
OOPT
(Object-Oriented Process with Traceability)

What is OOPT?

• OOPT (Object-Oriented Process with Traceability)

– A software development process based on RUP
• Have been practiced and refined over 10 years

– Tailored to software engineering classes in universities
• No risk analysis for architecture : No elaboration phase in UP

• Characteristics of OOPT
1. 3 Stages

• Based on the RUP
2. Iterative

• Multiple development cycles
3. Incremental

• System grows incrementally as each cycle is completed.
4. Hierarchical Architecture

• Stage > Cycle > Phase > Activity

2

1. 3 Stages

• Stage 1000 : Plan
– Planning, defining requirements, building prototyping, etc
– Corresponding to Inception phases in the RUP

• Stage 2000 : Build
– Elaboration and Construction of the system
– Corresponding to Elaboration/Construct phase in the RUP

• Stage 3000 : Deployment
– Implementation of the system into use
– Corresponding to Transition phase in the RUP

Plan Build Deployment
1000 2000 3000

3

2. Iterative Development
• Multiple iterations in the Build stage

– Each iteration took about 2 to 4 weeks
– Corresponding to iterations in RUP

Cycle 1 Cycle 2 Cycle n...

Plan Build Deployment
1000 2000 3000

2100 2200 2n00

Revise
Plan

2110 Sync.
Artifacts

2120
Analyze

2130
Design

2140
Construct

2150
Test

2160

4

3. Incremental Development

Cycle 1 Cycle 2 Cycle n...

Plan Build Deployment
1000 2000 3000

2100 2200 2n00

Use-Case A
Simplified Version
. . .

Use-Case A
Full Version
. . .

Use-Case D
Full Version
. . .

Use-Case C
Full Version
. . .

Use-Case B
Full Version
. . .

Use-Case C
Simplified Version
. . .

5

4. Hierarchical Architecture

Define
Real Use Cases
2141 Define

Reports & UI
2142 Refine

System Archi.
2143 Define

Interaction D.
2144 Define

Design Class D
2145 Define

DB Schema
2146

Activity

Stage

Cycle 1 Cycle 2 Cycle n...

Plan Build Deployment
1000 2000 3000

2100 2200 2n00

Revise
Plan

2110 Sync.
Artifacts

2120
Analyze

2130
Design

2140
Construct

2150
Test

2160

Iteration

Activity

Phase

6

OOPT of OOAD, in Summary

User (Functional)
Requirements

Use Cases

…

System
Sequence Diagrams

System
Operations

…

Sequence Diagrams

Class Diagram

Stage 1000.
Plan

Stage 2030.
Analyze

Stage 2040.
Design 7

Domain Model Statechart Diagram

Time Alarm Timer

TimeView TimeSetup

LongPress[Button=mode]

finishAll

AlarmView AlarmSetup

LongPress[Button=mode]

finishAll

TimerView TimerSetup

LongPress[Button=mode]

finishAll

press[Button=mode] press[Button=mode]

GlobalSetUp

press[Button=All]

press[Button=All]
press[Button=All]

selectMode[if exis]

selctMode

selctMode

factory reset

moveToMode

modeActivation
press[button=next]

press[button=next]

move[not activated]

press[button=next]

Lottery

Display Set Reminder

save

Set reminder

press[Button=All]
selecMode[if exist]

StopWatchAnniversary

System

+selectTimeViewMode()
+selectTimeSetupMode()
+changeValue()
+goNext()
+selectAlarmViewMode()
+selectAlarmSetUpMode()
+addAlarm()
+deleteAlarm()
+clearAlarmNotice()
+setValue()
+startTimer()
+pauseTimer()
+resetTimer()
+clearTimerNotice()
+startStopWatch()
+stopStopWatch()
+restartStopSwatch()
+resetStopWatch()
+createNewAnniversary()
+inputDateTime()
+selectAnniversary()
+deleteAnniversary()
+alert()
+dismiss()
+requestCreateLotteryNumber()
+saveLotteryNumber()
+setReminder()
+select4Mode()
+requestFactoryReset()
+requestChangeCurrentMode()

Traceability
Table

8

Stage 1000. Plan

Plan Build Deployment
1000 2000 3000

9

Stage 1000. Plan
• 10 Activities

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Cases

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Plan
1000

Refine
Project Plan

1010

a,c,d

a. ongoing
b. optional
c. may defer
d. varied order

a

10

X

X

X

X

X

Activity 1001. Define A Draft Plan

• Description
– Write a draft plan for schedule, resources, budget, objective, etc
– Input : all related documents of previous similar projects
– Output : a draft project plan

• Steps
1. Write motivation and objective of project
2. Write scope of project
3. Identify and write functional requirements
4. Identify and write non-functional requirements
5. Estimate resources (human efforts(M/M), human resources, duration, budget)

Define
Draft Plan

1001 Create Preliminary
Investigation Report

1002

11

Activity 1002. Create Preliminary Investigation Report

• Description
– Write an investigation report on alternatives, business needs, risk, etc
– Input : draft project plan
– Output : an investigation report

• Steps
1. Write alternative solutions
2. Write project’s justification (business needs)

3. Identify and manage risks, and write risk reduction plans
4. Analyze business market
5. Write managerial issues

Define
Draft Plan

1001 Create Preliminary
Investigation Report

1002 Define
Requirements

1003

12

Activity 1003. Define Requirements

• Description
– Write a requirement specification for a product
– Input : draft project plan, investigation report
– Output : a requirement specification

• What is a requirement? (IEEE Std 610.12-1990)
– A condition or capability needed by a user to solve a problem or achieve an

objective.
– A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally
imposed documents.

– A documented representation of a condition or capabilities as in (1) or (2)

Create Preliminary
Investigation Report

1002 Define
Requirements

1003 Record
Terms in Glossary

1004 a

13

Activity 1003. Define Requirements
• Functional requirements

– A requirement that specifies a function that a system or system component must
be able to perform

– Analyzed and Realized in Use-Case model, later

• Non-functional requirements
– Constraints on the services or functions offered by the system as timing

constraints, constraints on the development process, standards, etc.
– Portability, Reliability, Usability, Efficiency(Space, Performance)

– Delivery, Implementation, Standards
– Ethical, Interoperability, Legislative(Safety, Privacy)

• Recommended reference : IEEE Std. 830-1998

14

Activity 1003. Define Requirements
• Steps for defining requirements

1. Gather all kinds of useful documents
2. Write an overview statement (objective and name of the system, etc.)
3. Determine customers who use the product
4. Write goals of the project
5. Identify system functions

• Functional requirements
• Add function references(such as R1.1, …) into the identified functions
• Categorize identified functions into Event, Hidden, and Optional

6. Identify system attributes
• Non-functional requirements

7. Identify other requirements (Optional)

• Assumptions, Risks, Glossary, etc.

15

Activity 1004. Record Terms in Glossary

• Description
– Similar to “Data Dictionary”
– Dictionary of terms and any associated information(constraints and rules)
– Input : requirements specification
– Output : a term dictionary (glossary)

• Steps
1. Describe meaning of terms specified in requirements specification
2. Write alias of each term

Define
Requirements

1003 Record
Terms in Glossary

1004 Implement
Prototype

1005a b,d

16

Activity 1005. Implement Prototype

• Description
– Develop a prototype system to permit use feedback, determine feasibility, or

investigate timing or other issues
– Input : requirements specification
– Output : a prototype

• Steps
1. Develop a prototype promptly and efficiently

Record
Terms in Glossary

1004 Implement
Prototype

1005 Define Draft
System Architecture

1006b,da a,c,d

17

Activity 1006. Define Business Use Case

• Description
– To obtain a deeper understanding of the processes and requirements identified

so far
– Identify business tasks as business use cases, and illustrate their relationships in

use case diagrams
– Input : requirements specification
– Output : a business use case model (the brief format of UP)

• Business Use Case Diagram and Description

Implement
Prototype

1005 Define
Business Use Case

1006 Define Business
Concept Model

1007b,d

Cashier

Make
Reservation

Log In

Lend Item

LMS

18

Activity 1006. Define Business Use Case
• Steps

1. Determine system boundary in order to identify what is external versus internal,
and what the responsibilities of the system are
• Typical system boundary includes:

– Hardware/Software boundary of a device / computer system
– Department of an organization
– Entire organization

Librarian

System boundary

Library Management System

19

Activity 1006. Define Business Use Case
2. Identify the actors related to a system or organization

• An actor is anything with behavior, including the system under discussion(SuD) itself
when it calls upon the services of other systems

• Actors are not only the roles played by people, but also organizations, software, and
machines

• Primary Actors
– Have user’s goals fulfilled through using services the system provides
– Primary actors can be other computer systems (i.e. watchdog)

• Supporting Actors
– Provide services to the system under design
– Often a computer system could be a supporting actor

3. Identify user goals for each actor
4. Record the primary actors and their goals in an actor-goal list

Actor

20

Activity 1006. Define Business Use Case
5. Define use cases that satisfy user goals

• Identify use cases by actor-based
– For each actor, identify the processes they initiate or participate in

• Identify use cases by event-based
– Identify the external events that a system must respond to
– Related the events to actors and use cases

• Name them according to their goals

6. Allocate system functions identified during the requirements specification into
related use cases

7. Categorize identified use cases into primary, secondary, and optional use cases
• Primary use cases : major common processes
• Secondary use cases : minor or rare processes
• Optional use cases : processes that may not be tackled

21

Activity 1006. Define Business Use Case
8. Identify relationships between use cases

• Write major steps or branching activities of one use case as several separate use cases
using “include” relationship, when they are too complex, long, and duplicated to
understand

• Use “extends” relationship when an exceptional activity is occurred in use case (Optional)

Add
Borrower

Make
Reservation

Remove
Reservation

Lend Item

<<extends>>

<<extends>>

<<extends>>

22

Activity 1006. Define Business Use Case
9. Draw a use case diagram

10. Describe use cases
• Describe the detail information of use cases

– Name, Actor, Description (the brief format of UP)

23

System

Librarian

2. Remove Reservation

1. Make Reservation

3. Lend Item

4. Retuen Item

5. Calculate Late-Return-Fee

6. Get Replacement Fee

7. Notify Availability

8. Add Title

9. Remove Title

10. Update Title

11. Add Item

12. Remove Item

13. Update Item

14. Add Borrower

15. Remove Borrower

16. Update Borrower

17. Log-In

18. Log-Out

19. Count Loans

Activity 1006. Define Business Use Case
11. Rank use cases according to the followings:

a. Significant impact on the architectural design
b. Significant information and insight regarding the design
c. Include risky, time-critical, or complex functions
d. Involve significant research, or new and risky technology
e. Represent primary line-of-business processes
f. Directly support increased revenue or decreased costs

– The ranking scheme may use a simply fuzzy classification such as high-medium-low
– High ranking use cases need to be tackled in early development cycle

Rank Use case Justification

High Make Reservation
…

It reserves the item of the title
…

Medium Validates system access
…

Affects security
…

Low

24

Activity 1007. Define Business Concept Model

• Description
– Identify ”business concept” in the target domain which can be candidates for

“classes”
– Input : requirements specification, data dictionary, business use case
– Output : a business concept model

• Steps
1. Identify business terms or business concepts from requirements specification or

through interviews with domain experts
2. Define identified terms as business concepts

• Implementation details can’t be business concepts

Define
Business Use Case

1006 Define Business
Concept Model

1007 Define Draft
System Architecture

1008b,d a,c,d

25

Activity 1008. Define Draft System Architecture

• Description
– Construct a rough preliminary system architecture model
– Input : requirements specification

business use case model
– Output : a draft system architecture

• Steps
1. Define logical/physical layers of the target system
2. Separate the whole system into several subsystems
3. Assign business use cases into each subsystem
4. Identify and draw up hardware resources

Define Business
Concept Model

1007 Define Draft
System Architecture

1008 Define System
Test Plan

1009a,c,d

26

Activity 1009. Develop System Test Case

• Description
– Develop system test cases
– Input : requirements specification, business use case, business concept model
– Output : a system test plan

• Steps
1. Identify important requirements which should be tested later
2. Develop system test cases with various system testing techniques

• Category partitioning testing, brute force testing, boundary values, etc.
3. Check the correspondence between the requirements and system test cases

• Confirm 100% requirements coverage through tracing all relevant elements

Define Draft
System Architecture

1008 Develop System
Test Case

1009
Refine Plan

1010a,c,d

27

Activity 1010. Refine Project Plan

• Description
– Refine the draft project plan
– Input : all outputs from OOPT stage 1,000
– Output: a refined project plan

• Steps
1. Review draft project plan, based on requirements specification, business use

case, business concept model and draft system architecture
2. Refine project’s scope, duration, cost, and other resources

Define System
Test Plan

1009 Refine
Project Plan

1010

28

Back

29

Stage 2000. Build

Plan Build Deployment
1000 2000 3000

30

6 Phases of ‘Build’ Stage

Cycle 1 Cycle 2 Cycle n...

Plan Build Deployment
1000 2000 3000

2100 2200 2n00

Revise
Plan

2110 Sync.
Artifacts

2120
Analyze

2130
Design

2140
Construct

2150
Test

2160

31

Phase 2010. Revise Plan

Revise
Plan

2110 Sync.
Artifacts

2120
Analyze

2130
Design

2140
Construct

2150
Test

2160

32

Phase 2010. Revise Plan

• Description
– Correct and enhance the project plan and requirement definition based on the

intermediate deliverables
– Input : intermediate deliverables
– Output : a refined project plan

Revise Plan
2110

Sync. Artifacts
2120

33

Phase 2020. Synchronize Artifacts

Revise
Plan

2110 Sync.
Artifacts

2120
Analyze

2130
Design

2140
Construct

2150
Test

2160

34

Phase 2020. Synchronize Artifacts

• Description
– Configure and manage various types of artifacts (Project Repository)
– Control versions and variations
– Input : a refined project plan
– Output : all outputs/deliverables revised

Revise Plan
2110 Synchronize

Artifacts
2120

Analyze
2130

35

Phase 2030. Analyze

Revise
Plan

2110 Sync.
Artifacts

2120
Analyze

2130
Design

2140
Construct

2150
Test

2160

36

Phase 2030. Analyze
• Phase 2030 Activities

Refine
Use Case Diagrams

2132

Define
Domain Model

2135

Define System
Sequence Diagrams

2133

Define
Operation Contracts

2136

Define
State Diagrams

2137

Define Essential
Use Cases

2131

Refine Glossary
2134

a

b

Analyze
2130

a. if not yet done
b. ongoing
c. optional

Refine System
Test Cases

2138 Perform 2030
Traceability Analysis

2139c

37

Activity 2031. Define Essential Use Cases

• Description
– Add event flows to business use case (high-level) descriptions
– Input : business use case descriptions (activity 1006)
– Output : An essential use case descriptions (the causal format of UP)

• Standard applied : UML’s expanded use case format

Refine
Use Case Diagrams

2132Define Essential
Use Cases

2131 a

38

Activity 2031. Define Essential Use Cases
• Step

1. Select each use case from business use cases
2. Identify system functions related to the selected use case from requirements

specification
3. Identify related use cases to the selected use case from business use cases
4. Identify courses of events for each use case from the requirements specification

• Typical courses of events (main event flow)
• Alternative courses of events
• Exceptional courses of events

5. Write essential use cases based on typical and alternative courses of events
flows by applying expanded use case format
• Use Case, Actor, Purpose , Overview
• Type, Cross Reference, Pre-Requisites
• Typical Courses of Events
• Alternative/Exceptional Courses of Events

39

Activity 2032. Refine Use Case Diagrams

• Description
– Validate and modify the ‘Business Use-Case Diagram’ (activity 1006)
– Input : business use case model, essential use case descriptions
– Output : A refined use case diagram

• Standard applied : UML’s use case diagram

• Step
1. Review business use case diagrams

according to essential use case descriptions
2. Refine use case diagrams by adding or

refining use cases and relationships

Refine
Use Case Diagrams

2132 Define
Domain Model

2133Define Essential
Use Cases

2131

40

System

Librarian

2. Remove Reservation

1. Make Reservation

3. Lend Item

4. Retuen Item

5. Calculate Late-Return-Fee

6. Get Replacement Fee

7. Notify Availability

8. Add Title

9. Remove Title

10. Update Title

11. Add Item

12. Remove Item

13. Update Item

14. Add Borrower

15. Remove Borrower

16. Update Borrower

17. Log-In

18. Log-Out

19. Count Loans

Activity 2033. Define System Sequence Diagrams

• Description
– Illustrates events from actors to system under development
– To investigate the system to build
– Input : essential use case
– Output : A system sequence diagram

Define System
Sequence Diagrams

2135 Define
Operation Contracts

2136Refine
Glossary

2134 b

41

Activity 2033. Define System Sequence Diagrams

• What is a system sequence diagram (SSD)?
– A picture that shows the events that external actors generate, their orders and

inter-system events
– All systems are treated as a black box.
– The emphasis of the diagram is events that cross the system boundary from

actors to systems.

– SSDs should be defined for
• Main success scenarios, and then
• Frequent, complex, or alternative scenarios

42

Activity 2033. Define System Sequence Diagrams

• Step
1. Draw a black box representing the system based on a use case
2. Identify each actor that directly operate on the system from the typical (normal)

course of events in a use case
• Draw a line for each actor

:System

Actor 1 Actor 2

43

Activity 2033. Define System Sequence Diagrams

3. Determine system boundary
- Hardware/software boundary of a device or computer system
- Department of an organization or Entire organization

• Identify the system(external) events that each actor generates by according
to typical course of events in a use case

• Name the system events
- Should be expressed at the level of intent rather than of the physics
- Name a system event with a verb and an objective like “enterItem”

:System

Librarian

System Boundary

1: Request making reservation()

Scenario: Buy Items

44

Activity 2033. Define System Sequence Diagrams

4. Include the use case text which corresponds to system event to the left of the
system sequence diagram

Librarian

1: reqReservation()

:System
USE CASE: 1. Make Reservation

1. (A) A librarian requests the reservation of title.

2. (S) Check if corresponding title exist.

3. (S) Check if corresponding borrower exist.

4. (S) If the borrower does not exist, invoke
“Add Borrower”.

5. (S) Create reservation information.

45

Rev_OK

Activity 2034. Refine Glossary

• Description
– Lists and refines all the terms in order to improve communication and reduce the

risk of misunderstanding
– Input : term dictionary, essential use case descriptions, conceptual class diagram
– Output : A refined term dictionary (glossary)

• Step
1. Refine terms defined during the stage 1000 and 2000
2. Record terms as following format:

Refine
Glossary

2134 Define System
Sequence Diagrams

2135Define
Domain Model

2133 b

Term Category Comments

Title Concept
(Class)

A type of books or magazines which are
registered in the library system

… … …

46

Activity 2035. Define Domain Model

• Description
– Define domain concept model by reviewing input artifacts
– Input : essential use case descriptions, business concept model
– Output : A conceptual class diagram

• Not class diagram - No operation
• Standard applied : UML’s class diagram

Define
Domain Model

2133 Refine
Glossary

2134Refine
Use Case Diagrams

2132 b

47

Activity 2035. Define Domain Model
• What is domain model?

– Conceptual models
• A representation of conceptual classes identified from a real world
• Illustrates meaningful conceptual classes in a problem domain

– Widely used as a source of inspiration for designing software objects

• Step
1. List concepts(domain class) from use cases or business concept model

• Guideline 1
– Identify concepts by making a list of candidate concepts from the ‘Concept

Category List’
• Guideline 2

– Identity the noun and noun phrases in expanded use cases description and
consider them as candidate concepts or attributes

48

Activity 2035. Define Domain Model
• By using guideline 1

– ‘Concept Category List’ may contain many common categories that are usually
worth to consider.

Concept Category Examples

Physical or tangible objects POST

Specifications, designs, or descriptions of things Product Specification

Places Store

Transactions
Sale

Payment

Transaction line items Sales Line Item

Roles of people Cashier

Containers of other things Store

Things in a container Item

Other computer or electro-mechanical systems
external to our system Credit Card Authorization System

… …

49

Activity 2035. Define Domain Model
• By using guideline 2

– The fully dressed use cases are an excellent description.
– Scenario of the use case or use case descriptions can be used.

Main Concerns
1. Borrower requests the reservation of the title
2. Librarian receives the request and reserve the item of the title
3. Borrower can requests loan of the title
4. Librarian can manage the title such as add, remove, update
5. Item of the tile is also managed by librarian
6. Title consists of book and magazine
7. Librarian can manage the borrower information
8. Identifying librarian in system is supplied by login, logout function
9. Loan fee is calculated in system

Borrower
Reservation

Title
Item
Book

Magazine
Manage

Librarian
Certification

Fee

50

Activity 2035. Define Domain Model
2. Assign class names into concepts

• Use the existing names in the domain
• Do not add things that are not there

3. Identify associations according to association categories

Association Category Associations

A is known/logged/recorded/reported/captured in B

Item – Loan
Item – Title
Loan – Borrower
Title – Reservation

A is a line item of B Item – Title

A is recorded in B Item – Title

A is related to a transaction of B Borrower – Loan
Borrower – Reservation

A is an organization submit of B Book – Title
Magazine – Title

51

Activity 2035. Define Domain Model
4. Assign priorities into identified associations

• High priority association categories are
– A is a physical or logical part of B.
– A is physically or logically contained in/on B.
– A is recorded in B.

• Should avoid showing redundant or derivable associations

5. Assign names into associations
• “Type Name” – “Verb Phrase” – “Type Name”
• Association names should start with a capital letter.

POST Sale Payment
Paid-byCaptures

52

Activity 2035. Define Domain Model
6. Add multiplicity into the ends of an association

7. Identify attributes by reading
• requirement specifications, current use cases under consideration, simplification,

clarification, and assumption documents
• Attributes should be simple attributes or pure data values

– Boolean, Date, Number, String, Time
– Address, Color, Geometrics(Point, Rectangle,…), Phone Number, Social Security Number,

Universal Product Code(UPC), ZIP or postal codes, Enumerated types.

Item

ID
currentPOST

Item

number

Title

name 1

Copy of

1..*

Not a “simple” attribute

TitleItem
1 .. * 1Copy-of

53

Activity 2035. Define Domain Model
8. Draw them in a conceptual class diagram

• No operation defined
• Show basic relationships between business objects

54

Activity 2036. Define Operation Contracts

• Description
– Define contracts for system operations
– Input : essential use case, system sequence diagram, conceptual class diagram
– Output : Operation Contracts

• What is a contract?
– A document that describes what an operation commits to achieve
– Written for each system operation to describe its behavior
– System Operation Contract:

• Describes changes in states of overall system when a system operation is invoked.

Define
Operation Contracts

2136 Define
State Diagrams

2137Define System
Sequence Diagrams

2135 c

55

Activity 2036. Define Operation Contracts
• Operation Contracts Format

Name Name of operation, and parameters

Responsibilities An informal description of the responsibilities that the operation must fill

Type Name of type(concept, software class, interface)

Cross References System function reference numbers, use cases, etc.

Notes Design notes, algorithms, and so on.

Exceptions Exceptional cases

Output Non-UI outputs, such as messages or records that are sent outside of the system

Pre-conditions Assumptions that the state of the system before execution of the operation

Post-conditions The state of the system after completion of the operation

…

56

Activity 2036. Define Operation Contracts
• Operation contracts with other artifacts

USE CASE: Log-Out
Typical Course of Events

1. (A) ...

2. (S) …

3. (S) …

:System

Cashier

Exit()

System

Exit()

…

…

Operation: Exit

Pre-conditions:
Post-conditions:
…

Operation
Contracts

System
OperationsUse-Cases

System Sequence
Diagrams

57

OK!!!

Activity 2037. Define State Diagrams

• Description
– Describes all possible states of the system, use cases, or objects
– Input : operation contracts, all information available
– Output : A state (Statechart) diagrams

• Three kinds (levels) of State diagrams:
1. Use case state diagram
2. System state diagram
3. Class state diagram

Define
State Diagrams

2137 Refine System
Test Plan

2138Define
Operation Contracts

2136 c

58

Activity 2037. Define State Diagrams
• Event

– A significant or noteworthy occurrence
– Ex) a telephone receiver is taken off the hook

• State
– Condition of an object at a moment in time
– Ex) a telephone is in the state of being “idle” after the receiver is placed on the

hook and until it is taken off the hook

• Transition
– A relationship between two states that indicates that when an event occurs and

the object moves from one state to another
– Ex) when the event “off hook” occurs, transition occurs from the “idle” to “active”

state

59

Activity 2037. Define State Diagrams
• State Diagram for Use Case

– A state diagram that depicts the overall system events and their sequence within
a use case

Use Case: Return Item

60

Activity 2037. Define State Diagrams
• State Diagram for Class

– A state diagram that depicts state changes of a class across all the use cases

Not Reserved

Make Reservation

Reserved

Remove Reservation

< State Diagram for “Title” >

Make ReservationRemove Reservation
[# of Reservation > 1]

Ready

Lend Item
[available = TRUE]

Borrowed

Return Item
[available = FALSE]

< State Diagram for “Item” >

Remove Item

61

Activity 2037. Define State Diagrams
• State Diagram for Systems

– Identify system events from system sequence diagram
– Determine sequence of system events
– Assign system events into transition of state diagram

62

Activity 2038. Refine System Test Case

• Description
– Refine the system test plan by using additional information
– Input : essential use case, system test plan, system sequence diagram,

operation contracts
– Output : A refined system test plan

Define
State Diagrams

2137 Refine System
Test Case

2138c Analyze (2030)
Traceability Analysis

2139

63

Activity 2039. Perform 2030 Traceability Analysis

• Description
– Link all elements from the abstract (requirements and use cases) to details (system operations

and system test cases)

– Input : Requirements specification, essential use case, system sequence
diagram, operation contracts, system test cases

– Output : A 2030 traceability graph

Refine System
Test Case

2138 Perform (2030)
Traceability Analysis

2139

64

Back

Phase 2040. Design

Revise
Plan

2110 Sync.
Artifacts

2120
Analyze

2130
Design

2140
Construct

2150
Test

2160

65

Perform 2040
Traceability Analysis

Phase 2040. Design
• 7 Activities

Define Reports,
UI, and Storyboards

2142 Define
Interaction Diagrams

2143Design
Real Use Cases

2141

Define Design
Class Diagrams

2144

Design
2140

a. Varied order
b. optional

Refine
System Architecture

2145

2147

Define
Database Schema

2146 ba

66

Activity 2041. Design Real Use Cases

• Description
– It describes real/actual design of the use case in terms of concrete input and

output technology and its overall implementation.
– If a graphical user interface is involved, the real use case will include diagrams of

the GUI and discussion of the low-level interactions with interface widgets.
– Input : Essential Use Case
– Output : Real Use Case (the fully dressed format of UP)

Define Reports,
UI, and Storyboards

2142Design
Real Use Cases

2141

67

Activity 2041. Design Real Use Cases
• Steps

1. Select each use case from essential use cases
2. Add user interface widgets into the expanded format, and concrete

implementation details into the typical courses of events

Object Store

End Sale Make PaymentEnter Item

Price

Total

Tendered

Quantity

Descrpt.

Balance

UPC

B

C

D

E

F

G

H I J

A

Window-1

68

Activity 2041. Design Real Use Cases

Use Case Buy Items – Version 1 (Cash only)

Actor Customer, Cashier

Purpose Capture a sale and its cash payment

Overview A Customer arrives at a checkout with items to purchase. The Cashier records the items and collects cash
payment, which may be authorized. On completion, the Customer leaves with the items.

Type Primary and Real

Cross Reference Functions: R1.1, R1.2, R1.3, R1.7, R1.9, R2.1
Use Cases: Log In use case

Pre-Requisites N/A

UI Widgets Window-1

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) This use case begins when a customer arrives at the POST to checkout with items to purchase.
2. (A) For each item, the Cashier types an UPC in A of Window-1. If there is more than one of an item,

the quantity may optionally be entered in E. They press B after each item entry. (E1)
3. (S) Adds the item information to the running sales transaction. The description and price of the current

item are displayed in B and F of Window1.
4. (A) The Cashier tells the customer the total.

Alternative Courses of Events …

Exceptional Courses of Events E1: If an invalid UPC is entered, indicate an error.

69

Activity 2041. Design Real Use Cases

Use Case 1. Make Reservation

Actor Librarian

Purpose Create a new reservation

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R1.1, R3.1
Use Case: “Add Borrower”

Pre-Requisites A borrower should be registered.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an isbn and ssn of the title
2. (S) Find a corresponding title
3. (S) Find a corresponding borrower
4. (S) Create a new reservation
5. (S) Store the new reservation
6. (S) Increase reservationCount in the borrower
7. (S) Increase reservationCount in the title

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the title does not exist, display an error message.
Line 3: If the borrower does not exist, display an error message.

70

Activity 2042. Define Reports, UI and Storyboards

• Description
– Design UI storyboard and UI components
– Input : Requirements Specification, Real Use Case Descriptions
– Output : UI Storyboard, UI Component Design Specification

Define Reports,
UI, and Storyboards

2142Design
Real Use Cases

2141 Define
Interaction Diagrams

2143

71

Activity 2043. Define Interaction Diagrams

• Description
– Communication diagrams illustrate object interactions in a graph or network

format
– To illustrate how objects interactions via messages to fulfill tasks

– Input : Real Use Case Descriptions
– Output : An interaction diagram

• Standards Applied
– UML’s Sequence Diagram , Communication Diagram , Timing Diagram and

Interaction Overview Diagram

Define Reports,
UI, and Storyboards

2143 Define
Interaction Diagrams

2143 Define Design
Class Diagrams

2145

72

Activity 2043. Define Interaction Diagrams
• Sequence Diagram vs. Communication Diagram

– Based on the same concepts
– Generally equivalent for simple interactions, but different focus

Type Strengths Weaknesses

Sequence
Diagram

Clearly shows sequence or time ordering
of messages

Forced to extend to the right, when
adding new objects with consuming
horizontal space

Communication
Diagram

Space economical and flexible to add
new objects in two dimensions
Better to illustrate complex branching,
iteration, and concurrent behavior

Difficult to see sequence of messages

73

Activity 2043. Define Interaction Diagrams
• Sequence diagram

– Vertical axis: chronological order
– Horizontal axis: interaction partners

74

Activity 2043. Define Interaction Diagrams
• Communication diagram

– Models the relationships between communication partners
– Focus: Who communicates with whom
– Time is not a separate dimension
– Message order via decimal classification

75

Activity 2043. Define Interaction Diagrams
• Timing diagram

– Shows state changes of the interaction partners that result from the occurrence
of events

– Vertical axis: interaction partners
– Horizontal axis: chronological order

76

77

Activity 2043. Define Interaction Diagrams
• Interaction overview diagram

– Visualizes order of different interactions
– Allows to place various interaction diagrams in a logical order
– Basic notation concepts of activity diagram

78

Activity 2044. Define Design Class Diagrams

• Description
– Describes more details in conceptual class diagram
– Add navigability, dependency, data type, operation signature, parameters, return

types, and so on

– Input : Interaction Diagram, Conceptual Class Diagram
– Output : A Design Class Diagram

• Standards Applied: UML’s Class Diagram

Define
Interaction Diagrams

2143 Define Design
Class Diagrams

2144 Refine
System Architecture

2145 a

79

Activity 2044. Define Design Class Diagrams

• Steps
1. Identity all classes
2. Draw them in a class diagram
3. Add attributes
4. Add method names
5. Add type information to the attributes and methods
6. Add the associations
7. Add navigability arrows
8. Add dependency

80

Activity 2044. Define Design Class Diagrams

• Step 1. Identify all classes
– by scanning all interaction diagrams
– listing classes mentioned

Loan Title

Librarian Database

Borrower Book

Reservation Magazine

81

Activity 2044. Define Design Class Diagrams

• Step 2. Draw a class diagram
– includes classes found in Step 1

Item

Reservation

Borrower

LoanTitle

LibrarianItem

Database

82

• Step 3. Add attributes
– Include the attributes previously identified in the conceptual class diagram that

are also used in the design

Activity 2044. Define Design Class Diagrams

Borrower

Name
ssn
…

Librarian

name
userId
…

Book

author

Loan

LoanCount
CheckInDate
…

Item

Name
Isbn
…

Title

Name
Price
…

Reservation

reserveDate

Magazine

Publish
month

Database

…

83

Activity 2044. Define Design Class Diagrams

• Step 4. Add method names
– Identify method of each class by scanning the interaction diagrams
– The messages sent to a class in interaction diagrams must be defined in the

class
– Don’t add

• creation methods and constructors
• accessing methods
• messages to a multi-object

Sale

searchTitle(isbn)

Name
Price
…

:Title:Controller
3: searchTitle(isbn)

84

Activity 2044. Define Design Class Diagrams

Borrower

Name
ssn
…
searchBorrower(ssn)
…

Librarian

name
userId
…

…

Book

author

Loan

searchItem(ItemID)
…

LoanCount
CheckInDate
…

Item

Name
Isbn
…
searchItem(itemID)
…

Title

Name
Price
…

Reservation

reserveDate

searchReservation()
…

Magazine

Publish
month

Database

…

85

Activity 2044. Define Design Class Diagrams

• Step 5. Add type information
– Show types of attributes, method parameters, and method return values

optionally.
– Determine whether to show type information or not

• When using a CASE tool with automatic code generation, exhaustive details
are necessary

• If it is being created for software developers to read, exhaustive detail may
adversely effect the noise-to-value ratio

86

Activity 2044. Define Design Class Diagrams

Book

Author: String

Loan

searchItem(ItemID)
…

LoanCount: Long
CheckInDate: Date
…

Item

Name String
available:boolean
lost: Boolean

searchItem(itemID: String): Item
isBorrowed(): Boolean
updateItem(itemRef: Item): Void
…

Title
Name: String
Price: Int
…

Reservation

reserveDate: Date

searchReservation(isbn: ISBNType) : Reservation
…

Magazine
Publish: String
month: Int

Return type of method void : no return type

…

87

• Step 6. Add associations
– Choose associations by software-oriented need-to-know criterion from the

interaction diagrams

• Step 7. Add navigability arrows
– According to the interaction diagram
– Common situations to define navigability

• A sends a message to B
• A creates an instance B
• A needs to maintain a connection to B

Activity 2044. Define Design Class Diagrams

88

Activity 2044. Define Design Class Diagrams

1..*

1

Copy of

Navigability arrow indicates
title objects are connected
uni-directoinally to Item
object.

Title class will probably
have the copy of item
object.

Title
Name: String
Price: Int
…

Item

Name String
available:boolean
lost: Boolean

searchItem(itemID: String): Item
isBorrowed(): Boolean
updateItem(itemRef: Item): Void
…

89

Activity 2044. Define Design Class Diagrams

• Step 8. Add dependency relationship
– when there is non-attribute visibility between classes
– Non-attribute visibility : parameter, global, or locally declared visibility

90

Database

-Title: Map
+Item: Map
+Borrower: Map
+Loan: Map
+Reservation: Map

+searchTitleDB(isbn: ISBNType): Title
+addTtileDB(titleRef: Title): Void
+removeTitleDB(titleRef: Title): Void
+updateTitleDB(titleRef: Title): Void
+searchItemDB(itemID: String): Item
+addItemDB(itemRef: Item): Void
+removeItemDB(itemRef: Item): Void
+updateItemDV(itemRef: Item): Void
+searchBorrowerDB(ssn: String): Borrower
+addBorrowerDB(borrowerRef: Borrower): Void
+removeBorrowerDB(borrowerRef: Borrower): Void
+updateBorrowerDB(borrowerRef: Borrower): Void
+searchLoanDB(itemID: String): Loan
+searchLoanDB(borrwerRef: Borrower): Loan
+addLoanDB(loanRef: Loan): Void
+updateLoanDB(loanRef: Loan): Void
+searchReservationDB(isbn: ISBNType): Reservation
+searchReservationDB(titleRef: Title): Reservation
+searchReservationDB(borrowerRef: Borrower): Resrvation[]
+addReservationDB(reservationRef: Reservation): Void
+removeReservationDB(reservationrRef: Reservation): Void
+validateDB(userID: String, password: String): Void

Item

+itemID: String
+available: Boolean
+lost: Boolean

+isBorrowed(): Boolean
+setLost(flag: Boolean): Void
+searchItem(itemID: String): Item
+addItem(itemRef: Item): Void
+updateItem(itemRef: Item): Void
+removeItem(itemRef: Item): Void
+setAvailable(flag: Boolean): Void
+getTitle(itemRef: Item): Title

Manages

1*

Loan

+checkInDate: Date
+checkOutDate: Date
+lateReturnFee: Integer
+validLoan: Boolean
+LoanCount: Long

+setValidLoan(flag: Boolean): Void
+calculateLateReturnFee(loanPeriod: Integer): Integer
+calculateReplacementFee(price: Float): Integer
+searchLoan(itemID: String): Loan
+searchLoan(borrowerRef: Borrower): Loan
+addLoan(loanRef: Loan): Void
+updateLoan(loanRef: Loan): Void
+decreaseLoanCount(): Void
+increaseLoanCount(): Void
+getNumOfLoan(): Void
+getItem(LoanRef: Loan): Item

Refer To

0..1

1

Librarian

+name: String
+userId: String
+password: String
+logInFlag: Boolean

+validate(userI: String, password: String)
+logOut(userID: String)

Manages

1

*

Manages 1

*

Borrower

+name: String
+ssn: String
+address: String
+reservationCount: Integer
+loanCount: Integer

+increaseLoanCount(): Void
+decreaseLoanCount(): Void
+increaseReservationCount(): Void
+decreaseReservationCount(): Void
+searchBorrower(ssn: String): Borrower
+addBorrower(borrowerRef: Borrower): Void
+removeBorrower(ssn: String): Void
+updateBorrower(borrwerRef: Borrower): Void

Has

1

0..*

Manages

1

*

Reservation

+reserveDate: Date

+searchReservation(isbn: ISBNType): Reservation
+searchReservation(titleRef: Title): Reservation
+searchReservation(borrowerRef: Borrower): Reservation[]
+addReservation(reservationRef: Reservation): Void
+removeReservation(reservationRef: Reservation): Void
+printNotifyCard(titleRef: Title): Void
+printCard(resrvationRef: Reservation): Void
+getTitle(reservationRef: Reservation): Title

Has

0..*

1

Manages+1

+*

Title

+name: String
+isbn: ISBNType
+price: Flot
+loanPeriod: Integer
+numOfItem: Integer
+availalbeCount: Integer
+reservationCount: Integer

+increaseAvailableCount(): Void
+decreaseAvailableCount(): Void
+increaseNumOfItem(): Void
+decreaseNumOfItem(): Void
+getNumOfItem(): Integer
+getPrice(): Float
+getLoanPeriod(): Integer
+getNewItemID(): String
+searchTitle(isbn: ISBNType): Title
+addTitle(titleRef: Title): Void
+removeTitle(titleRef: Title): Void
+updateTitle(titleRef: Title): Void
+isReserved(titleRef: Title): Boolean
+increaseReservationCount(): Void
+decreaseReservationCount(): Void

Manages

1 *

copy of

1

1..*

Refer to

1

0..*

Book

+author: String

Magazine

+publishCycle: String
+month: StringController

+mkaeReservation()
+removeReservation()
+LendItem()
+returnItem()
+getReplacementFee()
+addTitle()
+removeTitle()
+updateTitle()
+addItem()
+removeItem()
+updateItem()
+addBorrower()
+removeBorrower()
+updateBorrower()
+log-In()
+log-Out()
+countLoans()

91

Database

-Title: Map
+Item: Map
+Borrower: Map
+Loan: Map
+Reservation: Map

+searchTitleDB(isbn: ISBNType): Title
+addTtileDB(titleRef: Title): Void
+removeTitleDB(titleRef: Title): Void
+updateTitleDB(titleRef: Title): Void
+searchItemDB(itemID: String): Item
+addItemDB(itemRef: Item): Void
+removeItemDB(itemRef: Item): Void
+updateItemDV(itemRef: Item): Void
+searchBorrowerDB(ssn: String): Borrower
+addBorrowerDB(borrowerRef: Borrower): Void
+removeBorrowerDB(borrowerRef: Borrower): Void
+updateBorrowerDB(borrowerRef: Borrower): Void
+searchLoanDB(itemID: String): Loan
+searchLoanDB(borrwerRef: Borrower): Loan
+addLoanDB(loanRef: Loan): Void
+updateLoanDB(loanRef: Loan): Void
+searchReservationDB(isbn: ISBNType): Reservation
+searchReservationDB(titleRef: Title): Reservation
+searchReservationDB(borrowerRef: Borrower): Resrvation[]
+addReservationDB(reservationRef: Reservation): Void
+removeReservationDB(reservationrRef: Reservation): Void
+validateDB(userID: String, password: String): Void

Item

+itemID: String
+available: Boolean
+lost: Boolean

+isBorrowed(): Boolean
+setLost(flag: Boolean): Void
+searchItem(itemID: String): Item
+addItem(itemRef: Item): Void
+updateItem(itemRef: Item): Void
+removeItem(itemRef: Item): Void
+setAvailable(flag: Boolean): Void
+getTitle(itemRef: Item): Title

Manages

1*

Loan

+checkInDate: Date
+checkOutDate: Date
+lateReturnFee: Integer
+validLoan: Boolean
+LoanCount: Long

+setValidLoan(flag: Boolean): Void
+calculateLateReturnFee(loanPeriod: Integer): Integer
+calculateReplacementFee(price: Float): Integer
+searchLoan(itemID: String): Loan
+searchLoan(borrowerRef: Borrower): Loan
+addLoan(loanRef: Loan): Void
+updateLoan(loanRef: Loan): Void
+decreaseLoanCount(): Void
+increaseLoanCount(): Void
+getNumOfLoan(): Void
+getItem(LoanRef: Loan): Item

Refer To

0..1

1

Librarian

+name: String
+userId: String
+password: String
+logInFlag: Boolean

+validate(userI: String, password: String)
+logOut(userID: String)

Manages

1

*

Manages 1

*

Borrower

+name: String
+ssn: String
+address: String
+reservationCount: Integer
+loanCount: Integer

+increaseLoanCount(): Void
+decreaseLoanCount(): Void
+increaseReservationCount(): Void
+decreaseReservationCount(): Void
+searchBorrower(ssn: String): Borrower
+addBorrower(borrowerRef: Borrower): Void
+removeBorrower(ssn: String): Void
+updateBorrower(borrwerRef: Borrower): Void

Has

1

0..*

Manages

1

*

Reservation

+reserveDate: Date

+searchReservation(isbn: ISBNType): Reservation
+searchReservation(titleRef: Title): Reservation
+searchReservation(borrowerRef: Borrower): Reservation[]
+addReservation(reservationRef: Reservation): Void
+removeReservation(reservationRef: Reservation): Void
+printNotifyCard(titleRef: Title): Void
+printCard(resrvationRef: Reservation): Void
+getTitle(reservationRef: Reservation): Title

Has

0..*

1

Manages+1

+*

Title

+name: String
+isbn: ISBNType
+price: Flot
+loanPeriod: Integer
+numOfItem: Integer
+availalbeCount: Integer
+reservationCount: Integer

+increaseAvailableCount(): Void
+decreaseAvailableCount(): Void
+increaseNumOfItem(): Void
+decreaseNumOfItem(): Void
+getNumOfItem(): Integer
+getPrice(): Float
+getLoanPeriod(): Integer
+getNewItemID(): String
+searchTitle(isbn: ISBNType): Title
+addTitle(titleRef: Title): Void
+removeTitle(titleRef: Title): Void
+updateTitle(titleRef: Title): Void
+isReserved(titleRef: Title): Boolean
+increaseReservationCount(): Void
+decreaseReservationCount(): Void

Manages

1 *

copy of

1

1..*

Refer to

1

0..*

Book

+author: String

Magazine

+publishCycle: String
+month: StringController

+mkaeReservation()
+removeReservation()
+LendItem()
+returnItem()
+getReplacementFee()
+addTitle()
+removeTitle()
+updateTitle()
+addItem()
+removeItem()
+updateItem()
+addBorrower()
+removeBorrower()
+updateBorrower()
+log-In()
+log-Out()
+countLoans()

Activity 2045. Refine System Architecture

• Description
– Refine draft system architecture developed in the plan stage
– Input : Draft System Architecture
– Output : A package diagram, a deployment diagram

• Standards Applied : UML’s Package Diagram and UML’s Deployment Diagram

Define Design
Class Diagrams

2144 Refine
System Architecture

2145 a Define
Database Schema

2144 b

92

Activity 2045. Refine System Architecture
• Steps (1~3: Deployment diagram , 4~7: Package diagram)

1. Define a 3-tier layered system architecture
• Presentation Layer : Windows, Reports, and so on
• Application Logic Layer : Tasks and rules that govern the process
• Storage Layer : Persistent storage mechanism

Application
Logic

Storage

Presentation

Record sales Authorize
payments

POSTApplet

Database

93

Activity 2045. Refine System Architecture
2. Decompose the application logic tier into finer layers

• Domain object layer
– Classes representing domain concepts

• Service layer
– Service objects for functions such as database interaction, reporting, communications, security,

and so on

Application
Logic

Storage

Presentation

Database

Borrower

GUI

Librarian Database

Loan

“Services Layer”

“Domain Layer”

94

Activity 2045. Refine System Architecture
3. Assign each tier into different physical computing nodes, and/or different

processes

Application
Logic

Storage

Presentation

Database

Borrower

GUI

Librarian Database

Loan

Client Computer

Application
Server

Data Server

95

Activity 2045. Refine System Architecture
4. Identify packages

• Place elements together
– that are in the same subject area-closely related by concept or purpose, or that

are in a type hierarchy together
– that participate in the same use cases or
– that are strongly associated

System

Item

Reservation

Borrower

LoanTitle

LibrarianItem

Database

96

Activity 2045. Refine System Architecture
5. Layers of the architecture : vertical tiers

Partitions of the architecture : horizontal division of relatively parallel subsystems

System

Storage

Loan Title Librarian

Database

Vertical
Layers

Horizontal Partitions

…

97

Activity 2045. Refine System Architecture

Application Logic Layer

Storage Layer

Business Object Package
+ Loan + Title
+ Borrower + Reservation
+ Book + Magazine
+ Item + Librarian

Database Package
+DataBase

98

Activity 2045. Refine System Architecture
6. Determine package dependencies

• Dependency relationships indicates coupling between packages.

Domain

Core Elements Sales

Dependency

99

Activity 2045. Refine System Architecture
7. Assign visibility between package classes

• Access into the Domain packages
– Some packages, typically the presentation package, have visibility into many of the classes

representing domain concepts
• Access into the Service packages

– Some packages, typically the Domain and Presentation packages, have visibility into only one
or a very few classes in each particular Service package

• Access into the Presentation packages
– No other packages have direct visibility to the Presentation layer

100

Activity 2045. Refine System Architecture

Domain

RDB Interface Security

Sale
...
...

Payment
...
...

Product
Catalog

...

...

Broker
...
...

Proxy
...
...

Security
Facade

User
...
...

Visibility into many classes
from other packages.

Visibility into one or
only a few classes in each

Service package.

Product
Description

...

...

DBFacade

...
addUser(User)
...

...
get(id) : Object
save(Object)
...

101

Activity 2046. Define Database Schema

• Description
– Design database, table, and records
– Map classes into tables
– Input : Design Class Diagram
– Output : A Database Schema

• Steps:
1. Map classes into tables
2. Map relationships between classes into relations between tables
3. Map attributes into fields of tables
4. Design Schema

Refine
System Architecture

2145 Define
Database Schema

2146 Perform 2040
Traceability Analysis

2147ba
`

102

Activity 2047. Perform 2040 Traceability Analysis

• Description
– Link all elements from the abstract at 2030 to details at 2040 (design class diagram and

system test cases)

– Express all traces from requirements to system test cases

– Input : Real use cases, functional requirements, design class diagram,
operation contracts, system test cases

– Output : A 2040 traceability graph

Define
Database Schema

2146 Perform 2040
Traceability Analysis

2147b

103

Activity 2047. Perform 2040 Traceability Analysis

• Step 1.
– Identify the system operation, system interaction diagram, and class diagram

• Step 2.
– Identify the operations which are connected with system operation and others

• Step 3.
– Grasp the relations between methods extracted by interaction diagram and

system operations in sequence diagram
– Classify the connection system operation directly and others

104

Activity 2047. Perform 2040 Traceability Analysis

• Draw up the traces between a system operation (2035) and operations in
interaction diagrams (2043)

DataBase : Librarian Controller

makeReservation()

:Reservation :Title :Borrower

searchTitleDB(isbn:String)

titleRef:= searchTitle(isbn:String)

borrowerRef:= searchBorrower(ssn:String)

searchBorrowerDB(ssn:String)

reservationRef:= new Reservation(titleRef:Title, borrowerRef:Borrower)

[borrowerRef is valid]
displayMessage("Error")

[borrowerRef is invalid]

displayMessage("Error")
[titleRef is invalid]

[titleRef is valid]

addReservation(reservationRef:Reservation)
addReservationDB(reservationRef:Reservation)

displayMessage("OK")

increaseReservationCount()

increaseReservationCount()

105

Activity 2047. Perform 2040 Traceability Analysis

106

107

Essential UseCase S-Link SID Operation in Sequence Diagram M-Link MID Method Class
시간 확인 S1 S1 selectTimeViewMode M15,M1 M1 displayCurrentTime
시간 설정 S2, S3, S4 S2 selectTimeSetupMode M16,M2,M12,M5 M2 displaySetupMode
알람 표시 S5, S4 S3 changeValue M13,M12 M3 displayAlarm
알람 설정 S6, S3, S4 S4 goNext M14,M12 M4 displayNextAlarm
알람 추가 S7 S5 selectAlarmViewMode M18,M3,M14 M5 blinkSetupItem
알람 삭제 S8 S6 selectAlarmSetupMode M17,M4,M5,M12 M6 displayCurrentMode
알람 인지 S16 S7 addAlarm M20,M17,M12,M3 M7 displayTimer
알람 울림 해제 S9 S8 deleteAlarm M19,M3 M8 displaySetupMode
타이머 표시 S10 S9 clearAlarmNotice M21,M11,M6 M9 viewMode
타이머 설정 S11, S3, S4 S10 selectTimerViewMode M26,M7 M10 setupMode
타이머 시작 S12 S11 selectTimerSetupMode M27,M8,M5,M12 M11 getPreviousMode
타이머 일시 정지 S13 S12 startTimer M25,M7 M12 saveValue
타이머 초기화 S14 S13 pauseTimer M22,M7 M13 changeValue
타이머 인지 S17 S14 resetTimer M23,M7 M14 goNext
타이머 울림 해제 S15 S15 clearTimerNotice M24,M7 M15 selectTimerViewMode
스탑워치 시작 S4.1 S16 alarmBeep M31,M3 M16 selectTimeSetupMode
스탑워치 정지 S4.2 S17 timerBeep M31,M7 M17 selectAlarmSetupMode
스탑워치 재시작 S4.3 S4.1 startStopWatch() M4.1, M4.2, M4.3, M4.4, M4.5 M18 selectAlarmViewMode
스탑워치 초기화 S4.4 S4.2 stopStopWatch() M4.6, M4,7 M19 deleteCurrentAlarm
기념일 추가 S5.1, S5.2 S4.3 restartStopWatch() M4.2, M4.3, M4.4, M4.5, M4.8 M20 addNewAlarm
기념일 수정 S5.2, S5.3 S4.4 resetStopWatch() M4.5, M4.9, M4.10 M21 clearAlarm

기념일 삭제 S5.3, S5.4 S5.1 createNewAnniversary() M5.1M5.2 M22 pauseTimerVlaue
기념일 알림 S5.2 inputDateTime() M5.3M5.4M5.5M5.6M5.7M5.8 M23 resetTimerValue
기념일 알람 해제 S5.5 S5.3 selectAnniversary() M5.9, M5.2 M24 clearTimer
로또 번호 생성/표시 S6.1 S5.4 deleteAnniversary() M5.10, M5.11, M5.12 M25 runTimer

 로또 번호 저장/리마인S6.2, S6.3 S5.5 dismiss() M5.13, M5.14, M5.15 M26 selectTimerViewMode
로또 리마인드 알림/표S5, S4 S6.1 requestCreateLotteryNumber M6.1,M6.6, M6.7, M6.10, M6.11 M27 selectTimerSetupMode
활성 기능 선택 S7.1 S6.2 saveLotteryNumber M6.5 M28 registerTickObserver
공장 초기화 S7.2 S6.3 setReminder M6.6 M29 setTime
현재 모드 표시 S7.1 select4Mode M6.2, M6.3, M6. M30 tick TickObserver
현재 모드 변환 S7.3 S7.2 requestFactoryReset M6.9 M31 beep BeepManager

S7.3 requestChangeCurrentMode M6.13 M32 (Input Event 생성) InputProcessor
M4 1 S W h() S W hM d

TimeManager

DisplayManager

Mode

TimeMode

AlarmMode

TimerMode

M4.1 startStopWatch() StopWatchMode
M4.2 registerTickObserver() TimeManager
M4.3 startTick() TimeManager
M4.4 tick() TimeManager
M4.5 updateTime() DisplayManager
M4.6 stopStopWatch() StopWatchMode
M4.7 stopTick() TimeManager
M4.8 restartStopWatch() StopWatchMode
M4.9 resetStopWatch() StopWatchMode
M4.10 unregisterTick() TimeManager
M5.1 createNewAnniversary() AnniversaryMode
M5.2 getSlot() AnniversaryStorage
M5.3 inputDateTime() AnniversarySlot
M5.4 updateDateTime() AnniversarySlot
M5.5 save() AnniversarySlot
M5.6 setAlarm() AlarmManager
M5.7 updateDate() DisplayManager
M5.8 updateTitle() DisplayManager
M5.9 selectAnniversary() AnniversaryMode
M5.10 deleteAnniversary() AnniversaryMode
M5.11 deleteSlot() AnniversaryStorage
M5.12 deleteAlarm() AlarmManager
M5.13 dismiss() AnniversaryAlarm
M5.14 stop() LightBuzzerManager
M5.15 turnOff() LightBuzzerManager
M6.1 displayLotteryNumber DisplayManager
M6.2 select4Mode
M6.3 displayModeList
M6.4 updateModeList
M6.5 saveLotteryNumber LotteryStorage
M6.6 sortLotteryNumber Lottery
M6.7 setReminder LotteryAlarm
M6.8 save4Mode SettingsStorage
M6.9 resetData
M6.10 sortLotteryNumber Lottery
M6.11 generateLotteryNumber RandomGenerator
M6.13 changeCurrentMode ModeManager

중복 methods
M2 M8 displaySetupMode
M28, MregisterTickObserver()
M15, MselectTimerViewMode
M6.6 MsortLotteryNumber
M30, Mtick()

Back

Phase 2050. Construct

Revise
Plan

2110 Sync.
Artifacts

2120
Analyze

2130
Design

2140
Construct

2150
Test

2160

108

Phase 2050. Construct
• Phase 2050 Activities

Implement
Windows

2152

Write
Unit Test Code

2155

Implement Class
& Method Definitions

2151 Implement
Reports

2153

Construct
2150

Implement
DB Schema(SQL, etc.)

2154

109

110

OOPT - Case Study
Library Management System (LMS)

Stage 1000. Plan

Plan Build Deployment
1000 2000 3000

Activity 1001. Define a Draft Plan

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Case

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Refine
Project Plan

1010

a,c,d

a

113

Activity 1001. Define a Draft Plan
• Motivation

– The size of title volumes and the number of users for a city library are sharply
increasing.

– Hence, the city wants to develop a ‘Library Management System’ in order to
automate most of the library operations.

– Among the various library operations, they want to automate the most commonly
used operations such as loan, reservation, purchase, discarding old books, and
simple statistics.

• Project Objectives
– To develop a computerized library management software, that provides typical

library operations such as:
• Lend and return books, Reserve books, Maintaining Borrow information, and

Purchasing new books.
– The new software should be easy to learn and use, and efficient.

114

Activity 1001. Define a Draft Plan
• Functional Requirements

– Lend titles.
– Return titles.
– Reserve titles.
– Purchase new titles.
– Discard old titles.
– Maintain borrower information.

• Non-Functional Requirements
– The average response time for front desk operations should be less than 5

seconds.
– The system should be designed to expandable and maintainable.

115

Activity 1001. Define a Draft Plan
• Resource Estimation

– Human Efforts(Man-Month): 6-10 M/M ?
– Human Resource:
– Project Duration:
– Cost:

• Other Information
– Future Version

• Adopt 3-Tier Client/Server Architecture.
• Add Web Interface.

116

Activity 1002. Create Preliminary Investigation
Report

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Case

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Refine
Project Plan

1010

a,c,d

a

117

Activity 1002. Create Preliminary Investigation
Report
• Alternative Solutions

– Purchasing such a library managing software, if available.
– Outsourcing
– Other Options

• Project Justification (Business Demands)
– Cost
– Duration
– Risk
– Effect

118

Activity 1002. Create Preliminary Investigation Report

• Risk Management

Risk Probability Significance Weight

Lack of OO experience 4 4 16

First adoption of OSP 4 5 20

Lack of domain knowledge 1 5 5

Team communication 3 3 9

Problem of requirements change 1 4 4

Lack of tool skill 2 2 4

Wandering 3 5 15

119

Activity 1002. Create Preliminary Investigation Report

• Risk Reduction Plan
– First adoption of OSP (20) : Try a pilot project using OSP
– Lack of OO Project Experience (16) : Take part in a study group
– Team Communication (9) : Have a team meeting on every Friday night

• Market Analysis
– A few generic packages are available, however too expensive.
– May be able to market the software to other similar-scaled libraries.

• Other Managerial Issues
– The project should be completed by June, 2008.

• Plan to participate in a SW exhibition.

120

Activity 1003. Define Requirements

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Case

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Refine
Project Plan

1010

a,c,d

a

121

Activity 1003. Define Requirements
• Functional Requirements (Version 0.9)

– A library lends books and magazines to borrowers, who are registered in the
system.

– A library handles the purchase of new titles. Popular titles are bought in multiple
copies.

– Old books and magazines are removed when they are out of date or in poor
condition.

– The librarian is an employee of the library, who interacts with the customers and
whose work is supported by the system.

– A borrower can reserve a book or magazine that is not currently available in the
library, so that when it’s returned or purchased by the library, that person is
notified.

– The reservation is canceled
• when the borrower checks out the book or magazine, or
• through a explicit canceling procedure.

– The library can easily create, update, and delete information about the titles,
borrowers, loans, and reservations in the system.

122

Activity 1003. Define Requirements

• User Interviews

Index Question Answer

1 Direct Interface with Borrower? No, indirect

2 Can borrower search books on-line? No, next version

3 Charge a fee for late return? Yes, it just calculates the fee, and no direct
interface with accounting software.

4 Charge a fee for lost books? Yes, it just calculates the fee.

5 How to handle unregistered borrower? First register and then lend items.

6 Is a notification available? Yes, it can be printed on cards.

7 Calculate total number of titles checked out? Yes

8 Specify max number of loans per borrower? Yes

9 Specify max number of days for loans? Yes

10 Send a kindly-reminder(SMS/Email) for return due? No

11 Classify adult boos? Yes

12 Specify qualification for valid borrower? No

13 Maintain reliable database? Yes

14 Can control any system access? Yes, through login and logout.

123

Activity 1003. Define Requirements
• Functional Requirements (Version 1.0)

– A library lends books and magazines to borrowers, who are registered in the
system.

– If the person has not been registered, the system first register the person. Then,
lend titles.

– A library handles the purchase of new titles. Popular titles are bought in multiple
copies.

– Old books and magazines are removed when they are out of date or in poor
condition.

– The librarian is an employee of the library who interacts with the
customers(borrowers) and whose work is supported by the system.

– A borrower can reserve a book or magazine that is not currently available in the
library, so that when its returned or purchased by the library, that person is
notified.

– The system automatically prints ‘post-cards’ to notify the availability of the books.
Then, the librarians mail them at the post office.

124

Activity 1003. Define Requirements
• Functional Requirements (Version 1.0)

– For unregistered person, the system first register the person. Then, make
reservations

– The reservation is canceled when the borrower checks out the book or magazine
or through a explicit canceling procedure.

– The library can easily create, update, and delete information about the titles,
borrowers, loans, and reservations in the system.

– Upon request, the system calculates the total # of items checked out.
– For any over-due items, a late-return fee is calculated and charged.
– For any items lost, a replacement-fee is computed and charged.
– The system validates the system access through librarian IDs and passwords.
– For each title, the librarians specify the maximum number of days that can be

held by the borrowers.

125

Activity 1003. Define Requirements
• Functional Requirements (Categorized Table)

Ref. # Function Category

R1.1 Make reservation Evident
R1.2 Remove reservation Evident
R1.3 Lend Item Evident

R1.4.1 Return title Evident
R1.4.2 Calculate Late-Return-Fee Hidden
R1.5 Calculate Replacement Fee Evident
R1.6 Notify Availability Hidden
R2.1 Add title Evident
R2.2 Remove title Evident
R2.3 Update title Evident
R2.4 Add items Evident
R2.5 Remove item Evident
R2.6 Update item Evident
R3.1 Add borrower Evident
R3.2 Remove borrower Evident
R3.3 Update borrower Evident
R4.1 Validates system access Evident
R5.1 Compute total # of items checked out Evident

126

Activity 1003. Define Requirements
• Performance Requirements

– The average response time for front desk operations should be less than 5
seconds.

– The post-card to notify availability must be printed out immediately after the
reserved book becomes available.

• Operating Environment
– Microsoft Windows 7 and 10

• Interface Requirements
– The current version may incorporate a menu-driven approach.
– Next version incorporates windows metaphor.

• Other Requirements
– The system must control the system access.

127

Activity 1004. Record Terms in Glossary

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Case

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Refine
Project Plan

1010

a,c,d

a

128

Activity 1004. Record Terms in Glossary

Term Description Remarks

Title Books or Magazines, which are registered in the library
system

Item Each copy of books or magazines

Loan An action of checking out an item from the library

Librarian An employee of the library who handles the requests
of borrowers.

… …

129

Activity 1005. Implement Prototype

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Case

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Refine
Project Plan

1010

a,c,d

a

130

Activity 1005. Implement Prototype
• User-Interface is sufficient for this LMS project

Authority Loan Maintenance Statistics
Exit Lend Item

Return Item

Make Reservation
Remove Reservation

Get Replacement Fee

Add Title
Update Title
Remove Title

Add Item
Update Item
Remove Item

Add Borrower
Update Borrower
Remove Borrower

Total # Loans

131

Activity 1006. Define Business Use Case

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Case

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Refine
Project Plan

1010

a,c,d

a

132

Activity 1006. Define Business Use Case
• Step 1. Define system boundary

– All the functions defined earlier are inside the system boundary.

Library Management System

Borrower Librarian

133

Activity 1006. Define Business Use Case
• Step 2. Identify the actors related to a system/organization

– Librarian : an employee of the library who interacts with the
customers(borrowers) and whose work is supported by the system.

Librarian

Library Management System

134

Activity 1006. Define Business Use Case
• Step 3. Identify user goals for each actor
• Step 4. Record the primary actors and their goals in an actor-goal list

Actor Goal

Librarian

Make reservation
Remove reservation
Lend Item
Return title
Calculate Late-Return-Fee
Calculate Replacement Fee
Notify Availability
Add title
Remove title
Update title
Add items
Remove item
Update item
Add borrower
Remove borrower
Update borrower
Validates system access
Compute total # of items

135

Activity 1006. Define Business Use Case
• Step. 5 Define use cases that satisfy user goals

– Actor-based use cases

Add Title Remove
Title

Add Item Remove
Item

Update
Item

Add
Borrower

Update
Borrower Login Logout

Make
Reservation

Remove
Reservation Lend Item

Update
Title

Remove
Borrower

Return Item

Get
Replace. Fee

Count
Loans

136

Activity 1006. Define Business Use Case
• Step. 5 Define use cases that satisfy user goals

– Event-based use cases

Calculate
Late-Return-Fee

Modify
Availability

137

Activity 1006. Define Business Use Case
• Step 6. Allocate system functions into related use cases

Ref. # Function Use Case Number & Name

R1.1 Make reservation 1. Make Reservation
R1.2 Remove reservation 2. Remove Reservation
R1.3 Lend Item 3. Lend Item

R1.4.1 Return title 4. Return Title
R1.4.2 Calculate Late-Return-Fee 5. Calculate Late-Return-Fee
R1.5 Calculate Replacement Fee 6. Get Replacement Fee
R1.6 Notify Availability 7. Notify Availability
R2.1 Add title 8. Add Title
R2.2 Remove title 9. Remove Title
R2.3 Update title 10. Update Title
R2.4 Add items 11. Add Item
R2.5 Remove item 12. Remove Item
R2.6 Update item 13. Update Item
R3.1 Add borrower 14. Add Borrower
R3.2 Remove borrower 15. Remove Borrower
R3.3 Update borrower 16. Update Borrower
R4.1 Validates system access 17. Log-IN
R4.2 Validates system access 18. Log-Out
R5.1 Compute total # of items checked out 19. Count Loans

138

Activity 1006. Define Business Use Case
• Step 7. Categorize use cases

Ref. # Function Use Case Number & Name Category Category

R1.1 Make reservation 1. Make Reservation Primary Evident
R1.2 Remove reservation 2. Remove Reservation Primary Evident
R1.3 Lend Item 3. Lend Item Primary Evident

R1.4.1 Return title 4. Return Title Primary Evident
R1.4.2 Calculate Late-Return-Fee 5. Calculate Late-Return-Fee Primary Hidden
R1.5 Calculate Replacement Fee 6. Get Replacement Fee Primary Evident
R1.6 Notify Availability 7. Notify Availability Primary Hidden
R2.1 Add title 8. Add Title Primary Evident
R2.2 Remove title 9. Remove Title Primary Evident
R2.3 Update title 10. Update Title Primary Evident
R2.4 Add items 11. Add Item Primary Evident
R2.5 Remove item 12. Remove Item Primary Evident
R2.6 Update item 13. Update Item Primary Evident
R3.1 Add borrower 14. Add Borrower Primary Evident
R3.2 Remove borrower 15. Remove Borrower Primary Evident
R3.3 Update borrower 16. Update Borrower Primary Evident
R4.1 Validates system access 17. Log-IN Secondary Evident
R4.2 Validates system access 18. Log-Out Secondary Evident
R5.1 Compute total # of items checked out 19. Count Loans Secondary Evident

139

Activity 1006. Define Business Use Case
• Step 8. Identify relationships between use cases (Optional)

Add
Borrower

Make
Reservation

Remove
Reservation

Lend Item

<<extends>>

<<extends>>

<<extends>>

140

Activity 1006. Define Business Use Case
• Step 9. Draw a use case diagram

– Defining system boundary (context) is referable.

141

Activity 1006. Define Business Use Case

142

System

Librarian

2. Remove Reservation

1. Make Reservation

3. Lend Item

4. Retuen Item

5. Calculate Late-Return-Fee

6. Get Replacement Fee

7. Notify Availability

8. Add Title

9. Remove Title

10. Update Title

11. Add Item

12. Remove Item

13. Update Item

14. Add Borrower

15. Remove Borrower

16. Update Borrower

17. Log-In

18. Log-Out

19. Count Loans

Activity 1006. Define Business Use Case
• Step 10. Describe use cases

Use Case 1. Make Reservation

Actors Librarian

Description

- This use case begins when a borrower arrives at the counter and then
requests reservation.

- For a registered borrower, it makes a reservation slip (software-wise).
- For an unregistered borrower, the librarian registers the person and
makes a reservation for the person.

Use Case 2. Remove Reservation

Actors Librarian

Description

- A borrower who made a reservation can cancel his/her reservation.
• Explicitly cancels the reservation. (Evident)

- When a borrower checks out an item which he/she previously reserved,
this use case is invoked automatically.

• Hidden system function

143

Activity 1006. Define Business Use Case

Use Case 3. Lend Item

Actors Librarian

Description

- This use case begins when the borrower arrives at the front desk with
items to lend.

- If a borrower does not registered, register first his/her information in the
system.

- This use case records the date, borrower ID, item ID and other relevant
information for this loan.

Use Case 4. Return Item

Actors Librarian

Description
- This use case begins when a borrower returns items at the counter.
- If the item is returned past due date, a late-return-fee is computed, so
that the borrower should pay the penalty.

144

Activity 1006. Define Business Use Case

Use Case 5. Calculate Late-Return-Fee

Actors None

Description
- This use case computes the penalty amount for items returned late.
- It first computes the number of extra days held by the borrower, then
multiplies it by a pre-determined daily rate for late returns.

Use Case 6. Get Replacement Fee

Actors Librarian

Description
- This use case computes the cost for replacing the lost book.
- It first finds out the current price of the lost book, and add the handling
cost to the book price.

Use Case 7. Notify Availability

Actors None

Description

- This use case prints the book title that just became available, number
of days held by the library, the name and address of the person who
reserved on a post-card.

- The actual mailing will be done manually by the librarian. 145

Activity 1006. Define Business Use Case

Use Case 8. Add Title

Actors Librarian

Description

- Whenever a new kind of book is purchased, the book information is
recorded into the system.

- Then, it invokes ‘Add Item’ use case to record the number of copies
purchased.

Use Case 9. Remove Title

Actors Librarian

Description
- Some old books are selected for removal by the librarians.
- This use case deletes the information of the book to be removed.
- And, it will be no longer available for loans.

Use Case 10. Update Title

Actors Librarian

Description - This use case will change the recorded information of the title.
- What actual kinds of information?

146

Activity 1006. Define Business Use Case

Use Case 11. Add Item

Actors Librarian

Description

- When additional copies (of the currently available title) are purchases,
this updates the total number of copies for each title.

• Date, Price, Bookstore, Available, etc.
- When a reservation has been made for this title, this use case invokes
‘notify availability’ use case.

Use Case 12. Remove Item

Actors Librarian

Description
- This use case will update the number of items for each title.
- If no more item is remaining after removal, this use case will invoke
‘Remove Title’ use case.

Use Case 13. Update Item

Actors Librarian

Description - This use case updates the information of the items.
- What actual kinds of information will be updated ?

147

Activity 1006. Define Business Use Case

Use Case 14. Add Borrower

Actors Librarian

Description - This use case will record the information of the new borrower such as
name, address, phone, loan priority, etc.

Use Case 15. Remove Borrower

Actors Librarian

Description

- This use case deletes the information of borrower from the system, so
that the person can no longer check out titles.

- This may happen if the borrower has a bad return history or has not
been using the library longer than 2 years.

Use Case 16. Update Borrower

Actors Librarian

Description - This use case updates the information of the borrower such as new
address and phone.

148

Activity 1006. Define Business Use Case

Use Case 17. Log-In

Actors Librarian

Description

- This use case reads the user ID and password of the librarian, and
verifies.

- If an invalid information is entered, it will re-prompt and read the ID and
password.

- After 3 successive failures of login, it records this ‘attach’ information
and automatically returns to the initial menu.

Use Case 18. Log-Out

Actors Librarian

Description - This use case records the date and time of the current logout, and
returns to the initial menu.

Use Case 19. Count Loans

Actors Librarian

Description - This use cases computes the total number of items checked out.
149

Activity 1006. Define Business Use Case
• Step 11. Rank use cases

Ref. # Function Use Case Number & Name Category Rank Category

R1.1 Make reservation 1. Make Reservation Primary High Evident
R1.2 Remove reservation 2. Remove Reservation Primary High Evident
R1.3 Lend Item 3. Lend Item Primary High Evident

R1.4.1 Return title 4. Return Title Primary High Evident
R1.4.2 Calculate Late-Return-Fee 5. Calculate Late-Return-Fee Primary High Hidden
R1.5 Calculate Replacement Fee 6. Get Replacement Fee Primary High Evident
R1.6 Notify Availability 7. Notify Availability Primary High Hidden
R2.1 Add title 8. Add Title Primary High Evident
R2.2 Remove title 9. Remove Title Primary High Evident
R2.3 Update title 10. Update Title Primary High Evident
R2.4 Add items 11. Add Item Primary High Evident
R2.5 Remove item 12. Remove Item Primary High Evident
R2.6 Update item 13. Update Item Primary High Evident
R3.1 Add borrower 14. Add Borrower Primary High Evident
R3.2 Remove borrower 15. Remove Borrower Primary High Evident
R3.3 Update borrower 16. Update Borrower Primary High Evident
R4.1 Validates system access 17. Log-IN Secondary Medium Evident
R4.2 Validates system access 18. Log-Out Secondary Medium Evident
R5.1 Compute total # of items checked out 19. Count Loans Secondary Medium Evident

150

Activity 1007.
Define Business Concept Model

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Case

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Refine
Project Plan

1010

a,c,d

a

151

Activity 1007.
Define Business Concept Model
• Identify ‘Concepts’ in the target domain.

Title

Item

Loan

Library

Notification

Book

Reservation

Librarian

Return

Late-Return-Fee

Magazine

Borrower

Customer

Registration

Check-Out

152

Activity 1008.
Define Draft System Architecture

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Case

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Refine
Project Plan

1010

a,c,d

a

153

Activity 1008.
Define Draft System Architecture
• Define system architecture

Library Server

Librarian

154

Activity 1009. Develop System Test Case

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Case

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Refine
Project Plan

1010

a,c,d

a

155

Activity 1009. Develop System Test Case
• Step 1. Identify important requirements

Ref. # Function Category

R1.1 Make reservation Evident
R1.2 Remove reservation Evident
R1.3 Lend Item Evident

R1.4.1 Return title Evident
R1.4.2 Calculate Late-Return-Fee Hidden
R1.5 Calculate Replacement Fee Evident
R1.6 Notify Availability Hidden
R2.1 Add title Evident
R2.2 Remove title Evident
R2.3 Update title Evident
R2.4 Add items Evident
R2.5 Remove item Evident
R2.6 Update item Evident
R3.1 Add borrower Evident
R3.2 Remove borrower Evident
R3.3 Update borrower Evident
R4.1 Validates system access Evident
R5.1 Compute total # of items checked out Evident

156

Activity 1009. Develop System Test Case
• Step 2. Develop system test cases with various system testing techniques

– First, brute force testing

No. Tests Description

1 Make reservation Correct한 borrower가 correct한 title 예약

2 Make reservation Correct한 borrower가 incorrect한 title 예약

3 Make reservation Correct한 borrower가 대여중인 title 예약

4 Make reservation Incorrect한 borrower가 예약

5 Remove reservation Correct한 borrower가 예약 취소

6 Remove reservation Incorrect한 borrower가 예약 취소

7 Lend Item Correct한 borrower가 대여 가능한 title 대여

8 Lend Item Correct한 borrower가 incorrect한 title 대여

9 Lend Item Correct한 borrower가 모두 대여중인 title 대여

10 Lend Item Incorrect한 borrower가 대여

11 Return title Borrower가 title 반납

12 Return title Borrower가 연체된 title 반납

13 Add title 새 title 추가

14 Remove title 기존의 title 제거

15 Remove title 존재하지 않는 title 제거

16 Update title Title 정보 update
17 Add item Title item 추가

18 Add item 존재하지 않는 title의 item추가

157

Activity 1009. Develop System Test Case
• Step 2. Develop system test cases with various system testing techniques

– First, brute force testing

No. Tests Description

19 Remove item Title의 item제거

20 Remove item 존재하지 않는 title의 item제거

21 Update item 올바른 item의 정보 update
22 Update item Title에 존재하지 않는 item update
23 Add borrower Borrower 추가

24 Remove borrower Borrower 삭제

25 Update borrower 기존의 borrower update
26 Update borrower 삭제된 borrower update
27 Validates system access Correct id/pw로 로그인

28 Validates system access Incorrect id/pw로 로그인

29 Validates system access 로그아웃

30 Compute total # of items
checked out 계산 시도

158

Activity 1010. Refine Project Plan

Define Draft
System Architecture

1008

Create Preliminary
Investigation Report

1002

Implement
Prototype

1005

Develop System
Test Case

1009

Define
Requirements

1003

Define
Business Use Case

1006

Define Business
Concept Model

1007

Define
A Draft Plan

1001

Record
Terms in Glossary

1004 b,d

Refine
Project Plan

1010

a,c,d

a

159

Activity 1010. Refine Project Plan
• Project Scope

– The library management software automates typical library operations;
reservation, lending item, adding, removing, and updating the information of title,
item, and borrower.

• Project Objectives
– To develop a computerized library management software, that provides typical

library operations such as:
• Lend and return books, Reserve books, Maintaining Borrow information, and

Purchasing new books.
– The new software should be easy to learn and use, and efficient.

160

Activity 1010. Refine Project Plan
• Functional Requirements

Ref. # Function Category

R1.1 Make reservation Evident
R1.2 Remove reservation Evident
R1.3 Lend Item Evident

R1.4.1 Return title Evident
R1.4.2 Calculate Late-Return-Fee Hidden
R1.5 Calculate Replacement Fee Evident
R1.6 Notify Availability Hidden
R2.1 Add title Evident
R2.2 Remove title Evident
R2.3 Update title Evident
R2.4 Add items Evident
R2.5 Remove item Evident
R2.6 Update item Evident
R3.1 Add borrower Evident
R3.2 Remove borrower Evident
R3.3 Update borrower Evident
R4.1 Validates system access Evident
R5.1 Compute total # of items checked out Evident

161

Activity 1010. Refine Project Plan

• Performance Requirements
– When making reservations, the information of reservation will appear within 5

seconds.
– When lending items, the content of lending item will appear within 5 seconds.
– When returning items, the content of returning item will appear within 5 seconds.

• Operating Environment
– Microsoft Windows 7 and 10

• User Interface Requirements
– Menu-driven approach
– Should be designed for upgrading to ‘Window-based’ version.

162

Activity 1010. Refine Project Plan
• Other Requirements

– The content of database should be maintained reliably.
– System should control the system access.

• Resources
– Man Month : 6 Persons

• A Team Leader
• A Document Manager
• 3-4 Engineers

– Period : 5 Days (Around 40 Hours)
– Hardware : skylake processor
– Software

• OS : Windows 7/10
• Programming Language : Java
• Case Tools : Rational Rose, Paradigm Plus

163

Activity 1010. Refine Project Plan
• Scheduling

Stage Phase(00x0)/Activity(000x)
Schedule(Day)

1 2 3 4 5

1000.

Plan &
Elaborate

 1001. Define Draft Plan
 1002. Create Preliminary Investigation Report
 1003. Define Requirements
 1004. Record Terms in Glossary
 1005. Implement Prototype
 1006. Define Use Cases
 1007. Define Draft Conceptual Model
 1008. Define Draft System Architecture
 1009. Refine Plan

2000.

Build

 2010. Revise Plan
 2020. Synchronize Artifacts
 2030. Analyze

2031. Define Essential Use Case
2032. Refine Use Case Diagrams
2033. Refine Conceptual Model
2034. Refine Glossary
2035. Define System Sequence Diagrams
2036. Define Operation Contracts
2037. Define State Diagrams

 2040. Design
2041. Define Real Use Cases
2042. Define Reports, UI and Storyboards
2043. Refine System Architecture
2044. Define Interaction Diagrams
2045. Define Design Class Diagrams
2046. Define Database Schema

 2050. Construct
2051. Implement Class & Interface Definition
2052. Implement Methods.
2053. Implement Windows
2054. Implement Reports
2055. Implement DB Schema
2056. Write Test Code

 2060. Test
2061. Unit Testing
2062. Integration Testing
2063. System Testing
2064. Performance Testing
2065. Acceptance Testing
2066. Documentation Testing

3000.

Deploy
‐ment

 3001. Complete Technical Documents
 3002. Complete User Documents
 3003. System Testing
 3004. Acceptance Testing
 3005. Documentation Testing
 3006. Train
 3007. Establish Parallel Runs and Crossover
 3008. Establish Support
 3009. Install

 164

Back

Phase 2030. Analyze

Revise
Plan

2110 Sync.
Artifacts

2120
Analyze

2130
Design

2140
Construct

2150
Test

2160

165

Activity 2031. Define Essential Use Cases
• Phase 2030 Activities

Refine
Use Case Diagrams

2132

Define
Domain Model

2135

Define System
Sequence Diagrams

2133

Define
Operation Contracts

2136

Define
State Diagrams

2137

Define Essential
Use Cases

2131

Refine Glossary
2134

a

b

a. if not yet done
b. ongoing
c. optional

Refine System
Test Case

2138 Perform 2030
Traceability Analysis

2139c

166

Activity 2031. Define Essential Use Cases
• 1. Make Reservation

Use Case 1. Make Reservation

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R1.1, R3.1
Use Case: “Add Borrower”

Pre-Requisites Borrower should have an id_card.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian requests the reservation of title
2. (S) Check if a corresponding title exists
3. (S) Check if a corresponding borrower exists
4. (S) If the borrower does not exist, invoke “Add Borrower”
5. (S) Create reservation information

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid reservation information is entered, indicate an error.

167

Activity 2031. Define Essential Use Cases
• 2. Remove Reservation

Use Case 2. Remove Reservation

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R1.2, R1.3
Use Case: “Lend Item”

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian requests removing reservation of the title
2. (S) Check if a corresponding title exists
3. (S) Check if a corresponding borrower exists
4. (S) Find the reservation
5. (S) Remove the reservation

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid reservation information is entered, indicate an error.

168

Activity 2031. Define Essential Use Cases
• 3. Lend Item

Use Case 3. Lent Item

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R1.3, R1.2
Use Cases: “Remove Reservation”, “Add Borrower”

Pre-Requisites Borrower should have id_card.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian requests lending item
2. (S) Check if a corresponding title exists
3. (S) Check if a corresponding item is available
4. (S) If the item was reserved, invoke “Remove Reservation”
5. (S) Check if corresponding borrower exists
6. (S) If the borrower does not exist, invoke “Add Borrower”
7. (S) Create new loan

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid lending information is entered, indicate an error.

169

Activity 2031. Define Essential Use Cases
• 4. Return Item

Use Case 4. Return Item

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R1.4.1, R1.4.2, R1.6
Use Cases: “Calculate Late-Return-Fee”, “Notify Availability”

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian requests returning item
2. (S) Check if a corresponding title exists
3. (S) Check if a corresponding borrower exists
4. (S) Check if a corresponding item is loaned
5. (S) Find the borrower of the item
6. (S) Check whether the returning due-date is over or not
7. (S) If the returning due-date is over, invoke “Calculate Late-Return-Fee”
8. (S) Remove the loan
9. (S) If the item is reserved, invoke “Notify Availability”

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid returning information is entered, indicate an error

170

Activity 2031. Define Essential Use Cases
• 5. Calculate Late-Return-Fee

Use Case 5. Calculate Late-Return-Fee

Actor b

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R1.4.1, R1.4.2
Use Case: “Return Item”

Pre-Requisites Lending due-date should be over.

Typical Courses of Events

(A) : Actor, (S) : System
1. (S) Compute late-return time
2. (S) Compute late-return fee
3. (S) Print the late-return fee

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

171

Activity 2031. Define Essential Use Cases
• 6. Get Replacement-Fee

Use Case 6. Get Replacement-Fee

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R1.5
Use Case: -

Pre-Requisites Title should be lost.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a title’s information
2. (S) Check if a corresponding title exists
3. (S) Find the price of the title
4. (S) Compute replacement-fee

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

172

Activity 2031. Define Essential Use Cases
• 7. Notify Availability

Use Case 7. Notify Availability

Actor None

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R1.4.1, R1.6, R2.4
Use Cases: “Return Item”, “Add Item”

Pre-Requisites The title should be returned or new title should be added.

Typical Courses of Events
(A) : Actor, (S) : System
1. (S) Notify the availability of the item
2. (S) Print a post-card

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

173

Activity 2031. Define Essential Use Cases
• 8. Add Title

Use Case 8. Add Title

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R2.1, R2.4
Use Case: “Add Item”

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a title’s information
2. (S) Check if a corresponding title exists
3. (S) Add a new title
4. (S) Invoke “Add Item”

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid title information is entered, indicate an error.

174

Activity 2031. Define Essential Use Cases
• 9. Remove Title

Use Case 9. Remove Title

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R2.2
Use Case: -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a title’s information to deleted
2. (S) Check if a corresponding title exists
3. (S) Remove the items of the title
4. (S) Remove the title

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid title information is entered, indicate an error.

175

Activity 2031. Define Essential Use Cases
• 10. Update Title

Use Case 10. Update Title

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R2.3
Use Case: -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a title’s information to change
2. (S) Check if a corresponding title exists
3. (S) Update the title’s information

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid title information is entered, indicate an error.

176

Activity 2031. Define Essential Use Cases
• 11. Add Item

Use Case 11. Add Item

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R1.6, R2.1, R2.4
Use Cases: “Notify Availability”, “Add Title”

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a item to add
2. (S) Check if a corresponding title exists
3. (S) Add the item
4. (S) Invoke “Notify Availability”

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid title information is entered, indicate an error.

177

Activity 2031. Define Essential Use Cases
• 12. Remove Item

Use Case 12. Remove Item

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R2.1, R2.5
Use Case: “Remove Title”

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an item’s information to remove
2. (S) Check if a corresponding title exists
3. (S) Check if a corresponding item exists
4. (S) Remove the item
5. (S) If there is no remaining item, invoke “Remove Title”

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid title information is entered, indicate an error.

178

Activity 2031. Define Essential Use Cases
• 13. Update Item

Use Case 13. Update Item

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R2.6
Use Case: -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an item’s information to update
2. (S) Check if a corresponding title exists
3. (S) Check if a corresponding item exists
4. (S) Update the item’s information

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid title information is entered, indicate an error.

179

Activity 2031. Define Essential Use Cases
• 14. Add Borrower

Use Case 14. Add Borrower

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R1.1, R1.3, R3.1
Use Cases: “Make Reservation”, “Lend Item”

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs borrower’s information such as SSN, name, address, zip code, phone number,

and age.
2. (S) Check if the corresponding borrower exists
3. (S) Add New borrower

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid borrower information is entered, indicate an error.

180

Activity 2031. Define Essential Use Cases
• 15. Remove Borrower

Use Case 15. Remove Borrower

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R3.2
Use Case: -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a borrower’s information to remove
2. (S) Check if a corresponding borrower exists
3. (S) If there is a loan of the borrower, remove the loan.
4. (S) Remove the borrower’s information

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid borrower information is entered, indicate an error.

181

Activity 2031. Define Essential Use Cases
• 16. Update Borrower

Use Case 16. Update Borrower

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R3.2
Use Case: -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a borrower’s information to change
2. (S) Check if a corresponding borrower exists
3. (S) Update the borrower’s information

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid borrower information is entered, indicate an error.

182

Activity 2031. Define Essential Use Cases
• 17. Log-In

Use Case 17. Log-In

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R4.1
Use Case: -

Pre-Requisites A librarian should have user name and password.

Typical Courses of Events
(A) : Actor, (S) : System
1. (A) A librarian enters his(her) user name and password into the system
2. (S) Check if the user name and password are correct

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid user name and password entered, indicate an error.

183

Activity 2031. Define Essential Use Cases
• 18. Log-Out

Use Case 18. Log-Out

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R4.1
Use Case: -

Pre-Requisites A librarian should have user name and password.

Typical Courses of Events
(A) : Actor, (S) : System
1. (A) A librarian exits the system
2. (S) Log the librarian’s information

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid user name and password entered, indicate an error.

184

Activity 2031. Define Essential Use Cases
• 19. Count Loans

Use Case 19. Count Loans

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference System Functions: R5.1
Use Case: -

Pre-Requisites A librarian should have user name and password.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian requests total counts of titles checked out
2. (S) Find loan information
3. (S) Calculate total counts of titles checked out
4. (S) Print total counts.

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid user name and password entered, indicate an error.

185

Activity 2032. Refine Use Case Diagrams
• Phase 2030 Activities

Refine
Use Case Diagrams

2132

Define
Domain Model

2135

Define System
Sequence Diagrams

2133

Define
Operation Contracts

2136

Define
State Diagrams

2137

Define Essential
Use Cases

2131

Refine Glossary
2134

a

b

Refine System
Test Case

2138 Perform 2030
Traceability Analysis

2139

a. if not yet done
b. ongoing
c. optional

c

186

Activity 2033. Define System Sequence Diagrams

• Phase 2030 Activities

Refine
Use Case Diagrams

2132

Define
Domain Model

2135

Define System
Sequence Diagrams

2133

Define
Operation Contracts

2136

Define
State Diagrams

2137

Define Essential
Use Cases

2131

Refine Glossary
2134

a

b

Refine System
Test Case

2138 Perform 2030
Traceability Analysis

2139

a. if not yet done
b. ongoing
c. optional

c

187

Activity 2033. Define System Sequence Diagrams

Librarian

1: makeReservation()

:System
USE CASE: 1. Make Reservation

1. (A) A librarian requests the reservation
of title.

2. (S) Check if corresponding title exist.

3. (S) Check if corresponding borrower exist.

4. (S) If the borrower does not exist, invoke
“Add Borrower”.
(→ connect to the other Use Case)

5. (S) Create reservation information.

188

Display(“Error!!!”)

Display(“Reservation OK!”)

[에러 상황]

[정상 상황] Use Case 14

[Connect to]

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request removing reservation()

:System
USE CASE: 2. Remove Reservation

1. (A) A librarian requests removing
reservation.

2. (S) Check if corresponding title exist.

3. (S) Check if corresponding borrower
exist.

4. (S) Find the reservation.

5. (S) Remove the reservation.

189

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request lending item()

:System
USE CASE: 3. Lend Item

1. (A) A librarian requests lending item.

2. (S) Check if corresponding title exist.

3. (S) Check if corresponding item is
available.

4. (S) If the item was reserved, invoke
“Remove Reservation”.

5. (S) Check if corresponding borrower exist.

6. (S) If the borrower does not exist, invoke
“Add Borrower”.

7. (A) Create new loan.

190

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request returning item()

:System

USE CASE: 4. Return Item

1. (A) A librarian requests returning item

2. (S) Check if a corresponding title exists

3. (S) Check if a corresponding borrower exists

4. (S) Check if a corresponding item is loaned

5. (S) Find the borrower of the item

6. (S) Check whether the returning

due-date is over or not

7. (S) If the returning due-date is over,

invoke “Calculate Late-Return-Fee”

8. (S) Remove the loan

9. (S) If the item is reserved, invoke

“Notify Availability”

191

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request replacement fee()

:System

USE CASE: 6. Get Replacement Fee

1. (A) A librarian inputs a title’s information

2. (S) Check if a corresponding title exists

3. (S) Find the price of the title

4. (S) Compute replacement-fee

192

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request adding title()

:System
USE CASE: 8. Add Title

1. (A) A librarian inputs a title’s information

2. (S) Check if a corresponding title exists

3. (S) Add a new title

4. (S) Invoke “Add Item”

193

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request removing title()

:System
USE CASE: 9. Remove Title

1. (A) A librarian inputs a title’s information

to deleted

2. (S) Check if a corresponding title exists

3. (S) Remove the items of the title

4. (A) Remove the title

194

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request updating title()

:System
USE CASE: 10. Update Title

1. (A) A librarian inputs a title’s information

to change

2. (S) Check if a corresponding title exists

3. (S) Update the title’s information

195

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request adding item()

:System
USE CASE: 11. Add Item

1. (A) A librarian inputs a item to add

2. (S) Check if a corresponding title exists

3. (S) Add the item

4. (S) Invoke “Notify Availability”

196

Display(“Error!!”)

Display(“OK!”)

Use Case 7

[Connect to the hidden]

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request removing item()

:System
USE CASE: 12. Remove Item

1. (A)A librarian inputs an item’s information

to remove

2. (S) Check if a corresponding title exists

3. (S) Check if a corresponding item exists

4. (S) Remove the item

5. (S) If there is no remaining item,

invoke “Remove Title”

197

Display(“Error!!”)

Display(“OK!”)

Use Case 9

[Connect to the hidden]

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request updating item()

:System
USE CASE: 13. Update Item

1. (A) A librarian inputs an item’s information

to update

2. (S) Check if a corresponding title exists

3. (S) Check if a corresponding item exists

4. (S) Update the item’s information

198

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request adding borrower()

:System
USE CASE: 14. Add Borrower

1. (A) A librarian inputs borrower’s

information such as SSN, name, address,

zip code, phone number, and age.

2. (S) Check if the corresponding borrower exists

3. (S) Add New borrower

199

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request removing borrower()

:System
USE CASE: 15. Remove Borrower

1. (A) A librarian inputs a borrower’s

information to remove

2. (S) Check if a corresponding borrower

exists

3. (S) If there is a loan of the borrower,

remove the loan.

4. (S) Remove the borrower’s information

200

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request updating borrower()

:System
USE CASE: 16. Update Borrower

1. (A) A librarian inputs a borrower’s

information to change

2. (S) Check if a corresponding borrower

exists

3. (S) Update the borrower’s information

201

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Input ID_Password()

:System
USE CASE: 17. Log-In

1. (A) A librarian enters his(her) user name

and password into the system

2. (S) Check if the user name and password

are correct

202

Display(“Error!!”)

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Exit()

:System

USE CASE: 17. Log-Out

1. (A) A librarian exits the system

2. (S) Log-off the librarian’s information

203

Display(“OK!”)

Activity 2033. Define System Sequence Diagrams

Librarian

1: Request count loans()

:SystemUSE CASE: 18. Count Loans

1. (A) A librarian requests total counts of

titles checked out

2. (S) Find loan information

3. (S) Calculate total counts of titles

checked out

4. (S) Print total counts.

204

Display(“OK!”)

205

Use Case Name of Actor-Activated Event System Operations
1. Make Reservation 1: Request making reservation() 1. makeReservation()
2. Remove Reservation 1: Request removing reservation() 2. removeReservation()
3. Lend Item 1: Request lending item() 3. LendItem()
4. Return Item 1: Request returning item() 4. returnItem()
5. Calculate Late-Return-Fee N/A N/A
6. Get Replacement Fee 1: Request replacement fee() 5. getReplacementFee()
7. Notify Availability N/A N/A
8. Add Title 1: Request adding title() 6. addTitle()
9. Remove Title 1: Request removing title() 7. removeTitle()
10. Update Title 1: Request updating title() 8. updateTitle()
11. Add Item 1: Request adding item() 9. addItem()
12. Remove Item 1: Request removing item() 10. removeItem()
13. Update Item 1: Request updating item() 11. updateItem()
14. Add Borrower 1: Request adding borrower() 12. addBorrower()
15. Remove Borrower 1: Request removing borrower() 13. removeBorrower()
16. Update Borrower 1: Request updating borrower() 14. updateBorrower()
17. Log-In 1: Input ID_Password() 15. log-In()
18. Log-Out 1: Exit() 16. log-Out()
19. Count Loans 1: Request count loans() 17. countLoans()

Define
Domain Model

Define System
Sequence Diagrams

Activity 2034. Refine Glossary
• Phase 2030 Activities

Refine
Use Case Diagrams

2132

2135

2133

Define
Operation Contracts

2136

Define
State Diagrams

2137

Define Essential
Use Cases

2131

Refine Glossary
2134

a

b

Refine System
Test Case

2138 Perform 2030
Traceability Analysis

2139

a. if not yet done
b. ongoing
c. optional

c

206

Activity 2034. Refine Glossary
Term Category Remarks

Title Class A type of books or magazines which are registered in the library system.
Item Class Each copy of book or magazine.
Reservation Class An action of lending title that is available for use when it is needed.
Borrower Class A person that lends, returns item.
Loan Class An action of lending a book/magazine from the library.
Librarian Class An employee of the library who interacts with the borrower.
Librarian.name Attribute The name of librarian.
Librarian.userId Attribute The user name of librarian.
Librarian.password Attribute The password of librarian.
Title.name Attribute The title of a book or a magazine.
Title.publisher Attribute The publishing company of the title.
Title.isbn Attribute The International Standard Book Number of title.
Title.price Attribute The price of title.
Title.count Attribute The number of item contained in a title.
Title.lendingtime Attribute The lending time of a title.
Book.author Attribute The author name of a book.
Magazine.month Attribute The publication cycle of a magazine.
Reservation.date : Date Attribute The date of reservation.
Item.id : Integer Attribute Item number.
Loan.date : Date Attribute Lending date of an item.
Loan.late-return-fee Attribute Over lending time of an item.
Borrower.SSN Attribute The resident registration number
Borrower.name Attribute A borrower name.
Borrower.address Attribute A borrower address.
Borrower.zip Attribute A zip code of borrower.
Borrower.age Attribute A borrower age.

207

Activity 2035. Define Domain Model
• Phase 2030 Activities

Refine
Use Case Diagrams

2132

Define
Domain Model

2135

Define System
Sequence Diagrams

2133

Define
Operation Contracts

2136

Define
State Diagrams

2137

Define Essential
Use Cases

2131

Refine Glossary
2134

a

b

Refine System
Test Case

2138 Perform 2030
Traceability Analysis

2139

a. if not yet done
b. ongoing
c. optional

c

208

Activity 2035. Define Domain Model
• Step 1. List concepts

– Guideline 2

Main Concerns
1. Borrower requests the reservation of the title
2. Librarian receives the request and reserve the item of the title
3. Borrower can requests loan of the title
4. Librarian can manage the title such as add, remove, update
5. Item of the tile is also managed by librarian
6. Title consists of book and magazine
7. Librarian can manage the borrower information
8. Identifying librarian in system is supplied by login, logout function
9. Loan fee is calculated in system

Borrower
Reservation

Title
Item
Book

Magazine
Manage

Librarian
Certification

Fee

209

Activity 2035. Define Domain Model
• Step 2. Assign class names into concepts

– Title
– Librarian
– Book
– Magazine
– Loan
– Reservation
– Borrower
– Item

210

Activity 2035. Define Domain Model
• Step 3. Identify associations according to association categories

Association Category Associations

A is known/logged/recorded/reported/captured in B

Item – Loan
Item – Title
Loan – Borrower
Title – Reservation

A is a line item of B Item – Title

A is recorded in B Item – Title

A is related to a transaction of B Borrower – Loan
Borrower – Reservation

A is an organization submit of B Book – Title
Magazine – Title

211

Activity 2035. Define Domain Model
• Step 4. Assign priorities into identified associations

• Step 5. Assign names into associations
– Item Copy-of Title
– Item Refer-to Loan
– Loan Has Borrower
– Borrower Has Reservation
– Title May-be-reserved-in Reservation
– Borrower Has Item

Association Name Priority

Item – Title High

212

Activity 2035. Define Domain Model
• Step 6. Add multiplicity into the ends of an associations

LoanItem
0 .. 1

BorrowerLoan
0 .. *

ReservationTitle
0 .. *

TitleItem

ReservationBorrower
0 .. *

1 .. *

1

1

1

ItemBorrower
0 .. *1

1 .. * 1Copy-of

Refer-to

Has

Has

May-be-reserved-in

Has

213

• Step 7. Identify attributes by reading

Activity 2035. Define Domain Model

<<Business Object>>
Item

ID : Integer
available : Boolean

<<Business Object>>
Title

name : String
isbn : String
count : Integer
price : Float
publisher : String
lending time : Integer

<<Business Object>>
Reservation

date : Date

<<Business Object>>
Book

author: String

<<Business Object>>
Loan

date: Date
late-return-fee : Integer

<<Business Object>>
Librarian

name : String
userID : String
password : string

<<Business Object>>
Magazine

month : Integer

<<Business Object>>
Borrower

name : String
age : Integer
SSN : String
address : String
phone : String
zip : String

214

Activity 2035. Define Domain Model
• Step 8. Draw them in a conceptual class diagram

<<Business Object>>
Item

ID : Integer
available : Boolean

<<Business Object>>
Title

name : String
isbn : String
count : Integer
price : Float
publisher : String
lending time : Integer

<<Business Object>>
Reservation

date : Date

<<Business Object>>
Book

author: String

<<Business Object>>
Loan

date: Date
late-return-fee : Integer

<<Business Object>>
Librarian

name : String
user ID : String
password : string

<<Business Object>>
Magazine

month : Integer

<<Business Object>>
Borrower

name : String
age : Integer
SSN : String
address : String
phone : String
zip : String

1 .. * 1

1 .. *

0 .. 1

0 .. *

1

1

1

0 .. *

Has/Have

Copy of

Refer to

Has/Have

Refer to

0 .. *

215

Activity 2036. Define Operation Contracts
• Phase 2030 Activities

Refine
Use Case Diagrams

2132

Define System
Sequence Diagrams

2135

Define
Domain Model

2133

Define
Operation Contracts

2136

Define
State Diagrams

2137

Define Essential
Use Cases

2131

Refine Glossary
2134

a

b

Refine System
Test Case

2138 Perform 2030
Traceability Analysis

2139

a. if not yet done
b. ongoing
c. optional

c

216

Activity 2036. Define Operation Contracts

Use Case Name of Actor-Activated Event System Operations
1. Make Reservation 1: Request making reservation() 1. makeReservation()
2. Remove Reservation 1: Request removing reservation() 2. removeReservation()
3. Lend Item 1: Request lending item() 3. LendItem()
4. Return Item 1: Request returning item() 4. returnItem()
5. Calculate Late-Return-Fee N/A N/A
6. Get Replacement Fee 1: Request replacement fee() 5. getReplacementFee()
7. Notify Availability N/A N/A
8. Add Title 1: Request adding title() 6. addTitle()
9. Remove Title 1: Request removing title() 7. removeTitle()
10. Update Title 1: Request updating title() 8. updateTitle()
11. Add Item 1: Request adding item() 9. addItem()
12. Remove Item 1: Request removing item() 10. removeItem()
13. Update Item 1: Request updating item() 11. updateItem()
14. Add Borrower 1: Request adding borrower() 12. addBorrower()
15. Remove Borrower 1: Request removing borrower() 13. removeBorrower()
16. Update Borrower 1: Request updating borrower() 14. updateBorrower()
17. Log-In 1: Input ID_Password() 15. log-In()
18. Log-Out 1: Exit() 16. log-Out()
19. Count Loans 1: Request count loans() 17. countLoans()

217

Activity 2036. Define Operation Contracts

Name makeReservation()

Responsibilities Checks if title and borrower information exist, and creates a new reservation

Type System

Cross References System functions: R1.1, R2.1

Notes

Exceptions N/A

Output Results from making the reservation

Pre-conditions Title and Borrower information should be entered.

Post-conditions

A new reservation has created.
Reservation.title has set to the title.
Reservation.borrower has set to the borrower.
The Reservation is associated with the Title.
The Reservation is associated with the Borrower.

218

Activity 2036. Define Operation Contracts

Name removeReservation()

Responsibilities Receive reservation information from a librarian and removes the reservation
information

Type System

Cross References System functions: R1.2
Use case: “Remove Reservation”

Notes

Exceptions N/A

Output Results from removing the reservation

Pre-conditions The title should be reserved.

Post-conditions
The Reservation has deleted.
The Reservation is associated with Title. (Why?)
The Reservation is associated with Borrower. (Why?)

219

Activity 2036. Define Operation Contracts

Name lendItem()

Responsibilities Checks whether the item to lend exists or not and lends the item

Type System

Cross References System functions: R1.2, R1.3
Use case: “Lent Item”, “Make Reservation”, “Remove Reservation”

Notes

Exceptions N/A

Output Results from lending the item

Pre-conditions The title of the item should exist.

Post-conditions
A new loan has created.
The Loan is associated with the Item.
The Loan is associated with the Borrower.

220

Activity 2036. Define Operation Contracts

Name returnItem()

Responsibilities Receives an item’s information and returns the item

Type System

Cross References System functions: R1.4.1, R1.4.2
Use case: “Return Item”, “Calculate Late-Return-Fee”

Notes

Exceptions N/A

Output Results from returning the item

Pre-conditions Information of the item to return should be entered.

Post-conditions

Item.loan was set to the loan.
The Item is associated with the Loan.
The Loan has deleted.
The Loan is associated with the Borrower.

221

Activity 2036. Define Operation Contracts

Name getReplacementFee()

Responsibilities Requests to calculate for lost items or items in a poor condition

Type System

Cross References System functions: R1.5
Use case: “Get Replacement Fee”

Notes

Exceptions N/A

Output Data on the calculated replacement fee

Pre-conditions ISBM of the lost item should be entered.

Post-conditions

Item.lost has set to a true value.
A count of the title has decremented.
An available count of the title has decremented
A Loan has deleted. (Why?)

222

Activity 2036. Define Operation Contracts

Name addTitle()

Responsibilities Adds a new title

Type System

Cross References System functions: R2.1, R2.4
Use case: “Add Title”, “Add Item”

Notes

Exceptions If the title already exists, indicate an error.

Output Results from returning the item

Pre-conditions ISBM of the lost item should be entered.

Post-conditions

A new Title has created.
Title.name has set to the name.
Title.isbn has set to the isbn.
Title.price has set to the price.
Title.numOfCount has set to the numOfCount.
Title.availableCount has set to the availableCount.
Title.publisher has set to the publisher.
Title.loanPeriod has set to the loanPeriod.
Title.reservationCount has set to the reservationCount.
Title is associated with Item.

223

Activity 2036. Define Operation Contracts

Name removeTitle()

Responsibilities Removes an old book or magazine

Type System

Cross References System functions: R2.2
Use case: “Remove Title”

Notes

Exceptions If the title does not exist, indicate an error.

Output Results from removing the title

Pre-conditions Information of the title should be entered.

Post-conditions The Title has deleted.
The Title is associated with an Item, Reservation, Loan has deleted.

224

Activity 2036. Define Operation Contracts

Name updateTitle()

Responsibilities Updates an old book or magazine

Type System

Cross References System functions: R2.3
Use case: “Update Title”

Notes

Exceptions If the title does not exist, indicate an error.

Output Results from updating the title

Pre-conditions Information of the title should be entered.

Post-conditions The Title has updated.
The Title is associated with an Item, Reservation, Loan has updated.

225

Activity 2036. Define Operation Contracts

Name removeItem()

Responsibilities Removes an item

Type System

Cross References System functions: R2.5
Use case: “Remove Item”

Notes

Exceptions If the item’s title does not exist, indicate an error.

Output Information of the removed item

Pre-conditions Information of the title and item should be entered.

Post-conditions The Item has removed.
The Item is associated with Title, Loan has removed.

226

Activity 2036. Define Operation Contracts

Name updateItem()

Responsibilities Updates an item

Type System

Cross References System functions: R2.6
Use case: “Update Item”

Notes

Exceptions If the item’s title does not exist, indicate an error.

Output Information of the updated item

Pre-conditions Information of the title and item should be entered.

Post-conditions
The Item has updated.
The Item is associated with Title.
The Item is associated with Loan.

227

Activity 2036. Define Operation Contracts

Name addBorrower()

Responsibilities Adds a new borrower’s information

Type System

Cross References System functions: R3.1
Use case: “Add Borrower”

Notes

Exceptions If the borrower exists, indicate an error.

Output Results from adding the new borrower

Pre-conditions Information of the borrower should be entered.

Post-conditions

A new Borrower has created.
Borrower.SSN has set to the SSN.
Borrower.name has set to the name.
Borrower.address has set to the address.
Borrower.reservationCount has set to reservationCount.
Borrower.loanCount has set to loanCount.
Borrower is associated with Loan.
Borrower is associated with Reservation.

228

Activity 2036. Define Operation Contracts

Name removeBorrower()

Responsibilities Removes a borrower’s information

Type System

Cross References System functions: R3.2
Use case: “Remove Borrower”

Notes

Exceptions If the borrower does not exist, indicate an error.

Output Results from removing the borrower

Pre-conditions Information of the borrower should be entered.

Post-conditions A Borrower has deleted.
Borrower is associated with Loan, Reservation has deleted.

229

Activity 2036. Define Operation Contracts

Name updateBorrower()

Responsibilities Updates a borrower’s information

Type System

Cross References System functions: R3.3
Use case: “Update Borrower”

Notes

Exceptions If the borrower does not exist, indicate an error.

Output Results from updating the borrower

Pre-conditions Information of the borrower should be entered.

Post-conditions
A Borrower has updated.
Borrower is associated with Loan.
Borrower is associated with Reservation.

230

Activity 2036. Define Operation Contracts

Name Log-In()

Responsibilities Inputs an ID and Password of a librarian

Type System

Cross References System functions: R4.1
Use case: “Log-In”

Notes Authentication information consists of ID and password

Exceptions If the librarian does not exist, indicate an error.

Output Approval information

Pre-conditions Authentication information should be entered.

Post-conditions The authentication information is associated with the librarian.

231

Activity 2036. Define Operation Contracts

Name Log-Out()

Responsibilities Logouts from the system

Type System

Cross References System functions: R4.1
Use case: “Log-Out”

Notes

Exceptions N/A

Output Exits from the system

Pre-conditions -

Post-conditions -

232

Activity 2036. Define Operation Contracts

Name countLoans()

Responsibilities Requests for calculating a total counts of all titles checked

Type System

Cross References System functions: R5.1
Use case: “Count Loans”

Notes

Exceptions N/A

Output Calculated data on the loans

Pre-conditions It should calculate only the number of titles checked out.

Post-conditions Number of titles checked out has calculated.

233

Activity 2037. Define State Diagrams
• Phase 2030 Activities

Refine
Use Case Diagrams

2132

Define System
Sequence Diagrams

2135

Define
Domain Model

2133

Define
Operation Contracts

2136

Define
State Diagrams

2137

Define Essential
Use Cases

2131

Refine Glossary
2134

a

b

Refine System
Test Case

2138 Perform 2030
Traceability Analysis

2139

a. if not yet done
b. ongoing
c. optional

c

234

Activity 2037. Define State Diagrams
• State Diagram for Use case

235

Activity 2037. Define State Diagrams
• State Diagram for Domain Model

Not Reserved

Make Reservation

Reserved

Remove Reservation

< State Diagram for “Title” >

Make ReservationRemove Reservation
[# of Reservation > 1]

Ready

Lend Item
[available = TRUE]

Borrowed

Return Item
[available = FALSE]

< State Diagram for “Item” >

Remove Item

236

Activity 2038. Refine System Test Case
• Phase 2030 Activities

Refine
Use Case Diagrams

2132

Define System
Sequence Diagrams

2135

Define
Domain Model

2133

Define
Operation Contracts

2136

Define
State Diagrams

2137

Define Essential
Use Cases

2131

Refine Glossary
2134

a

b

Refine System
Test Case

2138 Perform 2030
Traceability Analysis

2139

a. if not yet done
b. ongoing
c. optional

c

237

Phase 2038. Refine System Test Case
• Step 1. Identify important requirements

Ref. # Function Category

R1.1 Make reservation Evident
R1.2 Remove reservation Evident
R1.3 Lend Item Evident

R1.4.1 Return title Evident
R1.4.2 Calculate Late-Return-Fee Hidden
R1.5 Calculate Replacement Fee Evident
R1.6 Notify Availability Hidden
R2.1 Add title Evident
R2.2 Remove title Evident
R2.3 Update title Evident
R2.4 Add items Evident
R2.5 Remove item Evident
R2.6 Update item Evident
R3.1 Add borrower Evident
R3.2 Remove borrower Evident
R3.3 Update borrower Evident
R4.1 Validates system access Evident
R5.1 Compute total # of items checked out Evident

238

Activity 2038. Refine System Test Case
• Step 2. Develop system test cases with various system testing techniques

– First, brute force testing

No. Tests Description

1 Make reservation Correct한 borrower가 correct한 title 예약

2 Make reservation Correct한 borrower가 incorrect한 title 예약

3 Make reservation Correct한 borrower가 대여중인 title 예약

4 Make reservation Incorrect한 borrower가 예약

5 Remove reservation Correct한 borrower가 예약 취소

6 Remove reservation Incorrect한 borrower가 예약 취소

7 Lend Item Correct한 borrower가 대여 가능한 title 대여

8 Lend Item Correct한 borrower가 incorrect한 title 대여

9 Lend Item Correct한 borrower가 모두 대여중인 title 대여

10 Lend Item Incorrect한 borrower가 대여

11 Return title Borrower가 title 반납

12 Return title Borrower가 연체된 title 반납

13 Add title 새 title 추가

14 Remove title 기존의 title 제거

15 Remove title 존재하지 않는 title 제거

16 Update title Title 정보 update
17 Add item Title item 추가

18 Add item 존재하지 않는 title의 item추가

239

Activity 2038. Refine System Test Case
• Step 2. Develop system test cases with various system testing techniques

– First, brute force testing

No. Tests Description

19 Remove item Title의 item제거

20 Remove item 존재하지 않는 title의 item제거

21 Update item 올바른 item의 정보 update
22 Update item Title에 존재하지 않는 item update
23 Add borrower Borrower 추가

24 Remove borrower Borrower 삭제

25 Update borrower 기존의 borrower update
26 Update borrower 삭제된 borrower update
27 Validates system access Correct id/pw로 로그인

28 Validates system access Incorrect id/pw로 로그인

29 Validates system access 로그아웃

30 Compute total # of items
checked out 계산 시도

240

Activity 2039. Perform 2030 Traceability Analysis

• Phase 2030 Activities

Refine
Use Case Diagrams

2132

Define System
Sequence Diagrams

2135

Define
Domain Model

2133

Define
Operation Contracts

2136

Define
State Diagrams

2137

Define Essential
Use Cases

2131

Refine Glossary
2134

a

b

Refine System
Test Case

2138 Perform 2030
Traceability Analysis

2139

a. if not yet done
b. ongoing
c. optional

c

241

Activity 2039. Perform 2030 Traceability Analysis

242

Back

Phase 2040. Design

Revise
Plan

2110 Sync.
Artifacts

2120
Analyze

2130
Design

2140
Construct

2150
Test

2160

243

Perform 2040
Traceability Analysis

Phase 2041. Design Real Use Cases
• 7 Activities

Define Reports,
UI, and Storyboards

2142 Define
Interaction Diagrams

2143Design
Real Use Cases

2141

Define Design
Class Diagrams

2144

a. Varied order
b. optional

Refine
System Architecture

2145

2147

Define
Database Schema

2146 ba

244

Phase 2041. Design Real Use Cases
• Make Reservation

Use Case 1. Make Reservation

Actor Librarian

Purpose Create a new reservation

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R1.1, R3.1
Use Case: “Add Borrower”

Pre-Requisites A borrower should be registered.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an isbn and ssn of the title
2. (S) Find a corresponding title
3. (S) Find a corresponding borrower
4. (S) Create a new reservation
5. (S) Store the new reservation
6. (S) Increase reservationCount in the borrower
7. (S) Increase reservationCount in the title

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the title does not exist, display an error message.
Line 3: If the borrower does not exist, display an error message.

245

Phase 2041. Design Real Use Cases
• Remove Reservation

Use Case 2. Remove Reservation

Actor Librarian

Purpose Remove a reservation information

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R1.2, R1.3
Use Case: “Lend Item”

Pre-Requisites A borrower should be registered.
A title should have been reserved.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an isbn of the title
2. (S) Find a corresponding reservation
3. (S) Remove the reservation
4. (S) Decrease reservationCount of the borrower
5. (S) Decrease reservationCount of the title

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the reservation doe not exist, display an error message.

246

Phase 2041. Design Real Use Cases
• Lend Item

Use Case 3. Lent Item

Actor Librarian

Purpose Lend items to a borrower

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R1.3, R1.2, R3.1
Use Cases: “Remove Reservation”, “Add Borrower”

Pre-Requisites An item should exist.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an item’s ID and ssn of the borrower
2. (S) Find a corresponding borrower
3. (S) Find a corresponding item
4. (S) Create a new loan
5. (S) Store the new loan
6. (S) Set validLoan to true
7. (S) Increase loanCount of borrower
8. (S) Set available to false
9. (S) Decrease AvailableCount of the title

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the borrower does not exist, invoke “Add Borrower” use case.

247

Phase 2041. Design Real Use Cases
• Return Item

Use Case 4. Return Item

Actor Librarian

Purpose Return items loaned

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R1.4.1, R1.4.2, R1.6
Use Cases: “Calculate Late-Return-Fee”, “Notify Availability”

Pre-Requisites An item should have been loaned.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an item’s ID
2. (S) Find a corresponding loan
3. (S) Get item information from the loan
4. (S) Get title information from the item
5. (S) Get loanPeriod from the title
6. (S) Compute calculateLateReturnFee
7. (S) Check reservationCount of the title.

8. (S) If the title is reserved, find the corresponding
reservation

9. (S) Decrease loanCount of the loan.
10. (S) Decrease loanCount of the Borrower.
11. (S) Set validLoan of the borrower to false.
12. (S) Set available of the item to true.
13. (S) Increase AvailbaleCount of the title.

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the loan does not exist, display an error message.

248

Phase 2041. Design Real Use Cases
• Calculate Late-Return-Fee

Use Case 5. Calculate Late-Return-Fee

Actor None

Purpose Compute late-return fee for an item returned late

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R1.4.1, R1.4.2
Use Cases: “Return Item”

Pre-Requisites Lending time of an item should have expired

Typical Courses of Events
(A) : Actor, (S) : System
1. (S) Calculate Late-Return-Fee of the item
2. (S) Display the Late-Return-Fee

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

249

Phase 2041. Design Real Use Cases
• Get Replacement-Fee

Use Case 6. Get Replacement-Fee

Actor Librarian

Purpose Compute replacement-fee for a lost title

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R1.5
Use Cases: -

Pre-Requisites A title should be lost.

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an item’s ID
1. (S) Find a corresponding loan
2. (S) Get an item from the loan
3. (S) Get a title from the item
4. (S) Get price of the title
5. (S) Compute replacementFee
6. (S) Set validLoan to false
7. (S) Update the loan
8. (S) Decrease loanCount of the borrower.
9. (S) Set the isborrowed of the item to false.
10. (S) Decrease numOfItem of the title.

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the loan doe not exist, display an error message.

250

Phase 2041. Design Real Use Cases
• Notify Availability

Use Case 7. Notify Availability

Actor None

Purpose Notify availability of a reserved item

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R1.4.1, R1.6, R2.4
Use Cases: “Return Item”, “Add Item”

Pre-Requisites An item should have been returned or a new item should have been added.

Typical Courses of Events (A) : Actor, (S) : System
1. (S) Print a post-card

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

251

Phase 2041. Design Real Use Cases
• Add Title

Use Case 8. Add Title

Actor Librarian

Purpose Register a new title

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R2.1, R2.4
Use Case: “Add Item”

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs title information such as name, isbn, price, publisher, loanPeriod

(Book: author, Magazine:month, publishCycle)
2. (S) Find a corresponding title
3. (S) Create a new title
4. (S) Store the new title
5. (S) Invoke “Add Item”

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If the title already exists, display an error message.

252

Phase 2041. Design Real Use Cases
• Remove Title

Use Case 9. Remove Title

Actor Librarian

Purpose Delete information of a title

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R2.2
Use Case: -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a title’s isbn to remove
2. (S) Find a corresponding title
3. (S) Check if the corresponding title is reserved.
4. (S) If the title is reserved, Remove the reservation
5. (S) Check the item of the title is loaned.
6. (S) Remove the title

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the title does not exist, display an error message.
Line 5: If the item of the title is loaned, display an error mesasge.

253

Phase 2041. Design Real Use Cases
• Update Title

Use Case 10. Update Title

Actor Librarian

Purpose Update information of a title

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R2.3
Use Case: -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a title’s isbn and information of the title to change
2. (S) Find a corresponding title
3. (S) Update the title

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the item does not exist, display “Not Existing Title”. Error message.
Line 3: If the isbn is changed, then update items too,

254

Phase 2041. Design Real Use Cases
• Add Item

Use Case 11. Add Item

Actor Librarian

Purpose Add a new item

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R2.4
Use Cases: “Add Title”

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an item’s id
2. (S) Find a corresponding title
3. (S) Get an item’s ID from the title
4. (S) Create a new item
5. (S) Store the new item
6. (S) Increase numOfItem of the title
7. (S) Increase availablecount of the item

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: Line 2: If the title does not exist, display an error message.

255

Phase 2041. Design Real Use Cases
• Remove Item

Use Case 12. Remove Item

Actor Librarian

Purpose Remove information of an item

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R2.1, R2.5
Use Case: “Remove Title”

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs an item’s ID
2. (S) Find a corresponding item
3. (S) Check if the item is borrowed
4. (S) If the item is borrowed, decrease numOfItem of the title
5. (S) Decrease availableCount of the title
6. (S) Remove the item

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the item does not exist, display an error message.
Line 3: If the item was already borrowed, display an error message

256

Phase 2041. Design Real Use Cases
• Update Item

Use Case 13. Update Item

Actor Librarian

Purpose Update information of an item

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R2.6
Use Case: -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs the item’s id and information to change
2. (S) Find A corresponding item
3. (S) Update the item
4. (S) If a lost of the item is true, decrease numOfItem of the title.
5. (S) Decrease the availableCount of the title.
6. (S) If a lost of the item is false, increase numOfItem of the title.

(What? Only for these cases “Update Item” are used?)
7. (S) Increase availableCount of the title

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the item does not exist, display an error message.

257

Phase 2041. Design Real Use Cases
• Add Borrower

Use Case 14. Add Borrower

Actor Librarian

Purpose Register a new borrower

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R1.1, R1.3, R3.1
Use Cases: “Make Reservation”, “Lend Item”

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a borrower’s name, ssn, and address.
2. (S) Find a corresponding borrower
3. (S) Create a new borrower
4. (S) Store the new borrower

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the borrower exists already, display an error message.

258

Phase 2041. Design Real Use Cases
• Remove Borrower

Use Case 15. Remove Borrower

Actor Librarian

Purpose Remove information of a borrower

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R3.2
Use Case: -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs the borrower’s ssn
2. (S) Find a corresponding borrower
3. (S) Find a loan of the borrower
4. (S) If the loan is invalid, find a reservation
5. (S) Get the title of the reservation
6. (S) Decrease reservationCount of the title
7. (S) Remove borrower

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the borrower does not exist, display an error message.
Line 3: If the loan is still valid, display an error message.

259

Phase 2041. Design Real Use Cases
• Update Borrower

Use Case 16. Update Borrower

Actor Librarian

Purpose Update information of a borrower

Overview (As in the business use case)

Type Primary and Real

Cross Reference System Functions: R3.3
Use Case: -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A librarian inputs a borrower’s ssn and information to change
2. (S) Find a corresponding borrower
3. (S) Update the borrower

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the borrower does not exist, display an error message.

260

Phase 2041. Design Real Use Cases
• Log-In

Use Case 17. Log-In

Actor Librarian

Purpose Check access authority of a librarian

Overview (As in the business use case)

Type Secondary and Real

Cross Reference System Functions: R4.1
Use Case: -

Pre-Requisites A librarian should have user name and password.

Typical Courses of Events
(A) : Actor, (S) : System
1. (A) A librarian inputs an userID and password
2. (S) Check if the userID and password are correct

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the userID and password are not correct, display an error message.

261

Phase 2041. Design Real Use Cases
• Log-Out

Use Case 18. Log-Out

Actor Librarian

Purpose Exit the library management system

Overview (As in the business use case)

Type Secondary and Essential

Cross Reference System Functions: R4.1
Use Case: -

Pre-Requisites A librarian should have user name and password.

Typical Courses of Events
(A) : Actor, (S) : System
1. (A) A librarian selects “LogOut”
2. (S) Check if the userID is correct and then exit the system

Alternative Courses of Events N/A

Exceptional Courses of Events Line 2: If the userID is incorrect, display an error message.

262

Phase 2041. Design Real Use Cases
• Count Loans

Use Case 19. Count Loans

Actor Librarian

Purpose Compute total count of the titles checked out

Overview (As in the business use case)

Type Secondary and Essential

Cross Reference System Functions: R5.1
Use Case: -

Pre-Requisites A librarian should have user name and password.

Typical Courses of Events
(A) : Actor, (S) : System
1. (A) A librarian requests loan count
2. (S) Get numOfLoan of the loan

Alternative Courses of Events N/A

Exceptional Courses of Events N/A (Really?)

263

Perform 2040
Traceability Analysis

Phase 2042. Define Reports, UI, and Storyboards

• 7 Activities

Define Reports,
UI, and Storyboards

2142 Define
Interaction Diagrams

2143Design
Real Use Cases

2141

Define Design
Class Diagrams

2144

a. Varied order
b. optional

Refine
System Architecture

2145

2147

Define
Database Schema

2146 ba

264

Phase 2042. Define Reports, UI, and Storyboards

• Make Reservation

265

Phase 2042. Define Reports, UI, and Storyboards

• Lent Item

266

Phase 2042. Define Reports, UI, and Storyboards

• Count Loans

267

Perform 2040
Traceability Analysis

Phase 2043. Define Interaction Diagrams
• 7 Activities

Define Reports,
UI, and Storyboards

2142 Define
Interaction Diagrams

2143Design
Real Use Cases

2141

Define Design
Class Diagrams

2144

a. Varied order
b. optional

Refine
System Architecture

2145

2147

Define
Database Schema

2146 ba

268

DataBase : Librarian Controller

makeReservation()

:Reservation :Title :Borrower

searchTitleDB(isbn:String)

titleRef:= searchTitle(isbn:String)

borrowerRef:= searchBorrower(ssn:String)

searchBorrowerDB(ssn:String)

reservationRef:= new Reservation(titleRef:Title, borrowerRef:Borrower)

[borrowerRef is valid]
displayMessage("Error")

[borrowerRef is invalid]

displayMessage("Error")
[titleRef is invalid]

[titleRef is valid]

addReservation(reservationRef:Reservation)
addReservationDB(reservationRef:Reservation)

displayMessage("OK")

increaseReservationCount()

increaseReservationCount()

1. Make Reservation

269

2. Remove Reservation

 : Librarian Controller DataBase:Reservation :Borrower :Title

removeReservation()

[reservationRef is valid]

displayMessage("Error")
[reservationRef is invalid]

removeReservation(reservationRef:Reservation)

removeReservationDB(reservationRef:Reservation)

decreaseReservationCount()

decreaseReservationCount()

displayMessage("OK")

reservationRef:= searchReservation(isbn: ISBNType)
searchReservationDB(isbn: ISBNType)

270

3. Lend Item

 : Librarian Controller DataBase:Item :Borrower:Loan:Title

lendItem()

loanRef:= new Loan(itemRef: Item, borrowerRef: Borrower)

[borrowerRef is invalid]

borrowerRef:= searchBorrower(ssn: String)
searchBorrowerDB(ssn: String)

displayMessage("Error")

addLoan(loanRef:Loan)

addLoanDB(loanRef: Loan)

displayMessage("OK")

increaseLoanCount()

setAvailable(false)

itemRef:=searchItem(itemID:String)

searchItemDB(itemID:String)

[borrowerRef is valid]

decreaseAvailableCount()

setValidLoan(true)

271

4. Return Item

 : Librarian Controller DataBaseReservation:Item :Borrower :Loan:Title

[loanRef is valid]

returnItem()

loanRef:= searchLoan(itemID: String)

[borrowerRef is valid]

searchLoanDB(itemID: String)

displayMessage(lateReturnFee)

displayMessage("OK")

displayMessage("Error")
[loanRef is invalid]

decreaseLoanCount()

decreaseLoanCount()

setAvailable(true)

itemRef:=getItem()

titleRef:=getTitle()

loanPeriod:=getLoanPeriod()

printNotifyCard(titleRef:Title)

reservationRef:=searchReservationDB(titleRef: Title)

valid:=isReserved()

[valid = "True"]

printCard(reservationRef:Reservation)

increaseAvailable

displayMessage("Not Reserved")

[valid = "False"]

lateReturnFee:= calculateLateReturnFee(loanPeriod)

reservationRef:= searchReservation(titleRef: Title)

setValidloan(false)

272

6. Get Replacement-Fee

 : Librarian Controller DataBase:Loan :Title :Item Borrower

getReplacementFee()

loanRef:=searchLoan(itemID: String)

decreaseLoanCount()

setLost(true)

searchLoanDB(itemID: String)

displayMessage(replacementFee)

displayMessage("OK")

 itemRef:=getItem()

[loanRef is valid]

displayMessage("Error")
[loanRef is invalid]

price=getPrice()

replacementFee:=calculateReplacementFee(price)

setValidLoan(false)

updateLoan(loanRef:Loan)

updateLoanDB(loanRef:Loan)

decreaseNumOfItem()

titleRef:= getTitle()

273

8. Add Title

 : Librarian Controller DataBase:Title :Book :ItemMagazine

[titleRef is invalid && title type is "Book"]

[titleRef is valid]

addTitle()

[titleRef is invalid && title type is "Magazine"]

titleRef:=searchTitle(isbn: String)
searchTitleDB(isbn: String)

displayMessage("Error")

titleRef:= new Book(name:String, isbn:String, price:Integer, loanPeriod:Integer,author:String)

addTitle(titleRef:Title) addTitleDB(titleRef:Title)

titleRef:= new Magazine(name:String, isbn:String, price:Integer, loanPeriod:Integer, month:String, publishCycle:String)

addTitle(isbn: ISBNType)
addTitleDB(titleRef:Title)

addItem(isbn: ISBNType)

addItem(titleRef:Title)

displayMessage("OK")

274

9. Remove Title

 : Librarian Controller :Title DataBase:Borrower:Reservation :Item

[titleRef is invalid]

removeTitle()

titleRef:=searchTitle(isbn: String)
searchTitleDB(isbn: String)

displayMessage("Error")

removeTitle(titleRef:Title)
removeTitleDB(titleRef:Title)

removeItem(isbn: ISBNType)

displayMessage("OK")

[titleRef is valid]
reservationRef:=searchReservation(titleRef:Title)

searchReservationDB(titleRef:Title)

decreaseReservationCount()
[reservationRef is valid]

275

10. Update Title

 : Librarian Controller DataBase:Title

[titleRef is invalid]

[titleRef is valid]

updateTitle()

displayMessage("Error")

displayMessage("OK")

titleRef:= searchTitle(isbn: String)
searchTitleDB(isbn: String)

updateTitle(titleRef: Title) updateTitleDB(titleRef: Title)

276

11. Add Item

 : Librarian : Controller :DataBase:Title :Item

[titleRef is valid]

[titleRef is invalid]

addItem()

displayMessage("Error")

displayMessage("OK")

titleRef := searchTitle(isbn:String)
searchTitleDB(isbn:String)

itemID := getNewItemID()

increaseAvailableCount()

increaseNumOfItem()

itemRef:= new Item(itemID: String,titleRef:Title)

addItem(itemRef:Item)
addItemDB(itemRef:Item)

277

12. Remove Item

 : Librarian :DataBase:Loan:Title :Item: Controller

[isBorrowed()="false"]

[isBorrowed()="true"]

removeItem()

itemRef:=searchItem(itemID:String)
searchItemDB(itemID:String)

isBorrowed()

decreaseNumOfItem()

decreaseAvailableCount()

displayMessage("Error")

removeItem(itemRef:Item)
removeItemDB(itemRef:Item)

displayMessage("OK")

displayMessage("Error")
[itemRef is invalid]

[itemRef is valid]

278

12. Update Item

 : Librarian : Controller :DataBaseTitle Item

[itemRef is valid]

[itemRef is invalid]

updateItem()

displayMessage("Error")

updateItem(itemRef:Item)

itemRef:=searchItem(itemID:String)
searchItemDB(itemID:String)

updateItemDB(itemRef:Item)

decreaseNumOItem()
[lost = "True"]

decreaseAvailableCount()

increaseNumOfItem()
[lost="False]

increaseAvailableCount()

displayMessage("Ok")

279

14. Add Borrower

 : Librarian :Controller :DataBase: Borrower

[borrowerRef is invalid]

addBorrower()

displayMessage("OK")

displayMessage("Error")

borrowerRef:=new Borrower(name:String, ssn:String, address:String)

borrowerRef:=searchBorrower(ssn:String)
searchBorrowerDB(ssn:String)

addBorrower(borrowerRef:Borrower)

addBorrowerDB(borrowerRef:Borrower)

[borrowerRef is valid]

280

15. Remove Borrower

 : Librarian : Controller :Database:Title:Borrower :Loan : Reservation

removeBorrower()

displayMessage("OK")

displayMessage("Error")

borrowerRef:=searchBorrower(ssn:String)
searchBorrowerDB(ssn:String)

removeBorrower(borrowerRef:Borrower)
removeBorrowerDB(borrowerRef:Borrower)

loanRef:=searchLoan(borrowerRef:Borrower)
searchLoanDB(borrowerRef:Borrower)

removeReservation(borrowerRef:Borrower)

removeReservationDB(borrowerRef:Borrower)

displayMessage("Error")

[borrowerRef is invalid]

[borrowerRef is valid]

[loanRef is valid]

[loanRef is invalid]

reservationRef[]:=searchReservation(borrowerRef:Borrower)

searchReservationDB(borrowerRef:Borrower)

titleRef:=*getTitle()

*decreaseReservationCount()

281

16. Update Borrower

 : Librarian : Controller :DatabaseBorrower

updateBorrower()

displayMessage("OK")

displayMessage("Error")

borrowerRef:=searchBorrower(ssn:String)
searchBorrowerDB(ssn:String)

updateBorrower(borrowerRef:Borrower)

updateBorrowerDB(borrowerRef:Borrower)

[borrowerRef is invalid]

[borrowerRef is valid]

282

17. Log-In

 : Librarian : Controller Librarian Database

[valid="True"]

[valid="False"]

logIn()

displayMessage("OK")

displayMessage("Error")

valid=validate(userID:String,password:String)

validateDB(userID:String,password:String)

283

18. Log-Out

 : Librarian : Controller Librarian

logOut()

valid=logOut(userID:String)

displayMessage("Error")

[valid="False"]

displayMessage("Ok")

[valid="True"]

284

19. Count Loans

: Controller : Librarian :Loan

countLoans()

displayMessage(numOfLoan)

numOfLoan:=getNumOfLoan()

285

Perform 2040
Traceability Analysis

Phase 2044. Define Design Class Diagram
• 7 Activities

Define Reports,
UI, and Storyboards

2142 Define
Interaction Diagrams

2143Design
Real Use Cases

2141

Define Design
Class Diagrams

2144

a. Varied order
b. optional

Refine
System Architecture

2145

2147

Define
Database Schema

2146 ba

286

Phase 2044. Define Design Class Diagram

287

Database

-Title: Map
+Item: Map
+Borrower: Map
+Loan: Map
+Reservation: Map

+searchTitleDB(isbn: ISBNType): Title
+addTtileDB(titleRef: Title): Void
+removeTitleDB(titleRef: Title): Void
+updateTitleDB(titleRef: Title): Void
+searchItemDB(itemID: String): Item
+addItemDB(itemRef: Item): Void
+removeItemDB(itemRef: Item): Void
+updateItemDV(itemRef: Item): Void
+searchBorrowerDB(ssn: String): Borrower
+addBorrowerDB(borrowerRef: Borrower): Void
+removeBorrowerDB(borrowerRef: Borrower): Void
+updateBorrowerDB(borrowerRef: Borrower): Void
+searchLoanDB(itemID: String): Loan
+searchLoanDB(borrwerRef: Borrower): Loan
+addLoanDB(loanRef: Loan): Void
+updateLoanDB(loanRef: Loan): Void
+searchReservationDB(isbn: ISBNType): Reservation
+searchReservationDB(titleRef: Title): Reservation
+searchReservationDB(borrowerRef: Borrower): Resrvation[]
+addReservationDB(reservationRef: Reservation): Void
+removeReservationDB(reservationrRef: Reservation): Void
+validateDB(userID: String, password: String): Void

Item

+itemID: String
+available: Boolean
+lost: Boolean

+isBorrowed(): Boolean
+setLost(flag: Boolean): Void
+searchItem(itemID: String): Item
+addItem(itemRef: Item): Void
+updateItem(itemRef: Item): Void
+removeItem(itemRef: Item): Void
+setAvailable(flag: Boolean): Void
+getTitle(itemRef: Item): Title

Manages

1*

Loan

+checkInDate: Date
+checkOutDate: Date
+lateReturnFee: Integer
+validLoan: Boolean
+LoanCount: Long

+setValidLoan(flag: Boolean): Void
+calculateLateReturnFee(loanPeriod: Integer): Integer
+calculateReplacementFee(price: Float): Integer
+searchLoan(itemID: String): Loan
+searchLoan(borrowerRef: Borrower): Loan
+addLoan(loanRef: Loan): Void
+updateLoan(loanRef: Loan): Void
+decreaseLoanCount(): Void
+increaseLoanCount(): Void
+getNumOfLoan(): Void
+getItem(LoanRef: Loan): Item

Refer To

0..1

1

Librarian

+name: String
+userId: String
+password: String
+logInFlag: Boolean

+validate(userI: String, password: String)
+logOut(userID: String)

Manages

1

*

Manages 1

*

Borrower

+name: String
+ssn: String
+address: String
+reservationCount: Integer
+loanCount: Integer

+increaseLoanCount(): Void
+decreaseLoanCount(): Void
+increaseReservationCount(): Void
+decreaseReservationCount(): Void
+searchBorrower(ssn: String): Borrower
+addBorrower(borrowerRef: Borrower): Void
+removeBorrower(ssn: String): Void
+updateBorrower(borrwerRef: Borrower): Void

Has

1

0..*

Manages

1

*

Reservation

+reserveDate: Date

+searchReservation(isbn: ISBNType): Reservation
+searchReservation(titleRef: Title): Reservation
+searchReservation(borrowerRef: Borrower): Reservation[]
+addReservation(reservationRef: Reservation): Void
+removeReservation(reservationRef: Reservation): Void
+printNotifyCard(titleRef: Title): Void
+printCard(resrvationRef: Reservation): Void
+getTitle(reservationRef: Reservation): Title

Has

0..*

1

Manages+1

+*

Title

+name: String
+isbn: ISBNType
+price: Flot
+loanPeriod: Integer
+numOfItem: Integer
+availalbeCount: Integer
+reservationCount: Integer

+increaseAvailableCount(): Void
+decreaseAvailableCount(): Void
+increaseNumOfItem(): Void
+decreaseNumOfItem(): Void
+getNumOfItem(): Integer
+getPrice(): Float
+getLoanPeriod(): Integer
+getNewItemID(): String
+searchTitle(isbn: ISBNType): Title
+addTitle(titleRef: Title): Void
+removeTitle(titleRef: Title): Void
+updateTitle(titleRef: Title): Void
+isReserved(titleRef: Title): Boolean
+increaseReservationCount(): Void
+decreaseReservationCount(): Void

Manages

1 *

copy of

1

1..*

Refer to

1

0..*

Book

+author: String

Magazine

+publishCycle: String
+month: StringController

+mkaeReservation()
+removeReservation()
+LendItem()
+returnItem()
+getReplacementFee()
+addTitle()
+removeTitle()
+updateTitle()
+addItem()
+removeItem()
+updateItem()
+addBorrower()
+removeBorrower()
+updateBorrower()
+log-In()
+log-Out()
+countLoans()

288

Database

-Title: Map
+Item: Map
+Borrower: Map
+Loan: Map
+Reservation: Map

+searchTitleDB(isbn: ISBNType): Title
+addTtileDB(titleRef: Title): Void
+removeTitleDB(titleRef: Title): Void
+updateTitleDB(titleRef: Title): Void
+searchItemDB(itemID: String): Item
+addItemDB(itemRef: Item): Void
+removeItemDB(itemRef: Item): Void
+updateItemDV(itemRef: Item): Void
+searchBorrowerDB(ssn: String): Borrower
+addBorrowerDB(borrowerRef: Borrower): Void
+removeBorrowerDB(borrowerRef: Borrower): Void
+updateBorrowerDB(borrowerRef: Borrower): Void
+searchLoanDB(itemID: String): Loan
+searchLoanDB(borrwerRef: Borrower): Loan
+addLoanDB(loanRef: Loan): Void
+updateLoanDB(loanRef: Loan): Void
+searchReservationDB(isbn: ISBNType): Reservation
+searchReservationDB(titleRef: Title): Reservation
+searchReservationDB(borrowerRef: Borrower): Resrvation[]
+addReservationDB(reservationRef: Reservation): Void
+removeReservationDB(reservationrRef: Reservation): Void
+validateDB(userID: String, password: String): Void

Item

+itemID: String
+available: Boolean
+lost: Boolean

+isBorrowed(): Boolean
+setLost(flag: Boolean): Void
+searchItem(itemID: String): Item
+addItem(itemRef: Item): Void
+updateItem(itemRef: Item): Void
+removeItem(itemRef: Item): Void
+setAvailable(flag: Boolean): Void
+getTitle(itemRef: Item): Title

Manages

1*

Loan

+checkInDate: Date
+checkOutDate: Date
+lateReturnFee: Integer
+validLoan: Boolean
+LoanCount: Long

+setValidLoan(flag: Boolean): Void
+calculateLateReturnFee(loanPeriod: Integer): Integer
+calculateReplacementFee(price: Float): Integer
+searchLoan(itemID: String): Loan
+searchLoan(borrowerRef: Borrower): Loan
+addLoan(loanRef: Loan): Void
+updateLoan(loanRef: Loan): Void
+decreaseLoanCount(): Void
+increaseLoanCount(): Void
+getNumOfLoan(): Void
+getItem(LoanRef: Loan): Item

Refer To

0..1

1

Librarian

+name: String
+userId: String
+password: String
+logInFlag: Boolean

+validate(userI: String, password: String)
+logOut(userID: String)

Manages

1

*

Manages 1

*

Borrower

+name: String
+ssn: String
+address: String
+reservationCount: Integer
+loanCount: Integer

+increaseLoanCount(): Void
+decreaseLoanCount(): Void
+increaseReservationCount(): Void
+decreaseReservationCount(): Void
+searchBorrower(ssn: String): Borrower
+addBorrower(borrowerRef: Borrower): Void
+removeBorrower(ssn: String): Void
+updateBorrower(borrwerRef: Borrower): Void

Has

1

0..*

Manages

1

*

Reservation

+reserveDate: Date

+searchReservation(isbn: ISBNType): Reservation
+searchReservation(titleRef: Title): Reservation
+searchReservation(borrowerRef: Borrower): Reservation[]
+addReservation(reservationRef: Reservation): Void
+removeReservation(reservationRef: Reservation): Void
+printNotifyCard(titleRef: Title): Void
+printCard(resrvationRef: Reservation): Void
+getTitle(reservationRef: Reservation): Title

Has

0..*

1

Manages+1

+*

Title

+name: String
+isbn: ISBNType
+price: Flot
+loanPeriod: Integer
+numOfItem: Integer
+availalbeCount: Integer
+reservationCount: Integer

+increaseAvailableCount(): Void
+decreaseAvailableCount(): Void
+increaseNumOfItem(): Void
+decreaseNumOfItem(): Void
+getNumOfItem(): Integer
+getPrice(): Float
+getLoanPeriod(): Integer
+getNewItemID(): String
+searchTitle(isbn: ISBNType): Title
+addTitle(titleRef: Title): Void
+removeTitle(titleRef: Title): Void
+updateTitle(titleRef: Title): Void
+isReserved(titleRef: Title): Boolean
+increaseReservationCount(): Void
+decreaseReservationCount(): Void

Manages

1 *

copy of

1

1..*

Refer to

1

0..*

Book

+author: String

Magazine

+publishCycle: String
+month: StringController

+mkaeReservation()
+removeReservation()
+LendItem()
+returnItem()
+getReplacementFee()
+addTitle()
+removeTitle()
+updateTitle()
+addItem()
+removeItem()
+updateItem()
+addBorrower()
+removeBorrower()
+updateBorrower()
+log-In()
+log-Out()
+countLoans()

Perform 2040
Traceability Analysis

Phase 2045. Refine System Architecture
• 7 Activities

Define Reports,
UI, and Storyboards

2142 Define
Interaction Diagrams

2143Design
Real Use Cases

2141

Define Design
Class Diagrams

2144

a. Varied order
b. optional

Refine
System Architecture

2145

2147

Define
Database Schema

2146 ba

289

Phase 2045. Refine System Architecture

Database
Package

Business
Object Package

Library Management System

290

Phase 2045. Refine System Architecture

Application Logic Layer

Storage Layer
(Technical Supporting Layer)

Business Object Package
+ Loan + Title
+ Borrower + Reservation
+ Book + Magazine
+ Item + Librarian

Database Package
+DataBase

291

Perform 2040
Traceability Analysis

Phase 2046 Define Database Schema
• 7 Activities

Define Reports,
UI, and Storyboards

2142 Define
Interaction Diagrams

2143Design
Real Use Cases

2141

Define Design
Class Diagrams

2144

a. Varied order
b. optional

Refine
System Architecture

2145

2147

Define
Database Schema

2146 ba

292

• 7 Activities

Perform 2040
Traceability Analysis

Phase 2047. Perform 2040 Traceability Analysis

Define Reports,
UI, and Storyboards

2142 Define
Interaction Diagrams

2143Design
Real Use Cases

2141

Define Design
Class Diagrams

2144

a. Varied order
b. optional

Refine
System Architecture

2145

2147

Define
Database Schema

2146 ba

293

Phase 2047. Perform 2040 Traceability Analysis

294

Back

295

