2022

Object-Oriented Analysis and Design

JUNBEOM YOO

Dependable Software Lab.

Software Development

K KONKUK
UNIVERSITY

Software Development

« Software Development = Solving Problem with Software in Computer

Business Process

Natural Language

— Descriptions of Problems
(through Identifying Requirements)

Programmlng Language
~ — Descriptions of Solutions

(through Designing Programs)

Program Execution
with Computer System

EPENDABLE SOFTWARE 3
LABORATORY

KU KONKUK
UNIVERSITY

Software Development

« Software Development = Solving Problem with Software in Computer

Problems
in real world

Natural Language

— Descriptions of Problems
(through Identifying Requirements)

@ .
: Programming Language D
: Solutions ~ — Descriptions of Solutions = + D
In comPUter (through Designing Programs) .
Program Execution
N) » with Computer System
SASD

Software Development = @G i Procedural Programming A
Object-Oriented Programming .
OOAD
4

Computational Thinking = ©@,,

Procedural Programming

A program is organized with procedures.

— Procedure/Function
 building-block of procedural programs
« statements changing values of variables

— Focusing on data structures, algorithms, and sequencing of steps
« Algorithm : a set of instructions for solving a problem (Control-Centric)
» Data structure : a construct used to organize data in a specific way (Data-Centric)

— Most computer languages (rom FORTRAN to) @are procedural ones.

{ struct account { :

___ . —————, char name;
___ / int accountld; ;
: i float balance; §

""""""""""""""""""""""""""""""" i float interestYTD;

char accountType;

Procedures (with Algorithms) Data Structure

A B

[V DEPENDABLE SOFTWARE 5

B LABORATORY
4

Procedural Program

| *pelynomial.c - Windows H2% - m]
oEE BEERE MO By ESEZH

#include <stdio.h=>

#include <stdlib.h>

int p1Coef, p1Degree, p2Coef, p2Degree;

/ThA] SHLEE list2 B3, Cha Mol 207he 2t =2 i liste] nodeZ Z2CL

typedef struct Term {

int coeffy/2h T2l A==

int degree;//Zf ©2| X

struct Term *next;//next term2 & == Ql&, S HE2LE
} Term;

typedef struct polynomial {
Term *head;
Term *tail;
IPalynomial;

void addTerm(Polynomial *p, int coeff, int degree) {
/219 termO] ARLI2] CHE 0| 2& next termPt & = Y22 A2 SHE|E 2 S0 R0}
Term* termNew;
Term* temp;

termNew = (Term *)malloc(sizeof(Term));
termNew->coeff = coeff;
termNew->degree = degree;
termNew-=next = NULL;

if (p->head == NULL) {
p-rhead = termNew;
}
else {
temp = p->head;
while (temp->next != NULL) {
temp = temp-=next;
}

temp-=next = termNew;

}

void tSort(Polynomial *p) {
int temp;
/CHEAE SEEE = X7t 22 AFEH WE WA 220
Term *term = (Term *)malloc(sizect(Term));
term = p->head;
while ((term)-=next = NULL) {
if (p->head->degree > p-»head->next->degree) |

Ln 121, Col 1 100% Windows (CRLF) ANSI

") #polynomial.c - Windows HE2 -
oEE BHEE M40 B2y ESEH

int main() {

Polynomial *p1 = (Polynomial *imalloc(sizeaf(Polynomial));
Polynomial *p2 = (Polynomial *imalloc(sizeaf(Polynomial));
Polynomial *p3 = (Polynomial *imalloc(sizeaf(Polynomial));

while (1) {
print‘F(”W. 1 n");
printf("A1 SR CHErAlof 2012 2f 29| ALt Xx=& =MU2 254 2%n");
printf("A|2=0] 02 T AL Ho|A 212f 2HX| YL Chen");
printf(wn");

pl->head = NULL;
do {
scanf_s("%d %d", &pl1Coef, &plDegree);
if (p1Coef != 0) {
addTerm(p1, p1Coef, p1Degree);

}
} while (p1Coef = 0);
print‘F(”W: 1 Wn");
printi("S S| CHEEA0] SOIZ 2t #10] A2 K8 SHUZE LS QW)
printf(7 -0 02 YT HP CIO]4 Yt WUX| BELTH");

prinh‘(wn");

p2->head = NULL;
do {
scanf_s("%d %d", &p2Coef, &p2Degree);
if (p2Coef != 0) {
addTerm{p2, p2Coef, p2Degree);

H
} while (p2Coef = 0);

printf("#n AG)=");
printPoly(p1);
printf("#n Blg=");
printPoly(p2);

p3->head = NULL;
addP(p1, p2, p3);

printf("#fn C()=");
printPoly(p3);

Ln 121, Col 1 100% Windows (CRLF) ANSI

EPENDABLE SOFTWARE
LABORATORY

Procedural Programming - SASD

« SASD (Structured Analysis and Structured Design)
— Atraditional software development methodology for procedural programs

— Structural modeling in Top-Down Divide & Conquer manner
» Divide large, complex problems into smaller, more easily handled ones.

— Functional view of the problem using DFD (Data Flow Diagram)
— Control functionalities using FSM (Finite State Machine)

Motor Command

Determine \ e
Obstacle A Enable - -
Loclai;ion a 3 ",a-‘: E:ug: Bie

. Trigger

Motor Command
Right Sensor Input
Determine

Tidk —mmm="" 7 Dust
’ Existence

1.6

Durst San Input
i Motor Command

Tick - Cleaner Command

A level 3 DFD for RVC Control

EPENDABLE SOFTWARE
LABORATORY

K

KONKUK
UNIVERSITY

KONKUK
UNIVERSITY

An SASD Example - RVC Control

DFD Level 0

Direction
Front Sensor Input
Left Sensorinput
Right Sensor Input
Dust Sensor Input

RVC

Sensor
Control

Cleaner

Structured Analysis

DFD Level 3

Motor Command
Determine
Obstade
Location
1.5

Motor Command

Determine
Dust
Existence

]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.6 1
1

Motor Command

Cleaner Command

Controller

Structured Chart

Obstacle Location

Dust Existence

Structured Design

Trigger

.\‘

Determine Determine Enable
Obstacle Location Dust Existence Disable

Trigger

Front Sensor Right Sensor Dust Sensor
Interface Interface Interface

Move Forward | I Turn Left | Turn Right |

EPENDABLE SOFTWARE
LABORATORY

B T ——

KU oo
Object-Oriented Programming

A program is organized with objects.

— Focusing on objects and their communications.

* Object : consisting of data and operations (functions)

« Object communication : an object calls an operation of other objects with its data
— Providing system functionalities through object communications

» No explicit data flow

« Only communication sequences among objects

———

Class BankAccount {
private:
float balance;
-balance: float float interestYTD;

-interestYTD: float { char”owner; i
data | _gwner: char | int account_number; !

BankAccount

-account_number: int public:
void Deposit (float amount) {...}

float WithDraw (float amount) {...}
bool Transfer (BankAccount to, float amount) {...}

+MakeDeposit(amount: float): void
operation | +WithDraw(amount: float): flaot
+Transfer(to: BankAccount, amount: float): bool

[} DePenDABLE SOFTWARE 9
) LABORATORY

B

Object-Oriented Program

EPENDABLE SOFTWARE
LABORATORY

| Factorials java - Windows 023 — O

D@ BIE MU4Q =W SSTM)
hmport java.util.Scanner;

public class Factorials {
static int fac;

public static int recursiveFactorial(int n) {
if (n == 0) return 1;
else return n*recursiveFactorial(n-1);

}

public static void main(String[] args) {
while(true) {
System.out.printIn("H| A&} 1A} SHE factorial 242 YLHSHM|E.);
Scanner keyboard = new Scanner(System.in);
if(keyboard.hasNextInt() {
fac= keyboard.nextInt();

lelse {
System.out.printin("& 2 YHYLICH Z2JH 2 Z=TLCLY);
break;
}
System.out.print(fac + "l = ");
ifffac == 0) {
System.out.println("0! = 1");
lelse {
inti = fac;
while(i = 1) {
System.out.print(i + "*");
i
}
System.out.println("1 = " + recursiveFactorial(fac) + "#n");
}

Ln 1, Col 1 100% Windows (CRLF) UTF-8

10

Object-Oriented Programming - OOAD

« OOAD (Object-Oriented Analysis and Design)
— A software development methodology for Object-Oriented programs
— OOA + 00D

* Object-Oriented Analysis (OOA)
— Discover the domain concepts/objects (the objects of the problem domain)

* Object-Oriented Design (OOD)

— Define software objects (static)
— Define how they collaborate to fulfill the requirements (dynamic)

KONKUK
UNIVERSITY

11

KU KONKUK
UNIVERSITY

An OOAD Example - Dice Game

Define domain Define interaction Define design class
Define use cases : .
model diagrams diagrams
------------------------------------ 00 sl] 0] 1 R

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.

play() roll()

Domain Model Design Class Diagram

i - If the dice’s face value totals seven, MY '1 i
| player wins; otherwise, player loses. MM l i
i] i
1 |) 1
. — e -+ 5
i I = L :) i
R I—ﬂ— E: ‘1 "1 i
5) \ { :
| | : o T e |
5 Player B Rolls 2| Die i . i
i name faceValue E i E
| I 2 o | . i
i o E i _ DiceGame | | Die E
] 1 P die1 : Die . 1 2 faceValue : int i
i — Lo die2 : Die ' i
: DiceGame 1 indkicias E | f getFaceValue() : int E

DEPENDABLE SOFTWARE

Software Process Model

« Software (Development) Process models

— Defining a distinct set of activities, actions, tasks, milestones, and work products
that are required to engineer high-quality software, systematically.

— Defining Who is doing What, When to do it, How to reach a certain goal.
— =SDLC (Software Development Life-Cycle) model

<1960s ~ 2000s > < 2000s ~ Now >
Waterfall Model """ Application targets
Incremental Model A Waterfall Model : tailored for
N * Application targets
Evolutionary Model =
T, O NN A Application targets
Component_Based Development hhhhhhhhhhhhhhhh "' ..
e ————— ~# Iterative Model : tailored for
Iterative Model (agile)y - T e <" Application targets

(¥ DEPENDABLE SOFTWARE 13
N LABORATORY

Waterfall Model

« Aclassic software development life-cycle (SDLC) model
— Suggests a systematic and sequential approach to software development

— Useful in situations where
» Requirements are fixed early.
» Work can/should proceed to completion in a linear manner.

r Requirement Analysis
r System Design e
r Implementation e
-
r System Testing
C System Deployment

System Maintenance

R

14

Iterative Model - Agile

« Agile development is an umbrella term a group of methodologies
weighting rapid prototyping and rapid development experiences.

— Lightweight in terms of documentation and process specification
— Example: XP(eXtreme Programming) , D D(Test Driven Development)

* Agile methods attributes Requirements Analysis & Design

Implementation

— Ilterative (several cycles)

Planning

— Incremental (not delivering the product at once) ; Deployment

Initial

— Actively involve users to establish requirements """ ‘ ’
Evaluation
Testing

« Agile Manifesto
— Individual processes and tools
— Working software documentation
— Customer collaboration contract negotiation
— Responding to change following a plan

."D EEEEEEEEE SOFTWARE 15

KU KONKUK
UNIVERSITY

lterative Model - UP

THE RATIONAL

UNIFIED PROCESS
- Rational Unified Process (RUP) or UP AN INTRODUCTION

Tuiro Eprrion

— A Software development approach that is
* |terative (Incremental, Evolutionary)
— Each iteration includes a small waterfall cycle.
» Risk-driven / Client-driven / Architecture-centric
* Use-case-driven

— A Well-defined and well-structured software engineering process
* 4 Phases and 9 Disciplines

— A de-facto industry standard for developing OO software

development cycle
AL
~ . . N
iteration phase
(_/\ A
4 B
inc. elalboration construcition transition
A A A
milestone release increment final production
N . . release
An iteration end-point A stable executable subset The difference (delta)
when some significant of the final product. The betweenthe releases At this point, the system

EPENDABLE SOFTWARE

decisionor evaluation end of each iteration is a of 2 subsequent is released for
occurs. minor release. iterations. production use. 16
LABORATORY

conceptual | [
classes in | [
the [
domain |

inspire the
names of
some
software |
classes in |
the design \

\|

Sample Unified Process Artifact Relationships

Domain Model

‘ ProductCatalog

T | .
| Sal
| S | captured-on | Register ‘ e
dateTime |1 A e | |
'Y

domain concepts

Use-Case Model

K KONKUK
UNIVERSITY

Domain Model

Use-Case Model
(+System Sequence Diagram)

Sequence Diagrams

.o : System | |
I ' Process Sale ‘ Cashier i
- e | 1 make :
e L use 1. Customer i i NewSale _ .
ok By | case arrives Sysdam !
Cashier N —— | names 2 Cash’ilell' events : enterltem :
~ K > ' > | (id, quantity)
o makes new — |
A, TS T | sale. 1 [
N) | I S .
— |3 ... ! l
Use Case Diagrams Use Case Text System Sequence Diagrams
.__—___I D . e —— —
use-case Design Model E
realization with “p . = '
mlteracf;on Register | : ProductCatalog
diagrams = — ==
" |
makeNewSale | Il '
L __create _____________ hi__:Sale
| - | B
enterltem(id, quantity) _ : : 1
= desc = getDescription(id) I !
| 1 i
| addLineltem(desc, quantity) — oL |
| 1
> | |_._J |
T I |
" the design
Reaistar - /' classes
egute ProductCatalog A Giccovered
1 o - while designing
; . | S | UCRs can be
I catalo . P ized i
makeNewsale() 9 | getDescription(...) : ProductDescription i summarized in

enterltem(...)

class diagrams |

Class Diagram

EPENDABLE SOFTWARE
LABORATORY

OO0 Implementation '/

I(UNIVERSITY

EPENDABLE SOFTWARE 1 8
LABORATORY

K KONKUK
UNIVERSITY

Text and Contents

CONTENTS AT A GLANCE

PART | INTRODUCTION

1 Object-Oriented Analysis and Design 3
Iterative, Evolutionary, and Agile 17
Case Studies 41

ART Il INCEPTION
Inception is Not the Requirements Phase 47
Evolutionary Requirements 53

Use Cases 61
r I ‘, I '. Other Requirements 101
AND PA ERNS PART lll ELABORATION ITERATION 1 — BASICS
8 Iteration 1—Basics 123
9 Domain Models 131

" . 10 System Sequence Diagrams 173 OOAD
An Introduction to Object-Oriented Analysis and Design 1 Operation Contracts 181
1 12 Requirements to Design—Iteratively 195
and m mw 13 Logical Architecture and UML Package Diagrams 197
14 On to Object Design 213
15 UML Interaction Diagrams 221
16 UML Class Diagrams 249
17 GRASP: Designing Objects with Responsibilities 271
18 Object Design Examples with GRASP 321
19 Designing for Visibility 363
20 Mapping Designs to Code 369
21 Test-Driven Development and Refactoring 385
22 UML Tools and UML as Blueprint 395

~N ;oo g

PART IV ELABORATION ITERATION 2 — MORE PATTERNS

23 Iteration 2—More Patterns 401

24 Quick Analysis Update 407

25 GRASP: More Objects with Responsibilities 413
26 Applying GoF Design Patterns 435 3

PART V ELABORATION ITERATION 3 — INTERMEDIATE TOPICS DESIgI’l Patterns
27 Iteration 3—Intermediate Topics 475

28 UML Activity Diagrams and Modeling 477

29 UML State Machine Diagrams and Modeling 485

30 Relating Use Cases 493
3 Domain Model Refinement 501
a2 More SSDs and Contracts 535

33 Architectural Analysis 541 Architecture Style
Pl s il me whach 5 e best book o mtroduce them to the world of OO0 dewgn 34 Logical Architecture Refinement 559
Bt e | et i L Aplymig LW and! Paffen hus been my areesened chose 35 Package Design 579
~Martin Fowler, authoe of UM Drstilee! anal Refovicring 36 More Object Design with GoF Patterns 587
(" !i ‘ I { . I ‘ I{ 1' \ \ 37 Eiilg‘rsngla Per'sisteréc:_':Fl'amewor}E}with Patterns 621
§ | Fi B as] eployment and Component Diagrams 651 H S
5 5 i 39 Documenting Architecture: UML & the N+1 View Model 655 Architecture Descrlptlon

Foreward by Phaippe Kruchten

PART VI SpecIAL ToPICS
40 More on Iterative Development and Agile Project Management 673

EPENDABLE SOFTWARE 1 9
LABORATORY

Part 1: Introduction

* Chapter 1. Object-Oriented Analysis and Design
* Chapter 2. lterative, Evolutionary, and Agile
* Chapter 3. Case Studies

Chapter 1.
Object-Oriented Analysis and Design

Object-Oriented Analysis and Design

* Object-Oriented Analysis (OOA)
— Discover the domain concepts/objects (the objects of the problem domain)

* Object-Oriented Design (OOD)
— Define software objects (static)
— Define how they collaborate to fulfill the requirements (dynamic)

22

An OOAD Example - Dice Game

Define use cases
model

Define domain

Define interaction
diagrams

Define design class
diagrams

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.
- If the dice’s face value totals seven,
player wins; otherwise, player loses.

Player 5 Rolls 2 o
name faceValue
1 | .
Plays
1
DiceGame |1 Includes

Domain Model

DEPENDABLE SOFTWARE

KU

KONKUK
UNIVERSITY

play() roll()

Design Class Diagram

E D,u.Gw rl\ E Dil. &u‘ 'b“_
i [| D.
i lawl) \ ;

1 Q—M—‘—’ \

i | :

i . e\ () > :

: ;ME&‘NA!-Q—& \

:)

1 1)

i — ca\) . —»,
......... I . 1

] ‘ '

1 L L L

i DiceGame Die

! die1 : Die | 1 2 faceValue : int

] die2 : Die '

i I getFaceValue() : int

UML

* “The Unified Modeling Language (UML) is a visual language for specifying,

constructing and documenting the artifacts of systems.”

« 3 ways to apply (use) UML
Sketch

Conceptual perspective

Informal and incomplete diagrams are created to explore difficult parts of the problem or

solution space. — Intercommunication medium

Blueprint

Specification perspective
Relatively detailed design diagrams are used for code generation.

Programming language

Implementation perspective
Complete executable specification of a software system in UML
— Executable code will be automatically generated.
— Still under development in terms of theory, tool robustness and usability.

24

What the UML is Not?

« UML is not an Object-Oriented analysis and design process.
— UML is not a systematic way to develop software systems.

« UML will not teach you an Object-Oriented way of thinking.
— It will not tell you how to design object structures or behaviors.
— It will not tell you whether your design is good or bad.

EPENDABLE SOFTWARE

25

I(UNIVERSITY

EPENDABLE SOFTWARE 2 6
LABORATORY

Chapter 2.
Iterative, Evolutionary, and Agile

Software Development Process and the UF

« Software development process
— A systematic approach to building, deploying and possibly maintaining software

« Unified Process (UP): a popular iterative software development process for
building object-oriented systems
— Ilterative with fixed-length iterations (mini waterfalls of about 3 weeks)
- Inspired from Agile (i.e., opposite from waterfall)

— Flexible (can be combined with practices from other OO processes)
— A de-facto industry standard for developing OO software

I DEPENDABLE SOFTWARE 2 8
BOR,

R

Risk-Driven and Client-Driven Iterative Planning

 The UP encourages a combination of risk-driven and client-driven
iterative planning.
— To identify and drive down the high risks, and
— To build visible features that clients care most about.

» Risk-driven iterative development includes more specifically the practice of
architecture-centric iterative development.

— Early iterations focus on building, testing, and stabilizing the core architecture.

rtl2i3fafs . [[[[[[[[T [T T [[20]
AN -
\

-_—

~ T ——
N T T s —

\ = -_

N TR RS e T~
N e T T T -

Imagine this will A A e
ultimately be a 20-
iteration project.

software
software

In evolutionary iterative
development, the
requirements evolve
over a set of the early
iterations, through a
series of requirements
workshops (for
example). Perhaps
after four iterations and
workshops, 90% of the
requirements are o
defined and refined. 20% , 30% |
Nevertheless, only 2% : 5% |1 8%

10% of the software is Iteration 1 ; Iteration 2 ; Iteration 3 ; Iteration 4 ; lteration 5

DEPENDABLE SOFTWARE built. /' - - i — L H 29
Y LABORATORY »~ a3-week iteration S~
7 -

requirements >‘-n\
Y
requirements}'

90% 90%

50%

20%

10% | |

R

The UP Practices

 The central idea to UP practices :

A short timeboxed iterative, evolutionary and adaptive development

« Additional best practices and key concepts:

Tackle high-risk and high-value issues in early iterations (- Risk-driven, Client-driven)
Continuously engage users for evaluation and feedback (- client-driven)

Build a cohesive, core architecture in early iterations (- Architecture-centric)
Continuously verify quality; test early, often, and realistically

Apply use cases where appropriate

Do some visual modeling (with the UML)

Carefully manage requirements (configuration management)

e 30

The UP Phases

A UP project organizes the work and iterations across 4 major phases:
1. Inception : approximate vision, business case, scope, vague cost estimates

2. Elaboration : refined vision, iterative implementation of the core architecture,
resolution of high risks, identification of most requirements and scope, more
realistic estimates

3. Construction : iterative implementation of the remaining lower risk and easier
elements, and preparation for deployment

4. Transition : beta tests, deployment

development cycle
A
r , _ ™
iteration phase
r/\ A
s A
inc. elaporatjon construcition transition
A T T
milestone release increment final production
L _ 4 release
An iteration end-point A stable executable subset The difference(delta) _ _
when some significant of the final product. The between the releases At this point, the system
decision or evaluation end of each iterationis a of 2 subsequent is released for
occurs. minor release. iterations. production use.

() DEerPENDABLE SOFTWARE 31
u LABORATORY

The UP Disciplines

A four-week iteration (for example).

A mini-project that includes work in most Note that
disciplines, ending in a stable executable. although an
. iteration includes
= ; [N work in most
Up Dt'j'mf’ ;-’-_ disciplines, the
Isciplines 5 relative effort and
S _ i ‘| emphasis change
4 Business Modeling : oveﬁ time :
Focus ‘ P .y O | _ |
of this Requirements ——— — — 1 — This example is
book ‘ Seci P o | I e N S suggestive, not
, esign ——— g g ——— o i
_ J — —_— literal.
Implementation —————"""-5
Test
Deployment _7__ S S —
Configuration & Change — 1 T T ——
Management | ————— : ' |
Project Management —— . —
Environment
lterations

(¥ DEPENDABLE SOFTWARE 32
| LABORATORY

Relationship Between the Disciplines and

Phases

« The relative effort in disciplines shifts to across the phases.

Sample
UP Disciplines

Business Modeling
Requirements
Design

Implementation

— Atrtifact : A general term for any work product

incep-

tion

elaboration

construction

transi-

tion

A

The relative effort in
disciplines shifts
across the phases.

This example is
suggestive, not literal.

« Example: code, web graphics, database schema, text documents, diagrams, models
and so on

— Discipline : A set of activities and related artifacts in one subject area

« Example: the activities within requirements analysis

DEPENDABLE SOFTWARE
LABORATORY

33

The UP Development Case

 Development Case:
— An artifact in the Environment discipline
— Documenting the choice of practices and UP artifacts for a project

— For example, the development case for the NextGen POS case study :

Discipline Practice Artifact Incep. | Elab. | Const. | Trans.
Iteration- I1 E1.En | C1..Cn | T1..T2
Business agile modeling Domain Model s
Modeling req. workshop
Requirements [|req. workshop Use-Case Model S
vision box exercise Vision S r
dot voting Supplementary S r
Specification
Glossary S r
Design agile modeling Design Model s r
test-driven dev. SW Architecture S
Document
Data Model S r
Implementa- |[test-driven dev.
tion pair programming
continuous integration
coding standards
Project agile PM
Management |daily Scrum meeting

| ' DEPENDABLE SOFTWARE
= LABORATORY

You Know You Didn’t Understand Iterative KU s
Development or the UP When ...

« Some signs that you have not understood what it means to adopt iterative
development and the UP in a healthy agile spirit.

« You try to define most of the requirements before starting design or implementation.
Similarly, you try to define most of the design before starting implementation; you try to
fully define and commit to an architecture before iterative programming and testing.

» You think that inception = requirements, elaboration = design, and construction =
implementation (that is, superimposing the waterfall on the UP).

e You think that the purpose of elaboration is to fully and carefully define models, which are
translated into code during construction.

» You believe that a suitable iteration length is three months long, rather than three weeks
long.

» You try to plan a project in detail from start to finish; you try to speculatively predict all the
iterations, and what should happen in each one.

EPENDABLE SOFTWARE 35
LABORATORY

I(UNIVERSITY

EPENDABLE SOFTWARE 3 6
LABORATORY

Chapter 3.
Case Studies

| 5 Ui
What is Covered in the Case Studies?

» Generally, applications include
— Ul elements,
— Core application logic,
— OS, database access and collaboration with external SW/HW components.

[54 1 he FOO Stove (s) Layered Architecture
memiD | P
= Quantity |_ . minor focus
nierrace >‘
= explore how to connect to
Enter ltem fawl S0 on other layers
Our concern !!!
_ A
licati T B TR N primary focus of
applitancn # " case study
logic and (Sale Payment ; >
= = N\
domain object g il explore how to
layer S i Y design objects
— secondary
‘ focus
technical . gt bameiacad .
services layer 9 ERSEENEETRE e explore how
S | to design
objects

EPENDABLE SOFTWARE 38
LABORATORY

K KONKUK
UNIVERSITY

Case One: The NextGen POS System

The first case study is the NextGen point-of-sale (POS) system. In this apparently straightforward
problem domain, we shall see that there are interesting requirement and design problems to
solve. In addition, it's a real problemgroups really do develop POS systems with object
technologies.

A POS system is a computerized application used (in part) to record sales and handle payments;
it is typically used in a retail store. It includes hardware components such as a computer and bar
code scanner, and software to run the system. It interfaces to various service applications, such
as a third-party tax calculator and inventory control. These systems must be relatively fault-
tolerant; that is, even if remote services are temporarily unavailable (such as the inventory
systemn), they must still be capable of capturing sales and handling at least cash payments (so
that the business is not crippled).

A POS system increasingly must support multiple and varied client-side terminals and interfaces.
These include a thin-client Web browser terminal, a regular personal computer with something
like a Java Swing graphical user interface, touch screen input, wireless PDAs, and so forth.

Furthermore, we are creating a commercial POS system that we will sell to different clients with
disparate needs in terms of business rule processing. Each client will desire a unique set of logic to
execute at certain predictable points in scenarios of using the system, such as when a new sale is
initiated or when a new line item is added. Therefore, we will need a mechanism to provide this
flexibility and customization.

Using an iterative development strategy, we are going to proceed through requirements, object-
oriented analysis, design, and implementation.

EPENDABLE SOFTWARE 3 9
LABORATORY

I(UNIVERSITY

EPENDABLE SOFTWARE 40
LABORATORY

Part 2: Inception

« Chapter 4. Inception is Not the Requirements Phase
* Chapter 5. Evolutionary Requirements

 Chapter 6. Use Cases

» Chapter 7. Other Requirements

Chapter 4.
Inception is Not the Requirements
Phase

What is Inception?

* Most projects require a short initial step to question about:
— What is the vision and business case for this project?
— Feasible?
— Buy and/or build?
— Rough unreliable range of cost: Is it $10K-100K or in the millions?
— Should we proceed or stop?

* Inception should be short.
— One week for most projects
— Most requirements analysis occurs during the elaboration phase, not inception.

43

B

Artifacts Start in Inception

Artifactl 1

Comment

Vision and
Business Case

Describes the high-level goals and constraints, the business case, and
provides an executive summary.

Use-Case Model

Describes the functional requirements. During inception, the names of most
use cases will be identified, and perhaps 10% of the use cases will be
analyzed in detail.

Supplementary
Specification

Describes other requirements, mostly non-functional. During inception, it is
useful to have some idea of the key non-functional requirements that have
will have a major impact on the architecture.

Glossary

Key domain terminology, and data dictionary.

Risk List & Risk
Management Plan

Describes the risks (business, technical, resource, schedule) and ideas for
their mitigation or response.

Prototypes and
proof-of-concepts

To clarify the vision, and validate technical ideas.

Iteration Plan

Describes what to do in the first elaboration iteration.

Phase Plan & Low-precision guess for elaboration phase duration and effort. Tools, people,
Software education, and other resources.

Development Plan

Deve-.l::rpment A description of the customized UP steps and artifacts for this project. In the
Case UP, one always customizes it for the project.

[]1- These artifacts are partially completed in this phase. They will be iteratively refined in subsequent iterations.
Name capitalization implies an officially named UP artifact.

EPENDABLE SOFTWARE

LABORATORY

K

KONKUK
UNIVERSITY

44

How Much UML During Inception?

« The purpose of inception is to collect just enough information to
— establish a common vision,
— decide if moving forward is feasible, and
— decide if the project is worth serious investigation in the elaboration phase.

e Much UML diagramming is not required.

— Inception has more focus on understanding the basic scope and 10% of the
requirements, expressed mostly in text forms.

— In practice, most UML diagramming will occur in the next phase elaboration.

45

I(UNIVERSITY

EPENDABLE SOFTWARE 46
LABORATORY

Chapter 5.
Evolutionary Requirements

Requirements

 Requirements
— Capabilities and conditions to which the system must conform

 Requirement analysis is

— to find, communicate and organize what is really needed, in a form that is clear
both to clients and team members.

* Inthe UP, requirements are analyzed iteratively and skillfully.

« The UP encourages skillful elicitation (finding) via techniques such as
— writing use cases with customers,
— requirements workshops that include both developers and customers,
— a demo of the results of each iteration to the customers, to solicit feedback.

1 .'D EEEEEEEEE SOFTWARE 48

Types and Categories of Requirements

* In the UP, requirements are categorized according to the FURPS+ model

[R. Grady: “Practical Software Metrics for Project Management and Process Improvement”, Prentice-Hall Inc, 1992.]

Functional : features, capabilities, security

Usability : human factors, help, documentation

Reliability : frequency of failure, recoverability, predictability

Performance : response times, throughput, accuracy, availability, resource usage
Supportability : adaptability, maintainability, internationalization, configurability

The “+” in FURPS+ indicates ancillary and sub-factors such as:
« Implementation : resource limitations, languages and tools, hardware, ...
» Interface : constraints imposed by interfacing with external systems
« Operations : system management in its operational setting
» Packaging : for example a physical box
* Legal: Licensing and so forth

« ltis helpful to use FURPS+ categories as a checklist for requirements
coverage.

e 49

Quality Attributes/Requirements

* Quality attributes/requirements:
— Usability + Reliability + Performance + Supportability
— Also called “Non-functional requirements”

« The quality attributes often have a strong influence on the architecture of a
system.

50

_ _
How Requirements are Organized

 The UP offers several requirements artifacts. (But, they are all optional.)

— Use-Case Model

» Aset of typical scenarios of using a system

* These are primarily for functional (behavioral) requirements.
— Supplementary Specification

« Basically, everything is not in the use cases.

» This artifact is primarily for all non-functional requirements, such as performance or
licensing.

» ltis also the place to record functional features not expressed (or expressible) as use
cases; for example, a report generation.

— Glossary

|t defines noteworthy terms.
— Vision

» A short executive overview document for quickly learning the project's big ideas.
— Business Rules

|t typically describe requirements or policies that transcend one software project.

DEPENDABLE SOFTWARE 51
LABORATORY

I(UNIVERSITY

EPENDABLE SOFTWARE 5 2
LABORATORY

Chapter 6.
Use Cases

| 0 st
Use Cases

« Use cases are text stories of some actors using a system to meet goals.
— A mechanism to capture (analyzes) requirements

— An example (Brief format).

* Process Sale: A customer arrives at a checkout with items to purchase. The cashier
uses the POS system to record each purchased item. The system presents a running
total and line-item details. The customer enters payment information, which the system
validates and records. The system updates inventory. The customer receives a receipt
from the system and then leaves with the items.

— Use case is not a diagram, but a text.

Use Case Section Comment

Use Case Name Start with a verb.

Scope The system under design.

Level "user-goal” or "subfunction”

Primary Actor Calls on the system to deliver its services.

Stakeholders and Interests Who cares about this use case, and what do they want?

Preconditions What must be true on start, and worth telling the reader?

Success Guarantee What must be true on successful completion, and worth
telling the reader.

Main Success Scenario A typical, unconditional happy path scenario of success.

Extensions Alternate scenarios of success or failure.

Special Requirements Related non-functional requirements.

Technology and Data Varying I/O methods and data formats.

Variations List

Frequency of Occurrence Influences investigation, testing, and timing of
implementation.

Miscellaneous Such as open issues.
lg}EPENDABLE SOFTWARE 54

LABORATORY

Use Case Diagram

« Use case diagram illustrates the name of use cases and actors, and the
relationships between them.

— System context diagram

— A summary of all use cases Use case

system boundary

NextGen POS

_ - communication

L : Process Sale alternate
A notation for
be
Actor G Payment systgm actor
Authorization o .~}
- Service g
Something with behavior, such as a person, i . Handie Retma
- - i aaciors L]
computer system, or organization agtor oo ik Calatie
- Primary Actor : has user goals fulfilled «actors
. . Cash In © Accounting
through using services of the SuD (system System
Under Discussion) , €.0., cashier Mg
4 i wactors

- Supporting Actor : provides a service to the System

SuD, e.g., payment authorization service (vanage Secarty) .
- Offstage Actor : has an interest in the behavior g .

. . yalem Manage Users
of the use case, but is not primary or Administrator e
supporting, e.g., tax agency

-

i

D
(¥ DerenDABLE SOFTWARE

I LABORATORY

S

55

Are Use Cases Functional Requirements~

* Yes, Use Cases are requirements, primarily functional (behavioral)
requirements.
— “F” (functional or behavioral) in terms of FURPS+ requirements types
— Can also be used for other types.

KU v

56

L[t
Three Common Use Case Formats

* PBrief:

— Terse one paragraph summary, usually the main success scenario or a happy
path

« Casual:
— Informal paragraph format.
— Multiple paragraphs that cover various scenarios.

Handle Returns

Main Success Scenario: A customer arrives at a checkout with items to return. The cashier
uses the POS system to record each returned item ...

Alternate Scenarios:

If the customer paid by credit, and the reimbursement transaction to their credit account is
rejected, inform the customer and pay them with cash.

If the item identifier is not found in the system, notify the Cashier and suggest manual entry
of the identifier code (perhaps it is corrupted).

If the system detects failure to communicate with the external accounting system, ...

EPENDABLE SOFTWARE 5 7
y LABORATORY

B

 Fully Dressed :

— Includes all steps, variations and supporting sections (e.g., preconditions)

EPENDABLE SOFTWARE
LABORATORY

Use Case Section

Comment

Use Case Name

Start with a verb.

Scope

The system under design.

Level

"user-goal” or "subfunction”

Primary Actor

Calls on the system to deliver its services.

Stakeholders and Interests

Who cares about this use case, and what do they want?

Preconditions

What must be true on start, and worth telling the reader?

Success Guarantee

What must be true on successful completion, and worth
telling the reader.

Main Success Scenario

A typical, unconditional happy path scenario of success.

Extensions

Alternate scenarios of success or failure.

Special Requirements

Related non-functional requirements.

Technology and Data
Variations List

Varying I/O methods and data formats.

Frequency of Occurrence

Influences investigation, testing, and timing of
implementation.

Miscellaneous

Such as open issues.

K

KONKUK
UNIVERSITY

58

B

Example: Process Sale, Fully Dressed Styie

EPENDABLE SOFTWARE
LABORATORY

Use Case UC1: Process Sale

Scope: NextGen POS application

Level: user goal

Primary Actor: Cashier

Stakeholders and Interests:

— Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short-
ages are deducted from his/her salary.

— Salesperson: Wants sales commissions updated.

— Customer: Wants purchase and fast service with minimal effort. Wants easily visible
display of entered items and prices. Wants proof of purchase to support returns.

— Company: Wants to accurately record transactions and satisfy customer interests.
Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo-
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

— Manager: Wants to be able to quickly perform override operations, and easily debug
Cashier problems.

— Government Tax Agencies: Want to collect tax from every sale. May be multiple agen-
cies, such as national, state, and county.

— Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Payment authorization approvals are recorded.

59

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.

3. Cashier enters item identifier.

Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment information to the external
Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, Manager requests an override operation:
1. System enters Manager-authorized mode.
2. Manager or Cashier performs one Manager-mode operation. e.g., cash balance
change, resume a suspended sale on another register, void a sale, etc.
3. System reverts to Cashier-authorized mode.
*b. At any time, System fails:
To support recovery and correct accounting, ensure all transaction sensitive state
and events can be recovered from any step of the scenario.
1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.
2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean
state.
2. Cashier starts a new sale.
1a. Customer or Manager indicate to resume a suspended sale.
1. Cashier performs resume operation, and enters the ID to retrieve the sale.
2. System displays the state of the resumed sale, with subtotal.
2a. Sale not found.
1. System signals error to the Cashier.
2. Cashier probably starts new sale and re-enters all items.

2-4a. Customer tells Cashier they have a tax-exempt status (e.g., seniors, native peo-
ples)
1. Cashier verifies, and then enters tax-exempt status code.
2. System records status (which it will use during tax calculations)
3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:
2a. There is a human-readable item ID (e.g., a numeric UPC):
1. Cashier manually enters the item ID.
2. System displays description and price.
2a. Invalid item ID: System signals error. Cashier tries alternate method.
2b. There is no item ID, but there is a price on the tag:
1. Cashier asks Manager to perform an override operation.

4. System records sale line item and presents item description, price, and running total.

3. Cashier continues with sale (probably entering more items or handling payment).

2. Managers performs override.
3. Cashier indicates manual price entry, enters price, and requests standard
taxation for this amount (because there is no product information, the tax
engine can't otherwise deduce how to tax it)
2¢. Cashier performs Find Product Help to obtain true item ID and price.
2d. Otherwise, Cashier asks an employee for the true item ID or price, and does
either manual ID or manual price entry (see above).
3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.
3c. Iltem requires manual category and price entry (such as flowers or cards with a price
on them):
1, Cashier enters special manual category code, plus the price.
3-6a: Customer asks Cashier to remove (i.e., void) an item from the purchase:
This is only legal if the item value is less than the void limit for Cashiers, otherwise a
Manager override is needed.
1. Cashier enters item identifier for removal from sale.
2. System removes item and displays updated running total.
2a. ltem price exceeds void limit for Cashiers:
1. System signals error, and suggests Manager override.
2. Cashier requests Manager override, gets it, and repeats operation.
3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.
3-6¢. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS register.
2. System presents a “suspend receipt” that includes the line items, and a sale ID
used to retrieve and resume the sale.
4a. The system supplied item price is not wanted (e.g., Customer complained about
something and is offered a lower price):
1. Cashier requests approval from Manager.
2. Manager performs override operation.
3. Cashier enters manual override price.
4. System presents new price.
5a. System detects failure to communicate with external tax calculation system service:
1. System restarts the service on the POS node, and continues.
1a. System detects that the service does not restart.
1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.
5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.
5¢c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.
Ba. Customer says they intended to pay by cash but don’t have enough cash:
1. Cashier asks for alternate payment method.
1a. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

60

—

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.
7b. Paying by credit:
1. Customer enters their credit account information.
2. System displays their payment for verification.
3. Cashier confirms.
3a. Cashier cancels payment step:
1. System reverts to “item entry” mode.
4. System sends payment authorization request to an external Payment Authoriza-
tion Service System, and requests payment approval.
4a. System detects failure to collaborate with external system:
1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.
5. System receives payment approval, signals approval to Cashier, and releases
cash drawer (to insert signed credit payment receipt).
5a. System receives payment denial:
1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.
5b. Timeout waiting for response.
1. System signals timeout to Cashier.
2. Cashier may try again, or ask Customer for alternate payment.
6. System records the credit payment, which includes the payment approval.
7. System presents credit payment signature input mechanism.
8. Cashier asks Customer for a credit payment signature. Customer enters signa-
ture.

9. If signature on paper receipt, Cashier places receipt in cash drawer and closes it.

7c. Paying by check...
7d. Paying by debit...
7e. Cashier cancels payment step:

1. System reverts to “item entry” mode.

7f. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.
9a. There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible):

1. Cashier requests gift receipt and System presents it.

9c. Printer out of paper.

1. If System can detect the fault, will signal the problem.

2. Cashier replaces paper.

3. Cashier requests another receipt.

K KONKUK
UNIVERSITY

Special Requirements: B
— Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.

— Credit authorization response within 30 seconds 90% of the 1ime_. _

— Somehow, we want robust recovery when access to remote services such the inven-
tory system is failing.

— Language internationalization on the text displayed.

— Pluggable business rules to be insertable at steps 3 and 7.

Technology and Data Variations List:

*a. Manager override entered by swiping an override card through a card reader, or
entering an authorization code via the keyboard.

3a. Item identifier entered by bar code laser scanner (if bar code is present) or key-
board.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.

7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt. But within two years, we pre-
dict many customers will want digital signature capture.

Frequency of Occurrence: Could be nearly continuous.

Open Issues:

— What are the tax law variations?

— Explore the remote service recovery issue.

— What customization is needed for different businesses?

— Must a cashier take their cash drawer when they log out?)
— Can the customer directly use the card reader, or does the cashier have to do it?

61

Guideline: Write in an Essential Ul-Free Style

« Essential writing style is to express user intentions and system
responsibilities, rather than concrete actions.
— Concrete use cases are better avoided during early requirements analysis.

— For example: Manage Users use case

Essential Style Concrete Style
1. Administrator identities self. 1. Administrator enters ID and PW in dialog box.
2. System authenticates identity. 2. System authenticates Administrator.
3.... 3. System displays the “edit user” window.

4. ..

62

(¥ DEPENDABLE SOFTWARE
Y L ABORATORY

Guideline: Write Black-Box Use Cases =

« Don’t describe the internal working of the system, its components or
design.

— Define what the system does (analysis), rather than how it does it (design).

Black-box style Not

The system records the sale. The system writes the sale to a database.
...or (even worse):

The system generates a SQL INSERT
statement for the sale...

PENDABLE SOFTWARE 63
LABORATORY

Process: Evolutionary Requirements in lterati

Methods

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration- I1 El.En | C1..Cn | T1..T2
Business Modeling |Domain Model s
Requirements Use-Case Model S r
Vision S i
Supplementary Specification S r
Glossary S r
Design Design Model S r
SW Architecture Document S

KONKUK

7 UNIVERSITY

64

Case Study: Use Cases in the NextGen PC

« Use cases are developed and refined iteratively.

» Use Cases of the NextGen POS at the inception phase

Fully Dressed Casual Brief
Process Sale Process Rental Cash In
Handle Returns Analyze Sales Activity Cash Out
Manage Security Manage Users
Start Up
Shut Down
Manage System Tables

() DeeEnDABLE SOFTWARE 65
AT BORAT

I(UNIVERSITY

EPENDABLE SOFTWARE 66
LABORATORY

Chapter 7.
Other Requirements

e

Other Requirements Artifacts

Supplementary Specification

— Captures and identifies other kinds of requirements, such as
» reports, documentation, packaging, supportability, licensing, and so forth

Glossary
— Captures terms and definitions; a data dictionary

Vision
— Summarizes the “vision” of the project; an executive summary

Business Rules

— Capture long-living and spanning rules or policies (such as tax laws), that
transcend one particular application

IDEPENDABLE SOFTWARE 6 8

KU nomaen
Supplementary Specification

« Other requirements, information and constraints not easily captured in the
use cases or Glossary, including system-wide “URPS+” quality attributes.

« Elements of the Supplementary Specification include:

« FURPS+ requirementsfunctionality, usability, reliability, performance, and supportability
= reports

» hardware and software constraints (operating and networking systems, ...)
» development constraints (for example, process or development tools)

« other design and implementation constraints

» internationalization concerns (units, languages)

« documentation (user, installation, administration) and help

» licensing and other legal concerns

« packaging

« standards (technical, safety, quality)

« physical environment concerns (for example, heat or vibration)

» operational concerns (for example, how do errors get handled, or how often should backups
be done?)

« application-specific domain rules

« information in domains of interest (for example, what is the entire cycle of credit payment
handling?)

DEPENDABLE SOFTWARE 69
LABORATORY

Process: Evolutionary Requirements in Iterati &&=l
Methods

Discipline Artifact Incep. | Elab. | Const. Trans.
[teration=> I1 El..En| C1..Cn T1..T2
Business Domain Model s
Modeling
Requirements Use-Case Model 5 r
Vision 5 r
Supplementary S r
Specification
Glossary 5 r
Business Rules S r
Design Design Model 5 r
SW Architecture s
Document
Data Model s r

EPENDABLE SOFTWARE 70
LABORATORY

I(UNIVERSITY

EPENDABLE SOFTWARE 7 1
LABORATORY

Part 3: Elaboration - lteration 1 Basics

« Chapter 8. Iteration 1 Basics
 Chapter 9. Domain Models

« Chapter 10. System Sequence Diagram
 Chapter 11. Operation Contracts

« Chapter 12. Requirements to Design Iteratively

« Chapter 13. Logical Architecture and UML Package Diagrams
* Chapter 14. On to Object Design

« Chapter 15. UML Interaction Diagram

* Chapter 16. UML Class Diagram

« Chapter 17. GRASP: Designing Objects with Responsibilities

« Chapter 19. Designing for Visibility
* Chapter 20. Mapping Designs to Code

Chapter 8.
Iteration 1 Basics

What Happened in Inception?

* Inception is a short (only one week) sStep to elaboration including:

A short requirements workshop

Most actors, goals, and use cases named

Most use cases written in brief format (10~20% are written in fully dressed detail)
Most influential and risky requirements identified

Version one of the Vision and Supplementary Specification written
Risk list

Technical proof-of-concept prototypes and other investigations to explore the
technical feasibility of special requirements

User interface-oriented prototypes to clarify the vision of functional requirements

Recommendations on what components to buy/build/reuse, to be refined in
elaboration

High-level candidate architecture and components proposed
Plan for the first iteration
Candidate tools list

74

On to Elaboration

Elaboration is the initial series of iterations during which:
— The core, risky software architecture is programmed and tested.
— The majority of requirements are discovered and stabilized.
— The major risks are mitigated or retired.

KU

KONKUK
UNIVERSITY

75

Iteration 1 Requirements and Emphasis

Book Iterations vs. Real Project lterations

Iteration-1 of the case studies in this book is driven by learning goals rather than true
project goals. Therefore, iteration-1 is not architecture-centric or risk-driven. On a UP
project, we would tackle difficult, risky things first. But in the context of a book
helping people learn fundamental O0A/D and UML, we want to start with easier
topics.

 The NextGen POS example

— The requirements for the 1stiteration follow:
» Implement a basic, key scenario of the Process Sale use case: entering items and
receiving a cash payment.
« Implement a Start Up use case as necessary to support the initialization needs of the
iteration.

« Nothing fancy or complex is handled, just a simple happy path scenario, and the design
and implementation to support it.
« There is no collaboration with external services, such as a tax calculator or database.

» No complex pricing rules are applied.

| DEPENDABLE SOFTWARE 76
y LABORATORY

Implement Requirements Incrementally

* Incremental development for the same use case across iterations
— The requirements for the iteration-1 are subsets of the complete requirements or

use cases.
/ /) .
A use case or feature is
1 2 3 ‘ often too complex to
, | _ ! complete in one short
A [3 3 iteration.

™ Therefore, different parts
Use Case Use Case Use Case or scenarios must be
Process Sale Process Sale Process Sale allocated to different

G % ' % terations.

Use Case
Process Rentals

Logang 2

(¥ DEPENDABLE SOFTWARE 77
Y LABORATORY

KU KONKUK
UNIVERSITY

UP Artifacts Start in Elaboration

« These will not be completed in one iteration; rather will be refined over a
series of iterations.

\ Artifact Comment
Domain Model This is a visualization of the domain concepts; it is similar to a
static information model of the domain entities.
\ Design Model This is the set of diagrams that describes the logical design.

This includes software class diagrams, object interaction
diagrams, package diagrams, and so forth.

Software Architecture A learning aid that summarizes the key architectural issues and
Document their resolution in the design. It is a summary of the
outstanding design ideas and their motivation in the system.
Data Model This includes the database schemas, and the mapping
strategies between object and non-object representations.
Use-Case Storyboards, UL A description of the user interface, paths of navigation, usability
Prototypes models, and so forth.

EPENDABLE SOFTWARE 78
LABORATORY

I(UNIVERSITY

EPENDABLE SOFTWARE 79
LABORATORY

Chapter 9.
Domain Models

KU KONKUK
UNIVERSITY

Domain Model

« Domain model is a visual representation of conceptual classes or real-
situation objects in a domain.

The most important classic model in OO analysis
Can act as a source of inspiration for designing software objects and classes.

Visual dictionary of the noteworthy abstractions, domain vocabulary, and
information contents of the domain

Not represents software objects

 Domain model is illustrated with class diagrams

no operations

domain objects (or conceptual classes)
associations between conceptual classes
attributes of conceptual classes

« Domain model is a kind of a preliminary version of class diagram, if we are
well used to the application domain.

RE 81

Partial Domain Model for NextGen POS

[V DEPENDABLE SOFTWARE

B LABORATORY
4

concept Sales ltem
ordomain | O Lineltem Records-sale-of
object
qguantity 0..1
*
1.%
— Stocked-in
associlation wo Contained-in
1 1
Sale Store
attributes k' date address
time 0.1 name
1 1
Houses
Paid-by 1.%
1 Register
Captured-on
Payment]
amount

82

Domain Model is Not Software Objects

« A UP domain model is not of software objects such as:
Software classes (i.e., C++ or Java classes)

Elements representing artifacts related to the implementation of the system

| DEPENDABLE SOFTWARE
LABORATORY

(e.g., a database or a window)

Methods (operations)

Sale
Domain Model .
dateTime
. SalesDatabase
(©
>
Sale
R
2 date
time
print()

visualization of a real-world concept in L
_ the domain of interest

it is a not a picture of a software class

software artifact; not part k
of domain model

software class; not part
.. of domain model

83

Why Create a Domain Model?

« Two reasons to create a domain model:

1. Getting to know the domain during early elaboration iterations, understanding
the concepts involved and their relationships

2. Inspiring the software classes of the domain layer in the design model.
» This prevents software from being far away from the reality of the domain.

* lower representation gap : Use software class names in the domain layer inspired
from names in the domain model, with objects having domain-familiar information and
responsibilities.

."D EEEEEEEEE SOFTWARE 84
| T

KU nomaen
Lower Representation Gap

UP Domain Model
Stakeholder's view of the noteworthy conceptsin the domain.

k Sale
A Paymentin the DomainModel Payment 1 Pays-for 1
is a concept, but a Paymentin ? date
the Design Model is a software amount time
class. They are not the same ’
thing, but the former inspiredthe inspires
naming and definition of the objects
latter. and
This reduces the representational namesin
gap.

, Sale
This is one of the big ideas in Payment
objecttechnology. 1 1 | date: Date star
&d amount: Money Pays-for tTime: Time
getBalance(): Money getTotal(): Money
UP Design Model

The object-oriented developer has taken inspiration from the real world domain
in creating software classes.

Therefore, the representational gap between how stakeholders conceive the
domain, and its representationin software, has been lowered.

EPENDABLE SOFTWARE 85
LABORATORY

How to Create a Domain Model

« Same as the way of creating class diagrams.
1. Find conceptual classes and draw them in a UML class diagram
2. Add associations and attributes to conceptual classes

* |dentification of Noun Phrases

— ldentify the nouns and noun phrases in a textual description of the domain, and
consider them as candidate conceptual classes and attributes.

Process Sale use case

1. Customer arrives at a POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.

3. Cashier enters item identifier.

4, System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules. Register Item Store Sale

Cashier repeats steps 2-3 until indicates done.

5. System presents total with taxes calculated. i Sales .
4 [arn Cashier Customer Ledger
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment. _
_) h Pr
8. System logs the completed sale and sends sale and payment information to the external pCES ¢ Em‘d:'ld D 'DQLI:.II
Accounting (for accounting and commissions) and Inventory systems (to update aymen | alalog escnpuon

inventory).
9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

(¥ DEPENDABLE SOFTWARE 86
N LABORATORY

Is the Domain Model Correct?

« There is no such thing as a single correct domain model.
— All models are approximations of the domain we are attempting to understand.

 The domain model is a primary tool of understanding and communication
among a particular group.

— Correct << Useful

87

B

Process: Iterative and Evolutionary Domain

Modeling

The UP Domain Model is usually both started and completed in the

elaboration phase.

Discipline Artifact Incep.| Elab. | Const. | Trans.
Iteration=> I1 E1l..En|C1..Cn | T1..T2
Business Modeling | Domain Model 5
Requirements Use-Case Model (SSDs) 5 r
Vision s r
Supplementary 5 r
Specification
Glossary 5 r
Design Design Model S r
SW Architecture Document =
Data Model s r

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

88

Sample UP Artifact Relationships

(

Business
Modeling

\

DomainModel

Sale 1 1% Sales
Lineltem
date
quantity

conceptual classes— t
erms, concepts attribu
tes, associations

the domain objects, attribu
tes, and associations that
undergo state changes

-~

/

Require-
ments

Process Sale
1. Customer arrives
2

3: Eashier enters
item identifier. 4.

Use Case Text

Use-Case Model #

\

Operation: enterltem(...)

Post-conditions:

Operation Contracts

J

elaboration of

some termsin
the domain m

odel

Cashier: ...
Item ID:...

/

Glossary

-~

|
enterltem 1

. (itemlID, quantity) :
Design g

»
»

DesignModel
| : ProductCatalog | | : Sale |
1 1 1
1 1
1 1
| |
1 1
1 1
spec = getProductSpec(itemID) _': :
1 1
1 1
addLineltem(spec, quantity) : .;:
1 1
| |
1 1
1 1
! !

EPENDABLE SOFTWARE
LABORATORY

conceptual
classesin
the domain
inspirethe
names of
some
software
classesin
the design

K

KONKUK
UNIVERSITY

89

I(UNIVERSITY

EPENDABLE SOFTWARE 90
LABORATORY

Chapter 10.
System Sequence Diagram

KU KONKUK
UNIVERSITY

Sample UP Artifact Relationships

Domain Model

Sale 1 1.* Sales
Business Lineltem
Modeling date i
L quantity
ya Vision
Use-Case Model \
Process Sale
use 1.Customer
Cashier n‘;ar:Zs arrives ...
- 2.Cashier
} makes new
- sale.
3. .. 4 d Glossary
i parametersan
Require- Use Case Diagram Use Case Text return value details |5
ments
system —
events
% . System
Operation: : Cashier I Supplementa
enterltem(...) make — ppiementary
system NewSale() Specification
Post-conditions: operations
) . _ enterltem
U (id, quantity) >
1
Operation Contracts System Sequence DiagramS/

starting events to design fo/

Design Model
/ (: Register 9 : ProductCatalog : Sale \
| : |

enterltem

|

. . 1

Design (itemID, quantity) ’:
1

»

|
I
I
I
1 spec = getProductSpec(itemID) :
I I
I I
I I
I T

\ addLineltem(spec, quantity) /
I}EPENDABLE SOFTWARE 9 2
LABORATORY

h 4

KU v
System Sequence Diagram

« System sequence diagram (SSD)

— A picture that shows the events that external actors generate, their order, and
inter-system events, for one particular scenario of a use case.
« the external actors that interact directly with the system,
* the system (as a black box), and
« the system events that the actors generate

— In the sequence diagram notation
— Depict system behavior in terms of what the system does, not how it does it
— Used as input to object design — System operations

« Use cases describe how external actors interact with the software system
we are interested in creating.

— During this interaction, an actor generates system events to a system, usually
requesting some system operation to handle the event.

93

Applying UML: Sequence Diagrams

« The UML does not define something called ‘System Sequence Diagrams’.
— We use the general UML sequence diagram notation.

— The term ‘system’ in SSDs is used to emphasize the application of the UML
sequence diagram to systems viewed as black boxes.

— An SSD shows system events for one scenario of a use case.

x

Process Sale Scenario

with goods and/or services to purchase. |
2. Cashier starts a new sale. :
3. Cashier enters item identifier. :

4.System records sale line item and 0ttt

: Cashier System
|]
| makeNewSale >:

Simple cash-only Process Sale scenario: ! I
T I

. loop) [more items] I

1.Customer arrives at a POS checkout i enterltem(itemlID, quantity) >:
I

I

I

I

description, total

presents item description, price, and
running total.

I
| I
|]
: |

. - I

Cashier repeats steps 3-4 until indicates | |

done. ! endSale >:

5.System presents total with taxes : :

calculated. [) I

6.Cashier tells Customer the total, and :_<____________£°_ta_|ﬁ"ltr_‘t_a§e'_5 ______________ !

asks for payment.
7.Customer pays and System handles
payment.

() DEPENDABLE SOFTWARE |
| LABORATORY

KU KONKUK
UNIVERSITY

System Operation

« System operations

— Operations that the system as a black box component offers in its public
interface

— Show system events, which the SUD should have system operations to handle
the system events.

— System Interfaces: the entire set of system operations across all use cases

Process Sale Scenario
:System
: Caslhior ys'
: makeNewSale() >:
] 1
- i A

] 1

loop . [more items) i

‘ . enteritem(itemID, quantity) P' these input system events
| ' invoke system operations
] 1
i]
: : the system evenl enferitern
e e description total_ _ _ _ ! invokes a gysiem operation
3 - called enterltem and so forth
I |
E E this is the same as in object-
N ' oriented programming when
endSal

s () >, we say the message foo
| 1 invokes the method (handling
] |
o _lotalwithtaxes : operafon) foo
: :
] 1
| makePayment(amount) ’:
: :
1]
1 1
s s i i change due, receipt _ __ _ _______ -
]

EPENDABLE SOFTWARE 95
LABORATORY

Guideline: How to Name System Events and
Operations?

« System events should be expressed at the abstract level of intention rather
than in terms of the physical input device.

« Example : scan(itemID) vs. enterltem(itemID)

— The enterltem name is better, since it communicates intention rather than the
input device.

i
; System
: CES:':"IIEF

better name A
: enterltemniitem|D, quantity)
»>

|
I
|
|
l
I
I
scan{itemlD. quantity] :
A g

wWorse name :
l

:

KU oo
Process: Iterative and Evolutionary SSDs

 The UP doesn’t mention explicitly SSDs, but we can use them.

— Since the UP is very flexible, allowing any useful technique to be applied in its
context.

 Most SSDs are created during elaboration, when it is useful to

— identify the details of the system events to clarify what major operations which
the system must be designed to handle,

— write system operation contracts, and possibly to support estimation.

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration=> I1 E1..En|C1..Cn | T1..T2

Business Modeling | Domain Model 5
Requirements Use-Case Model (SSDs) s r
Vision 5 r

Supplementary
Specification

w
-

Glossary s r
Design Design Model 5 r
SW Architecture Document 5

Data Model s r

| DEPENDABLE SOFTWARE 97
y LABORATORY

I(UNIVERSITY

EPENDABLE SOFTWARE 98
LABORATORY

Chapter 11.
Operation Contracts

B

EPENDABLE SOFTWARE
LABORATORY

Business
Modeling

Require-
ments

the domain
objects,
attributes,
and
associations
that undergo
changes

Sample UP Artifact Relationships

Sale

date

Domain Model

1.* Sales
Lineltem

quantity

Cashier

-

Use Case Diagram

ideas for
the post-
conditions

starting events to
design for, and
more detailed
requirements that
must be satisfied
by the software

Design

Operation Contracts

Use-Case Model

Process Sale
use
1. Customer
case arrives ...
names e
: A73.Cashier ™
{ | entersitem i
(S . i
“.identifier. A

Operation:_ent
~“eritem(...) ™\
"\\ (--:) /| system
™ Post-conditions: |oPerations

System Sequence Diagrams /

: Cashier

Use Case Text

system
events

requirements
that must be

% : System

satisfied by
the software

make
NewSale()

enterltem ™

t|~ (id, quantity) ./

Yy ___

s

Vision

Glossary

Supplementary
Speﬂtion

- ~——

- .,

- " enterltem ~\
i(itemID, quantity) }

/
(4 [

N, I’

»
»

Design Model I

: ProductCatalog

: Sale \

spec = getProductSpec(itemID)

addLineltem(spec, quantity)

A J

‘ KU KONKUK
UNIVERSITY

100

KU nomaen
Operation Contracts

 Operation contracts
— Use a pre- and post- condition form to describe detailed changes to objects in a
domain model, as the result of a system operation.

— Operation contracts are usually used in a Design Model for object methods,
— But, can also be used in a domain model as contracts of high-level system

operations.
Operation: Name of operation, and parameters
Cross References: Use cases this operation can occur within
Preconditions: Noteworthy assumptions about the state of the system or
objects in the Domain Model before execution of the operation.
These are non-trivial assumptions the reader should be told.
Postconditions: This is the most important section. The state of objects in the

Domain Model after completion of the operation. Discussed in
detail in a following section.

EPENDABLE SOFTWARE 1 O 1
LABORATORY

KU KONKUK
UNIVERSITY

Example

* An operation contract for the enterltem system operation.

Contract CO2: enterItem

Operation: enterltem(itemID: ItemID, quantity: integer)
Cross References: Use Cases: Process Sale
Preconditions: There is a sale underway.

Postconditions:

- A SalesLineltem instance sli was created (instance creation).
- sli was associated with the current Sale (association formed).
- sli.quantity became quantity (attribute modification).

- sli was associated with a ProductDescription, based on
itemID match (association formed).

The categorizations such as "(instance creation)" are a learning aid, not properly part of the
contract.

EPENDABLE SOFTWARE 1 02
LABORATORY

Postconditions

» Postconditions describe changes in the state of objects in the domain model.
— Not actions to be performed during the operation
— Rather, Observations about the domain model objects that are true when the
operation has finished. (— past tense)
* Instance Creation and Deletion

 Associations Formed and Broken
« Attribute Modification

— Only necessary when the outcome of a system operation is not clear from the
use case description.

It will be helpful when there are situations where the details and complexity of required
state changes are awkward or too detailed to capture in use cases.

0 .::DEPENDABLE SOFTWARE 103
- LABORATORY

K[]’ KONKUK
UNIVERSITY

Example: Enterltem Postconditions

sli.guantity became guantity (attribute modification).

sli was associated with the current Sale
(association formed).

x

Process Sale Scenario

: Cashier -System
1 I
: makeNewSale ol
| '|
T T

loop) [more items] |
L enterltem(itemlD, quantity) _J
»
l |
] |
I ; 1
description, total
<R |
| I
1 |
| 1
] |
] |
! endSale >
| =i
] |
| |
Moo Motalwithtexes ____________ !
makePayment(amount) >

sli was associated with a ProductDescription,

based on itemID match (association formed).

A SalesLineItev/instance sli was created (instance creation).

Sales T—
Lineltem Records-sale-of
’*t.‘;uaunti't'_n,.r 0.1
- *
1..
Stocked-in
tained-in
1 1
Sale Store
date address
time 0.1 name
4 1
Houses
Paid-by 1.*
1 Register
Captured-on *
Payment]
amaount
104

. .
Applying UML: Operations, Contracts, and OC

 [nthe UML,

— Operation : a specification of a transformation or query that an object may be
called to execute

— Method : the implementation of an operation
« Specifies the algorithm or procedure associated with an operation

 In the UML metamodel,

— Operations have a signature (name and parameters) and are associated with
constraints (preconditions and postconditions).

— OCL (object constraint Language) IS the formal language for expressing constraints in
UML.

IDEPENDABLE SOFTWARE 1 O 5
T

K KONKUK
UNIVERSITY

I}EPENDABLE SOFTWARE 1 06
LABORATORY

Chapter 12.
Requirements to Design Iteratively

Iteratively Analysis and Design

 Analysis : Do the right thing
— The requirements and OOA have focused on learning to do the right thing.
— Understanding some outstanding goals, related rules and constraints.

 Design : Do the thing right
— Design work will stress do the thing right.
— Skillful designing a solution to satisfy the requirements for its iteration.

* In iterative development, a transition from requirements/OOA to
design/implementation occur in each iteration.

108

K KONKUK
UNIVERSITY

I}EPENDABLE SOFTWARE 1 09
LABORATORY

Chapter 13.
Logical Architecture and

UML Package Diagrams

I; UNIVERSITY

Sample UP Artifact Relationships
Domain
Business "'"'”,'i“'
Medeling g I
Supplementary
Require-

Wigion Specification Glossary

meants =l e 1 I L. D

Thix logical archilecture is influsnced by the =
constraints and non-functional requirements
capturad in the Supp. Spac. il

! = Dasign Model N
> |
package diagrams ul
of the logical
architecture
{a static view) e Domaln
—
~ Tach

S=—==71 Services

 Rogister ProductCatalog |
: 1
! 1
Design interaction diagrams ~ enlerltem | |
(a dynamic view) o MGMID. quantity) |
| spec = getProductSpecy itemlD) h:
; 1
| :
Register ST
class dagrams 1 :
(& static view) = | o _
makehewSale()
enteriem...) gelProductSpec...)
L] i T} I
\.\.. 3 J-..

“EPENMBLE SOFTWARE 1 1 1
LABORATORY

Logical Architecture

« The logical architecture is the large-scale organization of the software
classes into packages, subsystems, and layers.
— But, no decision about how these elements are deployed across different

operating system processes or across physical computers in a network.
— the deployment architecture (— UML Deployment Diagram)

- UML Package Diagrams illustrate the logical architecture.
— Can also be summarized as Views in a Software Architecture Document (AD)

 Layer
— A very coarse-grained grouping of classes, packages, or subsystems that has
cohesive responsibility for a major aspect of the system
— Organized such that "higher" layers call upon services of "lower" layers
— Can be depicted easily with UML package diagrams

] .'D EEEEEEEEE SOFTWARE 112
Y BORAT!

Layered Architecture

Typical layers in object-oriented systems:
— User Interface layer

— Application Logic and Domain Objects layer

Software objects representing domain concepts that fulfill application requirements
— Technical Services layer

General purpose objects and subsystems that provide supporting technical services,
such as interfacing with a database or error logging.

Usually application-independent and reusable across several systems

ul ‘
not the Java
Swing ... | SWIng libraries, but Web
our GUI classes :
based on Swing \
\\
e \
// \\
/
\ - 1
Our focus > Soman / |
!
1 1 1 !
Sales Payments Taxes Iz’
/
/
/
7 4
/ /’
/ 7
! //
] -
Technical Services \l(L7
1 1 el
Persistence Logging RulesEngine
0 .'.DEPENDABLE SOFTWARE
S y LABORATORY

113

Software Architecture

« “Asoftware architecture is the set of significant decisions about the
organization of a software system,
— the selection of the structural elements and their interfaces by which the

system is composed, together with their behavior as specified in the
collaborations among those elements,

— the composition of these structural and behavioral elements into progressively
larger subsystems,

— and the architectural style that guides this organization - these elements and
their interfaces, their collaborations, and their composition.”

Booch, G., Rumbaugh, J, and Jacobson, I. 1999. The Unified Modeling Language User Guide.

1 .'D EEEEEEEEE SOFTWARE 114

R

Applying UML: Package Diagrams

« UML package diagrams are often used to illustrate the logical architecture
of a system.

Presentation ‘

Swing ©- L
not the Java

ProcessSale “reu L, | swing libraries, but
Frame our GUI classes
based on Swing

"teeb...]| used in quick
ProcessSale experiments
Conscle

Domain ‘
Sales Pricing
‘ Register ‘ ‘ Sale ‘ PricingStrategy «injfelrface»
Factory |SalePricingStrategy

ServiceAccess ‘ Payments

Services
Factory

«interface»
CreditPayment |CreditAuthorization
ServiceAdapter

Inventory POSRuleEngine Taxes

«interface» . «interface»
lInventory Adapter POSRuleEngineFacade |TaxCalculatorAdapter

Technical Services

Persistence — e A general —
Log4J Jess ‘[*e purpose third- SOAP
DBFacade party rules

engine.

A partial LA of NextGen POS

DEPENDABLE SOFTWARE 115
\ LABORATORY

Design with Layers

PENDABLE SOFTWARE
LABORATORY

| S R E— E—

| S W S —

—_

GUlwindows

reports

speech interface

HTML, XML, XSLT, JSP, Javascript, ...

handles presentation layer requests
workflow

sessionstate

window/page transitions
consolidation/transformation of disparate
data forpresentation

handles application layer requests
implementation of domain rules

domain services (POS, Inventory)
- services may be used by just one
application, but there is also the possibility
of multi-application services

E

very general low-level business services
used in many business domains
CurrencyConverter

(relatively) high-level technical services
and frameworks
Persistence, Security

low-level technical services, utilities,
and frameworks

data structures, threads, math,

file, DB, and network I/O

N

(AKA Pre

ul
sentation, View)

—

Application
(AKA Workflow, Process,
Mediation, App Controller)

——

dependency

(AKA Business, Applicati

.<____________

Domain

on Logic, Model)

)

(AKA Low-level Business Services)

Business Infrastructure

Technical Services (AK
A Technical Infrastructure, Hi
gh-level Technical Services)

1

KU KONKUK
UNIVERSITY

Example: Common Layers in an Information Systems Logical Architecture

more
app.

specifi

'

Foundation
(AKA Core Services, Base Services, Lo
w-level Technical Services/Infrastructure)

width implies range of applicability »

116

Mapping Code Organization to Layers and UMEE=]
Packages

* Most popular OO languages provide support for packages.

m // --- Ul Layer
‘ com.mycompany .nextgen.ui.swing

] com.mycompany.nextgen.ui .web
not the Java y pany 9
Swing ~-....._| Swing libraries, but Web

our GUI classes

based on Swing

Y // --- DOMAIN Layer
- \ // packages specific to the NextGen project
,/ ! com.mycompany .nextgen.domain.sales
Domain \ < | com.mycompany .nextgen.domain.payments
]
]] ‘l 'i‘
Sales ‘ Payments Taxes /'
/’ // --- TECHNICAL SERVICES Layer
s // our home-grown persistence (database) access layer
/ - com.mycompany.service.persistence
Technical Services ‘ \I; 7 // third par_ty
—— org.apache.log4j
Jv””f__i_____ org.apache.soap.rpc
Persistence Logging RulesEngine
// --- FOUNDATION Layer

// foundation packages that our team creates
com.mycompany .util

EPENDABLE SOFTWARE 1 1 7
LABORATORY

Connections Between SSDs, System OperatiofSE=]
and Layers

* In a well-designed layered architecture,

— The Ul layer objects will forward or delegate the requests from the Ul layer (system
operations) ONto the domain layer for handling.

— The messages sent from the Ul layer to the domain layer will be the messages
illustrated on the SSDs.

System enterltem()
: Cashier ProcessSale endSale()

ul -
Swing makeNewSale() %

Frame

makeNewSale()

|
|
> | . Cashier
enterltem(id, quantitv)>l
! makeNewSale()
| & -description, £0£a_'___: enterltem()
I
I
I
l
I
I
I
I
I
|

o}
Domain endSale()

makeNewSale()

|
|
i

PI Register
|
|
| enterltem()

the system operations handled by the system in an SSD represent the
operation calls on the Application or Domain layer from the Ul layer

S‘ .'DEPENDABLE SOFTWARE 118

LABORATORY

K KONKUK
UNIVERSITY

I}EPENDABLE SOFTWARE 1 1 9
LABORATORY

Chapter 14.
On to Object Design

Designing Objects: Static vs. Dynamic

« Two kinds of object models:
— Static models help design the definition of packages, class names, attributes,
and method signatures (but not method bodies).

 Example: UML class diagram
» Looks like the most important model.

— Dynamic models help design the logic, the code, or the method bodies.
« Example: UML interaction diagrams (sequence diagram, communication diagram)
» Tend to be the more interesting, difficult, and important diagrams to create.

« Relationship between static and dynamic modeling:
— Spend a short period of time on interaction diagrams, then switch to a wall of

related class diagrams.

"
: e E !
‘?.‘uc’m) faceNalug I|) :
Py T of

UML Css leﬁm U‘[‘-‘\L SQ_\S&ML@EI buw\

."D EEEEEEEEE SOFTWARE 1 21

Static Object Modeling

People new to UML tend to think that the important diagram is the static-
view class diagram.

— But, static and dynamic modelling are all important equivalently.
— The most common static object modeling is with UML class diagrams.

Static UML Tools:
— Class diagram
— Package diagram
— Deployment diagram

122

Dynamic Object Modeling

* Most useful design work happens while drawing the UML dynamic-view
Interaction diagrams.
- During dynamic object modeling (such as drawing sequence diagrams), W€ reaIIy think the

exact details of what objects need to exist and how they collaborate via
messages and methods.

* Dynamic UML Tools:
— Interaction diagrams (Sequence diagram)
— Statechart diagram
— Activity diagram

[.'DEPENDABLE SOFTWARE 123
\ BOR,

Object Design Skill over UML Notation Ski

* The object design skills are matter, not knowing how to draw UML.
— Since, Drawing UML is a reflection of making decisions about the design.

Fundamental object design requires knowledge of:
— Principles of responsibility assignment (GRASP)
— Design patterns

Pattern/ s i
a2 Description
Principle |
sinterfaces Ada Dter
Information A general principle of object design and responsibility assignment? Jll:l.apter L Client
Expert +operafion] Type: Structural
| Assign a responsibility to the information expert—the class that has the information neces- What it is-
sary to fulfill the responsibility. Conyert 'J1-E" interface of a class into
. == another interface dients expect. Lets
Creator Who creates? (Note that Factory is a common alternate solution.) c teAdapter classes work together that couldn't
Adaptes othenwise because of incompatible
Assign class B the responsibility to create an instance of class A if one of these is true: -adaptes +adaptedOperaionD) interfaces.
1. B contains A 4. B records A | : pen
2 | | |#operation()
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A |

GRASP Design Pattern of GoF

EPENDABLE SOFTWARE 124
y LABORATORY

I}EPENDABLE SOFTWARE 1 2 5
LABORATORY

Chapter 15.
UML Interaction Diagrams

Interaction Diagrams

Interaction diagrams illustrate how objects interact via messages.
— Dynamic object modeling

— Sequence diagram

— (+) Communication diagram

— (+) Interaction overview diagram
— (+) Timing diagram

127

4 Interaction Diagrams

:Student

:E-Learning

System

login(user, pw)

Database

login: "ok"

>
|
check(user, pw)

|
|
!
I check: "ok"

=

7

getCourses()

|
|
|
|
1
|
!
|
g
|

Sequence diagram

:Student

:E-Learning

1: login(user, pw)
2: getCourses()

S . AN

K‘L]‘ KONKUK
UNIVERSITY

—>

System

1.1: check(user, pw)

:Database

Communication diagram

EPENDABLE SOFTWARE
LABORATORY

b= logged in
3
2 logged out getCourses
2] login(user, pw) !
1
i
2 1login: "ok"
c
= g busy Y i i Y
@ + l
o c% idle !
[] |
w check(user, pw) | check: "ok"
|
|
|
(0] |
o |
" active A A
©
o
Timing diagram
sd Log In /
:Student :E'SLSZ_,?;rr'Tiqng :Database
i i i
{login(user, pw) _ | |
—p
o ; | check(user, pw) _ | [else] O]
I 1 Ll
|) | check: "ok" | J ,
| _ login: "ok"” h ! [authorized]
_________________ 1 |
| getCourses() _| !
! | ? sd Forum /
Interaction Overview diagram
128

Sequence and Communication Diagram

 Sequence diagrams
— model the collaboration of objects based on a time sequence

« Communication diagrams

— focus on showing the collaboration of objects rather than the time sequence

doOne

| DEPENDAB.. s s cvrne
LABORATORY

1: doTwo

2: doThree v

myB : B

public class A

{
private B myB = new B();

public void doOne()
{
myB.doTwo();
myB.doThree();

¥
// .

129

K[]’ KONKUK
UNIVERSITY

Example : Sequence/Communication Diagrams

 An example scenario:

1. The message makePayment is sent to an instance of a Register.
2. The Register instance sends the makePayment message to a Sale instance.
3. The Sale instance creates an instance of a Payment.

Example Sequence Diagram: makePayment

: Register Sale

T
‘makePayment(cashTendered) | !

| makePayment(cashTendered) , , —
—————————————— L—b : Payment

Example Communication Diagram: makePayment

! direction of message‘]

makePayment(cashTendered) —* | ‘Register 1: makePayment(cashTendered)—= Sale

L

1.1: create(cashTendered) “ v

:Payment
l& LABORATORY)

public class Sale

{
private Payment payment;
public void makePayment(Money cashTendered)
{
payment = new Payment(cashTendered);
/7.
by
/7 .
}

130

Basic Sequence Diagram

Lifeline boxes and lifelines

Notations

Messages
: Register . Sale
I I
o ;

* i doA -
doB -

a found message A >
whose sender will not |
be specified doC >

< daD

execution specification k
bar indicates focus of
control

typical sychronous message
shown with a filled-arrow line

PENDABLE SOFTWARE 1 3 1
LABORATORY

B

 Lifeline box

— Represent the participants in the interaction, informally and practically
object(s), class, subsystem, component, etc.

EPENDABLE SOFTWARE
LABORATORY

lifeline box representing an
unnamed instance of class Sale

:Sale

lifeline box representing an
instance of an ArrayList class,
parameterized (templatized) to

hold Sale objects

sales:
ArrayList<Sale>

related
example

lifeline box representing a
named instance

)
=

s1 : Sale

lifeline box representing
one instance of class Sale,
selected from the sales

K KONKUK
UNIVERSITY

lifeline box representing the class
Font, or more precisely, that Fontis
an instance of class Class — an
instance of a metaclass

«metaclass»
Font

|
|
I
|
|
|
I

ArrayList <Sale> collection

=

sales[i] : Sale

List is an interface l

in UML 1.x we could not use an
interface here, but in UML 2, this (or

an abstract class) is legal

=i
=

X : List

132

KU KONKUK
UNIVERSITY

Order of Messages

... on one lifeline ... on different lifelines
| a i | a
—> | >
. . << Happens before >> _C l :
Traces: Traces:
TO1:a—>c TO1:a—>c
TO02:c = a

... on different lifelines which exchange messages

Traces:
TO01l:a—->b—->c

I}EPENDABLE SOFTWARE 1 3 3
LABORATORY

3 Types of Messages

 Synchronous message

— Sender waits until it has received a response message
before continuing.

— An execution specification is inserted at target.

 Asynchronous message
— Sender continues without waiting for a response message.

o Response message
— May be omitted if content and location are obvious

=
—
=
[] []

Message Syntax

return = message (parameter: parameterType) : returnType

- For example:
initialize(code)
initialize

d = getProductDescription(id)
d = getProductDescription(id:ltemID)
d = getProductDescription(id:ltemID) : ProductDescription

: Sale

1
| .
S Recleve event

>
: P ——Execution specification

: Register
1
]
. doX) o
d1 = getDate
7
d
Send event d getDate
T aDate __________|

—

135

K

Other Types of Messages

Found message
— Sender of a message is unknown or not relevant.

Lost message

— Receiver of a message is unknown or not relevant.

Time-consuming message

— Message with duration : Express that time elapses
between the sending and the receipt of a message

— Usually messages are assumed to be transmitted

without any loss of time.

lecturer
:Professor

|
o< announcement(lecture) !
1
|

DEPENDABLE SOFTWARE
LABORATORY

spamEmail ®

e

found |

:Student

:StudentAdmin
System

enroll()

2.3 days}ﬁ(T

|

|

|

|
_—A
|

|

|

I

I

136

Singleton Objects

« There is only one instance of a class instantiated : a singleton object
— Implying to the Singleton design pattern

- Reoi
it | Store B the "1' implies this is a A
- H Singleton, and accessed
doX | I via the Singleton pattern
L] L I
1 dod »
1 I
1
1 I

KU

KONKUK
UNIVERSITY

137

Instance Creation

 To create an instance of a class
— The UML mandates dashed line.

— The message name create is not required ; anything is legal.
« But, it's a UML idiom.

nole that newly created k
ohjects are placed at their
creation "height®

: Register : Sale

makePayment{cashTenderad) b
create(cashTenderad) » : Payment

1
l
authorize !

LABORATORY

A b Y
‘g iZ;IJEPENDABLE SOFTWARE 1 38
)

Object Destruction

« To show explicit destruction of an object

— The <<destroy>> stereotyped message, with the large X and short lifeline
indicates explicit object destruction

Sale
!__CIEE'IEJEE‘_EEI%“EE'?QL_.J - Payment L
B
the «destroy» stereotyped
> message, with the large
... X and short lifeline
adestroy» »X », indicales explicit object
destruction

LABORATORY

S ?JEPENDABLE SOFTWARE 1 39

B

Combined Fragments and Operators

« 12 predefined types of operators

EPENDABLE SOFTWARE
LABORATORY

Model various control structures with frames

K'L]‘ KONKUK
UNIVERSITY

» Frames : regions or fragments of the diagrams, which has an operator and a guard
Frames are nested.

Operator Purpose
2 alt Alternative interaction
é § opt Optional interaction
% 2 loop Repeated interaction
@ break Exception interaction
- seq Weak order
§ g strict Strict order
§ -§ par Concurrent interaction
8 © critical Atomic interaction
ignore Irrelevant interaction
g g consider Relevant interaction
E § assert Asserted interaction
C s neg Invalid interaction

140

B

alt Fragment

* To model alternative sequences

 Similar to switch statement in Java

— Guards are used to select the one
path to be executed.

— Multiple operands

 Guards
— Modeled in square brackets
— default: true
— predefined: [else]

» Guards have to be disjoint to
avoid non-deterministic behavior.

| DEPENDABLE SOFTWARE
LABORATORY

:Student

:StudentAdmin
System

register(matNo, exam)

T
|
| |
i |
| l >
| | _ status = enter: status _ |
| | I
t t t
alt | [status == ok] | I
| | |
| | |
| register: "ok”" l |
Ke—— 1 |
| | l
———————— e P EET TR
: [status == waiting list free] : }
| | |
| register: "wl" | |
S 4 |
| | |
opt JI [register on WL == true] : {
| | |
| register(matNo, exam) I [
' > |
: | _enterWL(matNo, exam) »{
I | enterWL: "ok" l
| S St 1
| register: "ok”" | |
e 4 l
| | |
| | |
———————— et LR e e e ey EE e e e E e L e e EESE LY
: [else] : {
| | I
| register: "error” _: {
| | |
t i t
141

I\ U vviversmry

opt Fragment

:StudentAdmin

« To model an optional sequence ‘Student System Database

! register(matNo, exam) L! i
.. . . i Vi enter(matNo, exam) HI
« Similar to if statement without else | __ status = enter. status |
branch | | |
alt | [status == ok] | I
— Exactly one operand | | |
. L | ___Tegister: "ok’ | |
— Actual execution at runtime is L ! !
dependent on the guard. | [status == waiting lst free] | |
i _____rzgi_st_efjvx'i____J i
| | |
opt JI [register on WL == true]]: i
! register(matNo, exam) H: i
: ! enterWL(matNo, exam) »:
' | enterWL: "ok" |
| o e Tt 1
| register: "ok”" | I
T 1 |
| | |

———————— Rl GLLEEEEEEEEEEEEEEELLPEET R EEREE R
I [else] I |
__ register: "error’	

b A N
;g iZ;DEPENDABLE SOFTWARE 1 42
- y

LABORATORY

loop(...) .=
AU iwrzarry

loop Fragment

« To model repeatedly-executed sequences
— Exactly one operand

« Keyword loop followed by the minimal/maximal number of iterations
— (min..max) Oor (min, max)
— default: (*) .. no upper limit

 Guard

— Evaluated as soon as the minimum number of iterations has taken place
— Checked for each iteration within the (min, max) limits

— If the guard evaluates to false, the execution of the loop is terminated.

Notation alternatives:

: ted at Ioop(1,*)) : loop(3,8) = loop(3..8)
loop IS executed a | loob (8.8) = loo g
least once, as long as [a<1] } =] ; p(_’l) (%) f)l() (0 *)
a<l is true. = | oop = loop = 1oop (0,
| |
| S
| ~1

1 .'D EEEEEEEEE SOFTWARE 143

break Fragment

« Similar to exception handling
— Exactly one operand with a guard

« If the guard is true:

— Interactions within this operand are
executed.

— Remaining operations of the
surrounding fragment are omitted.

— Interaction continues in the next higher
level fragment.

break pans
K U vaversmry

A ‘B
I I
I a I
< |
' I
seq |
I
‘ i
break [a<1] |
I
I I
| b |
I >
I C |
S I
| d |
| |
T 1
| |
I o I
(S I
I |

144

loop and break Fragment - Example

:Student 421Gl S I :Database
System
loop(1,3))[incorrect password] I i
T | |
| | |
| login(name, pw I |
: gin(pw) > |
I | |
| I check(name, pw I
| ; (pw) >
I | |
t f }
break JI [incorrect password] i i
I I |
I I |
< error message | ,
I I |
} ! !
| I [
I register(matNo, exam) »: :
| | |
I I [
| ! enter(matNo, exam) >

PENDABLE SOFTWARE 1 4 5

LABORATORY

seq

| KU vy

seq Fragment

 Default order of events
 Weak sequencing:

1. Events on different lifelines from different operands may come in any order.

2. Events on the same lifeline from different operands are ordered such that an
event of the first operand comes before that of the second operand.

A ‘B §e ‘D
seq / | i i
| 3 : : : Traces: AN
||Hlb | : : TOl:a—->b—->c—>d~-e
K | | T02:a—->c—>b—>d-e
| | . ¢ | T03: csa-b-od-e
| I d | |
| A | |
| | e

| DEPENDABLE SOFTWARE 146
T

strict

strict Fragment

 Sequential interaction with order

— Messages in an operand that is higher up on the vertical axis are always
exchanged (executed) before the messages in an operand that is lower down on
the vertical axis.

A ‘B “(C D
strict / : : :
| a | | |
— | |
I | | Traces:
B — A L L T0O1:a=»b->c~>d-e ﬁ
| | | |
], e
e
| | -

1 .'D EEEEEEEEE SOFTWARE 147
AT

strict Fragment - Example

Student :StudentAdmin lecturer Printer
' System :Professor '
strict)i i []
I I I I
I : I I I
| register(exam) > | |
| I I I
------- s P
| I I I
| I | rint(exam |
I I I print() >
PENDABLE SOFTWARE 1 4 8

LABORATORY

par Fragment

« To set aside chronological order between messages in different operands
— Execution paths of different operands can be interleaved.

— Restrictions of each operand are respected, but the order of the different

operands is irrelevant
« Concurrency, no true parallelism

‘A ‘B G ‘D

7
| a I I I
o | | |
< | |

et e f------- q=------- F--
| | I ¢ |
| D |
| S |
| | -
! | >

Traces:

T01:a—=>b—>c—>d-e
T02:a—>c—>b—>d=—e
T03:a—=>c—>d—->b-e
T04:a—->c—>d—->e—>b
T0S:c~>a—->b—->d—-e
TO6:c~>a—~>d—>b—->e
T07.c>a—~>d—->e—>Db
T08:c>d—->a—->b—e
T09:c>d—>a—>e—>b
T10:c>d—»>e—>a—->b

149

critical Fragment

« Atomic area in the interaction

— To make sure that certain parts of an interaction are not interrupted by

unexpected events

— Order within critical is the default order seq.

critical
KU v

Traces:

T01:a=>b—>c—>d—-e
T02:a—>c—>d—>b—>e
T03:a—>c—>d—>e—>b
TO4:c>d—>a—>b—->e
T05:c>d—->a—>e—>b
T06:c>d—>e—>a—>b

A ‘B C D

par / | | |

a | | |

b | |

< P | |
L. IR N IR —

critical / | | C |

| : d | |

| <— |

i | e |

| | >

150

B

Interaction Reference

* Integrates one sequence diagram in another sequence diagram

—
o 4oX ! | |

| doA ’I |

: : doB > !

| I |

I

! authenticate(id) P ref AuthenticateUser

I

: I |

| | |

| ! I

|

: ref DoFoo

|

I

I

EPENDABLE SOFTWARE
LABORATORY

ExliEs

interaction occurrence

note it covers a set of lifelines

has the same lifelines: B and C

note that the sd frame it relates to

sd AuthenticateUser /

B

T

auihenticate(id)’_i

doM1

doM2

. . S—

sd DoFoo /

doX

doY

doZ

!!ﬂ_‘l__{ &

KU KONKUK
UNIVERSITY

151

Iteration Over a Collection

« Sending the same message to each object to iterate over all members of a
collection (such as a list or map).

— The selector expression (as lineltems[i] in the lifeline) selects one object from a
group.

— Lifeline participants should represent one object, not a collection.

sl lineltemsfi] : - A
- Sale SalesLineltem This lifeline box represents one
T . . B — instance from a collection of many
t = getTotal > : SalesLineltem objects.
| |
|
: lineltemsfi] is the expression to
loop [< lineltems.size] | select one element from the
/ - : collection of many
|
|
|
|
|
|

st = getSubtotal
g > SalesLineltems: the i" value

refers to the same “" in the guard
in the LOOP frame

" - N
I++
\, O

' an action box may contain arbitrary language k
statements (in this case, incrementing ')

| itis placed over the lifeline to which it applies

S ':@JEPENDABLE SOFTWARE 1 52

LABORATORY

Messages to Classes to Invoke Static (or ClasS}==dl
Methods

* You can show class or static method calls by
— using a lifeline box label that indicates the receiving object is a class, or
— more precisely, an instance of a metaclass

message o class, or a
static method call

ametaclass»

: Foo
Calendar

_—

dux | ¥ |

. O
. 1 locales = getAvailableLocales | |
2
|

public class Foo
{
public void doX()
{
// static method call on class Calendar
Locale[] locales = Calendar.getAvailableLocales();
/7 ..
}
// ..
}

LABORATORY

S .'.DEPENDABLE SOFTWARE 153

Basic Communication Diagram Notations

 Link and Message

— A connection path between two objects indicating some form of possible
navigation and visibility between the objects
— All messages flow on the same line, and many messages may flow along a link.

« Each message between objects is represented with a message expression and small
arrow indicating the direction of the message.

» A sequence number is added to show the sequential order of messages in the current
thread of control.

first L eocond L
: fhird k
msgl —= ‘A 1: msg2 —= ‘B
1.1:msg3d ¥
21:msg5 4
2: msgd - [_ C
fourth L fifth k
2.2: msgb

sixth L

Timing Diagram

 Timing diagram
— Shows state changes of the interaction partners that result from the occurrence
of events
» Vertical axis: interaction partners
« Horizontal axis: chronological order

= logged in
k5
2 logged out A getCourses
2 login(user, pw) !
|
i
2 i login: "ok"
C
cE busy \4 ') A
5 2 B
22 idle i
L check(user, pw) | check: "ok”
|
i
|
() I
: :
ﬁ active v !
©
o

S .'.DEPENDABLE SOFTWARE 155

LABORATORY

duration constraint

KU vy

state or condition =
s Sending response
c timeline \ state change
& Processing \ \ 4
s \
é Waiting \
. {0..400 ms} \
lifeline £ o == \ HTTP response
|, & Processing timeline {50.200ms} ' reply message
L \ \
2 Idle L \
= \ \
\ !
Resolve unu‘rx \ HTTP request 1‘||
E Waiting /’ {100..500 ms}
2 Processing \ .
< Send \
dle synchronous FEQUESIM event or \
é message stimulus \
= P’_/ Show page ',
Y
Y
- A
lifeline @ A
~ 2 Idle Waiting >\< Viewing
iar
=
Z//nﬁs 1s 155 25 255
state, condition or value tick mark value timing ruler

EPENDABLE SOFTWARE
LABORATORY

156

Interaction Overview Diagram

« Interaction overview diagram
— Visualizes order of different interactions

e

— Allows to place various interaction diagrams in a logical order

— Basic notation concepts of activity diagram

sd Log In /

‘Student :E-Learning ‘Database

System

|
login(user, pw) >I
! i check(user, pw)
|
|

>

[authorized]

sd Forum /

157

K KONKUK
UNIVERSITY

I}EPENDABLE SOFTWARE 1 5 8
LABORATORY

Chapter 16.
UML Class Diagram

KU KONKUK
UNIVERSITY

Applying UML: Common Class Diagram Notation

3 common k
compartments

1. classifier name
2. attributes

3. operations

an interface
shown with a
keyword

winterfaces
Runnable

run(}

Sy

L AN

interface h
implementation

and

subelassing

SuperclassFoo
ar
SuperClassFoo { abstract }

= ¢lassOrStaticAttribute : Int

+ publicAttribute : String

- privateAttribute

assumedPrivateAttribute
isinitializedAttribute : Bool = true
aCollection : VeggieBurger [*]
attributeMayLegallyBeMull : String [0..1]
finalConstantAltribute : Int = 5 { readOnly }
IderivedAttribute

+

+ publichMethod()

assumedPublicMethod()

- privateMethod()

protectedMethod()

- packageVisibleMethod()

sconstructors SuperclassFoo{ Long)
methodWithParms({parm1 : String, parm2 : Float)
methodReturnsSomething() : VeggieBurger
method ThrowsException{) {exception IOException}
abslractMethod()

abstractMethod2() { abstract } /f alternate
finalMethod() { leaf } // no override in subclass
synchronizedMethod() { guarded }

7

| -

officially in UML, the top format is A
used to distinguish the package
name from the class name

unofficially, the second alternative
is commen

O java.awt:Font
or
java.awt.Font

plain . Int = 0 { readOnly }
bold : Int = 1 { readCnly }
name : String
slyle: Int=0

Fontiname : String) : Fon
getMame(} ; String

[Fruit
dependency H

PurchaseOrder

"

X, | _,.z
0 ':‘:- !
et f
\._\ f
" i I
SubclassFoo
C.
run(}

- ellipsis “..." means there may be elements, but not shown
- a blank comparment officially means “unknown™ but as a

convention will be used to mean “no members”
EPENDABLE SOFTWARE
LABORATORY

0 o
orde

association with L
multiplicities

160

KU v
Design Class Diagram

The same UML class diagrams can be used in multiple perspectives.
— In a conceptual perspective, Domain model

— In a design perspective, Design Class Diagram (DCD)

Domain Model

conceptual
perspective

Sale

time
isComplete : Boolean
ftotal

Design Model

DCD; software

perspective

[} DePenDABLE SOFTWARE

Register Captures
Register
endSale() currentSale
enterltem(...)

makePayment(...)

time
isComplete : Boolean
ftotal

makeLineltem(...)

Object

* Individuals of a system

e Alternative notations:

maxMiller

maxMiller:Person

:Person

maxMiller

maxMiller:Person

firstName = "Max"
lastName = "Miller"
dob = 03-05-1973

firstName = "Max"
lastName = "Miller"
dob = 03-05-1973

:Person

| ' DEPENDABLE SOFTWARE
= LABORATORY

firstName = "Max"
lastName = "Miller"
dob = 03-05-1973

= No object name

162

Object Diagram

Depicts objects and their relationships at a specific moment in time

helenLewis:Student

firstName = "Helen"
lastName = "Lewis"
dob = 04-02-1980

matNo = "9824321"

oom:Course

name = "OOM"
semester = "Summer"
hours = 2.0

mikeFox:Student

firstName = "Mike"
lastName = "Fox"
dob = 02-01-1988
matNo = "0824211"

iprog:Course

S ' DEPENDABLE SOFTWARE

LABORATORY

name = "IPROG"
semester = "Winter"
hours = 4.0

lh1:LectureHall

name = "LH1"
seats = 400

163

From Object to Class

« Aclass is a construction plan for a set of similar objects of a system.

— Objects are instances of classes.

« Attributes: structural characteristics of a class
— Different value for each instance (object)

 Operations: behavior of a class

— Identical for all objects of a class
— not depicted in object diagram

Person

maxMiller:Person

firstName: String
lastName: String
dob: Date

firstName = "Max"
lastName = "Miller"
dob = 03-05-1973

Class name —

Attributes

Operations

—

_-<

R

Course

name: String

semester. SemesterType

hours: float

getCredits(): int

getLecturer(): Lecturer

getGPA(): float

164

e

Attribute Syntax - Visibility

Person

firstName: String

lastName: String

dob: Date

address: String[1..*] {unique, ordered}
ssNo: String {readOnly}

/age: int

password: String = "pw123"
personsNumber: int

DEPENDABLE SOFTWARE
LABORATORY

« Who is permitted to access the attribute.

+ ..

. public: everybody
.. private: only the object itself
#...

.. package: classes that are in the same package

protected: class itself and subclasses

165

Attribute Syntax - Derived Attribute

Person

firstName: String

lastName: String

dob: Date

address: String[1..*] {unique, ordered}
ssNo: String {readOnly}

password: String = "pw123"
personsNumber: int

Attribute value is derived from other attributes or
associations.

— age: calculated from the date of birth

e

166

Attribute Syntax - Name

Person

/

String
String

Date

String[1..*] {unique, ordered}

String {readOnly}

int

String = "pw123"

[int

Name of the attribute

167

Attribute Syntax - Type

Person
firstName:
lastName:
dob:
address: [1..*] {unique, ordered}
ssNo: String {readOnly}
lage:
password: = "pw123"
personsNumber:

_‘ | DEPENDABLE SOFTWARE
LABORATORY

Types of attributes
— Data types

* Primitive data type

— Pre-defined: Boolean, Integer, Unlimited Natural, String

— User-defined: «primitive»
— Composite data type: «datatype»

* Enumerations: «xenumeration>»

«primitive» «datatype» «enumeration»
Float Date AcademicDegree
round(): void day bachelor
month master
year phd

User-defined classes

168

Attribute Syntax - Multiplicity

Person

firstName: String
lastName: String

dob: Date

address: String {unique, ordered}
ssNo: String {readOnly}

/age: int

password: String = "pw123"
personsNumber: int

Number of values which an attribute may contain
— Default value: 1

Notation: [min..max]
— no upper limit: [*] or [0..7]

R

169

R

Attribute Syntax - Default Value

Person

firstName: String

lastName: String

dob: Date

address: String[1..*] {unique, ordered}
ssNo: String {readOnly}

/age: int

password: String =

personsNumber: int

Default value
— Used if the attribute value is not set explicitly by the user

170

Attribute Syntax - Properties

Person

firstName: String
lastName: String
dob: Date

address: String[1..*]
ssNo: String

/age: int

password: String = "pw123"

personsNumber: int

» Pre-defined properties

= {readOnly} ... value cannot be changed
{unique} ... no duplicates permitted
{non-unique} ... duplicates permitted
{ordered} ... fixed order of the values
{unordered} ... no fixed order of the values

= Attribute specification
= Set: {unordered, unique}
= Multi-set (Bag): {unordered, non-unique}
» Ordered set: {ordered, unique}
= List: {ordered, non-unique}

Operation Syntax - Parameters

Person

+ getName
+ updateLastName
+ getPersonsNumber(): int

: void
: boolean

= Notation similar to attributes

= Direction of the parameter

= |n ... input parameter

» When the operation is used, a value is expected
from this parameter

= out ... output parameter

= After the execution of the operation, the parameter
has adopted a new value

= inout : combined input/output parameter

172

Operation Syntax - Type

Person = Types of the return value

getName(out fn: String, out In: String):
updateLastName(newName: String): !
getPersonsNumber():

S ':ITIQDEPENDABLE SOFTWARE 1 73
- LABORATORY

Operations and Methods

 Operations

— The full official format of the operation syntax :
 visibility name (parameter-list) {property-string}

— Guidelines
« Assume that the new version includes a return type.
» Operations are usually assumed public if no visibility is shown.

* An operation is not a method.

— A UML operation is a declaration, with a name, parameters, return type,
exceptions list, and possibly a set of constraints of pre-and post-conditions.

— Not an implementation - rather, methods are implementations.

PENDABLE SOFTWARE
LABORATORY

174

Note Symbols

A UML note symbol may represent several things, such as:
— UML note or comment, which by definition have no semantic impact
— UML constraint, in which case it must be encased in braces '{...}’
— Method body : the implementation of a UML operation

. Reqgister

emethods L g

!/ pseudo-code or a specific language is OK

public void enteritemn(id, gty)

{ endSale()
ProductDescription desc = catalog.getProductDescription(id); oenterltem(id, qty)
sale.makeLineltemi{desc, gty); makeNewSale()

} makePayment(cashTendered)

\ 175

[V DEPENDABLE SOFTWARE
A LABORATORY
o

Class Variable and Operation

* Instance variable (= instance attribute) : attributes defined on instance level

« Class variable (= class attribute, static attribute)
— Defined only once per class, i.e., shared by all instances of the class
— Example: counters for the number of instances of a class

* Class operation (= static operation)
— Can be used, if no instance of the corresponding class was created
— Example: constructors, counting operations, etc.

class Person {

Person

public String firstName;

+ firstName: String public String lastName;

+ lastName: String ivate Date dob:

- dob: Date ﬁ private Date dob,

address: String[*] protected String[] address;
private static int pNumber;

+ getDob(): Date public static int getPNumber() {...}

public Date getDob() {...}

S .'.DEPENDABLE SOFTWARE 176

LABORATORY

e

Operations to Access Attributes in DCDs

« Accessing operations to retrieve or set all (private) attributes
— Example: getPNumber() and setPNumber()

Person

+ firstName: String
+ lastName: String
— dob: Date

address: String[*]

+ getDob(): Date

— Often excluded (or filtered) from the class diagram, since they are too many.
* For n attributes, there may be 2n uninteresting getter and setter operations.

— Most UML tools support filtering their display.

IDEPENDABLE SOFTWARE 1 7 7

Different Levels of Class Detail

< %

Coarse-grained Fine-grained

Course

Course .
+ name: String

+ semester: SemesterType

name

¢ — hours: float

Course f\iTresS er - /credits: int
) + getCredits(): int

getCredits() g 0

+ getlLecturer(): Lecturer
ge:ge;;“rer() + getGPA(): float

ge 0 + getHours(): float

+ setHours(hours: float): void

S ."D EEEEEEEEE SOFTWARE 178

Types of Class Relationship

<Weaker (lass relationship
Dependency Association Aggregation
oo S
Dashed Arrow Simple Connecting Line | Empty Diamond Arrow

When objects of one
class work briefly with
objects of another class

When objects of one
class work with
objects of another class
for some prolonged

amount of time

When one class owns but

shares a reference to
objects of another class

When one.class
contains objects of
another class

When one classis a
type of another class

179

Dependency

 Models weakest possible relationships between classes
— Aclass needs to know about another class to use objects of that class briefly.
— Not used often in class diagram, but does in component diagram.

The Dependency Arroh

Userinterface f------- PP -> BlogEntry

."D EEEEEEEEE SOFTWARE 180
| T

KU Gavasr
Dependency - Example

« Example:

— The updatePriceFor method receives a ProductDescription parameter object and
then sends it a getPrice message.

— Therefore, the Sale object has parameter visibility to the ProductDescription, and
message-sending coupling, and thus a dependency on the ProductDescription.

— If the latter class changed, the Sale class could be affected.

the Sale has parameter visibility to a L
ProductDescription, and thus some kind of
dependency)
ProductDescription public class Sale
' IR
— i b) public void updatePriceFor(ProductDescription description)
- I {

Money basePrice = description.getPrice();

| /7.
updatePriceFor{ ProductDescriplion) I

SalesLineltem 3

lineltems

1 l EPENDABLE SOFTWARE 1 8 1
iy LABORATORY

Association

« Models possible relationships between instances of classes

— When objects of one class work with objects of another class for some prolonged
amount of time.

* givesLectureFor p *
Professor P Student
+lecturer

helenLewis:Student

- . /
annaMiller:Professor —
aulSchubert:Student
. T paulschubert:student
frankStone:Professor

mikeFox:Student

o - SOFTWARE 182
| i T

Binary Association

« Connects instances of two classes with one another

* givesLectureFor p

X *

Professor Student

+lecturer

o ."D EEEEEEEEE SOFTWARE 183
A T

Binary Association - Navigability

* Navigability
— An object knows its partner objects and can therefore access their visible
attributes and operations.

— Indicated by open arrow head or cross

A x——> B

 Example:
— “A can access the visible attributes and operations of B”
— “B cannot access any attributes and operations of A"

« Navigability undefined A B
— Bidirectional navigability is assumed.

Navigability - UML Standard vs. Best Practice

UML Standard Best Practice
A B |
— A B
A l<—>{ B
A S| B |
— A > B
A x——> B

DEPENDABLE SOFTWARE 1 85
ORATORY

Binary Association as Attribute

Professor Professor

N
+lecturer | *

Sx Student

Student + lecturer: Professor[*]

= Java-like notation:

class Professor {.}

class Student {
public Professor[] lecturer;

. -
s,
[V DEPENDABLE SOFTWARE 1 8 6
) ?‘ LABORATORY
P

Ways to Show UML Attributes

« Attributes can be shown in three ways:

1. attribute text
« visibility name : type multiplicity = default {property-string}

2. association line —— Register Sale
. . _ye text notation to : 3
a navigability arrow indicate Register has ok hale
TP a reference to one
° mU|tlp|ICIty Sale instance

- arolename = —7 7+ = ———— — — — — — — — —

OBSERVE: this style h Register | Sale
3 . bOth tOg eth er visually emphasizes 1 |
the connection = currantSale}l
between these classes |
using the association notation to indicate
Register has a reference to one Sale instance
thorough and L _ Register | Sale
Unambiguous, hutsgme currentSale : Sale 4.
people dislike the T
possible redundancy |
B
B] EDEPENDABLE SOFTWARE 1 87

B LABORATORY
i

| 5 Ui
Attribute Text vs. Association Lines for Attributes

 Use the attribute text notation for data type objects, while the association
line notation for others.
— Both are semantically equal.

— But, showing an association line to another class box in the diagram gives visual
emphasis.

Register Sale

applying the guideline ’

to show attributes as id: Int
attribute text versus as
association lines

time: DateTime

'\'.—’

currentSale

Register has THREE attributes: Store

1. id
2. currentSale J

address: Address
phone: PhoneNumber

public class Register

{
private int id;
private Sale currentSale;
private Store location;
// .

l EPENDABLE SOFTWARE 1 8 8
i LABORATORY

n-ary Association

* More than two partner objects are involved in the relationship.
— No navigation directions

Student

*

*
Exam %> grades

0..1 | +examiner

Lecturer

."D EEEEEEEEE SOFTWARE 1 89
| T

Association Class

« Association class
— Assign attributes to the relationship between classes rather than to a class itself.

— Treat an association itself as a class, and model it with attributes, operations,
and other features.
 lllustrated with a dashed line from the association to the association class.
» Necessary when modeling n:m Associations

— Example : If a Company employs many Persons, modeled with an Employs
association, you can model the association itself as the Employment class, with
attributes such as salary and startDate.

Company ad Emf.:l_oys ® Person

I
|
I
I
|

a person may have Employment

employment with several

companies salary

startDate

LABORATORY

S .'.DEPENDABLE SOFTWARE 190

Singleton Classes

« Singleton class has only one instance of the class.
— "singleton" instance

— Ina UML diagram, it is marked with a '1' in the upper right corner of the name
compartment.

— The Singleton design pattern

1o L
ServicesFactory UML notation: this *1'
A = _ can optionally be used

UML notation: in a o | Instance ; ServicesFactory to indicate that only one
class box, an instance will be created
underlined attribute or accountingAdapter : |AccountingAdapter {a singleton)
method indicates a inventoryAdapter : linventoryAdapter
stalic (class level) taxCalculatorAdapter ; ITaxCalculatorAdapter
member, rather than 3
an instance member o | getinstance(} : ServicesFactory

getfccountingAdapter() : lAccountingAdapter

getlnventoryAdapter() - linventoryAdapter

getTaxCalculatorAdapter() : ITaxCalculatorAdapter

(¥ DEPENDABLE SOFTWARE 191
N LABORATORY

Active Class

* An active object runs and controls on its own thread of execution.

— The class of an active object is an active class.

— In the UML, it may be shown with double vertical lines on the left and right sides

of the class box.

«interface»
Runnable

run()

(¥ DEPENDABLE SOFTWARE
A LABORATORY
) B

Clock

run()

active class ﬁ

192

| 0 st
Interfaces

 The UML provides several ways to show interface implementation.
— Formally called interface realization
— 3 Notations:
« Socket + lollipop notation

» Dependency line notation
 Interface implementation

socket line notation L
. la] . i
Window1 T'ﬂf— Window?1 uses the Timer dependency line notation h
' interface
: : - Window?2 has a dependency on the
it has a required interface Timer interface when it collaborates

| with a Clock2 object

winterfaces Clock2 o
Timer : : W
? Timer &7 “-l Window?2
getTime !
—_— getTime()
I .
I Clock?
| implements and
: pravides the Clockd
1 . Timer interface
Clock1 Timer o Window3
i+

getTimel)]

getTime() socket line notation

Io'l'lipup notation indicates Clock3 im piemenis
and provides the Timer interface to clients Window3 has a dependency on the

o] _ Timer interface when it collaborates
T m— Timeris a provided interface with a Clock3 object 193
LABORATORY

Aggregation

« Special form of association
— Used to express that a class is part of another class.

» Properties of the aggregation association:
— Transitive: if B is part of A and C is part of B, C is also part of A

— Asymmetric: it is not possible for A to be part of B and B to be part of A
simultaneously.

 Two types:
— Shared aggregation
— Composition

EPENDABLE SOFTWARE

LABORATORY

KU

KONKUK
UNIVERSITY

194

Shared Aggregation

 Expresses a weak belonging of the parts to a whole
— Parts also exist independently of the whole.

« Multiplicity at the aggregating end may be >1.
— One element can be part of multiple other elements simultaneously.
— Spans a directed acyclic graph.
— Syntax: Hollow diamond at the aggregating end

« Example:
— Student is part of LabClass.
— Course is part of StudyProgram.

LabClass <> Student

StudyProgram [Course

I DEPENDABLE SOFTWARE 1 95

Composition

« Existence dependency between the composite object and its parts

— One part can only be contained in at most one composite object at one specific

point in time.

— If the composite object is deleted, its parts are also deleted.

— Multiplicity at the aggregating end is max. 1
— The composite objects form a tree.

— Syntax: Solid diamond at the aggregating end

— Beamer is part of LectureHall which is part of Building.

*

« Example:
. 1
Building |@
| 1
Hand e Ot

LectureHall

0..1

1

gt

Finger

Beamer

196

Shared Aggregation and Composition

Which model applies?

0..1 4
Car . o Tire
1 4
Car A Tire
* 4
Car <> Tire
* 1.2
Car <> Type of Tire

I DEPENDABLE SOFTWARE

197

Shared Aggregation and Composition

« Which model applies?

C 0..1 4 Ti A Tire can exist without a Car. A i
ar * LS Tire belongs to one Car at most. X
)]

1 4 _ | o i

Car & Tire A Tire cannot exist without a Car. !
Z

?

* 4 i A Tire can belong to multiple Cars!

Car <> Tire :
A Car has one or two types of I

* 222 Tires. Several Cars may have <

:)

Car < Type of Tire| o same Type of Tires. i

Generalization

« Everything of a general class are passed
on to its subclasses.

— Every instance of a subclass is
simultaneously an indirect instance of the

Person

superclass.
— Subclass inherits all characteristics (attributes /4 b\
and operations), associations, and aggregations
of the superclass except private ones. Employee | | Student
— Subclass may have further characteristics,
associations, and aggregations. /] \

« (Generalizations are transitive. Professor | | Secretary

DEPENDABLE SOFTWARE
LABORATORY

Generalization - Abstract Class

» Used to highlight common characteristics of their subclasses

{abstract}
A

« Used to ensure that there are no direct instances of the superclass

— Only its non-abstract subclasses can be instantiated.

* Notation: keyword {abstract} or class name in italic font.

{abstract}
Person

L

Woman

{abstract}
Person

Person

Generalization - Multiple Inheritance

« UML allows multiple inheritance.
— Aclass may have multiple superclasses.
— Not allowed for JAVA programming language.

« Example:
Student Employee

NS

Tutor

With and Without Generalization

Study 1
Program

1.%

enrolls

*

Student

name
address
dob
ssNo
matNo

2 S | DEPENDABLE SOFTWARE

LABORATORY

Course

teaches

1“*

Research
Associate

name
address
dob
ssNo
acctNo

isAssigned
*
Administrative
Employee
name
address
dob
ssNo
acctNo

{abstract}
Person
Student
L [>{name
matNo address
dob
* ssNo
enrolls
1 __'ic
VS. Employee * 1
StudyProgram Faculty
il isAssigned
1.%
A
*
Course
*
teaches
1.%

ResearchAssociate

AdministrativeEmployee

202

Creating a Class Diagram

* Not possible to completely extract classes, attributes and associations from
a natural language text automatically.

* Guidelines
— Nouns often indicate classes
— Adjectives indicate attribute values
— Verbs indicate operations

« Example: “The library management system stores users with their unique ID,
name and address as well as books with their title, author and ISBN number. Ann

Foster wants to use the library.”

Book User
+ title: String + ID: int
+ author: String + name: String
+ ISBN: int + address: String

o ."D EEEEEEEEE SOFTWARE 203

Example - University Information System

* A university consists of multiple faculties which are composed of
various institutes. Each faculty and each institute has a name. An
address is known for each institute.

* Each faculty is led by a dean, who is an employee of the university.

« The total humber of employees is known. Employees have a social
security number, a name, and an email address. There is a distinction
between research and administrative personnel.

« Research associates are assigned to at least one institute. The field of
study of each research associate is known. Furthermore, research
associates can be involved in projects for a certain number of hours,
and the name, starting date, and end date of the projects are known.
Some research associates hold courses. Then they are called lecturers.

« Courses have a unique number (ID), a name, and a weekly duration in
hours.

DEPENDABLE SOFTWARE 204
ORATO!

K KONKUK
UNIVERSITY

Example - Step 1: Identifying Classes

« Auniversity consists of multiple faculties We model the system “University“
which are composed of various institutes.

Each faculty and each institute has a
name. An address is known for each University
institute.

« Each faculty is led by a dean, who is an
employee of the university.

* The total number of employees is known. Institute
Employees have a social security number,
a name, and an email address. There is
a distinction between research and
administrative personnel.

 Research associates are assigned to at
least one institute. The field of study of
each research associate is known.
Furthermore, research associates can be Adg:"‘f;f:gve Al s
involved in projects for a certain number o
of hours, and the name, starting date,
and end date of the projects are known.
Some research associates hold courses. Course
Then they are called lecturers.

* Courses have a unique number (ID), a
name, and a weekly duration in hours.

Faculty

Dean

Employee Research

Associate

Lecturer

Dean has no further attributes than
any other employee

I}EPENDABLE SOFTWARE 2 O 5
LABORATORY

KU KONKUK
UNIVERSITY

Example - Step 2: Identifying the Attributes

B

A university consists of multiple faculties
which are composed of various institutes.
Each faculty and each institute has a
name. An address is known for each
institute.

Each faculty is led by a dean, who is an
employee of the university.

The total number of employees is known.
Employees have a social security number,
a name, and an email address. There is

a distinction between research and
administrative personnel.

Research associates are assigned to at
least one institute. The field of study of
each research associate is known.
Furthermore, research associates can be

Institute

+ name: String
+ address: String

Employee

Faculty

+ name: String

+ ssNo: int
+ name: String
+ email: String

Research
Associate

+ fieldOfStudy: String

+ counter: int

Administrative

Project

. . . . Employee
involved in projects for a certain number + name: String
of hours, and the name, starting date, + start: Date
and end date of the projects are known. * end: Pate
Some research associates hold courses. S

ourse

Then they are called lecturers.

Courses have a unique number (ID), a
name, and a weekly duration in hours.

EPENDABLE SOFTWARE
LABORATORY

+ name: String
+id: int
+ hours: float

Lecturer

206

Example - Step 3: Identifying Relationships (1/¢

* Three kinds of relationships:

{abstract}
— Association SHUIDES
. . + ssNo: int
— (Generalization + name: String
) + email: String
— Aggregation + counter: int
. : . : Administrati R h
* Indication of a generalization Employee Asoomiate
— “There is a distinction between research + fieldOfStudy: String
and administrative personnel.”

— “Some research associates hold courses.
Then they are called lecturers.”

Lecturer

] :’ EPENDABLE SOFTWARE
0- 207
I ‘7_:‘ LABORATORY

Example - Step 3: Identifying Relationships (2/¢

« “Auniversity consists of multiple faculties which are composed of various

Institutes.”

Faculty

+ name: String

1

1.%

Institute

+ name: String
+ address: String

208

Example - Step 3: Identifying Relationships (3/t

“Each faculty is led by a dean, who is an employee of the university”

y LABORATORY

{abstract}
Employee
+ esNo: int 1 leads p 0..1
+dean

+ name: String
+ email: String
+ counter: int

Faculty

+ name: String

209

Example - Step 3: Identifying Relationships (4/¢

« “Research associates are assigned to at least one institute.”

Research
Associate

+ fieldOfStudy: String

Institute

+ name: String
+ address: String

210

KU KONKUK
UNIVERSITY

Example - Step 3: Identifying Relationships (5/¢

« “Furthermore, research associates can be involved in projects for a certain
number of hours.”

PSR Institute
Associate 1.% 1 *
+ fieldOfStudy: String + name: String
+ address: String

Participation

1+ hours: int

Lecturer

Project

+ name: String
+ start: Date
+ end: Date

l,j | DEPENDABLE SOFTWARE 211
i LABORATORY

Example - Step 3: Identifying Relationships (6/t

« “Some research associates hold courses. Then they are called lecturers.”

+ name: String
+id: int
+ hours: float

Administrative Research
Employee Associate
+ fieldOfStudy: String
Lecturer
1.%
Course teaches
1.% v

(¥ DEPENDABLE SOFTWARE
) LABORATORY

212

Example - A Complete Class Diagram

{abstract}
Employee

Facult
+ ssNo: int 1 leads p 0..1 y

+ name: String |+dean
+ email: String

+ name: String

+ counter: int 1
1.%
Administrative Resea_rch Institute
Employee Associate 1.% 1. *
+ fieldOfStudy: String + name: String
+ address: String
Participation
1+ hours: int
Lecturer
1.% K
Course teaches Project
1.% v
+ name: String + name: String
+id: int + start: Date
+ hours: float + end: Date

LABORATORY

S .'.DEPENDABLE SOFTWARE 213

What'’s the Relationship between Interactio A==l
and Class Diagrams?

« From interaction diagrams, class diagrams can be generated iteratively.
— When we draw interaction diagrams, a set of classes and their methods emerge.

— Two complementary dynamic and static views are drawn concurrently and
iteratively.

— Example:

» |If we started with the makePayment sequence diagram, we see that a Register and
Sale class definition in a class diagram can be obviously derived.

)
i L

I I
o makePayment(cashTendered) ! : |
1

-
-

makePayment{cashTendered) > ! I

y H]
3 [
f !
[Gy : #
i | messages in interaction L : 7
5 I
i’
L
i

| | diagrams indicate operation
in the class diagrams

Y classes
identified in the

interaction
P diagrams are
. Register | Sale declared in the
"\\ | 1 class diagrams
|
il currentSal e
Y makePayment(...) ‘ makePaymentf..

LABORATORY 2 1 4

I}EPENDABLE SOFTWARE 2 1 5
LABORATORY

Chapter 17.
GRASP: Designing Objects with
Responsibilities

OOD : Object-Oriented Design

« 0OOD is sometimes taught as some variation of the following:

— “After identifying your requirements and creating a domain model, then add methods
to the appropriate classes, and define the messaging between the objects to fulfill the
requirements.”

« But, itis not enough, because OOD involves deep principles.

— Deciding what methods belong to where and how objects should interact carries
consequences should be undertaken seriously.

« Mastering OOD is hard.
— Involving a large set of soft principles, with many degrees of freedom.
— A mind well educated in design principles is important.
— Patterns can be applied.

Q .::DEPENDABLE SOFTWARE 217

K[]’ KONKUK
UNIVERSITY

Object Design with Patterns

* During the UML drawing activity,
we can apply various OO design
principles, such as

— GRASP (General Responsibility Assignment

Software Patterns)
— Gang-of-Four (GoF) design
patterns.

« Design outputs:
— UML interaction diagrams
— Class diagram
— Package diagrams

EPENDABLE SOFTWARE
LABORATORY

Sample UP Artifact Relationships

Dwrreain Miodel
Busingess Sale i 1.* hﬁ::kl.;'ﬂ
Madeling dale
guantity
Use-Case Model
Process Sala
Ponem
o o 1. Cusbomar Supplementary
) Specificatio
Casvm amives pecification
: names |,
T3, Gashier b
|| enbers item i
y kdanlifiar, A non-functional
Require. e functional requirements
Use Case Diagram Ui s Texl requingments
- { that must be domain rules
ideas for System realized by
ihe pogi. avanis ha Dl'-i,ﬂm
condtions Y
Inspération for Systam
rmm T G‘CBSHF![
Opifalion ... il Lt i
sofbwikng T T make
doemain . | EpEem MewSaled | .
A oparations et Y
— Post-contilicns 4 - antertom | -
: "o [, quantity) 24 Ibam catals
R foarnats,
atarting events 10 Cparation Contracts Bystemn Sequence Disgrams walidation
dhixsign fo, and -
detalod podsi- F
condiion o f’F_—_—_—_—_‘_ _'_._
satisfy Desbgn Madel
Flisgester

1 ProductCatalog Saka

‘I) ﬁ.mwlha-m.
Design .-'\ [ResmlD, q-.uamulﬂ_ii
I e = getProductescriptiongtemiD) |

I addLinaliemi d, quantity |

I Regrater ProduciCatalog

I maketawSaa(] .
anlaribamd..)

GRASP: A Methodical Approach to Basic OO
Design

« GRASP : A Learning Aid for OO Design with Responsibilities
— General Responsibility Assignment Software Patterns

 The GRASP principles or patterns are a learning aid to help you
— Understand essential object design,
— Apply design reasoning in a methodical, rational, and explainable way,
— based on patterns of assigning responsibilities.

« We can apply the GRASP principles while drawing UML interaction
diagrams.
— Aid for naming, presenting, and remembering basic/classic design ideas

GRASP

+ 9 basic OO design principles or basic building blocks in design.

Creator

Controller

Pure Fabrication
Information Expert

High Cohesion
Indirection

Low Coupling
Polymorphism
Protected Variations

220

EPENDABLE SOFTWARE
LABORATORY

Pattern/

Sl Description
Principle P

Information A general principle of object design and responsibility assignment?

Expert
Assign a responsibility to the information expert—the class that has the information neces-
sary to fulfill the responsibility.

Creator Who creates? (Note that Factory is a common alternate solution.)
Assign class B the responsibility to create an instance of class A if one of these is true:
1. B contains A 4. B records A
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A

Controller What first object beyond the Ul layer receives and coordinates (“controls”) a system opera-

tion?

Assign the responsibility to an object representing one of these choices:

1. Represents the overall “system,” a “root object,” a device that the software is running
within, or a major subsystem (these are all variations of a facade controller).

2. Represents a use case scenario within which the system operation occurs (a use-case or
session controller)

Low Coupling

How to reduce the impact of change?

(evaluative)
Assign responsibilities so that (unnecessary) coupling remains low. Use this principle to
evaluate alternatives.
High How to keep objects focused, understandable, and manageable, and as a side-effect, support
Cohesion Low Coupling?
(evaluative)
Assign responsibilities so that cohesion remains high. Use this to evaluate alternatives.
Polymorphism Who is responsible when behavior varies by type?
When related alternatives or behaviors vary by type (class), assign responsibility for the
behavior—using polymorphic operations—to the types for which the behavior varies.
Pure Who is responsible when you are desperate, and do not want to violate high cohesion and
Fabrication low coupling?
Assign a highly cohesive set of responsibilities to an artificial or convenience “behavior”
class that does not represent a problem domain concept—something made up, in order to
support high cohesion, low coupling, and reuse.
Indirection How to assign responsibilities to avoid direct coupling?
Assign the responsibility to an intermediate object to mediate between other components or
services, so that they are not directly coupled.
Protected How to assign responsibilities to objects, subsystems, and systems so that the variations or
Variations instability in these elements do not have an undesirable impact on other elements?

Identify points of predicted variation or instability; assign responsibilities to create a stable
“interface” around them.

K

KONKUK
UNIVERSITY

221

Information Expert

Name Information Expert
Problem What is a basic principle by which to assign responsibilities to objects?
Solution Assign a responsibility to the class that has the information needed to fulfill it.
e
SR -
t!-\"'lﬁﬁand\ | |Em(..,|\ |
— e)
8w E:d(; wa e l"-l*“::_.'l |¢\h'¢ 315‘” J S uﬁ.ﬂ.i

Applying Information Expert

A software Board will aggregate all the Square objects. Therefore, Board has
the information necessary to fulfill this responsibility.

222

2 ‘ | DEPENDABLE SOFTWARE
LABORATORY

Creator

Name Creator

Problem Who creates an A?

Assign class B the responsibility to create an instance of class A, if one of these is
true (the more the better):

* B "contains" or compositely aggregates A.

B recordsA.

B closely uses A.

» B has the initializing data for A.

Solution

DEPENDABLE SOFTWARE
LABORATORY

Example: Creator

4o
H:{L £= 5 Sq&.}ﬁ\fl.

f——v§—- \ e |03 [

LR 5 fang r Mo,

! eee————
e

Monopoly iteration-1 domain model

I§ l l KONKUK
UNIVERSITY

Applying the Creator pattern in a dynamic model

or | Sqea
M_ . WOre

; e

In a DCD of the Design Model, Board has a composite
aggregation association with Squares.
We are applying Creator in a static model.

224

Controller

Name

Problem

Solution

| DEPENDABLE SOFTWARE
LABORATORY

Controller

What first object beyond the Ul layer receives and coordinates ("controls") a system
operation?

Assign the responsibility to an object representing one of these choices:

» Represents the overall "system," a "root object," a device that the software is
running within, or a major subsystem (all variations of a facade controller).

* Represents a use case scenario within which the system operation occurs.
(a use case or session controller)

:Mmm {
Gl
[N‘_'h
|
—_—
I owas

e 3
p— Dﬂﬂﬁ'mLmu -

Applying the Controller pattern using MonopolyGame.

Connecting the Ul layer to the domain layer of software objects. 5e

23 Design Patterns of GoF

KONKUK

UNIVERSITY

Abstract Factory
El Adapler
Bridge

Builder

Chain of Respancibilty

Command

Composite

Decorator

Facade

Flyweignt
Interpreter
tarator
Medistor
Memento

Prototype

Factory Method

Client }_’ Handler
ConcreteHandler! | | ConcreteHandler2
st})
Client |—»| Invoker
i
i
i
- — ¥ ConcreteCommand
+axecute()
" Command
Receiver
-
aston() executal)
winterfaces
AbstrastExpression

“interpret()

|+imerpnel(): Context |

|+merpm() - Context

sinterfaces dinterfacen
Aggregate Herator
+oreatelteraton]) et

T

o

‘ c

‘H:feabelhe(am} - Contaxt |

‘+nexro - Context |

Mediator

informs.

updates

ConcreteMediator

ConcreteColleague

Proxy

Obsarver

E|E!

Singleton

Strategy

Tempiate Mathod

vistor

sueszsser Chain of Responsibility

Type: Behavioral

What it is:

Aveid coupling the sender of a request to
its recsiver by giving more than one object
a chance to handle the request. Chain the
receiving objects and pass the request
along the chain until an object handles it

Command

Type: Behavioral

Whatit is:

Encapsulate a request as an objsct.
thereby lefing you parameterize ciients
with different requests, queue or log
requests, and support undoable operations.

Interpreter
Type: Behavicral

Whatitis:

Given a language. define a representation
for its grammar along with an interpreter
that uses the representafion to interpret
sentences in the language.

lterator

Type: Behavioral

Whatitis:

Provide 3 way to access the slements of
an aggregate object sequentially without
exposing its underlying representstion.

Mediator

Type: Behavioral

Whatitis:

Define an object that encapsulates how 3
set of objects interact. Promotes loose
coupling by keeping objests from referring
to each oiher explicitly and it lets you vary
their interactions independently.

Convert the interface of a class into
another interface clients expect. Lets
Classes work together that couldt
otherwise because of incompatible

Decauple an abstraction from its
implementation so that the twe can vary

Compose objects inio iree struciures to
represent pan-whole hierarchies. Lets
clients treat individual objects and
compositions of abjects uniformly.

Atiach additional respansibiities o an
object dynamically. Provide a flexible
aitemative o sub-classing for extending

Provide a unified interface to a set of
interfaces in a subsystem. Defines a high-
level interface that makes the subsystem

Use sharing to support large numbers of
fine grained objects efficiently.

Memento sinterfaces Adapter
Caretaker F -state Adapter |4 Client
Type: Behavioral +operafion() Type: Structural
What it is: = What it is:
Without violating encapsulation, capture |
and extemnalize an object’s intemal state I
so that the object can be restored to this N ! -
state later T ;
-state R -adaptee interfaces.
+setMemento(in m - Mements) [+operation()
)
pr
Observer Subj notfies [T interfaces Abstraction
= Observer * Bridge
. hfin © - Cbserver) » [+~operation() |
Type: Behavioral +detach(in o : Observer) [+updatef} dnteriaces Type: Structural
-+ Implements
Whatit is = s = What it is:
Define & one-to-many dependency between +operation/mpi(} -
objects so that when one object changes
state, all its dependents are notified and independantly.
updated automatically.
ConcreteSubject | opszryes | ConcreteObserver
c ‘ -
+update() i) ‘ i Y ‘
ainteraces .
State [comex | Component Composite
- =
Type: Behavioral .mmda:e. +m, Cw:;ﬁ, Type: Structural
-+ finc:
Whatit is: “handie(ini- What it is:
Allow an object o alterits behavior when fE=tid i)
its intemal state changes. The object will
appear to change its class
c e
| ConcreteStated | CongreteState2 ‘ | Leaf | Sk
Prese—e e roperationd) | +addfin : Composite)
| =L | | m=b ‘ | +remove(in ¢ : Campasits)
+getChiid(in| - int)
Strategy ’W‘.—‘ ,5""’*""“' ConcreteComponent| [)acorator
Type: Bhavioral intert +operation]) +operation()
== | Type: Structural
What it is:
Define a family of aigorithms, [EEEl Decorator Whatit is:
encapsulate each one, and make them
interchangeable. Lets the algorithm vary P
independently from m
clients that use it ‘ ‘ ConcreteDecorator functionaliy.
c o
"lexeu.lle(} | |+exewoa() ‘
[+operatoni)
|+addedBehavior()
Template Method AbstractClass Facade Facade
Complex system|
Type: Behavioral [+templateMethod() Type: Structural
f#subMethod()
What it is What it is:
Define the skeleton of an aigerithm in an
operation. deferring some steps fo subdlasses.
Lets subclasses redefine cenain steps
of an algorithm witheut changing the easierio use.
smm—— I
: sinterfaces iea0e
Visitor Visitor “Fyweight)
- - . = Flyweight
Type: Behavioral ; (ina -) +operation(in extrinsicStale)
+vigitElementE(in b - ConcreteElements) L
What it is: _ Type: Structural
N ainterfaces
Represent an operation to be e Client .
performed on the elements of an ConcreteVisitor = Whatit is:
object structure. Lets you define a +accept(in v : Visitor]) l
new operation without changing C) -
the classes of the elements on | +viseElementBl(in b - ConcreteElementB) ConoreteFlyweight
which it operates. SntrinsicState .
L yweig!
+acceptiin v - Visitor) eisiste

Proxy
Type: Structural
What it is:

Provide a sumogate or placshalder for
another object to control access to it

sinterfaces
Subjest

+requeat])

| RealSubject L"EP’ESE’“—" |

Proxy

|+requestn

\ |+requmc)

Abstract Factory

Type: Creational

What it is:

Provides an interface for creating
families of related or dependent
cbjects without specifying their
conerete class.

|+ createProductB)
. winterfaces
Builder Director Bt
Type: Creational [reanstruct() [+buildPart(]
What itis:
Separate the construction of a
complex object from its representing
so that the same construction
process can create different ConcreteBuilder
representations.
[+buiidFan)
|+ getResuit])
Factory Method Creator
Type: Creational W Crnationd)

What it i
Define an interface for creating an
object. but let sublasses deside which
class to instantiate. Lets a class defer
instantiation to subclasses.

Prototype [owm]
Type: Creationd D
Prototype
What it is: +olone()
Specify the kinds of objects to create
using a prototypical instance, and
create new cbjecs by copying this
proftype.
ConcretePrototypel ConcretePrototype2
|+clona() +clone()
Singleton
Type: Creational Singleto
[-static uniquelnstance.
What it is: -singletonData
Ensure a class only has one instance and =
! - [+stadc instancef)
provide a global peint of access toiit. +SingletonOperation()

EPENDABLE SOFTWARE 2 2 7
LABORATORY

Chapter 19.
Designing for Visibility

Visibility Between Objects

* In message passing between objects,

— For a sender object to send a message to a receiver object, the receiver must be
visible to the sender.

« The sender must have some kind of reference or pointer to the receiver object.

— Example,

* The getProductDesc message sent
from a Register to a ProductCatalog clnss Register A
implies that the ProductCatalog instance {

should be visible to the Register instance. R X

}.,.

0

- Register | : ProductCatalog
enterltem | . |
(temID, quantity) i .
desc = getProductDesc(itemID) ._:
e :
| i
| |
public void enterltem(itemID, gty) A :

{

desc = catalog.getProductDesc(item|D)

S .::IJEPENDABLE SOFTWARE 229

LABORATORY

Visibility

Visibility is the ability of an object to “see” or “have a reference to”
another object.

— When an object A sends a message to an object B, B must be visible to A.
— The issue of scope: “Is one resource (such as an instance) Within the scope of another?”

— 4 common ways that visibility can be achieved from object A to object B:
Attribute visibility : B is an attribute of A.

Parameter visibility : B is a parameter of a method of A.

Local visibility : B is a (non-parameter) local object in a method of A.
Global visibility : B is in some way globally visible.

-l

A 4

Attribute Visibility

« Attribute visibility from A to B exists, when B is an attribute of A.
— Relatively permanent visibility, because it persists as long as A and B exist.
— Very common form of visibility in object-oriented systems

— For example,

» For the class Register, a Register instance may have attribute visibility to a
ProductCatalog, since it is an attribute of the Register.

‘ |
public void enterltem(itemID, qty)

{

class Register

{

spec = catalog.getSpecification(itemID)

private ProductCatalog catalog;, sseeqssesssessnsesjmessorsts O
h }
! }
kS
: [e
enterltem ~Reqister ProductCatalo

(itemID, quantity) _l
'L spec ;= getSpecification(itemID)

—_— Y

LABORATORY

S‘ .'DEPENDABLE SOFTWARE 231

Parameter Visibility

- Parameter visibility from A to B exists, when B is passed as a parameter to
a method of A.

— Relatively temporary visibility, because it persists only within the scope of the
method.

— The second most common form of visibility in object-oriented systems.

— For example,

« When the makelLineltem message is sent to a Sale instance, a ProductDescription
instance is passed as a parameter. Within the scope of the makelLineltem method, the
Sale has parameter visibility to a ProductDescription.

entarltem(id, gly] —a 2 makeLingllem|dese, qiy) —=
:Riegister :Sala

1; desc = getProduciDescid)

2.1: create(dess, gly)

' .

-Product T
Catalog

makeLinaltern{PraductDescriplion dE‘EG.‘ij:ltaqlﬂ-

sl = pew SalesLinelem{dese, gly);

}
| B Y
B] EDEPENDABLE SOFTWARE 232

B LABORATORY
4

Parameter to Attribute Visibility

« ltis common to transform parameter visibility into attribute visibility.

— For example,

« When the Sale creates a new SalesLineltem, it passes the ProductDescription in to its
initializing method (in C++ or Java, this would be its constructor). Within the initializing
method, the parameter is assigned to an attribute, thus establishing attribute visibility.

enteritem(id, gty) -
Regisier
2: desc = gatProductDesciid)

L

‘Product
Catalog

i initializang meathod (e.g., a Java consirecior)
SalesLineltem{ProduciDescription desc, int giy)

£

description = desc; & parameter to attribule visibility

%

-
Th

(¥ DerenDABLE SOFTWARE
I LABORATORY
<2

2: makelinaltem{dasc, gty)

| N

-

‘Sale

2.1: create(desc, gly)

gl : Sakeslineliam

public class SalesLineItem
{
private int quantity;
private ProductDescription description;

public SalesLineItem (ProductDescription desc, int quantity)
{
this.description = desc; this.quantity = quantity;

}

public Money getSubtotal()
{

return description.getPrice().times(quantity);
}

233

B

Local Visibility

« Local visibility from A to B exists, when B is declared as a local object
within a method of A.

— Relatively temporary visibility, because it persists only within the scope of the
method.

— As with parameter visibility, it is common to transform local visibility into attribute
visibility.

« Two common ways for local visibility:
1. Create a new local instance and assign it to a local variable.
2. Assign the returning object from a method invocation to a local variable.

enterltem(id, gty) ‘
{

i local visibility via assignment of returning object
ProductDescription desc = catalog.getProductDes(id);
}
ent:;rltem : F{e?ister : ProductCatalog
(itemID, quantity) |
desc = getProductDesc(itemlD)

e e W sl

.'DEPENDABLE SOFTWARE 234

LABORATORY

Global Visibility

Global visibility from A to B exists, when B is global to A.
— Relatively permanent visibility, because it persists as long as A and B exist.
— The least common form of visibility in object-oriented systems

One way to achieve global visibility is

— Assign an instance to a global variable, which is possible in some languages,
such as C++, but not others, such as Java.

The preferred method to achieve global visibility is to use the Singleton
pattern.

ABLE SOFTWARE 235
BORA

I}EPENDABLE SOFTWARE 2 3 6
LABORATORY

Chapter 20.
Mapping Designs to Code

Mapping Designs to Code

« The UML artifacts created during the design work (Interaction diagrams and DCDs)
will be used as input to the code generation process.

* Implementation in an OO language requires writing source code for:
— class and interface definitions
— method definitions

- Atranslation from UML designs to code is required.
— from class diagrams to class definitions,
— from interaction diagrams to method bodies.

238

Creating Class Definitions from DCDs

« DCDs are sufficient to create a basic class definition in an OO language.

— For example,

« From the DCD, a mapping to the attribute definitions(Java fields) and method signatures
for the Java definition (SalesLineltem) is straightforward.

public class SalesLinelte m L~
{

private int quantity;

| private ProductDescription description ;
public SalesLineltemiProductDescription desc, intqtyl {.. }
public Money getSubtotal () ... }

1

ProductDescription
SalesLimelte m r
' 7 description | description : Text
quantity : Integer < [5 = price : Money
[1 | itemID:lteml D
getSubtotal) : Money

LABORATORY

S .::DEPENDABLE SOFTWARE 239

KU tvssmy
Creating Methods from Interaction Diagrams

« The sequence of the messages in an interaction diagram translates to a
series of statements in the method definitions.

— For example,
« The enterltem interaction diagram illustrates the Java definition of the enterltem method.

(Method) The enterltem message is sent to a Register instance;

therefore, the enterltem method is defined in class Register. Message 2: The makeLineltem message is sentto the Sale.

public void enterltem(ltemID itemID, int gty) currentSale.makeL.ineltem(desc, qty);

enterivem(id, qty) - 2: makeLineltem{desc, qty) -
Register Sale

1: desc =getProductDesclid) ’ 2.1: create(dese, qty)

Message 1: A getProductDescription message is sent to

the ProductCatalog to retrieve a ProductDescription. ¥
Product

Catalog
ProductDescription desc = catalog.getProductDescription(itemID);

sk SalesLineltem

1.1: desc = getlid)
v 2.2:add (s)
T

lingltems :

: Map-<ProductD ipticns : 4
pialeennen vl List<SalesLimelte m>

S .'.DEPENDABLE SOFTWARE 240

LABORATORY

K KONKUK
UNIVERSITY

The Register.enterltem Method
public class Register b
{
private ProductCatalog catalog;
private Sake currentSale ;
public Register(ProduciCatalog pe) . 1 | RIOAKICHIGY |
public void endSale() () catalog | |
public void enteritem(itemiD id, int qty) L} 1| getProduciDese) |
public void makeNewSale () [... } | |
public void makePayment{Money cashTendered) (. .}
]
: sale
Register iComplete : Boolean
- tirne : DateTime
enterltem() |- currentSale |
] 1 becomeComplete ()
xtrs:::n'ﬂﬁ' heml D, qty : Integer) 1 makeLinelteml..)
makeNewSal e{) makeFayment(...)

getTotal()

makePayment {cashTendered : Money)

{
ProductDescription desc = catalog.ProductDescription (id);
currentSale makeLineltem{desc, qty) ;

i

o
enterltemlid, qty) —w 2:makeLineltem(dese, qy) —
‘Register | Sale

1: desc = getProductDescription (id)

.

| Product
Catalog

“EPEND}\BLE SOFTWARE 241
LABORATORY

Collection Classes in Code

* One-to-many relationships are common.

— For example, a Sale must maintain (attribute) visibility to a group of many
SalesLineltem instances.

- Sale
public class Sale
! isComplete : Boolean -
- time : DateTime SalesLineltem
lineltems)
private List lincltems = new ArrayListl) ; becomeComplete () 3 o quantity : Integer -
' . makeLlineltam() =
makePayment () getsubtotal()
getTiotall)

A collection class is necessary 1o h‘
maintain attribute visikility to all the
SalesLinelterns .

* In OO programming languages, they are usually implemented with the
introduction of a collection object of collection classes.

— List (ArrayList — List interface) : a growing ordered list
— Map (HashMap — Map interface) : a key-based lookup
— Simple array

LABORATORY

S .'.DEPENDABLE SOFTWARE 242

Example : Defining the Sale.makeLineltem e
Method

 The makeLineltem method of class Sale can be written by inspecting the
enterltem communication diagram.

: A
lineltems.add(new SalesLineltemidesc, qty));
}
enterltem(id, qty) - ' 2: makeLineltem(desc, qty) —*= _
Register - 1 Sale
2.2:add (s 1) 0
2.1: create(desc, qty)
v

)

lineltems:

List<SalesLineltem sl: SalesLineltem

y A Y

|) | DEPENDABLE SOFTWARE 2 43

B LABORATORY
P

Order of Implementation

» Classes need to be implemented from least-coupled to most-coupled.

— For example,
» Possible first classes to implement are either Payment or ProductDescription.

» Next are classes only dependent on the prior implementations; ProductCatalog or
SalesLineltem.

Store o
| address : Addres s | 1 ;
name : Text . Y o PraductDescription

ProductCatalog
addS.aIe L) description : Text
— —= price s Mone vy
2 1..%| itemID: ItemID
“ | getProductDesc (..) |

1
g1 o Sale o

Registe r " isComplete ; Boolea n S — o
| time : DateTime ales Lineltem :

| becomeComplet e{)
makeLineltern (...
makePayment (...)
getTota ()

l'.) T
| Payrment o

: 2= ameunt : Money

| ! = quantity : Integer
endsal ef} 1 1%

entarltem(...)

makeMNewSale ()

makePaymen tl..)

getSubtatal()

A possible order of class implementation and testing
S E\I}EPENDABLE SOFTWARE 244

LABORATORY

KU KONKUK
UNIVERSITY

Example: the NextGen POS Program Solution

« Translation from design artifacts to a foundation of code.

— This code defines a simple case; it is not meant to illustrate a robust, fully
developed Java program with synchronization, exception handling, and so on.

Store Uses
1| address : Address 1 1

_ _ _ name : Text v ProductS ficat
// all classes are probably in a package named something like: pr— ProductCataos dr ucr pecT..ca.on

- . t t

// package com.foo.nextgen.domain; 1 Looksin 1 |- | Contains _{ o Money

N - 1 1.* | itemID: ItemID
getSpecification(...)

_ Houses — /r}, PR
public class Payment 1 1 " __ fescies
{ v / Sale — — N

H - Register date : Date —_
prlvate Money amount; : isComplete : Boolean SalesLineltem
- < Captures time : Time 1 Contains i quantity - Integer
= - - endSale() 1. 1 .
public Payment(Money cashTendered){ amount = cashTendered; } enterltem(...) : el getSubtotal()
public Money getAmount() { return amount; } gg’;gggyggr'ﬁp) : makePayment()
} : getTotal()
. K
Logs-completed* : * 1 Payment
. Paid-by
>{ amount : Money
A dependency of Register knowing about 1
ProductSpecification

Recommended when there is parameter,
global or locally declared visibility.

PENDABLE SOFTWARE 24 5
LABORATORY

public class Register

{

private ProductCatalog catalog;
private Sale currentSale;

public Register (ProductCatalog catalog)

{
this.catalog = catalog;
}
public void endSale()
{
currentSale.becomeComplete();
}
public voud enterltem (ItemID id, int quantity)
{
ProductDescription desc = catalog.getProductDescription (id);
currentSale.makeLineltem (desc, quantity);
}
public void makeNewSale()
{
currentSale = new Sale();
}
public void makePayment (Money cashTendered)
{
currentSale.makePayment (cashTendered);
}

KONKUK
UNIVERSITY

K

EPENDABLE SOFTWARE
LABORATORY

Store Uses
1| address - Address 1 l]
name : Text ProductSpecification
ProductCatalog
addSale(...) Contains description : Text
1 Looks-in 1L — —>{ price : Money
) N 1 1.* | itemID: ItemID
getSpecification(...)
Houses ———— .
e— _,/ V4
- Descnbes
1 1 A Sale _ -~
*
Register date : Date —_— ,
: isComplete : Boolean SalesLineltem
< Captures time : Time 1 Contains > quantity - Integer
endSale() 1: 1 1.
enterltem(...) . becomeComplete() getSubtotal()
makeNewSale() makeLineltem(...)
makePayment(...)
makePayment(...) getTotal()
Logs-completed® *T 1 Payment
Paid-by

ProductSpecification

global or locally declared visibility.

A dependency of Register knowing about

Recommended when there is parameter,

amount . Money

246

R

Example: POS Domain Model Packages

« After Elaboration - lteration 3.

Doamain
Cora/Misc Payments Products Sales

Authorization
Transactions

‘DEPENDABLE SOFTWARE 247
\ ORATO

—

Cora/Misc Products l
Slore Sales:
Houses -
address 1 1.0 Register ‘ ‘ Manager SalesLineltem 0.1
. *
name 1" Described-by
! Empl
s Product
Description
‘ ProductCatalog]. -] description
1 1.
price
Paymants itemiD
1 — *Authorizes-payments-ol __ , . 1
Paymen Cora::Slora - AutharzationSenvice Records-sale-of *
I SarviceContract | Describas
amawnt 1] address
merchantil nams
phanaNurmbser *
PablY | oy AV Core: Stocks | i
1 g N Store 1 * 1
1 y 3
] | i -] : Check Cradit
CosPayment | | R aoneck | Muhorzaddy | pyshorizaton Authorization
amountTendered [w ww [w ; il ,ng
L % 1
Authin zed-by Gales
Logs * L -
Establishes- Establishes- T v | pvmm 1
cradit-dor * identity-far = L i 1 Rugister
1 1 1 Autherization Transactions:: 3
. : : PaymentAuthonzationReply Witialas |=| e
Accounts | CrediCard DriversLicense S 1. ecords-sales :
f | | ax]
TR | expiryDiate numear Linaftarm - sdle | SalesLineltem Cashiar
| number T - ChackPayments have I e date - :
' - Idenilies CheckPaymentReplies e isComplete 1.4 fquantity
Abusad-by * | s sCumtrian - CraditPayments have L T
1 - | CredilPaymantRaples ‘L ——
1 Store
“EPEND}\BLE SOFTWARE 248
LABORATORY

‘ I(I KONKL‘K
UNIVERSITY

Partial Layers of POS

(]}
Swing © L Text
e notthe Java Ia s
ProcessSale | Swing libraries, but | ProcessSale Laoact 1 sk
Frame our GU| classes | Console Sipe
basad on Swing
-Domai'n
Salas Pricing
Ragister Sala PricingStrategy ainferfacaes
Factory ISalePricingSirategy
SenviceAccess Payments
. 1 aintarfaces
Elz‘:lmms CreditPayment ICreditAutharization
chory | ServiceAdapter
Ieantary POSRuleEngina Taxes
sinterfaces ainterfaces
linvenioryAdapter POBEAMENIRAT hoade ITaxCalculatorAdapter
Technical Servicas
F&I‘EISIEI"IE& 1 i g’EﬂE‘;HI h
—_— purposa third-
L J Jess SOAP
DEFacade - | party rules
enging,

I}EPENDABLE SOFTWARE 249
LABORATORY

K KONKUK
UNIVERSITY

Deployment View of POS

Deployment View
£ y f
HSEFVERD /
: PET=Ta
{ O5=Red Hat Enterprise Linux 4 } nericSanver
£ 2 #systems
wdatabases CreditFa}rnrent
- PostgreSQL 10 e
wartifacts | =
Product Tables
| SQL over TCP g
.":] |'II'I v - g2 .l':
aterminals - ¥ HSENers
 POSTeminal custom protocols Dell PowerEdge 3600
{JVM = Sun Hotspot Client 2.0} || o 1op of TCP { OS=Red Hat Enterprise Linux 4 }
aartifacts ' wartifacts
GoodAsGoldTaxCalculalor axe

MextGanClient jar

S0AP over HTTP

. I /]
“SErvers
 GenericServer
/ inventory A
<ERP=» B and
cSAP accounting
¥

250

EPENDABLE SOFTWARE
LABORATORY

I}EPENDABLE SOFTWARE 2 5 1
LABORATORY

Object-Oriented Analysis and Design -
Summary

KU KONKUK
UNIVERSITY

An Short Example of OOAD - Dice Game

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.
- If the dice’s face value totals seven,
player wins; otherwise, player loses.

Player 5 Rolls 2 o
name faceValue
1 | 2
Plays
1
DiceGame |1 Includes

Domain Model

Define domain Define interaction Define design class
Define use cases : .
model diagrams diagrams
------------------------------------ 00 sl] 0] 1 R

play() roll()

Design Class Diagram

| :

E.k:t) I \ ; i

\ i

| b] 1

— ca\) ; b, i

| - L3 1 1 i

.............. g é ‘i \ i
) \ { :

¢ e]
: DiceGame Die i
] die1 : Die . 1 2 faceValue : int i
; die2 : Die |
: - getFaceValue() : int i

Software Development Process and the UF

« Software development process

— A systematic approach to building, deploying and possibly maintaining software

« Unified Process (UP): a popular iterative software development process for

building object-oriented systems
— Inspired from Agile
— lterative
— Provides an example structure for how to do OOA/D

— Flexible (can be combined with practices from other OO processes)
— A de-facto industry standard for developing OO software

254

Risk-Driven and Client-Driven Iterative Planning

 The UP encourages a combination of risk-driven and client-driven
iterative planning.
— To identify and drive down the high risks, and
— To build visible features that clients care most about.

» Risk-driven iterative development includes more specifically the practice of
architecture-centric iterative development.
— Early iterations focus on building, testing, and stabilizing the core architecture.

Wlaelsfals| L 1 T 1 [[T [1 T [T [[20]

N -

N

Y
\\ ~ requirements workshops =--—--.______ -

—_——
=
—_—
—
—_—

—_——
o
—_
—
——

‘\\

N
Imagine this will N\ ; { T T ~—_
ultimately be a 20- [
iteration project.

In evolutionary iterative
development, the
requirements evolve
over a set of the early
iterations, through a
series of requirements 90% 90%
workshops (for
example). Perhaps
after four iterations and 50%
workshops, 90% of the
requirements are 30%
defined and refined. 20% 5 20%
Nevertheless, only 2% 5% 8% 10%

o :
10% of the software is Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

() DerEnDABLE SOFTWARE built. L J - M — 255
'y LABORATORY »° a3-week iteration S~
s

requirements |g
software

requirements &
software

-~
—

The UP Phases

A UP project organizes the work and iterations across 4 major phases:
1. Inception : approximate vision, business case, scope, vague cost estimates

2. Elaboration : refined vision, iterative implementation of the core architecture,
resolution of high risks, identification of most requirements and scope, more
realistic estimates

3. Construction : iterative implementation of the remaining lower risk and easier
elements, and preparation for deployment

4. Transition : beta tests, deployment

developmentcycle
A
- , _ ™
iteration phase
K/\ A
s A
inc. elaporation construcition transition
A T T
milestone release increment final production
L _ 4 release
An iteration end-point A stable executable subset The difference (delta) _ _
when some significant of the final product. The between the releases At this point, the system
decision or evaluation end of each iterationis a of 2 subsequent is released for
occurs. minor release. iterations. production use.

S iD EPENDABLE SOFTWARE 2 5 6

LABORATORY

The UP Disciplines

A four-week iteration (for example).

A mini-project that includes work in most Note that
disciplines, ending in a stable executable. although an
. iteration includes
= ; [0 work in most
Up Dt'j'mf’ ;-’-_ disciplines, the
Isciplines relative effort and
S _ ‘| emphasis change
4 Business Modeling : : oveﬁ time :
Focus ‘ P .y o | _ |
of this Requirements ——— — — 1 — This example is
book ‘ Seci P o | I e N S suggestive, not
, esign ——— g g —— o i
_ J — —— literal.
Implementation —————"""-5
Test
Deployment _7__ S S —
Configuration & Change — T —
Management | ————— : ' |
Project Management —— . —
Environment
lterations

S iD EPENDABLE SOFTWARE 2 5 7

LABORATORY

Relationship Between the Disciplines and

Phases

» The relative effort in disciplines shifts to across the phases.

Sample
UP Disciplines

Business Modeling
Requirements
Design

Implementation

) DEPENDABLE SOFTWARE
y LABORATORY

KU KONKUK
UNIVERSITY

Business Modeling
Requirements

Analysis & Design

Implementation

Test

Deployment
Configuration

& Change Mgmt

Project Management

Environment

incep- : . transi-
: elaboration construction .
tion . . | - | tion k
' The relative effort in
disciplines shifts
s TN IR across the phases.
[ot T AR B e s B NEE N N I OO T This example is
] N P T = ¢ suggestive, not literal.
o ‘ e
Phases
Disciplines |Inception|| Elabaration || Construction ” Transitrnn|

' : —
E E—
' ; —

P —
iti Const || Const | Const || Tran || Tran
[[1] o 02 o= f e [5% || |

Iterations

258

K KONKUK
UNIVERSITY

The UP Artifacts and Timing

Sample Unified Process Artifacts and Timing (s-start; r-refine)

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration=» I1 El..En Cl1..Cn T1..T2
Business Modeling |Domain Model s
Requirements Use-Case Model S T
Vision s r + System Sequence Diagram
Supplementary Specification s r + Operation Contract
Glossary s r
Design Design Model s r Design Model
SW Architecture Document s + Class Diagram
Data Model s r + Interaction Diagram
Implementation Implementation Model (code, html, ...) S r r + Package Diagram

+ Statechart Diagram
+ Activity Diagram
+ Deployment Diagram

I}EPENDABLE SOFTWARE 2 5 9
LABORATORY

The UP Artifact Relationships

conceptual
classes in
the
domain
inspire the
names of
some
software
classes in
the design

EPENDABLE SOFTWARE
LABORATORY

Sample Unified Process Artifact Relationships
Domain Model

Sale Register ProductCatalog

Caplured-on

dateTime 1 1

domain concepts »
Use-Case Model
. System
- =
Process Sale Cashier !
Process ! make I
Salo use 1. Customer | NewSale :
case ; system I ™
Cashier arrives ... ¢ H I
rrames._ 2 Cashier even S’ | _enlerlteafn :
makes new : (id, quantity) N.
sale.) I
=
3 | =
Use Case Diagrams Use Case Text System Sequence Diagrams
dse-case Design Model
realization with g
m_feractmn . Register : ProductCatalog
diagrams — .
|
makeNewSale >t i
create -
________________________ - . ———— ¥
. : > Sale
enterltemn(id, quantity) p ! : :
desc = getDescription(id) > |
1
addLineltem(desc, quantity) T it
I
> | N
| 1 I
the design
Register classes
ProductCatalog | A discovered
1 while designing
>~ UCRs can be
makeNewSale() catalog summarized in

enterltem(_..) getDescription(...) : ProductDescription

class diagrams

260

Connections Between SSDs, System OperatiofSiE=l
and Layers

* In a well-designed layered architecture,

— The Ul layer objects will forward or delegate the requests from the Ul layer (system
operations) ONto the domain layer for handling.

— The messages sent from the Ul layer to the domain layer will be the messages
illustrated on the SSDs.

:System enterltem()

- Cashier ProcessSale endSale()
Frame

Ul -
Swing makeNewSale() %

0
makeNewSale()
enterltem()

|
! |

L makeNewSale() :

: >, : Cashier
I_enterltem(id, quantitv),l

| | makeNewSale()

| ¢ —deseription, total _ __| enterltem()

| ! , endSale() ©.

| | Domain

| |

! [

|

;' endSale() > Register

| l

| I

' I

' I

|

the system operations handled by the system in an SSD represent the
operation calls on the Application or Domain layer from the Ul layer

S‘ .'DEPENDABLE SOFTWARE 261

LABORATORY

What'’s the Relationship between Interactio A==l
and Class Diagrams?

« From interaction diagrams, class diagrams can be generated iteratively.
— When we draw interaction diagrams, a set of classes and their methods emerge.
— Suggests a linear ordering of drawing interaction diagrams before class diagrams.

— But in practice, these complementary dynamic and static views are drawn
concurrently or iteratively.

— Example:

 if we started with the makePayment sequence diagram, we see that a Register and
Sale class definition in a class diagram can be obviously derived.

N
% L)

|
makePayment(cashTendered) ! I

-

‘ makePayment(cashTendered) !

y J
P = !
! L) !
i | messages in interaction L ' f
5 I
L
!,
L

\ | diagrams indicate operation !

| i
in the class diagrams i ¢ | classes

identified in the
interaction

\
.

= diagrams are
Sale — declared in the

Register

currentSale |

! 1 class diagrams
[
‘ makePayment(...)

al makePayment{...)

] .'D EEEEEEEEE SOFTWARE 262
Y BORAT!

OOD : Object-Oriented Design

« 0OOD is sometimes taught as some variation of the following:

— “After identifying your requirements and creating a domain model, then add methods
to the appropriate classes, and define the messaging between the objects to fulfill the
requirements.”

« But, itis not enough, because OOD involves deep principles.

— Deciding what methods belong to where and how objects should interact carries
consequences should be undertaken seriously.

« Mastering OOD is hard.
— Involving a large set of soft principles, with many degrees of freedom.
— A mind well educated in design principles is important.
— Patterns can be applied.

| .::DEPENDABLE SOFTWARE 2 63

KU KONKUK
UNIVERSITY

GRASP

+ 9 basic OO design principles or basic building blocks in design.

— Focusing on using the pattern style as an excellent learning aid for naming,
presenting and remembering basic/classic design ideas

— Creator
- C o ntI'O I I er Tattern/ Description

Principle

- Pu re Fabrlcatlon Information A general principle of object design and responsibility assignment?

Expert

_ Info rm ation Expert Assign a responsibility to the information expert—the class that has the information neces-

sary to fulfill the responsibility.

- H Ig h COheSIOn Creator Who creates? (Note that Factory is a common alternate solution.)

_ H H Assign class B the responsibility to create an instance of class A if one of these is true:
Ind I reCtlon 1. B contains A 4. B records A
- 2. B aggregates A 5. B closely uses A
— Low Coupllng 3. B has the initializing data for A
H Controller What first object beyond the Ul layer receives and coordinates (“controls”) a system opera-
— Polymorphism T :

—_ Prote cted Va riations Assign the responsibility to an object representing one of these choices:

1. Represents the overall “system,” a “root object,” a device that the software is running
within, or a major subsystem (these are all variations of a facade controller).

2. Represents a use case scenario within which the system operation occurs (a use-case or
session controller)

Low Coupling How to reduce the impact of change?
(evaluative)
Assign responsibilities so that (unnecessary) coupling remains low. Use this principle to
evaluate alternatives.

EPENDABLE SOFTWARE 264
LABORATORY

23 Design Patterns of GoF

KONKUK

UNIVERSITY

Abstract Factory
El Adapler
Bridge

Builder

Chain of Respancibilty

Command

Composite

Decorator

Facade

Flyweignt
Interpreter
tarator
Medistor
Memento

Prototype

Factory Method

Client }_’ Handler
ConcreteHandler! | | ConcreteHandler2
st})
Client |—»| Invoker
i
i
i
- — ¥ ConcreteCommand
+axecute()
" Command
Receiver
-
aston() executal)
winterfaces
AbstrastExpression

“interpret()

|+imerpnel(): Context |

|+merpm() - Context

sinterfaces dinterfacen
Aggregate Herator
+oreatelteraton]) et

T

o

‘ c

‘H:feabelhe(am} - Contaxt |

‘+nexro - Context |

Mediator

informs.

updates

ConcreteMediator

ConcreteColleague

Proxy

Obsarver

E|E!

Singleton

Strategy

Tempiate Mathod

vistor

sueszsser Chain of Responsibility

Type: Behavioral

What it is:

Aveid coupling the sender of a request to
its recsiver by giving more than one object
a chance to handle the request. Chain the
receiving objects and pass the request
along the chain until an object handles it

Command

Type: Behavioral

Whatit is:

Encapsulate a request as an objsct.
thereby lefing you parameterize ciients
with different requests, queue or log
requests, and support undoable operations.

Interpreter
Type: Behavicral

Whatitis:

Given a language. define a representation
for its grammar along with an interpreter
that uses the representafion to interpret
sentences in the language.

lterator

Type: Behavioral

Whatitis:

Provide 3 way to access the slements of
an aggregate object sequentially without
exposing its underlying representstion.

Mediator

Type: Behavioral

Whatitis:

Define an object that encapsulates how 3
set of objects interact. Promotes loose
coupling by keeping objests from referring
to each oiher explicitly and it lets you vary
their interactions independently.

Convert the interface of a class into
another interface clients expect. Lets
Classes work together that couldt
otherwise because of incompatible

Decauple an abstraction from its
implementation so that the twe can vary

Compose objects inio iree struciures to
represent pan-whole hierarchies. Lets
clients treat individual objects and
compositions of abjects uniformly.

Atiach additional respansibiities o an
object dynamically. Provide a flexible
aitemative o sub-classing for extending

Provide a unified interface to a set of
interfaces in a subsystem. Defines a high-
level interface that makes the subsystem

Use sharing to support large numbers of
fine grained objects efficiently.

Memento sinterfaces Adapter
Caretaker F -state Adapter |4 Client
Type: Behavioral +operafion() Type: Structural
What it is: = What it is:
Without violating encapsulation, capture |
and extemnalize an object’s intemal state I
so that the object can be restored to this N ! -
state later T ;
-state R -adaptee interfaces.
+setMemento(in m - Mements) [+operation()
)
pr
Observer Subj notfies [T interfaces Abstraction
= Observer * Bridge
. hfin © - Cbserver) » [+~operation() |
Type: Behavioral +detach(in o : Observer) [+updatef} dnteriaces Type: Structural
-+ Implements
Whatit is = s = What it is:
Define & one-to-many dependency between +operation/mpi(} -
objects so that when one object changes
state, all its dependents are notified and independantly.
updated automatically.
ConcreteSubject | opszryes | ConcreteObserver
c ‘ -
+update() i) ‘ i Y ‘
ainteraces .
State [comex | Component Composite
- =
Type: Behavioral .mmda:e. +m, Cw:;ﬁ, Type: Structural
-+ finc:
Whatit is: “handie(ini- What it is:
Allow an object o alterits behavior when fE=tid i)
its intemal state changes. The object will
appear to change its class
c e
| ConcreteStated | CongreteState2 ‘ | Leaf | Sk
Prese—e e roperationd) | +addfin : Composite)
| =L | | m=b ‘ | +remove(in ¢ : Campasits)
+getChiid(in| - int)
Strategy ’W‘.—‘ ,5""’*""“' ConcreteComponent| [)acorator
Type: Bhavioral intert +operation]) +operation()
== | Type: Structural
What it is:
Define a family of aigorithms, [EEEl Decorator Whatit is:
encapsulate each one, and make them
interchangeable. Lets the algorithm vary P
independently from m
clients that use it ‘ ‘ ConcreteDecorator functionaliy.
c o
"lexeu.lle(} | |+exewoa() ‘
[+operatoni)
|+addedBehavior()
Template Method AbstractClass Facade Facade
Complex system|
Type: Behavioral [+templateMethod() Type: Structural
f#subMethod()
What it is What it is:
Define the skeleton of an aigerithm in an
operation. deferring some steps fo subdlasses.
Lets subclasses redefine cenain steps
of an algorithm witheut changing the easierio use.
smm—— I
: sinterfaces iea0e
Visitor Visitor “Fyweight)
- - . = Flyweight
Type: Behavioral ; (ina -) +operation(in extrinsicStale)
+vigitElementE(in b - ConcreteElements) L
What it is: _ Type: Structural
N ainterfaces
Represent an operation to be e Client .
performed on the elements of an ConcreteVisitor = Whatit is:
object structure. Lets you define a +accept(in v : Visitor]) l
new operation without changing C) -
the classes of the elements on | +viseElementBl(in b - ConcreteElementB) ConoreteFlyweight
which it operates. SntrinsicState .
L yweig!
+acceptiin v - Visitor) eisiste

Proxy
Type: Structural
What it is:

Provide a sumogate or placshalder for
another object to control access to it

sinterfaces
Subjest

+requeat])

| RealSubject L"EP’ESE’“—" |

Proxy

|+requestn

\ |+requmc)

Abstract Factory

Type: Creational

What it is:

Provides an interface for creating
families of related or dependent
cbjects without specifying their
conerete class.

|+ createProductB)
. winterfaces
Builder Director Bt
Type: Creational [reanstruct() [+buildPart(]
What itis:
Separate the construction of a
complex object from its representing
so that the same construction
process can create different ConcreteBuilder
representations.
[+buiidFan)
|+ getResuit])
Factory Method Creator
Type: Creational W Crnationd)

What it i
Define an interface for creating an
object. but let sublasses deside which
class to instantiate. Lets a class defer
instantiation to subclasses.

Prototype [owm]
Type: Creationd D
Prototype
What it is: +olone()
Specify the kinds of objects to create
using a prototypical instance, and
create new cbjecs by copying this
proftype.
ConcretePrototypel ConcretePrototype2
|+clona() +clone()
Singleton
Type: Creational Singleto
[-static uniquelnstance.
What it is: -singletonData
Ensure a class only has one instance and =
! - [+stadc instancef)
provide a global peint of access toiit. +SingletonOperation()

KU Sy
Mapping Designs to Code

The Register.enteritem Method

public class Register h
{
private PreductCatalog catalog;
privale Sabe currenthale
public Register(PreduciCatalog pe) {... | ki
public void endSale() (-} catalog
public void enteritem{itemiD id, int gty . | | 1| getProduciDese (.)
public woid makeNewSale () .. }
public void makePayment{Money cashTendered) (. J
I
| Sale
enterltem() . Register . isComplete : Boolean
tire ; DateTime
currentSale |
' 7 becomeComplete ()
endsale() i 1 ma ke Linelteml..)
enteritemiid; itemi D, quy : integer)
makeN - makeFayment(..)

makePayment {cashTendered : Money | petTotall

: E k
ProductDescription desc = catalog.ProductDescription (id);
currentSale makelinelterm(desc, gty) :

Y

enterltem(id, gty) —w ' 2:makeLineltem(desc, qy) —=
‘Register | 1 :Sale

1:desc = getProductDescription (id)

L

Product

Catalog
h EPENDABLE SOFTWARE 2 6 6

LABORATORY

7T T KONKUK

An Overview of Object-Oriented Developmest=
- What We Covered?

B O
Software Architecture Style | {777
Object-Oriented Design Patterns
T U TUML 7
Software : UML ! S
Development i UP { | | Origination
I + I S
Sequence i Object-Oriented Analysis and Design i PHHENEE
| ooD | !
E Methods i
Object-Oriented Concepts and Principles
Object-Oriented Programming
NV L

I}EPENDABLE SOFTWARE 2 6 7
LABORATORY

