APPLYING UML
AND PATTERNS

An Introduction to Object-Oriented Analysis
and Design and the Unified Process

Free Book for
Everyone

"Prople ¢lten sik me whikh i the best Book 1o infrodax e them 8¢ the workd o OO design
fver since | carme aceons in. Agpphning UL sed Pastarnz hai been my uneeserved cholce”

—Martin Fewler, authon, Va8 Divilied and Refasroning

CRAIG LARMAN

0F rriueDss X FCIrEes

conceptual
classes in
the
domain
inspire the
names of
some
software
classes in
the design

Sample Unified Process Artifacts and Timing (s-start; r-refine)

Discipline Artifact Incep. Elab. Const. | Trans.
Iteration” 1 EL.En CL.Cn TI1..T2
Business Modeling | Domain Model s
Requirements Use-Case Model s r
Vision a r
Supplementary Specification s r
Glossary s r
Design Design Model SW ss T
Architecture Document Data S
Model
Implementation Implementation Model s r r
Project Managemen |t SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Sample Unified Process Artifact Relationships

Domain Model

/

Sale Captured-on Register ProductCatalog
timeStamp | 1 1
domain concepts /4
/ Use-Case Model
/Q(: System

sale.
3. ..

Process Sale

1. Customer
arrives ...
2. Cashier
makes new

: Cashier

system
events
—

Use Cases

make

I NewSale() I
I enterltem
(id, quantity)) I

System Sequence Diagrams

%

Cashier

Process
Sale

2,

Use Case Diagrams

\

ﬂse-case

interaction
diagrams

realization with\‘

makeNewSale()

Design Model

: ProductCatalog

create()

enterltem(id, quantity)

spec := getSpecification(id)

i
>

Register

addLineltem(spec, quantity)
I

I

ProductCatalog

enterltem(.

makeNewSale()

=)

getSpecification(...) : ProductSpecification

L

the design
classes
discovered
while designing
UCRs can be
summarized in
class diagrams

/

General Responsibility Assignment Software Patterns (GRASI

Pattern Description

Information A general principle of object design and responsibility assignment?

Expert Assign a responsibility to the information expert — the class that has the information necessary
to fulfill the responsibility.

Creator Who creates? (Note that Factory is a common alternate solution.)
Assign class B the responsibility to create an instance of class A if one of these is true: 1.
B contains A 4. B records A
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A

Controller Who handles a system event?
Assign the responsibility for handling a system event message to a class representing one of
these choices: 1. Represents the overall system, device, or a subsystem (facade controller). 2.
Represents a use case scenario within which the system event occurs (use-case or session
controller)

Low Coupling How to support low dependency and increased reuse? Assign

evaluative o . :

() responsibilities so that (unnecessary) coupling remains low.

High How to keep complexity manageable? Assign

Cohesion . . o

. responsibilities so that cohesion remains high.

(evaluative)

Polymorphism | Who is responsible when behavior varies by type?
When related alternatives or behaviors vary by type (class), assign responsibility for the
behavior — using polymorphic operations — to the types for which the behavior varies.

Pure Who is responsible when you are desperate, and do not want to violate high cohesion and low

Fabrication coupling?
Assign a highly cohesive set of responsibilities to an artificial or convenience "behavior"
class that does not represent a problem domain concept — something made up, in order to
support high cohesion, low coupling, and reuse.

Indirection How to assign responsibilities to avoid direct coupling?
Assign the responsibility to an intermediate object to mediate between other components or
services, so that they are not directly coupled.

Protected How to assign responsibilities to objects, subsystems, and systems so that the variations or

Variations instability in these elements do not have an undesirable impact on other elements?

Identify points of predicted variation or instability; assign responsibilities to create a stable
"interface" around them.

TABLE OF CONTENTS

Foreword xv

Preface xvii
PART | INTRODUCTION
1 Object-Oriented Analysis and Design 3
Applying UML and Patterns in OOA/D 3
Assigning Responsibilities 6
What Is Analysis and Design? 6
What Is Object-Oriented Analysis and Design? 7
An Example 7
The UML 10
Further Readings 11
2 Iterative Development and the Unified Process 13
The Most Important UP Idea: Iterative Development 14
Additional UP Best Practices and Concepts 18
The UP Phases and Schedule-Oriented Terms 19
The UP Disciplines (was Workflows) 20
Process Customization and the Development Case 23
The Agile UP 24
The Sequential "Waterfall" Lifecycle 25
You Know You Didn't Understand the UP When... 26
Further Readings 26
3 Case Study: The NextGen POS System 29

The NextGen POS System 29
Architectural Layers and Case Study Emphasis 30
The Book's Strategy: Iterative Learning and Development 31

PART Il INCEPTION

4 Inception 35
Inception: An Analogy 36
Inception May Be Very Brief 36
What Artifacts May Start in Inception? 37
You Know You Didn't Understand Inception When... 38
5 Understanding Requirements 41
Types of Requirements
42 Further Readings 43
6 Use-Case Model: Writing Requirements in Context 45
Goals and Stories 46
Background 46
Use Cases and Adding Value 47
Use Cases and Functional Requirements 48
Use Case Types and Formats 49
Fully Dressed Example: Process Sale 50
Explaining the Sections 54
Coals and Scope of a Use Case 59
Finding Primary Actors, Goals, and Use Cases 63
Congratulations: Use Cases Have Been Written, and Are Imperfect
Write Use Cases in an Essential Ul-Free Style 68

Actors 70
Use Case Diagrams 71
Requirements in Context and Low-Level Feature Lists 73

Use Cases Are Not Object-Oriented 75

67

vii

7

TABLE OF CONTENTS

Use Cases Within the UP 75

Case Study: Use Cases in the NextGen Inception Phase 79
Further Readings 79

UP Artifacts and Process Context 81

Identifying Other Requirements 83

NextGen POS Examples 84

NextGen Example: (Partial) Supplementary Specification 84
Commentary: Supplementary Specification 88
NextGen Example: (Partial) Vision 91
Commentary: Vision 93

NextGen Example: A (Partial) Glossary 98
Commentary: Glossary (Data Dictionary) 99
Reliable Specifications: An Oxymoron? 100
Online Artifacts at the Project Website 101

Not Much UML During Inception? 101

Other Requirement Artifacts Within the UP 101
Further Readings 104

UP Artifacts and Process Context 105

From Inception to Elaboration 107

Checkpoint: What Happened in Inception? 108
On to Elaboration 109
Planning the Next Iteration 110
Iteration 1 Requirements and Emphasis: Fundamental OOA/D Skills
What Artifacts May Start in Elaboration? 118
You Know You Didn't Understand Elaboration When... 114

PART |ll ELABORATION ITERATION 1

9

10

viii

Use-Case Model: Drawing System Sequence Diagrams 117

System Behavior 118

System Sequence Diagrams 118

Example of an SSD 119

Inter-System SSDs 120

SSDs and Use Cases 120

System Events and the System Boundary 120
Naming System Events and Operations 121
Showing Use Case Text 122

SSDs and the Glossary 122

SSDs Within the UP 123

Further Readings 124

UP Artifacts 125

Domain Model: Visualizing Concepts 127

Domain Models 128
Conceptual Class Identification 132

Candidate Conceptual Classes for the Sales Domain 136
Domain Modeling Guidelines 137

Resolving Similar Conceptual Classes—Register vs. "POST" 139

Modeling the Unreal World 140
Specification or Description Conceptual Classes 140

UML Notation, Models, and Methods: Multiple Perspectives 144

Lowering the Representational Gap 146
Example: The NextGen POS Domain Model 148
Domain Models Within the UP 148

Further Readings 150

112

TABLE OF CONTENTS

UP Artifacts 151

Domain Model: Adding Associations 153

Associations 153

The UML Association Notation 154

Finding Associations—Common Associations List 155
Association Guidelines 157

Roles 157

How Detailed Should Associations Be? 159
Naming Associations 160

Multiple Associations Between Two Types 161
Associations and Implementation 161
NextGen POS Domain Model Associations 162
NextGen POS Domain Model 163

Domain Model: Adding Attributes 167

Attributes 167

UML Attribute Notation 168

Valid Attribute Types 168

Non-primitive Data Type Classes 170

Design Creep: No Attributes as Foreign Keys 172
Modeling Attribute Quantities and Units 173
Attributes in the NextGen Domain Model 174
Multiplicity From SalesLineltem to Item 175
Domain Model Conclusion 175

Use-Case Model: Adding Detail with Operation Contracts

Contracts 177

Example Contract: enterltem 178

Contract Sections 179

Postconditions 179

Discussion—enterltem Postconditions 182

Writing Contracts Leads to Domain Model Updates 183

When Are Contracts Useful? Contracts vs. Use Cases? 183

Guidelines: Contracts 184

NextGen POS Example: Contracts 185
Changes to the Domain Model 186
Contracts, Operations, and the UML 186
Operation Contracts Within the UP 188
Further Readings 191

From Requirements to Design in this Iteration 193

Iteratively Do the Right Thing, Do the Thing Right 193
Didn't That Take Weeks To Do? No, Not Exactly. 194 On
to Object Design 194

Interaction Diagram Notation 197

GRASP:

Sequence and Collaboration Diagrams 198 Example
Collaboration Diagram: makePayment 199 Example
Sequence Diagram: makePayment 200 Interaction
Diagrams Are Valuable 200 Common Interaction
Diagram Notation 201 Basic Collaboration Diagram
Notation 202 Basic Sequence Diagram Notation 208
Designing Objects with Responsibilities 215
Responsibilities and Methods 216

Responsibilities and Interaction Diagrams

217 Patterns 218

177

TABLE OF CONT EN Ts

GRASP: Patterns of General Principles in Assigning Responsibilities 219
The UML Class Diagram Notation 220
Information Expert (or Expert) 221
Creator 226
Low Coupling 229
High Cohesion 232
Controller 237
Object Design and CRC Cards 245
Further Readings 246

17 Design Model: Use-Case Realizations with GRASP Patterns 247
Use-Case Realizations 248
Artifact Comments 249

Use-Case Realizations for the NextGen Iteration 2.52
Object Design: makeNewSale 253
Object Design: enter-Item 255
Object Design: endSale 260
Object Design: makePayment 264
Object Design: startUp 269
Connecting the UI Layer to the Domain Layer 273
Use-Case Realizations Within the UP 276
Summary 278

18 Design Model: Determining Visibility 279
Visibility Between Objects 279
Visibility 280
INlustrating Visibility in the UML 284

19 Design Model: Creating Design Class Diagrams 285
When to Create DCDs 285
Example DCD 286
DCD and UP Terminology 286
Domain Model vs. Design Model Classes 287
Creating a NextGen POS BCD 287
Notation for Member Details 296
DCDs, Drawing, and CASE Tools 298
DCDs Within the UP 298
UP Artifacts 299

20 Implementation Model: Mapping Designs to Code 301
Programming and the Development Process 302
Mapping Designs to Code 304
Creating Class Definitions from DCDs 304
Creating Methods from Interaction Diagrams 307
Container/Collection Classes in Code 309
Exceptions and Error Handling 309
Defining the Sale--makeLineltem Method 310
Order of Implementation 311
Test-First Programming 311
Summary of Mapping Designs to Code 313

Introduction to the Program Solution 313
PART |V ELABORATION ITERATION 2
21 Iteration 2 and its Requirements 319

Iteration 2 Emphasis: Object Design and Patterns
319 From Iteration 1 to 2 319 Iteration 2
Requirements 321

TABLE OF CONTENTS

Refinement of Analysis-oriented Artifacts in this Iteration 322

22 GRASP: More Patterns for Assigning Responsibilities 325
Polymorphism 326 Pure
Fabrication 329
Indirection 332
Protected Variations
334

23 Designing Use-Case Realizations with GoF Design Patterns 341

Adapter (GoF) 342

"Analysis" Discoveries During Design: Domain Model 345
Factory (GoF) 346

Singleton (GoF) 348

Conclusion of the External Services with Varying Interfaces Problem

Strategy (GoF) 353
Composite (GoF) and Other Design Principles 358
Facade (GoF) 368

Observer/Publish-Subscribe/Delegation Event Model (GoF) 372

Conclusion 380
Further Readings 380

PART V ELABORATION ITERATION 3

24 Iteration 3 and Its Requirements 383
Iteration 3 Requirements
383 Iteration 3 Emphasis
383
25 Relating Use Cases 385
The include Relationship 386
Terminology: Concrete, Abstract, Base, and Addition Use Cases
The extend Relationship 389
The generalize Relationship 390
Use Case Diagrams 391
26 Modeling Generalization 393
New Concepts for the Domain Model 393
Generalization 396
Defining Conceptual Superclasses and Subclasses 397
‘When to Define a Conceptual Subclass 400
When to Define a Conceptual Superclass 403
NextGen POS Conceptual Class Hierarchies 403
Abstract Conceptual Classes 406
Modeling Changing States 408
Class Hierarchies and Inheritance in Software 409
27 Refining the Domain Model 411
Association Classes 411
Aggregation and Composition 414
Time Intervals and Product Prices—Fixing an Iteration 1 "Error
Association Role Names 419
Roles as Concepts vs. Roles in Associations 420
Derived Elements 421
Qualified Associations 422
Reflexive Associations 423
Ordered Elements 423
Using Packages to Organize the Domain Model 423
28 Adding New SSDs and Contracts 431
New System Sequence Diagrams 431
New System Operations 433
New System Operation Contracts 434

"

388

418

352

Xi

TABLE OF CONTENTS

29 Modeling Behavior in Statechart Diagrams 437
Events, States, and Transitions 437
Statechart Diagrams 438
Statechart Diagrams in the UP? 439
Use Case Statechart Diagrams 439
Use Case Statechart Diagrams for the POS Application 441
Classes that Benefit from Statechart Diagrams 441
Illustrating External and Interval Events 443
Additional Statechart Diagram Notation 444
Further Readings 446
30 Designing the Logical Architecture with Patterns 447
Software Architecture 448 Architectural
Pattern: Layers 450 The Model-View
Separation Principle 471 Further Readings
474
31 Organizing the Design and Implementation Model Packages 475
Package Organization Guidelines 476
More UML Package Notation 482
Further Readings 483
32 Introduction to Architectural Analysis and the SAD 485
Architectural Analysis 486
Types and Views of Architecture 488
The Science: Identification and Analysis of Architectural Factors
488
Example: Partial NextGen POS Architectural Factor Table 491
The Art: Resolution of Architectural Factors 493
Summary of Themes in Architectural Analysis 499
Architectural Analysis within the UP 500
Further Readings 505
33 Designing More Use-Case Realizations with Objects and Patterns
507
Failover to Local Services; Performance with Local Caching 507
Handling Failure 512
Failover to Local Services with a Proxy (GoF) 519 Designing for
Non-Functional or Quality Requirements 523 Accessing External
Physical Devices with Adapters; Buy vs. Build 523 Abstract Factory
(GoF) for Families of Related Objects 525 Handling Payments with
Polymorphism and Do It Myself 528 Conclusion 535
34 Designing a Persistence Framework with Patterns 537
The Problem: Persistent Objects 538
The Solution: A Persistence Service from a Persistence Framework 538
Frameworks 539
Requirements for the Persistence Service and Framework 540
Key Ideas 540
Pattern: Representing Objects as Tables 541
UML Data Modeling Profile 541
Pattern: Object Identifier 542
Accessing a Persistence Service with a Facade 543
Mapping Objects: Database Mapper or Database Broker Pattern 543
Framework Design with the Template Method Pattern 546
Materialization with the Template Method Pattern 546
Configuring Mappers with a MapperFactory 552
Pattern: Cache Management 552
Consolidating and Hiding SQL Statements in One Class 553

Xii

TABLE OF CONTENTS

29 Modeling Behavior in Statechart Diagrams 437
Events, States, and Transitions 437
Statechart Diagrams 438
Statechart Diagrams in the UP? 439
Use Case Statechart Diagrams 439
Use Case Statechart Diagrams for the POS Application 441
Classes that Benefit from Statechart Diagrams 441
Illustrating External and Interval Events 443
Additional Statechart Diagram Notation 444
Further Readings 446
30 Designing the Logical Architecture with Patterns 447
Software Architecture 448 Architectural
Pattern: Layers 450 The Model-View
Separation Principle 471 Further Readings
474
31 Organizing the Design and Implementation Model Packages 475
Package Organization Guidelines 476
More UML Package Notation 482
Further Readings 483
32 Introduction to Architectural Analysis and the SAD 485
Architectural Analysis 486
Types and Views of Architecture 488
The Science: Identification and Analysis of Architectural Factors
488
Example: Partial NextGen POS Architectural Factor Table 491
The Art: Resolution of Architectural Factors 493
Summary of Themes in Architectural Analysis 499
Architectural Analysis within the UP 500
Further Readings 505
33 Designing More Use-Case Realizations with Objects and Patterns
507
Failover to Local Services; Performance with Local Caching 507
Handling Failure 512
Failover to Local Services with a Proxy (GoF) 519 Designing for
Non-Functional or Quality Requirements 523 Accessing External
Physical Devices with Adapters; Buy vs. Build 523 Abstract Factory
(GoF) for Families of Related Objects 525 Handling Payments with
Polymorphism and Do It Myself 528 Conclusion 535
34 Designing a Persistence Framework with Patterns 537
The Problem: Persistent Objects 538
The Solution: A Persistence Service from a Persistence Framework 538
Frameworks 539
Requirements for the Persistence Service and Framework 540
Key Ideas 540
Pattern: Representing Objects as Tables 541
UML Data Modeling Profile 541
Pattern: Object Identifier 542
Accessing a Persistence Service with a Facade 543
Mapping Objects: Database Mapper or Database Broker Pattern 543
Framework Design with the Template Method Pattern 546
Materialization with the Template Method Pattern 546
Configuring Mappers with a MapperFactory 552
Pattern: Cache Management 552
Consolidating and Hiding SQL Statements in One Class 553

Xii

TABLE OF CONTENTS

Transactional States and the State Pattern 554 Designing
a Transaction with the Command Pattern 556 Lazy
Materialization with a Virtual Proxy 559 How to Represent
Relationships in Tables 562 PersistentObject Superclass and
Separation of Concerns 563 Unresolved Issues 564

PART VI SPECIAL TOPICS

35 On Drawing and Tools 567
On Speculative Design and Visual Thinking 567
Suggestions for UML Drawing Within the Development Process 568
Tools and Sample Features 571
Example Two 573
36 Introduction to Iterative Planning and Project Issues 575
Ranking Requirements 576
Ranking Project Risks 579
Adaptive vs. Predictive Planning 579
Phase and Iteration Plans 581
Iteration Plan: What to Do in the Next Iteration? 582
Requirements Tracking Across Iterations 583
The (Invalidity of Early Estimates 585
Organizing Project Artifacts 585
Some Team Iteration Scheduling Issues 586
You Know You Didn't Understand Planning in the UP When... 588
Further Readings 588
37 Comments on Iterative Development and the UP 589
Additional UP Best Practices and Concepts 589
The Construction and Transition Phases 591
Other Interesting Practices 592
Motivations for Timeboxing an Iteration 593
The Sequential "Waterfall" Lifecycle 593
Usability Engineering and User Interface Design 599
The UP Analysis Model 599
The RUP Product 600
The Challenge and Myths of Reuse 601
38 More UML Notation 603
General Notation 603
Implementation Diagrams 604
Template (Parameterized, Generic) Class 606
Activity Diagrams 607
Bibliography 609 Glossary 615 Index 621

xiii

FOREWORD

Programming is fun, but developing quality software is hard. In between the
nice ideas, the requirements or the "vision," and a working software product,
there is much more than programming. Analysis and design, defining how to
solve the problem, what to program, capturing this design in ways that are easy
to communicate, to review, to implement, and to evolve is what lies at the core of
this book. This is what you will learn.

The Unified Modeling Language (UML) has become the universally-accepted
language for software design blueprints. UML is the visual language used to
convey design ideas throughout this book, which emphasizes how developers
really apply frequently used UML elements, rather than obscure features of the
language.

The importance of patterns in crafting complex systems has long been recog-
nized in other disciplines. Software design patterns are what allow us to
describe design fragments, and reuse design ideas, helping developers leverage
the expertise of others. Patterns give a name and form to abstract heuristics,
rules and best practices of object-oriented techniques. No reasonable engineer
wants to start from a blank slate, and this book offers a palette of readily usable
design patterns.

But software design looks a bit dry and mysterious when not presented in the
context of a software engineering process. And on this topic, I am delighted that
for his second edition, Craig Larman has chosen to embrace and introduce the
Unified Process, showing how it can be applied in a relatively simple and
low-ceremony way. By presenting the case study in an iterative, risk-driven,
architecture-centric process, Craig's advice has realistic context; he exposes
the dynamics of what really happens in software development, and shows the
external forces at play. The design activities are connected to other tasks, and
they no longer appear as a purely cerebral activity of systematic transformations
or creative intuition. And Craig and I are convinced of the benefits of iterative
development, which you will see abundantly illustrated throughout.

So for me, this book has the right mix of ingredients. You will learn a systematic
method to do Object-Oriented Analysis and Design (OOA/D) from a great
teacher, a brilliant methodologist, and an "OO guru" who has taught it to thou-
sands around the world. Craig describes the method in the context of the Uni-

XV

XVI

FOREWORD

fled Process. He gradually presents more sophisticated design
patterns—this will make the book very handy when you are faced with
real-world design challenges. And he uses the most widely accepted
notation.

I'm honored to have had the opportunity to work directly with the author
of this major book. I enjoyed reading the first edition, and was delighted
when he asked me to review the draft of his second edition. We met several
times and exchanged many e-mails. [have learned much from Craig, even
about our own process work on the Unified Process and how to improve it
and position it in various organizational contexts. I am certain that you will
learn a lot, too, in reading this book, even if you are already familiar with
OOA/D. And, like me, you will find yourself going back to it, to refresh your
memory, or to gain further insights from Craig's explanations and experience.

In an iterative process, the result of the second iteration improves on the first.
Similarly, the writing matures, I suppose; even if you have the first edition,
you'll enjoy and benefit from the second one.

Happy reading!

Philippe Kruchten
Rational Fellow
Rational Software
Canada Vancouver, BC

Design robust and
maintainable
object systems.

Follow a roadmap
through require-
ments, analysis,
design, and coding.

Use the UML to
illustrate analysis
and design models.

Improve designs by
applying the
"gang-of-four" and
GRASP design
patterns.

Learn efficiently by
following a refined
presentation.

Learn from a
realistic exercise.
Translate to code.

Design a layered
architecture.

PREFACE

Thank you for reading this book! This is a practical introduction to object-ori-
ented analysis and design (OOA/D), and to related aspects of iterative develop-
ment. | am grateful that the first edition was received as a popular introduction
to OOA/D throughout the world, translated into many languages. Therefore,
this second edition builds upon and refines—rather than replaces—the
content in the first. I want to sincerely thank all the readers of the first edition.

Here is how the book will benefit you.

First, the use of object technology has proliferated in the development of soft-
ware, and mastery of OOA/D is critical for you to create robust and maintain-
able object systems.

Second, if you are new to OOA/D, you are understandably challenged about
how to proceed through this complex subject; this book presents a well-defined
roadmap—the Unified Process—so that you can move in a step-by-step process
from requirements to code.

Third, the Unified Modeling Language (UML) has emerged as the standard
notation for modeling; so it is useful for you to be conversant in it. This book
teaches the skills of OOA/D using the UML notation.

Fourth, design patterns communicate the "best practice" idioms and solutions
that object-oriented design experts apply in order to create systems. In this book
you will learn to apply design patterns, including the popular "gang-of-four" pat-
terns, and the GRASP patterns, which communicate fundamental principles of
responsibility assignment in object design. Learning and applying patterns will
accelerate your mastery of analysis and design.

Fifth, the structure and emphasis in this book is based on years of experience in
training and mentoring thousands of people in the art of OOA/D. It reflects that
experience by providing a refined, proven, and efficient approach to learning the
subject so your investment in reading and learning is optimized.

Sixth, it exhaustively examines a single case study—to realistically illustrate

the entire OOA/D process, and goes deeply into thorny details of the problem; it
is a realistic exercise.

Seventh, it shows how to map object design artifacts to code in Java.

Eighth, it explains how to design a layered architecture and relate the graphi-
cal user interface layer to domain and technical services layers.

XVIl

PREFACE

Design a Finally, it shows you how to design an object-oriented framework and applies
framework. this to the creation of a framework for persistent storage in a database.
Objectives

The overarching objective is this:

Help students and developers create object designs through the application of
a set of explainable principles and heuristics.

By studying and applying the information and techniques presented here, you
will become more adept at understanding a problem in terms of its processes
and concepts, and designing a solid solution using objects.

Intended Audience

This book is an introduction to OOA/D, related requirements analysis, and to
iterative development with the Unified Process as a sample process; it is not
meant as an advanced text. It is for the following audience:

+ Developers and students with experience in an object-oriented programming
language, but who are new—or relatively new—to object-oriented
analysis
and design.

« Students in computer science or software engineering courses studying
object technology.

¢ Those with some familiarity in OOA/D who want to learn the UML notation,
apply patterns, or who want to sharpen and deepen their analysis and
design skills.

Prerequisites

Some prerequisite knowledge is assumed—and necessary—to benefit from
this book:

« Knowledge and experience in an object-oriented programming language
such as Java, C#, C++, or Smalltalk.

« Knowledge offundamental object technology concepts, such as
class,
instance, interface, polymorphism, encapsulation, interfaces, and inherit
ance.

Fundamental object technology concepts are not defined.
Java Examples

In general, the book presents code examples in Java or discusses Java imple-
mentations, due to its widespread familiarity. However, the ideas presented are
applicable to most—if not all—object-oriented programming languages.

XVl

Book Organization

PREFACE

The overall strategy in the organization of this book is that analysis and design
topics are introduced in an order similar to that of a software development
project running across an "inception" phase (a Unified Process term) followed by
three iterations (see Figure P.I).

The inception phase chapters introduce the basics of requirements analysis.

Iteration 1 introduces fundamental OOA/D and how to assign responsibili

Iteration 2 focuses on object design, especially on introducing some high-use

Iteration 3 introduces a variety of subjects, such as architectural analysis

L.
2.
ties to objects.
3.
"design patterns."
4.
and framework design.
The Book
Overview Inception Itera11t|on
Object-Oriented Object-Oriented Translating
Analysis Design Designs to Code

Iteration
2

Iteration
3

Special
Topics

Topics such as OO analysis and OO
design are incrementally introduced in

iteration 1, 2, and 3.

Figure P.I. The organization of the book follows that of a development project.

Web-Related Resources

Please see www.craiglarman.com for articles related to object technology,

patterns, and process.

Some instructor resources can be found at www.phptr.com/larman.

Enhancements to the First Edition

While retaining the same core as the first edition, the second is refined in many
ways, including:

Use cases are updated to follow the very popular approach of [CockburnOl].

The well-known Unified Process (UP) is used as the example iterative pro
cess within which to introduce OOA/D. Thus, all artifacts are named accord
ing to UP terms, such as Domain Model.

New requirements in the case study, leading to a third iteration.

XIX

PREFACE

Updated treatment of design patterns.

Introduction to architectural analysis.

Introduction of Protected Variations as a GRASP pattern.

A 50/50 balance between sequence and collaboration diagrams.

The latest UML notation updates.

Discussion of some practical aspects of drawing using whiteboards or UML
CASE tools.

Acknowledgments

First, a very special thanks to my friends and colleagues at Valtech, world-class
object developers and iterative development experts, who in some way contrib-
uted to, supported, or reviewed the book, including Chris Tarr, Michel Ezran,
Tim Snyder, Curtis Hite, Celso Gonzalez, Pascal Roques, Ken DelLong, Brett
Schuchert, Ashley Johnson, Chris Jones, Thomas Liou, Darryl Gebert, Frank
Rodorigo, Jean-Yves Hardy, and many more than I can name.

To Philippe Kruchten for writing the foreword, reviewing, and helping in so
many ways.

To Martin Fowler and Alistair Cockburn for many insightful discussions on pro-
cess and design, quotes, and reviews.

To John Vlissides and Cris Kobryn for the kind quotes.

To Chelsea Systems and John Gray for help with some requirements inspired by
their Java technology ChelseaStore POS system.

To Pete Goad and Dave Astels at TogetherSoft for their support.

Many thanks to the other reviewers, including Steve Adolph, Bruce Anderson,
Len Bass, Gary K. Evans, Al Goerner, Luke Hohmann, Eric Lefebvre, David
Nunn, and Robert J. White.

Thanks to Paul Becker at Prentice-Hall for believing the first edition would be a
worthwhile project, and to Paul Petralia and Patti Guerrieri for shepherding the
second.

Finally, a special thanks to Graham Glass for opening a door.

About the Author

Craig Larman serves as Director of Process for Valtech, an international con-
sulting company with divisions in Europe, Asia, and North America, specializ-
ing in e-business systems development, object technologies, and iterative
development with the Unified Process.

Since the mid 1980s, Craig has helped thousands of developers to apply
object-oriented programming, analysis, and design, and assisted organizations
adopt iterative development practices.

PREFACE

After a failed career as a wandering street musician, he built systems in APL,
PL/I, and CICS in the 1970s. Starting in the early 1980s—after a full
recovery-he became interested in artificial intelligence (having little of his own),
natural language processing, and knowledge representation, and built
knowledge systems with Lisp machines, Lisp, Prolog, and Smalltalk. He plays
bad lead guitar in his part-time band, the Changing Requirements (it used to be
called the Requirements, but some band members changed...).

He holds a B.Sc. and M.Sc. in computer science from Simon Fraser University in
Vancouver, Canada.

Craig can be reached at clarman@acm.org and www.craiglarman.com.

Typographical Conventions

This is a new term in a sentence. This is a Class or method name in a sentence.
This is an author reference [Bob67]. A language independent scope resolution
operator "--" is used to indicate a class and its associated method as follows:

ClassName--methodName.

Production Notes

The manuscript of this book was created with Adobe FrameMaker. All drawings
were done with Microsoft Visio. The body font is New Century Schoolbook. The
final print images were generated as PDF files using Adobe Acrobat Distiller,
from PostScript generated by an AGFA driver.

XXI

PART1 INTRODUCTION

Chapter 1

OBJECT-ORIENTED ANALYSIS AND
DESIGN

The shift of focus (to patterns) will have a profound and
enduring effect on the way we write programs.

—Ward Cunningham and Ralph Johnson

Objectives

* Compare and contrast analysis and design.
* Define object-oriented analysis and design (OOA/D).

* [Illustrate a brief example.

1.1 Applying UML and Patterns in OOA/D

What does it mean to have a good object design? This book is a tool to help devel-
opers and students learn core skills in object-oriented analysis and design
(OOA/D). These skills are essential for the creation of well-designed, robust, and
maintainable software using object technologies and languages such as Java,
C++, Smalltalk, and C#.

The proverb "owning a hammer doesn't make one an architect" is especially true
with respect to object technology. Knowing an object-oriented language (such as
Java) is a necessary but insufficient first step to create object systems. Knowing
how to "think in objects" is also critical.

This is an This is an introduction to OOA/D while applying the Unified Modeling Lan-
introduction guage (UML), patterns, and the Unified Process. It is not meant as an advanced
text; it emphasizes mastery of the fundamentals, such as how to assign respon-
sibilities to objects, frequently used UML notation, and common design pat-

Applying UML

Applying patterns
and assigning
responsibilities

One case study

Use cases and
requirements
analysis

An example
iterative process—
the Unified Process

1 - OBJECT-ORIENTED ANALYSIS AND DESIGN

terns. At the same time, primarily in later chapters, the material progresses to a
few intermediate-level topics, such as framework design.

The book is not just about the UML. The UML is a standard diagramming nota-
tion. As useful as it is to learn notation, there are more critical object-oriented
things to learn; specifically, how to think in objects—how to design object-ori-
ented systems. The UML is not OOA/D or a method, it is simply notation. It is
not so helpful to learn syntactically correct UML diagramming and perhaps a
UML CASE tool, but then not be able to create an excellent design, or evaluate
and improve an existing one. This is the harder and more valuable skill. Conse-
quently, this book is an introduction to object design.

Yet, one needs a language for OOA/D and "software blueprints," both as a tool of
thought and as a form of communication with others. Therefore, this book
explores how to apply the UML in the service of doing OOA/D, and covers fre-
quently used UML notation. But the emphasis is on helping people learn the art
and science of building object systems, rather than notation.

How should responsibilities be allocated to classes of objects? How should
objects interact? What classes should do what? These are critical questions in
the design of a system. Certain tried-and-true solutions to design problems can
be (and have been) expressed as best-practice principles, heuristics, or pat-
terns—named problem-solution formulas that codify exemplary design princi-
ples. This book, by teaching how to apply patterns, supports quicker learning
and skillful use of these fundamental object design idioms.

This introduction to OOA/D is illustrated in a single case study that is fol-
lowed throughout the book, going deep enough into the analysis and design so
that some of the gory details of what must be considered and solved in a realistic
problem are considered, and solved.

OOA/D (and all software design) is strongly related to the prerequisite activity
of requirements analysis, which includes writing use cases. Therefore, the
case study begins with an introduction to these topics, even though they are not
specifically object-oriented.

Given many possible activities from requirements through to implementation,
how should a developer or team proceed? Requirements analysis and OOA/D
needs to be presented in the context of some development process. In this case,
the well-known Unified Process is used as the sample iterative develop-
ment process within which these topics are introduced. However, the analysis
and design topics that are covered are common to many approaches, and learn-
ing them in the context of the Unified Process does not invalidate their applica-
bility to other methods.

APPLYING UML AND PATTERNS INOOA/D

In conclusion, this book helps a student or developer:
* Apply principles and patterns to create better object designs.

* Follow a set of common activities in analysis and design, based on the
Unified Process as an example.

* Create frequently used diagrams in the UML notation.

It illustrates this in the context of a single case study.

OOA/D

Topics and Skills

Principles and
guidelines

Requirements
analysis

Iterative
development with
the Unified
Process

Figure 1.1 Topics and skills covered

Many Other Skills Are Important

Building software involves myriad skills and steps beyond requirements analy-
sis, OOA/D, and object-oriented programming. For example, usability engineer-
ing and user interface design are critical to success; so is database design.

However, this introduction emphasizes OOA/D, and does not attempt to cover all
topics in software development. It is one piece of a larger picture.

1 - OBJECT-ORIENTED ANALYSIS AND DESICN

1.2 Assigning Responsibilities

There are many possible activities and artifacts in introductory OOA/D, and a
wealth of principles and guidelines. Suppose we must choose a single practical
skill from all the topics discussed here—a "desert island" skill. What would it
be?

A critical, fundamental ability in OOA/D is to skillfully assign responsibilities
to software components.

Why? Because it is one activity that must be performed—either while drawing a
UML diagram or programming—and it strongly influences the robustness,
maintainability, and reusability of software components.

Of course, there are other necessary skills in OOA/D, but responsibility assign-
ment is emphasized in this introduction because it tends to be a challenging
skill to master, and yet vitally important. On a real project, a developer might
not have the opportunity to perform any other analysis or design activities—the
"rush to code" development process. Yet even in this situation, assigning respon-
sibilities is inevitable.

Consequently, the design steps in this book emphasize principles of responsibil-
ity assignment.

Nine fundamental principles in object design and responsibility assignment
are presented and applied. They are organized in a learning aid called the
GRASP patterns.

1.3 What Is Analysis and Design?

Analysis emphasizes an investigation of the problem and requirements, rather
than a solution. For example, if a new computerized library information system
is desired, how will it be used?

"Analysis" is a broad term, best qualified, as in requirements analysis (an inves-
tigation of the requirements) or object analysis (an investigation of the domain
objects).

Design emphasizes a conceptual solution that fulfills the requirements, rather
than its implementation. For example, a description of a database schema and
software objects. Ultimately, designs can be implemented.

WHAT Is OBJECT-ORIENTED ANALYSIS AND DESIGN?

As with analysis, the term is best qualified, as in object design or database
design.

Analysis and design have been summarized in the phase do the right thing
(analysis), and do the thing right (design).

1.4 What Is Object-Oriented Analysis and Design?

During object-oriented analysis, there is an emphasis on finding and describ-
ing the objects—or concepts—in the problem domain. For example, in the case
of the library information system, some of the concepts include Book, Library,
and Patron.

During object-oriented design, there is an emphasis on defining software
objects and how they collaborate to fulfill the requirements. For example, in the
library system, a Book software object may have a fitle attribute and a
getChap-ter method (see Figure 1.2).

Finally, during implementation or object-oriented programming, design objects
are implemented, such as a Book class in Java.

domain concept 5

Book . .
> visualization of

title domain concept

public class Book

{
private String title;

representation in an
object-oriented

programming language public Chapter getChapter(int) {...}

}

Figure 1.2 Object-orientation emphasizes representation of objects.

1.5 An Example

Before diving into the details of requirements analysis and

OOA/D, this section presents a birds-eye view of a few key * \
steps and diagrams, using a simple example—a "dice
game" in which a player rolls two die. If the total is seven,
they win; otherwise, they lose.

1 - OBJECT-ORIENTED ANALYSIS AND DESIGN

Define Use Cases

Requirements analysis may include a description of related domain processes;
these can be written as use cases.

Define domain . Deflng Define design
Define use cases interaction .
model . class diagrams
diagrams

Use cases are not an object-oriented artifact—they are simply written stories.
However, they are a popular tool in requirements analysis and are an important
part of the Unified Process. For example, here is a brief version of the Play a
Dice Game use case:

Play a Dice Game: A player picks up and rolls the dice. If the
dice face value total seven, they win; otherwise, they lose.

Define a Domain Model

Object-oriented analysis is concerned with creating a description of the domain
from the perspective of classification by objects. A decomposition of the domain
involves an identification of the concepts, attributes, and associations that are
considered noteworthy. The result can be expressed in a domain model, which
is illustrated in a set of diagrams that show domain concepts or objects.

Define domain . Deflng Define design
Define use cases interaction .
model . class diagrams
diagrams

For example, a partial domain model is shown in Figure 1.3.

Player 1 Rolls 2 Die
name faceValue
1 2
Plays
1
DiceGame 1 Includes

Figure 1.3 Partial domain model of the dice game.

ANEXAMPLE

This model illustrates the noteworthy concepts Player, Die, and DiceGame, with
their associations and attributes.

Note that a domain model is not a description of software objects; it is a visual-
ization of concepts in the real-world domain.

Define Interaction Diagrams

Object-oriented design is concerned with defining software objects and their col-
laborations. A common notation to illustrate these collaborations is the interac-
tion diagram. It shows the flow of messages between software objects, and
thus the invocation of methods.

Define domain . Deflm_a Define design
Define use cases interaction .
model . class diagrams
diagrams

For example, assume that a software implementation of the dice game is
desired. The interaction diagram in Figure 1.4 illustrates the essential step of
playing, by sending messages to instances of the DiceGame and Die classes.

:DiceGame die1 : Die die2 : Die

play() . }

I

!

roll() ;[::‘ }

g \

\

fv1 := getFaceValue ! }
> \

\

\

\

oll) | .
|
|

fv2 ;= getFaceVaI}ue() >

Figure 1.4 Interaction diagram illustrating messages between software objects.

Notice that although in the real world a player rolls the dice, in the software
design the DiceGame object "rolls" the dice (that is, sends messages to Die
objects). Software object designs and programs do take some inspiration from
real-world domains, but they are not direct models or simulations of the real
world.

1 - OBJECT-ORIENTED ANALYSIS AND DESIGN

Define Design Class Diagrams

In addition to a dynamic view of collaborating objects shown in interaction dia-
grams, it is useful to create a static view of the class definitions with a design
class diagram. This illustrates the attributes and methods of the classes.

) Define domain . Defln(_e Define design
Define use cases interaction .
model . class diagrams
diagrams

For example, in the dice game, an inspection of the interaction diagram leads to
the partial design class diagram shown in Figure 1.5. Since a p/ay message is
sent to a DiceGame object, the DiceGame class requires a play method, while
class Die requires a roll and getFaceValue method.

In contrast to the domain model, this diagram does not illustrate real-world con-
cepts; rather, it shows software classes.

DiceGame Die
die1 : Die 1 2 faceValue : int
die2 : Die

getFaceValue() : int
play() roll()

Figure 1.5 Partial design class diagram.

Summary

The dice game is a simple problem, presented to focus on a few steps and arti-
facts in analysis and design. To keep the introduction simple, not all the illus-
trated UML notation was explained. Future chapters explore analysis and
design and these artifacts in closer detail.

1.6 The UML

To quote:

The Unified Modeling Language (UML) is a language for speci-
fying, visualizing, constructing, and documenting the artifacts of
software systems, as well as for business modeling and other
non-software systems [OMGO1].

The UML has emerged as the de facto and de jure standard diagramming nota-
tion for object-oriented modeling. It started as an effort by Grady Booch and Jim
Rumbaugh in 1994 to combine the diagramming notations from their two popu-

10

FURTHER READINGS

lar methods—the Booch and OMT (Object Modeling Technique) methods. They
were later joined by Ivar Jacobson, the creator of the Objectory method, and as a
group came to be known as the three amigos. Many others contributed to the
UML, perhaps most notably Cris Kobryn, a leader in its ongoing refinement.

The UML was adopted in 1997 as a standard by the OMG (Object Management
Group, an industry standards body), and has continued to be refined in new
OMG UML versions.

This book does not cover every minute aspect of the UML, which is a large body
of notation (some say, too large'). It focuses on diagrams which are frequently
used, the most commonly used features within those diagrams, and core nota-
tion that is unlikely to change in future versions of the UML.

Why Won't We See Much UML fora Few Chapters?

This is not just a UML notation book, but one that explores the larger picture of
applying the UML, patterns, and an iterative process in the context of software
development. The UML is primarily applied during OOA/D, which is normally
preceded by requirements analysis. Therefore, the initial chapters present an
introduction to the important topics of use cases and requirements analysis,
which are then followed by chapters on OOA/D and more UML details.

1.7 Further Readings

A very readable and popular summary of essential UML notation is UML Dis-
tilled, by Martin Fowler.

A succinct and popular introduction to the Unified Process (and its refinement
in the Rational Unified Process) is The Rational Unified Process—An Introduc-
tion by Philippe Kruchten.

For a detailed discussion of UML (version 1.3) notation, The Unified Modeling
Language Reference Manual and The Unified Modeling Language User Guide,
by Booch, Jacobson, and Rumbaugh are worthwhile. Note that these texts were
not meant for learning how to do object modeling or OOA/D—they are UML dia-
gram notation references.

For a description of the current version of the UML, the on-line OMG Unified
Modeling Language Specification at www.omg.org is necessary. UML revision
work and soon-to-be released versions can be found at www.celigent.com/uml.

There are many books on software patterns, but the seminal classic is Design
Patterns, by Gamma, Helm, Johnson, and Vlissides. It is truly required reading

1. The UML 2.0 effort includes exploration of the goal of simplifying and reducing the
notation. This book presents high-use UML likely to survive future simplification.

11

12

1 - OBJECT-ORIENTED ANALYSIS AND DESIGN

for those studying object design. However, it is not an introductory text and is
best read after developing comfort with the fundamentals of object design and
programming.

Chapter 2

ITERATIVE DEVELOPMENT AND
THE UNIFIED PROCESS

People are more important than any process.

Good people with a good process will
outperform good people with no process every time.

—Grady Booch

Obijectives

* Provide motivation for the content and order of subsequent chapters.
* Define an iterative and adaptive process.

* Define fundamental concepts in the Unified Process.

Introduction

Iterative development is a skillful approach to software development, and lies at
the heart of how OOA/D is presented in this book. The Unified Process is an
example iterative process for projects using OOA/D, and it shapes the book's
presentation. Consequently, it is useful to read this chapter so that these core
concepts and their influence on the book's structure are clear.

This chapter summarizes a few key ideas; please see Chapter 37 for further dis-
cussion of the UP and iterative process practices.

Informally, a software development process describes an approach to build-
ing, deploying, and possibly maintaining software. The Unified Process
[JBRI9] has emerged as a popular software development process for building
object-oriented systems. In particular, the Rational Unified Process or RUP

13

2.1

14

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

[KruchtenOO], a detailed refinement of the Unified Process, has been widely
adopted.

The Unified Process (UP) combines commonly accepted best practices, such as
an iterative lifecycle and risk-driven development, into a cohesive and well-doc-
umented description. Consequently, it is used in this book as the example pro-
cess within which to introduce OOA/D.

This book starts with an introduction to the UP for two reasons:

1. The UP is an iterative process. Iterative development is a valuable practice
that influences how this book introduces OOA/D, and how it is best prac
ticed.

2. UP practices provide an example structure to talk about how to do—and
how to learn—OOA/D.

This text presents an introduction to the UP, not complete coverage. It
emphasizes common ideas and artifacts related to an introduction to OOA/D
and requirements analysis.

What If | Don't Care About the UP?

The UP is used as an example process within which to explore requirements
analysis and OOA/D, since it is necessary to introduce the subject in the context
of some process, and the UP (or the RUP refinement) is relatively widely used.
Also, the UP presents common activities and best practices. Nevertheless, the
central ideas of this book—such as use cases and design patterns—are indepen-
dent of any particular process, and apply to many.

The Most Important UP ldea: Iterative Development

The UP promotes several best practices, but one stands above the others: itera-
tive development. In this approach, development is organized into a series of
short, fixed-length (for example, four week) mini-projects called iterations; the
outcome of each is a tested, integrated, and executable system. Each iteration
includes its own requirements analysis, design, implementation, and testing
activities.

The iterative lifecycle is based on the successive enlargement and refinement of
a system through multiple iterations, with cyclic feedback and adaptation as
core drivers to converge upon a suitable system. The system grows incremen-
tally over time, iteration by iteration, and thus this approach is also known as
iterative and incremental development (see Figure 2.1).

THE MOST IMPORTANT UP IDEA: ITERATIVE DEVELOPMENT

Early iterative process ideas were known as spiral development and evolution-
ary development [Boehm.88, Gilb88].

| IS
Requirements Requirements Feedback from
L © iteration N leads to

Design . > Design o refinement and

Time adaptation of the

Implementation & > Implementation & requirements and

Test & Integration Test & Integration design in iteration

] & More Design & More Design L N+1.
Final Integration Final Integration

& System Test 6 & System Test
¢
N / o

Y y
'

4 weeks (for examﬁe) o
Iterations are fixed in The system grows
length, or timeboxed. incrementally.

Figure 2.1 Iterative and incremental development.

Example

As an example (not a recipe), in a two-week iteration half-way through a
project, perhaps Monday is spent primarily on distributing and clarifying the
tasks and requirements of the iteration, while one person reverse-engineers
the last iteration's code into UML diagrams (via a CASE tool), and prints
and displays noteworthy diagrams. Tuesday is spent at whiteboards doing
pair design work drawing rough UML diagrams captured on digital cameras,
and writing some pseudocode and design notes. The remaining eight days
are spent on implementation, testing (unit, acceptance, usability, ...), further
design, integration, daily builds, system testing, and stabilization of the par-
tial system. Other activities include demonstrations and evaluations with
stakeholders, and planning for the next iteration.

Notice in this example that there is neither a rush to code, nor a long drawn-out
design step that attempts to perfect all details of the design before program-
ming. A "little" forethought regarding the design with visual modeling using
rough and fast UML drawings is done; perhaps a half or full day by developers
doing design work in pairs.

The result of each iteration is an executable but incomplete system; it is not
ready to deliver into production. The system may not be eligible for production
deployment until after many iterations; for example, 10 or 15 iterations.

15

16

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

The output of an iteration is not an experimental or throw-away prototype, and
iterative development is not prototyping. Rather, the output is a
production-grade subset of the final system.

Although, in general, each iteration tackles new requirements and incremen-
tally extends the system, an iteration may occasionally revisit existing software
and improve it; for example, one iteration may focus on improving the perfor-
mance of a subsystem, rather than extending it with new features.

Embracing Change: Feedback and Adaptation

The subtitle of one book that discusses iterative development is Embrace
Change [BeckOO)]. This phrase is evocative of a key attitude of iterative develop-
ment: Rather than fighting the inevitable change that occurs in software devel-
opment by trying (usually unsuccessfully) to fully and correctly specify, freeze,
and "sign off" on a frozen requirement set and design before implementation,
iterative development is based on an attitude of embracing change and adapta-
tion as unavoidable and indeed essential drivers.

This is not to say that iterative development and the UP encourages an uncon-
trolled and reactive "feature creep'-driven process. Subsequent chapters explore
how the UP balances the need—on the one hand—to agree upon and stabilize a
set of requirements, with—on the other hand—the reality of changing require-
ments, as stakeholders clarify their vision or the marketplace changes.

Each iteration involves choosing a small subset of the requirements, and quickly
designing, implementing, and testing. In early iterations the choice of require-
ments and design may not be exactly what is ultimately desired. But the act of
swiftly taking a small step, before all requirements are finalized, or the entire
design is speculatively defined, leads to rapid feedback—feedback from the
users, developers, and tests (such as load and usability tests).

This early feedback is worth its weight in gold; rather than speculating on the
correct requirements or design, the feedback from realistic building and testing
something provides crucial practical insight and an opportunity to modify or
adapt understanding of the requirements or design. End-users have a chance to
quickly see a partial system and say, "Yes, that's what I asked for, but now that I
try it, what I really want is something slightly different."' This "yes...but" pro-
cess is not a sign of failure; rather, early and frequent structured cycles of
"yes...buts" are a skillful way to make progress and discover what is of real value
to the stakeholders. Yet, as mentioned, this is not an endorsement of chaotic and
reactive development in which developers continually change direction—a mid-
dle way is possible.

In addition to requirements clarification, activities such as load testing will
prove if the partial design and implementation are on the right path, or if in the

1. Or more likely, "You didn't understand what I wanted!"

THE MOST IMPORTANT UP IDEA: ITERATIVE DEVELOPMENT

next iteration, a change in the core architecture is required. Better to resolve
and prove the risky and critical design decisions early rather than late—and
iterative development provides the mechanism for this.

Consequently, work proceeds through a series of structured
build-feedback-adapt cycles. Not surprisingly, in early iterations the deviation
from the "true path" of the system (in terms of its final requirements and design)
will be larger than in later iterations. Over time, the system converges towards
this path, as illustrated in Figure 2.2.

Early iterations are farther from the "true
path" of the system. Via feedback and
adaptation, the system converges towards
the most appropriate requirements and
design.

In late iterations, a significant change in
requirements is rare, but can occur. Such
late changes may give an organization a
competitive business advantage.

AP R

-

one iteration of design,
implement, integrate, and test

Figure 2.2 Iterative feedback and adaptation leads towards the desired system.
The requirements and design instability lowers over time.

Benefits of Iterative Development

Benefits of iterative development include:

e early rather than late mitigation of high risks (technical, requirements,
objectives, usability, and so forth)

e carly visible progress

« early feedback, user engagement, and adaptation, leading to a refined sys
tem that more closely meets the real needs of the stakeholders

* managed complexity; the team is not overwhelmed by "analysis paralysis" or
very long and complex steps

¢ the learning within an iteration can be methodically used to improve the
development process itself, iteration by iteration

2.2

18

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

Iteration Length and Timeboxing

The UP (and experienced iterative developers) recommends an iteration length
between two and six weeks. Small steps, rapid feedback, and adaptation are
central ideas in iterative development; long iterations subvert the core motiva-
tion for iterative development and increase project risk. Much less than two
weeks, and it is difficult to complete sufficient work to get meaningful through-
put and feedback; much more than six or eight weeks, and the complexity
becomes rather overwhelming, and feedback is delayed. A very long iteration
misses the point of iterative development. Short is good.

A key idea is that iterations are timeboxed, or fixed in length. For example, if
the next iteration is chosen to be four weeks long, then the partial system should
be integrated, tested, and stabilized by the scheduled date—date slippage is dis-
couraged. If it seems that it will be difficult to meet the deadline, the recom-
mended response is to remove tasks or requirements from the iteration, and
include them in a future iteration, rather than slip the completion date. Chapter
37 summarizes reasons for timeboxing.

Massive teams (for example, several hundred developers) may require longer
than six-week iterations to compensate for the overhead of coordination and
communication; but no more than three to six months is recommended. For
example, the successful replacement in the 1990s of the Canadian air traffic
control system was developed with an iterative lifecycle and other UP practices.
It involved 150 programmers and was organized into six-month iterations.” But
note that even in the case of an overall six-month project iteration, a subsystem
team of 10 or 20 developers can break down their work into a series of six
one-month iterations.

A six-month iteration is the exception for massive teams, not the rule. To reiter-
ate, the UP recommends that normally an iteration should be between two and
six weeks in duration.

Additional UP Best Practices and Concepts

The central idea to appreciate and practice in the UP is short timeboxed itera-
tive, adaptive development.

Another implicit, but core, UP idea is the use of object technologies, including
OOA/D and object-oriented programming.

2. Philippe Kruchten, who also led the development of the RUP, served as chief architect
for the project.

THE UP PHASES AND SCHEDULE-ORIENTED TERMS

Some additional best practices and key concepts in the UP include:

» tackle high-risk and high-value issues in early iterations

* continuously engage users for evaluation, feedback, and requirements
* build a cohesive, core architecture in early iterations

« continuously verify quality; test early, often, and realistically

* apply use cases

* model software visually (with the UML)

« carefully manage requirements

* practice change request and configuration management

See Chapter 37 for a more detailed description of these practices.

2.3 The UP Phases and Schedule-Oriented Terms

A UP project organizes the work and iterations across four major phases:
1. Inception— approximate vision, business case, scope, vague estimates.

2. Elaboration—refined vision, iterative implementation of the core architec
ture, resolution of high risks, identification of most requirements and scope,
more realistic estimates.

3. Construction—iterative implementation of the remaining lower risk and
easier elements, and preparation for deployment.

4. Transition—beta tests, deployment.
These phases are more fully defined in subsequent chapters.

This is not the old "waterfall" or sequential lifecycle of first defining all the
requirements, and then doing all or most of the design.

Inception is not a requirements phase; rather, it is a kind of feasibility phase,
where just enough investigation is done to support a decision to continue or
stop.

Similarly, elaboration is not the requirements or design phase; rather, it is a
phase where the core architecture is iteratively implemented, and high risk
issues are mitigated.

Figure 2.3 illustrates common schedule-oriented terms in the UP. Notice that
one development cycle (which ends in the release of a system into production) is
composed of many iterations.

19

2.4

20

Figure 2.3 Schedule-oriented terms in the UP.

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

development cycle
A

iteration phase

/\ A

inc. elaporation construction transition
milestone release increment final production
release
An iteration end- A stable executable ~ The difference
point when some subset of the final (delta) between the At this point, the
significant decision ~ product. The end of ~ releases of 2 system is released
or evaluation each iteration is a subsequent for production use.
occeurs. minor release. iterations.

The UP Disciplines (was Workflows)

The UP describes work activities, such as writing a use case, within disciplines
(originally called workflows).? Informally, a discipline is a set of activities (and
related artifacts) in one subject area, such as the activities within requirements
analysis. In the UP, an artifact is the general term for any work product: code,
Web graphics, database schema, text documents, diagrams, models, and so on.

There are several disciplines in the UP; this book focuses on some artifacts in
the following three:

Business Modeling—When developing a single application, this includes
domain object modeling. When engaged in large-scale business analysis or
business process reengineering, this includes dynamic modeling of the busi

ness processes across the entire enterprise.

Requirements—Requirements analysis for an application, such as writing
use cases and identifying non-functional requirements.

Design—All aspects of design, including the overall architecture, objects,

databases, networking, and the like.

3.In 2001, the old UP term "workflow" was replaced by the new term "discipline" in
order to harmonize with an international standardization effort called the OMG
SPEM; because of its prior meaning in the UP, many continue to use the term work-
flow to mean discipline, although this is not strictly correct. The term "workflow" took
on a new but slightly different meaning within the UP: On a particular project, it is a
particular sequence of activities (perhaps across disciplines)—a flow of work.

THE UP DISCIPLINES (WAS WORKFLOWS)

A longer list of UP disciplines is shown in Figure 2.4.

A four-week iteration (for example).
A mini-project that includes work in most Note that
disciplines, ending in a stable executable. although an
iteration includes

work in most
S?mple_ ‘ ‘ disciplines, the
UP Disciplines relative effort and
emphasis change
Business Modeling = oveF; time ?
Focus — O .
of this Requirements E—— This example is
book _ _— I e suggestive, not
Design] — literal.
Implementation =
Test —
Deployment —
Configuration & Change o —
Management
e I

Project Management

Environment

Iterations

Figure 2.4 UP disciplines.”

In the UP, Implementation means programming and building the system, not
deployment. The Environment discipline refers to establishing the tools and
customizing the process for the project—that is, setting up the tool and process
environment.

Disciplines and Phases

As illustrated in Figure 2.4, during one iteration work goes on in most or all dis-
ciplines. However, the relative effort across these disciplines changes over time.
Early iterations naturally tend to apply greater relative emphasis to require-
ments and design, and later ones less so, as the requirements and core design
stabilize through a process of feedback and adaptasion.

Relating this to the UP phases (inception, elaboration, ...), Figure 2.5 illustrates
the changing relative effort with respect to the phases; please note these are
suggestive, not literal. In elaboration, for example, the iterations tend to have a

4. Diagram adapted from the RUP product.

22

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

relatively high level of requirements and design work, although definitely some
implementation as well. During construction, the emphasis is heavier on imple-
mentation and lighter on requirements analysis.

Sample
UP Disciplines

Business
Modeling

Requirements
Design

Implementation

incep- . . transi-
°P" glaboration construction .
tion tion
The relative effort in
S disciplines shifts
L T~ across the phases.
- T T e e N S N This example is
[N — suggestive, not literal.
L .

//// \\

Figure 2.5 Disciplines and phases

Book Structure and UP Phases and Disciplines

With respect to the phases and disciplines, what is the focus of the case study?
Answer:

The case study emphasizes the inception and elaboration phase. It focuses
on some artifacts in the Business Modeling, Requirements, and Design disci-
plines, as this is where requirements analysis, OOA/D, patterns, and the
UML are primarily applied.

The earlier chapters introduce activities in inception; later chapters explore sev-
eral iterations in elaboration. The following list and Figure 2.6 describe the
organization with respect to the UP phases.

L.
2.

The inception phase chapters introduce the basics of requirements analysis.

Iteration 1 introduces fundamental OOA/D and how to assign responsibili
ties to objects.

Iteration 2 focuses on object design, especially on introducing some high-use
"design patterns."

Iteration 3 introduces a variety of subjects, such as architectural analysis
and framework design.

PROCESS CUSTOMIZATION AND THE DEVELOPMENT CASE

The Book

Elaboratio Elaboratio Elaboratio .
. . Special
Overview Inception n n n Topics
Iteration 1 Iteration 2 lteration P
[]
°

Topics such as OO analysis and OO
design are incrementally introduced in
iteration 1, 2, and 3.

Object-Oriented Object-Oriented Translating
Analysis Design Designs to Code

Figure 2.6 Book organization is related to the UP phases and iterations.

Process Customization and the Development Case

Optional Artifacts

Some UP practices and principles are invariant, such as iterative and
risk-driven development, and continuous verification of quality.

However, a key insight into the UP is that all activities and artifacts (models,
diagrams, documents, ...) are optional—well, maybe not the code! The set of pos-
sible artifacts described in the UP should be viewed like a set of medicines in a
pharmacy. Just as one does not indiscriminately take many medicines, but
matches the choice to the ailment, likewise on a UP project, a team should select
a small subset of artifacts that address its particular problems and needs. In
general, focus on a small set of artifacts that demonstrate high practical value.

The Development Case

The choice of UP artifacts for a project may be written up in a short document
called the Development Case (an artifact in the Environment discipline). For
example, Table 2.1 could be the Development Case describing the artifacts for
the "NextGen Project" case study explored in this book.

Subsequent chapters describe the creation of some of these artifacts, including
the Domain Model, Use-Case Model, and Design Model.

The example artifacts presented in this case study are by no means sufficient
for, or suitable for, all projects. For example, a machine control system may ben-
efit from doing many state diagrams. A Web-based e-commerce system may
require a focus on user interface prototypes. A "green-field" new development

23

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

project has very different design artifact needs than a systems integration
project.

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration-* 11 El. .En | CL.Cn T1.T2
Business Modeling |Domain Model]
Requirements Use-Case Model s
Vision s r
Supplementary Specification s r
Glossary s r
Design Design Model s r
SW Architecture Document s
Data Model s r
Implementation Implementation Model s r r
Project Management |SW Development Plan s r r r
Testing Test Model] r
Environment Development Case s r

Table 2.1 Sample Development Case of UP artifacts, s - start; r - refine

2.6 The Agile UP

24

Methodologists speak of processes as heavy vs. light, and predictive vs. adaptive.
A heavy process is a pejorative term meant to suggest one with the following
qualities [FowlerOO]:

* many artifacts created in a bureaucratic atmosphere
* rigidity and control

» claborate, long-term, detailed planning

» predictive rather than adaptive

A predictive process is one that attempts to plan and predict the activities
and resource (people) allocations in detail over a relatively long time span, such
as the majority of a project. Predictive processes usually have a "waterfall" or
sequential lifecycle—first, defining all the requirements; second, defining a
detailed design; and third, implementing. In contrast, an adaptive process is
one that accepts change as an inevitable driver and encourages flexible adapta-
tion; they usually have an iterative lifecycle. An agile process implies a light
and adaptive process, nimble in response to changing needs.

The UP was not meant by its authors to be either heavy or predictive, although
its large optional set of activities and artifacts have understandably led to that

THE SEQUENTIAL "WATERFALL" LIFECYCLE

impression in some. Rather, it was meant to be adopted and applied in the spirit
of an agile process—agile UP. Some examples of how this applies:

* Prefer a small set of UP activities and artifacts. Some projects will benefit
from more than others, but, in general, keep it simple.

* Since the UP is iterative, requirements and designs are not completed
before implementation. They adaptively emerge through a series of itera
tions, based on feedback.

* There isn't a detailed plan for the entire project. There is a high level plan
(called the Phase Plan) that estimates the project end date and other major
milestones, but it does not detail the fine-grained steps to those milestones.
A detailed plan (called the Iteration Plan) only plans with greater detail
one iteration in advance. Detailed planning is done adaptively from itera
tion to iteration. Please see Chapter 36 for some comments on planning iter
ative projects, and the justification for this approach.

The case study emphasizes a relatively small number of artifacts, and iterative
development, in the spirit of an agile UP.

2.7 The Sequential "Waterfall" Lifecycle

In contrast to the iterative lifecycle of the UP, an old alternative was the sequen-
tial, linear, or "waterfall" lifecycle [RoyceTO]. In common usage, it defined steps
similar to the following:

1. Clarify, record, and commit to a set of complete and frozen requirements.
2. Design a system based on these requirements.
3. Implement, based on the design.

A two year study reported in the MIT Sloan Management Review of successful
software projects identified four common factors for success; iterative develop-
ment, rather than a waterfall process, was first on the list [MacCormackO!!.s"

A brief description of its problems, and how they are mitigated by iterative
development, is presented in Chapter 37.

5. The others were: 2) at least daily incorporation of new code into a complete system
build, and rapid feedback on design changes (via testing); 3) a team experienced in
shipping multiple products; and 4) an early focus on building and proving a cohesive
architecture. Three of these four factors are explicit practices in the UP.

25

2.8

29

26

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

You Know You Didn't Understand the UP When...

Here are some signs that indicate when you have not understood what it means
to adopt the UP and iterative development in the agile spirit intended by the

UP.

You think that inception = requirements, elaboration = design, and con
struction = implementation (that is, superimposing a waterfall lifecycle on
to the UP).

You think that the purpose of elaboration is to fully and carefully define
models, which are translated into code during construction.

You try to define most of the requirements before starting design or imple
mentation.

You try to define most of the design before starting implementation; you try
to fully define and commit to an architecture before iterative programming
and testing.

A "long time" is spent doing requirements or design work before program
ming starts.

You believe that a suitable iteration length is four months long, rather than
four weeks long (excluding projects with hundreds of developers).

You think UML diagramming and design activities are a time to fully and
accurately define designs and models in great detail, and of programming as
a simple mechanical translation of these into code.

You think that adopting the UP means to do many of the possible activities
and create many documents, and thinks of or experiences the UP as a for
mal, fussy process with many steps to be followed.

You try to plan a project in detail from start to finish; you try to specula-
tively predict all the iterations, and what should happen in each one.

You want believable plans and estimates for projects before the elaboration
phase is finished.

Further Readings

A very readable introduction to the UP and its refinement in the RUP is The
Rational Unified Process—An Introduction by Philippe Kruchten, the lead
architect of the RUP.

A description of the original UP can be found in 7The Unified Software Develop-
ment Process by Jacobson, Booch, and Rumbaugh. It is worth study, but
Kruchten's introduction is recommended first, as it is smaller and more suc-
cinct, and the RUP updates and refines the original UP.

FURTHER READINGS

Rational Software sells the online Web-based RUP documentation product,
which provides comprehensive reading on RUP artifacts and activities, and tem-
plates for most artifacts. See Chapter 37 for a brief discussion. An organization
can run a UP project just using mentors and books as learning resources, but
some find the RUP product a useful learning and process aid.

UP activities are also loosely described in a series of books edited by Ambler and
Constantine (for example, The Unified Process: Elaboration Phase [AmblerOQO])).
These books contain reprints of articles published over the years in Software
Development magazine, categorized into their respective phase and activity in
terms of a UP taxonomy. Note that the articles were not originally written for
the UP, although they definitely contain useful advice. Also note one slight error
in the series: They describe the UP elaboration phase as a phase in which
throw-away prototypes are created, thus reducing the need for attention to care
in the programming or design. This is not accurate; production-quality (albeit
partial) designs and code are created during elaboration. Ambler recognizes the
inaccuracy and may correct it in a subsequent edition.’

For other agile methods, the Extreme Programming (XP) series of books
IBeckOO, BFOO, JAHOO] are recommended, such as Extreme Programming
Explained. Some XP practices are mentioned in later chapters. Most XP prac-
tices (such as test-first programming and iterative development) are compati-
ble—or identical—with UP practices, and I encourage their adoption on a UP
project. Note that the XP did not (nor did it claim too) invent short timeboxed
iterative and adaptive development, which has been a practice in the UP and
other iterative methods for years. Two noteworthy differences—this is not a
complete list—between the UP and XP are: 1) The UP recommends incremen-
tally writing use cases and a non-functional requirements document (XP does
not); and, 2) The UP recommends more visual design diagramming (such as a
half-day or day) near the start of an iteration, before major programming. The
XP leaders recommend very little, such as 30 minutes.

Highsmith provides justification for the value of adaptive development in Adap-
tive Software Development [HighsmithOO].

6. Ambler, private communication.

27

Chapter 3

CASE STUDY: THE NEXTGEN
POS SYSTEM

Few things are harder to put up with than a good example.

—Mark Twain

Introduction

This chapter briefly describes the case study. If you understand the problem
domain, it may be skipped. Indeed, this problem was chosen because it is familiar,
but rich with interesting design and architectural problems, and thus allows one
to concentrate on how to do analysis and design, rather than explain the
problem and domain.

3.1 The NextGen POS System

The case study is the NextGen point-of-sale (POS) system. In this apparently
straightforward problem domain, we shall see that there are very interesting
requirement and design problems to solve. In addition, it is a realistic problem;
organizations really do write POS systems using object technologies.

A POS system is a computerized application used
(in part) to record sales and handle payments; it is
typically used in a retail store. It includes hardware
components such as a computer and bar code scanner, }
and software to run the system. It interfaces to
various service applications, such as a third-party
tax calculator and inventory control. These systems
must be relatively fault-tolerant; that is, even if
remote services are temporarily unavailable (such as
the inventory system), they must still be capable

29

3.2

30

3 - CASE STUDY: THENEXTGEN POS SYSTEM

of capturing sales and handling at least cash payments (so that the business is
not crippled).

A POS system increasingly must support multiple and varied client-side termi-
nals and interfaces. These include a thin-client Web browser terminal, a regular
personal computer with something like a Java Swing graphical user interface,
touch screen input, wireless PDAs, and so forth.

Furthermore, we are creating a commercial POS system that we will sell to dif-
ferent clients with disparate needs in terms of business rule processing. Each
client will desire a unique set of logic to execute at certain predictable points in
scenarios of using the system, such as when a new sale is initiated or when a
new line item is added. Therefore, we will need a mechanism to provide this
flexibility and customization.

Using an iterative development strategy, we are going to proceed through
requirements, object-oriented analysis, design, and implementation.

Architectural Layers and Case Study Emphasis

A typical object-oriented information system is designed in terms of several
architectural layers or subsystems (see Figure 3.1). The following is not a com-
plete list, but provides an example:

» User Interface—graphical interface; windows.

« Application Logic and Domain Objects—software objects representing
domain concepts (for example, a software class named Sale) that fulfill
application requirements.

* Technical Services—general purpose objects and subsystems that provide
supporting technical services, such as interfacing with a database or error
logging. These services are usually application-independent and reusable
across several systems.

OOA/D is generally most relevant for modeling the application logic and tech-
nical service layers.

The NextGen case study primarily emphasizes the problem domain objects, allo-
cating responsibilities to them to fulfill the requirements of the application.
Object-oriented design is also applied to create a technical service subsystem for
interfacing with a database.

In this design approach, the Ul layer has very little responsibility; it is said to
be thin. Windows do not contain code that performs application logic or process-
ing. Rather, task requests are forwarded on to other layers.

THE BOOK'S STRATEGY: ITERATIVE LEARNING AND DEVELOPMENT

[The FODO Siowe (=)
temip |
Cueandity
Interface
Emler i And soon ...
_
application b .
logic and Sale Payment)
domain object _
layer RS ////
technical]
services layer Log PersistenceFacade

minor focus

explore how to connect to
other layers

primary focus of
case study

explore how to
design objects

secondary
focus

explore how
to design
objects

Figure 3.1 Sample layers and objects in an object-oriented system, and the case

study focus.

3.3 The Book's Strategy: Iterative Learning and

Development

This book is organized to follow an iterative development strategy. OOA/D is
applied to the NextGen POS system in multiple iterations; the first iteration is
for some core functions. Later iterations expand the functionality of the system
(see Figure 3.2). In conjunction with iterative development, the presentation of
analysis and design topics, UML notation, and patterns are introduced
itera-tively and incrementally. In the first iteration, a core set of analysis and
design topics and notation is presented. The second iteration expands into new
ideas, UML notation, and patterns. And likewise in the third iteration.

Introduces just those
analysis and design

skills related to
iteration one.

Additional analysis and

design skills introduced.

Likewise.

Figure 3.2 Learning path follows iterations.

31

PARTZ2 INCEPTION

Chapter 4

INCEPTION

Le mieux est I'ennemi du bien (The best is the enemy of the good).

—Voltaire

Objectives

» Define the inception step.

* Motivate the following chapters in this section.

Introduction

This chapter defines the inception phase of a project. If process ideas are not
your priority, or you prefer to first focus on learning the main practical activity
in this phase—use case modeling—then this chapter can be skipped.

Most projects require a short initial step in which the following kinds of ques-
tions are explored:

* What is the vision and business case for this project?

* Feasible?

* Buy and/or build?

* Rough estimate of cost: Is it $10K-100K or in the millions?
* Should we proceed or stop?

Defining the vision and obtaining an order-of-magnitude (unreliable) estimate
necessitates doing some requirements exploration. However, the purpose of the
inception step is not to define all the requirements, or generate a believable esti-
mate or project plan. At the risk of over-simplification, the idea is to do just
enough investigation to form a rational, justifiable opinion of the overall pur-
pose and feasibility of the potential new system, and decide if it is worthwhile to
invest in deeper exploration (the purpose of the elaboration phase).

35

4.1

4.2

4 - INCEPTION

Thus, the inception phase should be relatively short for most projects, such as
one or a few weeks long. Indeed, on many projects, if it is more than a week long,
then the point of inception has been missed: It is to decide if the project is worth
a serious investigation (during elaboration), not to do that investigation.

Inception in one sentence:
Envision the product scope, vision, and business case.
The main problem solved in one sentence:

Do the stakeholders have basic agreement on the vision of
the project, and is it worth investing in serious investigation?

Inception: An Analogy

In the oil business, when a new field is being considered, some of the steps
include:

1. Decide if there is enough evidence or a business case to even justify explor
atory drilling.

2. Ifso, do measurements and exploratory drilling.
3. Provide scope and estimate information.
4. Further steps...

The inception phase is like step one in this analogy. In step one people do not
predict how much oil there is, or the cost or effort to extract it. It is premature—
there is insufficient information. Although it would be nice to be able to answer
"how much" and "when" questions without the cost and effort of the exploration,
in the oil business it is understood to not be realistic.

In UP terms, the realistic exploration step is the elaboration phase. The preced-
ing inception phase is akin to a feasibility study to decide if it is even worth
investing in exploratory drilling. Only after exploration (elaboration) do we have
the data and insight to make somewhat believable estimates and plans. There-
fore, in iterative development and the UP, plans and estimates are not to be con-
sidered reliable in the inception phase. They merely provide an
order-of-magnitude sense of the level of effort, to aid the decision to continue or
not.

Inception May Be Very Brief

The intent of inception is to establish some initial common vision for the objec-
tives of the project, determine if it is feasible, and decide if it is worth some seri-

WHAT ARTIFACTS MAY START IN INCEPTION?

ous investigation in elaboration. If it has been decided beforehand that the
project will definitely be done, and it is clearly feasible (perhaps because the
team has done projects like this before), then the inception phase will be espe-
cially brief. It may include the first requirements workshop, planning for the
first iteration, and then quickly moving forward to elaboration.

What Artifacts May Start in Inception?

Table 4.1 lists common inception (or early elaboration) artifacts and indicates
the issues they address. Subsequent chapters will examine some of these in
greater detail, especially the Use-Case Model. A key insight regarding iterative
development is to appreciate that these are only partially completed in this
phase, will be refined in later iterations, and should not even be created unless
it is deemed likely they will add real practical value. And since it is inception,
the investigation and artifact content should be light.

For example, the Use-Case Model (to be described in following chapters) may list
the names of most of the expected use cases and actors, but perhaps only
describe 10% of the use cases in detail—done in the service of developing a
rough high-level vision of the system scope, purpose, and risks.

Note that some programming work may occur in inception in order to create
"proof of concept" prototypes, to clarify a few requirements via (typically)
Ul-ori-ented prototypes, and to do programming experiments for key "show
stopper" technical questions.

Artifact' Comment

Vision and Business Case

Describes the high-level goals and constraints, the business
case, and provides an executive summary.

Use-Case Model

Describes the functional requirements, and related non-func-
tional requirements.

Supplementary Specification

Describes other requirements.

Glossary

Key domain terminology.

Risk List & Risk Management
Plan

Describes the business, technical, resource, schedule risks, and
ideas for their mitigation or response.

Prototypes and proof-of-concepts

To clarify the vision, and validate technical ideas.

Iteration Plan

Describes what to do in the first elaboration iteration.

37

4 - INCEPTION

Artifact

Comment

ment Plan

Phase Plan & Software Develop- |Low-precision guess for elaboration phase duration and effort.

Tools, people, education, and other resources.

Development Case

A description of the customized UP steps and artifacts for this
project. In the UP, one always customizes it for the project.

Table 4.1 Sample inception artifacts.

t-These artifacts are only partially completed in this phase. They will be
itera-tively refined in subsequent iterations. Name capitalization implies it is an
officially named UP artifact.

Isn't That a Lot of Documentation?

Recall that artifacts should be considered optional. Choose to create only those
that really add value for the project, and drop them if their worth is not proved.

The point of an artifact is not the document or diagram itself, but the thinking,
analysis, and proactive readiness (and then its recording, to avoid re-invention
or having to repeat things verbally). As General Eisenhower said, "In preparing
for battle I have always found that plans are useless, but planning indispens-
able" [Nixon90, BFOO].

Record artifacts digitally and online—available on the project's website—rather
than on paper.

Note also that UP artifacts from previous projects can be reused on later ones. It
is common for there to be many similarities in risk, project management, testing,
and environment artifacts across projects. All UP projects will (or should)
organize artifacts the same way, with the same names (Risk List, Development
Case, and so on). This simplifies finding reusable artifacts from prior projects on
new UP engagements.

4.4 You Know You Didn't Understand Inception When...

38

* It is more than "a few" weeks long for most projects.
e There is an attempt to define most of the requirements.
+ Estimates or plans are expected to be reliable.

* You define the architecture; rather, this should be done iteratively in
elaboration.

You KNOW You DIDN'T UNDERSTAND INCEPTION WHEN...

You believe that the proper sequence of work should be: 1) define
the
requirements; 2) design the architecture; 3) implement.

There is no Business Case or Vision artifact.
The names of most of the use cases and actors were not identified.
All the use cases were written in detail.

None of the use cases were written in detail; rather, 10-20% should be writ
ten in detail to obtain some realistic insight into the scope of the problem.

39

Chapter 5

UNDERSTANDING
REQUIREMENTS

Fast, Cheap, Good: Choose any two.

—anonymous

Objectives
e Define the FURPS+ model.

» Relate types of requirements to UP artifacts.

Introduction

Not all requirements are created equal. This chapter introduces the FURPS+
requirements categories.

Requirements are capabilities and conditions to which the system—and more
broadly, the project—must conform [JBR99]. A prime challenge of requirements
work is to find, communicate, and remember (that usually means record) what
is really needed, in a form that clearly speaks to the client and development
team members.

The UP promotes a set of best practices, one of which is manage requirements.
This does not refer to the waterfall attitude of attempting to fully define and sta-
bilize the requirements in the first phase of a project, but rather—in the context
of inevitably changing and unclear stakeholder's wishes—"a systematic
approach to finding, documenting, organizing, and tracking the changing
requirements of a system" [RUP]; in short, doing it skillfully and not being
sloppy. Note the word changing', the UP embraces change in requirements as a
fundamental driver on projects. Finding is another important term; that is,

41

5.1

42

5 - UNDERSTANDING REQUIREMENTS

skillful elicitation via techniques such as use case writing and requirements
workshops.

As indicated in Figure 5.1, one study of factors on challenged projects revealed
that 37% of factors related to problems with requirements, making require-
ments issues the largest single contributor to problems [Standish94]. Conse-
quently, masterful requirements management is important. The waterfall
response to this data would be to try harder to polish, stabilize, and freeze the
requirements before any design or implementation, but history shows this to be
a losing battle. The iterative response is to use a process that embraces change
and feedback as core drivers in discovering requirements.

Prinre 15er inpiet
13%

e
IMCUmplele reguirgriernils
12%
Other
Z0% -
\\“\
7 Changng requirements
1 12%
> 4
RN ! A
e i Moot technical skills
S I 7%
Poor staffing
5%

Figure 5.1 Factors on challenged software projects.

Types of Requirements

In the UP, requirements are categorized according to the FURPS+
model [Grady92], a useful mnemonic with the following meaning:'

* Functional—features, capabilities, security.
* Usability—human factors, help, documentation.

* Reliability—frequency of failure, recoverability, predictability.

1. There are several systems of requirements categorization and quality attributes pub-
lished in books and by standards organizations, such as ISO 9126 (which is similar to
the FURPS+ list), and several from the Software Engineering Institute (SE1); any can
be used on a UP project.

FURTHER READINGS

* Performance—response times, throughput, accuracy, availability, resource
usage.

* Supportability—adaptability, maintainability, internationalization,
con
figurability.

The "+" in FURPS+ indicates ancillary and sub-factors, such as:

* Implementation—resource limitations, languages and tools, hardware, ...
* Interface—constraints imposed by interfacing with external systems.

* Operations—system management in its operational setting.

« Packaging

* Legal—licensing and so forth.

It is helpful to use FURPS+ categories (or some categorization scheme) as a
checklist for requirements coverage, to reduce the risk of not considering some
important facet of the system.

Some of these requirements are collectively called the quality attributes,
quality requirements, or the "-ilities" of a system. These include usability,
reliability, performance, and supportability. In common usage, requirements are
categorized as functional (behavioral) or non-functional (everything else);
some dislike this broad generalization [BCK98], but it is very widely used.

Functional requirements are explored and recorded in the Use-Case Model, the
subject of the next chapter, and in the system features list of the Vision artifact.
Other requirements can be recorded in the use cases they relate to, or in the
Supplementary Specifications artifact. The Vision artifact summarizes
high-level requirements that are elaborated in these other documents. The
Glossary records and clarifies terms used in the requirements. The Glossary in
the UP also encompasses the concept of the data dictionary, which records
requirements related to data, such as validation rules, acceptable values, and so
forth. Prototypes are a mechanism to clarify what is wanted or possible.

As we shall see when exploring architectural analysis, the quality requirements
have a strong influence on the architecture of a system. For example, a high-per-
formance, high-reliability requirement will influence the choice of software and
hardware components, and their configuration. The need for easy adaptability
due to frequent changes in the functional requirements would likewise funda-
mentally shape the design of the software.

5.2 Further Readings

References related to requirements with use cases are covered in a subsequent
chapter. Use-case-oriented requirements texts, such as Writing Effective Use
Cases [CockburnOl] are the recommended starting point in requirements study,
rather than more general (and usually, traditional) requirements texts.

43

44

5 - UNDERSTANDING REQUIREMENTS

There is a broad effort to discuss requirements—and a wide variety of software
engineering topics—under the umbrella of the Software Engineering Body of
Knowledge (SWEBOK), available at www.swebok.org.

The SEI (www.sei.cmu.edu) has several proposals related to quality require-
ments. The ISO 9126, IEEE Std 830, and IEEE Std 1061 are standards related
to requirements and quality attributes, and available on the Web at various
sites.

Some cautions regarding general requirements books, even those that purport

to cover use cases, iterative development, or indeed even requirements in the
UP:

1. Most are written with a waterfall bias of significant or "thorough" up-front
requirements definition before moving on to design and implementation.
This is not meant to invalidate their broader value or often deep and useful
method-independent requirements insights, but to clarify that they do not
represent an accurate view of iterative development. This is because the
authors may have a primary background in waterfall projects, working to
refine, carefully and thoroughly define, and finalize the requirements before
continuing to design. Those books that also mention iterative development
may do so superficially, perhaps with "iterative" material added to appeal to
modern trends. Thus, requirements books and articles should be read with
alertness; one could be lulled into the idea of trying to carefully define all
the requirements in the initial phase, which is not consistent with an itera
tive process.

2. Many general requirements books that also purport to include use cases do
so superficially, or misunderstand what use-case driven requirements really
means. This may be because the authors' primary background is in tradi
tional requirements methods, and there has been an attempt to recently
append use cases to their prior method, without appreciating that a central
idea of use cases as envisioned by Ivar Jacobson and the Ul' is to make use
cases the heart-and-center overarching requirements approach—replacing
other requirements documents as the central element; use cases suffuse and
drive the requirements work, rather than being some minor or medium-
level adjunct technique appended to traditional requirements documents or
approaches.

In summary, general requirements books offer useful advice on techniques and
issues of requirements gathering, written by skilled practitioners, but often
present the advice in a waterfall process context, and without great insight into
the deeper implications of use cases. Any variant of process advice implying "try
to define most of the requirements, and then move forward to design and imple-
mentation" is not consistent with iterative development and the UP.

Chapter 6

USE-CASE MODEL: WRITING
REQUIREMENTS IN CONTEXT

The indispensable first step to getting the things
you want out of life: decide what you want.

—Ben Stein

Objectives

* Identify and write use cases.
* Relate use cases to user goals and elementary business processes.
» Use the brief, casual, and fully dressed formats, in an essential style.

* Relate use case work to iterative development.

Introduction

This chapter is worth studying during a first read of the book because use cases
are a widely used mechanism to discover and record requirements (especially
functional); they influence many aspects of a project, including OOA/D. It is
worth both knowing about and creating use cases.

Writing use cases—stories of using a system—is an excellent technique to
understand and describe requirements. This chapter explores key use case con-
cepts and presents sample use cases for the NextGen application.

The UP defines the Use-Case Model within the Requirements discipline.
Essentially, this is the set of all use cases; it is a model of the system's function-
ality and environment.

45

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

6.1 Goals and Stories

Customers and end users have goals (also known as needs in the UP) and want
computer systems to help meet them, ranging from recording sales to estimat-
ing the flow of oil from future wells. There are several ways to capture these
goals and system requirements; the better ones are simple and familiar because
this makes it easier—especially for customers and end users—to contribute to
their definition or evaluation. That lowers the risk of missing the mark.

Use cases are a mechanism to help keep it simple and understandable for all
stakeholders. Informally, they are stories of using a system to meet goals. Here
is an example brief format use case:

Process Sale: A customer arrives at a checkout with items to
purchase. The cashier uses the POS system to record each pur-
chased item. The system presents a running total and line-item
details. The customer enters payment information, which the
system validates and records. The system updates inventory.
The customer receives a receipt from the system and then leaves
with the items.

Use cases often need to be more elaborate than this, but the essence is discover-
ing and recording functional requirements by writing stories of using a system
to help fulfill various stakeholder goals; that is, cases of use. It isn't supposed to
be a difficult idea, although it may indeed be difficult to discover or decide what
is needed, and write it coherently at a useful level of detail.

Much has been written about use cases, and while worthwhile, there is always
the risk among creative, thoughtful people to obscure a simple idea with layers
of sophistication. It is usually possible to spot a novice use-case modeler (or a
serious Type A analyst) by an over-concern with secondary issues such as use
case diagrams, use case relationships, use case packages, optional attributes,
and so forth, rather than writing the stories. That said, a strength of the use
case mechanism is the capacity to scale both up and down in terms of sophistica-
tion and formality, depending on need.

6.2 Background

The idea of use cases to describe functional requirements was introduced in
1986 by Ivar Jacobson [Jacobson92], a main contributor to the UML and UP.
Jacobson's use case idea was seminal and widely appreciated; simplicity and

1. The original term in Swedish literally translates as "usage case."

46

USE CASES AND ADDING VALUE

utility being its chief virtues. Although many have made contributions to the
subject, arguably the most influential, comprehensive, and coherent next step in
defining what use cases are (or should be) and how to write them came from
Alistair Cockburn, summarized in the very popular text Writing Effective Use
Cases [CockburnOl], based on his earlier work and writings stemming from
1992 onwards. This introduction is therefore based upon and consistent with the
latter work.

6.3 Use Cases and Adding Value

First, some informal definitions: an actor is something with behavior, such as a
person (identified by role), computer system, or organization; for example, a
cashier.

A scenario is a specific sequence of actions and interactions between actors and
the system under discussion; it is also called a use case instance. It is one par-
ticular story of using a system, or one path through the use case; for example,
the scenario of successfully purchasing items with cash, or the scenario of failing
to purchase items because of a credit card transaction denial.

Informally then, a use case is a collection of related success and failure scenar-
ios that describe actors using a system to support a goal. For example, here is a
casual format use case that includes some alternate scenarios:

Handle Returns

Main Success Scenario: A customer arrives at a checkout with
items to return. The cashier uses the POS system to record each
returned item ...

Alternate Scenarios:

If the credit authorization is reject, inform the customer and ask
for an alternate payment method.

If the item identifier is not found in the system, notify the Cash-
ier and suggest manual entry of the identifier code (perhaps it is
corrupted).

If the system detects failure to communicate with the external
tax calculator system, ...

An alternate, but similar definition of a use case is provided by the RUP:

A set of use-case instances, where each instance is a sequence of
actions a system performs that yields an observable result of
value to a particular actor [RUP].

47

6.4

48

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

The phrasing "an observable result of value” is subtle but important, because it
stresses the attitude that the system behavior should emphasize providing
value to the user.

A key attitude in use case work is to focus on the question "How can using the
system provide observable value to the user, or fulfill their goals?", rather
than merely thinking of system requirements in terms of a "laundry list" of
features or functions.

Perhaps it seems obvious to stress providing observable user value, but the soft-
ware industry is littered with failed projects that did not deliver what people
really needed. The feature and function list approach to capturing requirements
can contribute to that negative outcome because it does not encourage the stake-
holders to consider the requirements in a larger context of using the system in a
scenario to achieve some observable result of value, or some goal. In contrast,
use cases place features and functions in a goal-oriented context. Hence the
chapter title.”

This is a key idea that Jacobson was trying to convey in the use case concept: Do
requirements work with a focus on how a system can add value and fulfill goals.

Use Cases and Functional Requirements

Use cases are requirements; primarily they are functional requirements that
indicate what the system will do. In terms of the FURPS+ requirements types,
they emphasize the "F" (functional or behavioral), but can also be used for other
types, especially when those other types strongly relate to a use case. In the
UP—and most modern methods—use cases are the central mechanism that is
recommended for their discovery and definition. Use cases define a promise or
contract of how a system will behave.

To be clear: Use cases are requirements (although not all requirements). Some
think of requirements only as "the system shall do..." function or feature lists.
Not so, and a key idea of use cases is to (usually) reduce the importance or use of
detailed older-style feature lists and rather, write use cases for the functional
requirements. More on this point in a later section.

Use cases are text documents, not diagrams, and use-case modeling is primarily
an act of writing text, not drawing. However, the UML defines a use case dia-
gram to illustrate the names of use cases and actors, and their relationships.

2. Originally from the aptly titled Uses Cases: Requirements in Context |GKOO] (chapter
title adapted with permission of the authors).

USE CASE TYPES AND FORMATS

6.5 Use Case Types and Formats

Black-Box Use Cases and System Responsibilities

Black-box use cases are the most common and recommended kind; they do not
describe the internal workings of the system, its components, or design. Rather,
the system is described as having responsibilities, which is a common unifying
metaphorical theme in object-oriented thinking—software elements have
responsibilities and collaborate with other elements that have responsibilities.

By defining system responsibilities with black-box use cases, it is possible to
specify what the system must do (the functional requirements) without deciding
how it will do it (the design). Indeed, the definition of "analysis" versus "design"
is sometimes summarized as "what" versus "how." This is an important theme in
good software development: During requirements analysis avoid making "how"
decisions, and specify the external behavior for the system, as a black box. Later,
during design, create a solution that meets the specification.

Black-box style Not

The system records the sale. The system writes the sale to a data-
base. ...or (even worse):
The system generates a SQL INSERT
statement for the sale...

Formality Types

Use cases are written in different formats, depending on need. In addition to the
black-box versus white-box visibility type, use cases are written in varying
degrees of formality:

e brief—terse one-paragraph summary, usually of the main success scenario.
The prior Process Sale example was brief.

¢ casual—informal paragraph format. Multiple paragraphs that cover vari
ous scenarios. The prior Handle Returns example was casual.

¢ fully dressed—the most elaborate. All steps and variations are written in
detail, and there are supporting sections, such as preconditions and success
guarantees.

The following example is a fully dressed case for our NextGen case study.

49

6.6

50

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Fully Dressed Example: Process Sale

Fully dressed use cases show more detail and are structured; they are useful in
order to obtain a deep understanding of the goals, tasks, and requirements. In
the NextGen POS case study, they would be created during one of the early
requirements workshops in a collaboration of the system analyst, subject matter
experts, and developers.

The usecases.org Format

Various format templates re available for fully dressed use cases. However, per-
haps the most widely used and shared format is the template available at
www.usecases.org. The following example illustrates this style.

Please note that this is the book's primary case study example of a detailed use
case; it shows many common elements and issues.

Use Case UC1: Process Sale

Primary Actor: Cashier

Stakeholders and Interests:

- Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short
ages are deducted from his/her salary.

- Salesperson: Wants sales commissions updated.

- Customer: Wants purchase and fast service with minimal effort. Wants proof of pur
chase to support returns.

- Company: Wants to accurately record transactions and satisfy customer interests.
Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

- Government Tax Agencies: Want to collect tax from every sale. May be multiple agen
cies, such as national, state, and county.

- Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Payment authorization approvals are recorded.

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

FULLY DRESSED EXAMPLE: PROCESS SALE

. System presents total with taxes calculated.

. Cashier tells Customer the total, and asks for payment.

. Customer pays and System handles payment.

. System logs completed sale and sends sale and payment information to the external
Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.

10.Customer leaves with receipt and goods (if any).

0o ~NOoO O

Extensions (or Alternative Flows):
*a. At any time, System fails:

To support recovery and correct accounting, ensure all transaction sensitive state

and events can be recovered from any step of the scenario.
1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.
2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean
state.
2. Cashier starts a new sale.

3a. Invalid identifier:

1. System signals error and rejects entry. 3b. There are multiple of same item
category and tracking unique item identity not

important (e.g., 5 packages of veggie-burgers):

1. Cashier can enter item category identifier and the quantity.
3-6a: Customer asks Cashier to remove an item from the purchase:

1. Cashier enters item identifier for removal from sale.

2. System displays updated running total.
3-6b. Customer tells Cashier to cancel sale:

1. Cashier cancels sale on System.
3-6¢. Cashier suspends the sale:

1. System records sale so that it is available for retrieval on any POS terminal. 4a.
The system generated item price is not wanted (e.g., Customer complained about

something and is offered a lower price):

1. Cashier enters override price.

2. System presents new price.

5a. System detects failure to communicate with external tax calculation system service:

1. System restarts the service on the POS node, and continues. 1a. System
detects that the service does not restart.
1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.
5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.
5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.
6a. Customer says they intended to pay by cash but don't have enough cash:
1a. Customer uses an alternate payment method.
1b. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

51

52

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

7a. Paying by cash:

1. Cashier enters the cash amount tendered.

2. System presents the balance due, and releases the cash drawer.

3. Cashier deposits cash tendered and returns balance in cash to Customer.

4. System records the cash payment.

7b. Paying by credit:

1. Customer enters their credit account information.

2. System sends payment authorization request to an external Payment Authoriza
tion Service System, and requests payment approval.
2a. System detects failure to collaborate with external system:

1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

3. System receives payment approval and signals approval to Cashier.
3a. System receives payment denial:

1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.

4. System records the credit payment, which includes the payment approval.

5. System presents credit payment signature input mechanism.

6. Cashier asks Customer for a credit payment signature. Customer enters signa
ture.

7c. Paying by check...
7d. Paying by debit...
7e. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier. 9a.
There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a

rebate.
9b. Customer requests gift receipt (no prices visible): 1.
Cashier requests gift receipt and System presents it.

Special Requirements:

- Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.
Credit authorization response within 30 seconds 90% of the time.

Somehow, we want robust recovery when access to remote services such the inven
tory system is failing.

Language internationalization on the text displayed.

Pluggable business rules to be insertable at steps 3 and 7.

Technology and Data Variations List:

3a. Item identifier entered by bar code laser scanner (if bar code is present) or key-
board.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.

7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt. But within two years, we pre-
dict many customers will want digital signature capture.

FULLY DRESSED EXAMPLE: PROCESS SALE

Frequency of Occurrence: Could be nearly continuous.

Open Issues:
- What are the tax law variations?

- Explore the remote service recovery issue.

- What customization is needed for different businesses?
- Must a cashier take their cash drawer when they log out?
- Can the customer directly use the card reader, or does the cashier have to do it?

This use case is illustrative rather than exhaustive (although it is based on a
real POS system's requirements). Nevertheless, there is enough detail and com-
plexity here to offer a realistic sense that a fully-dressed use case can record
many requirement details. This example will serve well as a model for many use

case problems.

The Two-Column Variation

Some prefer the two-column or conversational format, which emphasizes the
fact that there is an interaction going on between the actors and the system. It
was first proposed by Rebecca Wirfs-Brock in [Wirfs-Brock93], and is also pro-
moted by Constantine and Lockwood to aid usability analysis and engineering
[CL99]. Here is the same content using the two-column format:

Use Case UC1: Process Sale

Primary Actor: ...
... as before ...

Main Success Scenario:

Actor Action (or Intention)

1. Customer arrives at a POS checkout
with goods and/or services to
purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

Cashier repeats steps 3-4 until indi-

cates done.

6. Cashier tells Customer the total, and
asks for payment.

7. Customer pays.

System Responsibility

4. Records each sale line item and pre
sents item description and running
total.

5. System presents total with taxes
calculated.

8. Handles payment.

53

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

9. Logs the completed sale and sends
information to the external account-
ing (for all accounting and commis-
sions) and inventory systems (to
update inventory). System presents
receipt.

The Best Format?

There isn't one best format; some prefer the one-column style, some the two-col-
umn. Sections may be added and removed; heading names may change. None of
this is particularly important; the key thing is to write the details of the main
success scenario and its extensions, in some form. [Cockburnl] summarizes
many usable formats.

Personal Practice

This is my practice, not a recommendation. For some years, I used the
two-column format because of its clear visual separation in the conversation.
However, I have reverted to a one-column style as it is more compact and
easier to format, and the slight value of the visually separated conversation
does not for me outweigh these benefits. I find it still simple to visually iden-
tify the different parties in the conversation (Customer, System, ...) if each
party and the System responses are usually allocated to their own steps.

6.7 Explaining the Sections

Preface Elements

Many optional preface elements are possible. Only place elements at the start
which are important to read before the main success scenario. Move extrancous
"header" material to the end of the use case.

| Primary Actor: The principal actor that calls upon system services to fulfill a goal.

Important: Stakeholders and Interests List

This list is more important and practical than may appear at first glance. It sug-
gests and bounds what the system must do. To quote:

54

EXPLAINING THE SECTIONS

The [system] operates a contract between stakeholders, with the
use cases detailing the behavioral parts of that contract...The
use case, as the contract for behavior, captures all and only the
behaviors related to satisfying the stakeholders' interests
[CockburnOl].

This answers the question: What should be in the use case? The answer is: That
which satisfies all the stakeholders' interests. In addition, by starting with the
stakeholders and their interests before writing the remainder of the use case,
we have a method to remind us what the more detailed responsibilities of the
system should be. For example, would I have identified a responsibility for sales-
person commission handling if I had not first listed the salesperson stakeholder
and their interests? Hopefully eventually, but perhaps I would have missed it
during the first analysis session. The stakeholder interest viewpoint provides a
thorough and methodical procedure for discovering and recording all the
required behaviors.

Stakeholders and Interests:

- Cashier: Wants accurate, fast entry and no payment errors, as cash drawer shortages
are deducted from his/her salary.

- Salesperson: Wants sales commissions updated.

Preconditions and Success Guarantees (Postconditions)

Preconditions state what must always be true before beginning a scenario in
the use case. Preconditions are not tested within the use case; rather, they are
conditions that are assumed to be true. Typically, a precondition implies a sce-
nario of another use case that has successfully completed, such as logging in, or
the more general "cashier is identified and authenticated." Note that there are
conditions that must be true, but are not of practical value to write, such as "the
system has power." Preconditions communicate noteworthy assumptions that
the use case writer thinks readers should be alerted to.

Success guarantees (or postconditions) state what must be true on success-
ful completion of the use case—either the main success scenario or some alter-
nate path. The guarantee should meet the needs of all stakeholders.

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Main Success Scenario and Steps (or Basic Flow)

This has also been called the "happy path" scenario, or the more prosaic "Basic
Flow." It describes the typical success path that satisfies the interests of the

55

56

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

stakeholders. Note that it often does nof include any conditions or branching.
Although not wrong or illegal, it is arguably more comprehensible and extend-ible
to be very consistent and defer all conditional handling to the Extensions section.

Suggestion

Defer all conditional and branching statements to the Extensions section.

The scenario records the steps, of which there are three kinds:
1. An interaction between actors.’
2. A validation (usually by the system).

3. A state change by the system (for example, recording or modifying
something).

Step one of a use case does not always fall into this classification, but indicates
the trigger event that starts the scenario.

It is a common idiom to always capitalize the actors' names for ease of identification.
Observe also the idiom that is used to indicate repetition.

Main Success Scenario:

1. Customer arrives at a POS checkout with items to purchase.
2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. ..

Casbhier repeats steps 3-4 until indicates done.

5. ..

Extensions (or Alternate Flows)

Extensions are very important. They indicate all the other scenarios or
branches, both success and failure. Observe in the fully dressed example that
the Extensions section was considerably longer and more complex than the
Main Success Scenario section; this is common and to be expected. They are also
known as "Alternative Flows."

In thorough use case writing, the combination of the happy path and extension
scenarios should satisfy "nearly" all the interests of the stakeholders. This point is
qualified, because some interests may best be captured as non-functional

3. Note that the system under discussion itself should be considered an actor when it plays
an actor role collaborating with other systems.

EXPLAINING THE SECTIONS

requirements expressed in the Supplementary Specification rather than the use
cases.

Extension scenarios are branches from the main success scenario, and so can be
notated with respect to it. For example, at Step 3 of the main success scenario
there may be an invalid item identifier, either because it was incorrectly entered
or unknown to the system. An extension is labeled "3a"; it first identifies the
condition and then the response. Alternate extensions at Step 3 are labeled "3b"
and so forth.

Extensions:

3a. Invalid identifier:
1. System signals error and rejects entry.

3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers): 1. Cashier can enter item
category identifier and the quantity.

An extension has two parts: the condition and the handling.

Guideline: Write the condition as something that can be defected by the system
or an actor. To contrast:

5a. System detects failure to communicate with external tax calculation system service:
5a. External tax calculation system not working:
The former style is preferred because this is something the system can detect;
the latter is an inference.

Extension handling can be summarized in one step, or include a sequence, as in
this example, which also illustrates notation to indicate that a condition can
arise within a range of steps:

3-6a: Customer asks Cashier to remove an item from the purchase:
1. Cashier enters the item identifier for removal from the sale.
2. System displays updated running total.

At the end of extension handling, by default the scenario merges back with the
main success scenario, unless the extension indicates otherwise (such as by
halting the system).

Sometimes, a particular extension point is quite complex, as in the "paying by
credit" extension. This can be a motivation to express the extension as a sepa-
rate use case.

This extension example also demonstrates the notation to express failures
within extensions.

57

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

7b. Paying by credit:
1. Customer enters their credit account information.
2. System requests payment validation from external Payment Authorization Ser
vice System.

2a. System detects failure to collaborate with external system:
1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

If it is desirable to describe an extension condition as possible during any (or at
least most) steps, the labels *a, *b, ..., can be used.

*a. At any time, System crashes:
In order to support recovery and correct accounting, ensure all transaction sensitive
state and events can be recovered at any step in the scenario.
1. Cashier restarts the System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.

Special Requirements

If a non-functional requirement, quality attribute, or constraint relates specifi-
cally to a use case, record it with the use case. These include qualities such as
performance, reliability, and usability, and design constraints (often in I/O
devices) that have been mandated or considered likely.

Special Requirements:

- Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.
- Credit authorization response within 30 seconds 90% of the time.

- Language internationalization on the text displayed.

- Pluggable business rules to be insertable at steps 2 and 6.

Recording these with the use case is classic UP advice, and a reasonable location
when first writing the use case. However, many practitioners find it useful to
ultimately consolidate all non-functional requirements in the Supplementary
Specification, for content management, comprehension, and readability, because
these requirements usually have to be considered as a whole during architec-
tural analysis.

Technology and Data Variations List

Often there are technical variations in Zow something must be done, but not
what, and it is noteworthy to record this in the use case. A common example is a

GOALS AND SCOPE OF A USE CASE

technical constraint imposed by a stakeholder regarding input or output tech-
nologies. For example, a stakeholder might say, "The POS system must support
credit account input using a card reader and the keyboard." Note that these are
examples of early design decisions or constraints; in general, it is skillful to
avoid premature design decisions, but sometimes they are obvious or unavoid-
able, especially concerning input/output technologies.

It is also necessary to understand variations in data schemes, such as using
UPCs or EANSs for item identifiers, encoded in bar code symbology.

This list is the place to record such variations. It is also useful to record varia-
tions in the data that may be captured at a particular step.

Technology and Data Variations List:

3a. Item identifier entered by laser scanner or keyboard.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.

7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt. But within two years, we predict
many customers will want digital signature capture.

Suggestion

This section should not contain multiple steps to express varying behavior
for different cases. If that is necessary, say it in the Extensions section.

6.8 Goals and Scope of a Use Case

How should use cases be discovered? It is common to be unsure if something is a
valid (or more practically, a useful) use case. Tasks can be grouped at many lev-
els of granularity, from one or a few small steps, up to enterprise-level activities.

At what level and scope should use cases be expressed?

The following sections examine the simple ideas of elementary business pro-
cesses and goals as a framework for identifying the use cases for an application.

Use Cases for Elementary Business Processes

‘Which of these is a valid use case?
* Negotiate a Supplier Contract
e« Handle Returns

* Logln

59

60

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

An argument can be made that all of these are use cases at different levels,
depending on the system boundary, actors, and goals. Evaluation of these candi-
dates is presented after an introduction to elementary business processes.

Rather than asking in general, "What is a valid use case?", a more relevant
question for the POS case study is: What is a useful level to
express use cases for application requirements analysis?

Guideline: The EBP Use Case

For requirements analysis for a computer application, focus on use cases at
the level of elementary business processes (EBPs).

EBP is a term from the business process engineering field,* defined as:

A task performed by one person in one place at one time, in
response to a business event, which adds measurable business
value and leaves the data in a consistent state. e.g., Approve
Credit or Price Order [original source lost].

This can be taken too literally: Does a use case fail as an EBP if two people are
required, or if a person has to walk around? Probably not, but the feel of the def-
inition is about right. It's not a single small step like "delete a line item" or
"print the document." Rather, the main success scenario is probably five or ten
steps. It doesn't take days and multiple sessions, like "negotiate a supplier con-
tract;" it is a task done during a single session. It is probably between a few min-
utes and an hour in length. As with the UP's definition, it emphasizes adding
observable or measurable business value, and it comes to a resolution in which
the system and data are in a stable and consistent state.

A common use case mistake is defining many use cases at too low a level; that is,
as a single step, subfunction, or subtask within an EBP.

Reasonable Violations of the EBP Guideline

Although the "base" use cases for an application should satisfy the EBP guide-
line, it is frequently useful to create separate "sub" use cases representing
sub-tasks or steps within a base use case. Use cases can exist that fail the EBP
test; many potentially exist at a lower level. The guideline is only used to find the
dominant level of use cases in requirements analysis for an application; that is,
the level to focus on for naming and writing them.

4. EBP is similar to the term user task in usability engineering, although the meaning
is less strict in that domain.

GOALS AND SCOPE OF A USE CASE

For example, a subtask or extension such as "paying by credit" may be repeated
in several base use cases. It is desirable to separate this into its own use case
(that does not satisfy the EBP guideline) and link it to several base use cases, to
avoid duplication of the text.

Chapter 25 explores the issue of use case relationships.

Use Cases and Goals

Actors have goals (or needs) and use applications to help satisfy them. Conse-
quently, an EBP-level use case is called a user goal-level user case, to empha-
size that it serves (or should serve) to fulfill a goal of a user of the system, or the
primary actor.

And it leads to a recommended procedure:
1. Find the user goals.
2. Define a use case for each.

This is slight shift in emphasis for the use-case modeler. Rather than asking
"What are the use cases?", one starts by asking: "What are your goals?" In fact,
the name of a use case for a user goal should reflect its name, to emphasize this
viewpoint—Goal: capture or process a sale; use case: Process Sale.

Note that because of this symmetry, the EBP guideline can be equally applied to
decide if a goal or a use case is at a suitable level.

Thus, here is a key idea regarding investigating user goals vs. investigating use
cases:

Imagine we are together in a requirements workshop. We could ask either:
* "What do you do?" (roughly a use case-oriented question) or,
* "What are your goals?"

Answers to the first question are more likely to reflect current solutions and
procedures, and the complications associated with them.

Answers to the second question, especially combined with an investigation to
move higher up the goal hierarchy ("what is the goal of that goal?") open up
the vision for new and improved solutions, focus on adding business value,
and get to the heart of what the stakeholders want from the system under
discussion.

61

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Example: Applying the EBP Guideline

As the system analyst responsible for the NextGen system requirements discov-
ery, you are investigating user goals. The conversation goes like this: During a
requirements workshop:

System analyst: "What are some of your goals in the context of using a POS
system?"

Cashier: "One, to quickly log in. Also, to capture sales."

System analyst: "What do you think is the higher level goal motivating log-
ging in?"

Cashier: "I'm trying to identify myself to the system, so it can validate that
I'm allowed to use the system for sales capture and other tasks.”" System
analyst: "Higher than that?"

Cashier: "To prevent theft, data corruption, and display of private company
information."

Note the analyst's strategy of searching up the goal hierarchy to find higher
level user goals that still satisfy the EBP guideline, to get at the real intent
behind the action, and also to understand the context of the goals.

"Prevent theft, ..." is higher than a user goal; it may be called an enterprise goal,
and is not an EBP. Therefore, although it can inspire new ways of thinking
about the problem and solutions (such as eliminating POS systems and cashiers
completely), we will set it aside for now.

Lowering the goal level to "identify myself and be validated" appears closer to
the user goal level. But is it at the EBP level? It does not add observable or mea-
surable business value. If the CEO asked, "What did you do today?" and you
said "I logged in 20 times!", she would not be impressed. Consequently, this is a
secondary goal, always in the service of doing something useful, and is not an
EBP or user goal. By contrast, "capture a sale" does fit the criteria of being an
EBP or user goal.

As another example, in some stores there is a process called "cashing in", in
which a cashier inserts their own cash drawer tray into the terminal, logs in,
and tells the system how much cash is in drawer. Cashing In is an EBP-level (or
user goal level) use case; the log in step, rather than being a EBP-level use case,
is a subfunction goal in support of the goal of cashing in.

Subfunction Goals and Use Cases

Although "identify myself and be validated" (or "log in") has been eliminated as
a user goal, it is a goal at a lower level, called a subfunction goal—subgoals
that support a user goal. Use cases should only occasionally be written for these
subfunction goals, although it is a common problem that use case experts
observe when asked to evaluate and improve (usually simplify) a set of use
cases.

FINDING PRIMARY ACTORS, GOALS, AND USE CASES

It is not illegal to write use cases for subfunction goals, but it is not always help-
ful, as it adds complexity to a use-case model; there can be hundreds of
subfunc-tion goals—or subfunction use cases—for a system.

Important point: The number and granularity of use cases influences the time
and difficulty to understand, maintain, and manage the requirements.

The most common, valid motivation to express a subfunction goal as a use case
is when the subfunction is repeated in or is a precondition for multiple user
goal-level use cases. This in fact is probably true of "identify myself and be vali-
dated," which is a precondition of most, if not all, other user goal-level use cases.

Consequently, it may be written as the use case Authenticate User.

Goals and Use Cases Can Be Composite

Goals are usually composite, from the level of an enterprise ("be profitable"), to
many supporting intermediate goals while using applications ("sales are cap-
tured"), to supporting subfunction goals within applications ("input is valid").

Similarly, use cases can be written at different levels to satisfy these goals, and
can be composed of lower level use cases.

These varying goal and use case levels are a common source of confusion in
identifying the appropriate level of use cases for an application. The EBP
guideline provides guidance to filter out excessive low-level use cases.

6.9 Finding Primary Actors, Goals, and Use Cases

Use cases are defined to satisfy the user goals of the primary actors. Hence, the
basic procedure is:

1. Choose the system boundary. Is it just a software application, the hardware
and application as a unit, that plus a person using it, or an entire organiza
tion?

2. Identify the primary actors—those that have user goals fulfilled through
using services of the system.

3. For each, identify their user goals. Raise them to the highest user goal level
that satisfies the EBP guideline.

4. Define use cases that satisfy user goals; name them according to their goal.
Usually, user goal-level use cases will be one-to-one with user goals, but
there is at least one exception, as will be examined.

63

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Step 1: Choosing the System Boundary

For this case study, the POS system itself is the system under design; every-
thing outside of it is outside the system boundary, including the cashier, pay-
ment authorization service, and so on.

If it is not clear, defining the boundary of the system under design can be clari-
fied by defining what is outside—the external primary and supporting actors.
Once the external actors are identified, the boundary becomes clearer. For
example, is the complete responsibility for payment authorization within the
system boundary? No, there is an external payment authorization service actor.

Steps 2 and 3: Finding Primary Actors and Goals

It is artificial to strictly linearize the identification of primary actors before user
goals; in a requirements workshop, people brainstorm and generate a mixture of
both. Sometimes, goals reveal the actors, or vice versa.

Guideline: Emphasize brainstorming the primary actors first, as this sets up the
framework for further investigation.

Reminder Questions to Find Actors and Goals

In addition to obvious primary actors and user goals, the following questions
help identify others that may be missed:

Who starts and stops the system? Who does system administration?

Who does user and security Is "time" an actor because the sys-

management? tem does something in response to a
time event?

Is there a monitoring process that Who evaluates system activity or

restarts the system if it fails? performance?

How are software updates handled? =~ Who evaluates logs? Are they

Push or pull update? remotely retrieved?

Primary and Supporting Actors

Recall that primary actors have user goals fulfilled through using services of the
system. They call upon the system to help them. This is in contrast to support-
ing actors, which provide services to the system under design. For now, the focus
is on finding the primary actors, not the supporting ones.

FINDING PRIMARY ACTORS, GOALS, AND USE CASES

Recall also that primary actors can be—among other things—other computer
systems, such as "watchdog" software processes.

Suggestion

Be suspicious if no primary actors are external computer systems.

The Actor-Goal List

Record the primary actors and their user goals in an actor-goal list. In terms of
UP artifacts it should be a section in the Vision artifact (which is described in
the next chapter).

For example:

Actor Goal Actor Goal
Cashier process sales System add users
process rentals Administra- modify users
handle returns tor delete users
cash in manage security
cash out manage system tables
Manager start up Sales Activ- | analyze sales and per-
shut down ity System formance data

The Sales Activity System is a remote application that will frequently request
sales data from each POS node in the network.

Project Planning Dimension

In practice, this list has additional columns for priority, effort, and risk; this is
briefly covered in Chapter 36.

The Messy Reality

This list looks neat, but the reality of its creation is anything but. Lots of
brain-storming and thrashing about in a requirements workshop goes on.
Consider the earlier example that illustrated applying the EBP rule to the "log
in" goal. During the workshop while creating this list the cashier may offer
"log in" as one of the user goals. The system analyst digs deeper and raises the
level of the

65

66

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

goal beyond the low-level mechanism of logging in (the cashier was probably
thinking of using a dialog box on a GUI) up to the level of "identify and authen-
ticate user." Yet, the analyst then realizes it does not pass the EBP guideline,
and discards it as a user goal. Of course, the reality is even somewhat different
than this because an experienced analyst has a set of heuristics from past expe-
rience or study, one of which is "user authentication is seldom an EBP," and so is
likely to have filtered this out quickly.

Primary Actor and User Goals Depend on System Boundary

Why is the cashier, and not the customer, the primary actor in the use case Pro-
cess Sale? Why doesn't the customer appear in the actor-goal list?

The answer depends on the system boundary of the system under design, as
illustrated in Figure 6.1. If viewing the enterprise or checkout service as an
aggregate system, the customer is a primary actor, with the goal of getting goods
or services and leaving. However, from the viewpoint of just the POS system
(which is the choice of system boundary for this case study), it services the goal
of the cashier (and the store) to process the customer's sale.

' Enterprise Selling Things
Checkout Service
_--® Sales Tax
Agenc
gency POS System
Goal: Collect

taxes on sales Sales Activity -
e System gashler
_-® Customer
Goal: Buy items Goal: Analyze sales " Goal: Process sales

and performance data

Figure 6.1 Primary actors and goals at different system boundaries.

Actors and Goals via Event Analysis

Another approach to aid in finding actors, goals, and use cases is to identify
external events. What are they, where from, and why? Often, a group of events
belong to the same EBP-level goal or use case. For example:

CONGRATULATIONS: USE CASES HAVE BEEN WRITTEN, AND ABE IMPERFECT

External Event From Actor Goal
enter sale line item Cashier process a sale
enter payment Cashier or Customer process a sale

Step 4: Define Use Cases

In general, define one EBP-level use case for each user goal. Name the use case
similar to the user goal—for example, Goal: process a sale; Use Case: Process
Sale.

Also, name use cases starting with a verb.

A common exception to one use case per goal is to collapse CRUD (create,
retrieve, update, delete) separate goals into one CRUD use case, idiomatically
called Manage <X>. For example, the goals "edit user," "delete user," and so forth
are all satisfied by the Manage Users use case.

"Define use cases" has several levels of effort, ranging from a few minutes to
simply record names, up to weeks to write fully dressed versions. The later UP
process section of this chapter puts this work—when and how much—in the
context of iterative development and the UP.

6.10 Congratulations: Use Cases Have Been Written, and Are
Imperfect

The Need for Communication and Patrticipation

The NextGen POS team is writing use cases in multiple requirements work-
shops over a series of short development iterations, incrementally adding to the
set, and refining and adapting based on feedback. Subject matter experts, cash-
iers, and programmers actively participate in the writing process. There are no
intermediaries between the cashiers, other users, and the developers; rather,
there is direct communication.

Good, but not good enough. Written requirement specifications give the illusion
of correctness; they are not. The use cases and other requirements still will not
be correct—guaranteed. They will lack critical information and contain wrong

67

6.11

68

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

statements. The solution is not the "waterfall" process attitude of trying harder
to record requirements perfect and complete at the start, although of course we
do the best we can in the time available. But it will never be enough.

A different approach is required. A large part of this is iterative development,
but something else is needed: ongoing personal communication. Continual—
daily—close participation and communication between the developers and
someone who understands the domain and can make requirement decisions.
Someone the programmers can walk up to in a matter of seconds and get clarifi-
cation, whenever a question arises. For example, the XP practices [Beck00]
con-tain an excellent recommendation: User full-time on the project, in the
project room.

Write Use Cases in an Essential lll-Free Style

New and Improved! The Case for Fingerprinting

Investigating and asking about goals rather than tasks and procedures encour-
ages a focus on the essence of the requirements—the intent behind them. For
example, during a requirements workshop, the cashier may say one of his goals
is to "log in." The cashier was probably thinking of a GUI, dialog box, user ID,
and password. This is a mechanism to achieve a goal, rather than the goal itself.
By investigating up the goal hierarchy ("What is the goal of that goal?"), the sys-
tem analyst arrives at a mechanism- 1ndependent goal: "1dent1fy myself and get
authenticated," or an even higher goal: "prevent theft ..

This discovery process can open up the vision to new and improved solutions.
For example, keyboards and mice with biometric readers, usually for a finger-
print, are now common and inexpensive. If the goal is "identification and
authentication" why not make it easy and fast, using a biometric reader on the
keyboard? But properly answering that question involves some usability analy-
sis work as well, such as knowing the typical users' profiles. Are their fingers
covered in grease? Do they have fingers?

Essential Style Writing

This idea has been summarized in various use case guidelines as "keep the user
interface out; focus on intent" [CockburnOl]. Its motivation and notation has
been most fully explored by Larry Constantine in the context of creating better
user interfaces (Uls) and doing usability engineering [Constantine94, CL99].
Constantine calls the ertlng style essential when it avoids UI details and
focuses on the real user intent.’

5. The term comes from "essential models" in Essential Systems Analysis [MP84|.

WRITE USE CASES IN AN ESSENTIAL UI-FREE STYLE

In an essential writing style, the narrative is expressed at the level of the user's
intentions and system's responsibilities rather than their concrete actions. They
remain free of technology and mechanism details, especially those related to the
UL

Write use cases in an essential style; keep the user interface out and focus on
actor intent.

All the previous example use cases in this chapter, such as Process Sale, were
written aiming towards an essential style.

Note that the dictionary defines goal as a synonym for intention [MW89], illus-
trating the connection between the essential style idea of Constantine and the
goal-oriented viewpoint previously stressed in this chapter. Indeed, many actor
intention steps in an essential use case can also be characterized as subfunction
goals.

Contrasting Examples

Essential Style

Assume that the Manage Users use case requires identification and authentica-
tion. The Constantine-inspired essential style uses the two-column format.
However, it can be written in one column.

Actor Intention System Responsibility
1. Administrator identifies self. 2. Authenticates identity.
3.

In the one-column format this is shown as:

1. Administrator identifies self.
2. System authenticates identity.
3. ...

The design solution to these intentions and responsibilities is wide open:
bio-metric readers, graphical user interfaces (GUIs), and so forth.

Concrete Style—Avoid During Early Requirements Work

In contrast, there is a concrete use case style. In this style, user interface deci-
sions are embedded in the use case text. The text may even show window screen

69

6.12 Actors

70

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

shots, discuss window navigation, GUI widget manipulation and so forth. For
example:

1. Adminstrator enters ID and password in dialog box (see Picture 3).
2. System authenticates Adminstrator.

3. System displays the "edit users" window (see Picture 4).

4. ...

These concrete use cases may be useful as an aid to concrete or detailed GUI
design work during a later step, but they are not suitable during the early
requirements analysis work. During early requirements work, "keep the user
interface out—focus on intent."

An actor is anything with behavior, including the system under discussion (SuD)
itself when it calls upon the services of other systems.® Primary and supporting
actors will appear in the action steps of the use case text. Actors are not only
roles played by people, but organizations, software, and machines. There are
three kinds of external actors in relation to the SuD:

* Primary actor—has user goals fulfilled through using services of the SuD.
For example, the cashier.

) Why identify? To find user goals, which drive the use cases.

¢ Supporting actor—provides a service (for example, information) to the
SuD. The automated payment authorization service is an example. Often a
computer system, but could be an organization or person.

) Why identify? To clarify external interfaces and protocols.

¢ Offstage actor—has an interest in the behavior of the use case, but is not
primary or supporting; for example, a government tax agency.

) Why identify? To ensure that all necessary interests are
identified and satisfied. Offstage actor interests are sometimes
subtle or easy to miss unless these actors are explicitly named.

6. This was a refinement and improvement to alternate definitions of actors, including
those in early versions of the UML and UP [Cockburn97]. Older definitions inconsis-
tently excluded the SuD as an actor, even when it called upon services of other sys-
tems. All entities may play multiple roles, including the SuD.

USE CASE DIAGRAMS

6.13 Use Case Diagrams

The UML provides use case diagram notation to illustrate the names of use cases can
actors, and the relationships between them (see Figure 6.2)

system boundary NextGen _ - communication
. -
- 7
//
[}
Process Sale alternate
notation for
a computer
Cashier Payment system actor
. Handle Returns Authorization ‘7//7/
) Service /
/ /
// /
actor > «actor» ¢
Process Rental Tax Calculator
«actor»
Accounting
Syst
«actor» ystem
Sales Activity
System
A Analyze Activity ngaSC;/c;;Zm
Manage Security) o _
/ B = >~ ~
— ~. \
System Manage Users N
Administrator use case

Figure 6.2 Partial use case context diagram.

Use case diagrams and use case relationships are secondary in use case work.
Use cases are text documents. Doing use case work means to write text.

A common sign of a novice (or academic) use-case modeler is a preoccupation
with use case diagrams and use case relationships, rather than writing text.
World-class use case experts such as Anderson, Fowler, Cockburn, among oth-
ers, downplay use case diagrams and use case relationships, and instead focus
on writing. With that as a caveat, a simple use case diagram provides a succinct

71

72 6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

visual context diagram for the system, illustrating the external actors and how
they use the system.

Suggestion

Draw a simple use case diagram in conjunction with an actor-goal list.

A use case diagram is an excellent picture of the system context; it makes a good
context diagram, that is, showing the boundary of a system, what lies outside
of it, and how it gets used. It serves as a communication tool that summarizes
the behavior of a system and its actors. A sample partial use case context dia-
gram for the NextGen system is shown in Figure 6.2.

Diagramming Suggestions

Figure 6.3 offers some diagram advice. Notice the actor box with the symbol
«actor». This symbol is called a UML stereotype; it is a mechanism to catego-
rize an element in some way. A stereotype name is surrounded by guillemets
symbols—special single-character brackets (not "«" and "»") most widely
known by their use in French typography to indicate a quote.

For a use case context Show computer system actors
diagram, limit the use cases to with an alternate notation to
user-goal Igvel use cases. human actors.
|
\\ |
N \
N
N NextGen \
N N
< h)
> ~
T
«actor»
Process Sale —— Payment
Authorization
Service
Cashier
primary actors on supporting actors
the left on the right

Figure 6.3 Notation suggestions.

REQUIREMENTS IN CONTEXT AND LOW-LEVEL FEATURE LISTS

A
NextGen Some UML alternatives to
illustrate external actors that
Process Sale — «actor» are other computer systems.
Payment
«system» Authorization The class box style can be
Payment Payment Service used for any actor, computer or
Authorization Authorization human. Using it for computer
Service Service actors provides visual
distinction.

Figure 6.4 Alternate actor notation.

To clarify, some prefer to highlight external computer system actors with an
alternate notation, as illustrated in Figure 6.4.

A Caution on Over-Diagramming

To reiterate, the important use case work is to write text, not diagram or focus
on use case relationships. If an organization is spending many hours (or worse,
days) working on a use case diagram and discussing use case relationships,
rather than focussing on writing text, relative effort has been misplaced.

6.14 Requirements in Context and Low-Level Feature Lists

As implied by the title of the book Uses Cases: Requirements in Context [GKO00], a
key motivation of the use case idea is the consideration and organization of
requirements in the context of the goals and scenarios of using a system. That's
a good thing—it improves cohesion and comprehension. However, use cases are
not the only necessary requirements artifact. Some non-functional require-
ments, domain rules and context, and other hard-to-place elements are better
captured in the Supplementary Specification, which is described in the next
chapter.

One idea behind use cases is to replace detailed, low-level feature lists (which
were common in traditional requirements methods) with use cases (with some
exceptions). These lists tended to look as follows, usually grouped into func-
tional areas:

ID Feature

FEAT1.9 The system shall accept entry of item identifiers.

73

74

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Feature

FEAT2.4

The system shall log credit payments to the accounts receivable
system.

Such detailed lists of low-level features are somewhat usable. However, the com-
plete list is not a half-page; more likely it is dozens or a hundred pages. This
leads to some drawbacks, which use cases help address. These include:

Long, detailed function lists do not relate the requirements in a cohesive
context; the different functions and features increasingly appear like a dis

jointed "laundry list" of items. In contrast, use cases place the requirements
in the context of the stories and goals of using the system.

If both use case and detailed feature lists are used, there is duplication.
More work, more volume to write and read, more consistency and synchroni
zation problems.

Suggestion

Strive to replace detailed, low-level feature lists with use cases.

High-Level System Feature Lists Are Acceptable

It is common and useful to summarize system functionality with a terse,
high-level feature list called system features in a Vision document. In contrast to
100 pages of low-level, detailed features, a system features list tends to include
only a few dozen items. The list provides a very succinct summary of system
functionality, independent of the use case view. For example:

Summary of System Features

sales capture

payment authorization (credit, debit, check)

system administration for users, security, code and constants tables, and so on
automatic offline sales processing when external components fail

real-time transactions, based on industry standards, with third-party systems, including inventory,
accounting, human resources, tax calculators, and payment authorization services

definition and execution of customized "pluggable" business rules at fixed, common points in the
processing scenarios

This is explored in the next chapter.

USE CASES ARE NOT OBJECT-ORIENTED

When Are Detailed Feature Lists Appropriate?

Sometimes use cases do not really fit; some applications call out for a
feature-driven viewpoint. For example, application servers, database products,
and other middleware or back-end systems need to be primarily considered
and evolved in terms of features ("We need XML support in the next release").
Use cases are not a natural fit for these applications or the way they need to
evolve in terms of market forces.

6.15 Use Cases Are Not Object-Oriented

There is nothing object-oriented about use cases; one is not doing object-oriented
analysis if writing use cases. This is not a defect, but a point of clarification.
Indeed, use cases are a broadly applicable requirements analysis tool that can
be applied to non-object-oriented projects, which increases their usefulness as a
requirements method. However, as will be explored, use cases are a pivotal
input into classic OOA/D activities.

6.16 Use Cases Within the UP

Use cases are vital and central to the UP, which encourages use-case driven
development. This implies:

* Requirements are primarily recorded in use cases (the Use-Case Model);
other requirements techniques (such as functions lists) are secondary, if
used at all.

* Use cases are an important part of iterative planning. The work of an itera
tion is—in part—defined by choosing some use case scenarios, or entire use
cases. And use cases are a key input to estimation.

» Use-case realizations drive the design. That is, the team designs collabo
rating objects and subsystems in order to perform or realize the use cases.

» Use cases often influence the organization of user manuals.

The UP distinguishes between system and business use cases. System use
cases arc what have been examined in this chapter, such as Process Sale. They
are created in the Requirements discipline, and are part of the Use-Case Model.

Business use cases are less commonly written. If done, they are created in the
Business Modeling discipline as part of a large-scale business process
reengi-neering effort, or to help understand the context of a new system in the
busi-ness. They describe a sequence of actions of a business as a whole to fulfill a
goal of a business actor (an actor in the business environment, such as a
customer or supplier). For example, in a restaurant, one business use case is
Serve a Meal.

75

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Use Cases and Requirements Specification Across the Iterations

This section reiterates a key idea in the UP and iterative development: The tim-
ing and level of effort of requirements specification across the iterations. Table
6.1 presents a sample (not a recipe) which communicates the UP strategy of how
requirements are developed.

Note that a technical team starts building the production core of the system
when only perhaps 10% of the requirements are detailed, and in fact, there is a
deliberate delay in continuing with concerted requirements work until near the
end of the first elaboration iteration.

This is the key difference in iterative development to a waterfall process: Pro-
duction-quality development of the core of a system starts quickly, long before

all the requirements are known.

Discipline | Artifact Comments and Level of Requirements Effort
Incep Elab 1 Elab 2 Elab 3 Elab 4
1 week 4 weeks 4 weeks 3 weeks 3 weeks
Requirements [Use-Case 2-day require- Near the end of |Near the end of |Repeat, com- Repeal with the
Model ments work- this iteration, this iteration, plete 707 of all | goal of 80-90% of
shop. Mostuse |host a 2-day host a 2-day use cases in the use cases
cases identified |requirements requirements detail. clarified and
by name, and workshop. workshop. written in detail.
summarized in a |Obtain insight Obtain insight Only a small por-
short paragraph. |and feedback and feedback tion of these
Only 10% writ- |from the imple- |from the imple- have been built
ten in detail. mentation work, [mentation work, in elaboration;
then complete then complete the remainder
30% of the use 50% of the use are done in con-
cases in detail. cases in detail. struction.

Design Design Model |none Design for a repeat repeat Repeat. The high
small set of high- risk and archi-
risk architectur- tecturally signifi-
ally significant cant aspects
requirements. should now be

stabilized.

Implementa- Implementa- |none Implement these. |Repeat. 5% of the |Repeat. 10% of |Repeat. 15% of

tion tion Model final system is |[the final system [the final system

(code, etc.) built. is built. is built.

Project Man- SW Develop- |Very vague esti- |Estimate starts |a little better... alittle bettor... Overall project

agement ment Plan mate of total to take shape. duration, major

effort. milestones,
effort, and cost
estimates can
now be ralionally
committed to.

76

Table 6.1 Sample requirements effort across the early iterations; this is not a

recipe.

USE CASES WITHIN THE UP

Observe that near the end of the first iteration of elaboration, there is a second
requirements workshop, during which perhaps 30% of the use cases are written
in detail. This staggered requirements analysis benefits from the feedback of
having built a little of the core software. The feedback includes user evaluation,
testing, and improved "knowing what we don't know." That is, the act of building
software rapidly surfaces assumptions and questions that need clarification.

Timing of UP Artifact Creation

Table 6.2 illustrates some UP artifacts, and an example of their start and refine-
ment schedule. The Use-Case Model is started in inception, with perhaps only
10% of the use cases written in any detail. The majority are incrementally writ-
ten over the iterations of the elaboration phase, so that by the end of elabora-
tion, a large body of detailed use cases and other requirements (in the
Supplementary Specification) are written, providing a realistic basis for estima-
tion through to the end of the project.

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration-> I El. . En |CL.Cn | T1.12
Business Modeling Domain Model s
Requirements Use-Case Model s T
Vision s T
Supplementary Specification s r
Glossary s r
Design Design Model s r
SW Architecture Document s
Data Model s T
Implementation Implementation Model s r r
Project Management [SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Table 6.2 Sample UP artifacts and timing. s - start; r - refine

Use Cases Within Inception

The following discussion expands on the information in Table 6.1.

Not all use cases are written in their fully dressed format during the inception
phase. Rather, suppose there is a two-day requirements workshop during the
early NextGen investigation. The earlier part of the day is spent identifying
goals and stakeholders, and speculating what is in and out of scope of the
project. An actor-goal-use case table is written and displayed with the computer
projector. A use case context diagram is started. After a few hours, perhaps 20
user goals (and thus, user goal level use cases) are identified, including Process

77

78

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Sale, Handle Returns, and so on. Most of the interesting, complex, or risky use
cases are written in brief format; each averaging around two minutes to write.
The team starts to form a high-level picture of the system's functionality.

After this, 10% to 20% of the use cases that represent core complex functions, or
which are especially risky in some dimension, are rewritten in a fully dressed
format; the team investigates a little deeper to better comprehend the magni-
tude, complexities, and hidden demons of the project, through a small sample of
interesting use cases. Perhaps this means two use cases: Process Sale and Han-
dle Returns.

A requirements management tool that integrates with a word processor is used
for the writing, and the work is displayed via a projector while the team collabo-
rates on the analysis and writing. The Stakeholders and Interests lists are writ-
ten for these use cases, to discover more subtle (and perhaps costly) functional
and key non-function requirements—or system qualities—such as for reliability
or throughput.

The analysis goal is not to exhaustively complete the use cases, but spend a few
hours to obtain some insight.

The project sponsor needs to decide if the project is worth significant investiga-
tion (that is, the elaboration phase). The inception work is not meant to do that
investigation, but to obtain low-fidelity (and admittedly error-prone) insights
regarding scope, risk, effort, technical feasibility, and business case, in order to
decide to move forward, where to start if they do, or if to stop.

Perhaps the NextGen project inception step lasts five days. The combination of
the two day requirements workshop and its brief use case analysis, and other
investigation during the week, lead to the decision to continue on to an elabora-
tion step for the system.

Use Cases Within Elaboration

The following discussion expands on the information in Table 6.1.

This is a phase of multiple timeboxed iterations (for example, four iterations) in
which risky, high-value, or architecturally significant parts of the system are
incrementally built, and the "majority" of requirements identified and clarified.
The feedback from the concrete steps of programming influences and informs
the team's understanding of the requirements, which are iteratively and
adap-tively refined. Perhaps there is a two-day requirements workshop in each
iteration—four workshops. However, not all use cases are investigated in each
workshop. They are prioritized; early workshops focus on a subset of the most
important use cases.

Each subsequent short workshop is a time to adapt and refine the vision of the
core requirements, which will be unstable in early iterations, and stabilizing in
later ones. Thus, there is an iterative interplay between requirements discovery,
and building parts of the software.

6.18

CASE STUDY: USE CASES IN THE NEXTGEN INCEPTION PHASE

During each requirements workshop, the user goals and use case list are
refined. More of the use cases are written, and rewritten, in their fully dressed
format. By the end of elaboration, "80-90%" of the use cases are written in
detail. For the POS system with 20 user goal level use cases, 15 or more of the
most complex and risky should be investigated, written, and rewritten in a fully
dressed format.

Note that elaboration involves programming parts of the system. At the end of
this step, the NextGen team should not only have a better definition of the use
cases, but some quality executable software.

Use Cases Within Construction

The construction step is composed of timeboxed iterations (for example, 20 itera-
tions of two weeks each) that focus on completing the system, once the risky and
core unstable issues have settled down in elaboration. There will still be some
minor use case writing and perhaps requirements workshops, but much less so
than in elaboration. By this step, the majority of core functional and non-func-
tional requirements should have iteratively and adaptively stabilized. That does
not mean to imply requirements are frozen or investigation finished, but the
degree of change is much lower.

6.17 Case Study: Use Cases in the NextGen Inception Phase

As described in the previous section, not all use cases are written in their fully
dressed form during inception. The Use-Case Model at this phase of the case
study could be detailed as follows:

Fully Dressed Casual Brief
Process Sale Process Rental Cash In
Handle Returns Analyze Sales Activity Cash Out
Manage Security Manage Users
Start Up
Shut Down
Manage System Tables

Further Readings

The most popular use-case guide, translated into several languages, is Writing
Effective Use Cases [CockburnO1].” This has emerged with good reason as the

79

80

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

most widely read and followed use-case book and is therefore recommended as a
primary reference. This introductory chapter is consequently based on and con-
sistent with its content. Suggestion: Do not be put off the book by the author's
use of icons for different use case levels, or the early emphasis on levels and use
case taxonomy. The icons are optional and minor. And although the discussion of
levels and goals may at first seem a diversion to those new to use cases, those
who have worked with them for some time appreciate that the level and scope of
use cases are key practical issues, because their misunderstanding is a common
source of complication in use-case modeling.

"Structuring Use Cases with Goals" [Cockburn97] is the most widely cited paper
on use cases, available online at www.usecases.org.

Use Cases: Requirements in Context [GKO00] is another useful text. It emphasizes
the important viewpoint—as the title states—that use cases are not just
another requirements artifact, but that they are the central vehicle that drives
requirements work and information.

Another worthwhile read is Applying Use Cases: A Practical Guide [SW9S],
written by an experienced use case teacher and practitioner that understand
and communicate how to apply use cases in an iterative lifecycle.

7. Note that Cockburn rthymes with slow burn.

UP ARTIFACTS AND PROCESS CONTEXT

6.19 UP Artifacts and Process Context

As illustrated in Figure 6.5, use cases influence many UP artifacts.

Sample UP Artifacts

e
' Domain (Partiai artitacts,
Business . Model { refined in each
Modeling - N, fteration. 7
%\\ 3 R P .

terms, attributes
relationships

terms, atlribules. validation

/ Use-Case m

Model ;o Supplementary
Reaui I e : _V_IS":.' ' Specification EL R
equirements | |2y o, o) | : : f
e Ll T = —
~ -

! [
requirements requirements, constraints

requiremnents

o0 MLl key scenarios,

10 evenls

Software

Design Model
es,lgn © Architecture Doc.

Design C)
raquirements.
priorities

Software
Dev. Plan
Project e

Management @‘% @ﬂ

v Aacceptance
tests

Test Development
Plan

Case
Test

Environment

Figure 6.5 Sample UP artifact influence.

81

82

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

When

, Once during inception. Short; do not try to
define or polish all requirements.

i

Several times during elaboration iterations.
)

In the UP, use case work is a requirements discipline activity which could be initiated during
a requirements workshop. Figure 6.6 offers suggestions on the time and space for doing

this work.

Where
At a requirements workshop.

o’
v i
\ 1
\ i
\ i
7
// !
/’/ ’/ //
January February /' /
ol
e Two adjacent projections.
ol P P Il proj
\
Use Case: Capture a Sale Use Case: Handle Returns
Main Success Scenario: Main Success Scenario:
2. 2.
3. 3.
Extensions: Extensions:
| |

System

Analyst Customer _®
Soft
End User Developer A(r)crm?erc?
Who' / How: Tools
Software:

Many, including, end users and developers, will play :
the role of requirements specifier, helping to write !
use cases. !

\
\

\

Led by system analyst, who is responsible for

\

requirements definition. |

Figure 6.6 Process and setting context.

For use case text, use a web-enabled requirements tool
that integrates with a popular word processor.

For use case diagrams, a UML CASE tool.

Hyperlink the use cases; present them on the project
website.

'Hardware: Use two projectors attached to dual video cards
and set the display width double, to improve the
spaciousness of the drawing area or display 2 adjacenct
word processor windows .

Chapter 7

IDENTIFYING OTHER
REQUIREMENTS

When ideas fail, words come in very handy.

—Johann Wolfgang von Goethe

Objectives
Write a Supplementary Specification, Glossary, and Vision.

Compare and contrast system features with use cases. Relate the
Vision to other artifacts, and to iterative development. Define

quality attributes.

Introduction

It is not sufficient to write use cases. There are other kinds of requirements that
need to be identified, such as documentation, packaging, supportability, licens-
ing, and so forth. These are captured in the Supplementary Specification.

The Glossary captures terms and definitions; it can also play the role of a data
dictionary.

The Vision summarizes the "vision" of the project. It serves to tersely communi-
cate the big ideas regarding why the project was proposed, what the problems
are, who the stakeholders are, what they need, and what the proposed solution
looks like.

To quote:

The Vision defines the stakeholders' view of the product to be
developed, specified in terms of the stakeholders' key needs and

83

7.1

7.2

84

7 - IDENTIFYING OTHER REQUIREMENTS

features. Containing an outline of the envisioned core require-
ments, it provides the contractual basis for the more detailed
technical requirements [RUP].

NextGen POS Examples

The purpose of the following examples is not to present an exhaustive Vision,
Glossary, or Supplementary Specification, as some of the sections—although
useful for a project—are not relevant to the learning objectives.' The book's goal
is core skills in object design, use case requirements analysis, and object-ori-
ented analysis, not POS problems or Vision statements. Therefore, only some
sections are briefly touched upon in order to make connections between prior
and future work, highlight noteworthy issues, provide a feel for the contents,
and move forward quickly.

NextGen Example: (Partial) Supplementary Specification

Supplementary Specification

Revision History

Version Date Description Author
Inception draft |Jan 10,2031 (First draft. To be refined primarily during elabora- |Craig Larman
tion.

Introduction

This document is the repository of all NextGen POS requirements not captured in the use cases.

Functionality

(Functionality common across many use cases)
Logging and Error Handling Log all errors to
persistent storage. Pluggable Business Rules

At various scenario points of several use cases (to be defined) support the ability to customize the func-
tionality of the system with a set of arbitrary rules that execute at that point or event.

Security
All usage requires user authentication.

1. Scope creep is not only a problem in requirements, but in writing about requirements.

NEXTGEN EXAMPLE: (PARTIAL) SUPPLEMENTARY SPECIFICATION

Usability

Human Factors

The customer will be able to see a large-monitor display of the POS.Therefore:
. Text should be easily visible from 1 meter.

. Avoid colors associated with common forms of color blindness.

Speed, ease, and error-free processing are paramount in sales processing, as the buyer wishes to leave
quickly, or they perceive the purchasing experience (and seller) as less positive.

The cashier is often looking at the customer or items, not the computer display. Therefore, signals and
warnings should be conveyed with sound rather than only via graphics.

Reliability

Recoverability

If there is failure to use external services (payment authorizer, accounting system, ...) try to solve with a
local solution (e.g., store and forward) in order to still complete a sale. Much more analysis is needed
here...

Performance

As mentioned under human factors, buyers want to complete sales processing very quickly. One potential
bottleneck is external payment authorization. Our goal is to achieve authorization in less than 1 minute,
90% of the time.

Supportability

Adaptability

Different customers of the NextGen POS have unique business rule and processing needs while pro-
cessing a sale. Therefore, at several defined points in the scenario (for example, when a new sale is initi-
ated, when a new line item is added) pluggable business rule will be enabled.

Configurability

Different customers desire varying network configurations for their POS systems, such as thick versus
thin clients, two-tier versus N-tier physical layers, and so forth. In addition, they desire the ability to modify
these configurations, to reflect their changing business and performance needs. Therefore, the system
will be somewhat configurable to reflect these needs. Much more analysis is needed in this area to dis-
cover the areas and degree of flexibility, and the effort to achieve it.

Implementation Constraints

NextGen leadership insists on a Java technologies solution, predicting this will improve long-term porting
and supportability, in addition to ease of development.

Purchased Components

. Tax calculator. Must support pluggable calculators for different countries.

Free Open Source Components

In general, we recommend maximizing the use of free Java technology open source components on this
project.

85

86

7 - IDENTIFYING OTHER REQUIREMENTS

Although it is premature to definitively design and choose components, we suggest the following as likely
candidates:

. JLog logging framework

Interfaces

Noteworthy Hardware and Interfaces

. Touch screen monitor (this is perceived by operating systems as a regular monitor, and the touch
gestures as mouse events)

. Barcode laser scanner (these normally attach to a special keyboard, and the scanned input is per
ceived in software as keystrokes)

. Receipt printer
. Credit/debit card reader

. Signature reader (but not in release 1)

Software Interfaces

For most external collaborating systems (tax calculator, accounting, inventory, ...) we need to be able to
plug in varying systems and thus varying interfaces.

Domain (Business) Rules

ID

Rule

Changeability

Source

RULE1

Signature required for credit payments.

Buyer "signature" will
continue to be required,
but within 2 years most
of our customers want
signature capture on a
digital capture device,
and within 5 years we
expect there to be
demand for support of
the new unique digital
code "signature" now
supported by USA law.

The policy of virtually
all credit authorization
companies.

RULE2

Tax rules. Sales require added taxes. See
government statutes for current details.

High. Tax laws change
annually, at all govern-
ment levels.

aw

RULE3

Credit payment reversals may only be paid as
a credit to the buyer's credit account, not as
cash.

Low

credit
authorization company
policy

RULE4

Purchaser discount rules. Examples:
Employee— 20% off. Preferred
Customer— 1 0% off. Senior— 15%

off.

High. Each retailer
uses different rules.

Retailer policy.

NEXTGEN EXAMPLE: (PARTIAL) SUPPLEMENTARY SPECIFICATION

ID Rule Changeability Source
RULES |Sale (transaction-level) discount High. Each retailer|Retailer policy.
rules. Applies to pre-tax total. Examples: uses different rules,

10% off if total greater than $100 USD. 5% off |@nd they may change
daily or hourly.
each Monday.

10% off all sales between 10am and 3pm

today.
Tofu 50% off from 9am-10am today.

RULEG |Product (line item level) discount |High. Each retailer|Retailer policy.
rules. Examples: uses different rules,

10% off tractors this week. Buy 2 and they may change
daily or hourly.

veggieburgers, get 1 free.

Legal Issues

We recommend some open source components if their licensing restrictions can be resolved to allow
resale of products that include open source software.

All tax rules must, by law, be applied during sales. Note that these can change frequently.

Information in Domains of Interest

Pricing

In addition to the pricing rules described in the domain rules section, note that products have an original
price, and optionally a permanent markdown price. A product's price (before further discounts) is the per-
manent markdown price, if present. Organizations maintain the original price even if there is a permanent
markdown price, for accounting and tax reasons.

Credit and Debit Payment Handling

When an electronic credit or debit payment is approved by a payment authorization service, they are
responsible for paying the seller, not the buyer. Consequently, for each payment, the seller needs to
record monies owing in their accounts receivable, from the authorization service. Usually on a nightly
basis, the authorization service will perform an electronic funds transfer to the seller's account for the
daily total owing, less a (small) per transaction fee that the service charges.

Sales Tax

Sales tax calculations can be very complex, and regularly change in response to legislation at all levels of
government. Therefore, delegating tax calculations to third-party calculator software (of which there are
several available) is advisable. Tax may be owing to city, region, state, and national bodies. Some items
may be tax exempt without qualification, or exempt depending on the buyer or target recipient (for exam-
ple, a farmer or a child).

Item Identifiers: UPCs, EANs, SKUs, Bar Codes, and Bar Code Readers

The NextGen POS needs to support various item identifier schemes. UPCs (Universal Product Codes),
EANs (European Article Numbering) and SKUs (Stock Keeping Units) are three common identifier sys-
tems for products that are sold. Japanese Article Numbers (JANs) are a kind of EAN version.

SKUs are completely arbitrary identifiers defined by the retailer.

However, UPCs and EANs have a standards and regulatory component. See
www.adams1.com/pub/rus-sadam/upccode.html for a good overview. Also see www.uc-council.org and
www.ean-int.org.

87

7.3

88

77 - IDENTIFYING OTHER REQUIREMENTS

Commentary: Supplementary Specification

The Supplementary Specification captures other requirements, information,
and constraints not easily captured in the use cases or Glossary, including sys-
tem-wide "URPS+" quality attributes or requirements. Note that requirements
specific to a use case can (and probably should) be first written with the use
case, in a Special Requirements section, but some prefer to also consolidate all of
them in the Supplementary Specification.. Elements of the Supplementary
Specification could include:

FURPS+ requirements—functionality, usability, reliability,
performance,
and supportability

reports

hardware and software constraints (operating and networking systems, ...)
development constraints (for example, process or development tools)

other design and implementation constraints

internationalization concerns (units, languages, ...)

documentation (user, installation, administration) and help

licensing and other legal concerns

packaging

standards (technical, safety, quality)

physical environment concerns (for example, heat or vibration)

operational concerns (for example, how do errors get handled, or how often
to do backups?)

domain or business rules

information in domains of interest (for example, what is the entire cycle of

credit payment handling?)

Constraints are not behaviors, but some other kind of restriction on the design

or project. They are also requirements, but are commonly called "constraints" to

emphasize their restrictive influence. For example:

Moust use Oracle (we have a licensing arrangement with them,).
Must run on Linux (it will lower cost).

COMMENTARY: SUPPLEMENTARY SPECIFICATION

Suggestion

Early design decisions and constraints ("premature elaboration") are almost
always a bad idea, so it is worth being suspicious and challenging of these,
especially during the inception phase when very little has been carefully
analyzed. Some constraints are imposed for unavoidable reasons, such as a
legal restriction or an existing external system interface that must be
invoked.

Quality Attributes

Al

Some requirements are called quality attributes [BCKO98] (or "-ilities") of a
system. These include usability, reliability, and so forth. Note that these refer to
the qualities of the system, not that these attributes are necessarily of high
quality (the word is overloaded in English). For example, the quality of
support-ability might deliberately be chosen to be low if the product is not
intended to serve a long-term purpose.

They are of two types:
1. Observable at execution (functionality, usability, reliability, performance, ...)
2. Not observable at execution (supportability, testability, ...)

Functionality is specified in the use cases, as are other quality attributes related
to specific use cases (for example, the performance qualities in the Process Sale
use case).

Other system-wide FURPS+ quality attributes are described in the Supplemen-
tary Specification.

Although functionality is a valid quality attribute, in common usage, the term
"quality attribute" is most often meant to imply "qualities of the system other
than functionality." Herein, the term is likewise used. This is not exactly the
same as non-functional requirements, which is a broader term including every-
thing but functionality (for example, packaging and licensing).

When we put on our "architect hat," the system-wide quality attributes (and
thus the Supplementary Specification where one records them) are especially
interesting because—as will be introduced in Chapter 32—architectural analy-
sis and design are largely concerned with the identification and resolution of the
quality attributes in the context of the functional requirements. For example,
suppose one of the quality attributes is that the NextGen system must be quite
fault-tolerant when remote services fail. From an architectural viewpoint, that
will have an overarching influence on large-scale design decisions.

Quality attributes have interdependencies and involve trade-offs. As a simple
example in the POS, "very reliable (fault-tolerant)" and "easy to test" are in

&9

77 - IDENTIFYING OTHER REQUIREMENTS

some opposition, because there are many subtle ways a distributed system can
fail.

Domain (Business) Rules

Domain rules [Ross97, GKO0O] dictate how a domain or business may operate.
They are not requirements of any one application, although an application's
requirements are often by domain rules. Company policies, physical laws, and
government laws are common domain rules.

They are commonly called business rules, which is the most common type, but
that term is limited, as some software applications are for non-business prob-
lems, such as weather simulation or military logistics. A weather simulation has
"domain rules" that influence the application requirements, related to physical
laws and relationships.

It is often useful to identify and record those domain rules that influence the
requirements, usually realized in the use cases, because they can clarify incom-
plete or ambiguous use case content. For example, in the NextGen POS, if some-
one asks if the Process Sale use case should be written with an alternative to
allow credit payments without signature capture, there is a business rule
(RULE1) that clarifies whether this will not be allowed by any credit authoriza-
tion company.

Caution

Rules are not application requirements. Do not record system features as
rules. They describe the constraints and behaviors of how the domain works,
not the application.

Information in Domains of Interest

It is often valuable for a subject matter expert to write (or provide URLs to)
some explanation of domains related to the new software system (sales and
accounting, the geophysics of underground oil/water/gas flows, ...), to provide
context and deeper insight for the development team. It may contain pointers to
important literature or experts, formulas, laws, or other references. For exam-
ple, the arcana of UPC and EAN coding schemes, and bar code symbology, must
be understood to some degree by the NextGen team.

7.4

The analysis in
this example is
illustrative, but
fictitious.

Understand who
the players are, and
their problems.

NEXTGEN EXAMPLE: (PARTIAL) VISION

NextGen Example: (Partial) Vision
Vision

Revision History

Version Date Description Author

inception draft [Jan 10,2031 |First draft. To be refined primarily during elabora- |Craig Larman
tion.

Introduction

We envision a next generation fault-tolerant point-of-sale (POS) application, NextGen POS, with the
flexibility to support varying customer business rules, multiple terminal and user interface
mechanisms, and integration with multiple third-party supporting systems.

Positioning

Business Opportunity

Existing POS products are not adaptable to the customer's business, in terms of varying business
rules and varying network designs (for example, thin client or not; 2, 3, or 4 tier architectures). In
addition, they do not scale well as terminals and business increase. And, none can work in either
on-line or off-line mode, dynamically adapting depending on failures. None easily integrate with
many third-party systems. None allow for new terminal technologies such as mobile PDAs. There is
marketplace dissatisfaction with this inflexible state of affairs, and demand for a POS that rectifies
this.

Problem Statement

Traditional POS systems are inflexible, fault intolerant, and difficult to integrate with third-party
systems. This leads to problems in timely sales processing, instituting improved processes that
don't match the software, and accurate and timely accounting and inventory data to support
measurement and planning, among other concerns. This affects cashiers, store managers, system
administrators, and corporate management.

Product Position Statement

—Terse summary of who the system is for, its outstanding features, and what differentiates it from
the competition.

Alternatives and Competition...

Stakeholder Descriptions

Market Demographics...
Stakeholder (Non-User) Summary... User Summary...

Key High-Level Goals and Problems of the Stakeholders

91

Consolidate input
from the Actor and
Goals List, and the
Stakeholder
Interests section of
the use cases.

This may be the
Actor-Goal List
created during
use-case modeling,
or a more terse
Summary.

77 - IDENTIFYING OTHER REQUIREMENTS

A one day requirements workshop with subject matter experts and other stakeholders, and surveys at several
retail outlets led to identification of the following key goals and problems:

High-Level Goal |Priority |Problems and Concerns Current Solutions

Fast, robust, inte-[high Reduced speed as load increases. Existing POS products

grated sales pro- Loss of sales processing capability if components fail. [provide basic sales

cessing Lack of up-to-date and accurate information from processing, but do not
accounting and other systems due to non-integration address these problems.

with existing accounting, inventory, and HR systems.
Leads to difficulties in measuring and
planning.

Inability to customize business rules to unique business
requirements.

Difficulty in adding new terminal or user interface
types (for example, mobile PDAs).

User-Level Goals

The users (and external systems) need a system to fulfill these goals:

. Cashier: process sales, handle returns, cash in, cash out

. System administrator: manage users, manage security, manage system tables
Manager: start up, shut down

. Sales activity system: analyze sales data

User Environment...

Product Overview
Product Perspective
The NextGen POS will usually reside in stores; if mobile terminals are used, they will be in close proximity to the

store network, either inside or close outside. It will provide services to users, and collaborate with other systems, as
indicated in Figure Vision-1.

Summarized from| «actor»

the use case Sales Activity
. System
diagram.

Context diagrams

come in different

formats with

vary-ing detail, but.

all show the major _ System

external actors
related to a system.

92

«actor»
Payment
L «actor»
) Authorization Tax Calculator
Cashier Calls upon Calls upon Service ax Lalcu
services services
NextGen POS
- «actor»
«actor» Human «actor»
Accounting Resources Inventory
Store System System System

Administrator Manager

Figure Vision-1. NextGen POS system context diagram

Similar to the
Actor-Goal list, this
table relates goals,
benefits, and
solutions, but at a
higher level not
solely related to use
cases.

It summarizes
the value and
differentiating
qualities of the
product.

As discussed below,
system features are
a terse format to

COMMENTARY: VISION

Summary of Benefits

Supporting Feature

Stakeholder Benefit

Functionally, the system will provide all the common ser-
vices a sales organization requires, including sales capture,
payment authorization, return handling, and so forth.

Automated, fast point-of-sale services.

Automatic detection of failures, switching to local offline pro-
cessing for unavailable services.

Continued sales processing when exter-
nal components fail.

Pluggable business rules at various scenario points during
sales processing.

Flexible business logic configuration.

Real-time transactions with third-party systems, using
industry standard protocols.

Timely, accurate sales, accounting, and
inventory information, to support measur-
ing and planning.

Assumptions and Dependencies...
Cost and Pricing... Licensing and
Installation...

symmgrtzefunc— Summary of System Features
tionality.
. sales capture
. payment authorization (credit, debit, check)
. system administration for users, security, code and constants tables, and so forth.
. automatic offline sales processing when external components fail
. real-time transactions, based on industry standards, with third-party systems, including inventory,
accounting, human resources, tax calculators, and payment authorization services
. definition and execution of customized "pluggable" business rules at fixed, common points in the
processing scenarios
Other Requirements and Constraints
Including design constraints, usability, reliability, performance, supportability, design constraints, docu-
mentation, packaging, and so forth: See the Supplementary Specification and use cases.
7.5 Commentary: Vision

Are We Solving the Same Problem? The Right Problem?

The Problem Statement

During early requirements work in the inception phase, collaborate to define a
terse problem statement; it will reduce the likelihood that stakeholders are try-
ing to solve slightly different problems, and is usually quickly created. Occasion-

93

94

77 - IDENTIFYING OTHER REQUIREMENTS

ally, the effort reveals fundamental differences of opinion in what the parties are
trying to achieve.

Rather than plain prose, a table format offered in the RUP templates for prob-
lem statements is:

The problem of

affects

the impact of which is

a successful solution would be

The Key High-Level Goals and Problems of the Stakeholders

This table summarizes the goals and problems at a higher level than task level
use cases, and reveals important nonfunctional and quality goals that may
belong to one use case or span many, such as:

. We need fault-tolerant sales processing.

. We need the ability to customize the business rules.

What Are the Root Problems and Goals?

It is common for stakeholders to express their goals in terms of envisioned solu-
tions, such as: "We need a full-time programmer to customize the business rules
as we change them." The solutions are sometimes perceptive, because they
understand their problem domain and options well. But sometimes stakeholder
jump to solutions that are not the most appropriate or do not address the root
underlying major problems.

Thus, the system analyst needs to investigate the problem and goal chain—as
discussed in the previous chapter on use cases and goals—in order' to learn the
underlying problems, and their relative importance and impact, in order to pri-
oritize and solve the most egregious concerns with a skillful solution.

Group Idea Facilitation Methods

Although outside the scope of this discussion, it is especially during activities
such as high-level problem definition and goal identification that creative,
investigative group work occurs. Here are some useful group facilitation tech-
niques to discover root problems and goals, and support idea generation and
pri-oritization: mind mapping, fishbone diagrams, pareto diagrams,
brainstorming, multi-voting, dot voting, nominal group process, brainwriting,
and affinity grouping. Check them out on the web. I prefer to apply several of
these during

COMMENTARY: VISION

the same workshop, to discover common problems and requirements from differ-
ent angles.

System Features—Functional Requirements

Use cases are not necessarily the only way one needs to express functional
requirements for the following reasons:

¢ They are detailed. Stakeholders often want a short summary that identifies
the most noteworthy functions.

e What about simply listingthe use case names (Process Sale,

Handle

Returns, ...) to summarize the functionality? First, the list may still be too
long. Also, the names can hide interesting functionality stakeholders really
want to know about; that is, the level of granularity can obscure noteworthy
functions. For example, suppose that the description of automated payment
authorization functionality is embedded in the Process Sale use case. A
reader of a list of use case names cannot tell if the system will do payment
authorization. Furthermore, one may wish to group a set of use cases into
one feature (for brevity), such as System administration for users, security,
code and constants tables, and so forth.

*« Some noteworthy functionality is naturally expressed as short statements
that do not conveniently map to use case names or Elementary Business
Process-level goals. It may span or be orthogonal to the use cases. For exam
ple, during the first NextGen requirements workshop, someone might say
"The system should be able to do transactions with existing third-party
accounting, inventory, and tax calculation systems." This statement of func
tionality does not represent one particular use case, but is a comfortable and
succinct way to express, record, and communicate features.

) As a stronger variation of the last point, some applications call out
primarily for a description of functionality as features; use cases
are not a natural fit. This is common, for example, with middle-
ware products such as application servers—use cases are not
really motivated. Suppose the team is considering their next
release. During a requirements discussion, people (such as mar-
keting) will say, "The next version needs EJB 2.0 entity bean sup-
port." The requirements are primarily conceived in terms of a list
of features, not use cases.

Therefore, an alternative, a complementary way to express system functions is
with features, or more specifically in this context, system features, which are
high-level, terse statements summarizing system functions. More formally, in

95

96

77 - IDENTIFYING OTHER REQUIREMENTS

the UP, a system feature is "an externally observable service provided by the
system which directly fulfills a stakeholder need" [Kruchten00].

Features are things a system can do. They should pass this linguistic test:

The system shall do <feature X>.

For example:

The system shall do payment authorization.

Recall that the Vision may be used as a formal or informal contract between
development and business. System features are a mechanism to summarize in
this contract what the system will do. This is complementary to the use cases, as
the features are terse.

Features are to be contrasted with various kinds of non-functional requirements
and constraints, such as: "The system must run on Linux, must have 24/7 avail-
ability, and must have a touch-screen interface.” Note that these fail the linguis-
tic test.

At times, the admonition "an externally observable service..." is difficult to
decide upon. For example, should the following be a system feature:

The system shall do transactions with third-party accounting,
inventory, human resource, and tax calculation systems.

It is a kind of behavior, and probably noteworthy to the stakeholders, but the
collaboration itself may not be externally visible, depending on your time frame,
and how close and where you look. Include it—fine-grained classification ques-
tions are seldom worth the worry.

Finally, note that most system features will find detailed expression in use case
text.

Notation and Organization
First and foremost, short high-level descriptions are important. One should be
able to read the system features list quickly.

It is not necessary to include the canonical "The system shall do..." or a variant
phrase, although it is common.

Here is a features example at a high level, for a large multi-system project of
which the POS is just one element:

COMMENTARY:: VISION

The major features include:
* POS services
* Inventory management

* Web-based shopping

It is common to organize a two-level hierarchy of system features. But in the
Vision document more than two levels leads to excessive detail; the point of sys-
tem features in the Vision is to summarize the functionality, not decompose it
into a long list of fine-grained elements. A reasonable example in terms of detail:

The major features include: ¢

» POS services:
) sales capture
) payment authorization
)

«Inventory management:

) automatic reordering
)

Sometimes, these second level features are essentially equivalent to use case
names (or user-level goals), but that is not required; features are an alternative
way to summarize functionality. Nevertheless, most system features will find
detailed expression in the use cases.

How many system features should the Vision contain?

Suggestion

A Vision with less than 50 features is desirable. If more, consider grouping
and abstracting the features.

Other Requirements in the Vision

In the Vision, system features briefly summarize functional requirements
expressed in detail in the use cases. Likewise, the Vision can summarize other
requirements (for example, reliability and usability) that are detailed in the
Special Requirements sections of use cases, and in the Supplementary Specifica-
tion (SS). However, there is some risk of unhelpful duplication. For example, the
RUP product provides templates for the Vision and SS that contain identical or
similar sections for other requirements such as usability, reliability, perfor-
mance, and so forth. Such duplication is inevitably awkward to maintain. Fur-

97

7.6

98

7 - IDENTIFYING OTHER REQUIREMENTS

thermore, the level of detail for similar sections (for example, performance) in
the Vision and the SS needs to be quite similar to be meaningful; that is, "essen-
tial" and "detailed" other requirement descriptions tend to be much the same,

Suggestion

For other requirements, avoid their duplication or near-duplication in both
the Vision and Supplementary Specification (SS)—and in use cases. Rather,
record them only in the SS or uses cases (if use case specific). In the Vision,
direct the reader to these for the other requirements.

This is a minor documentation nuance on the standard RUP templates that may
reduce complications. If one prefers the standard template approach, that is also
fine.

Vision, Features, or Use Cases—Which First?

It is not useful to be rigid about the order of some artifacts. While collaborating
to create different requirements artifacts, a synergy emerges in which working
on one influences and helps clarify another. Nevertheless, a suggested sequence
is:

1. Write a brief first draft of the Vision.

2. Identify user goals and the supporting use cases.

3. Write some use cases and start the Supplementary Specification.
4

Refine the Vision, summarizing information from these.

NextGen Example: A (Partial) Glossary

Glossary
Revision History
Version Date Description Author
Inception draft |Jan 10,2031 |First draft. To be refined primarily during elabora- |Craig Larman

tion.

COMMENTARY: GLOSSARY (DATA DICTIONARY)

Definitions

Term Definition and Information Aliases

item A product or service for sale

payment Validation by an external payment authorization service that they

authorization will make or guarantee the payment to the seller.

payment A composite of elements electronically sent to an authorization

authorization service, usually as a char array. Elements include: store ID, cus-

request tomer account number, amount, and timestamp.

uPC 12 digit code that identifies a product. Usually symbolized with a|Universal
bar code placed on products. See http://www.uc-council.org for|Product Code
details.

7.7 Commentary: Glossary (Data Dictionary)

In its simplest form, the Glossary is a list of noteworthy terms and their defini-
tions. It is surprisingly common that a term, often technical or particular to the
domain, will be used in slightly different ways by different stakeholders; this
needs to be resolved to reduce problems in communication and ambiguous
requirements.

Suggestion

Start the Glossary early. I'm reminded of an experience working with simu-
lation experts, in which the seemingly innocuous, but important, word "cell"
was discovered to have slippery and varying meanings among the group
members.

The goal is not to record all possible terms, but those that are unclear, ambigu-
ous, or which require some kind of noteworthy elaboration, such as format infor-
mation or validation rules.

Glossary as Data Dictionary

In the UP, the Glossary also plays the role of a data dictionary, a document
that records data about the data—that is, metadata. During inception the glos-
sary should be a simple document of terms and descriptions. During elabora-
tion, it may expand into a data dictionary.

99

7.8

100

Units

77 - IDENTIFYING OTHER REQUIREMENTS

Term attributes could include:

« aliases

* description

+ format (type, length, unit)

+ relationships to other elements
» range of values

e validation rules

Note that the range of values and validation rules in the Glossary constitute
requirements with implications on the behavior of the system.

As Martin Fowler underscores in Analysis Patterns [Fowler96], units (currency,
measures, ...) must be considered, especially in this age of internationalized soft-
ware applications. For example, in the NextGen system, which will hopefully be
sold to many customers in different countries, price cannot be just a raw num-
ber. It must be in a Money or Currency unit that captures the notion of varying
currencies.

Composite Terms

The Glossary is not only for atomic terms such as "product price." It can and
should include composite elements such as "sale" (which includes other ele-
ments, such as date and location), and nicknames used to describe a collection of
data transmitted between actors in the use cases. For example, in the Process
Sale use case, consider the following statement:

System sends payment authorization request to an external
Payment Authorization Service, and requests payment
approval.

"Payment authorization request" is a nickname for an aggregate of data, which
needs to be explained in the Glossary.

Reliable Specifications: An Oxymoron?

Written requirements can promote the illusion that the real requirements are
understood and well-defined, and can (early on) be used to reliably estimate and
plan the project. This illusion is more true for non-software developers; pro-

ONLINE ARTIFACTS AT THE PROJECT WEBSITE

grammers know from painful experience how unreliable it is. This is part of the
motivation for the opening quote by Goethe.

What really matters is building software that passes the acceptance tests
defined by the users and stakeholders, and that meets their true goals (which
are often not discovered until they are evaluating or working with the software).

Writing a Vision and Supplementary Specification is worthwhile as an exercise
in clarifying a first approximation of what is wanted, the motivation for the
product, and as a repository for the big ideas. But they are not—mnor is any
requirements artifact—a reliable specification. Only writing code, testing it, get-
ting feedback, ongoing close collaboration with users and customers, and adapt-
ing, truly hit the mark.

This is not a call to abandon analysis and thinking, and just rushing to code, but
a suggestion to treat written requirements lightly, and continually—indeed,
daily—engage users.

7.9 Online Artifacts at the Project Website

Since this is a book, these examples and the preceding use cases have a static
and perhaps paper-oriented feel. Nevertheless, these should be digital artifacts
recorded only online at the project website. And instead of being plain static doc-
uments, they may be hyperlinked, or recorded in tools other than a word proces-
sor or spreadsheet. For example, the Glossary could be stored in a database
table.

7.10 Not Much UML During Inception?

The purpose of inception is to collect just enough information to establish a com-
mon vision, decide if moving forward is feasible, and if the project is worth seri-
ous investigation in the elaboration phase. As such, beyond simple UML use
case diagrams, not much diagramming is often motivated. There is more focus
in inception on understanding the basic scope and 10% of the requirements,
expressed in textual forms. In practice, and thus in this presentation, most
UML diagramming will occur in the next phase—elaboration.

7.11 Other Requirement Artifacts Within the UP

As in the prior use case chapter, Table 7.1 summarizes a sample of artifacts and
their timing. All requirements artifacts are started in inception, and primarily
worked on through elaboration.

101

7 - IDENTIFYING OTHER REQUIREMENTS

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration-> n El. .En | C1..Cn | T1.T2
Business Modeling |Domain Model]
Requirements Use-Case Model s r
Vision s r
Supplementary Specification s r
Glossary s r
Design Design Model s r
SW Architecture Document s
Data Model s r
Implementation Implementation Model s r r
Project Management |SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

102

Table 7.1 Sample UP artifacts and timing. s - start; r - refine

Inception

It should not be the case that these requirements artifacts are finalized in the
inception phase. Indeed, they will barely be started.

Stakeholders need to decide if the project is worth serious investigation; that
real investigation occurs during elaboration, not inception. During inception,
the Vision summarizes the project idea in a form to help decision makers deter-
mine if it is worth continuing, and where to start.

Since most requirements work occurs during elaboration, the Supplementary
Specification should be only lightly developed during inception, highlighting
noteworthy quality attributes (for example, the NextGen POS must have
recov-erability when external services fail) that expose major risks and
challenges.

Input into these artifacts could be generated during an inception phase require-
ments workshop, both through explicit consideration of its topics, and indirectly
via use case analysis. Draft, readable artifacts will not get written in the work-
shop, but afterwards by the system analyst.

Elaboration

Al

Through the elaboration iterations, the "vision" and the Vision are refined,
based upon feedback from incrementally building parts of the system, adapting,
and multiple requirements workshops over several development iterations.

Through ongoing requirements investigation and iterative development, the
other requirements will become more clear and can be recorded in the SS. The
quality attributes (for example, reliability) identified in the SS will be key driv-

OTHER REQUIREMENT ARTIFACTS WITHIN THE UP

ers in shaping the core architecture that is designed and programmed during
elaboration. They may also be key risk factors that influence what gets worked
on in early iterations. For example, the NextGen POS quality requirement of cli-
ent-side recoverability if external components fail will be explored during elabo-
ration.

The majority of terms will be discovered and elaborated in the Glossary during
this phase.

By the end of elaboration, it is feasible to have use cases, a Supplementary Spec-
ification, and a Vision that reasonably reflects the stabilized major features and
other requirements to be completed for delivery. Nevertheless, the Supplemen-
tary Specification and Vision are not something to freeze and "sign off" on as a
fixed specification; adaptation—not rigidity—is a core value of iterative develop-
ment and the UP.

To clarify this "frozen sign off" comment: It is perfectly sensible—at the end of
elaboration—to form an agreement with stakeholders about what will be done
in the remainder of the project, and to make commitments (perhaps contractual)
regarding requirements and schedule. At some point (the end of elaboration, in
the UP), we need a reliable idea of "what, how much, and when." In that sense, a
formal agreement on the requirements is normal and expected. It is also neces-
sary to have a change control process (one of the explicit best practice in the UP)
so that changes in requirements are formally considered and approved, rather
than chaotic and uncontrolled change.

Rather, several ideas are implied by the "frozen sign off”" comment:

* In iterative development and the UP it is understood that no matter how
much due diligence is given to requirements specification, some change is
inevitable, and should be acceptable. This change could be a late-breaking
opportunistic improvement in the system that gives its owners a competitive
advantage, or change due to improved insight.

+ In iterative development, it is a core value to have continual engagement by
the stakeholders to evaluate, provide feedback, and steer the project as they
really want it. It does not benefit stakeholders to "wash their hands" of
attentive engagement by signing off on a frozen set of requirements and
waiting for the finished product, because they will seldom get what they
really needed.

Construction

By construction, the major requirements—both functional and otherwise—
should be stabilized—not finalized, but settled down to minor pertubation.
Therefore, the SS and Vision are unlikely to experience much change in this
phase.

712

7 - IDENTIFYING OTHER REQUIREMENTS

Further Readings

Vision and Supplementary Specification-like documents are not new. They are
used on many projects and described in many requirements books. Most such
books implicitly assume the waterfall attitude that the objective is to get them
detailed and correct at the beginning, and commit to them, before moving on to
design and implementation. In that sense, their traditional descriptions are not
helpful, although they otherwise provide good advice for possible sections and
their content.

Most books on software architecture include discussion of requirements analysis
for quality attributes of the application, since these quality requirements tend
to strongly influence architectural design. One example is Software Architecture
in Practice [BCK98].

Business rules get an exhaustive treatment in The Business Rule Book [Ross97].
The book presents a broad, deep, and thoroughly-considered theory of business
rules, but the method is not well-connected to other modern requirements tech-
niques such as use cases, or to iterative development.

UP ARTIFACTS AND PROCESS CONTEXT

713 UP Artifacts and Process Context

Artifact influence emphasizing the Vision, Supplementary Specification, and
Glossary are show in Figure 7.1.

Sample UP Artifacts =

T T

) Domain (Partial artifacts. }

Busmgss Model } refined in each

Modeling 5 “ fteration. -
%\ é/a \x.__'\ /.__,/’

terms, attributes, validation

/‘WT‘
constraints

Use-Case —— = _S_ I_ T \
upplementary
- Spocitication } Glos§ary
Requirements L i
B 7 - - -
requirernents, requirements,
constraints constraints
) Software
Design Model ;
.___19__; = Architecture Doc.
pesi F I | validation rutes -
sian e =
g | ’:—JE L _)Qll ==
requiremants,
priorities
Software
Dev. Plan
i |___|_ —_— .
Project | [__;|
Management ‘E—_E} L% L:ﬂ‘
nofunctional
tasts (load...)
Test Development
.P|a_flL Cage
Test Environment

Figure 7.1 Sample UP artifact influence.

105

77 - IDENTIFYING OTHER REQUIREMENTS

In the UP, Vision and Supplementary Specification work is a requirements discipline
activity which could be initiated during a requirements workshop, along with use case
analysis. Figure 7.2 offers suggestions on the time and space for doing this work.

When Where
, Once during inception. Short; do not try to Started in a requirements
/ define or polish all requirements. workshop, but usually written

/)) o afterwards. /
i Several times during elaboration iterations.
. January Febraary //
o1 = ol ‘wo adjacent projections.
Problem Statement Vision Features
The problem of: . . . The system shall record sales
} ; ; affects: . .. The system shall process
~ the impact of which is: . . . payments.
a succesful solution is: . . . S
Q Q ’
Software iystlem ﬁ Customer |
Architect nalyst !
End User® Developer |
Who | How: Tools

Utlimately written by the system analyst, who is i Software: A web-enabled requirements management |
responsible for requirements definition. \ toolintegrated with a popular word processor. 3
The software architect is experienced in considering + Other: Mind-maps, fishbone diagrams, and so forth i
quality requirements, such as reliability or on whiteboards, for idea generation and clarification. |
performance. Use a digital camera to easily capture the results.
Collaboration on high-level requirements from end Hardware: Use two projectors attached to dual video
users, developers and the paying or responsible cards and set the display width double .

customer. Minimize intermediaries.

Figure 7.2 Process and setting context.

106

Chapter 8

FROM INCEPTION TO
ELABORATION

The hard and stiff breaks. The supple prevails.
—Tao Te Ching

Objectives

« Define the elaboration step.

- Motivate the following chapters in this section.

Introduction

Elaboration is the initial series of iterations during which:

» the majority of requirements are discovered and stabilized

» the major risks are mitigated or retired

» the core architectural elements are implemented and proven

Rarely, the architecture is not a risk—for example, if building a website like oth-
ers the team has successfully built, with the same tools and similar require-
ments—in which case, it does not have to be a focus of these early iterations. In
that case, critical but non-architecturally significant features or use cases may
be implemented.

It is in this phase that the book emphasizes an introduction to OOA/D, applying
the UML, patterns, and architecture.

107

8.1

8 - FROM INCEPTION TO ELABORATION

Checkpoint: What Happened in Inception?

The inception step of the NextGen POS project may last only one week. The arti-
facts created should be brief and incomplete, the phase quick, and the investiga-
tion light.

It is not the requirements phase of the project, but a short step to determine
basic feasibility, risk, and scope, and decide if the project is worth more serious
investigation, which occurs in elaboration. Not all activities that could reason-
ably occur in inception have been covered; this exploration emphasizes require-
ments-oriented artifacts. Some likely activities and artifacts in inception
include:

a short requirements workshop
most actors, goals, and use cases named

most use cases written in brief format; 10-20% of the use cases are written
in fully dressed detail to improve understanding of the scope and complexity

most influential and risky quality requirements identified
version one of the Vision and Supplementary Specification written
risk list

y For example, leadership really wants a demo at the POSWorld
trade show in Hamburg, in 18 months. But the effort for a demo
cannot yet be even roughly estimated until deeper investigation.

technical proof-of-concept prototypes and other investigations to explore the
technical feasibility of special requirements ("Does Java Swing work prop
erly on touch-screen displays?")

user interface-oriented prototypes to clarify the vision of functional
requirements

recommendations on what components to buy/build/reuse, to be refined in
elaboration

) For example, a recommendation to buy a tax calculation
package.

high-level candidate architecture and components proposed

y This is not a detailed architectural description, and it is not meant
to be final or correct. Rather, it is brief speculation to use as a
starting point of investigation in elaboration. For example, "A Java
client-side application, no application server, Oracle for the data-
base, ..." In elaboration, it may be proven worthy, or discovered to
be a poor idea and rejected.

plan for the first iteration

candidate tools list

8.2

ON TO ELABORATION

On to Elaboration

Elaboration is the initial series of iterations during which the team does serious
investigation, implements (programs and tests) the core architecture, clarifies
most requirements, and tackles the high-risk issues. In the UP, "risk" includes
business value. Therefore, early work may include implementing scenarios that
are deemed important, but are not especially technically risky.

Elaboration often consists of between two and four iterations; each iteration is
recommended to be between two and six weeks, unless the team size is massive.
Each iteration is timeboxed, meaning its end date is fixed; if the team is not
likely to meet the date, requirements are placed back on the future tasks list, so
that the iteration can end on time with a stable and tested release.

Elaboration is not a design phase or a phase when the models are fully devel-
oped in preparation for implementation in the construction step—that would be
an example of superimposing waterfall ideas on to iterative development and
the UP.

During this phase, one is not creating throw-away prototypes; rather, the code
and design are production-quality portions of the final system. In some UP
descriptions, the potentially misunderstood term "architectural prototype" is
used to describe the partial system. This is not meant to be a prototype in the
sense of a discardable experiment; in the UP, it means a production subset of the
final system. More commonly it is called the executable architecture or
architectural baseline.

Elaboration in one sentence:

Build the core architecture, resolve the high-risk elements, define most require-
ments, and estimate the overall schedule and resources.

Some key ideas and best practices that will manifest in elaboration include:
* do short timeboxed risk-driven iterations
e start programming early

» adaptively design, implement, and test the core and risky parts of the
architecture

« test early, often, realistically
+ adapt based on feedback from tests, users, developers

« write most of the use cases and other requirements in detail, through a
series of workshops, once per elaboration iteration

109

—_
(=]

8 - FROM INCEPTION TO ELABORATION

What Is Architecturally Significant in Elaboration?

Early iterations build and prove the core architecture. For the NextGen POS
project—indeed, most—this will include:

« Employing "wide and shallow" design and implementation; or "designing at
the seams" as Grady Booch has called it.

y That is, identifying the separate processes, layers, packages, and
subsystems, and their high-level responsibilities and interfaces.
Partially implement these in order to connect them and clarify the
interfaces. Modules may contain mostly "stubbed" code.

« Refining the inter-module local and remote interfaces (this includes the fin
est details of the parameters and return values).

y For example, the interface to the object which will wrap access to
third-party accounting systems.

y Version one of an interface is seldom perfect. Early attention to
stress testing, "breaking," and refining the interfaces supports
later multi-team parallel work relying on stable interfaces.

* Integrating existing components.
) For example, a tax calculator.

« Implementing simplified end-to-end scenarios that force design, implemen
tation, and test across many major components.

y For example, the main success scenario of Process Sale, using the
credit payment extension scenario.

Elaboration phase testing is important, to obtain feedback, adapt, and prove
that the core is robust. Early testing for the NextGen project will include:

e Usability testing of the user interface for Process Sale.
. Testing of recovery when remote services, such as the credit authorizer, fail.

e Testing of high load to remote services, such as load on the remote tax calcu
lator.

Planning the Next Iteration

Planning and project management are important but large topics. Some key
ideas are briefly presented here, and an introduction is given in Chapter 36.

PLANNING THE NEXT ITERATION

Organize requirements and iterations by risk, coverage, and criticality.

* Risk includes both technical complexity and other factors, such as uncer
tainty of effort or usability.

« Coverage implies that all major parts of the system are at least touched on
in early iterations—perhaps a "wide and shallow" implementation across
many components.

¢ Criticality refers to functions of high business value.

These criteria are used to rank work across iterations. Use cases or use case sce-
narios are ranked for implementation—early iterations implement high ranking
scenarios. In addition, some requirements are expressed as high-level features
unrelated to a particular use case, such as a logging service. These are also
ranked.

The ranking is done before Iteration 1, but then again before Iteration 2, and so
forth, as new requirements and new insights influence the order. That is, the
plan is adaptive, rather than speculatively frozen at the beginning of the
project.

Usually based on some small-group collaborative ranking technique, a fuzzy
grouping of requirements will emerge. For example:

Requirement (Use
Rank Case or Feature) Comment
High Process Sale Scores high on all ranking criteria.
Logging Pervasive. Hard to add late.
Medium Maintain Users Affects security subdomain.
Low

Based on this ranking, we see that some key architecturally significant scenar-
ios of the Process Sale use case should be tackled in early iterations. This list is
not exhaustive; other requirements will also be tacked. In addition, an implicit
or explicit Start Up use case will be worked on in each iteration, to meet its ini-
tialization needs.

111

8.4

112

8 - FROM INCEPTION TO ELABORATION

In terms of UP artifacts, a few comments on this planning information:

* The chosen requirements for the next iteration are briefly listed in an Itera
tion Plan. This is not a plan of all the iterations, only a plan of the next.

» If the short description in the Iteration Plan is insufficient, a task or
requirement for the iteration may be written in greater detail in a separate
Change Request, and given to the responsible party.

* The overall requirements ranking is recorded in the Software Develop
ment Plan.

lteration 1 Requirements and Emphasis: Fundamental
OOA/D Skills

In this case study, Iteration 1 of the elaboration phase emphasizes a range of
fundamental and common OOA/D skills used in building object systems, such as
assigning responsibilities to objects. Of course, many other skills and steps—
such as database design, usability engineering, and Ul design—are needed to
build software, but they are out of scope in this introduction to OOA/D and the
UP.

Iteration 1 Requirements

The requirements for the first iteration of the NextGen POS application follow:

+ Implement a basic, key scenario of the Process Sale use case: entering items
and receiving a cash payment.

* Implement a Start Up use case as necessary to support the initialization
needs of the iteration.

* Nothing fancy or complex is handled, just a simple happy path scenario, and
the design and implementation to support it.

e There is no collaboration with external services, such as a tax calculator or
product database.

* No complex pricing rules are applied.

The design and implementation of the supporting UI would also be done, but is
not covered.

Subsequent iterations will grow on this foundation.

WHAT ARTIFACTS MAY START IN ELABORATION?

Incremental Development for the Same Use Case Across Iterations

Note that not all requirements in the Process Sale use case are being handled in
iteration 1. It is common to work on varying scenarios or features of the same
use case over several iterations and gradually extend the system to ultimately
handle all the functionality required (see Figure 8.1). On the other hand, short,
simple use cases may be completed within one iteration.

A use case or feature is
1 2 3 Ca often too complex to
complete in one short

f \ y\ iteration.
Therefore, different part

Use Case Use Case Use Case or scenarios must be
Process Sal®rocess SaldProcess Sale allocated to different

% iterations.
Use Case
Process Rentals
Feature: 0
Logging W////%

Figure 8.1 Use case implementation may be spread across iterations.

8.5 What Artifacts May Start in Elaboration?

Table 8.1 lists sample artifacts that may be started in elaboration, and indicates
the issues they address. Subsequent chapters will examine some of these in
greater detail, especially the Domain Model and Design Model. For brevity, the
table excludes artifacts that may have begun in inception (and were listed in
Chapter 4); it introduces artifacts that are more likely to start in elaboration.
Note these will not be completed in one iteration; rather, they will be refined
over a series of iterations.

Artifact Comment
. This is a visualization of the domain concepts; it is similar to a
Domain Model - - . e
static information model of the domain entities.
This is the set of diagrams that describes the logical design.
Design Model This includes software class diagrams, object interaction dia-

grams, package diagrams, and so forth.

113

& - FROM INCEPTION TO ELABORATION

Artifact

Comment

Software Architecture
Document

A learning aid that summarizes the key architectural issues
and their resolution in the design. It is a summary of the out-
standing design ideas and their motivation in the system.

Data Model This includes the database schemas, and the mapping strate-
gies between object and non-object representations.

Test Model A description of what will be tested, and how.

Implementation Model This is the actual implementation — the source code, executa-

bles, database, and so on.

Use-Case Storyboards,
UI Prototypes

A description of the user interface, paths of navigation, usabil-
ity models, and so forth.

Table 8.1 Sample elaboration artifacts, excluding those started in inception.

8.6 You Know You Didn't Understand Elaboration When...

It is more than "a few" months long for most projects.

It only has one iteration (with rare exceptions for well-understood problems)
Most requirements were defined before elaboration.

The risky elements and core architecture are not being tackled.

It does not result in an executable architecture; there is no production-code
programming.

It is considered primarily a requirements phase, preceding an implementa-
tion phase in construction.

There is an attempt to do a full and careful design before programming.

There is minimal feedback and adaptation; users are not continually
engaged in evaluation and feedback

There is no early and realistic testing.
The architecture is speculatively finalized before programming.

It is considered a step to do the proof-of-concept programming, rather than
programming the production core executable architecture.

There are not multiple short requirements workshops that adapt and refine
the requirements based on feedback from the prior and current iterations.

If a project exhibits these symptoms, the elaboration phase was not understood.

114

rarrs ELABORATION
ITERATION 1

Chapter 9

USE-CASE MODEL: DRAWING
SYSTEM SEQUENCE DIAGRAMS

In theory, thereis no difference between theory
and practice. But, in practice, thereis.

—Jan L.A. van de Snepscheut

Objectives

Identify system events.

Create system sequence diagrams for use cases.

Moving on to lteration 1

The NextGen POS project has entered the first real development iteration.
Some light requirements work was done in inception to help decide if the project
was worth more serious investigation. Planning for the first iteration has been
completed, and it has been decided to tackle a simple cash-only success scenario
of Process Sale (with no remote collaborations), with the goal of starting a "wide
and shallow" design and implementation that touches on many major architec-
tural elements of the new system. In the first iteration, many tasks related to
establishing the environment (tools, people, process, and setting) occur; this will
be skipped.

Rather, we turn our attention to use case and domain modeling analysis. Before
starting iteration 1 design work, some further investigation of the problem
domain is useful. Part of this investigation is the clarification of the input and
output system events related to our system, which can be illustrated in UML
sequence diagrams.

117

9 - USE-CASE MODEL: DRAWING SYSTEM SEQUENCE DIAGRAMS

Introduction

A system sequence diagram is a fast and easily created artifact that illustrates
input and output events related to the systems under discussion. The UML con-
tains notation in the form of sequence diagrams to illustrate events from exter-
nal actors to a system.

9.1 System Behavior

Before proceeding to a logical design of how a software application will work, it
is useful to investigate and define its behavior as a "black box." System behav-
ior is a description of what a system does, without explaining how it does it. One
part of that description is a system sequence diagram. Other parts include the
use cases, and system contracts (to be discussed later).

9.2 System Sequence Diagrams

Use cases describe how external actors interact with the software system we are
interested in creating. During this interaction an actor generates events to a
system, usually requesting some operation in response. For example, when a
cashier enters an item's ID, the cashier is requesting the POS system to record
that item's sale. That request event initiates an operation upon the system.

It is desirable to isolate and illustrate the operations that an external actor
requests of a system, because they are an important part of understanding sys-
tem behavior. The UML includes sequence diagrams as a notation that can
illustrate actor interactions and the operations initiated by them.

A system sequence diagram (SSD) is a picture that shows, for a particular
scenario of a use case, the events that external actors generate, their order, and
inter-system events. All systems are treated as a black box; the emphasis of the
diagram is events that cross the system boundary from actors to systems.

An SSD should be done for the main success scenario of the use case, and fre-
quent or complex alternative scenarios.

The UML does not define something called a "system" sequence diagram, but
simply a sequence diagram. The qualification is used to emphasize its applica-
tion to systems as black boxes. Later, sequence diagrams will be used in another
context—to illustrate the design of interacting software objects to fulfill work.

118

9.3

EXAMPLE OF AN SSD

Example of an SSD

An SSD shows, for a particular course of events within a use case, the external
actors that interact directly with the system, the system (as a black box), and
the system events that the actors generate (see Figure 9.1). Time proceeds
downward, and the ordering of events should follow their order in the use case.

System events may include parameters.

This example is for the main success scenario of the Process Sale use case. It
indicates that the cashier generates makeNewSale, enteritem, endSale, and
makePayment system events.

system as black box
the name could be "NextGenPOS" but "System" keeps i

the ":" and underline imply an instance, and are explajine
later chapter on sequence diagram notation in the UML

external actor to _ Process Sale Scenario
system 0 5

: Cashier :System

} makeNewSale() ‘}

box may enlose a } '}

iteration area o] \

I |

. . L7 ! enterltem(itemID, quantit [

the * [...] is an iteratio : (4 Y) L

marker and clause | }

indicating the box is for }4» 77777777777 description, total |
iteration [

* [more items]

a message wit‘

endSale() -
k > parameters
return value(s) }
associated with the | . o .

. o total with taxes ! it is an abstractig
previous message < I representing the
an abstraction that | | T system event of

! oy ! tering the
: . | makePayment(amount) | en g
|gndoresdp_resentat|on ‘ >‘ payment data by
and medium ! | some mechanisn
\ . \

the return line is \ change due, receipt \

. . A L B
optional if nothing is | |
returned

Figure 9.1 SSD for a Process Sale scenario.

—
—_
\O

9 - USE-CASE MODEL: DRAWING SYSTEM SEQUENCE DIAGRAMS

9.4 Inter-System SSDs

SSDs can also be used to illustrate collaborations between systems, such as
between the NextGen POS and the external credit payment authorizer. How-
ever, this is deferred until a later iteration in the case study, since this iteration
does not include remote systems collaboration.

9.5 SSDs and Use Cases

An SSD shows system events for a scenario of a use case, therefore it is gener-
ated from inspection of a use case (see Figure 9.2).

: Cashier :System

| |

I makeNewsSale() !

Simple cash-ollyocess Sakrenario: | '}
T T

. | . .

1._ Customer arrives at a POS checkout | enterltem(itemID, quantity) ‘}
with goods and/or services to purchpse. } '}
2. Cashier starts a new sale. \ |
3. Cashier enters item identifier. }* 77777777777 description, total | }
4. System records sale line item andl I |
presents item description, price, and } * [more items] }
running total. ! ;
Cashier repeats steps 3-4 until indid | |
done. ‘ endSale() n
) f Ll

5. System presents total with taxes I |
calculated. } . }
6. Cashier tells Customer the total, and - total with taxes __________ |
asks for payment. | |
7. Customer pays and System handles } }
payment. \ makePayment(amount) g
| L

| |

[\

| |

\ change due, receipt \

¢-————————-¢than ge due, rece pt________ | |

[[

Figure 9.2 SSDs are derived from use cases.

9.6 System Events and the System Boundary

To identify system events, it is necessary to be clear on the choice of system
boundary, as discussed in the prior chapter on use cases. For the purposes of
software development, the system boundary is usually chosen to be the software

120

9.7

NAMING SYSTEM EVENTS AND OPERATIONS

(and possibly hardware) system itself; in this context, a system event is an
external event that directly stimulates the software (see Figure 9.3).

Consider the Process Sale use case to identify system events. First, we must
determine the actors that directly interact with the software system. The cus-
tomer interacts with the cashier, but for this simple cash-only scenario, does not
directly interact with the POS system—only the cashier does. Therefore, the
customer is not a generator of system events; only the cashier is.

X

: Cashier | System
[[
} makeNewSale() | N‘
| ol
| I |
\ \
_enteritem(itemID, quanity) >
| |
\ | \
} endSale() | J
[1 g
\ \
| | |
} makePayment(amounti N‘
[|
\ \
| |

O....

system boundary H

Figure 9.3 Defining the system boundary.

Naming System Events and Operations

System events (and their associated system operations) should be expressed at
the level of intent rather than in terms of the physical input medium or inter-
face widget level.

It also improves clarity to start the name of a system event with a verb (add...,
enter..., end..., make...), as in Figure 9.4, since it emphasizes the command ori-
entation of these events.

Thus "enteritem" is better than "scan" (that is, laser scan) because it captures
the intent of the operation while remaining abstract and noncommittal with
respect to design choices about what interface is used to capture the system
event.

121

9.8

9.9

122

9 - USE-CASE MODEL: DRAWING SYSTEM SEQUENCE DIAGRAMS

:System

enterltem(itemID, quantity)

v

scan(itemID, quantity)

v

worse name H '

Figure 9.4 Choose event and operation names at an abstract level.

Showing Use Case Text

SSDs

It is sometimes desirable to show at least fragments of use case text for the sce-
nario, to clarify or enhance the two views (see Figure 9.5). The text provides the
details and context; the diagram visually summarizes the interaction.

and the Glossary

The terms shown in SSDs (operations, parameters, return data) are terse. These
may need proper explanation so that during design work it is clear what is com-
ing in and going out. If this was not explicated in the use cases, the Glossary
could be used.

However, as always when discussing the creation of artifacts other than code
(the heart of the project), be suspicious. There should be some truly meaningful
use or decision made with the Glossary data, otherwise it is simply low-value
unnecessary work.

SSDs WITHIN THE UP

Simple cash-only Process Sale scenario:

1. Customer arrives at a POS checkoug . -System
with goods and/or services to purchase-Cashier ==2ystem

2. Cashier starts a new sale. I

makeNewSale()

L -
[g
| |
| |
\ \
3. Cashier enters item identifier. } enterltem(itemID, quantity) J
4. System records sale line item and } '}
presents item description, price, and | |
running total. -« description, total _________ !
} * [more items] }
| |
| |
. S \ \
Cashier re -
peats steps 3-4 until indicates ! endsale() .
done. | »
\ \
5. System presents total with taxes ! total with taxes !
calculated. }* ””””””””””””””””” }
| |
6. Cashier tells Customer the total, and } }
asks for payment. I makePayment(amount) <
7. Customer pays and System handles =
payment. } }
\ \
|
|
[

|

|

|

|

|

|

|

|

|

lo
=

o)

b=}

Q

I}

[fo}

IC

I}

}—:
o

e}

I}

o]

=3

|

|

|

|

|

|

|

|

——

Figure 9.5 SSD with use case text.

9.10 SSDs Within the UP

SSDs are part of the Use-Case Model—a visualization of the interactions
implied in the use cases. SSDs were not explicitly mentioned in the original UP
description, although the UP creators are aware of and understand the useful-
ness of such diagrams. SSDs are an example of the many possible skillful analy-
sis and design artifacts or activities that the UP or RUP documents do not
mention.

Phases

Inception—SSDs are not usually motivated in inception.

Elaboration—Most SSDs are created during elaboration, when it is useful to
identify the details of the system events to clarify what major operations the
system must be designed to handle, write system operation contracts (discussed
in Chapter 13), and possibly support estimation (for example, macroestimation
with unadjusted function points and COCOMO II).

-
N
w

9 - USE-CASE MODEL: DRAWING SYSTEM SEQUENCE DIAGRAMS

Note that it is not necessary to create SSDs for all scenarios of all use cases—at
least not at the same time. Rather, create them only for some chosen scenarios of
the current iteration.

Finally, it should only take a few minutes or an half hour to create the SSDs.

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration— 11 El. .En | CL.Cn | T1.T2
Business Modeling |Domain Model s
Requirements Use-Case Mode (SSDs) s r
Vision s r
Supplementary Specification s r
Glossary S r
Design Design Model 8 r
SW Architecture Document $
Data Model $ r
Implementation Implementation Model s r R
Project Management |SW Development Plan S r r R
Testing Test Model s r
Environment Development Case s r

Table 9.1 Sample UP artifacts and timing, s - start; r - refine

9.11 Further Readings

124

Variations of diagrams that illustrate the I/O events for a system treated as a
black box have been in widespread use for decades; for example, in telecommu-
nications as call-flow diagrams. They were especially popularized in object-ori-
ented methods via their use in the Fusion method |Coleman+94|, which
provided a detailed example of the relationship of SSDs and system operations
to other analysis and design artifacts.

UP ARTIFACTS

9.12 UP Artifacts

Sample relationships of SSDs to other artifacts are shown in Figure 9.6.

Sample UP Artifacts

Partiahrtifacts

) Domain refined in eagh
Business Model iteration.
Modeling

parameter or
return data may be
elaborated in the
Glossar
Use-Case Model T N Y
% :System
; = foo(x) . N Glossar
Requirements 5 » > 5 y
bar(y) . L B
system system = =
text 3\:::’[5 & system operations system — —
use sequence operation
cases dlagrarqs contracts
Hesi biect Software
Design Model €sIgn ObJects A, hitecture Doc.
[E— to handle the
Design EPE' system events =
PP Eﬁ ——
RG]
Software
) — Dev. Plan
Project

Management

Development

Test Environment

ga

%
(0]

Figure 9.6 Sample UP artifact influence.

[EnN
N
&)

Chapter 10

DOMAIN MODEL-
VISUALIZING CONCEPTS

It'sall very well in practice, but it will never work in theory.

—anonymous management maxim

Objectives

Identify conceptual classes related to the current iteration
requirements.

Create an initial domain model.
Distinguish between correct and incorrect attributes.
Add specification conceptual classes, when appropriate.

Compare and contrast conceptual and implementation views.

Introduction

A domain model is widely used as a source of inspiration for designing software
objects, and will be a required input to several subsequent artifacts discussed in
this book. Therefore, it is important to read this chapter if the subject of domain
modeling is unfamiliar.

A domain model illustrates meaningful (to the modelers) conceptual classes in a
problem domain; it is the most important artifact to create during object-ori-
ented analysis.' This chapter explores introductory skills in creating domain

1. Use cases are an important requirements analysis artifact, but are not object-oriented.
They emphasize a process view of the domain.

127

10.1

128

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

models. The following two chapters expand on domain modeling skills—adding
attributes and associations.

Identifying a rich set of objects or conceptual classes is at the heart of object-ori-
ented analysis, and well worth the effort in terms of payoff during the design
and implementation work.

The identification of conceptual classes is part of an investigation of the problem
domain. The UML contains notation in the form of class diagrams to illustrate
domain models.

Key ldea

A domain model is a representation of real-world conceptual classes, not of
software components. It is not a set of diagrams describing software classes,
or software objects with responsibilities.

Domain Models

The quintessential object-oriented step in analysis or investigation is the decom-
position of a domain of interest into individual conceptual classes or objects—
the things we are aware of. A domain model is a visual representation of con-
ceptual classes or real-world objects in a domain of interest [MO95, Fowler96].
They have also been called conceptual models (the term used in the first edi-
tion of this book), domain object models, and analysis object models.?

The UP defines a Domain Model® as one of the artifacts that may be created in
the Business Modeling discipline.

Using UML notation, a domain model is illustrated with a set of class dia-
grams in which no operations are defined. It may show:

+ domain objects or conceptual classes
+ associations between conceptual classes
» attributes of conceptual classes

For example, Figure 10.1 shows a partial domain model. It illustrates that the
conceptual class of Payment and Sale are significant in this domain, that a Pay-

2. They are also related to conceptual entity relationship models, which are capable of
showing purely conceptual views of domains, but that have been widely re-interpreted
as data models for database design. Domain models are not data models.

3. Capitalization of Domain Model is used when I wish to emphasize it as an official
model defined in the UP, vs. the general well-known concept of "domain models."

DOMAINMODELS

merit is related to a Sale in a way that is meaningful to note, and that a Sale has
a date and time. The details of the notation are not important at this time.

concept Sales Item
or domain O Lineltem Records-sale-of
object
quantity 0.1 1
*
1.*
— Stocked-in
assomatlonﬁ o Contained-in
1 1
Sale Store
attributes 5 o| date address
time 1 name
1 1
Houses
Paid-by 1.%
1 Register
Captured-oh
Payment
1
amount

Figure 10.1 Partial domain model—a visual dictionary. The numbers at each
end of the line indicate multiplicity, which is described in a subsequent chapter.

Key Idea: Domain Model—A Visual Dictionary of Abstractions

Please reflect on Figure 10.1 for a moment. It visualizes and relates some words
or conceptual classes in the domain. It also depicts an abstraction of the concep-
tual classes, because there are many things one could communicate about regis-
ters, sales, and so forth. The model displays a partial view, or abstraction, and
ignores uninteresting (to the modelers) details.

The information it illustrates (using UML notation) could alternatively have
been conveyed in prose, in statements in the Glossary or elsewhere. But it is
easy to comprehend the discrete elements and their relationships in this visual
language, since a significant percentage of the brain participates in visual pro-
cessing—it is a human strength.

Thus, the domain model may be considered a visual dictionary of the notewor-
thy abstractions, domain vocabulary, and information content of the domain.

129

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

Domain Models Are not Models of Software Components

A domain model, as shown in Figure 10.2, is a visualization of things in the real-
world domain of interest, not of software components such as a Java or C++
class (see Figure 10.3), or software objects with responsibilities. Therefore, the
following elements are not suitable in a domain model:

Software artifacts, such as a window or a database, unless the domain being
modeled is of software concepts, such as a model of graphical user interfaces.

+ Responsibilities or methods.*

A

visualization of a reg
world concept in the

Sale | domain of interest
date it is anota picture of
time software class

Figure 10.2 A domain model shows real-world conceptual classes, not software

classes.
0‘© SalesDatabase software artifact; not
'aS of domain model
N Sale
QO\ o software class; not pal
> date of domain model
time
print()

Figure 10.3 A domain model does not show software artifacts or classes.

4. In object modeling, we usually speak of responsibilities related to software compo-
nents. And methods are purely a software concept. But, the domain model describes
real-world concepts, not software components. Considering object responsibilities dur-
ing design work is very important; it 1s just not part of this model. One valid case in
which responsibilities may be shown in a domain model is if it includes human worker

roles (such as Cashier), and the modeler wishes to record the responsibilities of these
human workers.

130

DOMAIN MODELS

Conceptual Classes

The domain model illustrates conceptual classes or vocabulary in the domain.
Informally, a conceptual class is an idea, thing, or object. More formally, a con-
ceptual class may be considered in terms of its symbol, intension, and extension
[MO95] (see Figure 10.4).

* Symbol—words or images representing a conceptual class.
e Intension—the definition of a conceptual class.
« Extension—the set of examples to which the conceptual class applies.

For example, consider the conceptual class for the event of a purchase transac-
tion. I may choose to name it by the symbol Sale. The intension of a Sale may
state that it "represents the event of a purchase transaction, and has a date and
time." The extension of Sale is all the examples of sales; in other words, the set
of all sales.

Saleo } concept's symbolH

date
time

"A sale represents the evept L. . H
of a purchase transaction. It concept's intension
has a date and time."

concept's extensicﬁ

Figure 10.4 A conceptual class has a symbol, intension, and extension.

When creating a domain model, it is usually the symbol and intensional view of
a conceptual class that are of most practical interest.

131

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

Domain Models and Decompaosition

Software problems can be complex; decomposition—divide-and-conquer—is a
common strategy to deal with this complexity by division of the problem space
into comprehensible units. In structured analysis, the dimension of decompo-
sition is by processes or functions. However, in object-oriented analysis, the
dimension of decomposition is fundamentally by things or entities in the
domain.

A central distinction between object-oriented and structured analysis is: divi-
sion by conceptual classes (objects) rather than division by functions.

Therefore, a primary analysis task is to identify different concepts in the prob-
lem domain and document the results in a domain model.

Conceptual Classes in the Sale Domain

For example, in the real-world domain of sales in a store, there are the concep-
tual classes of Store, Register, and Sale. Therefore, our domain model, shown in
Figure 10.5, may include Store, Register, and Sale.

Store Register Sale

Figure 10.5 Partial domain model in the domain of the store.

10.2 Conceptual Class Identification

132

Our goal is to create a domain model of interesting or meaningful conceptual
classes in the domain of interest (sales). In this case, that means concepts
related to the use case Process Sale.

In iterative development, one incrementally builds a domain model over several
iterations in the elaboration phase. In each, the domain model is limited to the
prior and current scenarios under consideration, rather than a "big bang" model
which early on attempts to capture all possible conceptual classes and relation-
ships. For example, this iteration is limited to a simplified cash-only Process
Sale scenario; therefore, a partial domain model will be created to reflect just
that—not more.

The central task is therefore to identify conceptual classes related to the scenar-
ios under design.

CONCEPTUAL CLASS IDENTIFICATION

The following is a useful guideline in identifying conceptual classes:

It is better to overspecify a domain model with lots of fine-grained conceptual
classes than to underspecify it.

Do not think that a domain model is better if it has fewer conceptual classes;
quite the opposite tends to be true.

It is common to miss conceptual classes during the initial identification step,
and to discover them later during the consideration of attributes or associations,
or during design work. When found, they may be added to the domain model.

Do not exclude a conceptual class simply because the requirements do not indi-
cate any obvious need to remember information about it (a criterion common in
data modeling for relational database design, but not relevant to domain model-
ing), or because the conceptual class has no attributes.

It is valid to have attributeless conceptual classes, or conceptual classes which
have a purely behavioral role in the domain instead of an information role.

Strategies to Identify Conceptual Classes

Two techniques are presented in the following sections:
1. Use a conceptual class category list.
2. Identify noun phrases.

Another excellent technique for domain modeling is the use of analysis pat-
terns, which are existing partial domain models created by experts, using pub-
lished resources such as Analysis Patterns [Fowler96] and Data Model Patterns
[Hay96].

Use a Conceptual Class Category List

Start the creation of a domain model by making a list of candidate conceptual
classes. Table 10.1 contains many common categories that are usually worth
considering, though not in any particular order of importance. Examples are
drawn from the store and airline reservation domains.

133

=

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

Conceptual Class Category Examples
physical or tangible objects Register
Airplane
specifications, designs, or descriptions |ProductSpecification

of things FlightDescription
places Sore

Airport
transactions Sale, Payment

Reservation
transaction line items SalesLineltem
roles of people Cashier

Pilot
containers of other things Sore, Bin

Airplane
things in a container [tem

Passenger

other computer or electro-mechanical
systems external to the system

CreditPaymentAuthorizationSystem
AirTrafficControl

abstract noun concepts Hunger
Acrophobia

organizations SalesDepartment
ObjectAirline

events Sale, Payment, Meeting
Flight, Crash, Landing

processes SHlingAProduct

(often not represented as a concept, BookingASeat

but may be)

rules and policies RefundPolicy
CancellationPolicy

catalogs ProductCatalog
PartsCatalog

CONCEPTUAL CLASS IDENTIFICATION

Conceptual Class Category Examples
records of finance, work, contracts, Receipt, Ledger, EmploymentContract
legal matters Maintenancel.og
financial instruments and services LineOfCredit
Sock
manuals, documents, reference DailyPriceChangelist
papers, books RepairManual

Table 10.1 Conceptual Class Category List.

Finding Conceptual Classes with Noun Phrase Identification

Another useful technique (because of its simplicity) suggested in [Abbot83] is
linguistic analysis: identify the nouns and noun phrases in textual descriptions
of a domain, and consider them as candidate conceptual classes or attributes.

Care must be applied with this method; a mechanical noun-to-class mapping
isn't possible, and words in natural languages are ambiguous.

Nevertheless, it is another source of inspiration. The fully dressed use cases are
an excellent description to draw from for this analysis. For example, the current
scenario of the Process Sale use case can be used.

Main Success Scenario (or Basic Flow):

1 Customer arrives at a POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running
total. Price calculated from a set of price rules.

Cashier repeats steps 2-3 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs the completed sale and sends sale and payment information to the
external Accounting (for accounting and commissions) and Inventory systems (to
update inventory).

9. System presents receipt.

10.Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):

7a. Paying by cash:
1. Cashier enters the cash amount tendered.

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.

The domain model is a visualization of noteworthy domain concepts and vocabu-
lary. Where are those terms found? In the use cases. Thus, they are a rich source
to mine via noun phrase identification.

Some of these noun phrases are candidate conceptual classes, some may refer to
conceptual classes that are ignored in this iteration (for example, "Accounting"
and "commissions"), and some may be attributes of conceptual classes. Please
see the subsequent section and chapter on attributes for advice on distinguish-
ing between the two.

A weakness of this approach is the imprecision of natural language; different
noun phrases may represent the same conceptual class or attribute, among
other ambiguities. Nevertheless, it is recommended in combination with the
Conceptual Class Category List technique.

10.3 Candidate Conceptual Classes for the Sales Domain

—
2
[o)}

From the Conceptual Class Category List and noun phrase analysis, a list is
generated of candidate conceptual classes for the domain. The list is constrained
to the requirements and simplifications currently under consideration—the sim-
plified scenario of Process Sale.

Register ProductSpecification
[tem SalesLineltem

Sore Cashier

Sale Customer

Payment Manager
ProductCatalog

There is no such thing as a "correct" list. It is a somewhat arbitrary collection of
abstractions and domain vocabulary that the modelers consider noteworthy.
Nevertheless, by following the identification strategies, similar lists will be pro-
duced by different modelers.

DOMAIN MODELING GUIDELINES

Report Objects—Include Receipt in the Model?

A receipt is a record of a sale and payment and a relatively prominent concep-
tual class in the domain, so should it be shown in the model?

Here are some factors to consider:

* A receipt is a report of a sale. In general, showing a report of other informa-
tion in a domain model is not useful since all its information is derived from
other sources; it duplicates information found elsewhere. This is one reason
to exclude it.

* A receipt has a special role in terms of the business rules: it usually confers
the right to the bearer of the receipt to return bought items. This is a reason
to show it in the model.

Since item returns are not being considered in this iteration, Receipt will be
excluded. During the iteration that tackles the Handle Returns use case, it
would be justified to include it.

10.4 Domain Modeling Guidelines

How to Make a Domain Model

Apply the following steps to create a domain model:

1. List the candidate conceptual classes using the Conceptual Class Cate-
gory List and noun phrase identification techniques related to the current
requirements under consideration.

2. Draw them in a domain model.

3. Add the associations necessary to record relationships for which there is a
need to preserve some memory (discussed in a subsequent chapter).

4. Add the attributes necessary to fulfill the information requirements (dis-
cussed in a subsequent chapter).

An adjunct useful method is to learn and copy analysis patterns, which are dis-
cussed in a later chapter.

—_
(8}
-

oo

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

On Naming and Modeling Things: The Mapmaker

The mapmaker strategy applies to both maps and domain models.

Make a domain model in the spirit of how a cartographer or mapmaker
works:

* Use the existing names in the territory.
* Exclude irrelevant features.

* Do not add things that are not there.

A domain model is a kind of map of concepts or things in a domain. This spirit
emphasizes the analytical role of a domain model, and suggests the following:

A mapmaker uses the names of the territory—they do not change the names
of cities on a map. For a domain model, this means use the vocabulary of the
domain when naming conceptual classes and attributes. For example, if
developing a model for a library, name the customer a "Borrower" or
"Patron"—the terms used by the library staff.

A mapmaker deletes things from a map if they are not considered relevant
to the purpose of the map; for example, topography or populations need not
be shown. Similarly, a domain model may exclude conceptual classes in the

problem domain not pertinent to the requirements. For example, we may

exclude Pen and PaperBag from our domain model (for the current set of
requirements) since they do not have any obvious noteworthy role.

A mapmaker does not show things that are not there, such as a mountain
that does not exist. Similarly, the domain model should exclude things not in
the problem domain under consideration.

The principle is also named the Use the Domain Vocabulary strategy [Coad95].

A Common Mistake in Identifying Conceptual Classes

Perhaps the most common mistake when creating a domain model is to repre-
sent something as an attribute when it should have been a concept. A rule of
thumb to help prevent this mistake is:

If we do not think of some conceptual class X as a number or text in the real
world, X is probably a conceptual class, not an attribute.

RESOLVING SIMILAR CONCEPTUAL CLASSES—REGISTER vs. " POST"

As an example, should store be an attribute of Sale, or a separate conceptual
class Store?

Sale Sale Store
or...?
store phoneNumber

In the real world, a store is not considered a number or text—the term suggests a
legal entity, an organization, and something occupies space. Therefore, Store
should be a concept.

As another example, consider the domain of airline reservations. Should desti-
nation be an attribute of Flight, or a separate conceptual class Airport?

Flight Flight Airport
or... ?
destination name

In the real world, a destination airport is not considered a number or text—it is a
massive thing that occupies space. Therefore, Airport should be a concept.

If in doubt, make it a separate concept. Attributes should be fairly rare in a
domain model.

10.5 Resolving Similar Conceptual Classes—Register vs.
"POST"

POST stands for point-of-sale terminal. In computerese, a terminal is any
end-point device in a system, such as a client PC, a wireless networked PDA, and
so forth. In earlier times, long before POSTs, a store maintained a register—a book
that logged sales and payments. Eventually, this was automated in a mechanical
"cash register." Today, a POST fulfills the role of the register (see Figure 10.6).

A register is a thing that records sales and payments, but so is a POST. However,
the term register seems somewhat more abstract and less implementation
oriented than POST. So, in the domain model, should the symbol Register be
used instead of POST?

First, as a rule of thumb, a domain model is not absolutely correct or wrong, but
more or less useful; it is a tool of communication.

139

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

By the mapmaker principle, "POST" is a term familiar in the territory, so it is a
useful symbol from the point of view of familiarity and communication. By the
goal of creating models that represent abstractions and are implementation
independent, Register is appealing and useful.” Register may be fairly consid-
ered to represent both the conceptual class of a place to register sales, and/or an
abstraction of various kinds of terminals, such as a POST.

Both choices have merit; Register has been chosen in this case study somewhat
arbitrarily, but POST would also have been understandable to the stakeholders.

similar concepts with
different names

POST or? Register
1 1
Records ¥ Records ¥
* *
Sale Sale

Figure 10.6 POST and register are similar conceptual classes.

10.6 Modeling the Unreal World

Some software systems are for domains that find very little analogy in natural
or business domains; software for telecommunications is an example. It is still
possible to create a domain model in these domains, but it requires a high
degree of abstraction and stepping back from familiar designs.

For example, here are some candidate conceptual classes related to a telecom-
munication switch: Message, Connection, Port, Dialog, Route, Protocol.

10.7 Specification or Description Conceptual Classes

The following discussion may at first seem related to a rare, highly specialized
issue. However, it turns out that the need for specification conceptual classes (as
will be defined) is common in many domain models. Thus, it is emphasized.

5. Note that in earlier times a register was just one possible implementation of how to
record sales. The term has acquired a generalized meaning over time.

SPECIFICATION OR DESCRIPTION CONCEPTUAL CLASSES

Assume the following:

* An Iteminstance represents a physical item in a store; as such, it may even
have a serial number.

* An Item has a description, price, and itemID, which are not recorded any-
where else.

* Everyone working in the store has amnesia.

* Every time a real physical item is sold, a corresponding software instance of
Itemis deleted from "software land."

With these assumptions, what happens in the following scenario?

There is strong demand for the popular new vegetarian burger—ObjectBurger.
The store sells out, implying that all Item instances of ObjectBurgers are
deleted from computer memory.

Now, here is the heart of the problem: If someone asks, "How much do Object-
Burgers cost?", no one can answer, because the memory of their price was
attached to inventoried instances, which were deleted as they were sold.

Notice also that the current model, if implemented in software as described, has
duplicate data and is space-inefficient because the description, price, and
itemID are duplicated for every Item instance of the same product.

The Need for Specification or Description Conceptual Classes

The preceding problem illustrates the need for a concept of objects that are spec-
ifications or descriptions of other things. To solve the Item problem, what is
needed is a ProductSpecification (or ItemSpecification, ProductDescription, ...)
conceptual class that records information about items. A ProductSpecification
does not represent an Item, it represents a description of information about
items. Note that even if all inventoried items are sold and their corresponding
Item software instances are deleted, the ProductSpecifications still remain.

Description or specification objects are strongly related to the things they
describe. In a domain model, it is common to state that an XSpecification
Describes an X (see Figure 10.7).

The need for specification conceptual classes is common in sales and product
domains. It is also common in manufacturing, where a description of a manufac-
tured thing is required that is distinct from the thing itself. Time and space
have been taken in motivating specification conceptual classes because they are
very common; it is not a rare modeling concept.

141

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

Item

description Worse
price

serial number
itemID

ProductSpecification

. Item
description Describes Better
price 1 * | serial number
itemID

Figure 10.7 Specifications or descriptions about other things. The "*" means a

multiplicity of "many." It indicates that one ProductSpecification may describe
many (*) ltems.

When Are Specification Conceptual Classes Required?

The following guideline suggests when to use specifications:

Add a specification or description conceptual class (for example, Prod-

uctSpecification) when:

» There needs to be a description about an item or service, independent of the
current existence of any examples of those items or services.

» Deleting instances of things they describe (for example, Item) results in a loss
of information that needs to be maintained, due to the incorrect association
of information with the deleted thing.

= [t reduces redundant or duplicated information.

Another Specification Example

As another example, consider an airline company that suffers a fatal crash of
one of'its planes. Assume that all the flights are cancelled for six months pending
completion of an investigation. Also assume that when flights are cancelled, their
corresponding Flight software objects are deleted from computer memory.
Therefore, after the crash, all Flight software objects are deleted.

If the only record of what airport a flight goes to is in the Flight software
instances, which represent specific flights for a particular date and time, then
there is no longer a record of what flight routes the airline has.

SPECIFICATION OR DESCRIPTION CONCEPTUAL CLASSES

To solve this problem, a FlightDescription (or FlightSpecification) is required
that describes a flight and its route, even when a particular flight is not sched-
uled (see Figure 10.8).

Flight
i Airport
date Flies-to Worse
number * 1 | name
time
Flight - —
Described-by FlightDescription Better
o_iate * 1 | number
time
*

Describes-flights-to
1

Airport

name

Figure 10.8 Specifications about other things.

Descriptions of Services

Note that the prior example is about a service (a flight) rather than a good (such
as a veggieburger). Descriptions of services or service plans are commonly
needed.

As another example, a mobile phone company sells packages such as "bronze,"
"gold," and so forth. It is necessary to have the concept of a description of the
package (a kind of service plan describing rates per minute, wireless Internet
content, the cost, and so forth) separate from the concept of an actual sold pack-
age (such as "gold package sold to Craig Larman on Jan 1, 2002 at $55 per
month"). Marketing needs to define and record this service plan or MobileCom-
municationsPackageDescription before any are sold.

,_.
~
[v8)

10.8

144

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

UML Notation, Models, and Methods: Multiple
Perspectives

The UP defines something called a Domain Model, which is illustrated with
UML notation. However, there is no term "Domain Model" to be found in the
official UML documentation. This points to an important insight:

The UML simply describes raw diagram types, such as class diagrams and
sequence diagrams. It does not superimpose a method or modeling perspec-
tive on these. Rather, a process (such as the UP) applies raw UML in the con-
text of methodologist-defined models.

For example, raw UML class diagramming notation can be used to create pic-
tures of domain conceptual classes (a domain model), software classes, rela-
tional database tables, and so forth.

Thus, do not confuse the basic UML diagram notation with its application to
visualizing various kinds of models defined by methodologists (see Figure 10.9).
This point applies not only to UML class diagrams, but to most UML notation.

As another example of raw diagrams being interpreted differently in different
models, UML sequence diagrams can be used to illustrate messaging between
software objects (as in the UP Design Model), or interaction between people and
parties in the real world (as in the UP Business Object Model).

This insight was emphasized in the Syntropy object-oriented method [CD94],
and reiterated by Martin Fowler in UML Digtilled [FSOO]. That is, the same dia-
gramming notation may be used for three perspectives and types of models:

1 Essential or conceptual perspective—the diagrams are interpreted as
describing things in the real world or domain of interest.

2. Specification perspective—the diagrams (using the same notation as for
essential models) are interpreted as describing software abstractions or
components with specifications and interfaces, but no commitment to a par-
ticular implementation (for example, not specifically a class in C# or Java).

3. Implementation perspective—the diagrams (using the same notation as
for essential models) are interpreted as describing software implementa-
tions in a particular technology and language (such as Java).

UML NOTATION, MODELS, AND METHODS: MULTIPLE PERSPECTIVES

UP Domain Model

Payment Sale

1 Pays-for 1

Raw UML class diagra
date h -
amount i notation used in an

ime -

essential model

visualizing real-world

concepts.

UP Design Model

Sale
Payment Raw UML class diagra
1 pays-for 1 | date: Date notation used in a
amount: Money startTime: Time specification model
visualizing software
getBalance(): Money getTotal(): Money components.

Figure 10.9 Raw UML notation is applied in different perspectives and models
defined by a process or method.

Superimposing Terminology: UML vs. Methods

In the raw UML, the rectangular boxes shown in Figure 10.9 are called classes,
but note that in the UML, this term encompasses a variety of phenomenon—
physical things, software things, events, and so forth.® A process or method will
superimpose alternative terminology on top of the UML. For example, in the UP,
when the UML boxes are drawn in the Domain Model, they may be called
domain concepts or conceptual classes; the Domain Model offers a concep-
tual perspective. In the UP, when UML boxes are drawn in the Design Model,
they are officially called design classes; the Design Model offers a specification
or implementation perspective, as desired by the modeler.

Regardless of the definition, the bottom line is that it is useful to distinguish
between the perspective of an analyst looking at real-world concepts such as a
sale (a conceptual perspective), and software designers specifying software com-
ponents such as a Sale software class (a specification or implementation per-
spective).

The UML can be used to illustrate both perspectives with very similar notation
and terminology, so it is important to bear in mind which perspective is being
taken.

A UML class is a special case of the very general UML model element classifier—
something with structural features and/or behavior, including classes, actors, inter-
faces, and use cases.

145

10.9

146

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

To keep things clear, this book will use class-related terms as follows, which is
consistent with the UML and the UP:

* Conceptual class — real-world concept or thing. A conceptual or essen-
tial perspective. The UP Domain Model contains conceptual classes.

* Software class — a class representing a specification or implementation
perspective of a software component, regardless of the process or method.

* Design class — a member of the UP Design Model. It is a synonym for
software class, but for some reason I wish to emphasize that it is a class

in the Design Model. The UP allows a design class to be either a specifica-
tion or implementation perspective, as desired by the modeler.

* Implementation class — a class implemented in an object-oriented lan-
guage such as Java.

* (Class — as in the UML, the general term representing either a real-world
thing (a conceptual class) or software thing (a software class).

Lowering the Representational Gap

Please consider Figure 10.10. Why do books and educators discussing object
design common only show the use of software classes whose names reflect

domain vocabulary? Why choose a software class name such as Sale, and what
does a Saledo?

Simply, choosing names that reflect the domain vocabulary (Sale) enhances
quick comprehension and provides a clue as to what to expect from the chunk of
code in a Sale software class. We have a mental or domain model of the domain
in question (for example, a store selling things). In the real world, we know that
a sale has a date. Consequently, if we create a Java class named Sale, and give it
the responsibility of knowing about a real sale and its date, then the Java class
Sale somewhat corresponds to our mental or domain model of the real domain;
that is, it appeals to our "intuitions" of the domain.

The Domain Model provides a visual dictionary of the domain vocabulary
and concepts from which to draw inspiration for the naming of some things
in the software design.

This relates to the issue of representational gap or semantic gap—the gap
between our mental model of the domain and its representation in software.

LOWERING THE REPRESENTATIONAL GAP

UP Domain Mod

el

Stakeholder's view of the noteworthy concepts in the domain.

. . Sale
A Payment in the Domain Model Payment 1 Pays-for 1
is a concept, but a Paymentin - date
the Design Model is a software /| &mount time
class. They are not the same
thing, but the fornrespiredhe | . .
naming and definition of the |/ IQS%IL?SS _ _
latter. ' aJnd
This reduces the representational names in
gap.

Sale
This is one of the big ideas in Payment
object technology. L Pavs-for 1 | date: Date
O amount: Money Y startTime: Time

getBalance(): Money

getTotal(): Money

UP Design Model
The object-oriented developer has taken inspiration from the real w
in creating software classes.

Therefore, the representational gap between how stakeholders con
domain, and its representation in software, has been lowered.

Figure 10.10 In object design and programming it is common to create software classes
whose names and information is inspired from the real world domain.

At one extreme, we could directly program the NextGen POS application in raw binary
code to invoke the processor instruction set. We understand that the gap in
representations is huge, and there will be a real cost—albeit hard to quantify—in
software with such a large representational gap because it is hard to comprehend or
relate to the problem domain. Closer to the other end of the spectrum are object
technologies that allow us to chunk code into classes whose names reflect the kind of
chunking we perceive in the domain. In the real world we perceive a "chunk" (or event)
called a sale, so in software land we have a software class called Sale. This closer
one-to-one mapping between the domain vocabulary and our software vocabulary and its
chunking reduces the representational gap. This speeds comprehension of existing code
(because it works in ways we expect, knowing the domain) and suggests "natural” ways to
extend the code in ways that similarly correspond to the domain, or appeal to our
intuitions of the domain. Put simply, the software model reminds us of the conceptual or
mental model, and works in predictable ways.

There is a practical advantage to software models that reduce the representational gap.
Most software engineers know this is true, even if it is hard to quantify. Indeed, a proof of
this is that Java obfuscators make source code hard to practically reverse-engineer
from bytecode by changing the names of Java

147

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

classes and methods so they are unintelligible, and thus no longer appeal to our
intuitions of the domain, even though the control and data structures are
unchanged.

Of course, object technology is also of value because it can support the design of
elegant, loosely coupled systems that scale and extend easily, as will be explored
in the remainder of the book. A lowered representational gap is useful, but argu-
ably secondary to the advantage of objects to support ease of change and exten-
sion, and their support to manage and hide complexity.

10.10 Example: The NextGen POS Domain Model

The list of conceptual classes generated for the NextGen POS domain may be
represented graphically (see Figure 10.11) to show the start of the Domain

Model.
Register Item Store Sale
_Sales Cashier Customer Manager
Lineltem
Pavment Product Product
Y Catalog Specification

Figure 10.11 Initial Domain Model.

Consideration of attributes and associations for the Domain Model will be
deferred to subsequent chapters.

10.11 Domain Models Within the UP

As suggested in the example of Table 10.2, a Domain Model is usually both
started and completed in elaboration.

Inception

Domain models are not strongly motivated in inception, since inception's pur-
pose is not to do a serious investigation, but rather to decide if the project is
worth deeper investigation in an elaboration phase.

DOMAIN MODELS WITHIN THE UP

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration— n El.En | C1.Cn | T1..T2
Business Modeling |Domain Model s
Requirements Use-Case Model (SSDs) S r
Vision s r
Supplementary Specification s r
Glossary s r
Design Design Model s r
SW Architecture Document s
Data Model s r
Implementation Implementation Model S r r
Project Management |SW Development Plan s r r r
Testing Test Model S r
Environment Development Case s r

Table 10.2 Sample UP artifacts and timing, s - start; r - refine

Elaboration

The Domain Model is primarily created during elaboration iterations, when the
need is highest to understand the noteworthy concepts and map some to soft-
ware classes during design work.

Although ironically a significant number of pages will be devoted to explaining
domain object modeling, in experienced hands the development of a (partial,
incrementally growing) domain model in each iteration should only take a few
hours. This is further shortened by the use of predefined analysis patterns.

The UP Business Object Model vs. Domain Model

The UP Domain Model is an official variation of the less common UP Business
Object Model (BOM). The UP BOM—not to be confused with how other people
or methods may define a BOM, which is a widely used term with different mean-
ings—is a kind of enterprise model used to describe the entire business. It may
be used when doing business process engineering or reengineering, independent
of any one software application (such as the NextGen POS). To quote:

[The UP BOM] serves as an abstraction of how business workers
and business entities need to be related and how they need to
collaborate in order to perform the business. [RUP]

The BOM is represented with several different diagrams (class, activity, and
sequence) that illustrate how the entire enterprise runs (or should run). It is
most useful if doing enterprise-wide business process engineering, but that is a
less common activity than creating a single software application.

._.
N
\O

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

Consequently, the UP defines the Domain Model as the more commonly created
subset artifact or specialization of the BOM. To quote:

You can choose to develop an "incomplete" business object model,
focusing on explaining "things" and products important to a
domain. ... This is often referred to as a domain model. [RUP]

10.12 Further Readings

150

Odell's Object-Oriented Methods. A Foundation provides a solid introduction to
conceptual domain modeling. Cook and Daniel's Designing Object Systems is
also useful.

Fowler's Analysis Patterns offers worthwhile patterns in domain models, and is
definitely recommended. Another good book that describes patterns in domain
models is Hay's Data Model Patterns; Conventions of Thought. Advice from data
modeling experts who understand the distinction between pure conceptual mod-
els and database schema models can be very useful for domain object modeling.

Java Modeling in Color with UML [CDL99] has more relevant domain modeling
advice than the title suggests. The authors identify common patterns in related
types and their associations; the color aspect is really a visualization of the com-
mon categories of these types, such as descriptions (blue), roles (yellow), and
moment-intervals (pink). Color is used to aid in seeing the patterns.

Since the original work by Abbot, linguistic analysis has acquired more sophisti-
cated techniques for object-oriented analysis, generally called natural language
modeling, or a variant. See [Moreno97] as an example.

UP ARTIFACTS

10.13 UP Artifacts

Artifact influence emphasizing the Domain Model is shown in Figure 10.12.

Sample UP Artifacts Partiafrtifacts

refined in each

) Domain iteration.
Business Model
Modeling %

the domain objects,
attributes, and associations
that undergo state changes

| Use-Case Model T
/% /Q\ :System i
i 5 L foo(x)] N '| clossary ...
Requirements 5 /%% | ‘ 5 } y
L bar(y) i | N
! ' System i _— —_—
text use system operatior Ssystem i = —
use case sequence operation
cases diagrams diagrams ' contracts
Design Model
the system operations are S'oftware
. EIJ L Architecture Doc.
Design z handled by designing
DFEF software to fulfill the post-
conditions of the
contracts
Software
—— Dev. Plan
Project
Management
Test
Plan Development
Case
Test — Environment

Figure 10.12 Sample UP artifact influence.

151

Chapter 11

DOMAIN MODEL:
ADDING ASSOCIATIONS

Objectives

* Identify associations for a domain model.

» Distinguish between need-to-know and comprehension-only
associations.

Introduction

It is useful to identify those associations of conceptual classes that are needed to
satisfy the information requirements of the current scenarios under develop-
ment, and which aid in comprehending the domain model. This chapter explores
the identification of suitable associations, and adds associations to the domain
model for the NextGen case study.

11.1 Associations

An association is a relationship between types (or more specifically, instances
of those types) that indicates some meaningful and interesting connection (see
Figure 11.1).

153

11.2

154

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

In the UML associations are defined as "the semantic relationship between two
or more classifiers that involve connections among their instances."

association N

o

. Records-current
Register 1 1 Sale

Figure 11.1 Associations.

Criteria for Useful Associations

Associations worth noting usually imply knowledge of a relationship that needs
to be preserved for some duration—it could be milliseconds or years, depending
on context. In other words, between what objects do we need to have some mem-
ory of a relationship? For example, do we need to remember what SalenLineltem
instances are associated with a Sale instance? Definitely, otherwise it would not
be possible to reconstruct a sale, print a receipt, or calculate a sale total.

Consider including the following associations in a domain model:

* Associations for which knowledge of the relationship needs to be pre-
served for some duration ("need-to-know" associations).

* Associations derived from the Common Associations List.

By contrast, do we need to have memory of a relationship between a current
Sale and a Manager? No, the requirements do not suggest that any such rela-
tionship is needed. It is not wrong to show a relationship between a Sale and
Manager, but it is not compelling or useful in the context of our requirements.

This is an important point. On a domain model with n different conceptual
classes, there can be n-(n-1) associations to other conceptual classes—a poten-
tially large number. Many lines on the diagram will add "visual noise" and make
it less comprehensible. Therefore, be parsimonious about adding association
lines. Use the criterion guidelines suggested in this chapter.

The UML Association Notation

An association is represented as a line between classes with an association
name. The association is inherently bidirectional, meaning that from instances
of either class, logical traversal to the other is possible.

FINDING ASSOCIATIONS—COMMON ASSOCIATIONS LIST

This traversal is purely abstract; it is not a statement about connections
between software entities.

-"reading direction arrow"

-it hasro meaning except to indicate direction
reading the association label

-often excluded

6!
Records-curreht
1 0 1

Sale

Register

association name ~ multiplicity ~

Figure 11.2 The UML notation for associations.

The ends of an association may contain a multiplicity expression indicating the
numerical relationship between instances of the classes.

An optional "reading direction arrow" indicates the direction to read the association
name; it does not indicate direction of visibility or navigation.

If not present, it is conventional to read the association from left to right or top to
bottom, although the UML does not make this a rule (see Figure 11.2).

The reading direction arrow has no meaning in terms of the model; it is only an
aid to the reader of the diagram.

11.3 Finding Associations—Common Associations List

Start the addition of associations by using the list in Table 11.1.

It contains common categories that are usually worth considering. Examples are
drawn from the store and airline reservation domains.

155

11 - DOMAIN MODEL : ADDING ASSOCIATIONS

Category Examples
A is a physical part of B Drawer — Register (or more specif-
ically, a POST)
Wing— Airplane
A is a logical part of B Saleslineltem— Sale

FlightLeg—FlightRoute

A is physically contained in/on B

Regiger — Sore, Item— Shdf
Passenger — Airplane

A is logically contained in B

ItemDescription — Catalog
Flight— FlightSchedule

A is a description for B

ItemDescription — Item
FlightDescription— Flight

A is a line item of a transaction or report B

Saleslinelten— Sale
Mai ntenance Job — Maintenance-

Log

A is known/logged/recorded/reported/cap- Slle— Regiger
tured in B Reservation — FlightManifest
A is a member of B Cashier — Sore

Pilot— Airline

A is an organizational subunit of B

Department — Sore
Maintenance— Airline

A uses or manages B

Cashier — Register
Pilot— Airplane

A communicates with B

Cugtomer — Cashier
Reservation Agent — Passenger

A is related to a transaction B

Cugtomer — Payment
Passenger — Ticket

A is a transaction related to another trans-
action B

Payment— Sale
Reservation — Cancdllation

A is next to B

SalesLineltem— SalesLineltem
City—City

o)}

ASSOCIATION GUIDELINES

Category Examples

A is owned by B Regisger — Sore
Plane— Airline

A is an event related to B SHe— Cugomer, Slle— Sore
Departure— Flight

Table 11.1 Common Associations List.
High-Priority Associations

Here are some high-priority association categories that are invariably useful to
include in a domain model:

* Aisaphysical or logical part of B.

* Aisphysically or logically contained in/on B.

* AisrecordedinB.

11.4 Association Guidelines

» Focus on those associations for which knowledge of the relationship needs
to be preserved for some duration ("need-to-know" associations).

+ Itis more important to identify conceptual classes than to identify
associations.

* Too many associations tend to confuse a domain model rather than illu-
minate it. Their discovery can be time-consuming, with marginal benefit.

* Avoid showing redundant or derivable associations.

115 Roles

Each end of an association is called a role. Roles may optionally have:
* name

* multiplicity expression

* navigability

Multiplicity is examined next, and the other two features are discussed in later
chapters.

157

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

Multiplicity

Multiplicity defines how many instances of a class A can be associated with
one instance of a class B (see Figure 11.3).

Store 1 Stocks Item

Q.

“o%

multiplicity of the role H

Figure 11.3 Multiplicity on an association.

For example, a single instance of a Sore can be associated with "many" (zero or
more, indicated by the *) [tem instances.

Some examples of multiplicity expressions are shown in Figure 11.4.

* T Zero or more;
"many"
1 *
= T one or more
1..40
T one to 40
5
T exactly 5
3,5,8
T exactly 3, 5, or

Figure 11.4 Multiplicity values.

The multiplicity value communicates how many instances can be validly associ-
ated with another, at a particular moment, rather than over a span of time. For
example, it is possible that a used car could be repeatedly sold back to used car
dealers over time. But at any particular moment, the car is only Stocked-by one
dealer. The car is not Stocked-by many dealers at any particular moment. Simi-
larly, in countries with monogamy laws, a person can be Married-to only one
other person at any particular moment, even though over a span of time, they
may be married to many persons.

158

How DETAILED SHOULD ASSOCIATIONS BE?

The multiplicity value is dependent on our interest as a modeler and software
developer, because it communicates a domain constraint that will be (or could

be) reflected in software. See Figure 11.5 for an example and explanation.

»
Store Stocks Item
1 *
or0..1
o)
Multiplicity should "1" or "0..1"? k

The answer depends on our interest in using the model. Typically and practically, the muliplicity co
domain constraint that we care about being able to check in software, if this relationship was imple
in software objects or a database. For example, a particular item may become sold or discarded, ¢
stocked in the store. From this viewpoint, “0..1" is logical, but ...

Do we care about that viewpoint? If this relationship was implemented in software, we would probg
that arltemsoftware instance would always be related to 1 penmtandsance, otherwise it indicates a fay
corruption in the software elements or data.

This partial domain model does not represent software objects, but the multiplicities record constrg
value is usually related to our interest in building software or databases (that reflect our real-world
checks. From this viewpoint, "1" may be the desired value.

Figure 11.5 Multiplicity is context dependent.

Rumbaugh gives another example of Person and Company in the Works-for asso-
ciation [Rumbaugh91]. Indicating if a Person instance works for one or many
Company instances is dependent on the context of the model; the tax depart-
ment is interested in many; a union probably only one. The choice usually prac-
tically depends on whom we are building the software for, and thus the valid

multiplicities in an implementation.

11.6 How Detailed Should Associations Be?

Associations are important, but a common pitfall in creating domain models is

to spend too much time during investigation trying to discover them.

It is critical to appreciate the following:

159

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

11.7 Naming Associations

Name an association based on a TypeName-VerbPhrase-TypeName format

where the verb phrase creates a sequence that is readable and meaningful in
the model context.

Association names should start with a capital letter, since an association repre-
sents a classifier of links between instances; in the UML, classifiers should start

with a capital letter. Two common and equally legal formats for a compound
association name are:

+ Paid-by
« PaidBy

In Figure 11.6, the default direction to read an association name is left to right
or top to bottom. This is not a UML default, but a common convention.

Store

1

Contains

1.*

Captures Sale Paid-by

Register
9 1 1.% 1 1

Payment

Airline

1
Employs

1.*

Assigned-to : { Assigned-to
Flight
1 * 9 * 1

Person

Plane

1 *

Supervises

Figure 11.6 Association names.

MULTIPLE ASSOCIATIONS BETWEEN Two TYPES

11.8 Multiple Associations Between Two Types

Two types may have multiple associations between them,; this is not uncommon.
There is no outstanding example in our POS case study, but an example from
the domain of the airline is the relationships between a Flight (or perhaps more
precisely, a FlightLeg) and an Airport (see Figure 11.7); the flying-to and flying-
from associations are distinctly different relationships, which should be shown
separately.

Flies-to 1

Flight Airport
9 Flies-from P

* 1

Figure 11.7 Multiple associations.

11.9 Associations and Implementation

During domain modeling, an association is Not a statement about data flows,
instance variables, or object connections in a software solution; it is a statement
that a relationship is meaningful in a purely conceptual sense—in the real
world. Practically speaking, many of these relationships will typically be imple-
mented in software as paths of navigation and visibility (both in the Design
Model and Data Model), but their presence in a conceptual (or essential) view of
a domain model does not require their implementation.

When creating a domain model, we may define associations that are not neces-
sary during implementation. Conversely, we may discover associations that
need to be implemented but were missed during domain modeling. In these
cases, the domain model can be updated to reflect these discoveries.

Suggestion

Should prior investigative models such as a domain model be updated with
insights (such as new associations) revealed during implementation work?
Do not bother unless there is some future practical use for the model. If it is
just (as is sometimes the case) a temporary artifact used to provide inspira-
tion for a later step, and will not be meaningfully used later on, why update

it? Avoid making or updating any documentation or model unless there is a

concrete justification for future use.

Later on we will discuss ways to implement associations in an object-oriented
programming language (the most common is to use an attribute that references

161

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

an instance of the associated class), but for now, it is valuable to think of them
as purely conceptual expressions, Not statements about a database or software
solution. As always, deferring design considerations frees us from extraneous
information and decisions while doing pure "analysis" investigations and maxi-
mizes our design options later on.

11.10 NextGen POS Domain Model Associations

162

We can now add associations to our POS domain model. We should add those
associations which the requirements (for example, use cases) suggest or imply a
need to remember, or which otherwise are strongly suggested in our perception
of the problem domain. When tackling a new problem, the common categories of
associations presented earlier should be reviewed and considered, as they repre-
sent many of the relevant associations that typically need to be recorded.

Unforgettable Relationships in the Store

The following sample of associations is justified in terms of a need-to-know. It is
based on the use cases currently under consideration.

Register Records Sale To know the current sale, gener-
ate a total, print a receipt.
Sale Paid-by Payment To know if the sale has been paid,

relate the amount tendered to the
sale total, and print a receipt.

ProductCatalog Records Prod- To retrieve an ProductSpecifica-
uctSpecification tion, given an itemID.

Applying the Category of Associations Checklist

We will run through the checklist, based on previously identified types, consid-
ering the current use case requirements.

Category System
A is a physical part of B Regiger — CashDrawer
A is alogical part of B SAleslineltem— Sale
A is physically contained in/on B Regiser — Sore
ltem— Sore

NEXTGEN POS DOMAINMODEL

Category System

A is logically contained in B ProductSpecification — Product-
Catalog
ProductCatalog— Sore

A is a description for B Productpecification — Item

Ais a line item of a transaction or report B |SalesLineltem— Sale

A is logged/recorded/reported/captured in B |(completed) Sales— Sore
(current) Sale— Regigter

A is a member of B Cashier — Sore
A is an organizational subunit of B not applicable
A uses or manages B Cashier — Regigter

Manager — Regider
Manager — Cashier, but probably

not applicable.
A communicates with B Cugomgr — Cashier
A is related to a transaction B Customer — Payment
Cashier — Payment
A'is a transaction related to another trans- |Payment— Sale
action B
Aisnextto B SalesLineltem — SalesLineltem
A is owned by B Regiger — Sore

11.11 NextGen POS Domain Model

The domain model in Figure 11.8 shows a set of conceptual classes and associa-
tions that are candidates for our POS application. The associations were prima-
rily derived from the candidate association checklist.

Preserve Only Need-to-Know Associations?

The set of associations shown in the domain model of Figure 11.8 were, for the
most part, mechanically derived from the association checklist. However, it may
be desirable to be more choosy in the associations included in our domain model.
Viewed as a tool of communication, it is undesirable to overwhelm the domain

163

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

model with associations that are not strongly required and which do not illumi-

nate our understanding. Too many uncompelling associations obscure rather
than clarify.

As previously suggested, the following criteria for showing associations is rec-
ommended:

Focus on those associations for which knowledge of the relationship needs
to be preserved for some duration ("need-to-know" associations).

* Avoid showing redundant or derivable associations.

Records-sale-of

Described-by | 1
Product
Product Specification
Catalog Contains
1 1.*
1
0..1 * Used-by Describes
*
Sales *
Lineltem Store
Stocks ltem
1 1 * 1.*
1.*
Contained-in Logs- 1 Houses
completed
1 - 1.*
Sale * Register
Captured-on Started-by Manager
1 1 1 1
1
1 1 1
Paid-by Initiated-by < Records-sales-on
1 1 1
Initiated-by
Payment Customer

1 Cashier

Figure 11.8 A partial domain model.

NEXTGEN POS DOMAIN MODEL

Based on this advice, not every association currently shown is compelling. Con-
sider the following:

Association Discussion

Sale Entered-by Cashier The requirements do not indicate a need-to-
know or record the current cashier. Also, it is
derivable if the Register Used-by Cashier asso-

ciation is present.

Register Used-by Cashier The requirements do not indicate a need-to-
know or record the current cashier.

Register Sarted-by Manager | The requirements do not indicate a need-to-
know or record the manager who starts up a
Register.

Sale Initiated-by Customer The requirements do not indicate a need-to-
know or record the current customer who ini-
tiates a sale.

Sore Socks Item The requirements do not indicate a need-to-
know or maintain inventory information.

Saleslineltem Records-sale-of | The requirements do not indicate a need-to-
Item know or maintain inventory information.

Note that the ability to justify an association in terms of need-to-know is depen-
dent on the requirements; obviously a change in these—such as requiring that
the cashier's ID show on a receipt—changes the need to remember a relation-
ship.

Based on the above analysis, it may be justifiable to delete the associations in
question.

Associations for Need-to-Know vs. Comprehension

A strict need-to-know criterion for maintaining associations will generate a min-
imal "information model" of what is needed to model the problem domain—
bounded by the current requirements under consideration. However, this
approach may create a model that does not convey (to us or anyone else) a full
understanding of the domain.

In addition to being a need-to-know model of information about things, the
domain model is a tool of communication in which we are trying to understand
and communicate to others important concepts and their relationships. From
this viewpoint, deleting some associations that are not strictly demanded on a

(o))

11 - DOMAINMODEL: ADDING ASSOCIATIONS

need-to-know basis can create a model that misses the point—it does not com-
municate key ideas and relationships.

For example, in the POS application: although on a strict need-to-know basis it
might not be necessary to record Sale Initlated-by Customer, its absence leaves
out an important aspect in understanding the domain—that a customer gener-
ates sales.

In terms of associations, a good model is constructed somewhere between a min-
imal need-to-know model and one that illustrates every conceivable relation-
ship. The basic criterion for judging its value?—Does it satisfy all need-to-know
requirements and additionally clearly communicate an essential understanding
of the important concepts in the problem domain?

Emphasize need-to-know associations, but add choice comprehension-only
associations to enrich critical understanding of the domain.

Chapter 12

DOMAIN MODEL.:
ADDING ATTRIBUTES

Any sufficiently advanced bug is indistinguishable from a feature.

—Rich Kulawiec

Objectives
* Identify attributes in a domain model.

» Distinguish between correct and incorrect attributes.

Introduction

It is useful to identify those attributes of conceptual classes that are needed to
satisfy the information requirements of the current scenarios under develop-
ment. This chapter explores the identification of suitable attributes, and adds
attributes to the domain model for the NextGen domain model.

12.1 Attributes

An attributeis a logical data value of an object.

Include the following attributes in a domain model: Those for which the
requirements (for example, use cases) suggest or imply a need to remember
information.

12 - DOMAIN MODEL: ADDING ATTRIBUTES

For example, a receipt (which reports the information of a sale) normally
includes a date and time, and management wants to know the dates and times
of sales for a variety of reasons. Consequently, the Sale conceptual class needs a
date and time attribute.

12.2 UML Attribute Notation

Attributes are shown in the second compartment of the class box (see Figure
12.1). Their type may optionally be shown.

Sale
.- attributes

date o
startTime : Time

Figure 12.1 Class and attributes.

12.3 Valid Attribute Types

There are some things that should not be represented as attributes, but rather
as associations. This section explores valid attributes.

Keep Attributes Simple

Intuitively, most simple attribute types are what are often thought of as primi-
tive data types, such as numbers. The type of an attribute should not normally
be a complex domain concept, such as a Sale or Airport. For example, the follow-
ing currentRegister attribute in the Cashier class in Figure 12.2 is undesirable
because its type is meant to be a Register, which is not a simple attribute type
(such as Number or String). The most useful way to express that a Cashier uses
a Register is with an association, not with an attribute..

The attributes in a domain model should preferably be simple attributes or
data types.

Very common attribute data types include: Boolean, Date, Number, String
(Text), Time

Other common types include: Address, Color, Geometries (Point, Rectangle),
Phone Number, Social Security Number, Universal Product Code (UPC), KU,
ZIP or postal codes, enumerated types

[EnY
[o)]
(o]

VALIDATTRIBUTETYPES

Cashier
Worse o not a "simple" attribut%
name o '
currentRegister

Cashier 1 Uses 1 Register

name number

Better

Figure 12.2 Relate with associations, not attributes.

Worse . | concept

Flight destination is a complﬁ
destinationo '

Flight 1 Flies-to 1

Airport

Better

Figure 12.3 Avoid representing complex domain concepts as attributes; use associations.

To repeat an earlier example, a common confusion is modeling a complex domain concept
as an attribute. To illustrate, a destination airport is not really a string; it is a complex thing
that occupies many square kilometers of space. Therefore, Flight should be related to Airport
via an association, not with an attribute, as shown in Figure 12.3.

Relate conceptual classes with an association, not with an attribute.

Conceptual vs. Implementation Perspectives: What About Attributes in
Code?

The restriction that attributes in the domain model be only of simple data types does not
imply that C++ or Java attributes (data members, instance fields) must only be of simple,
primitive data types. The domain model focuses on pure conceptual statements about a
problem domain, not software components.

Later, during design and implementation work, it will be seen that the associations between
objects expressed in the domain model will often be implemented as attributes that reference
other complex software objects. However, this is but one of a number of possible design
solutions to implement an association, and so the decision should be deferred during domain
modeling.

169

12 - DOMAIN MODEL: ADDING ATTRIBUTES

Data Types

Attributes should generally be data types. This is a UML term that implies a
set of values for which unique identity is not meaningful (in the context of our
model or system) [RIB99]. For example, it is not (usually) meaningful to distin-
guish between:

» Separate instances of the Number 5.

e Separate instances of the String 'cat'.

e Separate instances of PhoneNumber that contain the same number.
e Separate instances of Address that contain the same address.

By contrast, it iS meaningful to distinguish (by identity) between two separate
instances of a Person whose names are both "Jill Smith" because the two
instances can represent separate individuals with the same name.

In terms of software, there are few situations where one would compare the
memory addresses of instances of Number, Sring, PhoneNumber, or Address;
only value-based comparisons are relevant. By contrast, it is conceivable to com-
pare the memory addresses Of Person instances, and to distinguish them, even if
they had the same attribute values, because their unique identity is important.

Thus, all primitive types (number, string) are UML data types, but not all data
types are primitives. For example, PhoneNumber is a non-primitive data type.

These data type values are also known as value obj ects.

The notion of data types can get subtle. As a rule of thumb, stick to the basic test
of "simple" attribute types: Make it an attribute if it is naturally thought of as
number, string, boolean, date, or time (and so on); otherwise, represent it as a
separate conceptual class.

If in doubt, define something as a separate conceptual class rather than as an
attribute.

12.4 Non-primitive Data Type Classes

170

The type of an attribute may be expressed as a non-primitive class in its own
right in a domain model. For example, in the POS system there is an item iden-
tifier. It is typically viewed as just a number. So should it be represented as a
non-primitive class? Apply this guideline:

NON-PRIMITIVE DATA TYPE CLASSES

Represent what may initially be considered a primitive data type (such as a
number or string) as a non-primitive class if:

« Itis composed of separate sections.

0 phone number, name of person

» There are operations usually associated with it, such as parsing or valida-
tion.

o social security number

« It has other attributes.

o promotional price could have a start (effective) date and end
date

« It is a quantity with a unit.

0 payment amount has a unit of currency

« It is an abstraction of one or more types with some of these qualities.
o item identifier in the sales domain is a generalization of types
such as Universal Product Code (UPC) or European Article
Number (EAN)

Applying these guidelines to the POS domain model attributes yields the follow-
ing analysis:

e The item identifier is an abstraction of various common coding schemes,
including UPC-A, UPC-E, and the family of EAN schemes. These numeric
coding schemes have subparts identifying the manufacturer, product, coun-
try (for EAN), and a check-sum digit for validation. Therefore, there should
be a non-primitive ItemID class, because it satisfies many of the guidelines
above.

* The price and amount attributes should be non-primitive Quantity or Money
classes because they are quantities in a unit of currency.

¢ The address attribute should be a non-primitive Address class because it
has separate sections.

The classes ItemID, Address, and Quantity are data types (unique identity of
instances is not meaningful) but they are worth considering as separate classes
because of their qualities.

Where to lllustrate Data Type Classes?

Should the ItemID class be shown as a separate conceptual class in a domain
model? It depends on what you want to emphasize in the diagram. Since ItemID

171

OK

OK

12 - DOMAIN MODEL: ADDING ATTRIBUTES

is a data type (unique identity of instances is not important), it may be shown in
the attribute compartment of the class box, as shown in Figure 12.4. But since it
is a non-primitive class, with its own attributes and associations, it may be
interesting to show it as a conceptual class in its own box. There is no correct
answer; it depends on how the domain model is being used as a tool of communi-
cation, and the significance of the concept in the domain.

1 1 1 1
Pro_c!uct_ ItemID Store Address
Specification

Product Store
Specification

: ItemID

address : Address

Figure 12.4 If the attribute class is a data type, it may be shown in the attribute
box.

A domain model is a tool of communication; choices about what is shown
should be made with that consideration in mind.

12.5 Design Creep: No Attributes as Foreign Keys

172

Attributes should not be used to relate conceptual classes in the domain model.
The most common violation of this principle is to add a kind of foreign key
attribute, as is typically done in relational database designs, in order to associ-
ate two types. For example, in Figure 12.5 the currentRegisterNumber attribute
in the Cashier class is undesirable because its purpose is to relate the Cashier to
a Register object. The better way to express that a Cashier uses a Register is
with an association, not with a foreign key attribute. Once again, relate types
with an association, not with an attribute.

There are many ways to relate objects—foreign keys being one—and we will
defer how to implement the relation until design, in order to avoid design

creep.

MODELING ATTRIBUTE QUANTITIES AND UNITS

Cashier g " .

Worse a "simple" attribute, but be
name P used as a foreign key to rela
currentRegisterNumber another object

Cashier Register

Better 1 Uses 1

name number

Figure 12.5 Do not use attributes as foreign keys.

12.6 Modeling Attribute Quantities and Units

Most numeric quantities should not be represented as plain numbers. Consider
price or velocity. These are quantities with associated units, and it is common to
require knowing the unit, and to support conversions. The NextGen POS soft-
ware is for an international market and needs to support prices in multiple cur-
rencies. In the general case, the solution is to represent Quantity as a distinct
conceptual class, with an associated Unit [Fowler96]. Since quantities are con-
sidered data types (unique identity of instances is not important), it is accept-
able to collapse their illustration into the attribute section of the class box (see
Figure 12.6). It is also common to show Quantity specializations. Money is a
kind of quantity whose units are currencies. Weight is a quantity with units
such as kilograms or pounds.

Payment
not useful
amount : Numbero-
Payment Has-amouht Quantity Is-in Unit
* 1 amount : Number |* 1
O;
Payment quantities are pure da& §
amount : Quantity o . 1 values, so suitable to show e b
: Yy in attribute section o | DEUER
Payment variationMoney is a g
— specialized Quality whose
amount : Money o unit is a currency

Figure 12.6 Modeling quantities.

173

12 - DOMAIN MODEL: ADDING ATTRIBUTES

12.7 Attributes in the NextGen Domain Model

The attributes chosen reflect the requirements for this iteration—the Process
Sale scenarios of this iteration.

Payment amount—To determine if sufficient payment was
provided, and to calculate change, an amount (also
known as "amount tendered") must be captured.

Product- description—To show the description on a display
Soecification or receipt.

id—To look up a ProductSpecification, given an
entered itemlD, it is necessary to relate them to a
id.

price—To calculate the sales total, and show the
line item price.

Sale date, time—A receipt is a paper report of a sale. It
normally shows date and time of sale.
SalesLineltem quantity—To record the quantity entered, when

there is more than one item in a line item sale (for
example, five packages of tofu).

Sore address, name—The receipt requires the name and
address of the store.

Register Item Store Sale
address : Address date : Date
name : Text time : Time

Sales Cashier Customer Manager

Lineltem

quantity : Integer
Payment Product s PI’O?UCI_
Catalog pecification
amount : Money description : Text
price : Money
id: ItemID

Figure 12.7 Domain model showing attributes.

174

MULTIPLICITY FROM SALESLINEITEM TO ITEM

12.8 Multiplicity From SalesLineltem to Item

It is possible for a cashier to receive a group of like items (for example, six tofu
packages), enter the itemlD once, and then enter a quantity (for example, six).
Consequently, an individual SalesLineltem can be associated with more than
one instance of an item.

The quantity that is entered by the cashier may be recorded as an attribute of
the SalesLineltem (Figure 12.8). However, the quantity can be calculated from
the actual multiplicity value of the relationship, so it may be characterized as a
derived attribute—one that may be derived from other information. In the
UML, a derived attribute is indicated with a "/" symbol.

SalesLineltem \ Item

0.1 Records-sale-of 1 Each line item records a
separate item sale.
For example, 1 tofu package

h

SalesLineltem 0..1 Records-sale-of 1.* Item Each line item can record a
group of the same kind of it
For example, 6 tofu packag
\ SalesLineltem |4 4 pocords-sale-of 1.* Item
. 0
/quantity ©

T _| derived attribute fr
the muiltiplicity value

Figure 12.8 Recording the quantity of items sold in a line item.

12.9 Domain Model Conclusion

Combining the conceptual classes, associations, and attributes discovered in the
previous investigation yields the model illustrated in Figure 12.9.

A relatively useful domain model for the domain of the POS application has
been created. There is no such thing as a single correct model. All models are
approximations of the domain we are attempting to understand. A good domain
model captures the essential abstractions and information required to under-
stand the domain in the context of the current requirements, and aids people in
understanding the domain—its concepts, terminology, and relationships.

12 - DOMAIN MODEL: ADDING TTRIBUTES

Records-sale-of

Described-by ‘ 1
Product
Product Specification
Catalog Contains
1 1* description
| price
1 itemID
0.1 * Used-by Describe
*
Sales *
Lineltem Store
Stocks ltem
quantity 1 | address 1 * 1+
name -
1.*
Contained-|n Logs- 1 Houses
completed
1 v 1.*
Sale * Register
Manager
date Started-b{ 9
Captured-on 1
time 1 1
_ ‘1 ‘ 1 1
Paid-by Initiated-by 4 Records-sales-on
1‘ ‘ 1 1
Payment Customer Cashier
amount

Figure 12.9 A partial domain model.

Chapter 13

USE-CASE MODEL.
ADDING DETAIL WITH
OPERATION CONTRACTS

A verbal contract isn't worth the paper it's written on.
—Samuel Goldwyn

Objectives

* Create contracts for system operations.

Introduction

Contracts for operations can help define system behavior; they describe the out-
come of executing system operation in terms of state changes to domain objects.

This chapter explores their use.

13.1 Contracts

Use cases are the primary mechanism in the UP to describe system behavior,
and are usually sufficient. However, sometimes a more detailed description of
system behavior has value. Contracts describe detailed system behavior in
terms of state changes to objects in the Domain Model, after a system operation

has executed.

177

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

System Operations and the System Interface

Contracts may be defined for system operations—operations that the system
as a black box offers in its public interface to handle incoming system events.
System operations can be identified by discovering these system events, as
shown in Figure 13.1.

x

:System
: Cas‘hier]
i
! makeNewSale() O -
| o
| 1 k
T T
!))) ‘ these input system events
! addLineltem(itemID, quantity) © >} invoke system operations
I I
| |
| | the system event
} descriotion. total } makeNewSale invokes a
[T iption. total - | system operation called
} * [more items] } makeNewSale and so forth
Il Il
} } this is the same as in object-
1 endSale() © o oriented programming when
! '} we say the message foo
| | invokes the method (handling
I : | h
}*77777777777@7@ withtaxes l operation) foo
| |
I I
! makePayment(amount)o >}
| |
| |
| . |
}4, ,,,,,,,,,, change due, receipt |

Figure 13.1 System operations handle input system events.

The entire set of system operations, across all use cases, defines the public system
interface, viewing the system as a single component or class. In the UML, the
system as a whole can be represented by a class.

13.2 Example Contract: enterltem

Before examining the reason to write a contract, an example is worthwhile. The
following describes a contract for the enterltem system operation.

178

CONTRACT SECTIONS

Operation: Cross
References:
Preconditions:

Postconditions:

13.3 Contract Sections

Contract CO2: enterltem

enterltem(itemID : ItemID, quantity : integer) Use
Cases: Process Sale There is a sale underway.

- A SalesLineltem instance sli was created (instance cre
ation).

- sli was associated with the current Sale (association
formed).

-sli.quantity became quantity (attribute modification).

- sli was associated with a ProductSpecification, based on
itemID match (association formed).

A description of each section in a contract is shown in the following schema.

Operation: Cross
References:

Preconditions:

Postconditions:

13.4 Postconditions

Name of operation, and parameters
(optional) Use cases this operation can occur within

Noteworthy assumptions about the state of the system or
objects in the Domain Model before execution of the opera-
tion. These will not be tested within the logic of this operation,
are assumed to be true, and are non-trivial assumptions the
reader should know were made.

-The state of objects in the Domain Model after completion of
the operation. Discussed in detail in a following section.

Notice that each of the postconditions in the enterltem example included a cate-
gorization such as instance creation or association formed. Here is a key point:

The postconditions describe changes in the state of objects in the Domain
Model. Domain Model state changes include instances created, associations
formed or broken, and attributes changed.

—_
E3
(=

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

Postconditions are not actions to be performed during the operation; rather, they
are declarations about the Domain Model objects that are true when the operation
has finished—after the smoke has cleared.

To summarize, the postconditions fall into these categories:

® Instance creation and deletion.
® Attribute modification.

® Associations (to be precise, UML /inks) formed and broken.

As an example of a post-condition that breaks an association, consider an opera-
tion to allow the deletion of line items. The post-condition could read "The
selected SalesLineltem's association with the Sale was broken." In other
domains, when a loan is paid off or someone cancels their membership in some-
thing, associations are broken.

Instance deletion postconditions are most rare, because one does not usually
care about explicitly enforcing the destruction of a thing in the real world. How-
ever, as an example: In many countries, after a person has declared bankruptcy
and seven or ten years have passed, all records of their bankruptcy declaration
must be destroyed, by law. Note that this is a conceptual perspective, not imple-
mentation. These are not statements about freeing up memory in a computer
occupied by software objects.

The important quality is to be declarative and state change-oriented rather than
action-oriented, since postconditions are declarations about states or outcomes
rather than a description of actions to execute, or a design of a solution.

Postconditions Are Related to the Domain Model

These postconditions are expressed in the context of the Domain Model objects.
What instances can be created?—those from the Domain Model; What associa-
tions can be formed?—those in the Domain Model; and so on.

An Advantage of Postconditions: Analytical Detail

Expressed in a declarative state-change fashion, the contract is an excellent tool
for requirements analysis that describes the state changes required of a system
operation (in terms of the Domain Model objects) without having to describe
how they are to be achieved. In other words, the software design and solution
can be deferred, and one can focus analytically on what must happen, rather
than how it is to be accomplished. Furthermore, the postconditions support fine-
grained detail and specificity in declaring what the outcome of the operation
must be.

POSTCONDITIONS

It is also possible to express this level of detail in the use cases, but usually
undesirable, as they would then become overly verbose and detailed.

Consider the postconditions:

Postconditions: - A SalesLineltem instance sli was created (instance cre-
ation).
- sli was associated with the current Sale (association
formed).
-sli.quantity became quantity (attribute modification).
- sli was associated with a ProductSpecification, based on
itemID match (association formed).

No comment is made about how a SalesLineltem instance is created, or associated
with a Sale. This could be a statement about writing on bits of paper and stapling
them together, using Java technologies to create software objects and connect
them, or inserting rows in a relational database.

The Spirit of Postconditions: The Stage and Curtain

Express postconditions in the past tense, to emphasize they are declarations
about a state change in the past. For example:

o (better) A SalesLineltem was created,

rather than

* (worse) Create a SalesLineltem.

Think about postconditions using the following image: The
system and its objects are presented on a theatre stage.

1. Before the operation, take a picture of the stage.

2. Close the curtains on the stage, and apply the system operation (background
noise of clanging, screams, and screeches...).

Open the curtains and take a second picture.

4. Compare the before and after pictures, and express as postconditions the
changes in the state of the stage (A SalesLineltem was created...).

If Contracts Are Used, How Complete Should Postconditions Be?

First, contracts may not be needed. This question is discussed in a subsequent
section. But assuming some contracts are desired, generating a complete and
detailed set of postconditions for a system operation is not likely—or even neces-
sary—during requirements work. Treat their creation as an initial best guess,
with the understanding that the contracts will not be complete. Their early cre-
ation—even if incomplete—is certainly better than deferring this investigation

181

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

until design work, when developers should be concerned with the design of a
solution, rather than investigating what should be done.

Some of the fine details—and perhaps even larger ones—will be discovered during
the design work. That is not necessarily a bad thing; there is a diminishing return
on effort expended during requirements analysis if it is drawn out too long.
Some discovery naturally arises during design work, which can then inform
the requirements work of a later iteration. This is one of the advantages of
iterative development: discoveries generated during a prior iteration can
enhance the investigation and analysis work of the following one.

13.5 Discussion—enterltem Postconditions

The following section dissects the motivation for the postconditions of the
enter-Item system operation.

Instance Creation and Deletion

After the itemID and quantity of an item have been entered, what new object
should have been created? A SalesLineltem. Thus:

* A SalesLineltem instance s/l was created (instance creation).

Note the naming of the instance. This name will simplify references to the new
instance in other post-condition statements.

Attribute Modification

After the itemID and quantity of an item have been entered by the cashier, what
attributes of new or existing objects should have been modified? The quantity of
the SalesLineltem should have become equal to the quantity parameter. Thus:

* sll.quantity became quantity (attribute modification).

Associations Formed and Broken

After the itemID and quantity of an item have been entered by the cashier, what
associations between new or existing objects should have been formed or broken?
The new SalesLineltem should have been related to its Sale, and related to its
ProductSpecification. Thus:

» sli was associated with the current Sale (association formed).

» sli was associated with a ProductSpecification, based on ItemID match
(association formed).

182

WRITING CONTRACTS LEADS TO DOMAIN MODEL UPDATES

Note the informal indication that it forms a relationship with a particular
Prod-uctSpecification—the one whose itemID matches the parameter. More fancy
and formal language approaches are possible, such as using the Object
Constraint Language (OCL). Recommendation: Keep it plain and simple.

136 Writing Contracts Leads to Domain Model Updates

It is common during the creation of the contracts to discover the need to record
new conceptual classes, attributes, or associations in the Domain Model. Do not
be limited to the prior definition of the Domain Model; enhance it as you make
new discoveries while thinking through the operation contracts.

13.7 When Are Contracts Useful? Contracts vs. Use Cases”?

The use cases are the main repository of requirements for the project. They may
provide most or all of the detail necessary to know what to do in the design, in
which case, contracts are not helpful. However, there are situations where the
details and complexity of required state changes are awkward to capture in use
cases.

For example, consider an airline reservation system and the system operation
addNewReservatlon. The complexity is very high regarding all the domain
objects that must be changed, created, and associated. These fine-grained
details can be written up in the use case associated with this operation, but it
will make the use case extremely detailed (for example, noting each attribute in all
the objects that must change).

Observe that the contract post-condition format offers and encourages a very
precise, analytical, exacting language that supports detailed thoroughness.

If, just based on the use cases and through ongoing (verbal) collaboration with a
subject matter expert, the developers can comfortably understand what to do,
then avoid writing contracts.

However, in those situations were there is high complexity and detailed preci-
sion adds value, contracts are another requirements tool.

They will not be practically motivated very often, so if a team is making con-
tracts for every system operation of every use case, it is a warning that either
the use cases are poorly done, there is not enough ongoing collaboration or
access to a subject matter expert, or the team is doing too much unnecessary
documentation.

This NextGen POS case study shows more contracts than are probably necessary,
for educational reasons. In practice, most of the details they record are obviously
inferable from the use case text. On the other hand, "obvious" is a very slippery
concept.

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

13.8 Guidelines: Contracts

Apply the following advice to create contracts:

To make contracts:
1. Identify system operations from the SSDs.

2. For system operations that are complex and perhaps subtle in their
results, or which are not clear in the use case, construct a contract.

3. To describe the postconditions, use the following categories:

o iInstance creation and deletion
o attribute modification

o associations formed and broken

Advice on Writing Contracts

State the postconditions in a declarative, passive past tense form (was ...)
to emphasize the declaration of a state change rather than a design of
how it is going to be achieved. For example:

@ (better) A SalesLineltem was created. .)
€ (worse) Create a SalesLineltem.

Remember to establish a memory between existing objects or those
newly created by defining the forming of an association. For example,
it is not enough that a new SalesLineltem instance is created when the
enterltem operation occurs. After the operation is complete, it should
also be true that the newly created instance was associated with Sale;
thus:

@ The SalesLineltem was associated with the Sale (association
formed).

The Most Common Mistake in Creating Contracts

The most common problem is forgetting to include the forming of associations.
Particularly when new instances are created, it is very likely that associations to
several objects need be established. Don't forget!

184

NEXTGEN POS EXAMPLE: CONTRACTS

13.9 NextGen POS Example: Contracts

System Operations of Process Sale

Contract CO1: makeNewSale

Operation: Cross makeNewSale()

References: Use Cases: Process Sale

Preconditions: none

Postconditions: - A Sale instance s was created (instance creation).

- s was associated with the Register (association formed).
- Attributes of s were initialized.

Note the vague description in the last post-condition. If sufficient, this is fine.

On a project, all these particular postconditions are so obvious from the use case
that the makeNewSale contract should probably not be written.

Recall one of the guiding principles of healthy process and the UP: Keep it as
light as possible, and avoid all artifacts unless they really add value.

Contract CO2: enterltem

Operation: Cross enterltem(itemID : ItemID, quantity : integer)
References: Use Cases: Process Sale There is a sale
Preconditions: underway.

Postconditions: - A SalesLineltem instance sli was created (instance cre
ation).
- sli was associated with the current Sale (association
formed).
- sli.quantity became quantity (attribute modification).
- sli was associated with a ProductSpecification, based on
itemID match (association formed).

Contract COS: endSale

Operation: Cross endSaleQ

References: Use Cases: Process Sale

Preconditions: There is a sale underway.

Postconditions: - Sale.isComplete became true (attribute modification).

185

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

Contract CO4: makePayment

Operation: Cross makePayment(amount: Money) Use

References: Cases: Process Sale There is a sale

Preconditions: underway.

Postconditions: - A Payment instance p was created (instance creation).

- p.amountTendered became amount (attribute modification).

- p was associated with the current Sale (association
formed).

- The current Sale was associated with the Store (associa
tion formed); (to add it to the historical log of completed
sales)

13.10 Changes to the Domain Model

There is one datum suggested by these contracts that is not yet represented in the
domain model: completion of item entry to the sale. The endSale specification
modifies it, and it is probably a good idea later during design work for the
makePayment operation to test it, to disallow payments until a sale is complete.

One way to represent this information is with an isComplete attribute in the Sale,
of boolean data type:

Sale

isCom plete: Boolean
date
time

There are alternatives, especially considered during design work. One technique is
called the State pattern, which is explored in Chapter 34. Another is the use of
"session" objects that track the state of a session and disallow out-of-order
operations; this too will be explored later.

13.11 Contracts, Operations, and the UML

Contracts in the UML: Operation Specifications

The UML formally defines operations. To quote:

An operation is a specification of a transformation or query that an
object may be called to execute [RIB99]

186

CONTRACTS, OPERATIONS, AND THE UML

For example, the elements of an interface are operations, in UML terms. An
operation is an abstraction, not an implementation. By contrast, a method (in the
UML) is an implementation of an operation.

A UML operation has a signature (name and parameters), and also an operation
specification, which describes the effects produced by executing the operation;
that is, the postconditions. The UML operation specification format is flexible,
and does not have be the contract format shown in this chapter. However, the
UML documents give as examples the contract style with pre- and postconditions,
as this is the most well-known approach to formal operation specifications.

To summarize: The UML defines operation specifications, which are specifiable in
the pre- and post-condition contract style. Note that, as emphasized in this
chapter, a UML operation specification may not show an algorithm or solution,
but only the state changes or effects of the operation.

In addition to using contracts to specify public operations of the entire System
(system operations), contracts can be applied to operations at any level of granu-
larity: the public operations (or interface) of a subsystem, an abstract class, and so
forth. The operations discussed in this chapter belong to a System class. In the
UML operations belong to classes. Furthermore, in the UML, "subsystems" are
modeled as classes (and simultaneously also as packages). In the UML, the overall
"system" is the top-level subsystem, and modeled as a class named System
(actually, any name is legal) with public operations and specifications.

Operation Contracts Expressed with the OCL

Associated with the UML is a formal language called the Object Constraint Lan-
guage (OCL) [WK99], which can be used to express constraints in models. The
OCL could be used instead of the informal natural language used in this chapter;

Suggestion

Unless there is a compelling practical reason to require people to learn and
use the OCL, keep things simple and use natural language.

The OCL defines an official format for specifying pre- and postconditions for
operations, as demonstrated in this fragment:

System: :makeNewSale()
pre : <statements in OCL>
post ¢

Further OCL details are beyond the scope of this introduction.
the UML allows any format for an operation specification.

—_
&
-

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

Contracts in Design by Contract

The pre- and post-condition contract form used for UML operation specifications
has been promoted for many years by Bertrand Meyer, formalized in a design
approach called Design by Contract [Meyer97 (first ed. 1989)], although its
origin is from earlier work in the 1960s on formal specification languages. In
Design by Contract, contracts are also written for operations of fine-grained
classes, not only the public operations of systems or subsystems.

In addition, Design by Contract promotes the inclusion of an invariant section, as
is common in thorough contract specifications. Invariants define things that must
not change state before and after the operation has executed. Invariants have not
been used in this chapter for the sake of simplicity.

Programming Language Support for Contracts

Some languages, such as Eiffel, have first-class support for invariants and pre-and
postconditions. There are pre-processors that provide similar support in Java.

13.12 Operation Contracts Within the UP

A pre- and postcondition contract is a well-known style to specify an operation in
the UML. In the UML, operations exists at many levels, from System, down to
fine-grained classes, such as Sale. Operation specification contracts for the System
level are part of the Use-Case Model, although they were not formally highlighted
in the original RUP or UP documentation; their inclusion in this model was
verified with the RUP authors.'

Phases

Inception—Contracts are not motivated during inception—they are too
detailed.

Elaboration—If used at all, most contracts will be written during elaboration,
when most use cases are written. Only write contracts for the most complex and
subtle system operations.

1. Private communication.

OPERATION CONTRACTS WITHIN THE UP

Artifacts Relationships

Relationships between contracts and other artifacts, at different levels of detail,
are shown in Figure 13.2 and Figure 13.3.

L T T
Sample UP Artifacts Fartial artifacts,
{ refined in each
Domain N iteration.
Business Model .
Modeling 3\//
- — the domain objects,
attributes, and associations
\ that undergo state changes
"
[T T 7T Use-Case Model Y
. = A ot) Sem) s‘
Requirements % S ; : | gﬂ ;| Glossary
s | ban : : : L
—_— ' " system | :
text use system operations| o ion, |
use case sequence operation |
cases diagrams diagrarns | contracts
//\\"'— I
Design Model / s
=] oftware
— = the system operations are -
Design ;[:IDZ:I § handied by designing Al IciRRe
PRV B software lo fultill the post-
conditions of the =
confracls
Software
Dayv, Plan
PRI LT
Project I—
Management ’ = % lé
Test
Plan Development
:] Case
= L
Test Environment =

Figure 13.2 Sample UP artifact influence.

-
[(e}

Domain Model

Sale 1 1.* Sales
Lineltem
date
quantity

domain object;(

the domain objects, attributes, and
associations that undergo state changes

-

% : System
‘ ‘ Operation: makeNewSale
Process Sale : Cashier make \
| NewSale() } Post-conditions:
1. Customer - -
arrives ... system | _———~__ | system
2. ——— events | (enterltem=, | operations
. Cashier >{—— p } \(id, quantity), } —» -——=
I\ enters item) ——» Operatioh: enterltem/\
identifier. . ! dsal ! S __ -~
P _ -~ | endSale() | Post-conditions:
} " - A SalesLineltem instance
\ \ sli was created
} makePayment } -
| (amount) |
[
I I
Use Cases System Sequence Diagrams Contracts
in addition to the use cases,
some ideas and inspiration for the post- requirements that must be
satisfied by the design of the

Use-Case Model

N\ N

conditions derive from the use cases

K software
ﬁquirements that Design Model ' \
must be satisfied by
the design of the gister : ProductCatalog ‘ ‘ Sale ‘
software _ ‘ ‘ ‘
ST T T T~ | | |
7 enterltem '\ } } }
(itemID, quantity) | \ \
N | | |
S~ -7 } spec := getProductSpec(itemID) J }
| g |
} addLineltem(spec, quantity) } ﬁ}
[I
| | |
1 > | 1
| | |
1 1 1

190

Figure 13.3 Contract relationship to other artifacts.

FURTHER READINGS

13.13 Further Readings

Operation contracts come out of the formal specifications area, and have been
used and refined since the 1960s, such as in the Vienna Development Method
(VDM) [BJ78]; there is a wealth of literature on VDM and other formal specifi-
cation languages.

Bertrand Meyer contributed to a much wider awareness of formal specifications
and contracts with the inclusion of pre- and postconditions within the Eiffel lan-
guage; his Object-Oriented Software Construction provides details. He is respon-
sible for the notion of Design by Contract.

Within the UML, operation contracts can also be specified more rigorously in
the Object Constraint Language (OCL), for which Warmer and Kleppe's The
Object Constraint Language: Precise Modeling with UML is required reading.

191

Chapter 14

FROM REQUIREMENTS TO
DESIGN IN THIS ITERATION

Objectives

m Motivate the transition to design activities.

m Contrast the importance of object design skill versus UML notation
knowledge.

Introduction

So far, the case study has emphasized investigation of the requirements, concepts,
and operations related to a system. Following the UP guidelines, perhaps 10% of
the requirements were investigated in inception, and a slightly deeper
investigation was started in this first iteration of elaboration. The following
chapters are a shift in emphasis toward designing a solution for this iteration in
terms of collaborating software objects.

14.1 Iteratively Do the Right Thing, Do the Thing Right

The requirements and object-oriented analysis has focused on learning to do the
right thing; that is, understanding some of the outstanding goals for the
Next-Gen POS, and related rules and constraints. By contrast, the following
design work will stress do the thing right; that is, skillfully designing a solution to
satisfy the requirements for this iteration.

193

14.2

14 - FROM REQUIREMENTS TO DESIGN IN THIS ITERATION

In iterative development, a transition from primarily a requirements focus to
primarily a design and implementation focus will occur in each iteration. Fur-
thermore, it is natural and healthy to discover and change some requirements
during the design and implementation work of the early iterations. These dis-
coveries will both clarify the purpose of the design work of this iteration and
refine the requirements understanding for future iterations. Over the course of
these early elaboration iterations, the requirements discovery will stabilize, so
that by the end of elaboration, perhaps 80% of the requirements are reliably
defined in detail.

Didn't That Take Weeks To Do? No, Not Exactly.

After many chapters of detailed discussion, it must surely seem like the prior
modeling would take weeks of effort. Not so. When one is comfortable with the
skills of use case writing, domain modeling, and so forth, the duration to do all
the actual modeling that has been explored so far is realistically just a few days.

However, that does not mean that only a few days have passed since the start of
the project. Many other activities, such as proof-of-concept programming, finding
resources (people, software, ...), planning, setting up the environment, and so on,
could consume a few weeks of preparation.

14.3 On to Object Design

During object design, a logical solution based on the object-oriented paradigm is
developed. The heart of this solution is the creation of interaction diagrams,
which illustrate how objects collaborate to fulfill the requirements.

After—or in parallel with—drawing interaction diagrams, (design) class dia-
grams can be drawn. These summarize the definition of the software classes
(and interfaces) that are to be implemented in software.

In terms of the UP, these artifacts are part of the Design Model.

In practice, the creation of interaction and class diagrams happens in parallel
and synergistically, but their introduction is linear in this case study, for
simplicity and clarity.

The Importance of Object Design Skill vs. UML Notation Skill

The following chapters explore the creation of these artifacts, or more precisely,
the object design skills underlying their creation. What is important is knowing

ON TO OBJECT DESIGN

how to think and design in objects, which is a very different and much more
important ability than knowing UML diagramming notation. At the same time, a

standard visual language is great, and thus the required UML notation to support
the design work is presented.

Of the two artifacts that will be explored, interactions diagrams are the most
important—from the point of view of developing a good design—and require the
greatest degree of creative effort. The creation of interaction diagrams requires
the application of principles for assigning responsibilities and the use of
design principles and patterns. Therefore, the emphasis of the following
chapters is on these principles and patterns in object design.

Object Design Skill vs. UML Notation Skill

Drawing UML interaction diagrams is a reflection of making dectsions about
the object design.

The object design skills are what really matter, rather than knowing how to
draw UML diagrams.

Fundamental chject design requires knowledge of:
m principles of responsibility assignment

w design patterns

195

Chapter 15

INTERACTION DIAGRAM
NOTATION

Cats are smarter than dogs. You can't
get eight cats to pull a sled through snow.

—JeffVaidez
Objectives
Read basic UML interaction (sequence and collaboration) diagram
notation.
Introduction

The following chapters explore object design. The language used to illustrate the
designs is primarily interaction diagrams. Thus, it is advisable to at least skim
the examples in this chapter and get familiar with the notation before moving
on.

The UML includes interaction diagrams to illustrate how objects interact via
messages. This chapter introduces the notation, while subsequent chapters
focus on using them in the context of learning and doing object design for the
NextGen POS case study.

Read the Following Chapters for Design Guidelines

This chapter introduces notation. To create well-designed objects, design princi-
ples must also be understood. After acquiring some familiarity with the notation
of interaction diagrams, it is important to study the following chapters on these
principles and how to apply them while drawing interaction diagrams.

197

15.1

(o]

15 - INTERACTION DIAGRAM NOTATION

Sequence and Collaboration Diagrams

The term interaction diagram, is a generalization of two more specialized UML
diagram types; both can be used to express similar message interactions:

* collaboration diagrams
* sequence diagrams

Throughout the book, both types will be used, to emphasize the flexibility in
choice.

Collaboration diagrams illustrate object interactions in a graph or network
format, in which objects can be placed anywhere on the diagram, as shown in
Figure 15.1.

messagel] —

ClassAlnstance

1. message?[‘&
2 messageSﬂL

:ClassBlnstance

Figure 15.1 Collaboration diagram

(Classhnstance (ClassBInstance

I
message] O }

Ll

messageZl

m
i

messagedd

A 4

Figure 15.2 Sequence diagram.

Each type has strengths and weaknesses. When drawing diagrams to be pub-
lished on pages of narrow width, collaboration diagrams have the advantage of
allowing vertical expansion for new objects; additional objects in a sequence dia-
grams must extend to the right, which is limiting. On the other hand, collabora-
tion diagram examples make it harder to easily see the sequence of messages.

EXAMPLE COLLABORATION DIAGRAM: MAKEPAYMENT
EXAMPLE COLLABORATION 1JIAGRAM: MAKEfAYMENT

Most prefer sequence diagrams when using a CASE tool to reverse engineer
source code into an interaction diagram, as they clearly illustrate the sequence

new objects in two dimensions

better to illustrate complex branching,
iteration, and concurrent behavior

of messages.
Type Strengths Weaknesses
sequence clearly shows sequence or time order- | forced to extend to the right when add-
ing of messages ing new objects; congsumes horizontal
simple notation e
collaboration space economical—flexibility to add | difficult to see sequence of messages

more complex notation

15.2 Example Collaboration Diagram: makePayment

irst internal message

Eale

:Payrent

makePaymentizashTendersd) O : Register 1:mal':eFgn,n'n-ent(l:.“aﬁthenljertal:lj4
o Q °©
o
1.1:creaelcashTendered) ¢
o
first rnessageT ‘ paameter T
cregtion indicaed with a
‘ inz@nce 7 “ceate” message

Figure 15.3 Collaboration diagram.

The collaboration diagram shown in Figure 15.3 is read as follows:

1. The message makePayment is sent to an instance of a Register. The sender is

not identified.

2. The Register instance sends the makePayment message to a Sale instance.

The Sale instance creates an instance of a Payment.

15 - INTERACTION DIAGRAM NOTATION

15.3 Example Sequence Diagram: makePayment

makePayment(cashTendered)

: Sale : Sale

makePayment(cashTendered)

: Payment

implies Sale objects have a
responsibility to create Payments

"

15.4

Figure 15.4 Sequence diagram.

The sequence diagram shown in Figure 15.4 has the same intent as the prior
collaboration diagram.

Interaction Diagrams Are Valuable

A common problem in object technology projects is a lack of appreciation for the
value of doing object design via the medium of interaction diagrams. A related
problem is doing them in a vague way, such as showing messages to objects that
actually require much further elaboration; for example, showing the message
runSimulation to some Simulation object, but not continuing on with the more
detailed design, as though by virtue of a well-named message the design is mag-
ically complete.

Some non-trivial time and effort should be spent in the creation of interaction
diagrams, as a reflection of thinking through details of the object design. For
example, if the length of the timeboxed iteration is two weeks, perhaps a half or
full day near the start of the iteration should be spent on their creation (and in
parallel, class diagrams), before proceeding to programming. Yes, the design
illustrated in the diagrams will be imperfect and is speculative, and it will be
modified during programming, but it will provide a thoughtful, cohesive, com-
mon starting point for inspiration during programming.

Suggestion

Create interaction diagrams in pairs, not alone. The collaborative design will
be improved, and the partners will learn quickly from each other.

Note that it is primarily during this step that the application of design skill is
required, in terms of patterns, idioms, and principles. Relatively speaking, the
creation of use cases, domain models, and other artifacts is easier than the

COMMON INTERACTION DIAGRAM NOTATION

assignment of responsibilities and the creation of well-designed interaction dia-
grams. This is because there is a larger number of subtle design principles and
"degrees of freedom" that underlie a well-designed interaction diagram than
most other OOA/D artifacts.

Making interaction diagrams {in other words, deciding on the details of the
object design) is a very creative step in OCA/D.

Codified patterns, principles, and idioms can be applied to improve the qual-
ity of their design.

The design principles necessary for the successful construction of interaction
diagrams can be codified, explained, and applied in a methodical fashion. This
approach to understanding and using design principles is based on patterns—
structured guidelines and principles. Therefore, after introducing the syntax of
interaction diagrams, attention (in subsequent chapters) will turn to design pat-
terns and their application in interaction diagrams.

15.5 Common Interaction Diagram Notation

lllustrating Classes and Instances

The UML has adopted a simple and consistent approach to illustrate instances
vs. classifiers (see Figure 15.5):

* Forany kind of UML element (class, actor, ...), an instance uses the same graphic
symbol as the type, but the designator string is underlined.

Sale :Sale s1: Sale

o) o) O

class E instance E named instance H

Figure 15.5 Class and instances.

Therefore, to show an instance of a class in an interaction diagram, the regular
class box graphic symbol is used, but the name is underlined.

A name can be used to uniquely identify the instance. If none is used, note that a
":" precedes the class name.

201

15 - INTERACTION DIAGRAM NOTATION

Basic Message Expression Syntax

The UML has a standard syntax for message expressions:

return := message (parameter : parameterType) : returnType

Type information may be excluded if obvious or unimportant. For example:
spec := getProductSpect (id)

spec := getProductSpect (id:ItemID)
spec := getProductSpect (id:ItemID) ProductSpecification

15.6 Basic Collaboration Diagram Notation

202

Links
A link is a connection path between two objects; it indicates some form of navi-
gation and visibility between the objects is possible (see Figure 15.6). More for-
mally, a link is an instance of an association. For example, there is a link—or path
of navigation—from a Register to a Sale, along which messages may flow, such as
the makePayment message.
1: makePayment(cashTendered) —*
2:foo() —»
: Register :Sale
2.1: bar()
-
Figure 15.6 Link lines. link line H
Note that multiple messages, and messages both ways, can flow along the
same single link.
Messages

Each message between objects is represented with a message expression and
small arrow indicating the direction of the message. Many messages may flow

BASIC COLLABORATION DIAGRAM NOTATION

along this link (Figure 15.7). A sequence number is added to show the sequential
order of messages in the current thread of control.

msg1() |

1: msg2() —
2: msg3() —
3: msg4() —
: Regqister :Sale
<— 3.1: msg5()
o)

all messages flow on the same link H

Figure 15.7 Messages.

Messages to "self" or "this"

A message can be sent from an object to itself (Figure 15.8). This is illustrated by
a link to itself, with messages flowing along the link.

msg1() |

: Register

1: clear() T
Figure 15.8 Messages to "this."

Creation of Instances

Any message can be used to create an instance, but there is a convention in the
UML to use a message named create for this purpose. If another (perhaps less
obvious) message name is used, the message may be annotated with a special
feature called a UML stereotype, like so: «createy.

The create message may include parameters, indicating the passing of initial
values. This indicates, for example, a constructor call with parameters in Java.

203

15 - INTERACTION DIAGRAM NOTATION

Furthermore, the UML property {new} may optionally be added to the instance box to
highlight the creation.

create message, with optional initializing parameters. This will
normally be interpreted as a constructor call.
o
1: create(cashier) —»
: Regqister :Sale {new}
«create»
1: make(cashier)
: Regqister S :Sale_ {new}

message may be stereotyped for clarity

if an unobvious creation message name is used, the ﬁ

Figure 15.9 Instance creation.

Message Number Sequencing

The order of messages is illustrated with sequence numbers, as shown in Figure
15.10. The numbering scheme is:

1. The first message is not numbered. Thus,msgi() is unnumbered.

2. The order and nesting of subsequent messages is shown with a legal num
bering scheme in which nested messages have a number appended to them.
Nesting is denoted by prepending the incoming message number to the out
going message number.

msg1()—> :ClassA 1: msg2() —> :ClassB
o
1.1: msg3()
not numbered o
legal numberin
9 9 5 :ClassC

In Figure 15.11 a more complex case is shown.

204

BASIC COLLABORATION DIAGRAM NOTATION

first 5 second 5
third 5
o

msg1()— -ClassA 1: msg2() —

:ClassB

o
1.1: msg3() L

2.1: 5
msg g T

2:msg4() —> :ClassC
5 :ClassC

fourth 5 fifth 5
o 2.2 mng()

sixth 5
:ClassD

Figure 15.11 Complex sequence numbering.
Conditional Messages

A conditional message (Figure 15.12) is shown by following a sequence number
with a conditional clause in square brackets, similar to an iteration clause. The
message is only sent if the clause evaluates to true.

conditional message, with test ﬁ

message() L
—

1[color=red]: calculate
: Foo [] 0 :Ba

~

Figure 15.12 Conditional message.

Mutually Exclusive Conditional Paths

The example in Figure 15.13 illustrates the sequence numbers with mutually
exclusive conditional paths.

N
o
[&)]

15 - INTERACTION DIAGRAM NOTATION

unconditional after
either msg2 or msg4 -ClassE 1a and 1b are mutually
exclusive conditional paths
© 2:msge()| 1
@)
— 1a [test1] : msg2() .
msg1 :ClassA :ClassB
1b [not test1] : msg4() L 1a.1: msg3()
—»
1b.1: msg5()

:ClassD :ClassC

Figure 15.13 Mutually exclusive messages.

In this case it is necessary to modify the sequence expressions with a conditional
path letter. The first letter used is a by convention. Figure 15.13 states that
either /a or 1b could execute after msgl. Both are sequence number 1 since
either could be the first internal message.

Note that subsequent nested messages are still consistently prepended with
their outer message sequence. Thus /b. [is nested message within 7b.

Iteration or Looping

Iteration notation is shown in Figure 15.14. If the details of the iteration clause
are not important to the modeler, a simple '*' can be used.

— —

runSimulation() 1 * [i:=1..N]: num := nextInt()

)

: Simulator

: Random

iteration clause following the sequence numb

iteration is indicated with a * and an optional T
er

Figure 15.14 Iteration.

206

BASIC COLLABORATION DIAGRAM NOTATION

Iteration Over a Collection (Multiobject)

A common algorithm is to iterate over all members of a collection (such as a list or
map), sending a message to each. Often, some kind of iterator object is ultimately
used, such as an implementation of java.util Iterator or a C++ standard library
iterator. In the UML, the term multiobject is used to denote a set of
instances—a collection. In collaboration diagrams, this can be summarized as
shown in Figure 15.15.

— - — I
t := getTotal() . 1 *: st := getSubtotal() -SalesLineltem J

(©] *
O

(@]

double box indicates a multiobject (collection)

for example, a List object containing many

iterati th Itiobject and ding th . ;
iteration over the multiobject and sending the SalesLineltem objects

getSubtotal message to each member

these two * symbols used together imply T

Figure 15.15 Iteration over a multiobject.

The "*" multiplicity marker at the end of the link is used to indicate that the
message is being sent to each element of the collection, rather than being
repeatedly sent to the collection object itself.

Messages to a Class Object

Messages may be sent to a class itself, rather than an instance, to invoke class or
static methods. A message is shown to a class box whose name is not underlined,
indicating the message is being sent to a class rather than an instance (see
Figure 15.16).

message to class, or a
static method call

o —»
list := synchronizedList(aList)
: InstanceOfFoo java.util.Collections

msg1() ¢

(@]

not underlined,
therefore a class

Figure 15.16 Messages to a class object (static method invocation).

15 - INTERACTION DIAGRAM NOTATION

Consequently, it is important to be consistent in underlining your instance
names when an instance is intended, otherwise messages to instances versus
classes may be incorrectly interpreted.

15.7 Basic Sequence Diagram Notation

Links

Unlike collaboration diagrams, sequence diagrams do not show links.

Messages

Each message between objects is represented with a message expression on an
arrowed line between the objects (see Figure 15.17). The time ordering is orga-
nized from top to bottom.

: Register Sale

I I

| |

msg1 e }
msg2() TJ

msg3() >

]

msg() |

Ef msg5()

Figure 15.17 Messages and focus of control with activation boxes.

Focus of Control and Activation Boxes

As illustrated in Figure 15.17, sequence diagrams may also show the focus of
control (that is, in a regular blocking call, the operation is on the call stack)
using an activation box. The box is optional, but commonly used by UML prac-
titioners.

BASIC SEQUENCE DIAGRAM NOTATION

lllustrating Returns

A sequence diagram may optionally show the return from a message as a
dashed open-arrowed line at the end of an activation box (see Figure 15.18).
Many practitioners exclude them. Some annotate the return line to describe
what is being returned (if anything) from the message.

: Register : Sale

1 1

msg1 e [
msg2() m
msg3() gu

msg4() .

< msgs5()
o >

Figure 15.18 Showing returns.

Messages to "self" or "this"

A message can be illustrated as being sent from an object to itself by using a
nested activation box (see Figure 15.19).

: Reqister

msg1 !

clear()

Figure 15.19 Messages to "this."

209

210 15 -

Creation of Instances

- Reqist - 3al no‘te that newly created .
~Redisier ae objects are placed at their
| } creation "height"
i :
| o
makePayment(cashTendered) |
create(cashTendered) - Pavment
|
|
authorize() ;}u
|
I |
| |
— I ‘
e o | |

an object lifeline shows the extent of
the life of the object in the diagram

Figure 15.20 Instance creation and object lifelines.

Object Lifelines and Object Destruction

Figure 15.20 also illustrates object lifelines—the vertical dashed lines under-
neath the objects. These indicate the extent of the life of the object in the diagram.
In some circumstances it is desirable to show explicit destruction of an object (as
in C++, which does not have garbage collection); the UML lifeline notation
provides a way to express this destruction (see Figure 15.21).

: Sale
create(cashTendered) > : Pavment
T the «destroy» stereotyped
- ey ! message, with the large
} X and short lifeline
«destroy» ;X o indicates explicit object
i destruction
L

Figure 15.21 Object destruction

BASIC SEQUENCE DIAGRAM NOTATION

Conditional Messages

A conditional message is shown in Figure 15.22.

I

\

message ! \
[color = red] calculate() o |

Figure 15.22 A conditional message.

Mutually Exclusive Conditional Messages

The notation for this case is a kind of angled message line emerging from a com-

mon point, as illustrated in Figure 15.23.

A :B :C
| | |
|
1 ! ‘
message [x <10] calculate() » ' i
1 |
[x>15] calculate()I » :
| g D
|
|
|
[

Figure 15.23 Mutually exclusive conditional messages.

Iteration for a Single Message

Iteration notation for one message is shown in Figure 15.24.

: Simulator : Random

|
runSimulation() >

*[i:=1..N]: num := nextInt() >

;

Figure 15.24 Iteration for one message.

21

212

15 - INTERACTION DIAGRAM NOTATION

Iteration of a Series of Messages

Notation to indicate iteration around a series of messages is shown in Figure

15.25.

Iteration Over a Collection (Multiobject)

In sequence diagrams, iteration over a collection is shown in Figure 15.26.

With collaboration diagrams the UML specifies a "*' multiplicity marker at the
end of the role (next to the multiobject) to indicate sending a message to each
element rather than repeatedly to the collection itself. However, the UML does
not specify how to indicate this with sequence diagrams.

Messages to Class Objects

As in a collaboration diagram, class or static method calls are shown by not
underlining the name of the classifier, which signifies a class object rather than

an instance (see Figure 15.27).

: Simulator : Random

: Programmer

runSimulation() >

T
|
|
! |
|
|
|

hours := nextint()

work(hours)

*[i:=1..N]

Figure 15.25 Iteration for a sequence of

BASIC SEQUENCE DIAGRAM NOTATION

t := getTotal()) I

[
:SalesLineltem J

* : st := getSubtotal()

Figure 15.26 Iteration over a multiobject

message to class, or a
static method call

ﬁ

‘ o
message1 !

.

java.util.Collections

list := synchronizedList(aList)

T
‘ e}
|
|

Figure 15.27 Invoking class or static methods

not underlined,
therefore a class

N
=
w

Chapter 16

GRASP: DESIGNING OBJECTS
WITH RESPONSIBILITIES

The most likely way for the world to be destroyed, most
experts agree, is by accident. That's where we come in,
we're computer professionals. We cause accidents.

—Nathaniel Borenstein

Objectives

m Define patterns.

m Learn to apply five of the GRASP patterns.

Introduction

Object design is sometimes described as some variation of the following:

After identifying your requirements and creating a domain
model, then add methods to the software classes, and define the
messaging between the objects to fulfill the requirements.

Such terse advice is not especially helpful, because there are deep principles and
issues involved in these steps. Deciding what methods belong where, and how
the objects should interact, is terribly important and anything but trivial. It
takes careful explanation, applicable while diagramming and programming.

And this is a critical step—this is at the heart of what it means to develop an
object-oriented system, not drawing domain model diagrams, package diagrams,
and so forth.

N
—_
(63}

16.1

216

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

GRASP as a Methodical Approach to Learning Basic Object

Design

It is possible to communicate the detailed principles and reasoning required to
grasp basic object design, and to learn to apply these in a methodical approach
that removes the magic and vagueness.

The GRASP patterns are a learning aid to help one understand essential object
design, and apply design reasoning in a methodical, rational, explainable way.
This approach to understanding and using design principles is based on patterns of
assigning responsibilities.

Responsibilities and Methods

The UML defines a responsibility as "a contract or obligation of a classifier"
[OMGO1]. Responsibilities are related to the obligations of an object in terms of its
behavior. Basically, these responsibilities are of the following two types:

e knowing
* doing
Doing responsibilities of an object include:

o doing something itself, such as creating an object or
doing a calculation

0 initiating action in other objects
o controlling and coordinating activities in other objects
Knowing responsibilities of an object include:
o knowing about private encapsulated data
o knowing about related objects
o knowing about things it can derive or calculate

Responsibilities are assigned to classes of objects during object design. For
example, I may declare that "a Sale is responsible for creating SalesLineltems" (a
doing), or "a Sale is responsible for knowing its total" (a knowing). Relevant
responsibilities related to "knowing" are often inferable from the domain model,
because of the attributes and associations it illustrates.

The translation of responsibilities into classes and methods is influenced by the
granularity of the responsibility. The responsibility to "provide access to rela-
tional databases" may involve dozens of classes and hundreds of methods, pack-
aged in a subsystem. By contrast, the responsibility to "create a Sale” may
involve only one or few methods.

RESPONSIBILITIES AND INTERACTION DIAGRAMS

A responsibility is not the same thing as a method, but methods are imple-
mented to fulfill responsibilities. Responsibilities are implemented using meth-
ods that either act alone or collaborate with other methods and objects. For
example, the Sale class might define one or more methods to know its total; say, a
method named getTotal. To fulfill that responsibility, the Sale may collaborate
with other objects, such as sending agetSubtotal message to each SalesLineltem
object asking for its subtotal.

16.2 Responsibilities and Interaction Diagrams

The purpose of this chapter is to help methodically apply fundamental principles
for assigning responsibilities to objects. This will often be done while pro-
gramming. Within the UML artifacts, a common context where these
responsibilities (implemented as methods) are considered is during the creation
of interaction diagrams (which are part of the UP Design Model), whose basic
notation we examined in the previous chapter.

%]

: Sale

makePayment(cashTendered)

responsibility to create Payments

T
[
[
[
[
|
'ﬁ create(cashTendered) | - Payment
o)
\
[
[
[
[
[

implies Sale objects have a T

Figure 16.1 Responsibilities and methods are related.

Figure 16.1 indicates that Sale objects have been given a responsibility to create
Payments, which is invoked with a makePayment message and handled with a
corresponding makePayment method. Furthermore, the fulfillment of this
responsibility requires collaboration to create the SalesLineltem object and
invoke its constructor.

In summary, interaction diagrams show choices in assigning responsibilities to
objects. When created, decisions in responsibility assignment are made, which
are reflected in what messages are sent to different classes of objects. This chapter
emphasizes fundamental principles—expressed in the GRASP patterns—to
guide choices in where to assign responsibilities. These choices are reflected in
interaction diagrams.

217

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

16.3 Patterns

Experienced object-oriented developers (and other software developers) build up a
repertoire of both general principles and idiomatic solutions that guide them in
the creation of software. These principles and idioms, if codified in a structured
format describing the problem and solution, and given a name, may be called

patterns. For example, here is a sample pattern:

Pattern Name: Information Expert

Solution: Assign a responsibility to the class that has the

information needed to fulfill it.

Problem It Solves: What is a basic principle by which to assign

responsibilities to objects?

In object technology, a pattern is a named description of a problem and solution
that can be applied to new contexts; ideally, it provides advice in how to apply it in
varying circumstances, and considers the forces and trade-offs.! Many patterns
provide guidance for how responsibilities should be assigned to objects, given a
specific category of problem.

Most simply, a pattern is a named problem/solution pair that can be applied
in new context, with advice on how to apply it in novel situations and
discussion of its trade-offs.

"One person's pattern is another person's primitive building block" is an object
technology adage illustrating the vagueness of what can be called a pattern
[GHJV94]. This treatment of patterns will bypass the issue of what is appropriate
to label a pattern, and focus on the pragmatic value of using the pattern style as
a vehicle for naming, presenting, learning, and remembering useful software
engineering principles.

Repeating Patterns

New pattern could be considered an oxymoron, if it describes a new idea. The
very term "pattern" is meant to suggest a repeating thing. The point of patterns is
not to express new design ideas. Quite the opposite is true—patterns attempt to
codify existing tried-and-true knowledge, idioms, and principles; the more honed
and widely used, the better.

1. The formal notion of patterns originated with the (building) architectural patterns of
Christopher Alexander [AIS77]. Patterns for software originated in the 1980s with
Kent Beck, who became aware of Alexander's pattern work in architecture, and then
were developed by Beck with Ward Cunningham [BC87, Beck94].

GRASP: PATTERNS OF GENERAL PRINCIPLES IN ASSIGNING RESPONSIBILITIES

Consequently, the GRASP patterns—which will soon be introduced—do not
state new ideas; they are a codification of widely used basic principles. To an
object expert, the GRASP patterns—by idea if not by name—will appear very
fundamental and familiar. That's the point!

Patterns Have Names

All patterns ideally have suggestive names. Naming a pattern, technique, or
principle has the following advantages:

* It supports chunking and incorporating that concept into our understanding
and memory.

e It facilitates communication.

Naming a complex idea such as a pattern is an example of the power of abstrac-
tion—reducing a complex form to a simple one by eliminating detail. Therefore,
the GRASP patterns have concise names such as Information Expert, Creator,
Protected Variations.

Naming Patterns Improves Communication

When a pattern is named, we can discuss with others a complex principle or
design idea with a simple name. Consider the following discussion between two
software designers, using a common vocabulary of patterns (Creator, Factory,
and so on) to decide upon a design:

Fred: "Where do you think we should place the responsibility for creating a
SalesLineltem? 1 think a Factory.”

Wilma: "By Creator, I think Sale will be suitable."
Fred: "Oh, right—I agree."

Chunking design idioms and principles with commonly understood names facili-
tates communication and raises the level of inquiry to a higher degree of
abstraction.

16.4 GRASP: Patterns of General Principles in Assigning
Responsibilities

To summarize the preceding introduction:

* The skillful assignment of responsibilities is extremely important in object
design.

* Determining the assignment of responsibilities often occurs during the cre
ation of interaction diagrams, and certainly during programming.

219

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

m Patterns are named problem/solution pairs that codify good advice and prin-
ciples often related to the assignment of responsibilities.

Question: What are the GRASP patterns?

Answer: They deseribe fundamental prineiples of ohject design and
responsibility assignment, expressed as palterns.

Understanding and being able to apply these principles during the creation of
interaction diagrams is important because a software developer new to object
technology needs to master these basic principles as quickly as possible; they
form the foundation of how a system will be designed.

GRASP is an acronym that stands for General Responsibility Assignment Soft-
ware Patterns.” The name was chosen to suggest the importance of grasp ing
these principles to successfully design object-oriented software.

How to Apply the GRASP Patterns

The following sections present the first five GRASP patterns:
* Information Expert

* Creator

* High Cohesion

* Low Coupling

* Controller

There are others, introduced in a later chapter, but it is worthwhile mastering
these five first because they address very basic, common questions and funda-
mental design issues.

Please study the following patterns, note how they are used in the example
interaction diagrams, and then apply them during the creation of new interaction
diagrams. Start by mastering Information Expert, Creator, Controller, High
Cohesion, and Low Coupling. Later, learn the remaining patterns.

16.5 The UML Class Diagram Notation

220

A UML class box used to illustrate software classes often shows three compart-
ments; the third illustrates the methods of the class, as shown in Figure 16.2.

2. Technically, one should write "GRAS Patterns" rather than "GRASP Patterns," but the
latter sounds better.

INFORMATION EXPERT (OR EXPERT)

ClassName third section is for
methods
attributes
methods o

Figure 16.2 Software classes illustrate method names.

The details of this notation are explored in a subsequent chapter. In the following
discussion on patterns, this form of class box will occasionally be used.

16.6 Information Expert (or Expert)

Solution

Problem

Example

Assign a responsibility to the information expert—the class that has the infor-
mation necessary to fulfill the responsibility.

What is a general principle of assigning responsibilities to objects?

A Design Model may define hundreds or thousands of software classes, and an
application may require hundreds or thousands of responsibilities to be fulfilled.
During object design, when the interactions between objects are defined, we
make choices about the assignment of responsibilities to software classes. Done
well, systems tend to be easier to understand, maintain, and extend, and there is
more opportunity to reuse components in future applications.

In the NextGEN POS application, some class needs to know the grand total of a
sale.

|\ Start assigning responsibilities by clearly stating the responsibility.

By this advice, the statement is:
Who should be responsible for knowing the grand total of a sale"?

By Information Expert, we should look for that class of objects that has the
information needed to determine the total.

Now we come to a key question: Do we look in the Domain Model or the Design
Model to analyze the classes that have the information needed? The Domain
Model illustrates conceptual classes of the real-world domain; the Design Model
illustrates software classes.

221

222

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Answer:
1. If there are relevant classes in the Design Model, look there first.

2. Else, look in the Domain Model, and attempt to use (or expand) its represen
tations to inspire the creation of corresponding design classes.

For example, assume we are just starting design work and there is no or a minimal
Design Model. Therefore, we look to the Domain Model for information experts;
perhaps the real-world Sale is one. Then, we add a software class to the Design
Model similarly called Sale, and give it the responsibility of knowing its total,
expressed with the method named getTotal. This approach supports low
representational gap in which the software design of objects appeals to our con-
cepts of how the real domain is organized.

To examine this case in detail, consider the partial Domain Model in Figure
16.3.

Sale
date
time
1
Contains
1 *
Product
Sales - 1 Specification
Lineltem Described-by
description
quantity price
itemID

Figure 16.3 Associations of Sale.

What information is needed to determine the grand total? It is necessary to
know about all the SalesLineltem instances of a sale and the sum of their subtotals.
A Sale instance contains these; therefore, by the guideline of Information Expert,
Sale is a suitable class of object for this responsibility; it is an information expert
for the work.

As mentioned, it is in the context of the creation of interaction diagrams that
these questions of responsibility often arise. Imagine we are starting to work
through the drawing of diagrams in order to assign responsibilities to objects. A
partial interaction diagram and class diagram in Figure 16.4 illustrate some
decisions.

INFORMATION EXPERT (OR EXPERT)

t := getTotal() -Sale Sale
—
date
time
New method T O | getTotal()

Figure 16.4 Partial interaction and class diagrams.

We are not done yet. What information is needed to determine the line item sub-
total? SalesLineltem.quantity and ProductSpecification.price are needed. The
SalesLineltem knows its quantity and its associated ProductSpecification;
therefore, by Expert, SalesLineltem should determine the subtotal; it is the
information expert.

In terms of an interaction diagram, this means that the Sale needs to send
get-Subtotal messages to each of the SalesLineltems and sum the results; this
design is shown in Figure 16.5.

Sale

date

t := getTotal() 1 *: st := getSubtotal()

e — [J time

:SalesLineltem getTotal()

*

SalesLineltem

quantity

New method T O | getSubtotal()

Figure 16.5 Calculating the Sale total

To fulfill the responsibility of knowing and answering its subtotal, a Sales-
Lineltem needs to know the product price.

The ProductSpecification is an information expert on answering its price; there-
fore, a message must be sent to it asking for its price.

The design is shown in Figure 16.6.

In conclusion, to fulfill the responsibility of knowing and answering the sale's
total, three responsibilities were assigned to three design classes of objects as
follows.

223

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Design Class Responsibility
Sale knows sale total
SalesLineltem knows line item subtotal
ProductSpecification knows product price

The context in which these responsibilities were considered and decided upon
was while drawing an interaction diagram. The method section of a class diagram
can then summarize the methods.

The principle by which each responsibility was assigned was Information
Expert—placing it with the object that had the information needed to fulfill it.

Sale
date
. _ [time
t := getTotal() - Sale 1*: st := getSubtotal() ‘SalesLineltem J getTotal()
*
1.1: p := getPrice() SalesLineltem
quantity
:Product getSubtotal()
Specification
Product
Specification
description
price
itemID
New method T O | getPrice()

Figure 16.6 Calculating the Sale total.

Discussion Information Expert is frequently used in the assignment of responsibilities; it is a

224

basic guiding principle used continuously in object design. Expert is not meant to
be an obscure or fancy idea; it expresses the common "intuition" that objects do
things related to the information they have.

Notice that the fulfillment of a responsibility often requires information that is
spread across different classes of objects. This implies that there are many "partial”
information experts who will collaborate in the task. For example, the sales total
problem ultimately required the collaboration of three classes of objects.

INFORMATION EXPERT (OR EXPERT)

Whenever information is spread across different objects, they will need to interact
via messages to share the work.

Expert usually leads to designs where a software object does those operations
that are normally done to the inanimate real-world thing it represents; Peter
Goad calls this the "Do It Myself" strategy [Coad95]. For example, in the real
world, without the use of electro-mechanical aids, a sale does not tell you its
total; it is an inanimate thing. Someone calculates the total of the sale. But in
object-oriented software land, all software objects are "alive" or "animated," and
they can take on responsibilities and do things. Fundamentally, they do things
related to the information they know. I call this the "animation" principle in
object design; it is like being in a cartoon where everything is alive.

The Information Expert pattern—Ilike many things in object technology—has a
real-world analogy. We commonly give responsibility to individuals who have
the information necessary to fulfill a task. For example, in a business, who
should be responsible for creating a profit-and-loss statement? The person who
has access to all the information necessary to create it—perhaps the chief finan-
cial officer. And just as software objects collaborate because the information is
spread around, so it is with people. The company's chief financial officer may
ask accountants to generate reports on credits and debits.

Contraindications There are situations where a solution suggested by Expert is undesirable, usually
because of problems in coupling and cohesion (these principles are discussed
later in this chapter).

For example, who should be responsible for saving a Sale in a database? Certainly,
much of the information to be saved is in the Sale object, and thus by Expert an
argument could be made to put the responsibility in the Sale class. And the
logical extension of this decision is that each class has its own services to save
itself in a database. But this leads to problems in cohesion, coupling, and
duplication. For example, the Sale class must now contain logic related to data-
base handling, such as related to SQL and JDBC (Java Database Connectivity).
The class is no longer focused on just the pure application logic of "being a sale;" it
now has other kinds of responsibilities, which lowers its cohesion. The class must
be coupled to the technical database services of another subsystem, such as
JDBC services, rather than just being coupled to other objects in the domain layer
of software objects, which raises its coupling. And it is likely that similar database
logic would be duplicated in many persistent classes.

All these problems indicate violation of a basic architectural principle: design
for a separation of major system concerns. Keep application logic in one place
(such as the domain software objects), keep database logic in another place
(such as a separate persistence services subsystem), and so forth, rather than
intermingling different system concerns in the same component.

3. See Chapter 32 for a discussion of separation of concerns.

225

Benefits

Related Patterns
or Principles

Also Known As;
Similar To Services with the Attributes They Work On."

16.7

226

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Supporting a separation of major concerns improves coupling and cohesion in a
design. Thus, even though by Expert there could be some justification to put the
responsibility for database services in the Sale class, for other reasons (usually
cohesion and coupling), it is a poor design.

* Information encapsulation is maintained, since objects use their own infor
mation to fulfill tasks. This usually supports low coupling, which leads to
more robust and maintainable systems. (Low Coupling is also a GRASP pat
tern that is discussed in a following section).

* Behavior is distributed across the classes that have the required informa
tion, thus encouraging more cohesive "lightweight" class definitions that are
easier to understand and maintain. High cohesion is usually supported
(another pattern discussed later).

Low Coupling
High Cohesion

"Place responsibilities with data," "That which knows, does," "Do It Myself," "Put

Creator

Solution

Problem

Assign class B the responsibility to create an instance of class A if one or more of
the following is true:

* B aggregates A objects.

* B contains A objects.

* B records instances of A objects.
* B closely uses A objects.

* B has the initializing data that will be passed to A when it is created (thus B
is an Expert with respect to creating A).

B is a creator of A objects.

If more than one option applies, prefer a class B which aggregates or contains
class A.

Who should be responsible for creating a new instance of some class?

The creation of objects is one of the most common activities in an object-oriented
system. Consequently, it is useful to have a general principle for the assignment
of creation responsibilities. Assigned well, the design can support low coupling,
increased clarity, encapsulation, and reusability.

CREATOR

Example In the POS application, who should be responsible for creating a SalesLineltem
instance? By Creator, we should look for a class that aggregates, contains, and so
on, SalesLineltem instances. Consider the partial domain model in Figure 16.7.

Sale
date
time
1
Contains
1 *
Product
Sales * 1 Specification
Lineltem Described-by
description
quantity price
itemID

Figure 16.7 Partial domain model.

Since a Sate contains (in fact, aggregates) many SalesLineltem objects, the Cre-
ator pattern suggests that Sale is a good candidate to have the responsibility of
creating SalesLineltem instances.

This leads to a design of object interactions as shown in Figure 16.8.

: Regqister : Sale
1 1
\ \
1 |
\
\
makeLineltem(quantity) > 1
create(quantity) : SalesLineltem
I
\
\
\
\
\
\
\
[\
| |
T : :
\ \

Figure 16.8 Creating a SalesLineltem.

This assignment of responsibilities requires that a makeLineltem method be
defined in Sate.

Once again, the context in which these responsibilities were considered and
decided upon was while drawing an interaction diagram. The method section of

227

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

a class diagram can then summarize the responsibility assignment results, con-
cretely realized as methods.

Discussion Creator guides assigning responsibilities related to the creation of objects, a

very common task. The basic intent of the Creator pattern is to find a creator
that needs to be connected to the created object in any event. Choosing it as the
creator supports low coupling.

Aggregate aggregates Part, Container contains Content, and Recorder records
Recorded are all very common relationships between classes in a class diagram.
Creator suggests that the enclosing container or recorder class is a good candi-
date for the responsibility of creating the thing contained or recorded. Of course,
this is only a guideline.

Note that the concept of aggregation has been used in considering the Creator
pattern. Aggregation is discussed in Chapter 27; a brief definition is that aggre-
gation involves things that are in a strong Whole-Part or Assembly-Part rela-
tionship, such as Body aggregates Leg or Paragraph aggregates Sentence.

Sometimes a creator is found by looking for the class that has the initializing
data that will be passed in during creation. This is actually an example of the
Expert pattern. Initializing data is passed in during creation via some kind of
initialization method, such as a Java constructor that has parameters. For
example, assume that a Payment instance needs to be initialized, when created,
with the Sale total. Since Sale knows the total, Sale is a candidate creator of the
Payment.

Contraindications Often, creation requires significant complexity, such as using recycled instances

Benefits

Related Patterns
or Principles

228

for performance reasons, conditionally creating an instance from one of a family
of similar classes based upon some external property value, and so forth. In
these cases, it is advisable to delegate creation to a helper class called a Factory
[GHJV95] rather than use the class suggested by Creator. Factories are dis-
cussed in Chapter 23.

Low coupling (described next) is supported, which implies lower mainte-
nance dependencies and higher opportunities for reuse. Coupling is probably
not increased because the created class is likely already visible to the creator
class, due to the existing associations that motivated its choice as creator.

Low Coupling

Factory

Whole-Part [BMRSS96] describes a pattern to define aggregate objects that
support encapsulation of components.

Low COUPLING

16.8 Low Coupling

Solution

Problem

Example

Assign a responsibility so that coupling remains low.

How to support low dependency, low change impact, and increased reuse?

Coupling is a measure of how strongly one element is connected to, has knowl-
edge of, or relies on other elements. An element with low (or weak) coupling is
not dependent on too many other elements; "too many" is context-dependent,
but will be examined. These elements include classes, subsystems, systems, and
SO on.

A class with high (or strong) coupling relies on many other classes. Such classes
may be undesirable; some suffer from the following problems:

» Changes in related classes force local changes.
* Harder to understand in isolation.

* Harder to reuse because its use requires the additional presence of the
classes on which it is dependent.

Consider the following partial class diagram from a NextGen case study:
—

-

Payment [Register

[Sale :

Assume we have a need to create a Payment instance and associate it with the
Sale. What class should be responsible for this? Since a Register "records" a Pay-
ment in the real-world domain, the Creator pattern suggests Register as a candi-
date for creating the Payment. The Register instance could then send an
addPayment message to the Sale, passing along the new Payment as a parameter.
A possible partial interaction diagram reflecting this is shown in Figure 16.9.

—»
makePayment() . Register 1: create()—> p : Payment
2: addPayment(p) — Sale

Figure 16.9 Register creates Payment.

This assignment of responsibilities couples the Register class to knowledge of
the Payment class.

229

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

UML notation: Note that the Payment instance is explicitly named p so that in
message 2 it can be referenced as a parameter.

An alternative solution to creating the Payment and associating it with the Sale is
shown in Figure 16.10.

— —»
makePayment() - Reqister 1: makePayment() -Sale
1.1. create()
:Payment

Figure 16.10 Sale creates Payment.

Which design, based on assignment of responsibilities, supports Low Coupling?
In both cases we will assume the Sale must eventually be coupled to knowledge of
a Payment. Design 1, in which the Register creates the Payment, adds coupling of
Register to Payment, while Design 2, in which the Sale does the creation of a
Payment, does not increase the coupling. Purely from the point of view of coupling,
Design Two is preferable because overall lower coupling is maintained. This an
example where two patterns—Low Coupling and Creator—may suggest different
solutions.

In practice, the level of coupling alone can’t be considered in isolation from
other principles such as Expert and High Cohesion. Nevertheless, it is one
factor to consider in improving a design.

Discussion Low Coupling is a principle to keep in mind during all design decisions; it is an
underlying goal to continually consider. It is an evaluative principle that a
designer applies while evaluating all design decisions.

In object-oriented languages such as C++, Java, and C#, common forms of coupling
from TypeX to TypeY include:

* TypeX has an attribute (data member or instance variable) that refers to a
TypeY instance, or TypeY itself.

* A TypeX object calls on services of a TypeY object.

* TypeX has a method that references an instance of 7Type?, or TypeY itself, by
any means. These typically include a parameter or local variable of type
TypeY, or the object returned from a message being an instance of TypeY.

* TypeXis a direct or indirect subclass of TypeY.

Contraindications

Low COUPLING

* TypeY is an interface, and TypeX implements that interface.

Low Coupling encourages assigning a responsibility so that its placement does
not increase the coupling to such a level that it leads to the negative results that
high coupling can produce.

Low Coupling supports the design of classes that are more independent, which
reduces the impact of change. It can't be considered in isolation from other pat-
terns such as Expert and High Cohesion, but rather needs to be included as one of
several design principles that influence a choice in assigning a responsibility.

A subclass is strongly coupled to its superclass. The decision to derive from a
superclass needs to be carefully considered since it is such a strong form of coup-
ling. For example, suppose that objects need to be stored persistently in a rela-
tional or object database. In this case it is a relatively common design to create an
abstract superclass called PersistentObject from which other classes derive. The
disadvantage of this subclassing is that it highly couples domain objects to a
particular technical service and mixes different architectural concerns,
whereas the advantage is automatic inheritance of persistence behavior.

There is no absolute measure of when coupling is too high. What is important is
that a developer can gauge the current degree of coupling, and assess if increasing
it will lead to problems. In general, classes that are inherently very generic in
nature, and with a high probability for reuse, should have especially low
coupling.

The extreme case of Low Coupling is when there is no coupling between classes.
This is not desirable because a central metaphor of object technology is a system of
connected objects that communicate via messages. If Low Coupling is taken to
excess, it yields a poor design because it leads to a few incohesive, bloated, and
complex active objects that do all the work, with many very passive zero-coupled
objects that act as simple data repositories. Some moderate degree of coupling
between classes is normal and necessary to create an object-oriented system in
which tasks are fulfilled by a collaboration between connected objects.

High coupling to stable elements and to pervasive elements is seldom a problem.
For example, a Java J2EE application can safely couple itself to the Java libraries
(java.util, and so on), because they are stable and widespread.

Pick Your Battles

It is not high coupling per se that is the problem,; it is high coupling to elements
that are unstable in some dimension, such as their interface, implementation, or
mere presence.

This is an important point: As designers, we can add flexibility, encapsulate
details and implementations, and in general design for lower coupling in many
areas of the system. But, if we put effort into "future proofing" or lowering the
coupling at some point where in fact there is no realistic motivation, this is not
time well spent.

231

Benefits

Background

Related Patterns

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Designers have to pick their battles in lowering coupling and encapsulating
things. Focus on the points of realistic high instability or evolution. For example,
in the NextGen project, it is known that different third-party tax calculators
(with unique interfaces) need to be connected to the system. Therefore, designing
for low coupling at this variation point is practical.

* not affected by changes in other components

* simple to understand in isolation

* convenient to reuse

Coupling and cohesion (described next) are truly fundamental principles in
design, and should be appreciated and applied as such by all software developers.
Larry Constantine, also a founder of structured design in the 1970s and a current
advocate of more attention to usability engineering [CL99], was primarily

responsible in the 1960s for identifying and communicating coupling and
cohesion as critical principles [ConstantineGS, CMS74].

m Protected Variation

16.9 High Cohesion

Solution

Problem

Example

Assign a responsibility so that cohesion remains high.

How to keep complexity manageable?

In terms of object design, cohesion (or more specifically, functional cohesion) is
a measure of how strongly related and focused the responsibilities of an element
are. An element with highly related responsibilities, and which does not do a
tremendous amount of work, has high cohesion. These elements include classes,
subsystems, and so on.

A class with low cohesion does many unrelated things, or does too much work.
Such classes are undesirable; they suffer from the following problems:

* hard to comprehend

* hard to reuse

* hard to maintain

» delicate; constantly effected by change

Low cohesion classes often represent a very "large grain" of abstraction, or have

taken on responsibilities that should have been delegated to other objects.

The same example problem used in the Low Coupling pattern can be analyzed
for High Cohesion.

HIGH COHESION

Assume we have a need to create a (cash) Payment instance and associate it
with the Sale. What class should be responsible for this? Since Register records a
Payment in the real-world domain, the Creator pattern suggests Register as a
candidate for creating the Payment. The Register instance could then send an
addPayrnent message to the Sale, passing along the new Payment as a parameter,
as shown in Figure 16.11.

: Register : Sale

I
\
makePayment()) L

create()

p : Payment

addPayment(p)

i
Figure 16.11 Register creates Payment.

This assignment of responsibilities places the responsibility for making a pay-
ment in the Register. The Register is taking on part of the responsibility for ful-
filling the makePayment system operation.

In this isolated example, this is acceptable; but if we continue to make the
Register class responsible for doing some or most of the work related to more
and more system operations, it will become increasingly burdened with tasks
and become incohesive.

Imagine that there were fifty system operations, all received by Register. If it did
the work related to each, it would become a "bloated" incohesive object. The
point is not that this single Payment creation task in itself makes the Register
incohesive, but as part of a larger picture of overall responsibility assignment, it
may suggest a trend toward low cohesion.

And most important in terms of developing skills as an object designer, regardless
of the final design choice, the valuable thing is that at least a developer knows
to consider the impact on cohesion.

By contrast, as shown in Figure 16.12, the second design delegates the payment
creation responsibility to the Sale, which supports higher cohesion in the

Since the second design supports both high cohesion and low coupling, it is
desirable.

N
w

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

: Regqister : Sale

I I

| |

makePayment() | L }
makePayment() }

'—()_bcreate : Payment

Figure 16.12 Sale creates Payment

In practice, the level of cohesion alone can’t be considered in isolation from other responsibilities and other
principles such as Expert and Low Coupling.

Discussion Like Low Coupling, High Cohesion is a principle to keep in mind during all
design decisions; it is an underlying goal to continually consider. It is an evalua-
tive principle that a designer applies while evaluating all design decisions.

Grady Booch describes high functional cohesion as existing when the elements
of a component (such as a class) "all work together to provide some well-bounded
behavior" [Booch94].

Here are some scenarios that illustrate varying degrees of functional cohesion:

1. Very low cohesion—A class is solely responsible for many things in very dif
ferent functional areas.

o Assume a class exists called RDB-RPC-Interface which is com-
pletely responsible for interacting with relational databases and
for handling remote procedure calls. These are two vastly different
functional areas, and each requires lots of supporting code. The
responsibilities should be split into a family of classes related to
RDB access and a family related to RFC support.

2. Low cohesion—A class has sole responsibility for a complex task in one func
tional area.

o Assume a class exists called RDBlInterface which is completely
responsible for interacting with relational databases. The methods
of the class are all related, but there are lots of them, and a tre-
mendous amount of supporting code; there may be hundreds or
thousands of methods. The class should split into a family of light-
weight classes sharing the work to provide RDB access.

234

HIGH COHESION

3. High cohesion—A class has moderate responsibilities in one functional area
and collaborates with other classes to fulfill tasks.

o Assume a class exists called RDBInterface which is only partially
responsible for interacting with relational databases. It interacts
with a dozen other classes related to RDB access in order to
retrieve and save objects.

4. Moderate cohesion—A class has lightweight and sole responsibilities in a
few different areas that are logically related to the class concept, but not to
each other.

o Assume a class exists called Company which is completely respon-
sible for (a) knowing its employees and (b) knowing its financial
information. These two areas are not strongly related to each
other, although both are logically related to the concept of a com-
pany. In addition, the total number of public methods is small, as is
the amount of supporting code.

As a rule of thumb, a class with high cohesion has a relatively small number of
methods, with highly related functionality, and does not do too much work. It
collaborates with other objects to share the effort if the task is large.

A class with high cohesion is advantageous because it is relatively easy to main-
tain, understand, and reuse. The high degree of related functionality, combined
with a small number of operations, also simplifies maintenance and enhance-
ments. The fine grain of highly related functionality also supports increased
reuse potential.

The High Cohesion pattern—Ilike many things in object technology—has a
real-world analogy. It is a common observation that if a person takes on too many
unrelated responsibilities—especially ones that should properly be delegated to
others—then the person is not effective. This is observed in some managers who
have not learned how to delegate. These people suffer from low cohesion; they
are ready to become "unglued."

Another Classic Principle: Modular Design

Coupling and cohesion are old principles in software design; designing with
objects does not imply ignoring well-established fundamentals. Another of
these—which is strongly related to coupling and cohesion—is to promote modu-
lar design. To quote:

Modularity is the property of a system that has been decom-
posed into a set of cohesive and loosely coupled modules
[Booch94].

We promote a modular design by creating methods and classes with high cohe-
sion. At the basic object level, modularity is achieved by designing each method
with a clear, single purpose, and grouping a related set of concerns into a class.

N
[O]
[&)]

Contraindications

Benefits

236

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Cohesion and Coupling; Yin and Yang G
/

Bad cohesion usually begets bad coupling, and vice versa. 1 call

cohesion and coupling the yin and yang of software engineering

because of their interdependent influence. For example, consider a GUI widget
class that represents and paints a widget, saves data to a database, and invokes
remote object services. Not only is it profoundly incohesive, but it is coupled to
many (and disparate) elements.

There are a few cases in which accepting lower cohesion is justified.

One case is the grouping of responsibilities or code into one class or component to
simplify maintenance by one person—although be warned that such grouping may
also make maintenance worse. But for example, suppose an application contains
embedded SQL statements that by other good design principles should be
distributed across ten classes, such as ten "database mapper" classes. Now, it is
common that only one or two SQL experts know how to best define and maintain
this SQL, even if there are dozens of object-oriented (OO) programmers on the
project; few OO programmers may have strong SQL skills. Suppose the SQL
expert is not even a comfortable OO programmer. The software architect may
decide to group all the SQL statements into one class, RDBOperations, so that it is
easy for the SQL expert to work on the SQL in one location.

Another case for components with lower cohesion is with distributed server
objects. Because of overhead and performance implications associated with
remote objects and remote communication, it is sometimes desirable to create
fewer and larger, less cohesive server objects that provide an interface for many
operations. This is also related to the pattern called Coarse-Grained Remote
Interface, in which the remote operations are made more coarse-grained in
order to do or request more work in remote operation call, because of the perfor-
mance penalty of remote calls over a network. As a simple example, instead of a
remote object with three fine-grained operations setName, setSalary, and
setHi-reDate, there is one remote operation setData which receives a set of data.
This results in less remote calls, and better performance.

* Clarity and ease of comprehension of the design is increased.
* Maintenance and enhancements are simplified.

* Low coupling is often supported.

» The fine grain of highly related functionality supports increased reuse
because a cohesive class can be used for a very specific purpose.

CONTROLLER

16.10 Controller

Solution Assign the responsibility for receiving or handling a system event message to a
class representing one of the following choices:

« Represents the overall system, device, or subsystem (facade controller).

* Represents a use case scenario within which the system event occurs, often
named <UseCaseName>Handler, <UseCaseName>Coordinator, or
<Use-CaseName>Session (use-case or session controller).

o Use the same controller class for all system events in the same use
case scenario.

o Informally, a session is an instance of a conversation with an actor.
Sessions can be of any length, but are often organized in terms of
use cases (use case sessions).

"nan

Corollary: Note that "window," "applet," "widget," "view," and "document" classes
are not on this list. Such classes should nor fulfill the tasks associated with system
events, they typically receive these events and delegate them to a controller.

Problem Who should be responsible for handling an input system event?

An input system event is an event generated by an external actor. They are
associated with system operations—operations of the system in response to
system events, just as messages and methods are related.

For example, when a cashier using a POS terminal presses the "End Sale" button,
he is generating a system event indicating "the sale has ended." Similarly, when a
writer using a word processor presses the "spell check" button, he is generating a
system event indicating "perform a spell check."

A Controller is a non-user interface object responsible for receiving or handling a
system event. A Controller defines the method for the system operation.

Example In the NextGen application, there are several system operations, as illustrated in
Figure 16.13, showing the system itself as a class or component (which is legal
in the UML).

System

endSale()
enterltem()
makeNewSale()
makePayment()

Figure 16.13 System operations associated with the system events.

237

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

During analysis, system operations may be assigned to the class System, to
indicate they are system operations. However, this does nof mean that a soft-
ware class named Sysfem fulfills them during design. Rather, during design,
a Controller class is assigned the responsibility for system operations (see
Figure 16.14}.

Who should be the controller for system events such as enterltem and endSalel

[21 The FOD Stose o] =]
Hem I
Cusantity
presses button
Emter fim A s0on . ..
: Cashier
L actionPerformed(actionEvent)
Interface
:SaleJFrame
Layer
system event message 5
¢ enterltem(itemID, qty) ©
Which class of object should be responsible for receiving this
Domain . system event message?
Layer - o _ _ _
It is sometimes called the controller or coordinator. It does not
¢ ¢ ¢ normally do the work, but delegates it to other objects.
The controller is a kind of "facade" onto the domain layer from
the interface layer.

Figure 16.14 Controller for enterltem?

By the Controller pattern, here are some choices:

represents the overall "system," device, or Register, POSSystem
subsystem

represents a receiver or handler of all system ProcessSaleHandler,
events of a use case scenario ProcessSaleSestsion

238

CONTROLLER

In terms of interaction diagrams, it means that one of the examples in Figure
16.15 may be useful.

—»
enterltem(id, quantity)

:Regqister

—»
enterltem(id, quantity)

:ProcessSaleHandler

Figure 16.15 Controller choices.

The choice of which of these classes is the most appropriate controller is influ-
enced by other factors, which the following section explores.

During design, the system operations identified during system behavior analysis
are assigned to one or more controller classes, such as Register, as shown in Figure
16.16.

Discussion Systems receive external input events, typically involving a GUI operated by a
person. Other mediums of input include external messages such as in a call pro-
cessing telecommunications switch, or signals from sensors such as in process
control systems.

In all cases, if an object design is used, some handler for these events must be
chosen. The Controller pattern provides guidance for generally accepted, suitable
choices. As illustrated in Figure 16.14, the controller is a kind of facade into the
domain layer from the interface layer.

It is often desirable to use the same controller class for all the system events of
one use case so that it is possible to maintain information about the state of the use
case in the controller. Such information is useful, for example, to identify
out-of-sequence system events (for example, a makePayment operation before an
endSale operation). Different controllers may be used for different use cases.

A common defect in the design of controllers is to give them too much responsi-
bility.

Normally, a controller should delegate to other objects the work that needs to be
done; it coordinates or controls the activity. It does not do much work itself.

Please see the "Issues and Solutions" section later for elaboration.

The first category of controller is a facade controller representing the overall
system, device, or a subsystem. The idea is to choose some class name that sug-
gests a cover, or facade, over the other layers of the application, and that provides
the main point of service calls from the Ul layer down to other layers. It

N
w
©

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

could be an abstraction of the overall physical unit, such as a Register’,
TelecommSwitch, Phone, or Robot; a class representing the entire software sys-
tem, such as POSSystem, or any other concept which the designer chooses to
represent the overall system or a subsystem, even, for example, ChessGame if it
was game software.

Facade controllers are suitable when there are not "too many" system events, or it
is not possible for the user interface (UI) to redirect system event messages to
alternating controllers, such as in a message processing system.

If a use-case controller is chosen, then there is a different controller for each use
case. Note that this is not a domain object; it is an artificial construct to support
the system (a Pure Fabrication in terms of the GRASP patterns). For example, if
the NextGen application contains use cases such as Process Sale and Handle
Returns, then there may be a ProcessSaleHandler class and so forth.

When should you choose a use-case controller? It is an alternative to consider
when placing the responsibilities in a facade controller leads to designs with low
cohesion or high coupling, typically when the facade controller is becoming
"bloated" with excessive responsibilities. A use-case controller is a good choice
when there are many system events across different processes; it factors their
handling into manageable separate classes, and also provides a basis for knowing
and reasoning about the state of the current scenario in progress.

In the UP and Jacobson's older Objectory method [Jacobson92], there are the
(optional) concepts of boundary, control, and entity classes. Boundary objects
are abstractions of the interfaces, entity objects are the application-indepen-
dent (and typically persistent) domain software objects, and control objects
are use case handlers as described in this Controller pattern.

A important corollary of the Controller pattern is that interface objects (for
example, window objects or widgets) and the presentation layer should not have
responsibility for fulfilling system events. In other words, system operations
should be handled in the application logic or domain layers of objects rather
than in the interface layer of a system. See the "Issues and Solutions" section for
an example.

The Controller object is typically a client-side object within the same process as
the UI (for example, an application with a Java Swing GUI), and so is not
exactly applicable when the Ul is a Web client in a browser, and there is
server-side software involved. In the latter case, there are various common
patterns of handling the system events that are strongly influenced by the chosen
server-side technical framework, such as Java servlets. Nevertheless, it is a
common idiom to create server-side use-case controllers with either a servlet for
each use case or an Enterprise JavaBeans (EJB) session bean for each use
case. The

4. Various terms are used for a physical POS unit, including register, point-of-sale terminal
(POST), and so forth. Over time, "register" has come to embody the notion of both a
physical unit, and the logical abstraction of the thing that registers sales and payments.

CONTROLLER

server-side session object represents a "session" of interaction with an external
actor.

System Register
endSale()
enterltem() >
makeNewSale() endSale()
makePayment() enterltem()
makeNewSale()
makeNewReturn() makePayment()
enterReturnltem()
makeNewReturn()
enterReturnltem()

system operations allocation of system
discovered during system operations during design,
behavior analysis using one facade controller
ProcessSale HandleReturns
System Handler Handler
endSale()
enterltem() P
makeNewSale() endSale() enterReturnltem()
makePayment() enterltem() makeNewReturn()
makeNewSale()
enterReturnitem() makePayment()

makeNewReturn()

allocation of system
operations during design,
using several use case
controllers

Figure 16.16 Allocation of system operations.

If the Ul is not a web client (for example, it is a Swing or Windows GUI), but the
application calls on remote services, it is still common to use the Controller pattern.
The UI forwards the request to the local client-side Controller, and the Controller
may forward all or part of the request handling on to remote services. This design
lowers the coupling of the Ul to remote services, and makes it easier, for example,
to provide the services either locally or remotely, through the indirection of the
client-side Controller.

To summarize, the Controller receives the service requests from the UI layer and
coordinates their fulfillment, usually by delegation to other objects.

241

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Benefits * Increased potential for reuse, and pluggable interfaces—It ensures that

application logic is not handled in the interface layer. The responsibilities of a
controller could technically be handled in an interface object, but the
implication of such a design is that program code and logic related the ful-
fillment of application logic would be embedded in interface or window
objects. An interface-as-controller design reduces the opportunity to reuse
logic in future applications, since it is bound to a particular interface (for
example, window-like objects) that is seldom applicable in other applications.
By contrast, delegating a system operation responsibility to a controller
supports the reuse of the logic in future applications. And since the
application logic is not bound to the interface layer, it can be replaced with a
different interface.

* Reason about the state of the use case—It is sometimes necessary to ensure that

system operations occur in a legal sequence, or to be able to reason about
the current state of activity and operations within the use case that is
underway. For example, it may be necessary to guarantee that the
makePay-ment operation can not occur until the endSale operation has
occurred. If so, this state information needs to be captured somewhere; the
controller is one reasonable choice, especially if the same controller is used
throughout the use case (which is recommended).

Issues and Bloated Controllers

Solutions

242

Poorly designed, a controller class will have low cohesion—unfocused and han-
dling too many areas of responsibility; this is called a bloated controller. Signs of
bloating include:

There is only a single controller class receiving all system events in the sys
tem, and there are many of them. This sometimes happens if a facade con
troller is chosen.

The controller itself performs many of the tasks necessary to fulfill the sys
tem event, without delegating the work. This usually involves a violation of
Information Expert and High Cohesion.

A controller has many attributes, and maintains significant information
about the system or domain, which should have been distributed to other
objects, or duplicates information found elsewhere.

There are several cures to a bloated controller, including:

1. Add more controllers—a system does not have to have only one. Instead of

facade controllers, use use-case controllers. For example, consider an appli-
cation with many system events, such as an airline reservation system.

CONTROLLER

It may contain the following controllers:

Use-case controllers

M akeReservationHandler

ManageSchedul esHandler

ManageFaresHandl er

2. Design the controller so that it primarily delegates the fulfillment of
each system operation responsibility on to other objects.

Interface Layer Does Not Handle System Events

To reiterate: an important corollary of the Controller pattern is that interface
objects (for example, window objects) and the interface layer should not have
responsibility for handling system events. As an example, consider a design in
Javathat uses a JFrame to display the information.

Assume the NextGen application has a window that displays sale information
and captures cashier operations. Using the Controller pattern, Figure 16.17
illustrates an acceptable relationship between the JFrame and Controller and
other objects in a portion of the POS system (with simplifications).

Notice that the SaleJFrame class—part of the interface layer—passes the
enter-Item message to the Register object. It did not get involved in processing
the operation or deciding how to handle it; the window only delegated it to
another layer.

Assigning the responsibility for system operations to objects in the application
or domain layer—using the Controller pattern rather than the interface layer
supports increased reuse potential. If an interface layer object (like the Saled-
Frame) handles a system operation—which represents part of a business pro-
cess—then business process logic would be contained in an interface (for
example, window-like) object, which has low opportunity for reuse because of its
coupling to a particular interface and application.

Consequently, the design in Figure 16.18 is undesirable.

Placing system operation responsibility in a domain object controller makes it
easier to reuse the program logic supporting the associated business process in
future applications. It also makes it easier to unplug the interface layer and use
a different interface framework or technology, or to run the system in an offline
"batch" mode.

243

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Message Handling Systems and the Command Pattern

Some applications are message-handling systems or servers that receive
requests from other processes. A telecommunications switch is a common exam-
ple. In such systems, the design of the interface and controller is somewhat dif-
ferent. The details are explored in a later chapter, but in essence, a common
solution is to use the Command pattern [GHJIV95] and Command Processor pat-
tern [BMRSS96], introduced in Chapter 34.

B2 The FOOD Stoe Hi=1E
meminy | !
LUTRTHE
presses button
------ | Enter gom Andsoon... |
. Cashier
actionPerformed(actionEvent)
system event message 5
Interface Layer :SaleJFrame
1: enterltem(itemID, qtyl o*’
...... controller H
peecttt
L
Domain Layer ‘Reagister 1.1: makelLineltem(itemID, qty) .sal

Related Patterns

244

Figure 16.17 Desirable coupling of interface layer to domain layer.

» Command—n amessage-handling system, each message may be repre
sented and handled by a separate Command object [GHJIV 95].

» Facade—A facade controller isakind of Facade [GHJV95].

* Layers—ThisisaPOSA pattern [BMRSS96]. Placing domain logic in the
domain layer rather than the presentation layer is part of the Layers
pattern.

OBXECT DESGN AND CRC CARDS

Pure Fabrication—This is another GRASP pattern. A Pure Fabrication is an
arbitrary creation of the designer, not a software class whose name is
inspired by the Domain Model. A use-case controller isakind of Pure

Fabrication.
1 T . [=]
ey |
[ETTE T
presses button
—————— - Litur e Ara] e
Cashier

actionPerformed(actionEvent)
It is undesirable for an interface

layer object such as a window to get
Interface Layer :SaleJFrame involved in deciding how to handle
domain processes.

Business logic is embedded in the
presentation layer, which is not useful.

Domain Layer 1: makeLineltem(itemID, qty) -Sale

_D
SaleJFrame should not
send this message.

Figure 16.18 Less desirable coupling of interface layer to domain layer.

16.11 Object Design and CRC Cards

Although not formally part of the UML, another device sometimes used to help
assign responsibilities and indicate collaboration with other objects are CRC
cards (Class-Responsibility-Collaborator cards) [BC89]. These were pioneered
by Kent Beck and Ward Cunningham, who are largely responsible for encourag-
ing objects designers to think more abstractly in terms of responsibility assign-
ment and collaborations, and also for the use of patterns.

245

16.12

246

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

CRC cards are index cards, one for each class, upon which the responsibilities of
the class are briefly written, and a list of collaborator objects to fulfill those
responsibilities. They are usually developed in a small group session. The
GRASP patterns may be applied when considering the design while using CRC
cards.

CRC cards are one approach to recording the results of responsibility assign-
ment and collaborations. The recording can be enhanced with the use of interac-
tion and class diagrams. The real value is not the cards or the diagrams, but the
consideration of responsibility assignment.

Further Readings

The metaphor of collaborating objects with responsibilities, or
Responsibility-Driven Design, especially emerged from the influential object
work in Smalltalk at Tektronix in Portland, from Kent Beck, Ward Cunningham,
Rebecca Wirfs-Brock, and others. Designing Object-Oriented Software [WWW90]
isthelandmark text, and as relevant today as when it was written.

Two other recommended texts emphasizing fundamental object design princi-
ples are Object-Oriented Design Heuristics by Riel, and Object Models by Coad.

Chapter 17

DESIGN MODEL: USE-CASE

REALIZATIONS WITH
GRASP PATTERNS

To invent, you need a good imagination and a pile of junk.

—Thomas Edison

Objectives

» Design use-case realizations.
* Apply the GRASP patterns to assign responsibilities to classes.

* Usethe UML interaction diagram notation to illustrate the design of
objects.

Introduction

This chapter explores how to create a design of collaborating objects with
responsibilities. Particular attention is given to the application of the GRASP
patterns to develop a well-designed solution. Please note that the GRASP pat-
terns as such or by name are not the important thing; they are just a learning
aid to help talk about and methodically do fundamental object design.

This chapter communicates the principles, using the NextGen POS example, by
which an object-oriented designer assigns responsibilities and establishes object
interactions—a core skill in object-oriented devel opment.

247

17.1

17 - DESGNMODEL: USE-CASE REALIZATIONSWITH GRASP PATTERNS

Note:

The assignment of responsibilities and design of collaborations are very
important and creative steps during design, either while diagraming or while
programming.

The material is intentionally detailed; it attempts to exhaustively illustrate that
there is no "magic" or unjustifiable decisions in object design—assignment of
responsibilities and the choice of object interactions can be rationally explained
and learned.

Use-Case Realizations

To quote, "A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects’ [RUP]. More pre-
cisely, a designer can describe the design of one or more scenarios of a use case;
each of these is called a use-case readlization. Use-case realization is a UP term
or concept used to remind us of the connection between the requirements
expressed as use cases, and the object design that satisfies the requirements.

UML interaction diagrams are a common language to illustrate use-case real-
izations. And as was explored in the prior chapter, there are principles and pat-
terns of object design, such as Information Expert and Low Coupling, that can
be applied during this design work.

To review, Figure 17.20 (near the end of this chapter) illustrates the relationship
between some UP artifacts:

The use case suggests the system events that are explicitly shown in system
sequence diagrams.

Details of the effect of the system events in terms of changes to domain
objects may optionally be described in system operation contracts.

* The system events represent messages that initiate interaction diagrams,
which illustrate how objects interact to fulfill the required tasks—the use
case realization.

e Theinteraction diagrams involve message interaction between software
objects whose names are sometimes inspired by the names of conceptual
classes in the Domain Model, plus other classes of objects.

ARTIFACT COMMENTS

17.2 Artifact Comments

Interaction Diagrams and Use-Case Realizations

In the current iteration we are considering various scenarios and system events
such as:

. Process Scale: makeNewSale, enterItem, endSale, makePayment

If collaboration diagrams are used to illustrate the use-case realizations, a dif-
ferent collaboration diagram will be required to show the handling of each sys-
tem event message. For example (Figure 17.1):

makeNZv?Sale() ‘Register 1: 2?2?20 — ™
enterltem() —» ‘Register 1: 2?2?20 — ™
endSale() —» ‘Reqi r 1: 2?2?20 — ™
makePayment() —= :Register 1: ??2?20) ™

Figure 17.1 Collaboration diagrams and system event message handling.

On the other hand, if sequence diagrams are used, it may be possible to fit all
system event messages on the same diagram, asin Figure 17.2.

. Register : ProductCatalog
| |
makeNewSale() o | | |
create() | .
enterltem ' > < Sdle
uantit I
spec := getProductSpec(itemiD) ¢!

addLineltem(spec, quantity)

N

endSale())

makePayment(...) _ |
.. I

—— - ——

Figure 17.2 Oneisequence diagram and system event rrimessage handling.

17 - DESGN MODEL : USE-CASE REALIZATIONSWITH GRASP PATTERNS

However, it is often the case that the sequence diagram is then too complex or
long. It is legal, as with interaction diagrams, to use a sequence diagram for
each system event message, asin Figure 17.3.

makeNewSale() . |
create

: Register ‘ . ProductCatalog ‘ ‘ . Sale ‘
enterltem | |

(temID, quantity) _ | [[
spec := getProductSpec(itemID) > |

addLineltem(spec, quantity) | ;'
o | |
’ | |

| | |
[[

Figure 17.3 Multiple sequence diagrams and system event message handling.

Contracts and Use-Case Realizations

To reiterate, it may be possible to design use-case realizations directly from the
use case text. In addition, for some system operations, contracts may have been
written that add greater detail or specificity. For example:

Contract CO2: enterltem

Operation: Cross enterltem(itemID : ItemID, quantity : integer) Use
References: Cases: Process Sale There is a sale underway.
Preconditions:

- A SalesLineltem instance sli was created (instance cre-
Postconditions: ation).

In conjunction with contemplating the use case text, for each contract, we work
through the postcondition state changes and design message interactions to sat-
isfy the requirements. For example, given this partial enterltem system opera-

250

ARTIFACT COMMENTS

tion, a partial interaction diagram is shown in Figure 17.4 that satisfies the
state change of SalesLineltem instance creation.

enterlitem(id, qty) —» 1: makeLineltem(...) —

:Sale

:Register

1.1: create(...

'

:SalesLineltem

Figure 17.4 Partial interaction diagram.

Caution: The Requirements Are Not Perfect

It is useful to bear in mind that previously written use cases and contracts are
only a guess of what must be achieved. The history of software development is
one of invariably discovering that the requirements are not perfect, or have
changed. This is not an excuse to ignore trying to do a good requirements job,
but a recognition of the need to continuously engage customers and subject mat-
ter expertsin review and feedback on the growing system's behavior.

An advantage of iterative development is that it naturally supports the discov-
ery of new analysis and design results during design and implementation work.
The spirit of iterative development is to capture a "reasonable" degree of infor-
mation during requirements analysis, filling in details during design and imple-
mentation.

The Domain Model and Use-Case Realizations

Some of the software objects that interact via messages in the interaction dia-
grams are inspired from the Domain Model, such as a Sale conceptual class and
Sale design class. The choice of appropriate responsibility placement using the
GRASP patterns relies, in part, upon information in the Domain Model. As men-
tioned, the existing Domain Model is not likely to be perfect; errors and omis-
sions are to be expected. You will discover new concepts that were previously
missed, ignore concepts that were previously identified, and do likewise with
associations and attributes.

Conceptual vs. Design Classes

Recall that the UP Domain Model does not illustrate software classes, but may
be used to inspire the presence and names of some software classes in the

251

17.3

252

17 - DESGN MODEL : USE-CAEREALIZATIONSWITH GRASP PATTERNS

Design Model. During interaction diagramming or programming, the developers
may look to the Domain Model to name some design classes, thus creating a
design with lower representational gap between the software design and our
concepts of the real domain to which the software isrelated (see Figure 17.5).

UP Domain Model

Stakeholder's view of the noteworthy concepts in the domain.

Sale
conceptual Payment 1 Pays-for 1
classes date
amount time
inspires
* objects
and
names in
Sale
Payment
. date: Date
design amount: Money Pays-for startTime: Time

classes

getBalance(): Money

getTotal(): Money

UP Design Model

The object developer has taken inspiration from the real-world domain in
creating software classes. Therefore, the representational gap between h
stakeholders conceive the domain, and its representation in software, has
been lowered.

Figure 17.5 Lowering representational gap with design classes named from
conceptual classes.

Must the design classes in the Design Model be limited to classes with names
inspired from the Domain Model? Not at all; it is appropriate to discover new
conceptual classes during this design work that were missed during earlier
domain analysis, and also to make up software classes whose names and pur-
pose is completely unrelated to the Domain Model.

Use-Case Realizations for the NextGen Iteration

The following sections explore the choices and decisions made while designing a
use-case redlization with objects based on the GRASP patterns. The explana-
tions are intentionally detailed, in an attempt to illustrate that there does not
have be any "hand waving" in the creation of well-designed interaction dia-
grams; their construction is based on justifiable principles.

17.4

OBXECT DESGN: MAKENEWSALE

Notationally, the design of objects for each system event message will be shown
in a separate diagram, to focus on the design issues of each. However, they could
have been grouped together on one sequence diagram.

Object Design: makeNewSale

The makeNewSale system operation occurs when a cashier requests to start a
new sale, after a customer has arrived with things to buy. The use case may
have been sufficient to decide what was necessary, but for this case study we
wrote contracts for all the system events, for explanation and completeness.

Contract CO1: makeNewSale

Operation: Cross makeNewSale()

References: Use Cases: Process Sale

Preconditions: none

Postconditions: - A Sale instance s was created (instance creation).

- s was associated with the Register (association formed).
- Attributes of s were initialized.

Choosing the Controller Class

Our first design choice involves choosing the controller for the system operation
message enterltem. By the Controller pattern, here are some choices:

represents the overall "system," device, Register, POSSystem
or subsystem

represents a receiver or handler of all ProcessSaleHandler,
system events of a use case scenario. ProcessSaleSession

Choosing a facade controller like Register is satisfactory if there are only a few
system operations and the facade controller is not taking on too many responsi-
bilities (in other words, if it is becoming incohesive). Choosing a use-case con-
troller is suitable when there are many system operations and we wish to
distribute responsibilities in order to keep each controller class lightweight and
focused (in other words, cohesive). In this case, Register will suffice, since there
are only afew system operations.

This Register is a software object in the Design Model. It is not a real physical
register but a software abstraction whose name was chosen to lower the rep-
resentational gap between our concept of the domain and the software.

253

17 - DESIGN MODEL : USE-CASE REALIZATIONSWITH GRASP PATTERNS

Thus, the interaction diagram shown in Figure 17.6 begins by sending the
makeNewSale message to a Register software object.

~~~~~~~ o IRegisten

|
O |
makeNewvwsSaleO >D
|
|

Figure 17.6 Applying the GRASP Controller pattern.

Creating a New Sale

A software Sale object must be created, and the GRASP Creator pattern sug-
gests assigning the responsibility for creation to a class that aggregates, con-
tains, or records the object to be created.

by Creator

and
Controller Register creates a A
SERT .+* [ Sale by Creator by Creator, Sale
. Tte | iRegister | .ottt creates an empty
. . multiobject (such as
. | .+t a List) which will
. - _.2*" | eventually hold
S Lt SalesLineltem
makeNewSale() ) o instances
o'
create -Sale
o
create :Sales
| o Lineltem
: [«
- CAUTION:
this activation is implied to be within the This isnot a SalesLineltem instance. This is
constructor of the Sale instance collection object (such as a List) that can hol
SalesLineitem objects.

Figure 17.7 Sale and multiobject creation.



OBXECT DESGN: ENTERITEM

Analyzing the Domain Model reveals that a Register may be thought of as
recording a Sale; indeed, the word "register" in business has for many years
meant the thing that recorded (or registered) account transactions, such as
sales.

Thus, Register is a reasonable candidate for creating a Sale. And by having the
Register create the Sale, the Register can easily be associated with it over time,
so that during future operations within the session, the Register will have a ref-
erence to the current Sale instance.

In addition to the above, when the Sale is created, it must create an empty col-
lection (container, such as a Java List) to record all the future SalesLineltem
instances that will be added. This collection will be contained within and main-
tained by the Sale instance, which implies by Creator that the Sale is a good
candidate for creating it.

Therefore, the Register creates the Sale, and the Sale creates an empty collec-
tion, represented by a multiobject in the interaction diagram.

Hence, the interaction diagram in Figure 17.7 illustrates the design.

Conclusion

The design was not difficult, but the point of its careful explanation in terms of
Controller and Creator was to illustrate that the details of a design can be
rationally and methodically decided and explained in terms of principles and
patterns, such as GRASP.

17.5 Object Design: enterltem

The enterltem system operation occurs when a cashier enters the itemlD and
(optionally) the quantity of something to be purchased. Here is the complete
contract:

Contract CO2: enterltem

Operation: Cross enterltem(itemID : ltemID, quantity : integer) Use
References: Cases: Process Sale There is an underway sale.
Preconditions:
- A SalesLineltem instance sli was created (instance cre-
Postconditions: ation).
- sli was associated with the current Sale (association
formed).
- sli.quantity became quantity (attribute modification).
- sli was associated with a ProductSpecification, based on
itemID match (association formed).

255



256

17 - DESIGN MODEL : USE-CASE REALIZATIONSWITH GRASP PATTERNS

An interaction diagram will be constructed to satisfy the postconditions of
enter-Item, using the GRASP patterns to help with the design decisions.

Choosing the Controller Class

Our first choice involves handling the responsibility for the system operation
message enterltem. Based on the Controller pattern, as for makeNewSale, we
will continue to use Register as a controller.

Display Item Description and Price?

Because of a design principle called Model-View Separation, it is not the
responsibility of non-GUI objects (such as a Register or Sale) to get involved in
output tasks. Therefore, although the use case states that the description and
price are displayed after this operation, the design will be ignored at this time.

All that is required with respect to responsibilities for the display of information
isthat the information is known, which it isin this case.

Creating a New SalesLineltem

The enterltem contract postconditions indicate the creation, initialization, and
association of a SalesLineltem. Anayzing the Domain Model revedls that a Sale
contains SalesLineltem objects. Taking inspiration from the domain, a software
Sale may similarly contain software SalesLineltem. Hence, by Creator, a soft-
ware Sale is an appropriate candidate to create a SalesLineltem.

The Sale can be associated with the newly created SalesLineltem by storing the
new instance in its collection of line items. The postconditions indicate that the
new SalesLineltem needs a quantity, when created; therefore, the Register must
pass it along to the Safe, which must pass it along as a parameter in the create
message (in Java, that would be implemented as a constructor call with a
parameter).

Therefore, by Creator, a makelineltem message is sent to a Sale for it to create a
SalesLineltem. The Sale creates a SalesLineltem, and then stores the new
instance in its permanent collection.

The parameters to the makelLineltem message include the quantity, so that the
SalesLineltem can record it, and likewise the ProductSpecification which
matches the itemID.



OBJECT DESIGN: ENTERITEM

Finding a ProductSpecification

The SalesLineltem needs to be associated with the ProductSpecification that
matches the incoming itemlD. This implies it is necessary to retrieve a
Product-Specification, based on an itemlD match.

Before considering how to achieve the lookup, it is useful to consider who should
be responsible for it. Thus, afirst stepis:

Start assigning responsibilities by clearly stating the responsibility.

To restate the problem:

Who should be responsible for knowing a ProductSpecification,
based on an itemlD match?

This is neither a creation problem nor one of choosing a controller for a system
event. Now we see our first application of Information Expert in the design.

In many cases, the Expert pattern is the principal one to apply. Information
Expert suggests that the object that has the information required to fulfill the
responsibility should do it. Who knows about all the ProductSpecification
objects?

Analyzing the Domain Model reveals that the ProductCatalog logically contains
all the ProductSpecifications. Once again, taking inspiration from the domain,
we design software classes with similar organization: a software ProductCatalog
will contain software ProductSpecifications.

With that decided, then by Information Expert ProductCatalog is a good candi-
date for this lookup responsibility since it knows all the ProductSpecification
objects.

This may be implemented, for example, with a method called getSpecification.

Visibility to a ProductCatalog

Who should send the getSpecification message to the ProductCatal og to ask for
a ProductSpecification?

It is reasonable to assume that a Register and ProductCatalog instance were
created during the initial Sart Up use case, and that there is a permanent con-
nection from the Register object to the ProductCatal og object. With that assump-

1. The naming of accessing methods is of course idiomatic to each language. Java always
uses the object.getFoo() form, C++ tends to use object.foo(), and C# uses object.Foo,
which hides (like Eiffel and Ada) if it isamethod call or direct access of a public
attribute. The Java style is used in the examples.

257



258

17 - DESIGN MODEL : USE-CASE REALIZATIONSWITH GRASP PATTERNS

tion (which we might record on atask list of things to ensure in the design when
we get to designing the initialization), then it is possible for the Register to send
the getSpecification message to the ProductCatal og.

Thisimplies another concept in object design: visibility. Visibility isthe ability
of one object to "see" or have areference to another object.

For an object to send a message to another object it must have visibility toit.

Since we will assume that the Register has a permanent connection—or refer-
ence—to the ProductCatalog, it has visibility to it, and hence can send it mes-

sages such as getSpecification.

The following chapter will explore the question of visibility more closdly.

by Controller
o’ o
enterltem(id, qty) —»

by Creator 5

.......
) .
ee”

2: makeLineltem(spec, qty)—

:Register

1: spec := getSpecification(id)i
fo)

o :Product
by Expert  fee... o "Catalog

1.1: spec := find(id)¢
0

Thisfind message is to the .
Map object (the multiobject), " -Product
not to a ProductSpecification. Specification

.0
CAUTION:

This is a multiobject collection (such as a Map), not
ProductSpecification. It may contain many
ProductSpecifications.

2.1: create(spec, qty)

sl: SalesLineltem

2.2 add(sl)¢o--

-SalesLineltem add the newly created

SalesLineltem instance to the
multiobject (e.g., List)

O-

.
.

CAUTION:
This is a multiobject collection (such as a List), not a
SalesLineltem. It may contain many SalesLineltems.

Figure 17.8 The enterltem interaction diagram.



OBJECT DESIGN. ENTERITEM

Retrieving ProductSpecifications from a Database

In the final version of the NextGen POS application, it is unlikely that al the
ProductSpecifications will actually be in memory. They will most likely be stored
in arelational or object database and retrieved on demand; some may be cached
in the client process for performance or fault-tolerance reasons. However, the
issues surrounding retrieval from a database will be deferred for now in the
interest of simplicity. It will be assumed that all the ProductSpecifications are in
memory.

Chapter 34 explores the topic of database access of persistent objects, which is a
large topic usually influenced by the choice of technologies, such as J2EE, .NET,
and so forth.

The enterltem Object Design

Given the above discussion, the interaction diagram in Figure 17.8 reflects the
decisions regarding the assignment of responsibilities and how objects should
interact. Observe that considerable reflection was done to arrive at this design,
based on the GRASP patterns; the design of object interactions and responsibil-
ity assignment require some deliberation.

Messages to Multiobjects

Notice that the interpretation of a message sent to a multiobject in the UML is
that it is a message to the collection object itself, rather than an implicit broad-
cast to the collection's members. This is especially obvious for generic collection
operations such as find and add.

For example, in the enterltem interaction diagram:

« Thefind message sent to the ProductSpecification multiobject is a message
being sent once to the collection data structure represented by the multiob
ject (such as a Java Map).

0 The language-independent and generic find message will, during
programming, be translated for a specific language and library.
Perhaps it will actually be Map.get in Java. The message get could
have been used in the diagram; find was used to make the point
that design diagrams may require some mapping to different lan-
guages and libraries.

« The add message sent to the SalesLineltem multiobject isto add an element
to the collection data structure represented by the multiobject (such as a
Javalist).

259



17 - DESIGN MODEL : USE-CASE REALIZATIONSWITH GRASP PATTERNS

17.6 Object Design: endSale

The endSale system operation occurs when a cashier presses a button indicating
the end of asale. Hereisthe contract:

Contract CO3: endSale

Operation: Cross endSale()

References: Use Cases: Process Sale

Preconditions: There is an underway sale.

Postconditions: Sale.isComplete became true (attribute modification).

Choosing the Controller Class

Our first choice involves handling the responsibility for the system operation
message endSale. Based on the Controller GRASP pattern, as for enterltem, we
will continue to use Register as a controller.

Setting the Sale.isComplete Attribute

The contract postconditions state:
. Sale.isCompl ete became true (attribute modification).

As always, Expert should be the first pattern considered unless it is a controller
or creation problem (which it is not).

Who should be responsible for setting the isComplete attribute of the Sale to
true?

By Expert, it should be the Sale itself, since it owns and maintains the isCom-
plete attribute. Thus the Register will send a becomeComplete message to the
Saleto set it to true.

—

enngIe() —> :Register 1: becomeComplete() s ‘Sale
. Q
. o . 0

by Controller by Expert

Figure 17.9 Completion of item entry.

260



OBJECT DESIGN. ENDSALE

UML Notation to Show Constraints, Notes, and Algorithms

Figure 17.9 shows the becomeComplete message, but does not communicate the
details of what happens in the becomeComplete method (although it is admit-
tedly trivia in this case). Sometimes in the UML we wish to use text to describe
the algorithm of a method, or specify some constraint.

For these needs, the UML provides both constraints and notes. A UML con-
straint is some semantically meaningfully information attached to a model ele-
ment. UML constraints are text enclosed in { } braces; for example, { x > 20).
Any informal or formal language can be used for the constraint, and the UML
especially includes the OCL (object constraint language) [WK99] if one desires
to use that.

A UML note is a comment that has no semantic impact, such as date of creation
or author.

A noteis aways shown in anote box (adog-eared text box).

A constraint may be shown as simple text with braces, which is suitable for
short statements. However, long constraints may be also placed within a "note
box," in which case the so-called note box actually holds a constraint rather than
anote. The text in the box iswithin braces, to indicate it is a constraint.

In Figure 17.10 both styles are used. Note that the simple constraint style (in
braces but not in a box) just shows a statement which must hold true (the classic
meaning of a constraint in logic). On the other hand, the "constraint” in the note
box shows a Java method implementation of the constraint. Both styles are legal
inthe UML for a constraint.

a constraint implementation in a note box k

observe the outer braces around the method
signifying a constraint within a note box

{
public void becomeComplete( ) a constraint that doesn't define the
algorithm, but specifies what must hold as tru
isComplete = true;
i { s.isComplete = true }
..O Ol. .

endSale() —

/I a note
created by Craig

Figure 17.10 Constraints and notes.

1. becomeComplete()

:Reqister s : Sale

261



262

17 - DESIGN MODEL: USE-CASE REALIZATIONSWITH GRASP PATTERNS

Calculating the Sale Total

Consider this fragment of the Process Sale use case:

Main Success Scenario:

1. Customer arrives ...

2. Cashier tells System to create a new sale.
3. Cashier enters item identifier.

4. System records sale line item and ...
Cashier repeats steps 3-4 until indicates done.
5. System presents total with taxes calculated.

In step 5, atota is presented (or displayed). Because of the Model-View Separa-
tion principle, we should not concern ourselves with the design of how the sale
total will be displayed, but it is necessary to ensure that the total is known. Note
that no design class currently knows the sale total, so we need to create a design
of object interactions that satisfies this requirement.

As aways, Information Expert should be a pattern to consider unless it is a con-
troller or creation problem (which it is not).

It is probably obvious the Sale itself should be responsible for knowing its total,
but just to make the reasoning process to find an Expert crystal clear—with a
simple example—please consider the following analysis.

1 Statetheresponsibility:
o Who should be responsible for knowing the sale total ?
2. Summarize the information required:
o The sale totdl is the sum of the subtotals of all the salesline-items.

o sales line-item subtotal := line-item quantity * product
description price

3. List theinformation required to fulfill this responsibility and the classes
that know this information.

Information Required

for Sale Total Infor mation Expert
ProductSpecification.price ProductSpecification
SalesLineltem. quantity SalesLineltem

al the SalesLineltemsin the cur- |Sale
rent Sale




OBJECT DESIGN: ENDSALE

A detailed analysisfollows:

*  Who should be responsible for calculating theSale total ? By Expert, it
should be the Sale itself, since itknows about all the
SalesLineltem
instances whose subtotals must be summed to calculate the sale total.
Therefore, Sale will have the responsibility of knowing its total, imple
mented as a getTotal method.

* For &aleto calculateitstotal, it needs the subtotal for each SalesLineltem.
Who should be responsible for calculating the SalesLineltem subtotal ? By
Expert, it should be the SalesLineltem itself, since it knows the quantity
and the ProductSpecification it is associated with. Therefore, SalesLineltem

will have the responsibility of knowing its subtotal, implemented as a get-
Subtotal method.

»  For theSalesLineltem to calculate its subtotal, it needs the price of the
ProductSpecification. Who should be responsible for providing the Product-
Specification price? By Expert, it should be the ProductSpecification itself,
since it encapsulates the price as an attribute. Therefore,
Product-

Specification will have the responsibility of knowing its price, implemented
as agetPrice operation.

Although the above analysisis trivial in this case, and the degree of excruci-
ating elaboration presented is uncalled for in actual design practice, the same
reasoning strategy to find an Expert can and should be applied in more diffi-
cult situations. You will find that once you learn these principles you can
quickly perform this kind of reasoning mentally.

The Sale-getTotal Design

Given the above discussion, it is now desirable to construct an interaction dia-
gram that illustrates what happens when a Sale is sent a getTotal message. The

first message in this diagram is getTotal, but observe that the getTotal message
isnot a system event.

Thisleadsto the following observation:

Not every interaction diagram starts with a system event message; they can
start with any message for which the designer wishes to show interactions.

The interaction diagram is shown in Figure 17.11. First, the getTotal message is
sent to a Sale instance. The Sale will then send a getSubtotal message to each
related SalesLineltem instance. The SalesLineltem will in turn send a getPrice
message to its associated ProductSpecifications.

263



17 - DESIGN MODEL: USE-CASE REALIZATIONSWITH GRASP PATTERNS

by Expert i by Expert i

O.' 'y o’o ‘o
. |
tot := getTotal() ‘Sale 17 st = getSubtotal)™ | . gyjes) ineltem
*
o) O
¢ 1.1: pr := getPrice()

recall this special notation to o
indicate iteration over the :ProductSpecification

elements of a collection

Figure 17.11 Sale-getTotal interaction diagram.

Since arithmetic is not (usually) illustrated via messages, the details of the cal-
culations can be illustrated by attaching algorithms or constraints to the dia-
gram that defines the calculations.

Who will send the getTotal message to the Sale? Most likely, it will be an object
in the Ul layer, such as a Java JFrame.

Observe in Figure 17.12 the use of agorithm notes and constraints, to communi-
cate details of getTotal and getSubtotal.

17.7 Object Design: makePayment

The makePayment system operation occurs when a cashier enters the amount of
cash tendered for payment. Here is the compl ete contract:

Contract CO4: makePayment

Operation: Cross makePayment( amount: Money) Use

References: Cases: Process Sale There is an

Preconditions: underway sale.

Postconditions: - A Payment instance p was created (instance creation).

- p.amountTendered became amount (attribute modification).

- p was associated with the current Sale (association
formed).

- The current Sale was associated with the Store (associa
tion formed); (to add it to the historical log of completed
sales).

A design will be constructed to satisfy the postconditions of makePayment.

264



OBJECT DESIGN. MAKEPAYMENT

A
Note the semi-formal style of the constraint. "aSLI" is ng
/I observe the seudo code style here k formally defined, but most developers will reasonably
understand this to mean an instance of SalesLineltem.
public void getTotal() Likewise with the expression aSLI.prodSpec.price.
int tot = 0; The point is that the constraint language can be informal
for each SalesLineltem, sli to support quick and easy writing, if desired.
tot = tot + sli.getSubtotal();
return tot

}
}

o’

{ st = aSLI.quantity * aSLI.prodSpec.price }

O.

- o* -
tot := getTotal() -Sale 1 *: st := getSubtotal() - SalesLineltem

*

i 1.1: pr := getPrice()

:ProductSpecification

Figure 17.12 Algorithm notes and constraints.

Creating the Payment

One of the contract postconditions states:
. APayment instance p was created (instance creation).

This is a creation responsibility, so the Creator GRASP pattern should be
applied.

Who records, aggregates, most closely uses, or contains a Payment? There is
some appeal in stating that a Register logically records a Payment, because in
the real domain a "register" records account information, so it is a candidate by
the goal of reducing the representational gap in the software design. Addition-
ally, it is reasonable to expect that a Sale software will closely use a Payment;
thus, it may be a candidate.

Anocther way to find a creator is to use the Expert pattern in terms of who is the
Information Expert with respect to initializing data—the amount tendered in
this case. The Register is the controller which receives the system operation
makePayment message, so it will initially have the amount tendered. Conse-
guently the Register is again a candidate.

265



17 - DESIGN MODEL : USE-CASE REALIZATIONSWITH GRASP PATTERNS

In summary, there are two candidates:
*  Register

« Se

Now, thisleads akey design idea:

When there are alternative design choices, take a closer look at the cohesion
and coupling implications of the alternatives, and possibly at the future evo-
lution pressures on the alternatives. Choose an alternative with good cohe-
sion, coupling, and stability in the presence of likely future changes.

Consider some of the implications of these choices in terms of the High Cohesion
and Low Coupling GRASP patterns. If the Sale is chosen to create the Payment,
the work (or responsibilities) of the Register is lighter—leading to a simpler
Register definition. Also, the Register does not need to know about the existence
of a Payment instance because it can be recorded indirectly via the Sale—ead-
ing to lower coupling in the Register. This leads to the design shown in Figure

17.13.
by Controller H by Creator and Low Coupling H

makePayment(cashTenderedy—> 1. makePayment(cashTendered)

N
[e)]

:Regqister

1.1: create(cashTendered)

:Payment

Figure 17.13 Register-makePayment interaction diagram.

This interaction diagram satisfies the postconditions of the contract: the Pay-
ment has been created, associated with the Sale, and its amountTendered has
been set.

Logging a Sale

Once complete, the requirements state that the sale should be placed in an his-
torical log. As always, Information Expert should be an early pattern considered
unlessit is a controller or creation problem (which it is not), and the responsibil-
ity should be stated:

Who isresponsible for knowing all the logged sales, and doing the
logging?



OBJECT DESGN: MAKEPAYMENT

By the goal of low representational gap in the software design (in relation to our
concepts of the domain) it is reasonable for a Store to know all the logged sales,
since they are strongly related to its finances. Other alternatives include classic
accounting concepts, such as a SalesLedger. Using a SalesLedger object makes
sense as the design grows and the Store becomes incohesive (see Figure 17.14).

Sale Sale
* *
Logs-completed+ Logs-completed«
1 1
Store SalesLedger

addSale(s : Sale) addSale(s : Sale)

A

SalesLedger is responsible
for knowing and adding
completed Sales.

Store is responsible for
knowing and adding
completed Sales.

Acceptable in early
development cycles if the
Store has few
responsibilities.

Suitable when the design
grows and the Store
becomes uncohesive.

Figure 17.14 Who should be responsible for knowing the completed sales?

Note also that the postconditions of the contract indicate relating the Sale to the
Store. This is an example where the postconditions may not be what we want to
actually achieve in the design. Perhaps we didn't think of a SalesLedger earlier,
but now that we have, we choose to use it instead of a Store. If this were the
case, SalesLedger would ideally be added to the Domain Model as well, asit is a
name of a concept in the real-world domain. This kind of discovery and change
during design work is to be expected.

In this case, we will stick with the original plan of using the Store (see Figure
17.15).

267



268

makePayment(cashTendered)—

17 - DESIGN MODEL : USE-CASE REALIZATIONSWITH GRASP

note that the Sale instance is named
's' so that it can be referenced as a
parameter in messages 2 and 2.1

—»
‘Register 1: makePayment(cashTendered) s Sale
2: addSale(s) L 1.1: create(cashTendered)
el
by Expert t, ...... -Pavment
< -Laymen
:Store
2.1: add(s) L

\
completedSales: Sale J

Figure 17.15 Logging a completed sale.

Calculating the Balance

The Process Sale use case implies that the balance due from a payment be
printed on areceipt and displayed somehow.

Because of the Model-View Separation principle, we should not concern our-
selves with how the balance will be displayed or printed, but it is necessary to
ensure that it is known. Note that no class currently knows the balance, so we
need to create a design of object interactions that satisfies this requirement.

As aways, Information Expert should be considered unless it is a controller or
creation problem (which it is not), and the responsibility should be stated:

Who is responsible for knowing the balance?

To calculate the balance, the sale total and payment cash tendered are required.
Therefore, Sale and Payment are partial Experts on solving this problem.

If the Payment is primarily responsible for knowing the balance, it would need
visibility to the Sale, in order to ask the Sale for its total. Since it does not cur-
rently know about the Sale, this approach would increase the overall coupling in
the design—it would not support the Low Coupling pattern.

In contrast, if the Sale is primarily responsible for knowing the balance, it needs
visibility to the Payment, in order to ask it for its cash tendered. Since the Sale



OBJECT DESIGN: STARTUP

already has visibility to the Payment—as its creator—this approach does not
increase the overall coupling, and is therefore a preferable design.

Consequently, the interactio