Software Engineering

JUNBEOM YOO

KONKUK University

http://dslab.konkuk.ac.kr

EPENDABLE SOFTWARE

2023.08.26 %= =™

KU KONKUK
UNIVERSITY

Text and References

a
i Introduction to Systems Analysis & Design:
A Structured Approach

THE RATIONAL
UNIFIED PROCESS
AN INTRODUCTION

Tuirp EpiTion

| | Covers through Yersion 2.0 OMG UML Standard & |

APPLYING UML UML pistieen

AND PATTERNS

An Introduction to Object Orinted Aalysis and Design
and Herative Development

THIRD EDITION

A BRIEF GUIDE TO THE STANDARD
OBJECT MODELING LANGUAGE

T

[omeer recumoroey

i
BoocH H
- g JRCOBSON
oot o kel prviein ! RUKBRUGH

C RAIG)l_,_‘\l{‘\l AN hemreereremed

4
®

ALWAYS LEARNING

EPENDABLE SOFTWARE
LABORATORY

Contents

An Introduction to Software Engineering
Software Development Process
Agile Software Development
Requirements Engineering
System Modeling
» Structured Analysis and Structured Design (SASD)
Architectural Design
Design and Implementation
* An Introduction to UML
* Object-Oriented Analysis and Design (OOAD)

8. Software Testing
9. Software Evolution

a bk oobh-=

N e

DEPENDABLE SOFTWARE
LABORATORY

KU vy

Lists of Homework/Activities

An Introduction to Software Engineering - Homework #1
Software Development Process - Homework #2
Agile Software Development - Homework #3
Requirements Engineering - Homework #4
System Modeling - Homework #5
« Structured Analysis and Structured Design (SASD) - Homework #6 #7
Architectural Design - Homework #8
7. Design and Implementation - Homework #9
An Introduction to UML
« Object-Oriented Analysis and Design (OOAD) - Homework #10
8. Software Testing - Homework #11
9. Software Evolution - Homework #12

aprwbd-=

o

(} DEPENDABLE SOFTWARE 4
L LABORATORY

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 5
LABORATORY

1. An Introduction to Software Engineering

Software Engineering

« Software engineering is concerned with theories, methods and tools for professional and
cost-effective software development.
— More and more systems are software-controlled.
— The economies of all developed nations are dependent on software.
— Software costs often dominate computer system (hardware) costs.

— Software costs is more to maintain than to develop.
» For systems with a long life, maintenance costs may be several times development costs.

* Professional

* Cost-Effective A|AEH * Large Systems
* Team Development
* Reuse
of2{ ApE x| &= ol
= e
X B

KU

KONKUK
UNTVERSITY

KU vy

Types of Software Products

 Generic Software

— Stand-alone systems that are marketed and sold to any customer who wishes to buy them
» Most PC software : graphics programs, project management tools, CAD software
» Software for specific markets such as appointments systems for dentists

— Software requirements specification is owned by the software developer.
» Decisions on software change are made by the developer.

« Customized Software

— Software that is commissioned by a specific customer to meet their own needs
+ Embedded control systems, air traffic control software, traffic monitoring systems

— Software specification is owned by the customer for the software.
» Customers make decisions on software changes that are required.

« Question:
— 2O M Teller?t AFESH= “SYA|AEH"Z2 O{TH SW 217127

} DEPENDABLE SOFTWARE 8
LABORATORY

S

Essential Attributes of Good Software Products

Product characteristic

Description

Maintainability

Software should be written in such a way so that it can evolve to meet the changing needs of
customers. This is a critical attribute because software change is inevitable in changing business
environments.

Dependability

Software dependability includes a range of characteristics including reliability, security and safety.
Dependable software should not cause physical or economic damage in the event of system
failure. Malicious users should not be able to access or damage the system.

Efficiency

Software should not make wasteful use of system resources such as memory and processor
cycles. Efficiency therefore includes responsiveness, processing time, memory utilization, etc.

Acceptability

Software must be acceptable to the type of users for which it is designed. This means that it must
be understandable, usable and compatible with other systems that they use.

DEPENDABLE SOFTWARE

K[J’ KONKUK
UNIVERSITY

Software Engineering

« Software engineering is an engineering discipline that is concerned with all aspects of software
production from the early stages of system specification through to maintaining the system after it has
gone into use.

 “Engineering discipline”
— Using appropriate theories and methods to solve problems bearing in mind organizational and financial
constraints

« "“All aspects of software production’

— Not just technical process of development, but also project management and the development of tools,
methods, etc. to support software production.

(M DerenDABLE SOFTWARE 10
;) 4

Typical Activities in Software Engineering

Software Specification

— Customers and engineers define the software to produce and the constraints on its operation.
— Requirements Engineering

Software Development
— The software is designed and programmed.
— Architecture Design, Detailed Design and Implementation
— CTIP (Continuous Test and Integration Platform)

Software Validation

— The software is checked to ensure that it is what the customer requires.
— Software V&YV (verification & Validation) , Testing

Software Evolution

— The software is modified to reflect changing customer and market requirements.
— Software Maintenance

EEEEEEEEE SOFTWARE 1 1
LABORATORY

|

Software Project Failures

« Software projects failures (The Software Crisis) due to
— Increasing system complexity
« Larger and even more complex and new systems are required.
+ Systems must be built and delivered more quickly.
— Not use software engineering methods

* New software engineering techniques help us to build larger,
more complex systems, the demands change.

* But many companies do not use software engineering.

» A solution to overcome software project failures is
to adopt software engineering.

EPENDABLE SOFTWARE
LABORATORY

“I'm a software engineer, so I can confirm
it works by magic.”

KU KONKUK
UNIVERSITY

12

Software Engineering Diversity

* No silver bullet for software engineering
— There are many different types of software system.
— There is no universal set of software techniques applicable to all of these.

THERE'S N0 SILVER BULLET

« The software engineering methods and tools used depend on
— the type of application being developed, the requirements of the customer, and the background of the

development team -
1o Siluer Bullet

it e g
& am . -
Waps— Reloaded

Frederick P. Brooks, Jr.

University of North Carolina at Chapel Hill W et B

n ooy ol ok pnc e il Opening stalements
. o

1Q rivlgj ditvr iwz duhthg]j ghhulgj #rhyhasp hqwiz rxag#

surgxfhiigughudri® djghkxghtip suryhp hawir#

surjudp p jurgxfulyw|# Wklgl3# hduwl-#
TuhgulfnfEurrnvit < ; Ot

Fashioning complex
conceptual constructs
is the essence;
accidental tasks arise

in representing the
constructs in
language. Past
progress has so
reduced the accidental
tasks that future
progress now depends

upon addressing the
essence.

EPENDABLE SOFTWARE
LABORATORY

Software Application Types

Type

Features

Stand-alone applications

Application systems that run on a local computer, such as a PC. They include all necessary functionality
and do not need to be connected to network

Interactive transaction-based
applications

Applications that execute on a remote computer and are accessed by users from their own PCs or
terminals, including web applications such as e-commerce applications (= Web-based System)

Embedded control systems

Software control systems that control and manage hardware devices

Batch processing systems

Business systems that are designed to process large numbers of individual inputs to create
corresponding outputs in large batches

Entertainment systems

Systems that are primarily for personal use and which are intended to entertain the user

Systems for modelling and
simulation

Systems that are developed by scientists and engineers to model physical processes or situations, which
include many, separate, interacting objects (= M&S)

Data collection systems

Systems that collect data from their environment using a set of sensors and send that data to other
systems for processing.

Systems of systems

Systems that are composed of a number of other software systems (= CPS)

DEPENDABLE SOFTWARE
LABORATORY

KU vy

14

KU v
Fundamentals of Software Engineering

* Fundamental principles applicable to all types of software system, irrespective of the development
techniques used:

— “Systems should be developed using a managed and understood development process. Of course, different processes are
used for different types of software.”

* SLDC (Software Development Life-Cycle) , Development Process , Agile, Dev/Ops

— “Dependability and performance are important for all types of systems.”
* Software Quality

— “Understanding and managing the software specification and requirements are important.”

* Requirements Engineering

— “Where appropriate, you should reuse software that has already been developed rather than write new software.”
* Software Reuse , Open-Source Software

EPENDABLE SOFTWARE 1 5
LABORATORY

K[J’ KONKUK
UNIVERSITY

A Newcomer : Web-based Software Engineering

« The Web is now a platform for running various application.
— Web services allow application functionality to be accessed over the web.
— Cloud computing enables applications run remotely on the ‘cloud’.

« Web-based systems
— Complex distributed systems

— The fundamental principles of software engineering are applicable to web-based systems in the same ways.
+ Software reuse
— When building these systems, you think about how you can assemble them from pre-existing software components and systems.
* Incremental and agile development
— Web-based systems should be developed and delivered incrementally.
+ Service-oriented systems
— Software may be implemented using service-oriented software engineering, where the software components are stand-alone web services.
* Rich interfaces

— Interface development technologies such as AJAX and HTML5 have emerged that support the creation of rich interfaces within a web
browser.

| DEPENDABLE SOFTWARE 16
y LABORATORY

KU vy

10 FAQs about Software Engineering

Question & Answer

What is software?

Computer programs and associated documentation.
Software products may be developed for a particular customer or may be developed for a general market.

What are the attributes of good software?

Good software should deliver the required functionality and performance to the user and should be maintainable, dependable
and usable.

What is software engineering?
Software engineering is an engineering discipline that is concerned with all aspects of software production.

What are the fundamental software engineering activities?
Software specification, software development, software validation and software evolution.

What is the difference between software engineering and computer science?

Computer science focuses on theory and fundamentals.
software engineering is concerned with the practicalities of developing and delivering useful software.

} DEPENDABLE SOFTWARE 17
LABORATORY

KU vy

10 FAQs about Software Engineering

Question & Answer

What is the difference between software engineering and system engineering?

System engineering is concerned with all aspects of computer-based systems development including hardware, software and
process engineering. Software engineering is part of this more general process.

What are the key challenges facing software engineering?
Coping with increasing diversity, demands for reduced delivery times and developing trustworthy software.

What are the costs of software engineering?

Roughly 60% of software costs are development costs, 40% are testing costs.
For custom software, evolution costs often exceed development costs.

What are the best software engineering techniques and methods?

While all software projects have to be professionally managed and developed, different techniques are appropriate for
different types of system. You can’t, therefore, say that one method is better than another.

What differences has the web made to software engineering?

The web has led to the availability of software services and the possibility of developing highly distributed service-based
systems. Web-based systems development led to the advances in programming languages and software reuse.

} DEPENDABLE SOFTWARE 18
LABORATORY

Homework / Activity #1

Features Editor: Dale Strok - dstrok@computer.org

. OIS =2

o

o
o, 2o oAS

I =3IM 2.

1A (1960s)

SixHl (2020s)

0|24 (2040s)

The Software

SWIHe aN|7t B &

Crisis i 5.

Al
=

Causes

Solutions

No Silver Bullet:
Software Engineering
Reloaded

0740-7459/08/$25.00 ©

Steven Fraser and Dennis Mancl

celebratory panel took place at the 22nd In-
ternational Conference on Object-Oriented
Programming, Systems, Languages, and
Applications in Montreal. The occasion
was the 20th anniversary of Fred Brooks™
paper
dents of Software

lo Silver Bullet: Essence and Acci

zngineering” The paper appeared
in the April 1987 Computer,
reprinted from the Proceed-

Opening statements

The first panelist to speak was Fred Brooks, who
is widely recognized for his 1975 book The Mythi-
cal Man-Month (Addison-Wesley), a collection of
essays on software project management. The book
was based on Fred's experience as the project man-
ager for the development of IBM's System/360 fam-
ily of computers and then the
0S8/360 operating system and

ings of the IFIP 10th World COMW compilers. Fred recapped “No

Computer Congress (North-

Holland, 1986). The panelist P
A

positions appear in the Oopsia
2007 Conference Companion
(ACM Press).

Steve Fraser as impresario

introduced the panel, which in-
cluded Fred Brooks (Univ. of
North Carolina at Chapel Hill),
David Parnas (Univ. of Limer-
ick), Linda Northrop (Software
Inst.), Aki Na-
> Systems), Dave
Thomas (Bedarra Research),
Ricardo Lopez (Quakomm), and Martin Fowler
(ThoughtWorks).

Steve started by polling the audience: “How many

of you have read the paper?” About three-quarters
raised their hands. “I remember that it came out on
the day of my doctoral defense. My thesis supervisor
said it was a good thing that | didn't say anything
that disagreed with Fred.”

008 IEEE

Silver Bullet,” suggesting that
o software challenges are either
G essential or accidental. The
premise of the paper was that

unless the remaining acciden-
tal complexity is 90 percent of
all the remaining complexity,
shrinking all accidental com-
plexity to zero still would not
result in an order-of-magnitude
improvement. Fred suggested
that useful solutions must ad-
dress inherent complexity—
observing thar object-oriented
techniques have come closest to achieving this goal.
Next up was David Parnas, whose collected
papers were published in Software Fundamen-
tals (Addison-Wesley) in 2001. In partic
known for his Communications of the ACM pa-
pers “On the Criteria to Be Used in Decomposing
Systems into Modules™ (May 1972) and “Soft-
ware Aspects of Strategic Defense Systems” (Dec.

ar, he's

January/February 2008 1EEE SOFTWARE 1

Samples from SE Undergraduate (KU 2021)

1+ (1960s) AAR(2020s) 0] 2[(2040s)

Chstn Sgai%l sW g Ay,
=> No Silver Bullet (C}¥3F software | B2 7] SFitel= ARE £2 5 SW7L ozt
system= AESI= 5Lt SW | 71R] 2& 4 92,

engineering 7|\H2 ¢lg)

The software crisis | SW 7 3HA|7} 25 Anjsh

mozeYy WEENM Rolut I =

1950Ach HRE stedlolol 4 | o A AR AL, o AL | L oo mo) e gola
= =7 = aTr o
gt WHog 3t ARFo] U | st olEe2lAlelde] B, JHEEel R L o] 9le Moz HEE ATy wal)
SW= oa] Alato] stz A= | wrab SW QXL o] seto] ClEA Rag BT e ome m-s 5
Causes e o2 Atge] ddst7l AlF }}7 MR o] = | T 2A HEE& I 98 SW o] HEE Aze mapt
& 1 WAEYA software cirsis | oF &= 7|£9 ©Yd &£2MHMoz SW _ ~
. . o Al 25l software crisis7t AT 7544
Ay, engineering2 ZXI845t 1A 5t software o] 912
crisis 2. e
- ojo] otF Z==2ANA, ¥A AFH 5 4 #
olisiAolel =i, el B, MWH | o e smme mmeol @
—_ Y= S°rT T =]
=4 £AE wet Jigstd 9% |9 mol otk SW Alago] chekalAl. of ol s e o
; I Z ; L AMREIT 1, & Oggt S A
Solutions & olde HegE BRshe | o fet M2 ofg SW engineering 7|¥E ARE7} Bore st s1ed]. olo] ASst
== °IT kL ©°

waterfall modelo] 7. HARR 20 HEAH SW NS BAS S |

it njo

Fugd

Boehm, B. (2006, May). A view of 20th and 2lst century software engineering. In Proceedings of the 28th international conference
on Software engineering (pp. 12-29).

Randell, B. (1996). The 1968/69 nato software engineering reports. History of software engineering, 37.

Fraser, S., & Mancl, D. (2008). No silver bullet: Software engineering reloaded. IEEE Software, 25(1), 91-94.

20

K UNTVERSITY

EPENDABLE SOFTWARE 2 1
LABORATORY

2. Software Development Process

I< I l KONKUK
UNTVERSITY

Software Process

- Software process is a structured set of activities required to develop a software system.

« Many different software processes but all involve:
— Specification: defining what the system should do
— Design and implementation: defining the organization of the system and implementing the system
— Validation: checking that it does what the customer wants
— Evolution: changing the system in response to changing customer needs.

« Software process model is an abstract representation of a process, presenting a description of a
process from some perspectives.

— Waterfall

— Incremental SW Process
— Evolutionary Model
— Spiral

— CBD (Component-Based Development)
— lterative - Agile

— [terative - RUP (Rational Unified Process) SW Process

EEEEEEEEE SOFTWARE 2 3
LABORATORY

KU vy

Software Process Model

24

K[J’ KONKUK
UNIVERSITY

Software Process Model

» Software (Development) Process models

— Defining a distinct set of activities, actions, tasks, milestones, and work products that are required to engineer
high-quality software, systematically.

— Defining Who is doing What, When to do it, How to reach a certain goal.
= SDLC (SW Development Life-Cycle) models (SW/ H 37| 2 &)

<1960s ~ 2000s > < 2000s ~ Now >
Waterfall Model e Application Domain
Incremental Model .\ Waterfall Model tailored for
N\ Application Domain
Evolutionary Model ». N\ N e
""" Application Domain
Component-Based Development . ™3¢ ETT
Iterative Model tailored for
lterative Model (Agile) Application Domain
(Rational) Unified Process

25

Typical SDLC Models

| 4

* Wldely used SDLC (SW Development Life-Cycle) models:

EEEEEEEEE SOl

Waterfall

Incremental

Evolutionary

Spiral

CBD (Component-Based Development)
Iterative - Agile

Iterative - RUP (Rational Unified Process)

FTWARE

LABORATORY

KU KONKUK
UNIVERSITY

26

KU vy

The Waterfall Model

» Aclassic software development life-cycle model proposed in 1960s
— Suggests a systematic and sequential approach to software development

— Has distinct/separated phases
* In principle, a phase must be complete before moving onto the next phase.

— Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing customer

requirements.
Requirements
definition
Y
System and
software design
A v
Implementation
and unit testing
Integration and
system testing
T Y

[Operation and

maintenance

1 ::]:JEPENDABLE SOFTWARE 27

LABORATORY

K[J’ KONKUK
UNIVERSITY

The Waterfall Model

« The waterfall model is useful in situations where,
— Requirements are fixed early.
— Work can/should proceed to completion in a linear manner.
— Large systems engineering projects where a system is developed at several sites

» Only appropriate when the requirements are well-understood and changes will be fairly limited during
the design process.

perceived
need
)

“{requirements
=
design

=)

code

—)

test
= b

“| integrate

(M DerenDABLE SOFTWARE 28
I
L.

The Incremental and Evolutionary Model

| 4

EPENDABLE SOFTWARE
LABORATORY

it - Incremental development
dCSIgﬂ code test lnfegmfe O&M (each releasG adds more
- release 2 funcﬁonality)
®
€ [design | code | test |integrate| O&M
£
'g release 3
® a .
5 P design | code test |[integrate] O&M
.......... release 4
P design | code | test [integrate] O&M
version 1
reqts design code test integrate | O&M
lessons Iel)r'nr
version 2 ;
reqts design coide fest integrate O&M
Evolutionary development . i 3 ‘ | [essors 'elj"’” ‘
(each version incorporates : .
- reqts design code test |integrate
new requirements)

KU KONKUK
UNIVERSITY

29

The Incremental and Evolutionary Model

» Often called “Incremental and Evolutionary Development’

* A number of increments are developed in parallel.

— Each increment is developed independent with each other, and integrated later.
- Incremental Development

— The last version is the final one to deliver.
- Evolutionary Development

— More rapid delivery and deployment of useful software to the customer is possible.

» The process is not visible.
— Many increments are developed concurrently.
— Documentations are not easy.

« System structure tends to degrade as new increments are added.
— Regular change tends to corrupt its structure.
— Incorporating further software changes becomes increasingly difficult and costly.

DEPENDABLE SOFTWARE

LABORATORY

KU vy

30

The Spiral Model

| 4

EPENDABLE SOFTWARE
LABORATORY

An iterative version of the waterfall model with “risk analysis” added

Determine goals,
alternatives,
constraints

Evaluate
alternatives
and risks

|concept of
operation

Develop
and
test

KU

31

KONKUK
UNIVERSITY

KU vy

CBD (Component-Based Development)

« Based on software reuse

— Systems are integrated from existing components or application systems.
* Using COTS (Commercial-off-the-shelf) Systems/components.

— Reused elements should be configured to adapt their behaviour and functionality.

» Reuse is now conceptually the standard approach for building many types of business systems.

» Types of reusable software components:
— Stand-alone application systems (COTS):
» Configured for use in a particular environment

— Collections of objects:
» Developed as a package to be integrated with component frameworks such as .NET or J2EE

— Web services:
» Developed according to service standards and which are available for remote invocation

() DEPENDABLE SOFTWARE 32
L LABORATORY

K[J’ KONKUK
UNIVERSITY

CBD

* Reuse-oriented software engineering process

Application system
available

Configure
application
system

Software
discovery

Requirements

Requirements :
refinement

specification

Software
evaluation

Adapt
components
Integrate
Develop new
components

Components
available

« Advantages:
— Reduced costs and risks as less software is developed from scratch.
— Faster delivery and deployment of systems are possible.

 Disadvantages :
— Requirements compromises are inevitable, so system may not meet real needs of users.
— Loss of control over evolution of reused system elements

EPENDABLE SOFTWARE 3 3
LABORATORY

K[J’ KONKUK
UNIVERSITY

The lterative Model - Agile

« Agile development is an umbrella term for a group of methodologies weighting rapid prototyping and
rapid development experiences.

— Lightweight in terms of documentation and process specification
- Example: XP (extreme Programming) , TFD (Test First Development)

* Agile methods attributes

Requirements Analysis & Design

— Iterative (several cycles) .
Implementation
— Incremental (not delivering the product at once) ' "
. . . . b Y lanning
— Actively involve users to establish requirements
, . NN Deployment
Initial =
Planning
« Agile Manifesto :
Evaluation <A
— Individual processes and tools Sl
— Working software documentation
— Customer collaboration contract negotiation

— Responding to change following a plan

C ' DEPENDAEBLE SOFTWARE 34
\ LABORATORY

THE ATIONAL
The lterative Model - RUP :

UNIFIED PROCESS
AN INTRODUCTION

THirp EpITION

« Rational Unified Process (RUP) or UP

— A software development approach that is
 lterative (Incremental, Evolutionary)
— Each iteration includes a small waterfall cycle (3~4 weeks).
* Risk-driven / Client-driven / Architecture-centric
* Use-Case-driven

— A Well-defined and well-structured software engineering process
* 4 Phases and 9 Disciplines

— A de-facto industry standard for developing OO software

development cycle
Al

s . A

iteration phase

(.)\\ Al

~
inc. ela}borat jon cow(struc tion transition
milestone release increment final production
I ' " release

An iteration end-point A stable executable subset The difference (delta)
when some significant of the final product. The between the releases ('\l this point, the system
decisionor evaluation end of each iterationis a of 2 subsequent is released for

occurs. minor release. iterations. production use.
EPENDABLE SOFTWARE
LABORATORY

35

. . APPLYING UML
(Rational) Unified Process AND PATTERNS

« The UP encourages a combination of risk-driven and client-driven iterative planning.
— To identify and drive down the high risks (architecturally), and
— To build visible features that clients care most about.

« Risk-driven iterative development includes more specifically the practice of architecture-centric
iterative development.
— Early iterations in elaboration phase focus on building, testing, and stabilizing the core architecture.

A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending i)n a stable executable.

g - - - /"/\\'
Sample Unified Process Artifacts and Timing (s-start; r-refine) Samp N
T : ample
Discipline Artifact Incep. | Elab. | Const. | Trans. UP Disciplines
Iteration=» I1 El1..En Cl1..Cn T1.:T2 J‘/ Business Modeling
- - 3 Focus = N D
Business Modeling |Domain Model s of this. < U S— — — 1 I
Requirements Use-Case Model S r book 1 _ o Tt
. ‘ Design ——— — — ———=
Vision) r N~ - D
Supplementary Specification S r Implementetion —===
Test il
Glossary S r
Design Design Model s T Deployment ——f—t
SW Architecture Document S Configuration & Change . 1
Data Model S r SRS, (=== /;,,,,,,,
Implementation Implementation Model (code, html, ...) s r T Project Management |——— — -
Environment : —

lterations
EPENDABLE SOFTWARE 3 6
LABORATORY

KU KONKUK
UNIVERSITY

Waterfall vs. lterative

« The Waterfall process (= Plan-driven)
— All process activities are planned in advance.
— Progress is measured against this plan.
* The lterative process (= Agile, UP)
— Planning is incremental and iterative.
— Easier to change the process to reflect changing customer requirements

» There are no right or wrong software development processes.
— In practice, most practical processes include elements of both waterfall and iterative approaches.

<1960s ~ 2000s > <2000s ~ Now >

Waterfall Model

- Application Domain

Incremental Model . % * Waterfall Model tailoredfor

S ~->‘":,::,“mmApplication Domain

Evolutionary Model

_ Application Domam

Component-Based Development .
Iterative Model

Iterative Model (agike) """ Application Domaln

(Rational) Unified Process
]}EPENDABLE SOFTWARE 3 7

LABORATORY

KU vy

Process Activities

38

IRI[EREDE
Process Activities

 The 4 basic process activities of specification, development, validation and evolution are organized
differently in different development processes.

Design inputs

quuirfaments Platform Requirements Data
eIICItatlon_ and information specification description
analysis

Requirements
specification

ReqU|rements
validation

User and system
requirements

Design activities

System
descriptions

Architectural Interface Componen
design design desrgn
(Database design

‘—» Requirements i Design outputs
> document
System Database Interface Component
architecture specification specification specification
Requirements System System Detailed
specification specification design

design

v

System Sub-system Module and " :
A::setpt?::e integration integration unit code Defln-e system Assess existing Propose system) _ Modify
P test plan test plan and test requirements systems changes systems

A

/
Sub-system

Acceptance System Existing New
test integration test integration test systems system
]}EPENDABLE SOFTWARE 3 9
LABORATORY

KU KONKUK
UNIVERSITY

1. Requirements Engineering Process

* RE (Requirements Engineering)
— The process of establishing what services are required and the constraints on the system’s operation and
development
* What services: functional requirements (FR)
» Constraints: non-functional (quality) requirements (NFR)

Requirements
elicitation and
analysis

* Requirements engineering process
— Requirements elicitation and analysis
* What do the system stakeholders require or expect from the system?
— Requirements specification

Requirements
specification

I

Requirements
validation

» Defining the requirements in detail System
— Requirements validation descriptions
» Checking the validity of the requirements User and system
requuements

\—> Requirements

- document

EPENDABLE SOFTWARE 40
LABORATORY

| 4

2. Software Design and Implementation

The process of converting the system specification into an executable system

— Software design: Design a software structure that realizes the specification
— Implementation: Translate this structure into an executable program

EPENDABLE SOFTWARE
LABORATORY

Design inputs

Platform
information

Requirements
specification

Data
description

Y

Design activities

Architectural Interface
design \ design

Component
design

C

Database design

)

Design outputs

architecture

System

Database
specification

Interface
specification

Component
specification

KU KONKUK
UNIVERSITY

41

KU KONKUK
UNIVERSITY

Design Activities

Architectural design

— ldentify the overall structure of the system, the principal components (subsystems or modules), their relationships,

and how they are distributed
- AD (Architecture Description): ISO/IEC/IEEE 42010:2011 - Systems and Software Engineering - Architecture Description

Interface design
— Define the interfaces between system components

Component selection and design
— Search for reusable components. If unavailable, you design how it will operate

Database design
— Design the system data structures and how these are to be represented in a database

EEEEEEEEE SOFTWARE 4 2
LABORATORY

KU vy

Implementation Activities

» The software is implemented either by developing programs or by configuring application system.

— Programming
* An individual activity with no standard process
» Clean code + Refactoring + Unit Testing
— Debugging
* An activity of finding (locating) program faults and correcting these faults
« # Testing : An activity of detecting program faults

 Design and implementation are interleaved activities for most types of software system.

l DEPENDABLE SOFTWARE 43
LABORATORY

IRI[EREDE
3. Software Validation

« Verification and Validation (V&YV) intends to show that a system conforms to its specification (—
Verification) and meets the requirements of the system customer (—Validation).

— Involves (static) code checking, review and system (dynamic) testing.

— Testing is the most commonly used V & V activity.
- IEEE 1012-2016 - IEEE Standard for System, Software, and Hardware Verification and Validation

EEEEEEEEE SOFTWARE 44
LABORATORY

Software Testing

« Stages of testing
— Component (Unit) Testing
» Unit testing / Module testing
* Individual components are tested independently.
+ Components may be functions or objects or coherent groupings of these entities.

I< I l KONKUK
UNTVERSITY

— System Testing

Y

* + Integration Testing
) Component . Acceptance
+ Testing of the system as a whole. (testing)"(System testing)"(testing)

» Testing of emergent properties is particularly important. A

— Acceptance Testing
» Testing with customer data to check that the system meets the customer’s needs.
+ Validation activity

PENDABLE SOFTWARE
LABORATORY

45

I§ l l KONKUK
UNIVERSITY

V-Model of Software Testing

Requirements System System Detailed
specification specification design design

Acceptance System Sub-system Module and
testp lan integration integration unit code
P test plan test plan and test

Y

Acceptance System Sub-system
test integration test integration test

EPENDABLE SOFTWARE 46
LABORATORY

SOFTWARE TESTING
AND ANALYSIS

V-Model of Software Testing P

Actual Needs and 1 i
. & Delivered
Constraints < User Acceptance (alpha, beta test) Package —
* Michal Young
System
System System Test Integration
Specifications pa—
\l_‘ Analysis / Review
, Subsystem /I .
Design/Specs \l Integration Test Subsystem
/1_
Analysis / Review Verification >
Unit/ :
j Components Module Test Unit / Validation
SR Components
_\. A ;

\ User review of external behavior as it is determined or
becomes visible

EPENDABLE SOFTWARE 47
LABORATORY

KU vy

V-Model of Software Testing from IEC 61508

E/E/PE system

safety
requirements

specification

Software safety Validation
requirements

specification

Validation

I‘ Validated
testing software

‘ Integration testing
(components,
E/E/PE system “ architecture [T subsystems and

architecture programmable
electro nlcs)

Software |-~ Integration
system design testing (modu le)

Module - Module |
design T testing

— Output \| :

-~ -~ % Verification —{ Coding J—

} DEPENDABLE SOFTWARE 48

LABORATORY

KU KONKUK
UNIVERSITY

4. Software Evolution

« Software must also evolve and change, as requirements change through changing business circumstances.
— Software is inherently flexible and can change.

— Maintenance
+ S3M (SW Maintenance Maturity Model)

Define system Assess existing Propose system \ Modify
requirements systems changes systems

Existing New
systems system

EPENDABLE SOFTWARE 49
LABORATORY

KU vy

Process Improvement

50

KU vy

Process Improvement

* Process improvement

— Understanding existing processes and changing these processes to increase product quality and/or reduce
costs and development time.

« Away of enhancing the quality of their software and reducing costs

— The level of process maturity, such as CMMi, reflects the extent to which good technical and management
practice has been adopted in organizational software development processes.

— Activities of process improvement
* Analysis
+ Change
* Measurement

Measure

Change Analyze

NS

1 ::]:JEPENDABLE SOFTWARE 5 1

LABORATORY

KU vy

Process Improvement Activities

* Process analysis
— The current process is assessed, and process weaknesses and bottlenecks are identified.

— Process models (process maps) that describe the process may be developed.

 Process change
— Process changes are proposed to address some of the identified process weaknesses.
— These are introduced and the cycle resumes to collect data about the effectiveness of the changes.

* Process measurement
— Measure one or more attributes of the software process or product
— These measurements forms a baseline that helps you decide if process improvements have been effective.

d DEPENDABLE SOFTWARE 5 2
| LABORATORY

KU vy

Process Measurement

« Wherever possible, quantitative process data should be collected.
— However, organizations often do not have clearly defined process standards.
+ ltis very difficult as we don’t know what to measure.
— A process should be defined before any measurement is possible.

» The organizational objectives should drive the process improvements.

« Examples of process metrics
— Time taken for process activities to be completed
» calendar time, effort to complete an activity or process
— Resources required for processes or activities
+ total effort in person-days
— Number of occurrences of a particular event
* number of defects discovered

l DEPENDABLE SOFTWARE 53
LABORATORY

KU KONKUK
UNIVERSITY

The SEI CMMi

e CMMi (Capability Maturity Model Integrated) of SEI (Software Engineering Institute) in CMU

Initial : Essentially uncontrolled

Repeatable : Product (rrojecty management procedures are defined and used.
Defined : Process management procedures and strategies are defined and used.
Managed : Quality management strategies are defined and used.

Optimizing : Process improvement strategies are defined and used.

akhobdb-=

Focus on process
improvement

5 -Optimizing

Processes are measured and
controlled

Projects tailor their processes from the organizations
development methodology

3 -Defined

Processes are characterized for specific projects and

2 = Repeata ble organization is often reactive

Process is unpredictable, poorly controlled and reactive

EPENDABLE SOFTWARE 54
LABORATORY

KU KONKUK
UNIVERSITY

22 Processes in CMMi

Process Project
Management Management

Engineering

Organizational Project Planning Requirements Configuration
Process Focus Project Definition Management
Monitoring & Control

Organizational Technical Process & Product

Supplier Agreement

Process Definition Solution Quality Assurance
Organizational Eﬂequiremems Product Measurement
Training Sl Integration & Analysis
Nv. 2
Risk Management
Organizational o Decision Analysis
Nv. 3
Process Performance Integrated Project & Resolution
Management
- @) izational
rganizati :
Pgrformance Quantitative Project Validation Casual Analysis
Nv. 5 Management Management & Resolution

EPENDABLE SOFTWARE 55
LABORATORY

22 Processes in CMMi 1.3

DEPENDABLE SOFTWARE
LABORATORY

Practice

Subpractice

Capabhility Maturity Model Integration® for Development Version 1.3 (CMMI-DEV-V1.3°)

Work Product

Evidence|

100%

Establish criteria for distinguishing

[ists of criteria for distinguishing

and tasks

f providers providers e 52 | 100%
Establish objective criteria for the Criteria for evaluation and acceptance of
evaluation and acceptance of 16 32 | 100%
. requirements
Requirements [Analyze requirements (o ensure that Result of andlyses aganst citera o 2 o
established criteria are met
Reach an understanding of requirements
with requirements providers so that project[A set of approved requirements 16 32 | 100%
can commit to them
Obtain [Assess the impact of requirements on o iements impact assessments 16 32 | 100%
c existing
to Negotiate and record commitments Documented commilments to 16 2 | 100%
Requirements and changes
Document all requirements and
requirements changes that are given to or |Requirements change requests 16 32 | 100%
by the project
Maintain a requirements change istory,
m: Mainta R ts ch t report 16 32
2n29€ including the rationale for changes equirements change impact reports 100%
Requirements Changes |Evaluate the impact of requirement
ed Manage 985 Ichanges from the standpoint of relevant |Requirements status 16 32 | 100%
Management
ey |Reauirements stakeholders
Make requirements and change dafa |pqqirements database 16 32 | 100%
available to the project
Maintain requirements iraceabilty o
ensure that the source of lower level (i.e., [Requirements traceability matrix 16 32 | 100%
Maintain [derived) requirements is documented
idirecti Maintain ity from &
T ility of] to its derived tracking system 16 32 | 100%
Requirements |and allocation to work products
f‘:';:x’a'e a requirements traceabilty Requirements traceability report 16 32 | 100%
Documentation of InconsTstencies
Review project plans, actities, and work [DocUmeniaion orneonsistencies
products for consistency with a d project p 16 32 100%
Ensure and work products, including sources and
E requirements and changes made to them e
Between [ty the source of the iconsistency (1 [g oo oo oo o 2 e
Project Work |any)
and Identily any changes that should be made
Requirements |to plans and work products resuiting from [Changes to resolve inconsistencies 16 32 | 100%
changes to the baseline
niiate any necessary corrective actions _|Corrective actions 16 32| 100%
Devlop a WBS 76 32| 100%
Define the work packages in sufficient
Estimate the |16l 50 thal estimates of pioject a5k, | ragi dosoriptions 16 32 | 100%
Scops of the |"esponsibiities, and schedule can
Projoct . |specifed
dentify products and product components | ot and component list 16 2 | 100%
to be extemally acquired
Identily work products o be reused Reusable work product list 16 32| 100%
Determine fhie echnical approach for e [r_ oo - 2 e
Establish [Pt
Use appropriate methods (o determine the
Estimates of |\, tes of the work products and tasks
Work Product work p Estimating models and inputs 16 32 100%
to be used to estimate resource
) and Task °
Establish
Estimates Estimate the attributes of work products Attribute estimates 16 32 100%

KU vy

56

CMMI 2.1 (SE/SW/IPPD/SS) Process Evaluation Checklist

_ _ _ _ _ _ N _‘ i

1 2 4 s 15 32 100%

1 2 3 B 16 3 100%

RM':"“"'“‘_': 1 2) 5 16 32 100%

e 1 2 3 B 16 32 100%

1 2 4 s 16 32 100%

1 2 1 3 16 5] 100%

1 3 3 B 15 32 100%

1 3 16 32 100%

1 3 16 32 100%

1 1 16 2 100%

denus 1 3 16 32 100%

- Develon a Praject |P128.for Data Management 1 2 3 s 16 32 100%

ject Planning h:u:’mj Plan for Project 1 F] 4 8 16 32 100%

1 2 + 3 16 32 100%

1 2 3 B 16 32 100%

1 3 3 B 16 2 100%

1 2 3 s 16 32 100%

Reconcile Work and Resource Lmn 1 2 3 s 16 32 100%

Plan Obtain Plan Commitment 1 2 4 s 16 32 100%

Monitor Project Planning P 1 3 3 B 15) 100%

Monitor Commtments 1 2 3 3 16) 100%

; [Monitor Project Risks 1 2 3 s 16 32 100%

Pro Mn'lnh:r le | Monitor Data Mlm&l 1 2 4 8 16 32 100%

m“:"“d Aprins Mouitor 1 2 4 3 16 3 100%

e Conduct Progress Reviews 1 2 3 B 16 2 100%

Conduct Milestone Reviews 1 2 4 B 16 32 100%

1 2 4 B 16 32 100%

1 2 4 s 16 32 100%

1 2 ! B 16 32 100%

1 2 ! s 16 32 100%

1 2 1 s 16 32 100%

Supplier 1 2 1 s 16 32 100%

Agreement 1 2 4 8 16 32 100%

Management | Satisfy Supplier [Execute the Supphier 1 3 3 3 15) 100%

Agreements Ac ‘the Product 1 2 4 8 16 32 100%

Transition Products 1 2 4 3 16 32 100%

- Establish Measurement Objectives 1 2 4 3 16 32 100%

“‘zf;ﬂl“"m"."“"i %g Measures 1 2 [s 16 2 100%

Acticiton ify Data Collection and Storage Procedures 1 2 4 B 16 32 100%

M and Specify Analysis Procedures 1 2 4 s 16 32 100%

Analysis Brovide Collect Measurement Data 1 2 4 [] 16 32 100%

Mes Analyze Measurement Data 1 3 3 B 16 32 100%

surement ¢, ve Data and Results 1 4 16 32 100%

Reslts [oumumicate Results 1 1 16 32 100%

E—— Objectively | Objectively Evaluate Processes 1 1 16 32 100%

Product Qual Evaluate Processes|Objectively Evaluate Work Products and Services 1 4 16 32 100%

] “ | Provide Objective |C: 1 and Ensure of A Issues 1 2 4 8 16 32 100%

[Establish Records 1 2 s 3 16 32 100%

[dentify Configuration ltems 1 2 3 3 16 32 100%

Establish Baselines|Establish a C tion Management System 1 2 3 3 16 32 100%

. Create or Release Baselines 1 2 3 B 16 32 100%

Moneoement | 7% 8 Control [Track Chaage Requests 1 2 [s 16 32 100%

gemen Changes | Control Configumtion Items 1 2 4 s 16 32 100%

[Establish C tion Management Records 1 2 3 s 16 32 100%

Establish Integrity {5 o tion Audits 1 3 3 B 16 3 100%
EPENDABLE SOFTWARE CMMI Level 2 Score 100% 100% 100% 100% 100% 100% 100% 57

LABORATORY

| 14

EPENDABLE SOFTWARE
LABORATORY

)
<
<
)

-

Develop Cu Co}lfctS keholder Needs 1 2 8 16 32
Requi i Elicit Needs : 1 2 4 8 16 32 100%
Develop the Customer Requirements 1 2 4 8 16 32 100%
Develop P ¢ Establish Product and Product-C, wp Requirements 1 2 4 8 16 32 100%
: Allocate Product Component Requirements 1 2 4 8 16 32 100%
Requirements | oTrTmems [tify Interface Requs 1 2 4 8 16 32 100%
Development Establish Operational Concepts and Scenarios 1 2 4 8 16 32 100%
Analvze and Establish a Definition of Required Functionality 1 2 4 8 16 32 100%
Validate Analyze Requirements 1 2 4 8 16 32 100%
Requi Analyze Requirements to Achieve Balance 1 2 4 8 16 32 100%
Validate Requirements 1 2 4 8 16 32 100%
Validate Requirements with Compreh Methods 1 2 4 8 16 32 100%
Select Produdt: Develop Altemative Solutions and Selection Criteria 1 2 4 8 16 32 100%
c N Develop Detailed Alternative Solutions and Selection Criteria 1 v 4 8 16 32 100%
S;:ﬁons Evolve Operational Concepts and Scenarios 1 2 4 8 16 32 100%
Select Product-Component Solutions 1 2 4 8 16 32 100%
Design the Product or Product Component 1 2 4 8 16 32 100%
Technical Solution| Establish a Technical Data Package 1 2 4 8 16 32 100%
Develop the Design|Establish Interface Descriptions 1 2 4 8 16 32 100%
Design Interfaces Using Criteria 1 2 4 8 16 32 100%
Perform Make, Buy, or Reuse Analyses 1 2 4 8 16 32 100%
Implement the |Implement the Desiga 1 2 4 8 16 32 100%
Product Design [Develop Product Support Documentation 1 > 4 8 16 32 100%
= merodnctF_T Integ Seq ce : 1 2 4 8 16 32 100%
Integration Estabh'sh the Product]me_gﬂuon Environment _ 1 2 4 8 16 32 100%
Establish Product Integration Procedures and Criteria 1 2 4 8 16 32 100%
Pradart Ensure Imerﬁce Review Interface Descriptions for Completeness 1 2 4 8 16 32 100%
Tategridica Compatibility |[Manage Interfaces 1 2 4 8 16 32 100%
R ble Product Confirm Reads of Product Components for Integration 1 2 4 8 16 32 100%
c and Assemble Product Components 1 2 4 8 16 32 100%
D!ﬁ:!rf‘hchudiuﬁE luate A bled Product Component: 1 2 4 8 16 32 100%
Package and Deliver the Product or Product Component 1 2 4 8 16 32 100%
Prepare for Select Work Products for Verification 1 2 4 8 16 32 100%
Verification Establish the Verification Environment 1 2 4 8 16 32 100%
Establish Verification Procedures and Criteria 1 2 - 8 16 32 100%
. Prepare for Peer Reviews 1 2 4 8 16 32 100%
Verification Pf:;’:‘::“ Conduct Peer Reviews 1 2 4 8 16 32 100%
Analyze Peer Review Data 1 2 4 8 16 32 100%
Verify Selected |Perform Venfication 1 2 4 8 16 32 100%
Work Products [Analyze Verification Results and Identify Corrective Action 1 2 4 8 16 32 100%
Prepare for Select Products for Validation 1 2 4 8 16 32 100%
Vakidati Establish the Validation Environment 1 2 4 8 16 32 100%

K

KONKUK
UNTVRRSITY

58

Valid: YHmuanot |Establish Validation Procedures and Criteria 1 2 4 s 16 32 100%

Validate Product or| Perform Validation 1 2 1 s 16 32 100% —

1 2 3 s 16 32 100% Sane

1 2 3 3 16 0 100% KU s
1 2 3 3 16 32 100%
o 1 2 3 s 16 32 100%
¥ 1 2 T s 16 3 100%
Eraccs Feoxt 1 2 1 B 16 32 100%
1 2 1 3 16 32 100%
1 2 1 s 16 32 100%
1 2 1 s 16 32 100%
e 1 2 3 s 16 32 100%
rm"""m] 1 3 1 s 16 32 100%
2 1 2 3 3 16 32 100%
1 2 3 s 16 32 100%
1 3 3 s 16 2 100%
1 3 3 s 16 32 100%
1 2 4 3 16 32 100%
0"1.“:‘.".""" 1 2 4 3 16 2 100%
aining 1 2 4 s 16 32 100%
1 2 3 s 16 32 100%
1 2 1 3 16 32 100%
1 2 3 3 16 32 100%
1 2 3 s 16 32 100%
1 2 3 s 16 32 100%
1 2 3 s 16 32 100%
1 2 3 3 16 32 100%
Project| Coordinate and |Manage Stakeholder Involvement 1 2 3 s 16 32 100%
ies 1 2 4 s 16 32 100%
Tssues 1 2 3 B 16 32 100%
3 isi 1 2 1 3 16 32 100%
1 2 1 s 16 32 100%
1 2 4 s 16 32 100%
1 3 3 s 16 32 100%
1 2 1 s 16 32 100%
1) 3 s 16 32 100%
1 2 3 s 16 32 100%
1 2 1 s 16 E7) 100%
Risk Management| Identify and | [dentify Risks 1 2 3 s 16 32 100%
i 1 2 1 3 16 32 100%
1 2 1 s 16 3 100%
1 2 1 s 16 32 100%
1 2 3 3 16 32 100%
1 2 1 3 16 32 100%
1 2 3 s 16 32 100%
Integrated 1 2 1 s 16 32 100%
Teaming 1 2 4 8 16 32 100%
1 3 3 B 16 32 100%
1 2 3 3 16 32 100%
1 2 4 s 16 2 100%
1 2 4 s 16 32 100%
I d 1 2 3 3 16 32 100%
Supplier 1 2 3 3 16 32 100%
Management 1 2 4 s 16 32 100%
1 2 1 s 16 32 100%
1 2 3 s 16 32 100%
1 2 1 s 16 32 100%
1 2 3 3 16 32 100%
and Resolution 1 2 4 3 16 32 100%
1 2 1 B 16 3 100%
1 2 3 B 16 32 100%
1 2 1 3 16 32 100%
& 1 2 1 s 16 32 100%
E 1 2 1 s 16 32 100%

EPENDABLE SOFTWARE = Int o] - L 2 4 8 16 32 100% 59

ey egration 1 3) 3 16 3 100%
1 2 3 3 16 32 100%
CMMI Level 3 Score 100% 100% 100% 100% 100% 100% 100%

| 14

EPENDABLE SOFTWARE
LABORATORY

Establish Select Processes 1 2 4 8 16 32 100%

Organizational Perf. Establish Process Performance Measures 1 2 4 8 16 32 100%

Process Baselines and Establish Quality and Process-Performance Objectives 1 2 4 8 16 32 100%

Performance Models Establish Process Performance Baselines 1 2 4 8 16 32 100%

Establish Process Performance Models 1 2 4 8 16 32 100%

Establish the Project’s Objectives 1 2 4 8 16 32 100%

Quantitatively |Compose the Defined Process 1 2 4 8 16 32 100%

R Manage the Project|Select the Subprocesses that Will Be Statistically Managed 1 2 4 8 16 32 100%

Projec Seiect Mieaes snd Anaivic N T N S I T N N T
s M. lect and Analytic Techniques 1

Management Sm’;“f ally o "%{Apply Statistical Methods to Understand Variation 1 2 3 3 16 2 100%

Pert: . Monitor Performance of the Selected Subp 1 2 4 8 16 32 100%

Record Statistical Management Data 1 2 - 8 16 32 100%

CMMI Level 4 Score 100% 100% 100% 100% 100% 100% 100%

Collect and Analyze Improvement Proposals 1 2 4 8 16 32 100%

Select Identify and Analyze Innovations 1 2 4 8 16 32 100%

Organizational Improvements |Pilot Improvements 1 2 4 8 16 32 100%

Innovation and Select Improvements for Deployment 1 2 4 8 16 32 100%

Deployment Deploy Plan the Deployment 1 2 4 8 16 32 100%

Impeov Manage the Deployment 1 2 4 8 16 32 100%

M Improvement Effects 1 2 4 8 16 32 100%

Determine Causes |Select Defect Data for Analysis 1 2 4 8 16 32 100%

Cawsal Analysis (2D m-:a Action Proposals i ; : : :: g :gﬁ

A e Action Propos

and Resolution Md"l;: :::” of | Evaluate the Effect of Changes 1 2 3 8 16 2 100%

Record Data 1 2 4 8 16 32 100%

CMMI Level 5 Score 100% 100% 100% 100% 100% 100% 100%

* Capability Maturity Model Integration and CMMI are service marks of Camegie Mellon University.

K

KONKUK
UNIVERSITY

60

SW Development Methodology

KU KONKUK

KU tvensry
Software Development Methodology

Software Development = Solving Problems with Software working on a Computer

L@
Problems - Natural Language

. - — Descriptions of Problems
In real WOI"d : (through Identifying Requirements)

- @

: ProgrammingLanguage D
. Solutions - — Descriptions of Solutions | *
in computer f (through Designing Programs) _
—— Program Execution
' ® + with Computer System

FEY BN ey

Procedural Programming ——» SASD

—— OOAD

AH X LY HEE

Software Development = ®@QR) i

Object-Oriented Programming

62

EPENDABLE SOFTWARE
LABORATORY

| 4

Procedural Programming

« Aprogram is organized with procedures.

— Procedure/Function
* building-block of procedural programs
+ statements changing values of variables

— Focusing on data structures, algorithms, and sequencing of steps
* Algorithm : a set of instructions for solving a problem (Control-centric)
+ Data structure : a construct used to organize data in a specific way (Data-centric)

— Most computer languages (from FORTRAN to ¢) @re procedural programming languages.

______________________ .

| Procedure 2: Withdraw() {..} |
e %v

struct account {
char name;
int accountld;
float balance;
float interestYTD;
char accountType;

}

Procedures (with Algorithms)

EPENDABLE SOFTWARE
LABORATORY

Data Structure

KU KONKUK
UNIVERSITY

63

A Procedural Program

) #polynomial.c - Windows t 2%

IZE #IE MY40 2N =820
#include <stdio.h>

#include <stdlib.h>

int p1Coef, p1Degree, p2Coef, p2Degres;

J/CHEEA] SHLEE list2 B, OFsrA0f] S0{7hs 2 22 ofE list2] node® =Lt

typedef struct Term {

int coeff;//Zt 22| A=

int degree;//Z} 2| Xt==

struct Term *next;//next terme ¥ = Ql=, HHEHEI2E
} Term;

typedef struct polynomial {
Term *head;
Term *tail;
}Polynomial;

void addTerm(Polynomial *p, int coeff, int degree) {

EPENDABLE SOFTWAI

/149|9| termO| XHMO| CHE O @& next termPt & = Qo0 =2 A

Term* termNew;
Term* temp;

termNew = (Term *)malloc(sizeof(Term));
termNew-=coeff = coeff;
termNew->degree = degree;
termNew->next = NULL;

if (p->head == NULL) {
p->head = termNew;
}
else {
temp = p->head;
while (temp->next != NULL) {
temp = temp->next;
}

temp-=next = termNew;

}

void tSort(Polynomial *p) {
int temp;

/ThENE YEEe = XYl 5 HEH e WK BEn

Term *term = (Term *)malloc(sizeof(Term));
term = p->head;
while ((term)-=next != NULL) {
if (p->head->degree > p->head->next->degree) {
Ln 121, Col 1

100% Windows (CRLF)

) #polynomial.c - Windows t 2% -
IEE HILE MHOQ Bl =52H)

int main() {
Polynomial *p1 = (Polynomial *)malloc(sizeof(Polynomial));

Polynomial *p2 = (Polynomial *)malloc(sizeof(Polynomial));
Polynomial *p3 = (Polynomial *)malloc(sizeof(Polynomial));

while (1) {
printf("#n #n'");
printf("A WA ChatA{0f SO 2 29| Al A8 =M= Lo awn’);
printf"AH|4=0] 08 YT A CO|4 U2 BHX| PELCHNY;
printf(Wn");

pl1->head = NULL;
do {
scanf_s("%d %d", &p1Coef, &p1Degree);
if (p1Coef 1= 0) {
addTerm(p1, p1Coef, p1Degree);

!
} while (p1Coef I= 0);

printf("#n Wn");
printf("5& YR ChetAlo] 012 2k 22| Aot X5 =MIIZ LHSIH W),
printf"A|5-0f 08 LT ZT HOlY A WX PELITHNY;

printf(Wn");

p2->head = NULL;
do {
scanf_s("%d %d", &p2Coef, &p2Degree);
if (p2Coef 1= 0) {
addTerm(p2, p2Coef, p2Degree);

!
} while (EZCoef 1= Q);

printf("#n AB)=");
printPoly(p1);
printf("#n Bi)=");
printPoly(p2);

p3->head = NULL;
addP(p1, p2, p3);

printf("#n C6)=");
printPoly(p3);

Ln 121, Col 1 100% Windows (CRLF) ANSI

(KU s |
SASD for Procedural Programming

SASD (Structured Analysis and Structured Design, T

/Enable “Move Forward”, Cleaner Command (On)

ZEEANA HLLEE)
— Atraditional software development methodology for procedural programs B o et
— Top-Down Divide and Conquer

Cleaner Command (Off),
°

Move

Forward
Tick [F && IR]

/ Disable “Move Forward",
Cleaner Command (Off),

Trigger “Tum Right”

Trigger “Turn Left”

able “Move Forward”,
€aner Command (On)

Divide large, complex problems into smaller, more easily handled ones
— Functional view of the problem using DFD (Data Flow Diagram)

Turn Left

Turn Right

Tick [F && L&&R]
1 Disable "Move Forward®,
Cleaner Command (Off),

An FSM for 2.1.1 Controller

Determine
Obsiade O
Location

1.5

Maotor Command

Motor Command
Determine
Dust Dust
Existence Existenc

1.6

Motor Command
Cleaner Command

EPENDABLE SOFTWARE
LABORATORY

A level 3 DFD for RVC Control 65

K KONKUK
UNIVERSITY

An SASD Example - RVC Control

oirecton DFD Level 0
Front SensorInput
Left Sensor Input

Right SensorInput

Dust Sensor Input

Sensor

Cleaner
Structured Analysis

DFD Level 3

Tick Motor Command

Determine

TekF sy [s
Gt Move o, Location sy
ioaner G (O,

o Tum ot
E —
T voww Forme
- - =
Turn Left
Determine —

Tk as LaaR) Tis Lot S
Tisac Nove Favare Bxistence G
Cleaner Conmans (Om.

16

Motor Command -

Cleaner Command

Controller

Structured Chart

Obstacle Location

Structured Design

Determine
Dust Existence

Determine
Obstacle Location

Enable
Disable

EPENDABLE SOFTWARE
LABORATORY

66

Interface

Interface Interface

Front Sensor l | Right Sensor I | Dust Sensor I

|Muve Forward | I Turn Left | Turn Right |

KU vy

Object-0Oriented Programming

« A program is organized with objects.
— Providing system functionalities through object communications
» Object : consisting of data and operations

+ Object communication : an object calls an operation of other objects with its data
* No explicit data flow, but only communication sequences among objects

Class What’ ?
. at’'s your name .

Professor ;
-name: String
-age: Integer yoo.getName()
-speciality: String client Professor Yoo
+getName(): String
+getAge(): Integer
+getSpeciality(): Stri

getSpeciality(): String T

yoo0 : Professor

Object

Yoo : Professor 1 : getName()

name = Yoo >|]
age =43

speciality = Software Engineering

} DEPENDABLE SOFTWARE 67
LABORATORY

KU KONKUK
UNIVERSITY

An Object-Oriented Program

7 Factorials java - Windows HE2% - O X
o¥E HITE@ Mdo 27y ESZH
hmport java.util.Scanner;

public class Factorials {
static int fac;

public static int recursiveFactorial(int n) {
it (n == 0) return 1;
else return n*recursiveFactorial(n-1);

}

public static void main{String[] args) {
while(true) {
System.out.printin("H A SI DA} SHE factorial T2 2BEM2.Y;
Scanner keyboard = new Scanner(System.in);
if(keyboard.hasNextint()) {
fac = keyboard.nextint();

lelse {
System.out.printin("E X El YHYLICH T2 WS ZEELCLY);
break;
1
System.out.print(fac + " = ");
ifffac == 0) {
System.out.printin("0! = 1");
lelse {
inti = fac
while(i > 1) {
System.out.print(i + "*");
i
1
System.out.printin("1 = " + recursiveFactorial(fac) + "#n");
1

EPENDABLE SOFTWARE 6 8
LABORATORY
Ln 1, Col 1 100% Windows (CRLF) UTF-8

-

KU KONKUK
UNIVERSITY

OOAD for Object-Oriented Programming

* OOAD (Object-Oriented Analysis and Design, AKA Z4 K| X| &7}kl eH 2

“Identifying your requirements and creating a domain model, and then add methods to the appropriate classes and
define the messaging between the objects in order to fulfill the requirements”

— Object-Oriented Analysis (OOA)
* Discover the domain concepts/objects (pomain Model)
* Identify requirements (Use-Case Model)

— Object-Oriented Design (OOD)

» Define software objects (static model > Class Diagram)

» Define how they collaborate to fulfill the requirements (Dynamic model > Sequence Diagram)

— Various development process models are available.
+ Waterfall
* UP (lterative)

EPENDABLE SOFTWARE 69
LABORATORY

OOA - Domain Model

| 4

EPENDABLE SOFTWARE
LABORATORY

<<Business Object>>
Item

ID : Integer

< <Business Object>>
Title

available : Boolean

Refer to

0.1

< <Business Object> >
Loan

date: Date
late-return-fee : Integer

o"*

Has/Have

Copy of

name : String

isbn : String

count : Integer

price : Float
publisher : String
lending time : Integer

AN

Refer to

< <Business Object> >
Book

author: String

< <Business Object> >
Magazine

month : Integer

<<Business Object> >
Librarian

name : String
user ID : String
password : string

< <Business Object>>
Borrower

name : String
age : Integer
SSN : String
address : String
phone : String
zip : String

< <Business Object> >
Reservation

1 0.*
Has/Have

date : Date —

KU KONKUK
UNIVERSITY

70

00D Static Model - Class Diagram

copy of
+1..*
Database +1
Title: Map
+ltem: Map Title
+Borrower: Map
+Loan: Map “name: String
+Reservation: Map +isbn: ISENType
ice: Flot
Ttem +searchTitleDB(jsbn: ISBNType): Title Hen Ty

+itemID: String
+available: Boolean
Host: Boolean

+searchitem(itemID: String): Item
+addItem(itemRef: Item): Void
+updateltem{itemRef: Item): Void
+removeltem(jitemRef: Item): Void
+setAvailable(flag: Boolean): Void
+getTitleftemRef: Ttem): Tite

+sBorrowed(): Boclean +* Manages 4,
+setlost{flag: Boolean): Vaid —_—

+addTtileDB(titleRef: Tite): Void

+removeTileDB (titeRef: Title): Void
+updateTitleDB(tiHeRef: Title): Void
+searchltemDB({itemID: String): Item
+addItemDB(itemRef: Item): Void
+removeltemDB(temRef: Item): Void
+updateltemDV (itemRef: tem): Void
+searchBorrowerDB(ssn: String): Borrower
+addBorrowerDB(borrowerRef: Borrawer): Void
+removeBorrowerDB(borrowerRef: Borrower): Void
+updateBorrowerDE (borrowerRef: Borrower): Yoid
+searchLoanDB({temID: String): Loan
+searchLoanDB(borrwerRef: Borrower): Loan

+addLoanDB(loanRef: Loan): Vaid
i +updatel oanDB{oanRef: Loan): Yoid
+searchReservationDB(isbn: ISBNType): Reservation
+searchReservationDB(tileRef: Title): Reservation
+searchReservationDB(borrowerRef: Borrower): Resrvation[]
Refer To ¥1 +addReservationDB(reservationRef: Reservation): Void
+removeReservationDB{reservationrRef: Reservation): Void
Manag +validateDB(userID: String, password: String): Void
+0..1 e
2 +1 Mangpe!
Loan

+checkInDate: Date Manags

+checkOutDate: Date

HateReturnFee: Integer

+validLoan: Boolean b

+LoanCount: Long

+setvalidLoan(flag: Boolean): Void Librarian

+calculatelateReturnFee(oanPeriod: Integer): Integer

+calaulateReplacementFee(price: Float): Integer +name: String S

+searchLoan(itemID: String): Loan
+searchLoan{borrowerRef: Borrower): Loan
+addLoan(oanRef: Loan): Void

+updatel oan{loanRef: Loan): Void
+decreaseLoanCount(): Void
+increaseloanCount(): Void
+gethumOfLoan(): Void

+getltem(LoanRef: Loan): Item

DEPENDABLE SOFTWARE

Lo.*

+userld: String
+password: Siring
+HogInFlag: Boolean

+validate(userl: String, password: String)
HogQut{userID: String)

porm——— | +increaseMNumOfTtem(): Void
+1 Manages 4= +decreaseMumOfItem(): Void

+HoanPeriod: Integer
+numOfitem: Integer
+availalbeCount: Integer
+reservationCount: Integer

“HncreaseAvailableCount(): Void
+decreaseAvailableCount(): Void

+getNumOfltem{): Integer
+getPrice(): Float

+getl oanPeriod(): Integer
+getiewltemID(): String
+searchTitle(isbn: ISBNType): Title
+addTitle(tileRef: Tite): Void
+removeTite(tileRef: Title): Void
+updateTitle(ftieRef: Title): Void
+isReserved(titteRef: Title): Boolean
+increaseReservationCount(): Void
+decreaseReservationCount(): Void

+1

Refer ¢

+0..7

4

Magazine

+publishCydle: String
+menth; String

Reservation

+reserveDate: Date

+searchReservation(jsbn: ISBNType): Reservation
+searchReservation(titeRef: Title): Reservation
+searchReservation(borrowerRef: Borrower): Reservation[]
+addReservation(reservationRef: Reservation): Void
+removeReservation(reservationRef: Reservation): Void
+printhotifyCard(titeRef: Title): Void
+printCard{resrvationRef: Reservation): Void
+getTitle(reservationRef: Reservation): Title

Borrower

+name: String

+ssn: String

+address: String
+reservationCount: Integer

1 HoanCount: Integer

+increaseloanCount(): Yoid
+deceaseloanCount(): Void
+increaseReservationCount(): Void
+decreaseReservationCount(): Void
+searchBorrower(ssn: String): Borrawer
+addBorrower{borrowerRef: Borrower): Void
+removeBorrower(ssn: String): Void

+1

“updateBorrower (borrwerRef: Borrower): Void

Book

+author: String

71

00D Dynamic Model - Sequence Diagram

Controller : Reservation : Title: : Borrower : Database

: Librarian E

1 : makeReservation{isbn, ssn)

2 : searchTitle(isbn)

[borrowerRef is valid]

! 3 : searchTitleDB(jsbn) a5
H =
: M = e e
i b e i e 4 ;
[titleRef is invalid] 5: titleRef : :
“ E = ; : :
: displayMessage{"Error”) ! ! !
[tteRstisakd] E 7 : searchBorrower(ssn) £ E E
E i 8 : searchBorrower (ssn) . H
H L
i eGnECEECEETEE T R e L e E R TR e TR PP E R TR TR e
' 10 : borrowerRef

2 : addReservation{tileRef, bDI’I’D'NEI'REF):

s 'U

13 : reservationRef]

14: addReservaﬁonireservaﬁonRef)

15 : addReservation(reservationRef)

18 : increaseReservationCount()

19 : increaseReservationCount()

DEPENDABLE SOFTWARE 72
LABORATORY

An OOAD Example - Dice Game

Define domain Define interaction Define design class
Define use cases : :
model diagrams diagrams
------------------------------------ 0 L0 s T B o o 5 I

Interaction Diagram
. -'Dj(_n,gmn. ! &\ E 'D'\!. i&u;'b“‘ \

Use Case : Play a Dice Game
- Player requests to roll the dice.

[1
- System presents results. El*i?L) ')
- If the dice’s face value totals seven, - ____m_m__,’, :
player wins; otherwise, player loses. M&m; '

: \

- e\ . -

| = o 36 aVdway !)

| i : %

\ \ ‘

Player l4 Die

play() roll()

Domain Model Design Class Diagram
]}E“ﬁ:ﬁ:ﬁfg?“% 73

i
i
i
i
i
i die1 : Die 1 2._% faceValue : int
1
i
i
i
i
i

Rolls 2| -
name faceValue i
| L i
1 2 i

! DiceGame Die
Plays i

1 | .
— i die2 : Die X
DiceGame [1 indlidas i . | getFaceValue() : int

i
i
i
i

Sample Unified Process Artifact Relationships

. Domain Model \

Sale Captured-on_| Register ProductCatalog

dateTime 1 1| s 5 0% L

/ ; »

domain concepts \

Domain Model

/ .
‘ Use-Case Model

["\

/ .

! ~x : System

A : Sys
Process Sale : Cashier

/Process ™

/ = casee | 1 Curstomey i system
Cash‘e, ‘ arrives . ¢
events enterltem

I
names ; !
[> | 2. Cashler i " |
| makes new id u“anm ’:
conceptual | sale. = !
i | e]
|

I
make :
NewSale i

v

Use-Case Model

classes in [3. ... l H
the T — i ! E
domain J \ Use Case Diagrams Use Case Text System Sequence Diagrams |
inspire the | O O
names of ‘ \ A
some } """"" = e m e m ===
software | /" use-case Design Model ™ OO D
classes in \ realization with S)
the design interaction : Register | | : ProductCatalog |
\ diagrams

|
\ makeNewSale ! :
|

\ et el | i
\ o, quantiy) _ | | (B Sequence Diagrams

enterltem(id, quantity) _
\ desc = getDescription(id) -

addLineltem(desc, quantity) -

|
|
I
I
I
 — ¢ -
')
—_—— » I
I
|

} the design
i o] classes
Register | ProductCatalog :
discovered .
! while designing Class Diagram
UCRs can be
makeNewSale() catalog | - summarized in
etDescription ProductDescription
i enterltem(...) ‘ g. ption...) : P | class diagrams

]}Epmmsomne OO Implementation 4

LABORATORY

Homework / Activity #2

« CMMie| M 20j Clet

- 2o x 2o +H
EE S

— X 3E|l= CMMi 2.1 ChecklistE 7|

'61-(

—

L MZ7[AE HOLEM 8.

Zo2, 2 G20l oM “4

=

S

/st 2 g7feL k.

)JZE2HEE Y422, CMMi B7HE RoughdtA| Z1dsta, 1 LHES

S . .
CMMI™ (SE/SW/IPPD/SS) Process Evaluation Checklist
Level Process Area Specific Goal Specific Practice | Concept | Detailed | Modular |Formatted| Usable | Evidence Total
1 - Imitial
Obtain an Understanding of Requirements 1 2 4 8 16 32 100%
Heguiremments ¥ Obtain C: to Req 1 2 4 8 16 32 100%
Mis - i Manage Requirements Changes 1 2 - 8 16 32 100%
2 Maintain Bidirectional Traceability of Reqp 1 2 4 8 16 32 100%
Identify Inc 1es B Project Work and Requirements 1 2 - 8 16 32 100%
Estimate the Scope of the Project 1 2 - 8 16 32 100%
Establish Es:mule;@“abl“h Estimates of Work Product and Task Attributes 1 2 4 8 16 32 100%
Define Project Life Cycle 1 2
D Estimates of Effort and Cost 1 2
Establish the Budget and Schedule 1 2
Identify Project Risks 1 2
1 3
Project Planning | Develop a Project 2:: ;Z:_ Era&:e:t Resources : =
s Plan for Needed Knowledge and Skills 1 2 Z sPE tla:l x'l A rld 7I‘
Plan Stakeholder Involvement 1 2 == o o_l_ o
Establish the Project Plan 1 2 (A|‘ % / ol-)
Obtain Review Plans that Affect the Project 1 2 ©
Commitment to the|Reconcile Work and Resource Levels 1 2
Plan Obtain Plan C 1 2
Monitor Project Planning Parameters 1 2
Monitor C 1 2
Monitor Project Monitor Project Risks 1 2 ;
Project Against Plan Monitor]?ara Management 1 2 < 8 16 i: 100%
Monitoring and = Monitor Stakeholder Involvement 1 2 - 8 16 32 100%
Contrel Conduct Progress Reviews 1 2 4] 16 32 100%
Conduct Milestone Reviews 1 2 - 8 16 32 100%
__|Analyze Issues 1 2 4 8 16 32 100%
e o Take Correction Action 1 2 4] 16 32 100%
2 -Managed Action to Closure | age Corrective Action 1 2) 8 16 32 100%
Neatarmina Acamisition Tune A 2 4 R 16 32 10004

75

Samples from SE Undergraduate (KU 2021)

YAEZ 'CMMIV20 21T "ﬂ%‘% SEH 2 *§F'
s @)=e87 g%

E-_: nextchip

[oldIal ZHEz2H JIAH WAEZ0| CMMI V2,0 AIE3 QIS8 FISEITAM ALS
H 20liIM ZHRE EHE LUSIHICHD 122 YR

CMMI(SE LA =SE &Y, Capablity Maturity Model Integration)= 012 341712 E
et P& 2T EHSSAPL(SENUIM IHLEE 2ZEHOIQF AlAE AAILIHD =
2L =3 O 2L0ICH 0l AHSAN AIZIIA HIZLIAE HRIED)| RIEHsA 215
Z oiL= SEICt

AAEF &2 "SHSI= HIZLIA T D} CIFE AN RFAEIE 2E610] 8]
2018501 21& V1.3 CMME i8] V2.0 0| Z8 2HEACHD “A2E80] = A
ZZEZ V2001222 HAIE JEs ¢ISE YUCHD €B3Ct

OIH L3S HS2 A BE J12te=2 el 220 (R HARS2 HE e
8 J#stn 2A2IMSE 0B 018 Sal ASAI E02h=0l 2ld L2140t 28

B HPAUSE 20I50| S0 313 2ISE ASA 2= H S0MIA 21013t 2ICH

AAETS UM Al 33 2ZEA R0 S2EH Z2 A2 221 A-SPICE” 2Id
32USE #HSUCEL OIF Sl 2AA LHUAM 276l LZEAN B QPAEE
SHEAIDI0] ALS A 2t M 20M0llAe] 2RAS B 2 5 UAUCH

WASY ANAHS "0I% V2.071F AW ASE Sol RIS VSH AZUAM Ol
ZWAS CHAl B TOIg & ASICKTH "2UH RISA AZUIA O sl NS
222 JINECHD RECH

ﬂﬂ/‘\l*% qu-_rL;’H'Q HTH7HIM =D S35 2ot
25424 =z E=es =3

TQMS!| & cMmiinstitute partner [ITQC*

completed a CMMI Benchmark Appraisal on October 16™, 2020 in accordance with
the CMMI Institute’s CMMI Method Definition Document V2.0 and judged

() Hanwha Systems

R&D Division
to be
CMMI Development V2.0 with SAM / Maturity Level 5

0 /
P

Appraisal ID. 51256 San 3

Expiraton Date. October 16, 2023 CMMI Migh Maturity Lead Aspraiser

(NS TH] EAIZE(27221000] S HER FTIHR(RED) FHED| 2IEL
CMM(Capabiltty Maturity Model Integration)” 221 2.0 HEHIA 21 SS2 42 5
QIEE ASUCID 2 HAUCL

CMMI= 012 FHADIHE (HE0] 2ZERAN SESA 20t OIS IYT 9J2IF L0
LB MHIHE EE ALY SER2| AYEO} OIS 2L0ICE HE 2ISE 22
S0 e X ZREE H20) (3 =X o) AZFE ZEHoZ TORECH

BIBAIZEE O1E CMMI 1. 3HHEMIA 22D EDIQI Y 58 Rt 200926 581 A
= 2SHIROM, 20202 CMMI S ST AIE U MEH H2E 2.0 HE 2AST
Y8 IR

ANENE S I A7
Cl. StetAl=EE

CMM 2.0 HEE 21 S8 DA Ol S83
& 2l
q 2R2IHAE LA S5

B A 522 MZEIJIEE U8 &S0t USE Y
CMMI DIEIO2 21 DEE 8 MM REAASCH, B
U EEU AILE NN R HURSE Sdist AIFHSTCH

7
A
ES
255
g

2 [KAL &3 2ZEQ0] 7HEHT HAH 22 23

SRR M 20k CMMI | DT 2 5 SIS

SRS DT AU (0[S KANO| 27| i H FO0F0| A CMMI(Capability Maturity Model Integratio
n) 23 EHA QI 2R 5§ SIS &8 AT EQof(swW) WL HZO| HIA HD +FEAS CHA| et
LS

TR D STLYOIS} KANO| BB £ZEF]0)SW) THL HZO| MIHI il TEYS CHA| o ¥ UTHCL &
27| 7l H 20F0A CMMI(Capability Maturity Model Integration) %| 11 THA|Q! 3 5 & SIS3 2

KAl 2014 9 2HETA 220 cvMI 2 5 2152 2 S3HH| 0]0] S8l HAISTHsh, ST XY, HI&H|0f,
AlEE7L § 37| 71 H 2012 S =sto] cvmmi o] i 5 & 215 2hlct

CMMI £ SW o A| AR Z2HSE) 20f0] 71 YaE B7ste tHEX el 34| 7|F0|C) 0|F 3¢4H0| S
wet AlE JHE AN E HEE 7IEo = M| Il 7H4|7|RE0HE sw S8 A CE, SW Englne

76

K UNTVERSITY

EPENDABLE SOFTWARE 77
LABORATORY

3. Agile Software Development

KU
Rapid Software Development

* Rapid development and delivery is now often the most important requirement for software systems.
— Software must evolve quickly to reflect changing business needs.
— Plan-driven development does not meet these business needs.

* Agile development methods emerged in the late 1990s to radically reduce the delivery time for
working software systems.

» Features of Agile development

— The system is developed as a series of versions or increments with stakeholders involved in version
specification and evaluation.

— Frequent delivery of new versions for evaluation
— Extensive tool support (e.g., automated testing tools)
— Minimal documentation to focus on working code

79
LABORATORY

KONKUK
UNTVERSITY

I< I l KONKUK
UNTVERSITY

Plan-Driven (Waterfall) vs. Agile Development

Plan-based development

Requirements Requirements ~ Design and
engineering specification implementation

Requirements change
requests

Agile development /\
Requirements Design and
engineering implementation

‘ D EPENDABLE SOFTWARE 8 O
- LABORATORY

(WHAT'S OUR ~ WE'RE GOING || THE EUTURE 1S || THINGS ARE

STRATEGY? AGILE ! UNCERTAIN. CHANGING
SO FAST.

'WENEEDTO || WE CAN'T WHAT PO THAT'S ONE OF
ADACT DEFINE EVERY- || YOUMEAN THE THINGS WE

QUICKLY. THING UPFRONT, || BY AGILE CAN'T DEFINE
P —— UPERONT.

EPENDABLE SOFTWARE 8 1
LABORATORY

KU vy

Agile Methods

} DEPENDABLE SOFTWARE 82
LABORATORY

KU KONKUK
UNIVERSITY

Agile Methods

* Motivation
— Dissatisfaction with the overheads involved in software design methods of the 1980s and 1990s (Waterfall)

— To reduce overheads in the software process and to be able to respond quickly to changing requirements
without excessive rework

 Agile methods
— Focus on the code rather than the design
— Based on an iterative approach to software development
— Intend to deliver working software quickly and evolve this quickly to meet changing requirements

Two types of Agile methods
— Agile Development Techniques
— Agile Project Management

EEEEEEEEE SOFTWARE 8 3
LABORATORY

KU]\'fi "."\' iAI I}.*'.

Agile Manifesto

“We are uncovering better ways of developing software by doing it and helping others do it. Through this work

we have come to value.”

-
.

Bty o

-

e

y .
¢

84

Principles of Agile Methods

Qur higH‘es I
through éﬁyf d col

of vahlj.a e so

e e
design enhance

Simplicity--the art of maximizing
of work not done--is es

The best architectures, requiren
emerge from self-orgal

At regular intervals,
to become

85

KU vy

Applicability of Agile Method

» Development of small or medium-sized product for sale
— Almost all software products and apps are now developed using an agile approach.

« Custom system development within an organization where,

— Clear commitment from customers to become involved in the development process.
— Few external rules and regulations that affect the software

d DEPENDABLE SOFTWARE 8 6
| LABORATORY

Agile vs. DevOps

EPENDABLE SOFTWARE 87
LABORATORY

Agile Development Techniques

KU KONKUK

88

|

Extreme Programming

« Extreme Programming (XP) takes an ‘extreme’ approach to iterative development.

— New versions may be built several times per day.
— Increments are delivered to customers every 2 weeks.

— All tests must be run for every build and the build is only accepted if tests run successfully.

Select user
Break down
stories for this) Plan release
stories to tasks
release

Evaluate Release Develop/integrate/
system softvva re test software

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

89

KU KONKUK
UNIVERSITY

XP Principles

« The XP principles
— Incremental development is supported through small, frequent system releases.
— Customer involvement means full-time customer engagement with the team.
— Collective ownership through pair programming
— Change supported through regular system releases
— Maintaining simplicity through constant refactoring

EEEEEEEEE SOFTWARE 90
LABORATORY

XP Practices

KU vy

Principle or Practice

Description

Incremental planning

Requirements are recorded on story cards and the stories to be included in a release are determined by the
time available and their relative priority. The developers break these stories into development ‘Tasks’.

Small releases

The minimal useful set of functionality that provides business value is developed first. Releases of the system
are frequent and incrementally add functionality to the first release.

Simple design

Enough design is carried out to meet the current requirements and no more.

Test-first development

An automated unit test framework is used to write tests for a new piece of functionality before that functionality
itself is implemented.

Refactoring

All developers are expected to refactor the code continuously as soon as possible code improvements are
found. This keeps the code simple and maintainable.

Pair programming

Developers work in pairs, checking each other’s work and providing the support to always do a good job.

Collective ownership

The pairs of developers work on all areas of the system, so that no islands of expertise develop and all the
developers take responsibility for all of the code. Anyone can change anything.

Continuous integration

As soon as the work on a task is complete, it is integrated into the whole system. After any such integration,
all the unit tests in the system must pass.

Sustainable pace

Large amounts of overtime are not considered acceptable as the net effect is often to reduce code quality and
medium term productivity

On-site customer

A representative of the end-user of the system (the customer) should be available full time for the use of the
XP team. In an extreme programming process, the customer is a member of the development team and is
responsible for bringing system requirements to the team for implementation.

I DEPENDABLE SOFTWARE

LABORATORY

91

KU KONKUK
UNIVERSITY

XP in Practice

« The XP method itself is not widely used now, since

— Extreme programming has a technical focus and is not easy to integrate with management practice in most
organizations.

 However, XP practices are widely used in other development methods.
User stories for specification

Refactoring

Test-first development (TFD)

Pair programming

hON-~

EEEEEEEEE SOFTWARE 9 2
LABORATORY

)

1. User Stories for Requirements

« User requirements are expressed as user stories or scenarios.
— Written on cards and the development team break them down into implementation tasks.

Tasks are the basis of schedule and cost estimates.
— Customer or user is part of the XP team and is responsible for making decisions on requirements.

* The customer chooses the stories for inclusion in the next release.

Prescribing medication

The record of the patient must be open for input. Click on the medication field and
select either ‘current medication’, ‘new medication’ or ‘formulary’.

If you select ‘current medication’, you will be asked to check the dose; If you wish to
change the dose, enter the new dose then confirm the prescription.

If you choose, ‘new medication’, the system assumes that you know which
medication you wish to prescribe. Type the first few letters of the drug name. You
will then see a list of possible drugs starting with these letters. Choose the required
medication. You will then be asked to check that the medication you have selected
is correct. Enter the dose then confirm the prescription.

If you choose ‘formulary’, you will be presented with a search box for the approved
formulary. Search for the drug required then select it. You will then be asked to
check that the medication you have selected is correct. Enter the dose then confirm
the prescription.

In all cases, the system will check that the dose is within the approved range and
will ask you to change it if it is outside the range of recommended doses.

After you have confirmed the prescription, it will be displayed for checking. Either
click ‘OK’ or ‘Change". If you click ‘OK’, your prescription will be recorded on the audit
database. If you click ‘Change’, you reenter the ‘Prescribing medication’ process.

Task 1: Change dose of prescribed drug

Task 2: Formulary selection

Task 3: Dose checking

Dose checking is a safety precaution to check that
the doctor has not prescribed a dangerously small or
large dose.

Using the formulary id for the generic drug name,
lookup the formulary and retrieve the recommended
maximum and minimum dose.

Check the prescribed dose against the minimum and
maximum. If outside the range, issue an error

EPENDABLE SOFTWARE

LABORATORY

User Story

message saying that the dose is too high or too low.
If within the range, enable the ‘Confirm’ button.

Tasks

K[J’ KONKUK
UNIVERSITY

93

K[J’ KONKUK
UNIVERSITY

2. Refactoring

“LESoll X 7| A 2ASte}”
‘S0l g 1 & A= x2|E 0|2 BEof et

« Conventional wisdom in software engineering is to design for change.
— It is worth spending time and effort anticipating changes as this reduces costs later in the life cycle.

« XP, however, claims that this is not worthwhile as changes cannot be reliably anticipated.

« XP proposes constant code improvement (Refactoring) to make changes easier when they must be
implemented.
— Changes are easier to make because the code is well-structured and clear.

— Examples of refactoring
* Re-organization of a class hierarchy to remove duplicate code.
» Tidying up and renaming attributes and methods to make them easier to understand.
* The replacement of inline code with calls to methods that have been included in a program library.

— Typesl/levels of refactoring
» Architecture > Design > Code > Data

(} DEPENDABLE SOFTWARE 94
LYY LABORATORY

KU vy

3. Test-First Development

 TFD (Test-First Development)
— Testing is central to XP.

— “The program should be tested after every change has been made.”

« Difficulties in TFD
— Programmers prefer programming to testing and sometimes they take short cuts when writing tests.
— Some tests can be very difficult to write incrementally.
— ltis difficult to judge the completeness of a set of (a lot of) tests.

* Features of the XP testing
— Test-First development
— Incremental test development from scenarios
— User involvement in test development and validation

— Automated test harnesses are used to run all component tests each time that a new release is built.
(CTIP: Continuous Testing and Integration Platform)

d DEPENDABLE SOFTWARE 9 5
| LABORATORY

CTIP Examples (KU 2021)

Advanced CTIP Environment checks tyle

.".Initk l)ﬂGradle

ﬂ Test
Link
: : N g
. pyautogul @Nollon 7 -.l SIGCk

EPENDABLE SOFTWARE 96
B

CTIP Examples (KU 2021)

Requirement Management
*%e
. ‘ Cl Server
A a
°

. . N\
Configuration Management —| SonarQUbex\

® -—
0?“ Pmid CS' &
Static Analysis
Q)

‘ Build GitHub

nGrfglte 1 aws
€S N
. *%e
Junit@ a @ <« % TestlLink
REDMINE
Team Communication Issue tracking System Test

5 slack

EPENDABLE SOFTWARE 97
LABORATORY

I< l]’ KONKUK
UNIVERSITY

CTIP Examples (KU 2021)

“UCTIP B E e

=~
(\ Server 2 aWS
| i el ST .\\
I /
i PUSH e . i @ \ [1
It N
I N b — \ sonarqube \ |
: P ‘} git =1 Jenkins : i i
| a1 B Build §& | Build ' : :
I ! i 1 v : ! i 1 }=>checkstye
] - i I % E’f&d i : !
I Gradle 1 ! - o g | i
: = : GitHub 1 Za P] e r : : plugin :
. . . 1 1
: l Unit : : & AL 2| Tool I l Build ,-'l-_ slack Gradle : T e 1
1 Test 1 \\ 1 e o : : DONT SH00T THE NESENR :
! 1 Ymmmm———— : - Communication - i 1
I 1 I Al Tool] I I
 unic@) 4 | & & _os i L e
| = | REDMINE +—— @ TestLink ! : el
. mm—] 1 . 1
: Unit Test : \ Issue Tracking Tool System Test ¢ 1 Static Analyzer |
\ N 4 \ ’
T p—— .n’ \ﬁ._ ____________________ -4’ \-.. _________ -

©)Saebyeol Yu. Saebyeol's PowerPoint

EPENDABLE SOFTWARE 98
LABORATORY

EPENDABLE SOFTWARE

CTIP Examples (KU 2021)

Overall Structure #2

IDE

Build

MGradle

T) [

Unit Test

JUnit @

Version
Control

ou

Q.

EC2

&

Team
Communication

52 slack

Static Analysis
dOCker / sonarqube\\\ N
4 A :
‘ CI Server Fiﬁg;
'm |
Jenkins ‘ checksty'e
Build
_MGradle / L
DON'T SHOOT THE MESSENGER
_/
IIi’,ug Tracking/ .’ .‘- Test System
equirements . Testi
Management REDMINE Link Feste
€ REDMIN _

KU v

CTIP Examples (KU 2021)

Software V&V cvss +=

Overview

Version control

OE

-
Cs! 3

GitHub Actions
Pal | o=
Sp@{Bugs

JUnit@

sonarcloud &
JA

Joma Code Comarnpe

Requirement
Management

1-:!:ng & Build

v QA
Visualization . N YEO| 2 Sprint THI2
Lomm—— (0l S % e

HE A(0l3] EE)Al bug issue
|

44 9 B2

0

GitHub Pages

R HE & SoIsHRN Z2HEt
78 otol B £ UK 2 2

“EPENMBLE SOFTWARE 1 OO
LABORATORY

CTIP Examples (KU 2021)

2021 Software V&V

— Team Communication —
gll) oiscors Ry 0 8
TestRail
L

Jenkins >
i sonarqube | = Aple
— — o

JUnit@ JAC0E an S
J3a Code Coverage o g
R8 FindBugs

IDONT SHOOT THE

— mild checksty e
MRradle

EPENDABLE SOFTWARE 1 0 1
B

KU vy

Test-Driven Development

 TDD (Test-Driven Development)

“Writing tests before code clarifies the requirements to be implemented.”

— Tests are written as programs rather than data so that they can be executed automatically.
— The test includes a check that it has executed correctly.

 Automated test execution environment is mandatory.

— All previous and new tests are run automatically when new functionality is added, thus checking that the new
functionality has not introduced errors.

LABORATORY

S DEPENDABLE SOFTWARE '] 02

KU vy

Customer Involvement

 The customer is a part of the team in XP.
— Help develop acceptance tests for the stories that are to be implemented in the next release of the system.

— Writes tests as development proceeds.
» All new code is therefore validated to ensure that it is what the customer needs.
» testcase # testdata

« However, customers have limited time available and so cannot work full-time with the development
team.

— They may feel that providing the requirements was enough of a contribution and so may be reluctant to get
involved in the testing process.

LABORATORY

S‘ DEPENDABLE SOFTWARE '] 03

K[J’ KONKUK
UNIVERSITY

Test Case Description for ‘Dose Checking’

Test 4: Dose checking

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:

1. Test for inputs where the single dose is correct but the frequency is too
high.

2. Test for inputs where the single dose is too high and too low.

3. Test for inputs where the single dose * frequency is too high and too low.
4. Test for inputs where single dose * frequency is in the permitted range.

Output:
OK or error message indicating that the dose is outside the safe range.

1 %‘;EDEPENDABLE SOFTWARE 1 04
o) LABORATORY

K[J’ KONKUK
UNIVERSITY

Test Automation

« Test automation
“Tests are written as executable components before the task is implemented.”
— Automated test framework is required.
— Each testing component should
* Be stand-alone (independent),

+ Simulate the submission of input to be tested, and
» Check that the result meets the output specification.

« Automated test framework
— A system that makes it easy to write executable tests and submit a set of tests for execution
— Examples:
» Aseries of xUnit (e.g., JUnit)

— As testing is automated, a set of tests is always ready to test quickly.

 Whenever any functionality is added to the system, the tests can be run and problems that the new code has introduced
can be caught immediately, as CTIP.

1 %‘;EDEPENDABLE SOFTWARE 1 05
o) LABORATORY

K[J’ KONKUK
UNIVERSITY

4. Pair Programming

« Pair programming

— “Involves programmers working in pairs, developing code together.”

— Programmers sit together at the same computer to develop the software.
+ Pairs are created dynamically so that all team members work with each other during the development process.

» The sharing of knowledge that happens during pair programming is very important, as it reduces the overall risks to a
project when team members leave.

— Advantages:
* Helps develop common ownership of code and spreads knowledge across the team.
+ Serves as an informal review process as each line of code is looked at by more than 1 person.
* Encourages refactoring as the whole team can benefit from improving the system code.

« Pair programming is not necessarily inefficient.
— Some evidence suggests that a pair working together is more efficient than 2 programmers working separately.

1 %‘;EDEPENDABLE SOFTWARE 1 06
o) LABORATORY

KU vy

Agile Project Management

107

KU vy

Agile Project Management

» The principal responsibility of software project managers is to manage the project so that the
software is delivered on time and within the planned budget for the project.

« The standard approach to project management is the plan-driven.

— Managers draw up a plan for the project showing
* What should be delivered,
* When it should be delivered, and
* Who will work on the development of the project deliverables.

« Agile project management requires a different approach.
— Should be adapted to incremental development and the practices used in agile (development) methods.
— Scrum

LABORATORY

S DEPENDABLE SOFTWARE '] 08

K[J’ KONKUK
UNIVERSITY

Scrum

« Scrum
— An agile method that focuses on managing iterative development rather than specific agile practices.

— The name of a short daily meeting

+ All team members share information, describe their progress since the last meeting, problems that have arisen, and what is
planned for the following day.

» Everyone on the team knows what is going on and, if problems arise, can re-plan short-term work to cope with them.

3 phases in Scrum
— Initial phase
» An outline planning phase, where you establish the general objectives for the project and design the software architecture.
— A series of sprint cycles
» Each cycle develops an increment of the system. (2~4 weeks for each sprint)
— Project closure phase
* Wraps up the project, completes required documentation, and assesses the lessons learned from the project.

1 %‘;EDEPENDABLE SOFTWARE 1 09
o) LABORATORY

S

Scrum Terminology

Scrum term

Definition

Development team

A self-organizing group of software developers, which should be no more than 7 people. They are responsible for
developing the software and other essential project documents.

Potentially shippable
product increment

The software increment that is delivered from a sprint. The idea is that this should be ‘potentially shippable’ which
means that it is in a finished state and no further work, such as testing, is needed to incorporate it into the final
product. In practice, this is not always achievable.

Product backlog

This is a list of ‘to do’ items which the Scrum team must tackle. They may be feature definitions for the software,
software requirements, user stories or descriptions of supplementary tasks that are needed, such as architecture
definition or user documentation.

Product owner

An individual (or possibly a small group) whose job is to identify product features or requirements, prioritize these
for development and continuously review the product backlog to ensure that the project continues to meet critical
business needs. The Product Owner can be a customer but might also be a product manager in a software
company or other stakeholder representative.

Scrum

A daily meeting of the Scrum team that reviews progress and prioritizes work to be done that day. Ideally, this
should be a short face-to-face meeting that includes the whole team.

Scrum Master

The ScrumMaster is responsible for ensuring that the Scrum process is followed and guides the team in the
effective use of Scrum. He or she is responsible for interfacing with the rest of the company and for ensuring that
the Scrum team is not diverted by outside interference. The Scrum developers are adamant that the
ScrumMaster should not be thought of as a project manager. Others, however, may not always find it easy to see
the difference.

Sprint A development iteration. Sprints are usually 2-4 weeks long.
An estimate of how much product backlog effort that a team can cover in a single sprint. Understanding a team’s
Velocity velocity helps them estimate what can be covered in a sprint and provides a basis for measuring improving

performance.

DEPENDABLE SOFTWARE
LABORATORY

KU KONKUK |
UNIVERSITY

The Scrum Sprint Cycles

Review work Select Plan
to be done items | sprint

Review
sprint

Product Sprint Eﬁ?g;taig:g
backlog backlog <oftware

]} EEEEEEEEE corrwans 111
LABORATORY

The Scrum Sprint Cycles

Inpuls

o ® aa
= ado
Product =
Ouwmer ™ -
The Team
'Pr - :_
- -
Product Backlog Sprint Planing
Meeting

® ©
Q"" S
. Burndownd up Daily Scrum
Charts . C :
Meeting

Scrum

Master
Every

24 Hours

Sprint Review
1-4 Week

Sprint

NS

Sprint end date and
Sprint Backlog team deliverable Finished Work
do not change

Sprint Retrospective

(} DEPENDABLE SOFTWARE

LABORATORY

KU vy

112

KU vy

The Scrum Sprint Cycles

« Sprints are fixed length, normally 2~4 weeks.

» The starting point for planning is the product backlog, which is the list of work to be done on the
project.

» The selection phase involves all project teams who work with the customer to select the features and
functionality from the product backlog to be developed during the sprint (sprint backlog).
— Once these are agreed, the team organize themselves to develop the software.

— During this stage, the team is isolated from the customer and the organization, with all communications
channelled through the so-called ‘Scrum master’.

— The role of the Scrum master is to protect the development team from external distractions.

« At the end of the sprint, the work done is reviewed and presented to stakeholders.
— The next sprint cycle then begins.

DEPENDABLE SOFTWARE 1 1 3
LABORATORY

Homework / Activity #3

ok

Agile Development Techniques AF20]| CHSH A 27| AHAILH)E &0 H M| L.

r

Agile Project Management X -80j| Lt M -Z7|AHAILH)E 2O} 2 M| 8.

Samples from SE Undergraduate (KU 2021)

1. The agile team has gone home. Now what?

Guest

The agile team has gone home.

Alok Uniyal, Infosys
September 11,2021 8:40 AM
Now what? f¥in

Agile may be synonymous with software development, but it is equally about
people. Because the purpose of agile sprints is to incorporate feedback at quick
intervals to deliver what customers want. And the agile process itself works best
with close collaboration between developer and stakeholder groups, also
bringing together development and IT operations teams when used in
conjunction with DevOps. So it is no surprise that there is a strong correlation
between an enterprise’s growth and its agile capability: 6 of the top 7 agile levers
by impact were people-related. (My team published some recent research on
this.)

A core principle of agile transformation is to use face-to-face interaction, which
went right out the window when the pandemic hit. However, the use of agile has
actually increased over the past year while almost everyone around the world

was working remotely. Reconciling these seemingly opposite shifts makes for an

interesting challenge for enterprises. But it is not an impossible one.
Workforce and workspace levers

Using agile virtual workspaces along with digital collaboration platforms to
support remote but collective and cohesive work has been a big driver of success.
At my company, we conducted a study of our own employees right before and
just into the pandemic, and it showed that when 3 or more early agile sprints
were conducted on-premises with workers coming to the office, it paved the way
for the asynchronous communication and remote work that followed. At the

same time, using digitized visual Kanban dashboards along with other

[E4) 4SS KT E4l..510| 22| = of X1 el* HE %2
f

[l 'SLH2E'2=Z E2|T KT2F 2tH 6| S2HRCH 3~43 H2E CIAIE WIoIEIE 21
S0} AA/FH=I ACL 26l 32 AIZHCEO) FI 0|Z2Ei= Ofoll 'E&HTAMUI
&2 CIZ2AISA) 2HLI'E AASHD LIACH AMRE2E AILE D EE23 S0
HAC|HM KT LHR0IME ITLE HIYDIY £2 ACIESXS Lols A 2 PES
LH2CH KT= HEA HH 220 'SIZA I ‘RS A 0/2Hs DNAS O|AIE == QIS
7t HIZ2 '5t0122I< 0HAKZ 0ICH

e ro

OHAHE 2 'H230 FAGHH 2ZEANHSWIE AHIAE JHEEhs 218 ZEICH AM
A=OILE 2M5 A EChk= Z2 4T 3N =HE F= e 2aez, #20t0t

Z L2 IT2IS0ILHEH 2 LEIESHAM 2220 SHCH KT 8 MA 212 %2t A
gt 238 (Scum) PP EE EHAIH KT2H| '510|122|< 0HAIE '€ HES3M D, 01§ &

A AHRSZ EEE) SISt 43 ARIE BHEORICH

Sl01=2I= HARE "HEA 512 WX HEE = ASN'E DS 20 LI= 21t
E0ICH KTz J1EL S8 AMHl2= 22 At 2I0E], 22F= S0l 2lgs SA
ol JHEsH0F Sk SIAICE AICHDL 21E ASINIYAE OI2 LA 8 JIEteZ B HR0| B
21 20 AHMl OHE Bk AEIEO0ILECIAIE 20| ALS 6l HAIRZ HEEE HE
SO SR $RUCEH J1E 238 HAIREICZ = =L 2|20l ke Bret 2T S
OIEHI 2E20IALE Z=517| OBk B SHACH

LEEKTITES SHSITHYIZSHEZ Z2AEH (12D =S58 ZE6IE 'UEE
OHAIZ D =E'8 THEACID £T!IMCE, Q EHHE "ADS BEE Z=518M AF N
20l= 0HAIE 24 (Agile-wow)' HREEE, OtZ 4! HHEHI= 01 AR 31(Agile—key)'
UHEE FSEAMOZ AMEFl= S FAGD (HSE 210| F101=2|= IHAIZ L] A2 HI
Z°0I21H "0l8 SE5t 280 =5IFE LD & SHAGI0R 222 D2 AHHIDEAI
slol=221S oAl 2EEE S A= 0l2t 2HCH

115

[K KONKUK |

]}EPENDABLE SOFTWARE 1 1 6
LABORATORY

4. Requirements Engineering

KU KONKUK
UNIVERSITY

Requirements Engineering

« The process of establishing the services that a customer requires from a system and the constraints
under which it operates and is developed.

— System requirements: descriptions of the system services and constraints that are generated during the
requirements engineering process

 Requirements
— Range from a high-level abstract statements of a service or of system constraints to a detailed mathematical
functional specification.
+ Statements of services = Functional requirements (FR)
+ System constraint > Non-functional requirements (NFR)

]} EEEEEEEEE N 118
LABORATORY

K[J’ KONKUK
UNIVERSITY

Types of Requirement

 User requirements

— Statements in natural language and diagrams of the services the system provides and its operational
constraints

— Elicited/Discovered from stakeholders
— Defined for customers

« System requirements

— A structured document setting out detailed descriptions of the system’s functions, services and operational
constraints

— Defines what should be implemented
— Specified for developers

1 %‘;EDEPENDABLE SOFTWARE 1 1 9
o) LABORATORY

User and System Requirements

(} DEPENDABLE SOFTWARE

LABORATORY

User requirements definition

1.

The Mentcare system shall generate monthly management reports
showing the cost of drugs prescribed by each clinic during that month.

System requirements specification

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.

1.2 The system shall generate the report for printing after 17.30 on the
last working day of the month.

1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.

1.4 If drugs are available in different dose units (e.g. 10mg, 20mg, etc)
separate reports shall be created for each dose unit.

1.5 Access to drug cost reports shall be restricted to authorized users as
listed on a management access control list.

KU vy

120

|

System Stakeholders

* Any person or organization who is affected by the system in some way and so who has a legitimate

interest

« Typical stakeholders:

DEPENDABLE SOFTWARE
LABORATORY

User

Designer

System Analyst

Training and User Support
Business Analyst
Technical Author

Project Manager

Customer

Concerned with the features and functionality of the new system

Want to build a perfect system, or reuse existing code

Want to “get the requirements right”

Want to make sure the new system is usable and manageable

Want to make sure “we are doing better than the competition”

Will prepare user manuals and other documentation for the new system
Wants to complete the project on time, within budget, with all objectives met.

Wants to get best value for money invested

KU vy

Agile Methods and Requirements

* Many agile methods argue that
— “Producing detailed system requirements is a waste of time as requirements change so quickly.”
— The requirements document is therefore always out of date.

« Agile methods usually use incremental requirements engineering and may express requirements as
user stories.
— This is practical for business systems.

— This is often problematic for systems that require pre-delivery analysis (e.g., critical systems) or systems
developed by several teams.

LABORATORY

S DEPENDABLE SOFTWARE 1 22

Functional and Non-Functional Requirements

KU KONKUK

K[J’ KONKUK
UNIVERSITY

Functional and Non-Functional Requirements

* Functional requirements

— Statements of services the system should provide
* How the system should react to particular inputs.
* How the system should behave in particular situations.

— May state what the system should not do.

* Non-functional requirements

— Constraints on the services or functions offered by the system such as
« timing constraints, constraints on the development process, standards, etc.

— Often apply to the system as a whole rather than individual features or services.

« Domain requirements
— Constraints on the system from the domain of operation

l- EPENDABLE SOFTWARE .
y LABORATORY

KU vy

Functional Requirements

» Describing functionality or system services depends on the type of software, expected users and the
type of system where the software is used.

— Functional User Requirements may be high-level statements of what the system should do.
— Functional System Requirements should describe the system services (user requirements) in detail.

» An example of Mentcare System
— Functional user requirement : “4 user shall be able to search the appointments lists for all clinics.”

— Functional system requirement :“The system shall generate each day, for each clinic, a list of patients who are
expected to attend appointments that day.”

LABORATORY

S DEPENDABLE SOFTWARE '] 25

KU vy

Requirements Imprecision

* Problems arise when functional requirements are not precisely stated.
— Ambiguous requirements may be interpreted in different ways by developers and users.

* For example, the term ‘search’ in the requirement :

“A user shall be able to search the appointments lists for all clinics.”

— User intention : Search for a patient name across all appointments in all clinics.
— Developer interpretation : Search for a patient name in an individual clinic. User chooses a clinic then search.

--i]:)EPENDABLE SOFTWARE 126
1 y LABORATORY

KU vy

Requirements Completeness and Consistency

* In principle, requirements should be both complete and consistent (C&C).

« Complete
— They should include descriptions of all facilities required.

« Consistent
— There should be no conflicts or contradictions in the descriptions of the system facilities.

* In practice, it is impossible to produce a complete and consistent requirements document.

} DEPENDABLE SOFTWARE 127
LABORATORY

K[J’ KONKUK
UNIVERSITY

Non-Functional Requirements

* Define system properties and constraints
— Properties: reliability, response time and storage requirements, 1/O device capability, system representations, etc.
* Quality Attribute Requirements

— Constraints: mandating a particular IDE, programming languages or development methods, or
standards compliance (IEC 61508, ISO 26262, IEEE 829,830,1012,1016,12207,25010, etc.)

* Non-functional requirements may be more critical than functional requirements.
— If these are not met, the system may be useless.

* Non-functional requirements may affect the overall architecture of a system.
— Generate a number of related functional requirements that define system services that are required.

‘:‘E'—‘?. EPENDABLE SOFTWARE 1 2 8
T LABORATORY

Types of Non-Functional Requirements

| 4

LABORATORY

Non-functional
requirements

Product
requirements

Organizational
requirements

External
requirements

Efficiency
requirements

Dependability
requirements

Security
requirements

Regulatory
requirements

Ethical
requirements

Usability
requirements

Environmental
requirements

Operational
requirements

Development
requirements

Legislative
requirements

Performance
requirements

Space
requirements

EPENDABLE SOFTWARE

Accounting
requirements

Safety/security
requirements

I< l l KONKUK
UNIVERSITY

129

Non-functional Classifications

* Product requirements
— Requirements which specify that the delivered product must behave in a particular way
— E.g., execution speed, reliability, etc.

— “The Mentcare system shall be available to all clinics during normal working hours (Mon-Fri, 0830-17.30). Downtime
within normal working hours shall not exceed five seconds in any one day.”

» Organizational requirements
— Requirements which are a consequence of organisational policies and procedures
— E.g., process standards used, implementation requirements, etc.
— “Users of the Mentcare system shall authenticate themselves using their health authority identity card.”

« External requirements
— Requirements which arise from factors which are external to the system and its development process
— E.g., interoperability requirements, legislative requirements, etc.
— “The system shall implement patient privacy provisions as set out in HStan-03-2006-priv.”

DEPENDABLE SOFTWARE
LABORATORY

KU vy

Quality Attributes

 Measurable or testable properties of a system

— Used to indicate how well the system satisfies the needs of its stakeholders
» Availability, configurability, modifiability, performance, reliability, reusability, security, portability, maintainability, efficiency,
usability, many others
— Emergent properties : not a measure of software in isolation
» Measures the relationship between software and its application domain
» Cannot measure this until you place the software into its environment
— Quality will be different in different environments

« Software quality is all about fitness to purpose of stakeholders.
— “Does it do what is needed?”
— “Does it do it in the way that its users need it to?”
— “Does it do it reliably enough? fast enough? safely enough? securely enough?”
— “Will it be affordable? will it be ready when its users need it?”

— “Can it be changed as the needs change?”

--i]:)EPENDABLE SOFTWARE 131
N LABORATORY

KU vy

Quality Attributes : Taxonomies

o -jlities
— understandability, usability, modifiability, interoperability, reliability, portability, maintainability, scalability,
configurability, customizability, adaptability, variability, volatility, traceability, ...

* -ities
— security, simplicity, clarity, ubiquity, integrity, modularity, ...

* -Nness

— user-friendliness, robustness, timeliness, responsiveness, correctness, completeness, conciseness,
cohesiveness, ...

« others
— performance, efficiency, accuracy, precision, cost, development time, low coupling, ...

LABORATORY

S‘ DEPENDABLE SOFTWARE '] 3 2

ISO/IEC 9126

Quality
Characteristics

Subcharacteristics

S0 9126-2:
External Metrics

Functionalty

Suitabiliny
ﬁ AccUracy
Interopersailty

?— Security

Functionality Complisnce —

hlatarity

Reliability

———————Faultiolerance

-_______———____hRecmerahilitg.f

Reliability Compliance

Irternal and
External Qualiy

Llzabilty

‘__‘______,___—— Understand ability
- ——— Laarrability
Cperahiity

| 4

— i
‘—‘—.________.ﬂnra CivENESS——
Usablity Campliance ———

Efficiency

__ ————Time behavior
——Resource utilization

T ——————Efficienty Cormpliance

Analyzanility

MWaintain ability

""" Changesbiliy
Stability

ﬁﬂe stability

haintainability Compliance —

Portability

Adaptatility
T Instalakiliy

Co-exislence

EPENDABLE SOFTWARE
LABORATORY

ﬁ Replaceabilty

Parability Complance

Metrics

I

|50 3126-3:
ternal Metrics

FINAL
DRAFT

INTERNATIONAL ISO/IEC
STANDARD FDIS
9126-1

ISOMEC JTC1

Secretariat’ ANSI

Voting begins on
2000-01-20

Voting terminates on
2000-03-20

Information technology — Software
product quality —

Part 1:
Quality model

Technologies de I'information — Qualité des produits logiciels —
Partie 1. Modéle de qualité

Please see the administrative notes on page ii-1

Reference number
ISONEC FDIS 9126-1:2000{E)

o e

©ISONEC 2000

KU KONKUK
UNIVERSITY

133

ISO 9126-1 : Information Technology

- Software Product Quality - Part 1: Quality Model

external and
internal

quality

functionality

reliability

usability

efficiency

maintainability

portability

adaptability

l DEPENDABLE SOFTWARE
LABORATORY

maturity

understandability

time behaviour

analysability
changeability

installability

‘ - fault tolerance learnability .
interoperability recoverability operability resource stability co-existence
attractiveness utilisation testability replaceability
functionality reliability usability efficiency maintainability portability
compliance compliance compliance compliance compliance compliance

Figure 4 — Quality model for external and internal quality

KU

KONKUK
UNIVERSITY

134

ISO/IEC 25010

System Software

Product Quality

Functional

suitability Performance

efficiency Compatibility Reliability

Functional

completeness 3 ; z i :
P Time behavior Coexistence Appropriaieness Maturity
recognizability

Functional
correctness Resource

utilization Interoperability

Learnability Availability

Functional
appropriateness

Capacity

Operability Fault tolerance

User error
prediction

Recoverability

User interface
aesthetics

Accessibility

Confidentiality

Integrity

Nonrepudiation

Accountability

Authenticity

Maintainability Portability

Modularity G ET LY

Reusability Installability

Analyzability Replaceability

Modifiability

CEELIY

EPENDABLE SOFTWARE
LABORATORY

“ FIGURE 121 The ISO/IEC FCD 25010 product quality standard

K KONKUK
UNIVERSITY

135

KU KONKUK
UNIVERSITY

Lists of System Quality Attributes (Wikipedia)

Quality attributes edit)

Motable quality attributes include:

e accessibility s degradability s intzgrity s provability s stability

» accountability o determinability s interchangeability » recoverability e standards compliance
* accuracy * demonstrability o interoperability [Erl] e redundancy e survivability

» adaptability + dependability (see Common subsets below) e lzarnability e relevance e sustainability

e administrability + deployability e localizability e rehiability e tailorability

» affordability e discoverability [Erl] * maintainability « repeatability e testability

e agility (see Common subsets below) e distributability * manageability ¢ reproducibility e timeliness

o auditability o durability o mobility o resilience o traceability

o autonomy [Erl] o effectiveness o modifiability * r2SpOnsivensss ® transparency

o availability o efficiency o maodularity o reusability [Erl] o ubiquity

» compatibility s evolvability s observability s robustness s understandability
+ composability [Erl] s extensibility s operability e safety s upgradability

o confidentiality e failure transparency » orthogonality e scalability e usability

» configurability e fault-tolerance s portability * seamlessness e yulnerability

e correctness e fidelity * precision e self-sustainability

e credibility e flexibility e predictability « serviceability (a.k.a. supportability)

* customizability ¢ inspectability * process capabilities e securability (see Commaon subsets below)

¢ debuggability o installability ¢ producibility e simplicity

Many of these quality attributes can also be applied to data quality.

EPENDABLE SOFTWARE
LABORATORY

136

K[J’ KONKUK
UNIVERSITY

Goals and Requirements

* Non-functional requirements may be very difficult to state precisely.
— Imprecise requirements may be difficult to verify.
— Goals are helpful to developers as they convey the intentions of the system users.

+ Goal
— Ageneral intention of the user such as ‘ease of use’
— Often NFR (Quality Attributes)

. . . Goal
» Verifiable Non-Functional Requirement (Non-Verifiable NFR)

— A statement using some measure that can be objectively tested
Goal Analysis

Verifiable NFR

hil l h ¥
L n&? EEEEEEEEE SOFTWARE 137
) gl LABORATORY

Example : Goal and Non-Functional Requirements

» Quality factor: Usability

+ Goal:
— “The system should be easy to use by medical staff and should be organized in such a way that user errors are
minimized.”

» Verifiable non-functional requirement
“Medical staff shall be able to use all the system functions after four hours of training. After this training, the average
number of errors made by experienced users shall not exceed two per hour of system use.”

DEPENDAEBLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

Goal Analysis

« Goal Analysis
— Focus on why a system is required
» Express the ‘why’ as a set of stakeholder goals
— Goal refinement to arrive at specific requirements
+ Document, organize and classify goals
— Goal evolution
* Refine, elaborate, and operationalize goals
— Goal hierarchies show refinements and alternatives

« Goal model visualizes goal analysis

— (Hard) Goal
» Describe functions that must be carried out.
+ ER

— Soft Goal

« Cannot really be fully satisfied such as quality.
— Accuracy, Performance, Security, etc.

¢ NER (Quality)

]gEPENDABLE SOFTWARE 1 39
LABORATORY

S

Example - Goal Elaboration

Or-decomposition . .
Crucial plannin
decision be made
mbe made

Decision be made n b
by email discussion face-to-face

/I\ Agenda be Meeting be peetin Minutes be
efined scheduled be hel circulated

| DC‘I? C‘”d* Attendees Changes
Moot ocarion se know details be handled
eeting be
requested /
room) change
availability Meeting pequeg*rs
determined announced accepted |
Attendee AV & other attendees’ facilities
list needs preferences booked '121?;?;2%6 Participants
obtained defined known notified

DEPENDABLE SOFTWARE
LABORATORY

KU vy

Goal Elaboration

 Goal Elaboration
— “Why” questions explore higher goals (context)

— “How” questions explore lower goals (operations) earn an get good
— “How else” questions explore alternatives income grade
A / +
- Relationships between goals t m':'
— One goal helps achieve another (+)
— One goal hurts achievement of another (-) et full :
— One goal makes another (++) fime job

* Achievement of goal A guarantees achievement of goal B
— One goal breaks another (--) -

» Achievement of goal A prevents achievement of goal B attend
lectures

(} DEPENDABLE SOFTWARE ’]4’]

LABORATORY

I< I l KONKUK
UNTVERSITY

Soft Goals

« Soft Goals: Goals can never be fully satisfied.
— E.qg., “system should be easy to use’ , “access should be secure’
— Also known as NFR(Non-Functional Requirements) or Quality attributes/requirements
— We have to look for things that contribute to satisfying soft goals.

« Example: a train system, we identified 3 soft goals.

minimize improve
serve more
passengers cogis 3ately
e ey mai"n{‘\
Gfrflc"lfsw minimize minimize safe distance clearer
operation 4ovelopment signalling
) more costs costs
Increase frequent
train speed 4pqins \
reduce

staffing

i \ | DEPENDABLE SOFTWARE 142
N . LABORATORY

QUi
Soft Goals as Selection Criteria

* Goal Analysis

minimize improve
costs safety
N, minimize minimize
p'g:;g;':r ;zs”:zn';‘::: operation development /. in 4\
comfort e S safe clearer
» %+ distance signalling
educe
- ++ ++ staffing
add new increase f
: requen
tracks train speed) trgins
automate automate . buy new
braking collision hire more rolling stock

avoidance operators

g=1
]}umgzw 143

Requirements Engineering Processes

KU KONKUK

Requirements Engineering Processes

« The RE process varies widely depending on
— the application domain
— the software development process applied
— the people/organization developing the requirements

* 4 common activities common to all processes:
Requirements elicitation & analysis
Requirements specification

Requirements validation

Requirements change management

hODN-~

KU KONKUK
UNIVERSITY

Requirements
elicitation and
analysis
Requirements

specification ‘

Requirements
validation

User and system
requirements

\—> Requirements

- document

System
descriptions

» In practice, RE is an iterative activity in which these processes are interleaved.

EPENDABLE SOFTWARE
LABORATORY

145

KU vy

1. Requirements Elicitation

« Called requirements elicitation or requirements discovery.

— Software engineers work with a range of system stakeholders to find out about the application domain, the
services that the system should provide, the required system performance, hardware constraints, other
systems, etc.

- Difficulties in requirements elicitation:
— Stakeholders don’t know what they really want.
— Stakeholders express requirements in their own terms.
— Different stakeholders may have conflicting requirements.
— Organizational and political factors may influence the system requirements.

— The requirements change during the analysis process. New stakeholders may emerge and the business
environment may change.

LABORATORY

S‘ DEPENDABLE SOFTWARE '] 46

Process Activities in Requirements Elicitation

Requirements discovery
— Interacting with stakeholders to discover their requirements
— Domain requirements are also discovered at this stage.

Requirements classification and organization
— Groups related requirements and organises them into coherent clusters

KU KONKUK
UNIVERSITY

1. Requirements
discovery

/

\

Prioritization and negotiation
— Prioritizing requirements and resolving requirements conflicts

4. Requirements
specification

Requirements specification

— Requirements are documented and input into the next round of the spiral.

EPENDABLE SOFTWARE
LABORATORY

2. Requirements
classification and
organization

3. Requirements
prioritization and
negotiation

147

| 4

Requirements Discovery

EEEEEEEEE SOl

Techniques for requirements discovery:
1.

Requirements workshop

© NGk WON

Brainstorming

Storyboards (Use-Case scenario)
Interviews

Questionnaires

Role playing

Prototypes

Customer requirement specification review

FTWARE

LABORATORY

KU KONKUK
UNIVERSITY

148

KU vy

2. Requirements Specification

« The process of writing down the user and system requirements in a requirements document.

— User requirements have to be understandable by end-users and customers who do not have a technical
background.

— System requirements are more detailed requirements and may include more technical information.

» The requirements may be part of a contract for the system development.
— Requirements should state what the system should do, and the design should describe how it does this.
— In practice, requirements and design are often inseparable.

LABORATORY

S‘ DEPENDABLE SOFTWARE '] 49

KU vy

Ways of Writing a System Requirements Specification

Notation

Description

Natural language

The requirements are written using numbered sentences in natural language. Each sentence
should express one requirement.

Structured natural language

The requirements are written in natural language on a standard form or template. Each field
provides information about an aspect of the requirement.

Design description languages

This approach uses a language like a programming language, but with more abstract features to
specify the requirements by defining an operational model of the system. This approach is now
rarely used although it can be useful for interface specifications.

Graphical notations

Graphical models, supplemented by text annotations, are used to define the functional
requirements for the system; UML use case and sequence diagrams are commonly used.

Mathematical specifications

These notations are based on mathematical concepts such as finite-state machines or sets.
Although these unambiguous specifications can reduce the ambiguity in a requirements
document, most customers don’t understand a formal specification.

I DEPENDABLE SOFTWARE

LABORATORY

150

Natural Language Specification

« Requirements are written as natural language sentences supplemented by diagrams and tables.
— Used for writing requirements because it is expressive, intuitive and universal.

 Difficulties in writing requirements in natural languages

Lack of clarity

» Precision is difficult without making the document difficult to read.
Requirements confusion

* Functional and non-functional requirements tend to be mixed-up.
Requirements amalgamation

» Several different requirements may be expressed together.

 Guidelines :

Invent a standard format and use it for all requirements.

Use language in a consistent way.
* Use shall for mandatory requirements, should for desirable requirements.

Use text highlighting to identify key parts of the requirement.
Avoid the use of computer jargon.

Include an explanation (rationale) of why a requirement is necessary.

DEPENDABLE SOFTWARE
LABORATORY

KU vy

151

KU vy

Insulin Pump: Natural Language Specification

3.2 The system shall measure the blood sugar and deliver insulin, if required, every 10 minutes.
(Changes in blood sugar are relatively slow so more frequent measurement is unnecessary; less
frequent measurement could lead to unnecessatrily high sugar levels.)

3.6 The system shall run a self-test routine every minute with the conditions to be tested and the
associated actions defined in Table 1.
(A self-test routine can discover hardware and software problems and alert the user to the fact the
normal operation may be impossible.)

LABORATORY

S DEPENDABLE SOFTWARE 1 5 2

K[J’ KONKUK
UNIVERSITY

Structured Specification

* An approach to writing requirements where the freedom of the requirements writer is limited, and
requirements are written in a standard way.

— Works well for some types of requirements such as requirements for embedded control system.

Insulin Pump/Control Software/SRS/3.3.2
Function Compute insulin dose: safe sugar level.

 Examples:

Description
— Form-based specification Computes the dose o_f |.nsuI|n to be delivered when the current
measured sugar level is in the safe zone between 3 and 7 units.
— Tabular specification Inpx:lts1§3urrent sugar reading (r2); the previous two readings (r0
and r1).
— Use-Case (Description Table) Source Current sugar reading from sensor. Other readings
from memory.
Outputs CompDose—the dose in insulin to be delivered.
Condition Action Destination Main control loop.

Sugar level falling (r2 <r1) CompDose =0 Action i . , . .
CompDose is zero if the sugar level is stable or falling or if the
level is increasing but the rate of increase is decreasing. If the

Sugar level stable (r2 = r1) CompDose =0 level is increasing and the rate of increase is increasing, then
CompDose is computed by dividing the difference between the

Sugar level increasing and rate of increase decreasing c D -0 current sugar level and the previous level by 4 and rounding the

2_M)<(r1—=r0 ompLose = result. If the result, is rounded to zero then CompDose is set to

((r2 —r1) < (r1 —10)) 0 :
the minimum dose that can be delivered.

. C D = d((r2 —r1)/4 i
Sugar level increasing and rate of increase stable or increasing ompliose = roun ((r2 = r1)/4) Requirements
((r2 = 1) = (r1 = r0)) If rounded result = 0 then Two previous readings so that the rate of change of sugar level
CompDose = MinimumDose can be computed.

Pre-condition

The insulin reservoir contains at least the maximum allowed
single dose of insulin.

igaspznms._g o mane Post-condition r0 is replaced by r1 then r1 is replaced by r2. 153

LABORATORY Side effects None.

[|

KU KONKUK
UNIVERSITY

Use Cases

« Use-cases are a kind of scenario that are included in the UML.
— ldentify the actors in an interaction and which describe the interaction itself

« A set of use cases should describe all possible interactions with the system.
— High-level graphical model (UML Use-Case Diagram) is used to summarize all use-cases.

— UML Sequence Diagrams may be used to add detail to use-cases by showing the sequence of event
processing in the system.

]} EEEEEEEEE N 154
LABORATORY

I< I l KONKUK
UNTVERSITY

Library Management System: Use-Case Diagram

System

5. Calculate Late-Return-Fee
1al

4. Retuen Item
/ 7. Notify Availability
6. Get Replacement Fee

§

9.Remove Title
10. Update Title

11. Add Item

4. Add Borrower
N
PN—
date Borrower

&=

PENDABLE SOFTWARE 1 5 5
LABORATORY

KU vy

Library Management System: Use-Case Description

Use Case 1. Make Reservation

Actor Librarian

Purpose (As in the business use case)
Overview (As in the business use case)
Type Primary and Essential

System Functions: R1.1, R3.1

CIoSSBetoonce Use Case: “Add Borrower”

Pre-Requisites Borrower should have an id_card.

(A) : Actor, (S): System

1. (A) A librarian requests the reservation of title
. 2. (S) Check if a corresponding title exists
7L SR 2 3. (S) Check if a corresponding borrower exists
4. (9) If the borrower does not exist, invoke “Add Borrower”
5. (S) Create reservation information
Alternative Courses of Events N/A
Exceptional Courses of Events Line 1: If invalid reservation information is entered, indicate an error.

} DEPENDABLE SOFTWARE 156
LABORATORY

KU KONKUK
UNIVERSITY

Library Management System: System Sequence Diagram

:System
Librarian
USE CASE: 1. Make Reservation
1: makeReservation()
1. (A) A librarian requests the reservation >
of title.

2. (S) Check if corresponding title exist. CERE
3. (S) Check if corresponding borrower exist. Display(“Error!!!”)

< _____________________________________

4. (S) If the borrower does not exist, invoke
“Add Borrower”.
(— connect to the other Use Case)

5. (S) Create reservation information.

]gEPENDABLE SOFTWARE 1 57
LABORATORY

Advanced Smart Watch: Use-Case Diagram

| 4

EPENDABLE SOFTW.
LABORATORY

Biz Watch OjL| &

2% Y= L Y 52 LA
—

SESE

Arg
SH |25

--_-_-_-_-_‘_‘—‘—-—-—._
WiFi £ GPS 7|5 24 % lghyst

2% Be U Oy 52 B2

21X YEE TH YRA LB

freD TRrecisTik

GPS g|d

g BEAHS

NFC S& 9 sf=|

-_-_-_-_-_-_-_-_‘———_

NFC X 83

N R

714 Mu A

Z2H MY

KU KONKUK
UNIVERSITY

158

The Software Requirements Document

« The software requirements document is an official statement of what is required of the system

developers.

— Should include both a definition of user requirements and a specification of the system requirements.

— Itis NOT a design document.
* As far as possible, it should set of WHAT the system should do rather than HOW it should do it.

» Users of requirements documents

System
customers

Managers

Y

Specify the requirements and
read them to check that they
meet their needs. Customers
specify changes to the
requirements.

System
engineers

KU

Y

Use the requirements to
understand what system is
to be developed.

System test
engineers

g PENDABLE SOFTWARE
LABORATORY

\J

Use the requirements
document to plan a bid for
the system and to plan the

system development process.

System
maintenance
engineers

Use the requirements to
develop validation tests for
the system.

Y

Use the requirements to
understand the system and
the relationships between its
parts.

159

KONKUK
UNTVERSITY

Features for Good Specifications

Features

Considerations

Valid (Correct)

Expresses the real needs of the stakeholders (customers, users,...)
Does not contain anything that is not “required”

Unambiguous

Every statement can be read in exactly one way

Complete

All the things the system must do and all the things it must not do!
Conceptual Completeness

* E.g., responses to all classes of input
Structural Completeness

* E.g.,, no TBDs!!!

Understandable (Clear)

E.g., by non-computer specialists

Doesn’t contradict itself

Consistent Uses all terms consistently
Ranked Indicates relative importance / stability of each requirement
Verifiable A process exists to test satisfaction of each requirement
Modifiable Can be changed without difficulty .

» Good structure and cross-referencing
Traceable Origin of each requirement is clear

Labels each requirement for future referencing

S DEPENDABLE SOFTWARE

KU vy

SRS Contents

- Software Requirements Specification should address:
— Functionality
» What is the software supposed to do?
— External interfaces
* How does the software interact with people, the system's hardware, other hardware, and other software?
+ What assumptions can be made about these external entities?
— Required performance
+ What is the speed, availability, response time, recovery time of various software functions, and so on?
— Quality attributes
» What are the portability, correctness, maintainability, security, and other considerations?
— Design constraints imposed on an implementation

» Are there any required standards in effect, implementation language, policies for database integrity, resource limits,
operating environment(s) and so on?

l DEPENDABLE SOFTWARE 161
LABORATORY

Typical Mistakes in SRS

Mistakes Description
Noise text that carries no relevant information to any feature of the problem
Silence a feature that is not covered by any text

Over-Specification

text that describes a detailed design decision, rather than the problem

Contradiction

text that defines a single feature in a number of incompatible ways

Ambiguity

text that can be interpreted in at least two different ways

Forward Reference

text that refers to a terms or features yet to be defined

Wishful Thinking

text that defines a feature that cannot possibly be verified

Requirements on Users

Cannot require users to do certain things, can only assume that they will

Jigsaw Puzzles

Distributing key information across a document and then cross-referencing

Duck Speak Requirements

Requirements that are only there to conform to standards

Unnecessary Invention of Terminology

e.g., ‘user input presentation function’

Inconsistent Terminology

Inventing and then changing terminology

Putting the onus on the developers

i.e., making the reader work hard to decipher the intent

Writing for the hostile reader

There are fewer of these than friendly readers

DEPENDABLE SOFTWARE

LABORATORY

KU vy

Requirements Document Variability

« Information in requirements document depends on the type of system and the approach to
development used.

— If systems are developed incrementally, it will typically have less detail in the requirements document.

* Requirements documents standards have been designed.

— |EEE standards 830-1998
* Mostly applicable to the requirements for large systems engineering projects

1 ::]:JEPENDABLE SOFTWARE 1 63

LABORATORY

SRS Standard: IEEE Std 830-1998

|EEE Std 830-1998
(Revision of
|EEE Std 830-1993)

|IEEE Std 830-1998

IEEE Recommended Practice for
Software Requirements
Specifications

IEEE Computer Society

Sponsored by the
Software Engineering Standards Committee

20 October 1998 SHI4654

EPENDABLE SOFTWAR!
LABORATORY Authorized Icensed use imited 1o: Konkuk Unv. Downloaded on Apri 16,2019 at 07:16:13 UTC from IEEE Xplore. Restrictions apply.

KU KONKUK
UNIVERSITY

Table of Contents
1. Introduction

1.1 Purpose
1.2 Scope

1.3 Definitions, acronyms, and abbreviations

1.4 References
1.5 Overview

2. Overall description

2.1 Product perspective
2.2 Product functions
2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing

this section of the SRS.)

Appendixes
Index

Figure 1—Prototype SRS outline

164

I§ l l KONKUK
UNIVERSITY

SRS Templates: IEEE Std 830-1998

A.1 Template of SRS Section 3 organized by mode: Version 1 A.2 Template of SRS Section 3 organized by mode: Version 2
3. Specific requirements 3. Specific requirements
3.1 External interface requirements 3.1. Functional requirements

3.1.1 Mode 1
3.1.1.1 External interfaces
3.1.1.1.1 User interfaces
3.1.1.1.2 Hardware interfaces
3.1.1.1.3 Software interfaces

3.1.1 User interfaces

3.1.2 Hardware interfaces

3.13 Software interfaces

3.14 Communications interfaces

3.2 l;l;nflmml:l:‘)tilq‘ullrcmcnls 3.1.1.1.4 Communications interfaces
e - 3.1.1.2 Functional requirements
3.2.1.1 Functional requirement 1.1 3.1.1.2.1 Functional requirement 1
3.2.1.n Functional requirement 1.n .)
322 Mode 2 3.1.1.2.n Functional requirement n
3.1.1.3 Performance
3.1.2 Mode 2
3.2.m Mode m
3.2.m.1 Functional requirement m. | :
3.1.m Mode m
3.2 Design constraints
. 3.3 Software system attributes
3.2.m.n Functional requirement m.n 34 Other requirements
3.3 Performance requirements
34 Design constraints
3.5 Software system attributes
3.6 Other requirements

]}EPEN DABLE SOFTWARE 1 6 5
LABORATORY

KU KONKUK
UNIVERSITY

SRS Templates: IEEE Std 830-1998

A.3 Template of SRS Section 3 organized by user class A.4 Template of SRS Section 3 organized by object
3. Specific requirements 3. Specific requirements
3.1 External interface requirements 3.1 External interface requirements
3.1.1 User interfaces 3.1:1 User interfaces
3.1.2 Hardware interfaces 3.1.2 Hardware interfaces
3.1.3 Software interfaces 3.1.3 Software interfaces
3.1.4 Communications interfaces 3.1.4 Communications interfaces

3.2 Functional requirements 3.2 Classes/Objects
3.2.1 User class 1 3.2.1 Class/Object |
b ~3 P SAuire me C : H :
3.2.1.1 Functional requirement 1.1 3.2.1.1 Auttributes (direct or inherited)

3.2.1.1.1 Attribute 1

3.2.1.n Functional requirement 1.n :
3.2.2 User class 2 3.2.1.1.n Attribute n
3.2.1.2 Functions (services, methods, direct or inherited)
3.2.1.2.1 Functional requirement 1.1

3.2.m User class m

3.2.m.1 Functional requirement m. 1 3.2.1.2.m Functional requirement 1.m

3.2.1.3 Messages (communications received or sent)

322 Class/Object 2
3.2.m.n Functional requirement m.n
33 Performance requirements .
3.4 Design constraints 3.2.p Class/Object p
N foon 3 3.3 srformance requireme
3.5 Software system attributes 24 E"r'fm" AECTeRuTIncIy
. J. es1gn constraints
3.6 Other requirements csIg
| 35 Software system attributes

w
)]

! Other requirements
EPENDABLE SOFTWARE 1 66
LABORATORY

KU KONKUK
UNIVERSITY

SRS Templates: IEEE Std 830-1998

A.5 Template of SRS Section 3 organized by feature A.6 Template of SRS Section 3 organized by stimulus
3. Specific requirements 3. Specific requirements
3.1 External interface requirements 3.1 External interface requirements
3.1.1 User interfaces 3.1.1 User interfaces
3.1.2 Hardware interfaces 3.1.2 Hardware interfaces
3.1.3 Software interfaces 3.1.3 Software interfaces
3.1.4 Communications interfaces 3.1.4 Communications interfaces
392 System features 3.2 Functional requirements
3.2.1 System Feature | 321 Stimulus 1
3.2.1.1 Introduction/Purpose of feature 3.2.1.1 Functional requirement 1.1
3.2.1.2 Stimulus/Response sequence
3.2.1.3 Associated functional requirements

3.2.1.3.1 Functional requirement | : . .
3.2.1.n Functional requirement |.n

3.2.2 Stimulus 2

3.2.1.3.n Functional requirement n

322 System feature 2 . 2
3.2.2 System feature 2 3.2m Stimulus m

3.2.m.1 Functional requirement m. |

3.2.m System feature m

3.2.m.n Functional requirement n.n

33 Performance requirements
; 34 Design constraints
3.3 Performance requirements 3:5 Software system attributes
3.4 Design constraints 3.6 Other requirements
3.5 Software system attributes
3.6 Other requirements

]}EPENDABLE SOFTWARE 1 67
LABORATORY

SRS Templates: IEEE Std 830-1998

[
(5]

A.7 Template of SRS Section 3 organized by functional hierarchy

3. Specific requirements

;i1 External interface requirements
3.1.1 User interfaces
3.1.2 Hardware interfaces

3

3.1.3 Software interfaces Bt
3.1.4 Communications interfaces
3:2 Functional requirements
3.2.1 Information flows
3.2.1.1 Data flow diagram 1
3.2.1.1.1 Data entities
3.2.1.1.2 Pertinent processes
3.2.1.1.3 Topology
3.2.1.2 Data flow diagram 2 124

.2.1.2.1 Data entities
.2.1.2.2 Pertinent processes
.2.1.2.3 Topology

[SSERSL IR S]

w
()

Performance requirements
Design constraints
Software system attributes
Other requirements

(SRS RS
>

EPENDABLE SOFTWARE
LABORATORY

3.2.1.n.1 Data entities
3.2.1.n.2 Pertinent processes
3.2.1.n.3 Topology
Process descriptions
3.2.2.1 Process |
3.2.2.1.1 Input data entities
Algorithm or formula of process
Affected data entities

Input data entities
Algorithm or formula of process
Affected data entities

322

. Process m
3.2.2.m.1 Input data entities
3.2.2.m.2 Algorithm or formula of process
3.2.2.m.3 Affected data entities
Data construct specifications
3.2.3.1 Construct |
3.2.3.1.1 Record type
3.23.1.2 Constituent fields
3.2.3.2 Construct 2
3.2.3.2.1 Record type
3.2.3.2.2 Constituent fields

3.2.3.p Construct p
3.2.3p.1 Record type
3.2.3.p.2 Constituent fields

Data dictionary

3.2.4.1 Dataelement |
3.2.4.1.1 Name
3.2.4.1.2 Representation
3.2.4.1.3 Units/Format
3.2.4.1.4 Precision/Accuracy
3.2.4.1.5 Range

3.2.4.2 Dataelement 2
3.24.2.1 Name
3.2.4.2.2 Representation
3.2.4.2.3 Units/Format
3.2.4.2.4 Precision/Accuracy
3.2425 Range

3.24.¢ Dataclement ¢

3.2.4.4.1 Name

3.2.4.4.2 Representation

3.2.4.4.3 Units/Format

3.2.4.4.4 Precision/Accuracy

3.2.4.4.5 Range 168

| 4

SRS Templates: IEEE Std 830-1998

A.8 Template of SRS Section 3 showing multiple organizations

EPENDABLE
LABOR

3. Specific requirements
3.1

W W W

(7
=)

ra

LU SV}

External interface requirements
3:1.1 User interfaces

3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces

Functional requirements

3.2:1 User class 1
3.2.1.1 Feature 1.1
3.2.1.1.1 Introduction/Purpose of feature
3.2.1.1.2 Stimulus/Response sequence
3.2.1.1.3 Associated functional requirements
3.2.1.2 Feature 1.2
3.2.1.2.1 Introduction/Purpose of feature

2 I
3.2.1.2.2 Stimulus/Response sequence
2.1.2.3 Associated functional requirements

3.2.1.m Feature L.m
3.2.L.m.1 Introduction/Purpose of feature
3.2.1.m.2 Stimulus/Response sequence
3.2.1.m.3 Associated functional requirements
3.2.2 Userclass2

3.2.n User class n

Performance requirements
Design constraints
Software system attributes
Other requirements

KU

169

KONKUK
UNIVERSITY

KU

3. Requirements Validation

« Concerned with demonstrating that the requirements define the system that the customer really wants.

Requirements error costs are high, so validation is very important
» Fixing a requirements error after delivery may cost up to 100 times the cost of fixing an implementation error.

* Requirements checking

Validity : Does the system provide the functions which best support the customer’s needs?
Consistency : Are there any requirements conflicts?

Completeness : Are all functions required by the customer included?

Realism : Can the requirements be implemented given available budget and technology
Verifiability : Can the requirements be checked?

& 170
L B b LABORATORY

KONKUK
UNTVERSITY

KU v
Requirements Validation Techniques

« Requirements reviews
— Systematic manual analysis of the requirements

* Prototyping
— Using an executable model of the system to check requirements

 Test-case generation
— Developing tests for requirements to check testability

171

(M DEPENDABLE SOFTWARE
y LABORATORY

K[J’ KONKUK
UNIVERSITY

4. Requirements Change Management

* Requirements change management is the process of managing changing requirements during the
requirements engineering process and system development, and even after delivery

— We need to keep track of individual requirements and maintain links between dependent requirements so that
you can assess the impact of requirements changes.

— Need to establish a formal process for making change proposals and linking these to system requirements.
— Decides if a requirements change should be accepted or not.

Identified Revised

problem requirements
—_— >

Problem analysis and
change specification

Change analysis
and costing

Change
implementation

 Requirement change management tools start traceability analysis from requirements to code and TC.
— CTIP (Continuous Testing and Integration Platform) is useful.

1 %‘;EDEPENDABLE SOFTWARE 1 72
o) LABORATORY

Homework / Activity #4

- 29l0| |20 ¥t T2 HE SILIE A S 2 ISO/IEC 9126250100 H|A|3}= Software Quality
ol Z=2ME o |z T== &1 XHMI5] 245N K.
— of2tx|= = 0| Ci$t Quality RequirementsS ZHd5HM| 2.
TZHE I 7hoteh 4
Quality Attributes QA1, QA2, QAS3, ..., Responsiveness (0f])

QA1 Quality Requirements
QA2

QA

Reqmts Sl
Responsiveness | “O| A|AE2 52 Lo 2274 BH-SSOF SHC}”

[K KONKUK |

]}EPENDABLE SOFTWARE 1 74
LABORATORY

5. System Modeling

K[J’ KONKUK
UNIVERSITY

System Modeling

« System modeling is the process of developing abstract models of a system, with each model
presenting a different view or perspective of that system.
— Helping analysts to understand the functionality of the system
— Helping analysts to communicate with customers

— Mostly based on notations in the Unified Modeling Language (UML)

« System perspectives (Views)
— External perspective: modeling the context or environment of the system
— Interaction perspective: modeling the interactions between a system and its environment, or between the
components of a system
— Structural perspective: modeling the organization of a system or the structure of the data processed by the
system
— Behavioral perspective: modeling the dynamic behavior of the system and how it responds to events

176

Use of Graphical Models - UML

UML diagrams used for system modeling:

Use case diagram : showing the interactions between a system and its environment

Sequence diagram : showing interactions between external actors and the system, or between system components
Class diagram : showing the object classes and the associations between these classes

State (Statechart) diagram : showing how the system reacts to internal and external events

Activity diagram : showing the activities involved in a process or in data processing

PENDABLE SOFTWARE

LABORATORY

K[J’ KONKUK
UNIVERSITY

177

External Models

KU vy

178

| 4

Context Models

Context models illustrate the operational context (boundary) Of a system.
— External perspective
— Show what lies outside the system boundaries

— Architecture models show the system and its relationship with other systems.

EPENDABLE SOFTWARE
LABORATORY

Example: Mentcare System

«system»
Management
reporting
system

«system»
Patient record
system

«system»
Admissions
system

«system»
Mentcare

«system»
HC statistics
system

«system»
Appointments
system

«system»
Prescription
system

I(I l' KONKUK
UNTVERSITY

179

KU KONKUK
UNIVERSITY

Process Models

* Process models reveal how the system is used in business processes.
— Show how the other systems will be used in business environment.

— UML activity diagrams may be used to define business process models.
+ System level > Component interaction level

 Example : Involuntary Detention @zx=3)

Transfer to
police station

[not available]

Confirm
detention
decision

Find secure

place
Transfer to
N . . Inform
[available] | secure hospital .
A2 [dangerous] social care
Inform
—

patient of

Inform next
rights % of kin @
ete.nFlon —> hospital register
decision [not T

A

7y dangerous]
«system»
«system» Mentcare
«system» Admissions
Mentcare system

]}EPENDABLE SOFTWARE 1 80
LABORATORY

KU vy

Interaction Models

181

I(I l' KONKUK
UNTVERSITY

Interaction Models

* Interaction models
— Modeling user interaction
* Helps to identify user requirements.
— Modeling system-to-system interaction
» Highlights the communication problems that may arise.
— Modeling component interaction
» Helps us understand if a proposed system structure is likely to deliver the required system performance and dependability.

« UML Use-Case diagram and UML Sequence diagram are often used.

]}EPENDABLE SOFTWARE 1 82
LABORATORY

KU KONKUK
UNIVERSITY

Use Case Modeling

« Use case represents a discrete task that involves external interaction with a system.

— Use case is a text scenario.
* Represents a discrete task that involves external interaction with a system.
* Actors in a use case may be people or other systems.

— Use case diagrams provide an overview of all use cases.
Mentcare System

Register
patient
Unregister
patient

« Example : “Transfer Data” use-case in Mentcare System

Medical receptionist Patient record system
info.
Actors Medical receptionist, patient records system (PRS) .
- . Medical
A receptionist may transfer data from the Mentcare system to a general patient ..
S record database that is maintained by a health authority. The information receptionist Transfer data
P transferred may either be updated personal information (address, phone
number, etc.) or a summary of the patient's diagnosis and treatment.
Data Patient’s personal information, treatment summary
Stimulus User command issued by medical receptionist Con_taCt
patient
Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security permissions to access the
]}EPE”DAB'-E SorTwars patient information and the PRS. 183

LABORATORY

K[J’ KONKUK
UNIVERSITY

Sequence Diagrams

« Sequence diagrams show the sequence of interactions that take place during a particular use case.

— The objects and actors involved are listed along the top of the diagram, with a dotted line drawn vertically from
these.

— Interactions between objects are indicated by annotated arrows.

« Example : “View Patient Information” use case in Mentcare System

Medical Receptionist

% P: PatientInfo D: Mentcare-DB AS: Authorization
. I I I
ViewlInfo (PID
(PID) »m report (Info, PID, | !
uiD) 1 I
"| | authorize (Info, I
View patient uiD) i
info.
authorization
‘_ _______
alt |
[authorization OK] Patient info |
S |
A O Y D I -+ —
[a|i|thorization fail] Error (no access) I
|

PENDABLE SOFTWARE
LABORATORY |

I
I
I
I
I
I
I
___.II

I 184

KU vy

Structural Models

185

KU KONKUK
UNIVERSITY

Structural Models

e Structural models

— Represent the organization of a system in terms of the components that make up that system and their
relationships.

— Static models : show the structure of the system design
« Class diagram

— Dynamic models : show the organization (structure) of the system when it is executing (i.e., dynamics)
» Object diagram, Component diagram, Composite structure diagram

» Structural models are developed/created when you are designing the system architecture.

]}’ EEEEEEEEE N 186
LABORATORY

KU KONKUK
UNIVERSITY

Class Diagrams

« Class diagrams show the classes in a system and the associations between these classes.
— (Object) Class: a general definition of one kind of system object
— Association: a link between classes indicating relationship between them
— Used when developing an object-oriented system model.

EPENDABLE SOFTWARE

Consultant
1 ¢ dt Consultation
referred-to
-I *
I P e 1.* Date
Condition Patient Getr_1t(_eral Time
diagnosed- referred-by | Practiioner Clinic
with 1.X Reason
d Medication prescribed
attends 2
1.% \le)e_izmeor;te Erescrlbed
. | n
_ prescribes o Transcript
Consultation Medication
1.* 1.%
'l *
" 'b NeW (
runs prescribes Prescribe ()
1.4 " Treatment RecordNotes ()
Hospital 1. Transcribe ()
Doctor

Classes and Associations in the MHC-PMS

Generalization and Aggregation in Class Diagram

* Generalization (Inheritance)

Doctor

B

Hospital
doctor

£

Consultant

EPENDABLE SOFTWARE
LABORATORY

General

practitioner

Team doctor

A

Trainee
doctor

Qualified
doctor

« Shared Aggregation / Composition

Patient record

1 1
1 1.*
Patient Consultation

Doctor

Name
Phone #
Email

register ()
de-register ()

Hospital doctor

Staff #
Pager #

General practitioner

Practice
Address

KU

188

KONKUK
UNTVERSITY

Behavioral Models

KU vy

189

I(I l' KONKUK
UNTVERSITY

Behavioral Models

 Behavioral models
— Model dynamic behavior of a system as it is executing.

— Show what happens or what is supposed to happen when a system responds to a stimulus from its environment.
+ Data: Some data arrives and has to be processed by the system.
* Events : Some event happens and triggers system processing. Events may have associated data.

 Behavioral models
— Data-driven model
— Event-driven model (State machine model)

]}EPENDABLE SOFTWARE 1 90
LABORATORY

| 4

Data-Driven Models

— Controlled by the data input to the system, with relatively little external event processing.
— Show the sequence of actions involved in processing input data and generating an associated output.

EPENDABLE SOFTWARE
LABORATORY

Blood sugar
sensor

Insulin
pump

(Control \

Many business systems are data-processing systems that are primarily driven by data.

Sensor
data

\ pump)

Pump control
commands

Data flow diagram (DFD) and UML Activity diagram are also used.

Get sensor Compute
value sugar level

/"~ Calculate ™\
ump

Blood sugar
level

Calculate
insulin
delivery

p
K commands)

An Activity Model of the Insulin Pump’s Operation

Insulin
requirement

KU KONKUK
UNIVERSITY

191

K[J’ KONKUK
UNIVERSITY

Event-Driven Models

* Real-time systems are often event-driven with minimal data processing.

* Event-driven modeling shows how a system responds to external and internal events.

— Based on the assumption that a system has a finite number of states and that events (stimuli) may cause a
transition from one state to another.

— Modeled well with FSM (Finite State Machine).

Full

power Full power
do: set power
=600
Statecharts Diagram of a Microwave Oven
Waiting —‘ ,,,,,,,,,,,,,,,,,,,,,,
do: display - Number Ooerah
time Full Set time peration
power do: get number do: operate
exit: set time oven
Half
ower
Half P / Door ‘
power Timer closed Cancel
Start
Door \
open Door
Half power Enabled open

——— do: set power Door | do: display
=300 closed 'Ready’

Disal%7

do: display
PENDABLE SOFTWARE

| 4

State Machine Models

State Machine models

— Model the behaviour of the system in response to external and internal events.
— Show the system’s responses to stimuli.

+ System states : hodes
Events : arcs between these nodes.
« Transitions : When an event occurs, the system moves from one state to another.

— UML Statecharts diagram Operation - I
ime
Checking
OK
do: check | do: run
status werator
Turntable Emitter Timeout
fault fault
Done
Alarm
do: displa do: buzzer on
- dispiay for 5 secs
event
Door open Cancel

EPENDABLE SOFTWARE
LABORATORY

(Disabled |

(Waiting j<_

Microwave Oven - Operations State

KU KONKUK
UNIVERSITY

193

KU vy

Model-Driven Engineering

194

KU vy

Model-Driven Engineering

* Model-driven engineering (MDE)

— An approach to software development where models rather than programs are the principal outputs of the
development process.
— The programs executing on a hardware/software platform are generated automatically from the models.

» Software engineers no longer should be concerned with programming language details or the specifics of execution
platforms.

« MDE is still at an early stage of development.
— Advantages
+ Allows systems to be considered at higher levels of abstraction
» Generating code automatically means that it is cheaper to adapt systems to new platforms.
— Disadvantages
» Models for abstraction are not necessarily right for implementation.
» Savings from generating code may be outweighed by the costs of developing translators for new platforms.

--i]:)EPENDABLE SOFTWARE 195
1 y LABORATORY

K[J’ KONKUK
UNIVERSITY

Model-Driven Architecture

* Model-driven architecture (MDA) is a model-focused approach to software design and implementation.
— The precursor of more general MDEs
— Models at different levels of abstraction are created.

— From a high-level, platform independent model, it is possible, in principle, to generate a working program without
manual intervention.
* CIM (Computation Independent Model)
* PIM (Platform Independent Model)
* PSM (Piatform Specific Models)

— Often use a subset of UML models to describe a system

‘; KZPD EEEEEEEEE SOFTWARE 196
) 4

KU vy

Types of Models in MDA

« Computation Independent Model (CIM)
— Models the important domain abstractions used in a system
— CIMs are sometimes called domain models.

* Platform Independent Model (PIM)
— Models the operation of the system without reference to its implementation.

— PIMs are usually described using UML models that show the static system structure and how they respond to
external and internal events.

* Platform Specific Models (PSM)

— Transformations of the platform-independent model into a separate PSM for each application platform
— In principle, there may be layers of PSM, with each layer adding some platform-specific detail.

--i]:)EPENDABLE SOFTWARE 197
1 y LABORATORY

e
MDA Transformations

Computation Platform
. . Platform Executable
mdﬁ1poecll1<;jlent md;poe;:lent —> specific model [code
Translator Translator Translator
Domain specific Platform Language
guidelines specific patterns specific
and rules patterns

]} EEEEEEEEE corrwans 198
LABORATORY

Multiple Platform-Specific Models

J2EE Translator

T

Platform
independent
quel

'

.Net Translator

—>

J2EE specific
model

Java code
generator

Java program

.NET specific
model

C# code
generator

C# program

KU KONKUK
UNIVERSITY

199

KU vy

Adoption of MDA

« Limitations on adopting MDE/MDA
— Specialized tool support is required to convert models from one level to another

— There is limited tool availability and organizations may require tool adaptation and customization to their
environment

 Models are a good way of facilitating discussions about a software design.
— However, the abstractions that are useful for discussions may not be the right abstractions for implementation.

— For most complex systems, implementation is not the major problem — requirements engineering, security and
dependability, integration with legacy systems and testing are all more significant.

« The arguments for platform-independence are only valid for large, long-lifetime systems.

— For most software products and information systems, the savings from the use of MDA are likely to be
outweighed by the costs of its introduction and tooling.

LABORATORY

S DEPENDABLE SOFTWARE 200

MDE Example : SCADE

UNIVERSITY

KU KONKUK

SCADE Suite

e
(EadaReh

Control
Software Design

spvee] = {1 ‘SesecTanee) 1 SpmedTorget

|
£
H

i

SCADE Suite -
i Model Formal KCG %
e T Checking Verification
— |
[e % o E

C& Ada @ J
mos | oortceces
Adaptors

Verification
Rapid Prototyping
& Executable Spec

~
.

g
g

L

£

H

Debug &
Simulation

I— DO-178B
DO-178C
[]) e
PROTOTY N Cerltisfic::azt‘iiigzr(its
B, e Theds GENERATE
N
‘*‘%% VERIFY

)

%&i\‘%
4 © 2013 ANSYS, Inc. July 14, 2013
EPENDABLE SOFTWARE
LABORATORY

© Esterel Technologies - An 150 9001:2008 Certified Company - Confidential & Proprietary

201

I< l]’ KONKUK
UNIVERSITY

T R)

¢ ERTEREL
t : =lmi=
”@ Ble Edit ew Qoerator Insert Layoul Broject Tools Wevigste Window Hep _,j_.gjg|

[peEag|smexwcms er e |[gfcs Zssmso||afir fo cssoass

:

|l=cee|feean|--uny eeec|mpINs 44820 [oopEp ||[Pomanna® ||ww
—T=
= @ CruiseControl etp i} |TI1|9 :Top Level ofthe Crulze Cantrol applicstion =
-3 CuiiseCortol #} || |Createcity: EsterelTecnnologies [$Date: 2008M0/27 131156 6 [SRevision: 128 |
E-[] CrukeCortrol | J— e
i B[] Conetante =
B[Tyeca =]
B3 Cpersors =
ﬂD _ ;
#1 4} CussFeguiation = =
#-4F CuiseSoeedMyz i
#-7 SabrmeThiotle ! s rssetonss o]
(- Proot o L Crimragit
B0 Syatem = .
B2 Cpesstars i
B} SystemSmul &
[0 ibdigital
F- L Iblnear
B bmah pERY - 1 i\
e Ibmathat ol |
[o I i
Fi-[) Cor = ' i Somsqr oes
B CaType] !
[i3-[2 ibvert an il Bt ottt o b e SR R i St i S S i e A v S s s |
3 - | 4:“‘_}-”:“ |
| B a5 B
] R [N :
| S ;
|§| Figtiem @Framewoml ‘i -------------- = - — — — — | T =
[enersl]
Al Decraton Neme: [riseCorerl
s et ooty [oniseCortrl CrissContel
Nate Fiename: [CruiseCortrol 1 xaczda =
[
-+ Code Integraton F7 Separate Fle Name
- Traczablity 4 P it ‘ .
Il |
For Help, press F1 [[&] A
10 © 2013 ANSYS, Inc. July 14, 2013 © Esterel Technologies - An 150 9001:2008 Certified Company - Confidential & Proprietary
EPENDABLE SOFTWARE 2 O 2

LABORATORY

KU v

SCADE Suite Libraries sz,

-

libpwlinear) libdigital . libmath

pwlinear package digital package math package
= = & = = =@ = E W
Clock Cownter Counter Dead band Dead bond Bool vecter integer Bogiean Bockean Integer o Real 1o
ymmetical un-symmetrical o integer 0 bool vector o integer o real Irowean oalean
FH B = 8 & 6 = g g A f
Limiter Limiter Pre-laad Pre-aact Rising edge Falling edge Either dge Courst dowm M:’:r:hyr T‘m l;:me :’rm
Bl e [=—]] T] [| i = = =
] =7 B H B &2 = ||| - =
Quantizer Rate Fafling fising Asing cope Hising ecige falling adige Falling edga Round found Round oo
fimitar Hystwrasis Hysteratic A6 PRlrigGe Frnigger A retriggar PRtrigaer Poarnit tewarts flaar tesmarely eail ietog

= o o= || E o

T Fipfiop Fip fiap Fip fiap K Taggle Minimum Minimum Marimum Maximum
! = : sat prioriy resec pricety o Fia
10 Look-p tabife 2D lock-up tabie 1 e
i e truthtables package ﬁ: E“‘. | [_J i rl__E
ﬁb“near) ‘| J -| ""_E T‘ /l Mean A;Ibra; Abrolute Sign of
linear padgagg Truth table Exhaustive truth table index only truth table vect package
-I_“_", el {HEEE JESNS A filters pac kage s - |
Memary m:m M"{;"‘:’? m‘m"" Mt;.:'::hg Marrix . matrix Matrix. vector Wector . matrix Sealar product

N | Mo+ Naz " L
Bov B | 1 [] \ -
= pre—] e TS [Mg+ Maz* [] M
- Piriat ot L A s T | busy Dut+ Dy2+ Ba Dat T+ 4 0a

Derivative. Farward Trapeseld Maan over Mean ouer
Intogrator Integrater 2epeies epelas
{ [| {Na--f":.-z""‘| + Mot + My ‘ { Niz' s oot Moy |
Dot o rOg gz W0 | Dot ® Dg TN Dot + Dyz+ D3 Dozt T+ .+ Bey
Discrete fiters i+ mormalized versions) Transfer functions
15 © 2013 ANSYS, Inc. July 14, 2013 © Esterel Technologies - An 150 9001:2008 Certified Company - Confidential & Proprietary

“EPENMBLE SOFTWARE 203
LABORATORY

KU v |

SCADE Rapid Prototyper - Esesis’

* Graphical panels for quick & comfortable model debug &
simulation
o Features a library of interactive & display predefined widgets

o Library of widgets can be user-customized/augmented

——
20 © 2013 ANSYS, Inc. TOy1%,2013 © Esterel Technologies - An IS0 9001:2008 Certified Company - Confidential & Proprietary

B:}EPENDABLE SOFTWARE 204
LABORATORY

KU KONKUK
UNIVERSITY

Modelica/SCADE Suite Co-simulation

Modelica
Car multi-physics Model

18

R
B (NS bt O et S et bt | [e

[P
|

[

= '_ P Pacejka - .-%
bl SCADE Suite
: e - Controller Model J
DYMOLA (Dassault Systémes) F
and SCADE Co-simulation is a result White box (debug)
of CESAR Project : ‘

Black box
&) CESAR r—) . E

28 © 2013 ANSYS, Inc. July 14, 2013 © Esterel Technologies - An IS0 9001:2008 Certified Company - Confidential & Proprietary

]}EPEN DABLE SOFTWARE 2 O 5
LABORATORY

KU v

e

SCADE Product Family - EsesE’)

.

System
Design

>

System Architecture, ’ ’ HMI

Control
W, System Verification

Software Design

Prototyping, Design,
R Verification, Qualified
W Code Generation

Software Design

—

iy
tem & Software %
Lifecycle Mgt

——

Prototyping, Design,
Verification, Qualified
Code Generation

Certification Plans, Metrics,
Requirements, Configuration
Management,
Documentation
Generation

111 © 2013 ANSYS, Inc. July 14, 2013

]}EPENDABLE SOFTWARE 206
LABORATORY

_csterel Technologies - An 150 9001:2008 Certified Company - Confidential & Proprietary

| 4

MDE Example : NuDE

Safety Analysis

= Fault Tree Analysis
L Analysis NuSRS NUETA
{ il S Safety Analysis
NuSCR — NuSTPA .
Quick Checker -~ 3 STAMP/STPA
NuSCRtoSMV
s | Verification
Model checking
NuSCRtoFBD
Design Analysis
4+ FBD Editor L
| J E i = FBD_FTA Fault Tree Analysis
BD —
“| FBDtoVerilog 1.0
FBD Checker - . . Verification
FBD Simulator ~ + VIS® & sMV N
Equivalence checking | ™ vIS Analyzer
Model checking
FBDtoC FBDtoVerilog 2.8/2.1
/FBDtoVHDL Verilog/VHDL
Libero Linker
PLC ‘ FPGA
Implementation Implementation |
Verilog
C Program [— J
- FBOtoVerilog 1.0 /VHDL
‘ L]
Verilog COTS Synthesizer
C Simulator COTS Compiler Y
FBD-C Comparator I Verification Verification
HW-CBMC” CVEC IST-FPGA
l (Equivalence Checking) ((Q-S.l-llaunw)
.
Verification Verification s Scenario Generator
a ¢ . Netlist & Co-Simulator
Co-Simulation Model checking (EDIF) + ModelSim'
P&R
Executable x
Code Layout
| ?
PLC FPGA

In Commercial
| PLC Software Engineering Tools

EPENDABLE SOFTWARE

FPGA Software Synthesis Tools)

In Commercial

NuDE Navigator

LABORATORY

207

Requirements Analysis

siskjeue f3ajes

’?);" NuFTA*

juawdojanag

uoneslLIaA

EPENDABLE SOFTWARE
LABORATORY

NuSRS* W| ”

NuSCRtoSMV’\

Quick
checker

Safety Analysis

I
NuSCRtoFBD*

- Simulator &

Comparator

- -':: H w 7 ‘-'o
s CBMC l L

| C
Program

FBDtoVerilog*

FBD Tester:'-.FBDtOVei‘ilog*
{Qj FBD Checker*"-_.

FhhhhH
{

VIS

rBDtoC*
]

i |
FBD Editor* Sy

. I

% FBDtoVHDL*

VHDL

Verilog

[

B |
N
IST-FPGA

Development Verification

Implementation

—_————m————

el

Executable

Code for
? 4 PLC

i e | e st i i s ' e

EDIFtoBLIF-MV*

L. CVEC G-/

e
Ch WS aE
-

- ——

KU

KONKUK
UNTVERSITY

K KONKUK
UNIVERSITY

& Nusrs - Eclipse Platfe
File Edit Navigate Search Project NUDE NuSRS Run Window Help

i ﬁjuﬁﬂ‘ p [g}[:” |AQENUDE§Q'§B A= . Bt o Quick Access [| [Resource @ FBD_Editor i€ NUDE 0.9
2 Common Navigator 2 5 0 || @ ierarchy Window 53 = 8 (O Diagram Window 32
BE 7| &R © g_VAR_OVER_PWR x
a4 1= New_Nude o CJa.8P T—

(& FBDtoC o[9_L0_SG1_LEVEL [y

(& FBDtoVerilog o] 9_VAR_OVER_PWR VAR_OVER_PWR_P|

(& NUSCRtoFBD o [g_HILOG_POWER | B

4 B NUSRS 03010 P7R PRESS = { vaR_OVER_PWR_Wanu dent £WAR_OVER_PWR_Val_jout

@ (NUSCR) RPS BP (20130716)xm| o[5_SG1_LO_FLOW

o[0_HILOCAL_POWER 1 VA

R_OVER_PWR_NT_Quary

AR_OVER_PWR_TripSF
f_VAR_OVER_PWR_Trip

R_OVER_PWR_Ptm]SP

1_VAR tatus

_OVER_PWR_Ptrp_§

AR_OVER_PWR_Trip_{Logic

escription Window 52 = (5
¢ [0_VAR_OVER_PWR
¢ =] Description

[71 D S (TIEH S8

WRR_OVER_PWR_Ptrp_|Logic
¢ £ TemplateNumber VAR | L
O R_OVER_PWR_PV |Err
¢ =7 Input

[F_VAR_OVER_PWR_PV:0.30
[f_VAR_OVER_PWR_Manu_Te K1 Il] T
[T} f_VAR_OVER_PWR_NT_Que

[T} f_VAR_OVER_PWR_Trip_Stat{ ~

ID

[«

[Type Window 32 @ C

¥ Problems = 0

0 items selected

EPENDABLE SOFTWARE

[} F_VAR_OVER_PWR_Ptrp_Stat
[y f_Mod_Err: boolean
[} f_VAR_OVER_PWR_Chan_Er
[} F_VAR_OVER_PWR_Op_Byp_|
¢ =7 Output
[} r_vAR_OVER_PWR_val_Out
[} F_VAR_OVER_PWR_Ptrp_SP
[} F_VAR_OVER_PWR _Trip_8P :[~|
[} th_vAR_OVER_PWR_Plrp_Lo
[th_vAR_OVER_PWR_Trip_Lo
[} F_VAR_OVER_PWR_PV_Err
[} f_VAR_OVER_PWR_Trip_Out
4] [[

[4T

f_Mod_Err : boolean
f_VAR_OVER_PWR_Chan_Err: boolean
T_VAR_OVER_PWR_MT_Query : boolean
f_VAR_OVER_PWR_Manu_Test: 0..30000
_VAR_OVER_PWR_Op_Byp_Init : boolean
T_VAR_OVER_PWR_PV:0..30000
T_VAR_OVER_PWR_PV_Err : boolean
f_VAR_OVER_PWR_Ptrp_Out : boolean
T_VAR_OVER_PWR_Ptrp_SP: 0..30000
_VAR_OVER_PWR_Ptrp_Status : boolean
f_VAR_OVER_PWR_Trip_Out: boolean
_VAR_OVER_PWR_Trip_SP: 0..30000

[»

NuSRS - NuSCR Modeling Environment

209

Homework / Activity #5

“Digital Twin (E[X|2 El)"2| Ho|& & H 1, qU2| HE Al S ot EM 8.

Samples from SE Undergraduate (KU 2021)

4.2.1 General Electric 2] ‘Predix’ [9]

&= A (Predix)' &

Ao FHRREZE

2l#|o]d MelAE FHYoD,

g83l 20174 7IE2 2 80T 0

| 'O
R

E ZEE?

ke

T

2016 & MA =

GE =

Jd

Ho

2l

ZEA EAES

I

S

b 3ol &

= X127 40

N

-3
=

AAE of

7ol

10| LI2D 0|8 ZH|Z Bl A|lAHES

[5[F=1
=20

2

L

Xl Amet 22 24 ol

L
[=]

geg + AA ok

Y2OHA Ruz ChefE Hiojg +=Fol 7t

x
5|

HE 7|tz Hulo i o

S
"r
ki
-
(=
U
v
T
=
]
£
£
0
¥
ol
S
S
<
Fn
w
O
iy
.
<

"M C HE (Command Centern)'&

eg

A CRE

t

2702t g
o Zkx| 2

GE¥

4
o
i
o

o]}

o
Ufru
ol

ofu

&

= HIoIHz 7tyol ¥

ol
AL

o

ol
okl
wl

1}

o

=

w

2=t o]

A
0

(=13
|

oz MH|Ao| 408 48D 0%

&

i AAZicz ¥

o gaact o

o
&0
<+
op

2]

Al

ot

ZU
T

PSS

fofl ohef

=
Ru

£

ct. of

Xz

1 MNIAl 3007 O|&to] &l

x
[

ff 24 AlZE LHLH Al 7|52

270 HUEME

GE &

28 dug ZLEHZ5D Y

=}
=

I517] 2|3

A2

o
=

XA = ZHIYEHE

Ql
=

H ZHE Zhd=iet 30 220

Al
=

of!

ofu
K4

Qi
JJ

SH|o i

=] 3n]3
oo

El

SH=Z

Bl S30l=§ FASHALL Sty 7toctz

A
12

=S

=
=7

34 s

4K,

4oL}, 2o

#

nxe o

ofg| 7k HEi2 O|FO0|M A2, CIXE ER A2 ojds EZ ¢

2 o
of w28, o] AlIr"EE &

£[|2E £
= oo o

A
[

FCE =9 E AHO|M X 'Y(The Joint Commission Journal)®| ZH&

8 =Xt

x X
=

Ba

0lo

of

=
==

35% HAMCE

(=]
e

ch7l AlZt

[K KONKUK |

]}EPENDABLE SOFTWARE 2 1 2
LABORATORY

An Introduction to
Structured Analysis and Structured Design
(SASD)

References

* Modern Structured Analysis, Edward Yourdon, 1989.
» Introduction to System Analysis and Design: a Structured Approach, Penny A. Kendall, 1996.

Design:
pproach

Penny A. Kendall
Third Edition

]}EPENDABLE SOFTWARE - B 2.] 4
LABORATORY

K[J’ KONKUK
UNIVERSITY

Structured Analysis

» Structured analysis [kendall 1996]

— A set of techniques and graphical tools
» Allowing the analysts to develop a new kind of system specification that are easily understandable to the users.

— Data/Functional modeling: DFD, ERD
— State-oriented modeling: STD (FSM)

* Analysts attempt to divide large, complex problems into smaller, more easily handled ones.
— Top-Down Divide and Conquer approach

‘:?‘:‘. EPENDABLE SOFTWARE 2 1 5
| LABORATORY

HiStory of SASD (Structured Analysis and Structured Design)

» Developed in the late 1970s by DeMarco, Yourdon and Constantine after the emergence of structured
programming.

* IBM incorporated SASD into their development cycle in the late 1970s and early 1980s.

* Yourdon published the book “Modern Structured Analysis” in 1989.

» The availability of CASE tools in 1990s enabled analysts to develop and modify the graphical SASD

models.
small world BY TOM BRISCOE

P\ You SEE IT'5 GoT A FIGURED OUT
THIS, JAKE? CALENDAR, DATE- HowTURN |§
[T6 THE PALMOPEX BOOK, E'MAIL- \TON YET? 3
2000 POCKET PC! CLIENT, WEE 3
PROWSER, VOICE @
RECORDER A2 A E
BoDY ODOR ALARM/ §
3
8
@

\
WU AriSeoe.ond

216

(} DEPENDABLE SOFTWARE
LYY LABORATORY

An Overview of SASD

SA

Environmental Model

Behavioral Model

Data Dictionary

State Transition
Diagram

EPENDABLE SOFTWARE
LABORATORY

Time

217

Structured Analysis (SA)
- An Example of RVC SW Controller

EPENDABLE SOFTWARE 2 1 8
B Ol

KU vy

Statement of Purpose

» Aclear and concise textual description of the purpose for the system to develop
— Should be deliberately vague.
— Intended for top level management, user management and others who are not directly involved in the system.

S DEPENDABLE SOFTWARE 21 9

LABORATORY

KU vy

Statement of Purpose - RVC Example

 User Requirements (Business Requirements)

- PFR (Preliminary Functional Requirements) E 3!'*6'

Robot Vacuum Cleaner (RVC) SW Controller

* An RVC automatically cleans and mops household surface.

* It goes straight forward while cleaning.

» Ifits sensors found an obstacle, it stops cleaning, turns aside left or right, and goes forward with cleaning.

« If there are obstacles in both front, left and right, it move backward and turn aside left or right, and goes forward.
« If it detects dust, power up the cleaning for a while.

* We do not consider the detail design and implementation on HW controls.

 We only focus on the automatic cleaning function.

(} DEPENDABLE SOFTWARE 220

LABORATORY

KU tvensry
System Context Diagram

« A special case of DFD (Data Flow Diagram)
— DFD Level 0
— Highlights the boundary between the system and outside world.
— Highlights the people, organizations and outside systems that interact with the system under development.

 Notation :

Process : represents the proposed system

Flow : represents the in/out data flows

- Terminator : represents the external entities

]} EEEEEEEEE corrwans 221
LABORATORY

System Context Diagram - RVC Example

Control

Cleaner

EPENDABLE SOFTWARE 2 2 2

K[J’ KONKUK
UNIVERSITY

Event List

» Alist of the event/stimuli outside of the system to which it must respond.
— Used to describe the context diagram in detail.

« Types of inputs events
— Flow-oriented event : triggered by incoming data
— Temporal event : triggered by internal clock
— Control event : triggered by an external unpredictable event

1 %‘;EDEPENDABLE SOFTWARE 2 2 3
o) LABORATORY

| 4

Event List - RVC Example

K KONKUK
UNIVERSITY

Detects obstacles in front of the RVC

Sensor

EPENDABLE SOFTWARE
LABORATORY

Front Sensor Input
Left Sensor Input
Right Sensor Input

Dust Sensor Input
Direction

Clean

RVC
Control

Detects obstacles in the left side of the RVC periodically

Detects obstacles in the right side of the RVC periodically

Detects dust on the floor periodically

Direction commands to the motor

(go forward / go backward / turn left with an angle / turn right with an angle)

Turn off / Turn on / Power-Up

Cleaner

Direction
Front Sensor Input

Left Sensor Input
Right Sensor Input
Dust Sensor Input

Sensor

Cleaner

Context Diagram for RVC

224

KU v

System Context Diagram - RVC Example

Direction
Front Sensor Input

Left Sensor Input
Right Sensor Input
Dust Sensor Input

i Control

Cleaner

EPENDABLE SOFTWARE 2 2 5

KU KONKUK
UNIVERSITY

Data Flow Diagram (DFD)

* Provides a means for functional decomposition.
— Composed of hierarchies(levels) of DFDs.

* Notation (a«ind of cDFD)

Data Process

/7 Data Flow

Control Process

> Control Flow

-
-
-
-
-
-
-
-
-

Terminator

Data Store

]}EPEN DABLE SOFTWARE 2 2 6
LABORATORY

K KONKUK
UNIVERSITY

DFD Level 0 - RVC Example

Front Sensor Front Sensor Input

Left Sensor
R,

i Control
Right Sensor :3,'33: Senso 0

Direction

Dust Sensor Dust Sensor Input Cleaner

Tick

Digital Clock

“EPEN DABLE SOFTWARE 2 2 7
LABORATORY

| 4

DFD Level 0 - RVC Example

EPENDABLE SOFTWARE
LABORATORY

(A kind of) Data Dictionary

Front Sensor Input
Left Sensor Input
Right Sensor Input

Dust Sensor Input
Direction

Clean

Detects obstacles in front of the RVC
Detects obstacles in the left side of the RVC periodically
Detects obstacles in the right side of the RVC periodically

Detects dust on the floor periodically

Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle)

Turn off / Turn on / Power-Up

True / False , Interrupt
True / False , Periodic
True / False , Periodic

True / False , Periodic
Forward / Backward / Left / Right

On / Off / Up

KU KONKUK
UNIVERSITY

228

KU v

DFD Level 1 - RVC Example

Front Sensor Input

Direction

Left Sensor
\mpm\) Obstacle & Cleaner &
Dust Obstacle & Dust Motor
Right Sensor Detection Location Control
Input

1

2

Dust Sensor Input

Tick

“EPEN DABLE SOFTWARE 2 2 9
LABORATORY

KU s |

DFD Level 2 - RVC Example

Front
Sensor
Interface Front Obstacle

1.1

Front Sensor Input

Left Sensor Input Left Determine
Sensor Left Obstacle Obstacle

. Obstacle
Interface Location Location
_________ 1.2 1.5 I
Right
Right Sensor Input Sensor Right Obstacle
Interface
1.3 Determine
————— Dust Dust

Existence Existence

Dust 1.6

Dust Sensor Input Sensor Dust Existence
Interface
14

B:}EPEN DABLE SOFTWARE 2 3 O
LABORATORY

| 14

DFD Level 2 - RVC Example

EPENDABLE SOFTWARE
LABORATORY

Obstacle
Location

Dust

Existence

Tick

Direction
Motor
Motor Command Interface
2.2

Cleaner
Cleaner Command Interface
2.3

KU

231

KONKUK
UNIVERSITY

DFD Level 3 - RVC Example

Tick
\ 3
Enable __--~
Obstacle Location ’Disa'ble
F/L/R
Controller
211
Dust ~
Existence

EPENDABLE SOFTWARE
LABORATORY

KONKUK

K

UNTVERSITY

Move
Forward
21.2

mmand

P
A ~
—

Motor Command

N
7

Motor Conipmand

1 ~
i s
i
]

Move

Backward
2.1.5

232

KU KONKUK
UNIVERSITY

DFD Level 4 - RVC Example

FSM for Controller 2.1.1

/ Enable “Move Forward”, Cleaner Command (On)

Move

Forward
Tick [F && L]

/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Left”

Tick [F && 'R]

/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Right”

able “Move Forward”, / Enable “Move
Cleaner Command (On) Cleaner Command

Turn Left

Turn Right
Tick [F && L && R]
/ Disable “Move Forward”,
Cleaner Command (Off), Problems in this model:

1. “Stop” state (deadlock)

2. Not consider “Dust”

3. No Priority for left/right turn
4. Not consider “Backward”

]}EPEN DABLE SOFTWARE 2 3 3
LABORATORY

DFD Overview - RVC Example

(Problems Are Not Resolved Yet)

Direction
Front SensorInput

Left SensorInput
Right SensorInput
Dust SensorInput

RVC
Control

Cleaner

Front
Sensor
Interface
1.1

Front Sensor Input

Front Obstacle

Tick
. \
Left SensorInput Determine

Obstacle

Left

Sensor Left Obstacle

n Obstacle
Interface Location Location
“““““““ 1.2 1.5
Controller
2141
Right T
Right Sensor Input Sensor Right Obstacle ~,‘\Trigger K TS
Interface g Tic -
1.3 Determine e, K TR
""""""" Dust Dust
Existence Existence

Dust
Sensor
Interface
14

1.6

Dust Existence

KONKUK University 30

Turn Left

KONKUK
UNT SITY

RSITY

Motor Command

Motor Command Motor Direction

Interface
2.2

213

Motor Command

Cleaner Command Cleaner

EPENDABLE SOFTWARE
LABORATORY

|

Interface
23

KU KONKUK
UNIVERSITY

Process Specification

» Shows process details which are implied but not shown in a DFD.
— Specifying the input, output, and algorithm of a module in a DFD
— Normally written in pseudo-code or table format
— Specifying all (upper/lower) processes in DFD hierarchies

« Example : Left Sensor Interface

Front
Sensor
Interface Front Obstacle

11

Front Sensor Input

Ref. No. 1.2
Left Sensor Input Left Determine Name Left Sensor Interface
Left Obstacle Obstacle A
et Location Obstacle Input Left Sensor Input (+Data structure if possible) , Tick
““““““ - i3 Output Left Obstacle (+Data structure)

“Left Sensor Input” process reads an analog value of the left

Right Process - o -

Right Sensor Input Ser?sor Right Obstacle Description sensor per|0d|ca”y, converts it into a dlgltal value such as
Interface True/False, and assigns it into output variable “Left Obstacle.”
) 13 Determine
"""""" Dust T Dust
Existence Existence

Dust 1.6

Dust Sensor Input Sensor Dust Existence

Interface

14 235

| 4

Data Dictionary

Defines data elements to avoid different interpretations.

— Often used in a simple form like below

EPENDABLE SOFTWARE
LABORATORY

Front Sensor Input
Left Sensor Input
Right Sensor Input

Dust Sensor Input
Direction

Clean

Front Obstacle
Left Obstacle
Right Obstacle
Dust Existence
Obstacle Location

Dust Existence (2)

Detects obstacles in front of the RVC

Detects obstacles in the left side of the RVC periodically
Detects obstacles in the right side of the RVC periodically
Detects dust on the floor periodically

Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle)

Turn off / Turn on / Power-Up

SRULEERIN nout Output Event Format | Type

True / False , Interrupt
True / False , Periodic
True / False , Periodic

True / False , Periodic
Forward / Left / Right / Stop

On / Off / Up

KU KONKUK
UNIVERSITY

236

KU vy

Entity Relationship Diagram (ERD)

« A graphical representation of the data layout of a system at a high level of abstraction
— Defines data elements and their inter-relationships in the system.
— Similar with the class diagram in UML.

* Notation (Original)

—_— Associated Object
| inality —
Data Element | Cardinality — Exactly one
O Cardinality — Zero or one
Relationship 1L Cardinality — Mandatory M
<< y — Mandatory Many
O < Cardinality — Optional Many

S DEPENDABLE SOFTWARE 2 3 7
LABORATORY

KU vy

Entity Relationship Diagram - Example

U< Payments
0-<I Bills

Accounts

/\

P

Transaction_
products

S DEPENDABLE SOFTWARE 2 3 8
| LABORATORY

KU s

Entity Relationship Diagram - Example

r

Entity

()}
. &
7o
o
nE
op ud
foff °7
7l "M
o rE
Hio 3 o
<0 i <1
> §¥
ekl
o o
= o
= ol <F
= T |
a
- okl
Kk |~
- =
onl
o
Hin
: og
N Fd
r% o8l =
10l 3o = KF-<{ £
ﬁ m¥&
4o KO Q|70
~_ 4o
= —1
p= = |
2
< ()
s £ i
© < 9
o

: S DEPE

LABORATORY

State Transition Diagram

« Shows the time ordering between processes.
— More primitive than the Statecharts Diagram in UML
— Different from the State transition diagram (FSM) used in DFD

— Similar with the UML Activity Diagram
— Not widely used now.

* Notation:

/

Objects Transitions
(Process)

K[J’ KONKUK
UNIVERSITY

240

KU vy

State Transition Diagram - Example

Customer
Customer Active pays bills
makes purchase
Customer

makes purchase

Account.
Account Balance
application
Customer

Create request to
ew Account. close account Customer
No Balance pays balan does r_mt
ay bills

Bad Debt
Account.
Balance

Closed
Account.
No Balancg

l DEPENDABLE SOFTWARE 241
LABORATORY

Homework / Activity #6

» Structured Analysis for the RVC Control Software
— Complete the analysis for the RVC Controller in more details.

— Resolve the problems identified
+ “Stop” state (deadlock)
* Not consider “Dust”
* No Priority for left/right turn
* Not consider “Backward”
* Inconsistent design of Cleaner Interface with Motor Interface

— Complete full versions of process specifications and data dictionary
» System Context Diagram

Front Sensoriaput

 Ahierarchy of DFDs + FSM —&F =
* Process Specifications — @___ f ol 7
+ Data Dictionary —re.)
nuuﬂ'tﬁf"_i'.f‘, _ " Right Obstacie M;mlm - //,,
— PPT E I_II-AC-)I -CI)-l'A'"_Q_. ""'=f_"1°1'§r.1?::1. :.‘:: | Guat itarcs .

242

Homework #6

- SA7|HES ZEdlA £t RVC Control SWO| Lot 2 AL E M A(SRS)E IEEE Std 830-19985
=510 EA = 2*** oH1IR
— XXt Templates= A2 51M 2.

Table of Contents

IEEE Std 830-1998 1. Introduction

1.1 Purpose
IEEE Std 830-1998 12 Scope
1.3 Definitions, acronyms, and abbreviations

IEEE Recommended Practice for 1.4 Feforences
Software Requirements 1.5 Overview
Specifications 2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
Shitware Enginearing Standards Commitise 2.4 Constraints
2.5 Assumptions and dependencies

IEEE Computer Society

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing
this section of the SRS.)

Appendixes

Index

Figure 1—Prototype SRS outline

243

[K KONKUK |

]}EPENDABLE SOFTWARE 244
LABORATORY

Structured Design (SD)
- An Example of RVC SW Controller

EPENDABLE SOFTWARE 245
B Ol

KU vy

Structured Design

* Needs transform analysis
— No data comes, being processed, and goes out by itself.
— Somebody should call input/output processes to do something.

* Needs to design functional decomposition according to SA
— Information hiding
— Modularity
— Low coupling
— High internal cohesion

« Many models were proposed, but not widely used except
— Structured Charts

S DEPENDABLE SOFTWARE 246

LABORATORY

KU v

Structured Design - Transform Analysis

Motor Command

Determine
Dbsta!cle pr——
Location Lotion

1.5

Motor Command

Determine
Dust
Existence
1.6

Motor Command

Cleaner Command

Afferent Flow
(Input)

“EPENMBLE SOFTWARE 247
LABORATORY

Efferent Flow
(Output)

Central Transformation
(Control)

KU v |

Structured Design - Transform Analysis

Input Process Output
(Afferent Flow) (Central Transformation) (Efferent Flow)

Data Flow Data Flow

Control

Module Call Module Call

Module Call

Process

EPENDABLE SOFTWARE 248

KU v

Structured Charts - Notation

Basic Notation [Yourdon 1989]
/ \ Variations
s / \
Data module

Library modules
v Asynchronous

-
-
-
-
-
-

module call
Module call
C : ? Iteration
Data Flow
/& Decision

o/
K ./ Control Flow / \ /

EPENDABLE SOFTWARE 249

Structured Charts - Example

J) Payment
Error

Process Payment Control

Payment?

Paymentl

Get Payment

Payment?

Process
Today

}
Write Payment

Process Payment

Raw
Payment

é

Read
Record

ENDABLE SOFTWARE
LABORATORY

Raw
Paym

4;
nt?w$

Edit
Record

Payment
Error

Payment

Payment ?
Payment?
Update Insert
Account Payment
Event

Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002)

250

Structured Charts - RVC Example

Motor Command

Determine
Obstacle
Location

Motor Gammand

Determine
Dust

Bxistence
16

Motor Command

Ceaner Command

Obstacle Location

OoO—

Dust Existence

OoO—

Controller

(Basic)

Determine

Obstacle Location

Front Sensor Left Sensor
Interface Interface

EPENDABLE SOFTWARE
LABORATORY

Determine
Dust Existence

Right Sensor
Interface

Dust Sensor
Interface

Enable
Disable

Move Forward

Trigger

Trigger

251

Structured Charts - RVC Example (Advanced)

Motor Command

Determine
Obstacle
Location

Lot Obstade

Motor Gammand

Determine
Dust

Bxistence
16

Motor Command

Ceaner Command

Controller

3

Obstacle Location

O/'

Dust Existence

Determine Determine Enable Trigger
Obstacle Location Dust Existence Disable .\A
Trigger
Front Sensor Left Sensor Right Sensor Dust Sensor Move Forward Turn Left Turn Right

Interface

Interface Interface Interface

252

EPENDABLE SOFTWARE
LABORATORY

Homework / Activity #7

« Complete the RVC structured design.
— Complete a full version of Structured Charts on your own.

 Implement a C program as detail as possible.
— C program (might be executable with libraries emulated)

— Based on the DFD and Structured Charts DFD + Process Specifications

______ @ -
...... n = - 9 s
g _.@ .09
o E- - D

ey 9_

C Program
_ void main()

int obstacle_Location;
Structured Chart bool dust_Existence;
while(1)

obstacle_Location = Det_OL();
dust_Existence = Det_DE();

if(...)

SIS e &l , .

wait(200ms);
}

[K KONKUK |

]}EPENDABLE SOFTWARE 2 54
LABORATORY

6. Architectural Design

KU vy

Architectural Design

« Architectural design is concerned with understanding how a software system should be organized
and designing the overall structure of that system.
— Accritical link between requirements engineering and design
— ldentifies the main structural components in a system and the relationships between them

* Architecture model describes how the system is organized as a set of communicating components.

LABORATORY

S DEPENDABLE SOFTWARE 2 5 6

The Architecture of Packing Robot Control System

Vision
system
_ Ol_)j_ect_ Arm Gripper
identification ——> controller controller
system
Packaging
selection
system
I
. R
Packing Conveyor
system controller

I(I l' KONKUK
UNTVERSITY

257

KU vy

Architectural Abstraction

« Architecture in the large

— Concerned with the architecture of complex enterprise systems that include other systems, programs and
program components
» Enterprise systems are distributed over different computers, which may be owned and managed by different companies.

* Architecture in the small
— Concerned with the architecture of individual programs
— Concerned with the way that an individual program is decomposed into components

l DEPENDABLE SOFTWARE 258
LABORATORY

Advantages of Architectural Design

« Stakeholder communication
— Architecture may be used as a focus of discussion by system stakeholders.

« System analysis
— Analysis of whether the system can meet its non-functional requirements is possible.

« Large-scale reuse
— The architecture may be reusable across a range of systems.
— Product-line architectures may be developed.

LABORATORY

S DEPENDABLE SOFTWARE 2 5 9

K[J’ KONKUK
UNIVERSITY

Architectural Models

* Representation of architecture models
— Simple, informal block diagrams
— Box and Line Diagrams
— Extensions of UML models

« Use architecture models

— As a way of facilitating discussion about the system design

* A high-level architectural view of a system is useful for communication with system stakeholders and project planning
because it is not cluttered with detail.

» Stakeholders can relate to it and understand an abstract view of the system. They can then discuss the system as a whole
without being confused by detail.

— As a way of documenting an architecture that has been designed

» To produce a complete system model that shows the different components in a system, their interfaces and their
connections.

A ;g.]:lEPENDABLE SOFTWARE 260
' LABORATORY

K[J’ KONKUK
UNIVERSITY

Architectural Representations

« Simple, informal block diagrams
— Showing entities and relationships simply
— The most frequently used method for documenting software architectures

— However, lack of semantics do not show the types of relationships between entities nor the visible properties of
entities in the architecture.

— The semantics of architectural models depend on how the models are used.

« Box and Line Diagrams

— Very abstract - not show the nature of component relationships nor the externally visible properties of the sub-
systems.

— However, useful for communication with stakeholders and for project planning.

 Extensions of UML models
— Extending component diagrams including class diagrams, object diagrams, composite structure diagrams.
— Not widely used yet.

1 %‘;EDEPENDABLE SOFTWARE 2 6 1
o) LABORATORY

Architectural Design Decisions

KU KONKUK

262

K[J’ KONKUK
UNIVERSITY

Architectural Design Decisions

* Architectural design is a creative process.
— The design process differs depending on the type of system being developed.

 However, several common design decisions span all design processes.
— Affect the non-functional characteristics of the system

Is there a generic application
architecture that can act as a
template for the system that is
being designed?

How will the system be
distributed across hardware
cores or processors?

What architectural patterns or
styles might be used?

What will be the fundamental What strategy will be used to

approach used to structure
the system?

EPENDABLE SOFTWARE

How will the structural
components in the system be
decomposed into
sub-components?

control the operation of the
components in the system?

What architectural organization
is best for delivering the
non-functional requirements
of the system?

How should the architecture
of the system be
documented?

KU vy

Architecture and System Characteristics

Performance
— Localize critical operations and minimize communications. Use large rather than fine-grain components

» Security
— Use a layered architecture with critical assets in the inner layers

- Safety
— Localize safety-critical features in a small number of sub-systems

« Availability
— Include redundant components and mechanisms for fault tolerance

* Maintainability
— Use fine-grain, replaceable components

--i]:)EPENDABLE SOFTWARE 264
1 y LABORATORY

KU vy

Architecture Reuse

+ Systems in the same domain often have similar architectures that reflect domain concepts.

— Application product lines are built around a core architecture with variants that satisfy particular customer
requirements.

« The architecture of a system may be designed around one of more architecture patterns or
architecture styles.
— Capture the essence of an architecture
— Can be instantiated in different ways

1 ::]:JEPENDABLE SOFTWARE 2 6 5

LABORATORY

KU vy

Architectural Views

266

KU vy

Architectural Views

« Each architectural model only shows one view showing
— How a system is decomposed into modules,
— How the run-time processes interact, or
— Which system components are distributed across a network.

« We need multiple views of the software architecture for both design and documentation purposes.
— What views are useful when designing and documenting a system’s architecture?
— What notations should be used for describing architectural models?

LABORATORY

S‘ DEPENDABLE SOFTWARE 267

4 +1View Model of Software Architecture

* Logical view : showing the key abstractions in the system as objects or object classes

* Process view : showing how, at run-time, the system is composed of interacting processes

 Development view : showing how the software is decomposed for development

* Physical view : showing the system hardware and how software components are distributed across the

processors in the system

* Related 4 views with use cases or scenarios (+1)

Logical
view

System
architecture

Development
view

(} DEPENDABLE SOFTWARE
LYY LABORATORY

Physical
view

+ Use-Case Scenario

Process
view

K[J’ KONKUK
UNIVERSITY

268

| 4

Representing Architectural Views

architectures.

— Component diagram, Package diagram, Class diagram, etc.

Unified Modeling Language (um) is a candidate notation for describing and documenting system

— However, UML does not include abstractions appropriate for high-level system description.

— Example: C&C View

Naive diagrams have been widely used.

Architectural description languages (ADLs) have been developed, but not widely used yet.

Key

Q Client

Server

Database

Database
application

Jad

Interface

Publish-subscribe

Client-server
request/reply
w/automatic
failover

Database
access

Client Telle

~ ~
~ ~
L = B
Account Account
Server-Main Server-Backup

EPENDABLE SOFTWARE
LABORATORY

Account Administrative
Database

KU KONKUK
UNIVERSITY

269

K[J’ KONKUK
UNIVERSITY

Describing Software Architectures

 ISO/IEC/IEEE 42010:2011 “Systems and Software Engineering - Architecture Description”
— Specifies the requirements for (to be an) architecture descriptions (AD)

* Key Principles of the Architecture Description Standard
— AD should demonstrate how an architecture meets the needs of the system’s diverse stakeholders.

— The architectural concerns of the diverse stakeholders can be addressed by an AD constructed with multiple
architecture views of the system, where each view covers a subset of those concerns.

— The rules for well-formedness, completeness and analyzability of each architecture view should be explicit via
an architecture viewpoint.

:7 EEEEEEEEE SOFTWARE 2 7 0
) LABORATORY

| 4

Context of Architecture Description

EPENDABLE SOFTWARE
LABORATORY

Stakeholder

has interests in P

System
Concern

i

Purpose

-

System

exhibits P

Architecture
Description

expresses
v

g i

¥ situated in

1

Environment

Architecture

KU KONKUK
UNIVERSITY

271

A Conceptual Model of Architecture

| 4

EPENDABLE SOFTWARE
LABORATORY

System-of-

exhibits

Interest 1

Architecture

Description

1 < identifies 1
A has interests in A exprasoes
il i |
—— identifies 1 Architecture
takeholder 1 Description
= Architecture
i ‘O Rationale
has 4 identifies
v
0.*
P
Correspondence Correspondence
Rule
Concern
1.7
frames A A addresses
1.* 1"
governs b
Architecture Architecture
Viewpoint i 1 View
g % 1a?
1 1.
Model Architecture
Kind Model
governs b

KONKUK
UNTVERSITY

272

Terminologies

Terminology Definition

» fundamental concepts or properties of a system in its environment, embodied in its elements,

Architecture relationships, and in the principles of its design and evolution

Architecture Description (AD) | « work product used to express an architecture

» conventions, principles and practices for the description of architectures established within a specific
domain of application and/or community of stakeholders

Architecture Framework + Examples

- Generalized Enterprise Reference Architecture and Methodologies (GERAM) [ISO 15704]

- Reference Model of Open Distributed Processing (RM-ODP) [ISO/IEC 10746]

+ individual, team, organization, or classes thereof, having an interest in a system

Stakeholder)) L
» Examples: users, acquirers, developers, maintainers, etc.

» work product expressing the architecture of a system from the perspective of specific system
concerns

Architecture View

+ work product establishing the conventions for the construction, interpretation and use of architecture

Architecture Viewpoint . -
views to frame specific system concerns

* interest in a system relevant to one or more of its stakeholders

 a concern pertains to any influence on a system in its environment, including developmental,
technological, business, operational, organizational, political, economic, legal, regulatory, ecological
and social influences

Concern

+ conventions for a type of modelling
Model Kind + Examples: data flow diagrams, class diagrams, Petri nets, balance sheets, organization charts and
state transition models

DEPENDABLE SOFTWARE

LABORATORY

KU vy

Architectural Patterns

274

KU KONKUK
UNIVERSITY

Architectural Pattern/Style

« Architectural pattern
— A stylized description of good design practice, which has been tried and tested in different environments
— Include information about when they are and when the are not useful.

r - SOFTWARE DESIGN PATTERNS

— Examples: A series of POSA
*+ MVC (Model-View-Controller)

+ Layered

* Repository

+ Client-Server PATTERN-ORIENTED
- Pipe & Filter SOFTWARE

. etc. ARCHITECTURE

A Pattern Language for
Distributed Computing

Frank Buschmann
Kevlin Henney
Douglas C. Schmidt

erial
EEEEEEEEE SOFTWARE 2 7 5
LABORATORY

Software
Architecture and

A Taxonomy of Architecture Patterns/Styles cesian lumimated

|
- Data Flow | Data-Centered
Batch Pipes& | Process / \
Sequential Filters Control Repository Blackboards
Hierarchical
Main- Master- ‘ Virtual -
Subroutine | Slave ‘ Laversd Machine Microketnel
Asynchronous Communication Distributed Architecture
Nonbuffered Event-Based Buffered Message- Clier’—/m
Implicit Invocation Based carat Multi-tiers Proxy Broker

Component-Based

Interaction-Oriented e —
/ \ Component SOA

MVC . PAC
—

“EPENMBLE SOFTWARE 276
LABORATORY

KU

The Model-View-Controller (MVC) Pattern

KONKUK
UNIVERSITY

Name MVC (Model-View-Controller)
Separates presentation and interaction from the system data. The system is structured into three logical components that interact
Description with each other. The Model component manages the system data and associated operations on that data. The View component
P defines and manages how the data is presented to the user. The Controller component manages user interaction (e.g., key
presses, mouse clicks, etc.) and passes these interactions to the View and the Model.
Example Figure 6.4 shows the architecture of a web-based application system organized using the MVC pattern.
Used when there are multiple ways to view and interact with data. Also used when the future requirements for interaction and
When used -
presentation of data are unknown.
Advantages Allows the data to change independently of its representation and vice versa. Supports presentation of the same data in different
g ways with changes made in one representation shown in all of them.
Disadvantages Can involve additional code and code complexity when the data model and interactions are simple.

DEPENDABLE SOFTWARE
LABORATORY

Controller View View
: selection
Maps user actions »| Renders model
to model updates Requests model updates
Selects view < Sends user events to
User events el
A
Change
notification
State
change State query
Model
Encapsulates application

—>| state <
Notifies view of state

changes 277

KU KONKUK
UNIVERSITY

Example : Web Application Architecture

Browser

Controller View
Form to

] display .
HTTP request processing |~ " | Dynamic page
Application-specific logic generation

idati <———— Forms management
Data validation User events g

Change
notification
Update Refresh request
request
Model
Business logic
>| Database <

]}EPEN DABLE SOFTWARE 2 7 8
LABORATORY

KU vy

The Layered Architecture Pattern

Name Layered architecture

Organizes the system into layers with related functionality associated with each layer. A layer provides services to the layer above it so
the lowest-level layers represent core services that are likely to be used throughout the system.

Description

Example A layered model of a system for sharing copyright documents held in different libraries.

Used when building new facilities on top of existing systems; when the development is spread across several teams with each team re
sponsibility for a layer of functionality; when there is a requirement for multi-level security.

Allows replacement of entire layers so long as the interface is maintained. Redundant facilities (e.g., authentication) can be provided in
each layer to increase the dependability of the system.
In practice, providing a clean separation between layers is often difficult and a high-level layer may have to interact directly with lower-|
Disadvantages evel layers rather than through the layer immediately below it. Performance can be a problem because of multiple levels of interpretati
on of a service request as it is processed at each layer.

When used

Advantages

User interface

User interface management
Authentication and authorization

Core business logic/application functionality
System utilities

System support (OS, database etc.) A Generic Layered Architecture

I DEPENDABLE SOFTWARE 279
LABORATORY

| 4

Example : The iLearn System

Browser-based user interface iLearn app
Configuration services
Group Application Identity
management management management

Application services

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder
Spreadsheet Virtual learning environment History archive

Utility services

User storage Application storage

Authentication Logging and monitoring Interfacing

Search

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

280

KU vy

The Repository Pattern

Name Repository
. .- All data in a system is managed in a central repository that is accessible to all system components. Components do not interact directly,
Description ,
only through the repository.
Example Each software tool generates information which is then available for use by other tools.
When used You should use this pattern when you have a system in which large volumes of information are generated that has to be stored for a long
time. You may also use it in data-driven systems where the inclusion of data in the repository triggers an action or tool.
Components can be independent. They do not need to know of the existence of other components. Changes made by one component
Advantages can be propagated to all components. All data can be managed consistently (e.g., backups done at the same time) as it is all in one

place.

Disadvantages

The repository is a single point of failure so problems in the repository affect the whole system. May be inefficiencies in organizing all
communication through the repository. Distributing the repository across several computers may be difficult.

} DEPENDABLE SOFTWARE

LABORATORY

UML Code
editors generators
Java
editor
Design | | Project
translator | repository
\ Python
v v editor
Design Report A Repository Architecture for an IDE
analyzer generator e

KU vy

The Client-Server Pattern

Name Client-Server
In a client—server architecture, the functionality of the system is organized into services, with each service delivered from a separate

Description server. Clients are users of these services and access servers to make use of them.

Example An example of a film and video/DVD library organized as a client—server system.

When used Used when data in a shared database has to be accessed from a range of locations. Because servers can be replicated, may also be
used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed across a network. General functionality (e.g., a printing service)

can be available to all clients and does not need to be implemented by all services.

Each service is a single point of failure so susceptible to denial of service attacks or server failure. Performance may be unpredictable
Disadvantages because it depends on the network as well as the system. May be management problems if servers are owned by different
organizations.

Internet

Catalog Video Picture Web
server server server server
_ Library Film store Photo store Film qnd
M DEPENDABLE SOFTWARE Catalogue PhOtO |nf0. 282

A Client-Server Architecture for a Film Library

KU vy

The Pipe and Filter Pattern

Name Pipe and Filter

The processing of the data in a system is organized so that each processing component (filter) is discrete and carries out one type

Description of data transformation. The data flows (as in a pipe) from one component to another for processing.

Example An example of a pipe and filter system used for processing invoices.

Commonly used in data processing applications (both batch- and transaction-based) where inputs are processed in separate

When used stages to generate related outputs.

Easy to understand and supports transformation reuse. Workflow style matches the structure of many business processes.
Evolution by adding transformations is straightforward. Can be implemented as either a sequential or concurrent system.

The format for data transfer has to be agreed upon between communicating transformations. Each transformation must parse its
Disadvantages input and unparse its output to the agreed form. This increases system overhead and may mean that it is impossible to reuse
functional transformations that use incompatible data structures.

Issue .
—> . Receipts
receipts

Advantages

Read issued Identify
invoices payments

Invoices Payments

Find Issue
—>»| payments payment Reminders
due reminder

A Pipe and Filter Architecture Used in a Payments System

} DEPENDABLE SOFTWARE 283
LABORATORY

KU vy

Application Architectures

284

K[J’ KONKUK
UNIVERSITY

Application Architectures

« Application architecture

— An architecture for a type of software system that may be configured and adapted to create a system that
meets specific requirements

— As businesses have much in common, their application systems also tend to have a common architecture that
reflects the application requirements.

— - Evolving into “Reference Architecture”

» Application Types
— Data processing applications
* Process data in batches without explicit user intervention during the processing
— Transaction processing applications
* Process user requests and update information in a system database
— Event processing systems
* Applications where system actions depend on interpreting events from the system’s environment
— Language processing systems
* Applications where the users’ intentions are specified in a formal language that is processed and interpreted by the system

() DEPENDABLE SOFTWARE
|

LABORATORY 2 8 5

Reference Architecture by Microsoft

EPENDABLE SOFTWARE
LABORATORY

Application Architecture
Guide 2.0

Appiication Architecture Guige 2.0

+ Chapter 1, “Fundamentals of Application Architecture™
+ Chapter 2, “.NET Platform Overview"”
+ Chapter 3, “Architecture and Design Guidelines”

Part II, “Design”

This part provides an approach to architecture design and discusses key architecture decisions
such as deployment, architecture style, quality attributes, and communication options. Part Il
includes the following chapters:

+ Chapter 4, “Designing Your Architecture”

Chapter 5, “Deployment Patterns”

Chapter 8, “Architecture Styles”

Chapter 7, “Quality Attributes”

Chapter 8, “Communication Guidelines”

Part III, “Layers”

This part provides architectural and design approaches, as well as practices, for each layer,
including the presentation, business, service, and data access layers. Part Il in dudes the
following chapters:

+ Chapter g, “Layers and Tiers"

Chapter 10, “Presentation Layer”

Chapter 11, “Business Layer Guidelines”

Chapter 12, “Data Access Layer Guidelines”

Chapter 13, “Service Layer Guidelines”

Part IV, “Archetypes”

This part provides patterns and design frames for each application archetype; including service
applications, Web applications, rich client applications, rich Internet applications, and mobile
applications. Part IV includes the following chapters:

Chapter 14, “Application Archetypes”

Chapter 15, “Web Applications”

Chapter 16, “Rich Internet Applications (RIA)

Chapter 17, “Rich Client Applications”

Chapter 18, “Services”

Chapter 12, “Mobile Applications”

Chapter 20, “Office Business Applications {OBA)"

Chapter 21, “SharePoint Line-Of-Business {LOB) Applications”

Approach Used in This Guide

How do you design successful applications on the NET platform? This guide describes an
approach that starts with an understanding of the entire architectural process, and then
focuses in on the specific topics, techniques, practices, and application types to help you

K KONKL
UNIVERSITY

286

K[J’ KONKUK
UNIVERSITY

Transaction Processing Systems

« Transaction Processing Systems process user requests for information from a database, or process
requests to update the database.

— Users make asynchronous requests for service which are then processed by a transaction manager.
— Atransaction is any coherent sequence of operations that satisfies a goal.

— Example:
* Find the times of flights from London to Paris

— Atypical structure of the TPS applications :

/0 Application Transaction
/ pp > > Database

processing logic manager

‘; KZPD EEEEEEEEE SOFTWARE 287
) g

KU KONKUK
UNIVERSITY

Example : an ATM System

Input Process Output

(Print details

Query account
(Return card

Update accoua
Q)ispense cash

ATM Database ATM

Get customer
account id

o)
N
N

(o)

Validate card

<)

N
Y

N

()

Select service

(o
N
NI

]}EPEN DABLE SOFTWARE 2 8 8
LABORATORY

| 4

Information Systems Architecture

* Information systems have a generic architecture that can be organized as a layered architecture.

KU KONKUK
UNIVERSITY

— Also transaction-based systems as interaction with these systems generally involves database transactions.

« Layers often include
— User interface
— User communications
— Information retrieval
— System database

EPENDABLE SOFTWARE
LABORATORY

User interface

Authentication and

User communications avs
authorization

Information retrieval and modification

Transaction management

Database

289

| 4

Example : the Mentcare System

LABORATORY

Web browser

Form and menu Data

logln TRl Eheskig manager validation

Security Patient info. Data import Report
management manager and export generation

Transaction management

Patient database

KU KONKUK
UNIVERSITY

290

KU vy

Web-Based Information Systems

« Web-based systems implement user interfaces using a web browser.

Example : e-commerce systems are Internet-based resource management systems that accept electronic
orders for goods or services and then arrange delivery of these goods or services to the customer.

* The application-specific layer includes additional functionality supporting a ‘shopping cart’ in which users can place a
number of items in separate transactions, then pay for them all together in a single transaction.

» Web-based information systems are often implemented as multi-tier client server/architectures.
— Web server: Responsible for all user communications, with the user interface implemented using a web browser

Application server: Responsible for implementing application-specific logic as well as information storage and
retrieval requests

— Database server: Moves information to and from the database and handles transaction management

I DEPENDABLE SOFTWARE

LABORATORY 2 9 1

|

Language Processing Systems

« Language Processing Systems accept a natural or artificial language as input and generate some
other representation of that language.

— May include an interpreter to act on the instructions in the language that is being processed

— Meta-case tools process tool descriptions, method rules, etc and generate tools.

EPENDABLE SOFTWARE
LABORATORY

Source
language
instructions

Translator

Check syntax
Check semantics
Generate

'

Abstract m/c
instructions

|

Data

Interpreter

Fetch
Execute

Results

KU KONKUK
UNIVERSITY

292

KU vy

Compiler Components

« Compiler components for language processing systems
— Lexical analyzer : Takes input language tokens and converts them to an internal form

— Symbol table : Holds information about the names of entities (variables, class names, object names, etc.) used
in the text that is being translated

— Syntax analyzer : Checks the syntax of the language being translated
— Syntax tree : An internal structure representing the program being compiled

— Semantic analyzer : Uses information from the syntax tree and the symbol table to check the semantic
correctness of the input language text

— Code generator : ‘walks’ the syntax tree and generates abstract machine code

LABORATORY

S DEPENDABLE SOFTWARE 2 9 3

A Repository Architecture for a Language Processing System

analyzer

Syntax
analyzer

|

Semantic

analyzer

Pretty-
printer

H

H

<>
generator

Abstract Grammar
syntax tree definition
Symbol Output
table definition

Repository

KU KONKUK
UNIVERSITY

294

A Pipe and Filter Architecture for Compilers

Symbol table

> <
Syntax tree

Lexical Syntactic Semantic
analysis analysis analysis

Code
generation

295

References for Architecture Design

Yy

Documenting
Software
Architectures

Designing
Software
Architectures

A Practical Approach

a
z
-3
w
W
z
o
z
w
w
3
a4
2
=
"
o
n

Views
and
Beyond

SEIl SERIES IN

A

o
z
x
")
[
z
o
z
-
-
x
<
z
r
[
o
m
z
o
-
"4
o
L]
u
m

e B
e et

Humberto Cervantes

SECOND EDITION

Rick Kazman

EPENDABLE SOFTWARE
LABORATORY

Software
Architecture

in Practice
Third Edition

KU KONKUK
UNIVERSITY

.‘ SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Language for
Distributed Computing

Frank Buschmann
Kevlin Henney
Douglas C. Schmidt

Copyrighted Material

296

Homework #8

- 7|74&st RVC ControllerS EH%&tstain ghL|Ct,
— BMEE AppO|M WIFiE S5l RVC Control SWet EMSHE 7|52 F715t2 1 gL},
-« Microsoft Application Architecture Guide 2.02 S5t £, H|A| &l Application ArchitectureE E-&3llA{, TH|
A|AE19] Overall ArchitectureE StLI H|2tstAM| .
- =g[Hol S Eestn, AN 70 AFRE + AS FEE XHMS| &/dstM K. (PPT 47%)

Designing Applications on the NET Platform

w
()
o
-t
(=
©
L
(oL
o
w
=
-
()]
=
+—
©
R O

297

[K KONKUK |

]}EPENDABLE SOFTWARE 2 98
LABORATORY

7. Design and Implementation

K[J’ KONKUK
UNIVERSITY

Design and Implementation

+ Software design and implementation
— The stage at which an executable software system is developed

« Software design and implementation activities are often inter-leaved.

— Software desiqgn is a creative activity in which you identify software components and their relationships, based
on a customer’s requirements.

— Implementation is the process of realizing the design as a program.

l - EPENDABLE SOFTWARE 3 O O
4 LABORATORY

K[J’ KONKUK
UNIVERSITY

Build or Buy

* Itis possible to buy commercial off-the-shelf systems (COTS) that can be adapted and tailored to
the users’ requirements.
— For example, if you want to implement a medical records system, you can buy a package that is already used in

hospitals. It can be cheaper and faster to use this approach rather than developing a system in a conventional
programming language.

« The design process becomes concerned with how to use the configuration features of that system to
deliver the system requirements.

— It requires different ways to develop software.

1 %‘;EDEPENDABLE SOFTWARE 3 O 1
o) LABORATORY

Object-Oriented Design Using UML

KU KONKUK

K[J’ KONKUK
UNIVERSITY

An Object-Oriented Design Process

« Structured object-oriented design processes (such as UP)
— Involve developing a number of different system models
— For small systems,
* Require a lot of effort for development and maintenance of these models, and may not be cost-effective

— For large systems developed by different groups,
+ Design models are an important communication mechanism

» There are a variety of different object-oriented design processes.

— Common activities in all OO design processes

1. Define the context and modes of use of the system
Design the system architecture
Identify the principal system objects OOA
Develop design models
Specify object interfaces ooD

Planning

o prwN

1 %‘;EDEPENDABLE SOFTWARE 303
o) LABORATORY

KU v
1. System Context and Interactions

« Understanding the relationships between the software that is being designed and its external
environment is essential for deciding

— Essential for deciding how to provide the required system functionality and how to structure the system to
communicate with its environment

— Let you establish the boundaries of the system

« System context model
— A structural model that demonstrates the other systems in the environment of the system being developed
— System context diagram

* Interaction model
— A dynamic model that shows how the system interacts with its environment as it is used
— Use-case model

--i]:)EPENDABLE SOFTWARE 304
y LABORATORY

System Context for the Weather Station

Control

1 system 1

1 1..n
Weather
information] 1.n Vgga{icgﬁ r
system

1 1..n

: Satellite 1

System context diagram in UML class diagram

]}EPEN DABLE SOFTWARE 3 O 5
LABORATORY

Use-Case Model for the Weather Station

Use case

Actors

Description
Stimulus

Response

Comments

EPENDABLE SOFTWARE
LABORATORY

Report weather
Weather information system, Weather station

The weather station sends a summary of the weather data that has been collected from the
instruments in the collection period to the weather information system. The data sent are the
maximum, minimum, and average ground and air temperatures; the maximum, minimum, and
average air pressures; the maximum, minimum, and average wind speeds; the total rainfall; and
the wind direction as sampled at five-minute intervals.

The weather information system establishes a satellite communication link with the weather
station and requests transmission of the data.

The summarized data is sent to the weather information system.

Weather stations are usually asked to report once per hour but this frequency may differ from
one station to another and may be modified in the future.

Use-Case Model (Text + Diagram)

Weather
information
system

KU KONKUK
UNIVERSITY

Report
weather

Report status

Control
system

Reconfigure

Powersave

i

306

| 4

2. Architectural Design

Identify the major components that make up the system and their interactions

KU KONKUK
UNIVERSITY

— Organize the components using an architectural pattern such as a layered or client-server model, if it needs

— Example : The weather station is composed of independent subsystems that communicate by broadcasting
messages on a common infrastructure.

[1

«subsystem»
Fault manager

«subsystem»
Configuration manager

[1

«subsystem»
Power manager

Data collection

Communication link

[1

[1

«subsystem»
Communications

«subsystem»
Data collection

EPENDABLE SOFTWARE
LABORATORY

[1

«subsystem»
Instruments

Transmitter

Receiver

/

WeatherData

High-Level Architecture of the Weather Station

The Architecture of Data Collection System

307

KU vy

3. Object Class ldentification

« ldentifying object classes is a difficult part of object-oriented design.
— There is no 'magic formula' for object identification.
— lt relies on the skill, experience and domain knowledge of system designers.

« Object identification is an iterative process.
— Domain Model

» Approaches to object identification
— Use a grammatical approach based on a natural language description of the system.
» Based on identifying tangible things in the application domain
— Use a behavioural approach.
+ Identify objects based on what participates in what behaviour
— Use a scenario-based analysis. (Use-case analysis)
* The objects, attributes, and methods in each scenario are identified

} DEPENDABLE SOFTWARE 308
LABORATORY

K[J’ KONKUK
UNIVERSITY

The Weather Station: Object Classes

« Object class identification in the weather station system may be based on the tangible hardware and
data in the system.
— Ground thermometer, Anemometer, Barometer

+ ‘Hardware’ objects related to the instruments in the system
— Weather station

* The basic interfade of the weather station to its environment
» |t therefore reflects the interactions identified in the use-case model

— Weather data
* Encapsulates the|summarized data from the instruments

PENDABLE SOFTWARE
LABORATORY

thermometer T .
an_ldent bar Ident identifier airTemperatures
gt_Ident windSpeed pressure groundTemperatures
temperature i irecti i reportWeather () windSpeeds
P windDirection height P
reportStatus () : -
. windDirections

get () get () get () powerSave (instruments) pressures

test () test () test () remoteControl (commands) cainfall
reconfigure (commands)
restart (instruments) collect ()
shutdown (instruments) summarize ()

309

KU KONKUK
UNIVERSITY

4. Design Models

- Design models show the objects and object classes and relationships between these entities.

« Two types of design models
— Structural (Static) model
» Describe the static structure of the system in terms of object classes and relationships
+ Class diagram, Object diagram, Package diagram
— Dynamic model
» Describe the dynamic interactions between objects
+ Sequence diagram, Communication diagram, Statechart diagram

]}EPENDABLE SOFTWARE 3 1 O
LABORATORY

K[J’ KONKUK
UNIVERSITY

Subsystem Models

« Subsystem Models shows how the design is organized into logically related groups of objects.
— Logical model
» The actual organization of objects in the system may be different.

Presentation |
Swing ©-]‘_ Text O] ...
— The UML package diagram are often used ST I bl | [——— used in quick
p g g - ProcessSale "*1..] Swing libraries, but ProcessSale I erimints
Frame our GUI classes Console P
based on Swing
Domain |
Sales Pricing
‘ Register ‘ ‘ Sale ‘ PricingStrategy «interface»
Factory |SalePricingStrategy
ServiceAccess Payments
Services «interface»
CreditPayment |CreditAuthorization
actory ServiceAdapter
Inventory POSRuleEngine Taxes
«interface» «interface»
‘ lInventoryAdapter ‘ ‘ POSRulsEngineFacade ‘ |ITaxCalculatorAdapter
Technical Services |
Posionce] — A goneral .
LogaJ Jes§ "f*+-.| purpose third- SOAP
DBFacade party rules
| DEPENDABLE SOFTWARE engine. 3 11
4 LABORATORY

K[J’ KONKUK
UNIVERSITY

Sequence Models

« Sequence models show the sequence of object interactions that take place.

— The UML Sequence diagrams are used.
» Objects are arranged horizontally across the top.
+ Time is represented vertically so models are read top to bottom.
* Interactions are represented by labelled arrows.
» Different styles of arrow represent different types of interaction.
» Athin rectangle in an object lifeline represents the time when the object is the controlling object in the system.

information system

— Example:
. SD for Data Collection | :SatComms ‘WeatherStation :Commlsllnk :WeathtlerData

. request (report) ; i : :

acknowledge : : E

————— reportWeather () 1 ; :
< acknowledge | | get (summary) ;f:T summarize ()):":_—|

<_ ______

A 1] .

send (report) : .

acknowledge : ;

~ reply (report) | [—— — — — —>L] : '

e || 2cknovledge i E I

K[J’ KONKUK
UNIVERSITY

State Machine Models

- State machine models are used to show how objects respond to different service requests and the
state transitions triggered by these requests.
— State diagrams are useful high-level models of a system or an object’s run-time behavior.
* Not usually needed for all objects in the system.
— The UML Statecharts diagram is used.

Controlled
— Example C:

A
» State diagram for Weather Station
Operation
shutdown() remoteControl()
iI ! N tStatus()
reportStatus]
Shutdown restart0 :K Running) > Testing
_/ A

f transmission done test complete

configuration done Y
reoc\,(\);?sg:vr:(()) _ (Transmitting
Y P clock collection

done reportWeather() A
_ Y h
Configuring weather summary
/ Summarizing ol s
(Collecting)

A ;g.]:lEPENDABLE SOFTWARE 31 3
' LABORATORY

K[J’ KONKUK
UNIVERSITY

9. Interface Specification

« Object interfaces have to be specified so that the objects and other components can be designed in
parallel.
— Objects may have several interfaces which are viewpoints on the methods provided.
— The UML Class diagram is used.

— Example
 Interface specification (a part of class diagram) for Weather Station

«interface»

«interface» Remote Control

Reporting

startinstrument(instrument): iStatus
stoplnstrument (instrument): iStatus
collectData (instrument): iStatus
provideData (instrument): string

weatherReport (WS-Ident): Wreport
statusReport (WS-Ident): Sreport

Weather Station Interfaces

DEPENDABLE SOFTWARE 3 1 4
LABORATORY

KU KONKUK
UNIVERSITY

OOAD for Object-Oriented Programming

* OOAD (Object-Oriented Analysis and Design, AKA Z4 K| X| &7}kl eH 2

“Identifying your requirements and creating a domain model, and then add methods to the appropriate classes and
define the messaging between the objects in order to fulfill the requirements”

— Object-Oriented Analysis (OOA)
* Discover the domain concepts/objects (pomain Model)
* Identify requirements (Use-Case Model)

— Object-Oriented Design (OOD)

» Define software objects (static model > Class Diagram)

» Define how they collaborate to fulfill the requirements (Dynamic model > Sequence Diagram)

— Various development process models are available.
+ Waterfall
* UP (lterative)

]}EPENDABLE SOFTWARE 3 1 5
LABORATORY

KU KONKUK
UNIVERSITY

An OOAD Example - Dice Game

Define domain Define interaction Define design class
Define use cases : .
model diagrams diagrams
------------------------------------ 0 e e T S Lo | s B

Interaction Diagram
. -'Dj(_n,gm ! &\ E 'D'\!. i&u;'b“‘ \

Use Case : Play a Dice Game
- Player requests to roll the dice.

| 1
- System presents results. El*i?L) ')
- If the dice’s face value totals seven, - _'_Q&Q__,’, :
player wins; otherwise, player loses. M&m_} '

: \

- e\ . -

: = \\\:XF\‘\IJ»J.L\ ! 4,1‘

y \ ‘

Player 1 Die

| play() roll()

Domain Model Design Class Diagram
]}EPEEQ?,L:A?(??*“EE e

i

i

i

i

i

i die1 : Die [1 2._% faceValue : int
1 =
i

i

i

i

i

Rolls 2|]
name faceValue i
| i
1 2 | : .

! DiceGame Die
Plays i
1 |

= i die2 : Die
DiceGame [1 indlidas i getFaceValue() : int

i
i
i
i

Sample Unified Process Artifact Relationships

Domain Model

l

ProductCatalog Y i
|

\

(
| Sale Captured-on_| Register I
; dateTime 1 1 ’ s 0%
T b)
/

/ domain concepts

»

\

Use-Case Model

\

Domain Model

[
X
| s
.|
| Process Sale - Cashier i
@) Process { o | make :
| ‘ | 1. Customer i NewSale)
o | emse | ives st | . Use-Case Model
names | 2. Cashier events f enterltem :
O | akesinew - ;__(Q,QLMM_,:
conceptual A | sale. ! i
; —
classes in 3. I !
the e e 5 k. : E
domain Use Case Diagrams Use Case Text System Sequence Diagrams
inspire the
names of | O OA
some | TTTTTTTTTT k """
software use-case Design Model
classes in realization wit/\ 9 _ OO D
the design interaction : Register | | : ProductCatalog
diagrams T J |
| i
\\ makeNewSale ! :
\ create 4 . |
————————————————————————————————— % : Sale =
| |
\ enterltem(id, quantity) _ | | ! Sequence Dlagrams
\] desc = getDescription(id) ol :
| | |
‘ addLineltem(desc, quantity) o !
| : 7]
. : |
! I 1
| —m— / the design
| Register / classes
ProductCatalog discovered .
: while designing Class Diagram
I UCRs can be
makeNewSale() | catalog | etDescription(...) : ProductDescription | summarized in
|7 ‘ class diagrams

| | enterltem(...) "
[: ‘
317

"" 0O Implementation

EPENDABLE SOFTWARE
LABORATORY

KU vy

Design Patterns

318

: Desion Patterns
Design Patterns e of R

Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Jehnson
John Vlissides

 Design pattern is a way to describe best practices, good designs, and capture experience
in a way that it is possible for others to reuse this experience.

— Descriptions of the problem and the essence of its solution
— Sufficiently abstract to be reused in different settings

— Pattern descriptions usually make use of object-oriented characteristics
* Inheritance and Polymorphism

— 23 design patters of GoF are widely used.

Foreword by Grady Booch

* Elements of patterns

Element Description

Name A meaningful pattern identifier

Problem description | A detailed description on the problem

Not a concrete design, but a template for a design solution that can be

Solution description instantiated in different ways.

Consequences The results and trade-offs of applying the pattern

1 %‘;EDEPENDABLE SOFTWARE 31 9
o) LABORATORY

23 Design Patterns of GoF

| 4

KU KONKUK
UNIVERSITY

EPENDABLE SOFTWARE
LABORATORY

[E] Asstact ooy 5] Facae [=] Prew Memento
Memento EEE Adapter Proxy
Adapter Factory Method Otserver [l e Adapter =
Type: Behavioral Type: Structural Type: Structural
Bridge Flyweight
=] =l what s - N Whatitis ——
[s [E] mepreer Wit iaing scapsaton apire i Convert the interfscs of s class nto Provide 2 sumogte or placchalder for
an object’ inermal siste ! anctrer Lets comrtl accass o
Chin of Responsitity erstor swateay P ik orginatar | ratcouldrt
state later. | Adaptee otherwise because of incompatible
Gommana [5] meser Template Metnod = - == rertacss
+sethementofin m : Memento). [Foperation ‘ RealSubject | "presents , |
Composte [E] e vt emtenaniy 0 | ‘
[preavesi0 | [rreau==0 |
Dssoratr Prototype
tartacer
suecessor Chain of Responsibility Observer Subject Bridge Abstract Factory
+attach(in a Obgerver)
Type: Behavioral Type: Benaviorsl +detach(in o - Observer) Type: Structural Type: Creationa

Whatitis:

Auwoid coupling the sender of & request o

it receiver by giving more than one object

& chance to handle the request. Chain the
d pass the request

| slong the chsin unti i+

Whatit s:
Dsfine 3 one-to-many dspendency batwasn
‘abjects 5o that when one object changes
state, allits dependents are notified and
updated automatically.

Fupdate()

Command

i
i

Type: Behaviorsl

Whatitis:
Encapsulate a request as an object,

raquests, and suppert undostle operations.

State
Type: Behsviorsl

Whatit is:
Allow an object o alter its behavier when
its intemal stats changes. The object wil
appearto change its ciass.

|
[+aperatonimpl(y

Whatitis:
Decoupie an abstraction from ts

mentation so that the two can vary
independenty.

What it is:
Provides an interfsce for creating
families of related or dependent

tjects wirou speceyng ther
concrets clas:

!
[Foperasenimeia |
iraces -
Component Composite Builder
5 shildren

Type: Structural

Whatitis:

Compose objects into res structures 1o

represent part-whole hierarchies. Lets
d

1
‘ Camposite

Interpreter
Type: Behaviorsi
Whatit

Given a language. define a representation
forisgrammar dong it an fepreter
at use: o interpret

of abjects uniformiy.

Type: Creational

What tis:
Separate the construction of
complex object from its representing
50 that the same canstruction
process can create different

representations
concrstestatet | | Conorstestatez | [e] operation()
[t | i | [Foperationd | "”“;ﬁ"f;’;‘;;m
it
Strategy | Compont ““'m‘@"'w""" Decorator Factory Method m
Type: Behavoral |

Define a family of sigorithms,
encapsulate sach one, and make them
interchangeable. Leis the aigorthm vary

cemiences in e language.

[l Gt | [ty Gt |

Glients that use it

Iterator

Type: Bahavioral

Template Method

Type: Benaviorsl

Type: Structursl

Whatitis:
Attach aaditional respansbiites 1o an

object dynamicaly. Frovide a flexible
e 0

Type: Creational

for creating
abject. but let subsiasses decide which
‘class to instantiate. Lets a olass defer

[+anOperation()

T

Type: Structursl

Provide a unified interface to a set of
interfaces in a subsystem. Defines a high-
level interface that makes the subsystem

functionality. instantiation to subclasses.
[edoeasme ‘ ConcreteProduct |¢. _____ _
[Foperaton(]
| *addedBehavior()

Facade Prototype

Type: Crestionsl

itis:
Speciy the kinds of objects 1o oreate
Using 3 prototypical instancs, and
create new objects by copying this
prawtype

Use sharing 1o support large numbers of
fine grained cbjects eficieniy.

‘ ntertacen ‘ ‘ intariacen |
Aggregate Herator Whatitis: What it Whatitis:
[Frmmtsteraog | = | Prove away s access e siements o | Dalina e skeeton of an sigerrmin an
i ‘operation, deferring some SIEDS w subaasses
% exposing its underlyin Lets
pesng g ofan ahamhmw\mulmaﬂgmame easierto use.
= L
[Cermwamn | e I
[Fossisteaiod) Cories | [Fres - Comient_|
informs. (L
= Mediator Visitor
‘ o dinterfaces = Flyweight
Meciat Collea Type: Behmiorsl Type: Behaviorsl =
Type: Structural
e ot . ,—L‘ e
Defnsan cbjet it crcapsustes how Element p
of cbjects interact. P performed on the ?‘emz‘: :;E"J ConcreteVisitor | = 1 hatitie:
Snina vt soeas rom e == ===
— o each other explicitly and £ lats you vary | FAN ConcreteFlyweight

T 1 I which & cperates. Frrnsicstate

-

+acespilin v : Vister)
=

Singleton

Type: Creationai

What it is:

Ensure a class only has one instance snd
provide 3 global point o 300253 1o .

Singleton

[-tstic uniquelnstancs
Data

[estasinstancet)

[+ 0

320

The Observer Pattern

Pattern name Observer
Separates the display of the state of an object from the object itself and allows alternative displays to be
Description provided. When the object state changes, all displays are automatically notified and updated to reflect the
change.

In many situations, you have to provide multiple displays of state information, such as a graphical display and
a tabular display. Not all of these may be known when the information is specified. All alternative presentations
should support interaction and, when the state is changed, all displays must be updated.

This pattern may be used in all situations where more than one display format for state information is required
and where it is not necessary for the object that maintains the state information to know about the specific
display formats used.

Problem description

This involves two abstract objects, Subject and Observer, and two concrete objects, ConcreteSubject and
ConcreteObject, which inherit the attributes of the related abstract objects. The abstract objects include
general operations that are applicable in all situations. The state to be displayed is maintained in
ConcreteSubject, which inherits operations from Subject allowing it to add and remove Observers (each
observer corresponds to a display) and to issue a notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and implements the Update()
interface of Observer that allows these copies to be kept in step. The ConcreteObserver automatically
displays the state and reflects changes whenever the state is updated.

Solution description

The subject only knows the abstract Observer and does not know details of the concrete class. Therefore,
there is minimal coupling between these objects. Because of this lack of knowledge, optimizations that
enhance display performance are impractical. Changes to the subject may cause a set of linked updates to
observers to be generated, some of which may not be necessary.

Consequences

S DEPENDABLE SOFTWARE

Multiple Displays Using the Observer Pattern

-

N

|

50

25
ofeo
0

Subject

.l Observer

Observer 1

Subject

| 4

EPENDABLE SOFTWARE
LABORATORY

A: 40
B: 25
C:15
D: 20

|

Attach (Observer)
Detach (Observer)

Notify () =======-- s

T

o > Update ()

for all o in observers Iﬁ

Observer 2

ConcreteSubject

Update ()

GetState ()

subjectState

return subjectState Iﬁ

ConcreteObserver

Update ()

observerState

KU KONKUK
UNIVERSITY

observerState =
subject -> GetState

0

322

KU vy

Implementation Issues

323

KU vy

Implementation Issues

* Implementation issues that are often not covered in programming

— Reuse
* Most modern software is constructed by reusing existing components or systems.
* When you are developing software, you should make as much use as possible of existing code.

— Configuration management

» During the development process, you have to keep track of the many different versions of each software component in a
configuration management system.

— Host-target development
* Production software does not usually execute on the same computer as the software development environment.
» Rather, you develop it on one computer (the host system) and execute it on a separate computer (the target system).

--i]:)EPENDABLE SOFTWARE 324
1 y LABORATORY

K[J’ KONKUK
UNIVERSITY

Reuse

* Adevelopment approach based on the reuse of existing software

— Until 1990s, most new software was developed from scratch, by writing all code in a high-level programming
language.

* Only the reuse of functions and objects in programming language libraries

* Reuse costs

— The costs of the time spent in looking for software to reuse and assessing whether it meets your needs

— The costs of adapting and configuring the reusable software components or systems to reflect the
requirements of the system that you are developing

— The costs of integrating reusable software elements with each other and with the new code that you have
developed

‘:? -:‘. EPENDABLE SOFTWARE 3 2 5
| LABORATORY

I(I l' KONKUK
UNTVERSITY

Reuse Levels

* Reuse levels
— The object level
» We directly reuse objects from a library rather than writing the code. (Programming language libraries)
— The component level
+ Components are collections of objects and object classes that we reuse in application systems. (Component frameworks)
— The system level
* We reuse entire application systems. (COTS)
— The abstraction level

+ We don’t reuse software directly but use knowledge of successful abstractions in the design of our software.

(like Architecture styles and Design patterns) system

Application systems
(cots)

Abstraction Component

Architectural and Software reuse Component
design patterns frameworks

Programming
language libraries

PENDABLE SOFTWARE 3 2 6
LABORATORY obiect

KU vy

Configuration Management

- Configuration management is the general process of managing a changing software system.

« Configuration management activities:
— Version management
+ Keep track of the different versions of software components
* Include facilities to coordinate development by several programmers
— System integration

» Help developers define what versions of components are used to create each version of a system. This description is then
used to build a system automatically by compiling and linking the required components.

— Problem tracking

» Allow users to report bugs and other problems, and to allow all developers to see who is working on these problems and
when they are fixed

(} DEPENDABLE SOFTWARE 327

LABORATORY

|

Host-Target Development

* Most software is developed on a computer (the host) but runs on a separate machine (the target).

— Development platform vs. Execution platform

EPENDABLE SOFTWARE
LABORATORY

A platform is more than just hardware.

Includes the installed operating system and other supporting software such as database management systems or,
interactive development (environments for development platforms)

— Development platform usually has different installed software than execution platform.
May have different architectures

Host

Development
platform

IDE
Compilers

Testing tools

Download
software

Target

Execution
platform

Libraries
Related systems

Databases

KU KONKUK
UNIVERSITY

328

KU vy

Tools for Host-Target Development

* Tools for development platforms
— Integrated compiler and syntax-directed editing system: create, edit and compile code
— Language debugging system
— Graphical editing tools (UML tools)
— Testing tools (Junit) that can automatically run a set of tests on a new version of a program.
— Project support tools: organize codes for different development projects

* |IDE (Integrated Development Environments)
— A set of software tools that supports different aspects of software development, within some common
framework and user interface
— |IDEs are created to support development in a specific programming language such as Java.

LABORATORY

S DEPENDABLE SOFTWARE 3 2 9

KU vy

Open-Source Development

330

KU vy

Open-Source Development

« Open-source development is an approach to software development in which

— the source code of a software system is published, and volunteers are invited to participate in the development
process through internet.

— Rooted on the Free Software Foundation (www.fsf.org)

* Advocates that source code should not be proprietary but rather should always be available for users to examine and
modify as they wish

» Popular examples of open-source systems
— The Linux operating system
— Java
— The Apache web server
— The mySQL database management system

LABORATORY

S DEPENDABLE SOFTWARE 3 3 ']

KU vy

Open-Source Issues

* Questions on open-sources :
“Should the product that is being developed make use of open-source components?”

— “Should we use an open-source approach for the software’s development?”

* Business with opens source
— More and more product companies are using an open-source approach to development.

— Business model is not reliant on selling a software product but on selling support for that product.

* Believe that involving the open-source community will allow software to be developed more cheaply, more quickly and will
create a community of users for the software.

I DEPENDABLE SOFTWARE 3 32
LABORATORY

K[J’ KONKUK
UNIVERSITY

Open-Source Licensing

* Fundamental principle of open-source

— “Source code should be freely available.”

» License Models
— The GNU General Public License (GPL)

» So-called ‘reciprocal’ license
+ If you use open-source software that is licensed under the GPL license, then you must make that software open source.

— The GNU Lesser General Public License (LGPL)
» Avariant of the GPL license
* You can write components that link to open-source code without having to publish the source of these components.

— The Berkley Standard Distribution (BSD) License
* Non-reciprocal license
* You are not obliged to re-publish any changes or modifications made to open-source code.
* You can include the code in proprietary systems that are sold

DEPENDABLE SOFTWARE 3 3 3
y LABORATORY

Homework #9

« Design Pattern} Architecture StyleS Z=As}11 H{ w2 SM| 2. A4 10% (=x137] 10 0l3h)
— otzfel 7|2 il E Ct ¢S Eacs st

i SOFTWARE DESIGN PATTERNS

Software
Architecture and
Design llluminated

Design Patterns

Elements of Reusable PATTERN-ORIENTED
Object-Oriented Software SOFTWARE
Erich Gamma ARCHITECTURE

Richard Helm
Ralph Johnson
John Vlissides

A Pattern Language for
Distributed Computing

Frank Buschmann
Kevlin Henney
Douglas C. Schmidt

Foreword by Grady Booch

Copyrighted Material

[K KONKUK |

]}EPEN DABLE SOFTWARE 3 3 5
LABORATORY

An Introduction to UML

UML

| 4

Unified Modeling Language for

UNIFIED o

MODELING
LANGUAGE

— Visualizing, Specifying, Constructing and Documenting artifacts of software-intensive systems.

Offer vocabulary and rules for communication

— http://www.uml.org/

Combine the best of the best from

— Data Modeling (Entity Relationship Diagrams)
— Business Modeling (workflow)
— Object Modeling

— Component Modeling (development and reuse - middleware, COTS)

EPENDABLE SOFTWARE
LABORATORY

de facto industry standard

Date: March 2006

Unified Modeling Language: Infrastructure

version 2.0
formal/05-07-05

uuuuuuuuuuuuuuuuuuuuu

337

|

The UML Semantics

* 4-layer metamodel architecture

* MOF (meta Object Facility) defines a four-layer meta model hierarchy.

instance — model — meta model — meta-meta model

Layer M3: Meta-meta model layer (The MOF model)
Layer M2: Meta model layer (The UML meta model)
Layer M1: Model layer (The UML model)

Layer MO: Information layer (the Application)

« MOF and UML are aligned.

— The UML infrastructure contains all the concepts needed for the specification of UML and MOF.

EEEEEEEEE SOl

FTWARE

LABORATORY

KU KONKUK
UNIVERSITY

338

KU KONKUK
UNIVERSITY

The Meta Model Hierarchy of the MOF (for UML)

Meta-meta model layer MOF model
(Layer M3):
Meta-meta models Class
R R .
I
1
............ A/\,
! <<instanceOf>> l <<instanceOf>> I <<instanceOf>>
1 eSS asass 1 1
Meta model layer UML meta model | ! ! !
(Layer M2): | | '
Meta models Attribute Class Classifier InstanceSpecification
AN\
PN 7N FiN
7. %

<<instanceOf>>

1
, |
I <<instanceOf>> :

Model-layer UML model : T -l)

(Layer M1): | , T |

1
I
Models <<instanceOQf>> | Person <<snapshot>> : Albert:Person
| --------------
L - - 41 name : string name = “Albert Einstein”
JAN

<<instanceOf>>

Information-layer Run-time instances

1
1
1
(Layer MO): 1

Instances aPerson

]}EPEN DABLE SOFTWARE 3 3 9
LABORATORY

| 14

UML 2.0 Diagrams

EPENDABLE SOFTWARE
LABORATORY

13 UML diagrams

Diagram

T

Structure Behaviour
Diagram Diagram
JA JA
| [|
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction State
Diagram Structure Diagram Diagram Diagram Machine
Diagram Diagram
UML 2.2 JA
| | |
Sequence || Communication || Interaction Timing
Notation: UML I Diagram Diagram Overview Diagram
Diagram

K KONKUK
UNIVERSITY

340

KU tvensry
1. Use Case Diagram

* Use case diagram illustrates the name of use cases and actors, and the relationships between them.

— Use case : a collection of related success and failure scenarios in text, that describe how an actor uses the
system to achieve a goal

— Actor : something with behavior, such as a person, computer or organization

system boundary NextGen POS - communication
1% A Process S'dlu. . = t alternate
S /a NN notation for
Cusiomer /' O pet, AR Use case: Handle Returns
~ Aihertzaon y . ey
a SN - ol NN Semvice o= J i i
[&—f i HandieRems 3 Main Success Scenario:
o o S4S ' R - A customer arrives at a checkout with items to return.
a ¥ 4 . N - The cashier uses the POS system to record each
A\ [cashin). ﬂ;:z‘;:;\g returned item ...
’ e & s W System
Manager
T | ek) o Alternate Scenar/os:. . .
Sa'é:ﬁf't’ - - g - If the customer paid by credit, and the reimbursement
% -~ transaction to their credit account is rejected, inform the
1 Manage Security | 5 _ .
IR customer and pay them with cash ...
S.yslelt'n . (.Marlaga Users | \
Administrator : < uSE Case

Y, R 4
]}EPEN DABLE SOFTWARE 3 34 1
LABORATORY

| 4

2. Class Diagram

« Class diagram shows the classes of the system, their inter-relationships, and the operations and
attributes of the classes.

— Domain model
— Design class diagram (pcb)

EPENDABLE SOFTWARE
LABORATORY

Store

address : Address

Uses

|

name : Text ProductSpecification
ProductCatalog
addSale(...) P description : Text
' price : Money
1 Looks-in N 1 1.*| itemID: ItemID
getSpecification(...)
Houses —
— _/ /7 1
- Describes
1 1 Sale - -
e} — — *
Register : date : Date — :
: isComplete : Boolean SalesLineltem
: Captures time : Time : Contains > quantity * Integer
endSale() 1: 1 1.
enterltem(...) . becomeComplete() getSubtotal()
makeNewSale(makeLineltem(...)
makePayment(...)
makePayment(...) getTotal()
Logs-completed® * T 1 Payment
Paid-by

A dependency of Register knowing about
ProductSpecification.

Recommended when there is parameter,
global or locally declared visibility.

amount : Money

KU

342

KONKUK
UNIVERSITY

K[J’ KONKUK
UNIVERSITY

3. Object Diagram

* Object diagram is useful for exploring real world examples of objects and the relationships between
them.

— Shows instances of classes at a specific point of time (i.e., snapshot)

Author Computer

name : String Uses » name : String
age : Integer memory : Integer Class Diagram

Bob' PC:
Computer

name = "Dell 466"
Bob: Author memory = 64

name = "Bob J."
age = 32 = Object Diagram
| Computer |
name = "Compaq
Pentium MMX"
memory = 32

i l h ¥
L &&?:}EPENDABLE SOFTWARE 343
) gl LABORATORY

l DEPENDABLE SOFTWARE

4. Package Diagram

« Package diagram groups classes into packages and simplify complex class diagrams.

— A package is a collection of logically related UML elements.

— Logical architecture

Presentation

Text f‘]

LABORATORY

engine.

Swing ©»],
T not the Java B ———————— = . .
ProcessSale “*e1..| Swing libraries, but ProcessSale R qu;ck
Frame our GUI classes Console experiments
based on Swing
Domain ‘
Sales Pricing
‘ Register ‘ ‘ Sale ‘ PricingStrategy «interface»
Factory |SalePricingStrategy
ServiceAccess Payments
Services «interface»
Fact CreditPayment |CreditAuthorization
actory ServiceAdapter
Inventory POSRuleEngine Taxes
«interface» . «interface»
IInventory Adapter POSRuleEngineFacade ITaxCalculatorAdapter
Technical Services
— — A general —
Log4J Jess e purpose third- SOAP
DBFacade party rules

KU vy

344

KU tvensry
5. Component Diagram

« Component diagram depicts how components are wired together to form larger components or
software systems.

— lllustrate the structure and inter-dependency of arbitrarily complex systems

Apache g a

University DB

e Struts . <<datastore>>
<<framework>>
[IXML i]
Cust O Customer JDBC
usiomer <<requires>>"
[— = = —>O— q !
|
I Persistence
Online = : XML 2] lPersiste;lce <<infrastructure>>
Ordering |———— | O— Order : A
<<application>> | I0rder IPersistence
| - T <<component>>
| .
gl Lo — B“_Ago_ IEncryption
Shipping o . g
<<application>> [~~~ | Delivery Security
| IDelivery I1AccessControl | <<infrastructure>>
=== =-=>0— <<component>> ©O—

Copyright 2005 Scott W. Ambler

]}EPENDABLE SOFTWARE 345
LABORATORY

KU tvensry
6. Composite Structure Diagram

« Composite structure diagram is used to explore run-time instances of interconnected instances
collaborating over communications links.

— Show the internal structure (including parts and connectors) of components.

<<component>> E

ConversionManagement

FeedProvider

}O— E] Parser Ejl DataSource

<<(omponents> < <omponent>> £
: Controller F} : BlogParser - }

FeedProvider r
O i

| .

DisplayCanverter

DisplayConverter

Assembly AN

connecton

]}EPENDABLE SOFTWARE 346
LABORATORY

* Deployment diagram depicts a static view of the run-time configuration of hardware nodes and the
software components running on those nodes.

:ApplicationServer

<<levige>>
WebServer <=RMI>> {OS=Solaris} <<JDBC=> :DBServer
{OS=LinuX}

: EJBContaincr
Student D =<gxecution environment=>

Administration

<] §Ps== University DB

Student <<gatastores=>
{vendor=C0raclc}

Seminar
Schedule <<message bus>> Mainframe
{05=MV5}
<<deployment spec>>
Registration
execution: thread Course
nested Transaction: true Management

<<legaey system=>>

Persistence D
=<infrastructure>=
{vendor=Ambysoft}

]}EPENDABLE SOFTWARE Copyright 2005 Scott W. Ambler 347
LABORATORY

8. Sequence Diagram

« Sequence diagram models the collaboration of objects based on a time sequence.

— Show how the objects interact with others in a particular scenario of a use case

EPENDABLE SOFTWARE
LABORATORY

:Student

:E-Learning
System

login(user, pw) !

>

:Database

check(user, pw)

y

check: "ok"

-— ————————— vl ———

K[J’ KONKUK
UNIVERSITY

348

KU vy

9. Communication Diagram

« Communication diagram is used to model the dynamic behavior of the use case. (called collaboration
diagram)
— = Sequence diagram
— More focused on showing the collaboration of objects rather than the time sequence.

:Student

1: login(user, pw)
2: getCourses()

‘E-Learning —
System |4 4. check(user, pw)

‘Database

1 ::]:JEPENDABLE SOFTWARE 349

LABORATORY

KU KONKUK
UNIVERSITY

10. Timing Diagram

« Timing diagram shows the behavior of the objects in a given period of time.
— A special form of a sequence diagram
— The time increases from left to right and the lifelines are shown in separate compartments arranged vertically.

duration constraint

= logged in sd Website Timing_/ . y A (200800 s}
state or condition =
8 5 Sending response
logged out e) timeline \ state change
% 99 . I getCourses @ Processing \ 4| \ PR
49 login(user, pw) : 2 \aiting \ e
I . \
i i {0..400 ms} i
D [e lifeline g \ HTTP response
c c v : IOgIn. ok v \“‘-bﬁ Processing timeline {50..200 ms} "\ reply message
I= r— 4 “_\ \ —
s busy A) Idle : \
O+ | =} \ \
Q2 idle ! \ ‘
j wn : - HTTP request !
- check(user, pw | check: "ok” g Waitng ey
(p) : g Processing
+ o Send \
| g e mchionous - request™E1ent N —
3 : - g ; ’ Show page\\
(1) !)
. | URL

‘(% active v : lifeline | @ N
© \‘h‘“”% Idle Waiting X Viewing
Q = 7 s

Z/o_ss 1s 165 \25 25s

state, condition or value

tick mark value timing ruler
EPENDABLE SOFTWARE 3 5 O
LABORATORY

K[J’ KONKUK
UNIVERSITY

11. Interaction Overview Diagram

* Interaction overview diagram focuses on the overview of the flow of control of the interactions.
— A variant of the Activity Diagram, where the nodes are the interactions or interaction occurrences.

sd Log In /

: :E-Learning :
:Student System :Database
ogin(user, o). i
login(user, pw) _ | |
H i ’i check(user, pw) >§ N [else] \@
| . | _ check: "ok" | _
! _ login: "ok" S S 1 [authorized]
(T 1 |
| getCourses() _ | :
|
|

| >

sd Forum /

1 %‘;EDEPENDABLE SOFTWARE 3 5 1
o) LABORATORY

KU vy

12. State (Statechart) Diagram

- State diagram can show different states of an entity and how an entity responds to various events by

changing from one state to another. o o)
— Oiriginated from the Statecharts formalism onBtnClick | | offBtnClick
— The history of an entity is modeled by a finite state diagram. (on)

Idle W

entry / speed := undefined
setBtnClick cancelBtnClick

Cruising

setBtnClick [SetSpeed A3 o
/Qentry / speed := currentSpeed J\

resumeBtnRelease. setBtnRelease

MaintainSpeed

do / maintain(speed)

resumeBtnPress setBtnPress

Decelerate

Accelerate

do / decelerate

—

do / accelerate

brake
resumeBtnClick clutch

(Suspended \
l entry / releaseControl |

() DEPENDABLE SOFTWARE - J 3 52

LABORATORY

K[J’ KONKUK
UNIVERSITY

13. Activity Diagram

« Activity diagram helps to describe the flow of control of the target system.
— Exploring complex business rules and operations, describing the use case and the business process
— It is an object-oriented equivalent of flow-charts and DFDs (data fiow diagrams).

Show
MessageBox
[disk full] "Disk full" on

screen

PrintFile()
&
Y Show
"Printing" on
screen
/ \ APrinter.Print(file) /
é}< Remove Create postscript

MessageBox file

PENDABLE SOFTWARE 3 5 3
LABORATORY

K KONKUK
UNIVERSITY

13 UML Diagrams

Diagram
| |
Structure Behaviour
Diagram Diagram
4 JA
] | |
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction State
Diagram Structure Diagram Diagram Diagram Machine
Diagram A Diagram
UML 2.2
[[|
Sequence || Communication || Interaction Timing
Notation: UML | Diagram Diagram Overview Diagram
Diagram

“EPENMBLE SOFTWARE 3 54
LABORATORY

[K KONKUK |

]}EPEN DABLE SOFTWARE 3 5 5
LABORATORY

KU vy

Use Cases

» Use cases are text stories of some actors using a system to meet goals.
— A mechanism to capture (identify and analyze) requirements

— An example (Brief format):
* Process Sale: A customer arrives at a checkout with items to purchase. The cashier uses the POS system to record each
purchased item. The system presents a running total and line-item details. The customer enters payment information,
which the system validates and records. The system updates inventory. The customer receives a receipt from the system

and then leaves with the items.

— Use case is not a diagram, but a text.
+ 3 formats (levels) : brief > casual - fully dressed

357

} DEPENDABLE SOFTWARE

LABORATORY

K[J’ KONKUK
UNIVERSITY

Use Case Diagram

Use case

Use case diagram illustrates the name of use cases and actors, and the relationships between them.
— System context diagram

— A summary of all use cases systom boundary NexiGen POS -~ communication
- = R ‘_.rr
,- o
Process Sala altemnate
notation for
Customer | : = a computer
b - Ay ment system actor
. h Authorization o, .-
/ PO Service H
Al ¥ F. ¢+ Handle Retumns q i
Actor ;l % ; aaclors o
aclor L \
. . . Cashi 3 Tax Calculator
Something with behavior, such as a person, ok ‘ .
computer system, or organization P
& CashIn Accounting
- Pri . . : : System
Primary Actor : has user goals fulfilled thrqugh using services o :
of the SuD (system Under Discussion), €.g., cashier : . e
wactors | Analyze Activity o .
_ _ _ Sales Activity —— ; HR System

- Supporting Actor : provides a service to the SuD, e.g., payment System

authorization service _

| Manage Security | ¢ _)
- Offstage Actor : has an interest in the behavior of the use case, . i
. . . System Manage Usars \"x
but is not primary or supporting, e.g., tax agency imEieeakir N

y l ?ﬁ‘v}:
Qo ?EPENDABLE SOFTWARE
! LABORATORY
' |

358

e
3 Formats of Use Cases

* Brief:
— Terse one paragraph summary
— Usually the main success scenario or a happy path

« Casual:
— Informal paragraph format
— Multiple paragraphs that cover various scenarios

Handle Returns

Main Success Scenario: A customer arrives at a checkout with items to return. The cashier
uses the POS system to record each returned item ...

Alternate Scenarios:

If the customer paid by credit, and the reimbursement transaction to their credit account is
rejected, inform the customer and pay them with cash.

If the item identifier is not found in the system, notify the Cashier and suggest manual entry
of the identifier code (perhaps it is corrupted).

If the system detects failure to communicate with the external accounting system, ...

]}EPEN DABLE SOFTWARE 3 5 9
LABORATORY

| 4

* Fully Dressed :

— Includes all steps, variations and supporting sections (e.g., preconditions)

EPENDABLE SOFTWARE
LABORATORY

Use Case Section

Comment

Use Case Name

Start with a verb.

Scope

The system under design.

Level

"user-goal” or "subfunction”

Primary Actor

Calls on the system to deliver its services.

Stakeholders and Interests

Who cares about this use case, and what do they want?

Preconditions

What must be true on start, and worth telling the reader?

Success Guarantee

What must be true on successful completion, and worth
telling the reader.

Main Success Scenario

A typical, unconditional happy path scenario of success.

Extensions

Alternate scenarios of success or failure.

Special Requirements

Related non-functional requirements.

Technology and Data
Variations List

Varying I/O methods and data formats.

Frequency of Occurrence

Influences investigation, testing, and timing of
implementation.

Miscellaneous

Such as open issues.

KU v

360

APPLYING UML
Case Study: The NextGen POS System AND PATTERNS

a Introduction 1 Object-Orienied Anahysis and Design
and Herative Development
| THIRD EDITION |

The first case study is the NextGen point-of-sale (POS) system. In this apparently straightforward o

problem domain, we shall see that there are interesting requirement and design problems to
solve. In addition, it's a real problemgroups really do develop POS systems with object

technologies.

A POS system is a computerized application used (in part) to record sales and handle payments;
it is typically used in a retail store. It includes hardware components such as a computer and bar
code scanner, and software to run the system. It interfaces to various service applications, such
as a third-party tax calculator and inventory control. These systems must be relatively fault-

tolerant; that is, even if remote services are temporarily unavailable (such as the inventory “-"fmtmmm-:,wm
system), they must still be capable of capturing sales and handling at least cash payments (so CR \l'ln ;_|-I__\||_i?;‘l_| AN

that the business is not crippled).

A POS system increasingly must support multiple and varied client-side terminals and interfaces.
These include a thin-client Web browser terminal, a regular personal computer with something
like a Java Swing graphical user interface, touch screen input, wireless PDAs, and so forth.

Furthermore, we are creating a commercial POS system that we will sell to different clients with
disparate needs in terms of business rule processing. Each client will desire a unique set of logic to
execute at certain predictable points in scenarios of using the system, such as when a new sale is
initiated or when a new line item is added. Therefore, we will need a mechanism to provide this
flexibility and customization.

Using an iterative development strategy, we are going to proceed through requirements, object-
oriented analysis, design, and implementation.
EPENDABLE SOFTWARE 3 6 1

LABORATORY

KU v

Example: Process Sale in Fully Dressed Style

Use Case UC1: Process Sale

Scope: NextGen POS application

Level: user goal

Primary Actor: Cashier

Stakeholders and Interests:

— Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short-
ages are deducted from his/her salary.

— Salesperson: Wants sales commissions updated.

— Customer: Wants purchase and fast service with minimal effort. Wants easily visible
display of entered items and prices. Wants proof of purchase to support returns.

— Company: Wants to accurately record transactions and satisfy customer interests.
Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo-
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

— Manager: Wants to be able to quickly perform override operations, and easily debug
Cashier problems.

— Government Tax Agencies: Want to collect tax from every sale. May be multiple agen-
cies, such as national, state, and county.

— Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Payment authorization approvals are recorded.

“EPEN DABLE SOFTWARE 3 6 2
LABORATORY

| 14

EPENDABLE SOFTWARE
LABORATORY

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment information to the external
Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, Manager requests an override operation:
1. System enters Manager-authorized mode.
2. Manager or Cashier performs one Manager-mode operation. e.g., cash balance
change, resume a suspended sale on another register, void a sale, etc.
3. System reverts to Cashier-authorized mode.
*b. At any time, System fails:
To support recovery and correct accounting, ensure all transaction sensitive state
and events can be recovered from any step of the scenario.
1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.
2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean
state.
2. Cashier starts a new sale.
1a. Customer or Manager indicate to resume a suspended sale.
1. Cashier performs resume operation, and enters the ID to retrieve the sale.
2. System displays the state of the resumed sale, with subtotal.
2a. Sale not found.
1. System signals error to the Cashier.
2. Cashier probably starts new sale and re-enters all items.
3. Cashier continues with sale (probably entering more items or handling payment).
a. Customer telis Cashier they have a tax-exempi status (e.g., seniors, native peo-
ples)
1. Cashier verifies, and then enters tax-exempt status code.
2. System records status (which it will use during tax calculations)
3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:
2a. There is a human-readable item ID (e.g., a numeric UPC):
1. Cashier manually enters the item ID.
2. System displays description and price.
2a. Invalid item ID: System signals error. Cashier tries alternate method.
2b. There is no item ID, but there is a price on the tag:
1. Cashier asks Manager to perform an override operation.

a_a
e o

2. Managers performs override.

3. Cashier indicates manual price entry, enters price, and requests standard
taxation for this amount (because there is no product information, the tax
engine can’t otherwise deduce how to tax it)

2¢. Cashier performs Find Product Help to obtain true item ID and price.
2d. Otherwise, Cashier asks an employee for the true item ID or price, and does
either manual ID or manual price entry (see above).
3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.
3c. ltem requires manual category and price entry (such as flowers or cards with a price
on them):
1. Cashier enters special manual category code, plus the price.
3-6a: Customer asks Cashier to remove (i.e., void) an item from the purchase:
This is only legal if the item value is less than the void limit for Cashiers, otherwise a
Manager override is needed.
1. Cashier enters item identifier for removal from sale.
2. System removes item and displays updated running total.
2a. Item price exceeds void limit for Cashiers:
1. System signals error, and suggests Manager override.
2. Cashier requests Manager override, gets it, and repeats operation.
3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.
3-6¢. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS register.
2. System presents a “suspend receipt” that includes the line items, and a sale ID
used to retrieve and resume the sale.
4a. The system supplied item price is not wanted (e.g., Customer complained about
something and is offered a lower price):
1. Cashier requests approval from Manager.
2. Manager performs override operation.
3. Cashier enters manual override price.
4, System presents new price.
5a. System detects failure to communicate with external tax calculation system service:
1. System restarts the service on the POS node, and continues.
1a. System detects that the service does not restart.
1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.
5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.
5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.
6a. Customer says they intended to pay by cash but don’t have enough cash:
1. Cashier asks for alternate payment method.
1a. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

363

I< KONKUK
UNIVERSITY

| 4

EPENDABLE SOFTWARE
LABORATORY

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.
7b. Paying by credit:
1. Customer enters their credit account information.
2. System displays their payment for verification.
3. Cashier confirms.
3a. Cashier cancels payment step:
1. System reverts to “item entry” mode.
4. System sends payment authorization request to an external Payment Authoriza-
tion Service System, and requests payment approval.
4a. System detects failure to collaborate with external system:
1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.
. System receives payment approval, signals approval to Cashier, and releases
cash drawer (to insert signed credit payment receipt).
5a. System receives payment denial:
1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.
5b. Timeout waiting for response.
1. System signals timeout to Cashier.
2. Cashier may try again, or ask Customer for alternate payment.
6. System records the credit payment, which includes the payment approval.
7. System presents credit payment signature input mechanism.
8. Cashier asks Customer for a credit payment signature. Customer enters signa-
ture.

(&)

9. If signature on paper receipt, Cashier places receipt in cash drawer and closes it.

7c. Paying by check...
7d. Paying by debit...
7e. Cashier cancels payment step:

1. System reverts to “item entry” mode.

7f. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.
9a. There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible):

1. Cashier requests gift receipt and System presents it.

9c. Printer out of paper.

1. If System can detect the fault, will signal the problem.

2. Cashier replaces paper.

3. Cashier requests another receipt.

Special Requirements:

_ Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.

_ Credit authorization response within 30 seconds 90% of the time.

— Somehow, we want robust recovery when access to remote services such the inven-
tory system is failing.

— Language internationalization on the text displayed.

— Pluggable business rules to be insertable at steps 3and7.

Technology and Data Variations List:

*a. Manager override entered by swiping an override card through a card reader, or
entering an authorization code via the keyboard.

3a. Item identifier entered by bar code laser scanner (if bar code is present) or key-
board.

3b. ltem identifier may be any UPC, EAN, JAN, or SKU coding scheme.

7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt. But within two years, we pre-
dict many customers will want digital signature capture.

Frequency of Occurrence: Could be nearly continuous.

Open Issues:

— What are the tax law variations?

— Explore the remote service recovery issue.

— What customization is needed for different businesses?

— Must a cashier take their cash drawer when they log out?

_ Can the customer directly use the card reader, or does the cashier have to do it?

364

K[J’ KONKUK
UNIVERSITY

Guideline: Write in an Essential Style

- Essential writing style is to express user intentions and system responsibilities, rather than concrete
actions.

— Ul-free style
— Concrete use cases are better avoided during early requirements analysis.

— For example: Manage Users use case

Essential Style Concrete Style
1. Administrator identities self. 1. Administrator enters ID and PW in dialog box.
2. System authenticates identity. 2. System authenticates Administrator.
3.... 3. System displays the “edit user” window.
4. ...

‘ - EPENDABLE SOFTWARE 3 6 5
4 LABORATORY

| 4

Guideline: Write Black-Box Use Cases

Don’t describe the internal working of the system, its components or design.

— Define what the system does (analysis), rather than how it does it (design).

EPENDABLE SOFTWARE
LABORATORY

Black-box style

Not

The system records the sale.

The system writes the sale to a database.
...or (even worse):

The system generates a SQL INSERT
statement for the sale...

KU KONKUK
UNIVERSITY

366

K[J’ KONKUK
UNIVERSITY

Are Use Cases Functional Requirements?

* Yes

« Use cases are requirements, primarily functional requirements.
— “F” (functional or behavioral) in terms of FURPS+ requirements types
— Can also be used for other types.

1 %‘;EDEPENDABLE SOFTWARE 367
o) LABORATORY

[K KONKUK |

]}EPENDABLE SOFTWARE 3 68
LABORATORY

System Sequence Diagram

KU KONKUK
UNIVERSITY

System Sequence Diagram

« System sequence diagram (SSD)
— A picture that shows the events that external actors generate, their order, and inter-system events, for one
particular scenario of a use case.
» the external actors that interact directly with the system,
* the system (as a black box), and
* the system events that the actors generate

— In the sequence diagram notation
— Depict system behavior in terms of what the system does, not how it does it
— Used as input to object design — System operations

» Use cases describe how external actors interact with the software system we are interested in creating.

— During this interaction, an actor generates system events to a system, usually requesting some system
operation to handle the event.

]gEPENDABLE SOFTWARE 370
LABORATORY

APPLYING UML
AND PATTERNS

A Inroduction ko Objet-Oriented Analss and Design

Applying UML Sequence Diagrams et

« The UML does not define something called ‘System Sequence Diagrams’.

e e v

— We use the general UML sequence diagram notation. T

— The term ‘system’ in SSDs is used to emphasize the application of the UML sequence diagram to systems
viewed as black boxes.

— An SSD shows system events for one scenario of a use case.

X

Process Sale Scenario

LABORATORY

: Cashier - System

|]
: makeNewSale g
Simple cash-only Process Sale scenario: ! ':
. loop) [more items] . .]
1.Customer arrives at a POS checkout i enterltem(itemID, quantity) P‘I
with goods and/or services to purchase. | I
2. Cashier starts a new sale. : :
3. Cashier enters item identifier. : description, total :
4.System records sale line item and ittty]
presents item description, price, and :]
running total. : :
Cashier repeats steps 3-4 until indicates 1 |
done. Q ! endSale o
5.System presents total with taxes : 'i
calculated. I . I
6.Cashier tells Customer the total, and Femmmm—e———__lotalwithtaxes ____________ !
asks for payment. : :
7.Customer pays and System handles | I
payment. : makePayment(amount) »}
i I
| I

EPENDABLE SOFTWARE D —— changedue, receipt ___________ : 371
1

I< l]’ KONKUK
UNIVERSITY

System Operation

« System operations
— Operations that the system as a black box component offers in its public interface
— Show system events, which the SUD should have system operations to handle the system events.
— System Interfaces: the entire set of system operations across all use cases

372

Process Sale Scenario
System
- Caslhior ys'
: makeNewSale() >
|]
| : N
loop . [more items | i
t : enteritem{itemID, quantity) N ’: these input system events
| ! invoke system operations
]]
\ . the syslem event enterftem
L e i i description.total | _ _ _ _ ________ ! invokes a syslem operation
§ . called enterltem and so forth
| L]
E E this is the same as in object-
! i oriented programming when
' endSale() », we sy the message foo
: ' invokes the method (handling
e Mtalwithtaxes ! operation) foo
| i
|]
N makePayment(amount) .:
| i
|]
]]
- R change due. recespt_ _ _ _ ___ _ _ ___ :
|}

EPENDABLE SOFTWARE
LABORATORY

KU vy

Guideline: How to Name System Events and Operations?

+ System events should be expressed at the abstract level of intention rather than in terms of the
physical input device.

« Example : scan(itemID) vs. enterltem(itemID)
— The enterltem name is better, since it communicates intention rather than the input device.

worse name k

P
; :System
: Ca$h|er
better name k ' :
: . . enterltem(item|D, quantity) |
i >
| |
! :
a0 scan(itemlD, quantity) :
. | P‘ |
| I
| |
| I
| I
| I

} DEPENDABLE SOFTWARE 373
LABORATORY

The Relationship to Other Artifacts in UP (OOAD)

| 4

EPENDABLE SOFTWARE
LABORATORY

Sample UP Artifact Relationships

Domain Model

Sale 1 1.* Sales
Business Lineltem
Modeling date
. quantity
/ Vision
Use-Case Model \
Process Sale

@ use 1.Customer

nzamszs arrives ...
2.Cashier

% ‘ T makes new
O

Cashier

sale. |
3. Glossary
Require- - parametersand
ments Use Case Diagram Use Case Text return value details.
system | =
| l events
2 [system |
I Operation: : Cashier make Supplementary
enterltem(...) - .
system NewSale() Specification
- . operations M
Post-conditions:
I i . _enterlte_m
b id, quanti
1
kOperation Contracts System Sequence DiagramS/

starting eventsto designfor

(DesignModeIl : ProductCatalog I I : Sale ‘
T
[

T
enterltem 1

. . I
Design (iteml D, quantity) b:

'. spec = getProductSpec(item|D)

1

: addLineltem(spec, quantity)
r

h A

374

Homework / Activity #10

- RVC SW Control2 OOAD 7|®Ho 2 EM(00A)EL|Ct.
— E .= Use CasesE T =051, SSDE &9l System Operations=2 &5 && L|LC.
— F7tUC:“HOi22 2|m|ptCt” “df MM E MRSHA HADCH” “HO 22 ZXIBHCE”
— UML EF AL

-

% System
_
Front Sensor Y o= @A
-_—
/-‘ \ =& o g =X
Left Sensor

E% 5 FoE Xl

Right Sensor

X

[

006
eee\ /e

s —
// Vacuum Cleaner
_ HEY2(EHR)

Dust Sensor

An Example Use-Case Diagram for the RVC Control SW 375

Samples of Use Cases and SSD

System
Use Case Use Case®| 0| &
: Front Sensor

Actor BHAE O E Actors
Pre-Requisites 0| Use-Case’I A &| 7| F 0 BH=&|00F of= =S

Sl Use-Case?t 712 H2| 85| = AlL2| 2 - Q|59| Actor?t A| A&l 7H9| InteractionS,

AZE =M= AFUM 2 5= s e oA, AEMISHA S| Ct

. 1 : front_Obstacle() >
Typical Courses of Events 2.

3.

4.
AIIOINRENS CONIEES B 718 +UEE A2 S #EN O HFULICL (F AL AINT SR} 28)
Excoptional Coursesof o2 0jyygi02 FAILI2I20 B2 480 SHE + YL 39S 49

vents
2:0K
Use-Case Description

System Sequence Diagram

376

[K KONKUK |

]}EPENDABLE SOFTWARE 377
LABORATORY

8. Software Testing

K[J’ KONKUK
UNIVERSITY

Program Testing

* Testing intends to show:
— “a program does what it is intended to do” and
— “discover program defects before it is put into use”.

 When you test software, you execute a program using artificial data.

— You check the results of the test run for errors, anomalies or information about the program’s non-functional
attributes.

— Can reveal the presence of errors, but NOT their absence.

« Testing is a part of general verification and validation (V&V) process and activities.

‘Er‘f;:'b EPENDABLE SOFTWARE 3 7 9
% LABORATORY

KU KONKUK
UNIVERSITY

Two Types of Program Testing

« Validation testing
— To demonstrate to the developer and the customer that “the software meets its (users’) requirements.”

— A successful test shows that the system operates as intended.
* You expect the system to perform correctly using a given set of test cases that reflect the system’s expected use.

» Verification testing

— To discover situations in which “the behavior of the software is incorrect, undesirable or does not conform
to its specification.”
— Asuccessful test is a test that makes the system perform incorrectly and so exposes a defect in the system.
* The test cases are designed to expose defects.
— = Defect testing

]}’ EEEEEEEEE N 380
LABORATORY

KU v

Verification and Validation (V&V)

« Validation: Are we building the right software?
— “Does the software system meets the user's real needs?”

* Verification: Are we building the software right? (with respect to requirements specification)
— “Does the software system meets the requirements specifications?”

Actual
Requirements I

Validation Verification

B:} EEEEEEE SOFTWARE 3 8 1
LABORATORY

SOFTWARE TESTING

V-Model of V&V Activities L

Actual Needs and 4l :
. - Delivered
Constraints User Acceptance (alpha, beta test)
\‘u' Package Mauro Pezzé
Michal Young
System
System System Test Integration
Specifications |
. |_| Analysis / Review
PN Subsystem /I ,
Design/Specs \I Integration Test Subsystem
/l_
Analysis / Review Verification
Unit/ q
i~ Components Module Test Cor::n:ni nte Vandan
Specs P alidation
S 0 &

\ User review of external behavior as it is determined or
becomes visible

]}EPEN DABLE SOFTWARE 3 8 2
LABORATORY

KU vy

V&V Confidence

 Aim of V&V
— Establish confidence that the system is ‘fit for purpose’

V&YV confidence depends on
— Software purpose
* The level of confidence depends on how critical the software is to an organisation.
— User expectations
» Users may have low expectations of certain kinds of software.
— Marketing environment
» Getting a product to market early may be more important than finding defects in the program.

1 ::]:JEPENDABLE SOFTWARE 3 8 3

LABORATORY

KU KONKUK
UNIVERSITY

3 Axes of V&V

Theorem proving:
Unbounded effort to
verify general
properties.

Perfect verification of Optimistic Inaccu racy

arbitrary properties by — We may accept some programs that do not possess
logical proof or exhaustive the property.

testing (Infinite effort)
— It may not detect all violations.
— Example: Testing

Model checking:
Decidable but possibly
intractable checking of

simple temporal
properties.

* Pessimistic Inaccuracy

— Itis not guaranteed to accept a program even if the
program does possess the property being analyzed,
because of false alarms.

— Example: Automated program analysis

Data flow
|analysis

Typical testing
techniques

Precise analysis of
simple syntactic
properties.

- Simplified Properties
— It reduces the degree of freedom by simplifying the
property to check.
— Example: Model Checking

Optimistic
inaccuracy

Simplified
properties

Pessimistic

inaccuracy 384

EPENDABLE SOFTWARE
LABORATORY

KU tvensry
Software Testing Stages

« Software testing stages
— Development testing
» The system is tested during development to discover bugs and defects.
— Release testing
» A separate testing team test a complete version of the system, before it is released to users.
— User testing
» Users or potential users of a system test the system in their own environment.

« Software testing process

Test Test Test . Test
cases data results “| reports

Y Yy
Design test Prepare test Run program Compare results
cases data with test data to test cases

]g EPENDABLE SOFTWARE 3 8 5
LABORATORY

KU vy

Development Testing

386

KU vy

Development Testing

- All testing activities that are carried out by the team developing the system.

— Unit testing
+ Individual program units or object classes are tested.
» Unit testing should focus on testing the functionality of objects or methods.

— Integrated testing
» Several individual units are integrated to create composite components.

+ Integration testing should focus on testing interfaces and interactions among componentS.

— System testing
» Some or all components in a system are integrated and the system is tested as a whole.
+ System testing should focus on testing all functionalities as a whole.

— Regression testing
+ Testing a system to check that changes have not ‘broken’ previously working code
* In development or maintenance phase

} DEPENDABLE SOFTWARE 387
LABORATORY

KU KONKUK
UNIVERSITY

Unit Testing

« Unit testing is the process of testing individual components in isolation.
— Defect testing

* Units may be:
— Individual functions or methods within an object
— Object classes with attributes and methods
« Testing all operations associated with an object
+ Setting and interrogating all object attributes
* Exercising the object in all possible states

— Composite components with defined interfaces used to access their functionality.

]}EPEN DABLE SOFTWARE 3 8 8
LABORATORY

KU vy

The Weather Station: Unit Testing for Objects

* Need to define test cases for all operations in all states of the object.

— State model can identify sequences of state transitions to be tested and the event sequences to cause these
transitions.

— For example:
* Shutdown -> Running-> Shutdown
+ Configuring-> Running-> Testing -> Transmitting -> Running

. Running.-> Collecting-> Running-> Summarizing -> Transmitting @
_> Runnlng A A state mode for the WeatherStation object class
shutdown() Operation remoteControl()
WeatherStation I Y
identifier Shutch restart) ;/ Running M‘ Testing ’
reportWeather () —J 1 f transmission done ‘ test complete

reportStatus () configuration done y

powerSave (instruments) ’e°°“f'sg”re(()) Transmitting
owers>av -

remoteControl (commands) powersave clock collection >

N done A
reconfigure (commands) vreportWeather()
weather summary

restart (instruments) Configuring , . complete
shutdown (instruments) Summarizing
Collecting

1 ::]:JEPENDABLE SOFTWARE 3 89

LABORATORY

KU vy

Automated Testing

* Whenever possible, unit testing should be automated.
— Tests are run and checked without manual intervention.

* Unit testing frameworks
— Provide generic test classes that you extend to create specific test cases.
— Can run all of the tests that you have implemented and report, often through some GUI, on the success of
otherwise of the tests.
— Example: JUnit, xUnit, etc.

— Composed of 3 parts
+ Setup part : initialize the system with the test case, namely the inputs and expected outputs.
« Call part : call the object or method to be tested.

» Assertion part : compare the result of the call with the expected result. If the assertion evaluates to true, the test has been
successful if false, then it has failed.

} DEPENDABLE SOFTWARE 390
LABORATORY

KU vy

Developing Unit Test Cases

« Two types of unit test cases
— Positive
» Reflect normal operation of a program
» Should show that the component works as expected
— Negative
+ Based on testing experience of where common problems arise
* Use abnormal inputs to check that these are properly processed and do not crash the component

} DEPENDABLE SOFTWARE 391
LABORATORY

KU vy

Unit Testing Strategies

« Partition testing

— ldentify groups of inputs that have common characteristics and should be processed in the same way.
— Choose tests from within each of these groups.

« Guideline-based testing
— Use testing guidelines to choose test cases.
— These guidelines reflect previous experience of the kinds of errors that programmers often make when
developing components.
+ Brute-force testing (AKA 2} E|AE)
— Examples:
» Choose inputs that force the system to generate all error messages.
» Design inputs that cause input buffers to overflow.
* Repeat the same input or series of inputs numerous times.
» Force invalid outputs to be generated.
» Force computation results to be too large or too small.

--i]:)EPENDABLE SOFTWARE 392
1 y LABORATORY

K[J’ KONKUK
UNIVERSITY

Partition Testing

» Input data and output results often fall into different classes where all members of a class are related.

— Each of these classes is an equivalence partition or domain where the program behaves in an equivalent way
for each class member.

— Test cases should be chosen from each partition.

Input equivalence partitions Output partitions

6\

\j

@ System — > \d
\d

C_

Possible inputs Correct outputs Possible outputs

DEPENDABLE SOFTWARE 3 9 3
y LABORATORY

I< I l KONKUK
UNTVERSITY

Equivalence Partitions with Boundary Value Analysis

3 11
4 7 10
Less than 4 Between 4 and 10 More than 10

Number of input values

9999 100000
10000 50000 99999

S

Less than 10000 Between 10000 and 99999 More than 99999

Input values

]}’ EEEEEEEEE N 394
LABORATORY

| 4

EPENDABLE SOFTWARE
LABORATORY

SOFTWARE TESTING
Functional Testing - Techniques Overview L B

PROCESS. PRINCIPLES, AND TECHNIQUES

Functional specifications
Brute force testing

Identify independently testable features

Mauro Pezze
Finite State Machine, Michal Young
Grammar,
Independently Testable Feature Algebraic Specification,
Logic Specification,
CFG /DFG
Identify representative values

Derive a model

Representative Values

G

: : nerate test case specification
Semantic Constraint,

Combinational Selection,
Exhaustive Enumeration,
Random Selection

Test selection
criteria

Test Case Specification

Generate test cases

Manual Mapping,

Instantiate tests

Scaffolding

Symbolic Execution,
A-posteriori Satisfaction

395

ntegration Testing

Software components are often composite components that are made up of several interacting

objects.

— Can access the functionality of these objects through the defined component interface

* Integration testing is the testing of composite components.
— Focus on showing that the component interface behaves according to its specification

| 4

— Focus on testing the interactions between components

— Assume that unit tests on the individual objects
within the component have been completed.

Test
cases

1

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

396

Guidelines for Integration Testing

* Interface Testing Guidelines
— Design tests so that parameters to a called procedure are at the extreme ends of their ranges
— Always test pointer parameters with null pointers
— Design tests which cause the component to fail
— Use stress testing in message passing systems
— In shared memory systems, vary the order in which components are activated

DEPENDAEBLE SOFTWARE 3 9 7
LABORATORY

K[J’ KONKUK
UNIVERSITY

System Testing

« System testing during development involves integrating components to create a version of the system
and then testing the integrated system.

— The focus is testing the interactions between components. (integration testing)

» Checks that components are compatible, interact correctly and transfer the right data at the right time across their
interfaces

— Tests the emergent behavior of a system (system testing)

» System testing is a collective process.

— Reusable components that have been separately developed and off-the-shelf systems may be integrated with
newly developed components. The complete system is then tested.

— Components developed by different team members or sub-teams may be integrated at this stage.

— System testing may involve a separate testing team with no involvement from designers and programmers.
- Release Testing

‘; KZPD EEEEEEEEE SOFTWARE 3 9 8
o 4

I< I l KONKUK
UNTVERSITY

Developing System Test Cases

« Use-cases and Sequence diagrams can be used as a basis.

— Each use case usually involves several system components so testing the use case forces these interactions to
occur.
— Sequence diagrams associated with the use case document the components and interactions that are being
tested.
information system

SatComms WeatherStation Commislink WeatherData

>0

request (report) _:

acknowledge :] :
_____ reportWeather () : :
< acknowledge | | get (summary) =|i| summarise () . :
-------- e
send (report) ' ;
acknowledge i E
 reply (report) | |—— — — — —Ll : :
knowled i E i
| acknowledge : : :

-
]gﬁmﬁé@fﬁggﬂ e ' ! Collect Weather Data Sequence Chart 399

KU vy

Testing Policies

« Exhaustive system testing is a;ways impossible.
— Testing policies define a required system test coverage.

« Examples of testing policies
“All system functions that are accessed through menus should be tested.”
“Combinations of functions accessed through the same menu must be tested.”

“Where user input is provided, all functions must be tested with both correct and incorrect input.”

} DEPENDABLE SOFTWARE 400
LABORATORY

KU vy

Regression Testing

 Regression testing
— Testing a system to check that changes have not ‘broken’ previously working code

« In a manual testing process, regression testing is expensive but, with automated testing, it is simple
and straightforward.

— All tests are rerun every time a change is made to the program.
— Tests must run ‘successfully’ before the change is committed as TFD in XP.

LABORATORY

S DEPENDABLE SOFTWARE 401

KU vy

Test-Driven Development

402

K[J’ KONKUK
UNIVERSITY

Test-Driven Development

* Test-driven development (TDD) is a program development approach inter-leaving testing and code
development.
— Tests are written before code and ‘passing’ the tests is the critical driver of development.
— Develop code incrementally, along with a test for that increment.
— Not move on to the next increment, until the code passes its test.

« TDD was introduced as part of agile methods such as XP.
— However, it can also be used in plan-driven development processes.

pass

Identify new

functionality

fail Implement
Write test Run test functionality and
] refactor

403

Benefits of TDD

Code coverage
— Every code segment that you write has at least one associated test so all code written has at least one test.

Regression testing
— Avregression test suite is developed incrementally as a program is developed.

— Tests the system to check that changes have not ‘broken’ previously working code through rerunning the tests
every time a change is made to the program.

Simplified debugging
— When a test fails, it should be obvious where the problem lies.
— The newly written code needs to be checked and modified.

System documentation
— The tests themselves are a form of documentation that describe what the code should be doing.

DEPENDABLE SOFTWARE
LABORATORY

Release Testing

KU vy

405

KU vy

Release Testing

* Release testing is the process of testing a particular release of a system that is intended for use
outside of the development team.
— To convince the supplier of the system that it is good enough for use.

» Should show that the system delivers its specified functionality, performance and dependability
* Should show the system does not fail during normal use

* Release testing is usually a black-box testing process.
— Tests are only derived from the system specification.

S -;;’IJDEPENDABLE SOFTWARE 406

LABORATORY

KU vy

Release Testing vs. System Testing

Release testing is a form of system testing.

Important differences are
— A separate team that has not been involved in the system development should be responsible for release
testing.
» System testing by the development team should focus on discovering bugs in the system. (defect/verification testing)
* Release testing is to check that the system meets its requirements and is good enough for external use. (validation testing)

Performance tests
— Involve planning a series of tests where the load is steadily increased until the system performance becomes
unacceptable.

Stress testing
— Aform of performance testing where the system is deliberately overloaded to test its failure behavior.

} DEPENDABLE SOFTWARE 407
LABORATORY

User Testing

- EPENDABLE SOFTWARE 4 O 8
y LABORATORY

KU vy

User Testing

« User or Customer testing is a stage in which users or customers provide input and advice on system
testing.

— Influences from the user’s working environment have a major effect on the reliability, performance, usability and
robustness of a system. These cannot be replicated in a testing environment.

» Types of user testing
— Alpha testing
» Users of the software work with the development team to test the software at the developer’s site.

— Beta testing

* Arelease of the software is made available to users to allow them to experiment and to raise problems that they discover
with the system developers.

— Acceptance testing

+ Customers test a system to decide whether or not it is ready to be accepted from the system developers and deployed in
the customer environment.

 Primarily for custom systems

} DEPENDABLE SOFTWARE 409
LABORATORY

Homework #11

- CtFt Unit Testing FrameworkS 11, H%4|2 & 7}

rx
(0}l
paul

« Unit Test CasesS 207l O] & 7i'&stn, A X HARS

AL
T

HHEH 2 2 Homework #70| Al 728t C program= CHA 22

List of C++ Unit Testing Frameworks (Wikipedia)

C++ [edit]
: : : Group : :
Name %+ License % | xUnit +# | Fcures # foct ¥ | Generators ¥ Mocks # | Bxceptions # | Macros # | Templates ¥ Grouping + | Source ¥ Remarks A
ures
Aeryn No Yes Yes No No Yes Yes Yes Yes Lk
T e UG “ Yes Yas x 31 Unit test generator for C/C++ libranies. Can automatically generate reasonable
AP| Sanity Checker GN as es k5 ! 2 y
! = (spectypes) | (spectypes) input data for every API function. LGPL.
o R0 4 v o . 3] Originally developed for the NetBSD operating system but works well in most
A SC =5 ‘s es es 5
Unix-like platforms. Ability to install tests as part of a release.
Mo Yas “fas (Mested ‘fes (Mested "
Bandit MIT esben| @esaibe)) No No Yes Yes No 4 be) 201 Header only. Automatic test registration. Specifically developed for C++11
escribe/i escribe] escribe) escribe
With additional U siiit J Part of Boost. Powerful dataset concept for generating test cases. Different
. : r : ser uites an w :
Boost Test Library Boost Yes21 Yo7 Yes library Yes d Yes label 23, levels of fixtures (global, once per test suite, once per each test case in a
ecision abels
"Turtle"! suite). Powerful floating point comparison.
BugEye Boost No MNo No No No Yes No No Yes Header-only. TAP output.
Commercial. Automated unit and integration testing tool for C++. Certified
QA Systems Cantata | Proprietary No Yes Yes Yes Yes Yes ‘es Yes Yes =1 testing for host or embedded systems. Code coverage and unigue call
interface control to simulate and intercept calls.
C++17, modeled after the lasmine testing framework, type-safe tests, auto-
P GPL 2.0 N Y Y N N Y Ye 9 ¥ 28] registration, BDD features, focused/disabled/pending tests, flexible
asmine L20 o 25 CH o o 25 es es es &
- configuration (JSON), colored console reporter, extendable,
Windows/Linux/macQOS
i o Bl - o . . . n . v ¥ . 189] Header only, no external dependencies, auto-registration, tdd and bdd
atch or Catc oos! o 25 s es o 25 es es es E
- features
CATCH-VC6 No Yes Yes Yes No Yes Yes Yes Yes 1oq] VC6 port of CATCH
i . % n % ~ . w N 37 Specialized for Windows development—beoth Win32 and NT kernel mode.
cfix as 25 o o o 25 as o B . .
Compatible to WinUnit.
Cput Yes Yes Yes Yes Yes Yes No Suites [Library and MS Visual Studio add-in to create and run unit tests. Open Source.
Released Under Apache 2.0, Compliant with C++ 98 and C++ 11. Works for
CPPOCL/test rpach N Y N Y Ye 102 Linux and Windows 32/64 bit using gec, Cygwin, V52005 and V52015, Header
[test Apache 2 o 25 o 25 es ez . . - . i . .
- 2 file only library. Provides ability to write performance tests in a similar way to
unit tests. Has some support for reporting memory leaks.
CppTest GNU LGPL Yes Yes Suites (03] Released under LGPL
cpptest-lite MIT Yes Yes Yas Suites 104 Released under MIT. Developed for C++11.

CppUnit GNU LGPL Yes Yes Yes No No Yes Yes No Suites 10511081 | peleased under LGPL 411

List of C++ Unit Testing Frameworks (Wikipedia)

Name License

CppUTest

CppUnitLite

CPUnit

Criterion MIT

libcester MIT

crpeut

CUTE

cutee

CxxTest

doctest MITi 4]

Embunit

[=:]
"5
(=

Exercisix

Fakelt

=
=

FCTX

Fructose

*xUnit

No
No
No

Fixtures

Yes

No

Yes

Group
fixtures

Yes

Yes

Mo

Mo

Yes

‘fas

MNo

Generators

No

No

Yes

Yes

No

Yes

No

Ne

No

No

Yes

Mocks

MNo

No

Yes

Yes*

Ne

Mo
Yes

MNo

Exceptions

MNo

Optional

ez
Yes
Yes

MNo

Yas

Macros

Yas

Yes

Yas

Templates

No

No

No

Yas

No

No

Yas

Grouping

Suites

Suites

Suites

File

Suites within
Suites

Suites

Suites

Yes

Executables

Source

[43]

o7

[108]

[109]

nia

iz

nia

Remarks

Limited C++ set by design to keep usage easy and allow it to work on
embedded platforms. C++ is buried in macros so the learning curve for C
pragrammers is minimal. Ported to Symbian. Has a mocking support library
CppUMock

Released under BSD.

Unit testing framework with automatic test registration. Needs C++11
compiler support for the C++ API. Supports theories and parameterized tests.
Each test is run in its own process, so signals and crashes can be reported.
Can output to multiple formats, like the TAP format or JUnit XML. Supported
on Linux, OS X, FreeBSD, and Windows.

A robust header only unit testing framework for C and C++ programming
language. Support function mocking, memory leak detection, crash report.
Works on various platorms including embedded systems and compatible with
vanous compilers. Outputs to multiple format like TAR JunitXML, TAPV13 or
plain text.

BSD 2 clause. Runs sach test in its own process, guaranteeing that the test
suite continues even in the event of an unexpected crash or infinite loop.
CUTE (C++ Unit Testing Easier) with Eclipse CDT integration. Single line

include, without inheritance. Mock support is provided by Mackator.

Uses a C++ parser and code generator (requiring Python) for test registration.

* Has a framework for generating mocks of global functions, but not for
generating mocks of objects.

Light, feature rich C++ single header testing framework

Commercial. Create unit tests for C/C++ and Embedded C++

Aimed to make adding tests as fast and easy as possible.

Use the latest C++11 features to create an expressive, yet very simple, API.

Fast and complete unit testing framework all in one header. Declare and write

your functions in one step. No dependencies. Cross platform.

A simple unit test framework.

412

List of C++ Unit Testing Frameworks (Wikipedia)

Grou
Name License xUnit Fixtures ot s Generators Mocks Exceptions Macros Templates Grouping Source Remarks
ixtures
Google C++ s
g. Yes No Yes Yes [120]

Maocking Framework
Supports automatic test discovery, a rich set of assertions, user-defined

Google Test BSD Yes Yes Yes Yes Yes Yes 1211 assertions, death tests, fatal and non-fatal failures, various options for running
the tests, and XML test report generation.
Open source. Can test servers, libraries, and applications, and embedded

Hestia MIT Yas Yes Yas MNo No Yes Yes Yes Suites n22] software. Outputs to stdout, text, html, or xml files. Has several assertions for
messaging, warnings, and exceptions, as well as plain conditions.

Hippomocks Yes No Yes Yes [123]

Yes Yes (nested [24] : .
Igloo (Contexts) No MNo No Yas Yes Yes e . BDD style unit testing in C++
ontexts contexts

lest No Yes No No No Yes Yes Yes No [125] Tiny header-only C++11 test framework
liblittletest is a portable, one file header-only C++ library for unit testing,

liblittletest Yas Yes Yas MNe No Yas Yes Yes Yes [2e] Supports a nich set of assertions, automatic test discovering and various
options for running the tests.

libunittest Yas Yes Yas No No Yes Yes Yes Yes (27 libunittest is a portable C++ library for unit testing making use of C++11.

mettle BSD (123l

Microsoft Unit

- x oot ¥ w v . ¥ . w Y v e Commercial. Integrated into Microsoft Visual Studio 2012 IDE and later

esting Framewor roprietar 2z as 25 o o 25 25 a5 &5 HE .

. C-? g Y versions,

or C++
Fully automated mock generation for C and C++. Based on clang, provides

Mimicc Proprietary Yes 161] the ability to compile header files straight into linkable mock object files and
control them with an accompanying API.
Header-cnly meck object library and an Eclipse plug-in to create test doubles

Mockator Yes No Yes Yes [30] in a simple yet powerful way; leverages new C++11 language facilities while
still being compatible with C++03; has built-in support for CUTE

mock++/mackecpp Yas Yes No Yes Yes Yes Yes Suites Simple testing framework for C++ (requires cmake)

mockitopp Yes A C++ mock object framewerk providing similar syntax to mockito for Java.

mockpp Yas Yes Yes Yes Yes Yes Yes Suites 53] A C++ mocking framework hosted by Google

oo 413

[K KONKUK |

]}EPEN DABLE SOFTWARE 4 1 4
LABORATORY

9. Software Evolution

KU vy

Software Change

- Software change is inevitable.
— New requirements emerge when the software is used.
— The business environment changes.
— Errors must be repaired.
— New computers and equipment is added to the system.
— The performance or reliability of the system may have to be improved.

* Akey problem for all organizations is implementing and managing change to their existing software
systems.

— The majority of the software budget in large companies is devoted to changing and evolving existing software
rather than developing new software.

LABORATORY

S DEPENDABLE SOFTWARE 41 6

A Spiral Model of Development and Evolution

//

—
Specification Implemention
/ / Start \ \
etc.
Release 1 / /
Operatlon Validation
4/

Release 2 /

Release 3

417

K[J’ KONKUK
UNIVERSITY

Evolution and Servicing

« Evolution

— The stage in a software system’s life cycle, where it is in operational use and is evolving as new requirements
are proposed and implemented in the system.

« Servicing
— At this stage, the software remains useful, but the only changes made are those required to keep it operational,
i.e., bug fixes and changes to reflect changes in the software’s environment.

— No new functionality is added.

 Phase-out (retirement)
— The software may still be used but no further changes are made to it.

Software
development

Software |
evolution Software
servicing Software

retirement

Time

‘; KZPD EEEEEEEEE SOFTWARE 4'] 8

KU vy

Evolution Processes

419

KU vy

Evolution Processes

« Software evolution processes depend on

Change |dent|f|cat|on

— The type of software being maintained, process
— The development processes used, and
— The skills and experience of the people involved.
New system Change proposals
» Proposals for change are the driver for system evolution.
— Should be linked with components that are affected by the change
— Should allow the cost and impact of the change to be estimated
Software evolution
process]

« Change identification and evolution continues throughout the system lifetime.

LABORATORY

S DEPENDABLE SOFTWARE 42 O

KU e |
The Software Evolution Process

Proposed Requirements Requirements Software
—> . .
changes analysis updating development

Change Impact Release Change System
requests analysis planning implementation release

l v
Fault repair Platform System
P adaptation enhancement

]}EPENDABLE SOFTWARE 42 1
LABORATORY

KU vy

Urgent Change Requests

« Urgent changes may have to be implemented without going through all stages of the software
engineering process.
— If a serious system fault must be repaired to allow normal operation to continue.
— If changes to the system’s environment (e.g., OS upgrade) have unexpected effects.
— If there are business changes that require a very rapid response (e.g., release of a competing product).

Change Analyze Modify Deliver modified
—>»
requests source code source code system

S DEPENDABLE SOFTWARE 422

LABORATORY

K[J’ KONKUK
UNIVERSITY

Agile Methods and Evolution

« Agile methods are based on incremental development so the transition from development to evolution
is a seamless one.

— Evolution is simply a continuation of the development process based on frequent system releases.

— Automated regression testing is particularly valuable when changes are made to a system.
» Changes may be expressed as additional user stories.

* Under the assumption that the Agile development teams have been maintained.
— Should avoid handover problems

‘; KZPD EEEEEEEEE SOFTWARE 423
) g

Handover Problems

* Where the development team have used an agile approach, but the evolution team is unfamiliar with
agile methods and prefer a plan-based approach.

— The evolution team may expect detailed documentation to support evolution, and this is not produced in agile
processes.

« Where a plan-based approach has been used for development, but the evolution team prefer to use
agile methods.

— The evolution team may have to start from scratch developing automated tests and the code in the system may
not have been refactored and simplified as is expected in agile development.

DEPENDABLE SOFTWARE
LABORATORY

KU vy

Legacy Systems

425

KU
Legacy Systems

 Legacy systems

— Older systems that rely on languages and technology that are no longer used for new systems development.
* May be dependent on older hardware such as mainframe computers

May have associated legacy processes and procedures

Legacy systems are often broader socio-technical systems.

Including hardware, software, libraries and other supporting software and business processes

— Elements of legacy systems:

Embeds

Socio-technical system
knowledge of

Uses .
Support Application | Business policies Business processes
software software y and rules
RUNSs-on son Uses Uses Constrains Application software
v v v Platform and infrastructure software
System Application Business
hardware data processes
Hardware
PENDABLE SOFTWARE

426

KONKUK
UNTVERSITY

S

Components of Legacy Systems

Element

Description

System hardware

Legacy systems may have been written for hardware that is no longer available.

Support software

The legacy system may rely on a range of support software, which may be obsolete or
unsupported.

Application software

The application system that provides the business services is usually made up of a number of
application programs.

Application data

These are data that are processed by the application system. They may be inconsistent,
duplicated or held in different databases.

Business processes

These are processes that are used in the business to achieve some business objective.
Business processes may be designed around a legacy system and constrained by the
functionality that it provides

Business policies and rules

These are definitions of how the business should be carried out and constraints on the business.

Use of the legacy application system may be embedded in these policies and rules.

DEPENDABLE SOFTWARE

Legacy System Replacement and Change

 Legacy system replacement is risky and expensive.
— Because the system is still in use.
— Many reasons

Lack of complete system specification

Tight integration of system and business processes
Undocumented business rules embedded in the legacy system
New software development may be late and/or over budget.

* Legacy system change (modification) iS alsSo expensive.
— Many reasons

LABORATORY

} DEPENDABLE SOFTWARE

No consistent programming style

Use of obsolete programming languages with few people available with these language skills
Inadequate system documentation

System structure degradation

Program optimizations may make them hard to understand

Data errors, duplication and inconsistency

KU vy

428

K[J’ KONKUK
UNIVERSITY

Legacy System Management

« Organizations relying on legacy systems should decide one strategy:
— Scrap the system completely and modify business processes so that it is no longer required, or
— Continue maintaining the system, or
— Transform the system by re-engineering to improve its maintainability, or
— Replace the system with a new system.

« Legacy system assessment
— Assess the system quality and its business value to choose appropriate strategy

- EPENDABLE SOFTWARE 42 9
4 LABORATORY

Legacy System Assessment

Legacy system assessment
— Business value assessment
— System quality assessment

4 categories
— Low quality, low business value
» These systems should be scrapped

— Low-quality, high-business value

* These make an important business
contribution but are expensive to maintain

» Should be re-engineered or replaced
if a suitable system is available

— High-quality, low-business value
* Replace with COTS, scrap completely or maintain
— High-quality, high business value
« Continue in operation using normal system maintenance

() DEPENDABLE SOFTWARE
L LABORATORY

Business value

KU vy

High business value

Low quality High business value

High quality

Low business value
High quality

>

Low business value
Low quality

System quality

430

KU vy

Software Maintenance

431

K[J’ KONKUK
UNIVERSITY

Software Maintenance

» Software maintenance
— Modifying a program after it has been put into use
— Mostly used for changing custom software
* Generic software products are said to evolve to create new versions.
— Changes are implemented by modifying existing components and adding new components to the system.
* Not normally involve major changes to the system’s architecture

1 %‘;EDEPENDABLE SOFTWARE 432
o) LABORATORY

KU tvensry
Types of Maintenance

* Fault repairs
— Changing a system to fix bugs/vulnerabilities and correct deficiencies in the way meets its requirements

 Environmental adaptation
— Maintenance to adapt software to a different operating environment
— Changing a system so that it operates in a different environment (computer, 0s, etc.) from its initial implementation

* Functionality addition and modification
— Modifying the system to satisfy new requirements

Fault repair
(24%)

Environmental
adaptation
(19%)

Functionality addition
or modification
(58%)

() DEPENDABLE SOFTWARE

LABORATORY 4 3 3

KU vy

Maintenance Costs

 Maintenance costs are usually greater than development costs
— 2" 1o 100* depending on the application
— Affected by both technical and non-technical factors

— Increases as software is maintained
« Since maintenance corrupts the software structure so makes further maintenance more difficult.

- Aging software can have high support costs (e.g. old languages, compilers etc.).

--i]:)EPENDABLE SOFTWARE 434
1 y LABORATORY

KU vy

Maintenance Prediction

« Maintenance prediction is concerned with assessing which parts of the system may cause problems
and have high maintenance costs.
— Change acceptance depends on the maintainability of the components affected by the change.
— Implementing changes degrades the system and reduces its maintainability.
— Maintenance costs depend on the number of changes and costs of change depend on maintainability.

What parts of the system

will be the most expensive
What parts of the system are to maintain?

most likely to be affected by
change requests?

Predicting
maintainability

\/ What will be the lifetime

maintenance costs of this

Predicting system | Predicting system?
changes maintenance
costs
What will be the costs of
How many change maintaining this system
requests can be over the next year?
expected?

1 ::]:JEPENDABLE SOFTWARE 4 3 5

LABORATORY

KU vy

Change Prediction

« Change prediction
— Predicting the number of changes requires

— Predicting understanding of the relationships between a system and its environment
+ Tightly coupled systems require changes whenever the environment is changed

* Factors influencing this relationship are
— Number and complexity of system interfaces
— Number of inherently volatile system requirements
— The business processes where the system is used

LABORATORY

S‘ DEPENDABLE SOFTWARE 4 3 6

KU vy

Metrics for Change Prediction

* Process metrics may be used to assess maintainability
If any or all of these is increasing, this may indicate a decline in maintainability.
» Number of requests for corrective maintenance
* Average time required for impact analysis
* Average time taken to implement a change request
* Number of outstanding change requests

« Complexity metrics of system components may be used to assess maintainability.
— Studies have shown that most maintenance effort is spent on a relatively small number of system components.

» Complexity of control structures
» Complexity of data structures
* Object, method (procedure) and module size

437

l DEPENDABLE SOFTWARE
LABORATORY

KU vy

Software Reengineering

* Reengineering: Restructuring or rewriting parts or all of a legacy system without changing its
functionality

— Applicable where some but not all sub-systems of a larger system require frequent maintenance

— Involves adding effort to make them easier to maintain
* The system may be re-structured and re-documented.

— Advantages

* Reduced risk: There is a high risk in new software development. There may be development problems, staffing problems
and specification problems.

* Reduced cost: The cost of re-engineering is often significantly less than the costs of developing new software.

1 ::]:JEPENDABLE SOFTWARE 4 3 8

LABORATORY

The Reengineering Process

Original
program

Y

Source code
translation

Reverse
engineering

EPENDABLE SOFTWARE
LABORATORY

Program
structure
improvement

Program
documentation

Re-engineered Original data
program

Y

Program

modularization

A

Restructured
program

Data
reengineering

Y

Reengineered
data

KU KONKUK
UNIVERSITY

439

KU v
Reengineering Process Activities

« Source code translation
— Convert code to a new language
* Reverse engineering
— Analyze the program to understand it
* Program structure improvement
— Restructure automatically for understandability
* Program modularization
— Reorganize the program structure

* Data reengineering Automated program Program and data
— Clean-up and restructure system data restructuring restructuring
Automated source Automated restructuring Restructuring plus
code conversion with manual changes architectural changes

>

Increased cost

]}EPENDABLE SOFTWARE 440
LABORATORY

KU vy

Refactoring

« Refactoring: The process of making improvements to a program to slow down degradation through

change
— ‘Preventative maintenance’ that reduces the problems of future change.

« Refactoring involves modifying a program to improve its structure, reduce its complexity or make it
easier to understand.
— When you refactor a program, you should not add functionality but rather concentrate on program improvement.

LABORATORY

S DEPENDABLE SOFTWARE 44 ']

KU vy

Refactoring and Reengineering

* Re-engineering takes place after a system has been maintained for some time and maintenance costs
are increasing.

— Use automated tools to process and re-engineer a legacy system to create a new system that is more
maintainable

« Refactoring is a continuous process of improvement throughout the development and evolution process.
— To avoid the structure and code degradation that increases the costs and difficulties of maintaining a system

LABORATORY

S DEPENDABLE SOFTWARE 442

‘Bad smells’ in Program Code

Duplicate code
— The same or very similar code may be included at different places in a program.
— This can be removed and implemented as a single method or function that is called as required.

Long methods
— If amethod is too long, it should be redesigned as a number of shorter methods.

Switch (case) statements
— These often involve duplication, where the switch depends on the type of a value.

— The switch statements may be scattered around a program. In object-oriented languages, you can often use
polymorphism to achieve the same thing.

Data clumping

— Data clumps occur when the same group of data items (fields in classes, parameters in methods) re-occur in several
places in a program.

— These can often be replaced with an object that encapsulates all of the data.

Speculative generality

— This occurs when developers include generality in a program in case it is required in the future. This can often simply
be removed.

DEPENDABLE SOFTWARE 443
LABORATORY

Homework #12

« Clean Code0] CHsll Z=AFSt A4 5% (2x1a71 10032 2 HE|SHM| .

- C I EH static Code Analysis =7 & 8L} 3t £, Homework #70]| A 7’4 St C Program0i| X &5} L.
Me|stM L.
— https://github.com/analysis-tools-dev/static-analysis

- 2N Zuel Ut L2 (Fi/#)S A4 5T (2Xt37] 10 0o|sh 2 2 HE|SHM| K.

[K KONKUK |

]}EPENDABLE SOFTWARE 445
LABORATORY

K[J’ KONKUK
UNIVERSITY

Software Engineering

Software Development Life-Cycle Processes
Project Planning - Plan-driven (Waterfall) vs. Agile (lterative)
- SASD vs. OOAD

]) Requirements Engineering Structured Analysis for RVC
Requirements Analysis - SRS by IEEE Std 830-1998
- Spec. Review Writing an SRS

Architecture Design

Design - AD (Architecture Description) Object-Oriented Analysis for RVC
Detailed Design

- Models with UML Diagrams Object-Oriented Design for RVC
Reuse

- COTS and Open-Source SW

: i . Implementation
Project / Configuration Management

Reviews
Verification & Validation Levels of Testing

- Unit / Component / System / Release / User

Software Maintenance Maintenance
Legacy System
Reengineering, Reverse Engineering, Refactoring

EPENDABLE SOFTWARE 447
LABORATORY

