

newly developed components. The complete system is then tested.
– Components developed by different team members or sub-teams may be integrated at this stage.
– System testing may involve a separate testing team with no involvement from designers and programmers.
 Release Testing

398

Developing System Test Cases

• Use-cases and Sequence diagrams can be used as a basis.
– Each use case usually involves several system components so testing the use case forces these interactions to

occur.
– Sequence diagrams associated with the use case document the components and interactions that are being

tested.

399Collect Weather Data Sequence Chart

Testing Policies

• Exhaustive system testing is a;ways impossible.
– Testing policies define a required system test coverage.

• Examples of testing policies
– “All system functions that are accessed through menus should be tested.”
– “Combinations of functions accessed through the same menu must be tested.”
– “Where user input is provided, all functions must be tested with both correct and incorrect input.”

400

Regression Testing

• Regression testing
– Testing a system to check that changes have not ‘broken’ previously working code

• In a manual testing process, regression testing is expensive but, with automated testing, it is simple
and straightforward.

– All tests are rerun every time a change is made to the program.
– Tests must run ‘successfully’ before the change is committed as TFD in XP.

401

Test-Driven Development

402

Test-Driven Development

• Test-driven development (TDD) is a program development approach inter-leaving testing and code
development.

– Tests are written before code and ‘passing’ the tests is the critical driver of development.
– Develop code incrementally, along with a test for that increment.
– Not move on to the next increment, until the code passes its test.

• TDD was introduced as part of agile methods such as XP.
– However, it can also be used in plan-driven development processes.

403

Benefits of TDD

• Code coverage
– Every code segment that you write has at least one associated test so all code written has at least one test.

• Regression testing
– A regression test suite is developed incrementally as a program is developed.
– Tests the system to check that changes have not ‘broken’ previously working code through rerunning the tests

every time a change is made to the program.

• Simplified debugging
– When a test fails, it should be obvious where the problem lies.
– The newly written code needs to be checked and modified.

• System documentation
– The tests themselves are a form of documentation that describe what the code should be doing.

404

Release Testing

405

Release Testing

• Release testing is the process of testing a particular release of a system that is intended for use
outside of the development team.

– To convince the supplier of the system that it is good enough for use.
• Should show that the system delivers its specified functionality, performance and dependability
• Should show the system does not fail during normal use

• Release testing is usually a black-box testing process.
– Tests are only derived from the system specification.

406

Release Testing vs. System Testing

• Release testing is a form of system testing.

• Important differences are
– A separate team that has not been involved in the system development should be responsible for release

testing.
• System testing by the development team should focus on discovering bugs in the system. (defect/verification testing)
• Release testing is to check that the system meets its requirements and is good enough for external use. (validation testing)

• Performance tests
– Involve planning a series of tests where the load is steadily increased until the system performance becomes

unacceptable.

• Stress testing
– A form of performance testing where the system is deliberately overloaded to test its failure behavior.

407

User Testing

408

User Testing

• User or Customer testing is a stage in which users or customers provide input and advice on system
testing.

– Influences from the user’s working environment have a major effect on the reliability, performance, usability and
robustness of a system. These cannot be replicated in a testing environment.

• Types of user testing
– Alpha testing

• Users of the software work with the development team to test the software at the developer’s site.
– Beta testing

• A release of the software is made available to users to allow them to experiment and to raise problems that they discover
with the system developers.

– Acceptance testing
• Customers test a system to decide whether or not it is ready to be accepted from the system developers and deployed in

the customer environment.
• Primarily for custom systems

409

Homework #11

• 다양한 Unit Testing Framework을 찾고, 실제로 적용 가능한 방법론을 하나 선정하세요.

• 선정된 방법론을 Homework #7에서 개발한 C program을 대상으로 적용하세요.

• Unit Test Cases를 20개 이상 개발하고, 실제 테스팅을 수행하세요.

• Unit Test Report를 A4 10장 (글자크기 10 이하)으로 작성하세요.

410

List of C++ Unit Testing Frameworks (Wikipedia)

411

List of C++ Unit Testing Frameworks (Wikipedia)

412

List of C++ Unit Testing Frameworks (Wikipedia)

413…

414

9. Software Evolution

415

Software Change

• Software change is inevitable.
– New requirements emerge when the software is used.
– The business environment changes.
– Errors must be repaired.
– New computers and equipment is added to the system.
– The performance or reliability of the system may have to be improved.

• A key problem for all organizations is implementing and managing change to their existing software
systems.

– The majority of the software budget in large companies is devoted to changing and evolving existing software
rather than developing new software.

416

A Spiral Model of Development and Evolution

417

Evolution and Servicing

• Evolution
– The stage in a software system’s life cycle, where it is in operational use and is evolving as new requirements

are proposed and implemented in the system.

• Servicing
– At this stage, the software remains useful, but the only changes made are those required to keep it operational,

i.e., bug fixes and changes to reflect changes in the software’s environment.
– No new functionality is added.

• Phase-out (Retirement)

– The software may still be used but no further changes are made to it.

418

Evolution Processes

419

Evolution Processes

• Software evolution processes depend on
– The type of software being maintained,
– The development processes used, and
– The skills and experience of the people involved.

• Proposals for change are the driver for system evolution.
– Should be linked with components that are affected by the change
– Should allow the cost and impact of the change to be estimated

• Change identification and evolution continues throughout the system lifetime.

420

The Software Evolution Process

421

Urgent Change Requests

• Urgent changes may have to be implemented without going through all stages of the software
engineering process.

– If a serious system fault must be repaired to allow normal operation to continue.
– If changes to the system’s environment (e.g., OS upgrade) have unexpected effects.
– If there are business changes that require a very rapid response (e.g., release of a competing product).

422

Agile Methods and Evolution

• Agile methods are based on incremental development so the transition from development to evolution
is a seamless one.

– Evolution is simply a continuation of the development process based on frequent system releases.

– Automated regression testing is particularly valuable when changes are made to a system.
• Changes may be expressed as additional user stories.

• Under the assumption that the Agile development teams have been maintained.
– Should avoid handover problems

423

Handover Problems

• Where the development team have used an agile approach, but the evolution team is unfamiliar with
agile methods and prefer a plan-based approach.

– The evolution team may expect detailed documentation to support evolution, and this is not produced in agile
processes.

• Where a plan-based approach has been used for development, but the evolution team prefer to use
agile methods.

– The evolution team may have to start from scratch developing automated tests and the code in the system may
not have been refactored and simplified as is expected in agile development.

424

Legacy Systems

425

Legacy Systems

• Legacy systems
– Older systems that rely on languages and technology that are no longer used for new systems development.

• May be dependent on older hardware such as mainframe computers
• May have associated legacy processes and procedures

• Legacy systems are often broader socio-technical systems.
– Including hardware, software, libraries and other supporting software and business processes

– Elements of legacy systems:

426

Components of Legacy Systems

427

Element Description

System hardware Legacy systems may have been written for hardware that is no longer available.

Support software The legacy system may rely on a range of support software, which may be obsolete or
unsupported.

Application software The application system that provides the business services is usually made up of a number of
application programs.

Application data These are data that are processed by the application system. They may be inconsistent,
duplicated or held in different databases.

Business processes
These are processes that are used in the business to achieve some business objective.
Business processes may be designed around a legacy system and constrained by the
functionality that it provides

Business policies and rules These are definitions of how the business should be carried out and constraints on the business.
Use of the legacy application system may be embedded in these policies and rules.

Legacy System Replacement and Change

• Legacy system replacement is risky and expensive.
– Because the system is still in use.
– Many reasons

• Lack of complete system specification
• Tight integration of system and business processes
• Undocumented business rules embedded in the legacy system
• New software development may be late and/or over budget.

• Legacy system change (modification) is also expensive.
– Many reasons

• No consistent programming style
• Use of obsolete programming languages with few people available with these language skills
• Inadequate system documentation
• System structure degradation
• Program optimizations may make them hard to understand
• Data errors, duplication and inconsistency

428

Legacy System Management

• Organizations relying on legacy systems should decide one strategy:
– Scrap the system completely and modify business processes so that it is no longer required, or
– Continue maintaining the system, or
– Transform the system by re-engineering to improve its maintainability, or
– Replace the system with a new system.

• Legacy system assessment
– Assess the system quality and its business value to choose appropriate strategy

429

Legacy System Assessment

• Legacy system assessment
– Business value assessment
– System quality assessment

• 4 categories
– Low quality, low business value

• These systems should be scrapped
– Low-quality, high-business value

• These make an important business
contribution but are expensive to maintain

• Should be re-engineered or replaced
if a suitable system is available

– High-quality, low-business value
• Replace with COTS, scrap completely or maintain

– High-quality, high business value
• Continue in operation using normal system maintenance

430

Software Maintenance

431

Software Maintenance

• Software maintenance
– Modifying a program after it has been put into use
– Mostly used for changing custom software

• Generic software products are said to evolve to create new versions.
– Changes are implemented by modifying existing components and adding new components to the system.

• Not normally involve major changes to the system’s architecture

432

Types of Maintenance

• Fault repairs
– Changing a system to fix bugs/vulnerabilities and correct deficiencies in the way meets its requirements

• Environmental adaptation
– Maintenance to adapt software to a different operating environment
– Changing a system so that it operates in a different environment (computer, OS, etc.) from its initial implementation

• Functionality addition and modification
– Modifying the system to satisfy new requirements

433

Maintenance Costs

• Maintenance costs are usually greater than development costs
– 2* to 100* depending on the application
– Affected by both technical and non-technical factors

– Increases as software is maintained
• Since maintenance corrupts the software structure so makes further maintenance more difficult.

– Aging software can have high support costs (e.g. old languages, compilers etc.).

434

Maintenance Prediction

• Maintenance prediction is concerned with assessing which parts of the system may cause problems
and have high maintenance costs.

– Change acceptance depends on the maintainability of the components affected by the change.
– Implementing changes degrades the system and reduces its maintainability.
– Maintenance costs depend on the number of changes and costs of change depend on maintainability.

435

Change Prediction

• Change prediction
– Predicting the number of changes requires
– Predicting understanding of the relationships between a system and its environment

• Tightly coupled systems require changes whenever the environment is changed

• Factors influencing this relationship are
– Number and complexity of system interfaces
– Number of inherently volatile system requirements
– The business processes where the system is used

436

Metrics for Change Prediction

• Process metrics may be used to assess maintainability
– If any or all of these is increasing, this may indicate a decline in maintainability.

• Number of requests for corrective maintenance
• Average time required for impact analysis
• Average time taken to implement a change request
• Number of outstanding change requests

• Complexity metrics of system components may be used to assess maintainability.
– Studies have shown that most maintenance effort is spent on a relatively small number of system components.

• Complexity of control structures
• Complexity of data structures
• Object, method (procedure) and module size

437

Software Reengineering

• Reengineering: Restructuring or rewriting parts or all of a legacy system without changing its
functionality

– Applicable where some but not all sub-systems of a larger system require frequent maintenance

– Involves adding effort to make them easier to maintain
• The system may be re-structured and re-documented.

– Advantages
• Reduced risk: There is a high risk in new software development. There may be development problems, staffing problems

and specification problems.
• Reduced cost: The cost of re-engineering is often significantly less than the costs of developing new software.

438

The Reengineering Process

439

Reengineering Process Activities

• Source code translation
– Convert code to a new language

• Reverse engineering
– Analyze the program to understand it

• Program structure improvement
– Restructure automatically for understandability

• Program modularization
– Reorganize the program structure

• Data reengineering
– Clean-up and restructure system data

440

Refactoring

• Refactoring: The process of making improvements to a program to slow down degradation through
change

– ‘Preventative maintenance’ that reduces the problems of future change.

• Refactoring involves modifying a program to improve its structure, reduce its complexity or make it
easier to understand.

– When you refactor a program, you should not add functionality but rather concentrate on program improvement.

441

Refactoring and Reengineering

• Re-engineering takes place after a system has been maintained for some time and maintenance costs
are increasing.

– Use automated tools to process and re-engineer a legacy system to create a new system that is more
maintainable

• Refactoring is a continuous process of improvement throughout the development and evolution process.
– To avoid the structure and code degradation that increases the costs and difficulties of maintaining a system

442

‘Bad smells’ in Program Code

• Duplicate code
– The same or very similar code may be included at different places in a program.
– This can be removed and implemented as a single method or function that is called as required.

• Long methods
– If a method is too long, it should be redesigned as a number of shorter methods.

• Switch (case) statements
– These often involve duplication, where the switch depends on the type of a value.
– The switch statements may be scattered around a program. In object-oriented languages, you can often use

polymorphism to achieve the same thing.

• Data clumping
– Data clumps occur when the same group of data items (fields in classes, parameters in methods) re-occur in several

places in a program.
– These can often be replaced with an object that encapsulates all of the data.

• Speculative generality
– This occurs when developers include generality in a program in case it is required in the future. This can often simply

be removed.
443

Homework #12

• Clean Code에 대해 조사하고 A4 5장 (글자크기 10 이하)으로 정리하세요.

• C 코드用 Static Code Analysis 도구를 하나 선정한 후, Homework #7에서 개발한 C Program에 적용하세요.
정리하세요.

– https://github.com/analysis-tools-dev/static-analysis

• 분석 결과와 반영 내용 (前/後)을 A4 5장 (글자크기 10 이하)으로 정리하세요.

444

445

Summary

446

Software Engineering

447

Requirements Analysis

Design

Implementation

Verification & Validation

Maintenance

Project Planning
Software Development Life-Cycle Processes

- Plan-driven (Waterfall) vs. Agile (Iterative)
- SASD vs. OOAD

Requirements Engineering
- SRS by IEEE Std 830-1998
- Spec. Review

Architecture Design
- AD (Architecture Description)

Detailed Design
- Models with UML Diagrams

Reuse
- COTS and Open-Source SW

Project / Configuration Management

Reviews
Levels of Testing

- Unit / Component / System / Release / User

Software Maintenance
Legacy System
Reengineering, Reverse Engineering, Refactoring

Structured Analysis for RVC

Writing an SRS

Object-Oriented Analysis for RVC

Object-Oriented Design for RVC

