De
Si
gn Pattern
S

10

MY 2
oE Jo
El

Contents

. Intro to Design Patterns (The Strategy Pattern)
. The Observer Pattern
. The Decorator Pattern
. The Factory Pattern
. The Singleton Pattern
. The Command Pattern
. The Adapter and Facade Patterns
. The Template Method Pattern
. The lterator and Composite Patterns
10. The State Pattern
11. The Proxy Pattern
12. Composed Patterns
13. Better Living with Patterns

NGOG OWON--

DEPENDABLE SOFTWARE

Text and References

A Brain-Friendly Guide

‘Head First
Design Patterns

) p— | Learn why everything
Avoid those | ﬁ" 1 your friends know about — s e
embarrassing | B Factory patiern is | -
coupling mistakes | 4] probably @ ——ip e ——]
L wrong

Object-Oriented

Practical

software S Oﬁ\/\/a le

development

>
Discover the secrets
of the Patterns Guru

Load the patterns

that matter straight using UML E I 1 g | n e e H ﬂ g

into your brain

and Java

See why Jim's

love life improved

Find out how when he cut down
Starbuzz Coffee doubled his inheritance

their stock price with
the Decorator pattern

Eric Freeman & Elisabeth Freeman

O'REILLY’ with Kathy Sierra & Bert Bates

EPENDABLE SOFTWARE
LABORATORY

KU

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

]

2=
Z
Z
=
w
z
=
w
s
P
=
=
-
wh
=
z

KONKUK
UNIVERSITY

I(UNIVERSITY

EPENDABLE SOFTWARE 4
LABORATORY

“Keeping your Objects in the know”

2. The Observer Pattern

K KONKUK
UNIVERSITY

The Observer Pattern

« Don’t miss out when something interesting happens!

« We've got a pattern that keeps your objects in the know when something they might care
about happens. Objects can even decide at runtime whether they want to be kept
informed.

« The Observer Pattern is one of the most heavily used patterns in the JDK, and it’s
incredibly useful. Before we’re done, we’ll also look at one-to-many relationships and
loose coupling (yeah, that’s right, we said coupling).

Hey Jerry, I'm notifying
everyone that the Patterns Group
meeting moved to Saturday night.
We're going to be talking about the
Observer Pattern. That pattern is the
best! It's the BEST, Jerry!

EPENDABLE SOFTWARE
LABORATORY

UNIVERSITY

Congrat
ulations!
a m has j
tion, Internet-b as just won the P
ased Weather Moc?t“traCt to build W | KU S
nitoring Stati eather-
°] nc.’s

weathet-o—i\ama. inc.
100 Main sureet
Tornado Alley, oK 45021

Statement of Work

Congmtu\aﬁons on being selected 10 puild our next generaﬁon
lmemet-based weather Monitoring Station!

The weather station will be pased on our patent pending

Weathchma object, which tracks current weather conditions
(temperature: pumidity and parometric pressure). we'd like
for you 10 create an app\icm'\on that {nitially prov ides three

display elements: current conditions. weather statistics and a

We look forward 10 eeing Your design and alpha app\'\caﬁon.

Johnny Hurricane, CEO
T —— P.S. Weare ovemighting the weatherDat you.

LABORATORY

KU oeveam
The Weather Monitoring Application overview

« Our job is to create an app that uses the WeatherData object to update three displays
for current conditions, weather stats, and a forecast.

Humidity displays

sensor device

Oi

Temperature
sensor device

pulls data’

WeatherData
object

Weather Station ' ‘
Display device

Pressure
sensor device

Weather-0O-Rama provides What we implement

EPENDABLE SOFTWARE 8
LABORATORY

B

KONKUK
UNIVERSITY

K

Unpacking the WeatherData class

« As promised, the next morning the WeatherData source files arrive. When we peek
inside the code, things look pretty straightforward:

veter®
the wmoS hu“{'.dl. N
WeatherData These heee meth 5“£ Jtcm?cra’m)
es men 0
getTemperature() weather meas e??zﬁs“"' ?d’%’ = , seti e
getHuidiy(b DO e v P ated
getPressure() N dork €2 ‘F"‘o_ ok \enows how L0
ta 00)° tion
measurementsChanged() W ah\'-f-"D W ath Cta
'mgo krom
// other methods

* This method gets called

whenever the weather measurements
* have been updated

ata
developers ok the Wcaﬂ'\ﬂ"i ; */ - |
The th s 2 e Jbout what W public void measurementsChanged() {
objcajt, lext v // Your code goes here
need 1o add }

EPENDABLE SOFTWARE
LABORATORY

WeatherData.java

« Our job is to implement measurementsChanged() so that it updates the three displays
for current conditions, weather stats, and forecast.

Remember, this Current Conditions
is L'}usl; ONE of three different

diSPlﬂT streens. l_

Display Two Display Three

EEEEEEEE SOFTWARE 1 O

What do we know so far?

« The WeatherData class has getter methods for three measurement values:
temperature, humidity and barometric pressure.

getTemperature ()
getHumidity ()
getPressure ()

« The measurementsChanged() method is called any time new weather measurement
data is available. We don’t know or care how this method is called; we just know that
itis.

measurementsChanged ()

EEEEEEEEE SOFTWARE 1 1
B T

« We need to implement three display elements that use the weather data: a current
conditions display, a statistic display and a forecast display. These displays must be
updated each time whenever WeatherData has new measurements.

Display One Display Two Display Three

« The system must be expandable - other developers can create new custom display
elements and users can add or remove as many display elements as they want to the
application. Currently, we know about only the initial three display.

Future displays

EPENDABLE SOFTWARE 1 2
LABORATORY

‘ I(I KONKL‘K
UNIVERSITY

Taking a first attempt - misguided

public class WeatherData ({
// instance variable declarations

public void measurementsChanged() ({

Grab the most vecent measuremets
float temp = getTemperature() ; by calling the WeatherData's aetter
float humidity = getHumidity(); methods (alveady implemented).
float pressure = getPressure();

currentConditionsDisplay.update(temp, humidity, pressure); o ke

statisticsDisplay.update (temp, humidity, pressure); o _P|

forecastDisplay.update (temp, humidity, pressure); the displays.-
}

3 ment to
// other WeatherData methods here (3l eath display s it the

| uvda{’,c ks d'\s.\?\a\’, \?assmg

ost vetent measurements:
™m

EPENDABLE SOFTWARE 1 3
LABORATORY

KU tavmsy

— harpen our pencil
~ Y

Based on our first implementation, which of the following apply?
(Choose all that apply.)

.d A. We are coding to concrete 'd D. The display elements don’t implement a
implementations, not interfaces. common interface.

A B. For every new display element we need ' E. We haven’t encapsulated the part that

to alter code. changes.
. C. We have no way to add (or remove) .4 E We are violating encapsulation of the
display elements at run time. WeatherData class.

EPENDABLE SOFTWARE 1 4
LABORATORY

K KONKUK
UNIVERSITY

What’s wrong with our implementation?

public void measurementsChanged() ({

float temp = getTemperature()
float humidity = getHumidity () ;
float pressure = getPressure() ;

Avea of thange, we need
to encapsulate this.

statisticsDisplay.update (temp, humidity, pressure);
forecastDisplay/update (temp, humidity, pressure);

rrentConditignsDisplay.update(temp, humidity, pressure) ; i}

At least we seem to be using a

tommon interfate to talk to the
~display elements... they all have an
B\/ toding %o tontrete im\?lcmchjc&{:ior\s u?da{'ﬁ() method takes ﬂi\c temp,
we have no way to add or remove \'\u'"'idi{',y; and pressure values.
other display clements without making
thanges to the program.

Umm, I know I'm
new here, but given that we
are in the Observer Pattern

chapter, maybe we should
start using it?

EPENDABLE SOFTWARE
LABORATORY

‘ KU KONKUK
UNIVERSITY

Meet the Observer Pattern

* You know how newspaper or magazine subscriptions work:
@ A newspaper publisher goes into business and begins publishing newspapers.

@ You subscribe to a particular publisher, and every time there’s a new edition it gets
delivered to you. As long as you remain a subscriber, you get new newspapers.

® You unsubscribe when you don’t want papers anymore, and they stop being delivered.

@ While the publisher remains in business, people, hotels, airlines, and other businesses
constantly subscribe and unsubscribe to the newspaper.

EEEEEEEEE SOFTWARE 1 6

K KONKUK
UNIVERSITY

Publishers + Subscribers = Observer Pattern

The obsevvers have substvibed to
(vegistered with) the Subject
to rcccwc updates when the
Subject's data thanges-

When da{;a in the SU'D'CLJC thanoes

Lhe observers ar

SuchL{: Joiett manddes
somé lm{',

S NGty
%Jecr 003'2’6\

New data values are
tommunitated to the
observers in some porm

when Jchcy thange.

ol
Mouse 00?

Observer Objects

This dbjeetisnt an

cbsevver, so it doesn't
.q)é C{: .no»t[-c l':d W‘hfh ‘t\'\:
OUCk O\O\b Subjtt{' . da{'ﬂ chanoes-

EPENDAB
LABG e 1w 1 7

K KONKUK
UNIVERSITY

The Observer Pattern defined

The subject and observers define the one-to-many relationship. The observers are
dependent on the subject such that when the subject’s state changes, the observers get
notified. Depending on the style of notification, the observer may also be updated with

new values.
The Observer Pattern defines a one-to-many

dependency between objects so that when one
object changes state, all of its dependents are

notified and updated automatically.

« There are a few different ways to implement the Observer Pattern, but most revolve
around a class design that includes Subject and Observer interfaces.

ONE-TO-MANY RELATIONSHIP

Object that

holds state B
\ a/ro\
/\/fmmkmf e

s
o/

Automatic update/notification

&
(&
3
® :
Y
ig
: v
Pendep 4 0*{) Sl

A
18

EPENDABLE SOFTWARE
LABORATORY

The Observer Pattern defined: The class

dlag ram

ceke subject always
f‘m;r::cnb {heJSub‘gtk
in'l:er;at.c- In ajdi ion :(,o
veoister an remoV |

J::‘:{h:as, the tontrete Subjct.{(:)
implements 3 notifyObservers
ethod that is used 4o update
all the Lwrcn{ observers
Whenever state chandes:

EPENDABLE SOFTWARE
LABORATORY

1‘\“ ?o{:cn{:la'l obsevrvers need

getState()
setState()

The contrete subjct{; may
also have method

n and SC‘H:‘m
Eiticaabou{: this \a{,cr).

g XOY

g its state

Lo impl ement {;'hc‘ Obscwc';
-mtcrfau- This inces ?uc)
'\S“(:\'-T Each sub\}cﬁ‘{i 'uS‘{’, has one mC‘l:.\de; up a)
9 tan have many J{;ha‘l: SCJ(,S called when the
obscrvc'rs. Subjtf-«{ils s{:ab! c,‘hangcf--
<<interface>> observers <<interface>>
Subject Observer
registerObserver() update()
removeQObserver()
notifyObservers()
ConcreteSubject @ ConcreteObserver
registerObservert) {...} update(}
removeObserver() {..} /! other Observer specific
notifyObservers() {...} methods

|

Contvrete observers tan be
any ¢lass that implements the
Observer interface. Each

observer rcgis{:crs with a tontrete
subjct'.'l: to receive updates.

19

| KU S

The power of Loose Coupling

« When two objects are loosely coupled, they can interact, but have very little
knowledge of each other.

« The Observer Pattern provides an object design, where subjects and observers are loosely
coupled. Why?

— The only thing the subject knows about an observer is that it implements a certain interface (the
Observer interface).

— We can add new observers at any time.

— We never need to modify the subject to add new types of observers.
— We can reuse subjects or observers independently of each other.

— Changes to either the subject or an observer will not affect the other.

Design Principle

Strive for loosely coupled designs
between objects that interact.

« Loosely coupled designs allow us to build flexible OO systems that can handle change,
because they minimize the interdependency between objects.

EPENDABLE SOFTWARE 2 O
LABORATORY

Designing the Weather Station

<<interface>>

Al owr weather COm?O’nCh‘LS

Subject

registerObserver()

removeQObserver()
notifyObservers()

WeatherData

registerObserver()
removeObserver()
notifyObservers()

gefTemperature()
getHumidity()
getPressure()
measurementsChanged()

T

Wga-thc\rDaJca now
\m?\mcn{s the
Subjett interfate.

EPENDABLE SOFTWARE
LABORATORY

t the Observer

Let’s also treate an
inkevfate for all display
elements to im\?lc»mcw’c,. The

implemen . :
n_"‘};iﬁau. This gjves the Flnsyla\/ c1Can#S I)uszc) nccsh{;
S biett a common “‘*xrhf implement a displayl) method.

u -

it tomes \me
ko talk to when i
Lo vpdate the doservers
observers <<laiTacE> porrere e
Observer DisplayElement
update() display()

CurrentConditions

update()
display() { // display current
measurements }

This distay CICmcht
shows the Curvent
measurements from Lhe

WeatherDjt, object

age, min and max measure-

ThirdPartyDisplay
update()
display() { / display
something else based on
o measurements }
StatisticsDisplay
update() B
display(){ // display the aver- : F‘\

Developers
tan implement

ments }

This one keeps track
of the min/avg/max
measurements and
displays them.

the Observer

s and Dis\alay
ForecastDisplay _ jintev Faces |
update() eveate +their own
display(){ / display the display element.
forecast }

|

is di ther
This display shows the wea
‘Fo:"ccas{: based on the barometer. 1

<<interface>>

observers

Subject
registerObserver()

removeQObserver()
notifyObservers()

WeatherData

registerObserver()
removeObserver()
notifyObservers()

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

N

WeatherData now
1m?\cm87\+ts {_'ht
Subjctfc intecfate.

EPENDABLE SOFTWARE
LABORATORY

"

<<interface>>
Observer

update()

.....

CurrantConditions'

update()
display() { // display current

measurements }

fThis display element

measurements Lrom Lhe

WeatherD; 1, object.

StatisticsDisplay

update()
display() { // display the aver-
age, min and max measure-

ments }

1

This one keeps track
o-p -Ehc min/avs/max
measurements and

displays them.

K KONKUK
UNIVERSITY

<<interface>>
DisplayElement

display()

ThirdPartyDisplay
update()

display() { // display
something else based on

measurements }

I"\

Developers
tan im\?ltmch{:

the Obsevver

y and Display
ForecastDisplay 'ntcr-(:accs .{:o
update() rca{',c {—,hcnr own
display() { // display the disvla\, clcmcn{}

forecast }

™

C}2 DisplayE & registerS 2|3l

WeatherDataS subject2 to}of BtL|C,

22

B

Implementing the Weather Station

public interface Subject {

Both of these methods take an
Observer as an araument; that is, the

public void registerObserver (Observer o) ; }
public wvoid removeCbserver (Cbserver o) ;

public void notifyObservers() ;

Observer to be vegistered or removed.

This methed is talled to ho-{:i.F? all observers

, BN emgeedic Subjcﬂ{fs state has thanged.

public interface Observer {

public wvoid update(float temp, float humidity, float pressu

} A T T
These are the state values the Observers get From
the gubjtd{‘, when a weather measurement -lf.h&macs

public interface DisplayElement { §&.

public void display() The DisplayElement interface
} jus{; intludes one methed, di5F|a}|‘U,
that we will call when the display
element needs to be displayed.

EPENDABLE SOFTWARE
LABORATORY

The Obsevver interFace
is implemented b\f all
observers, so ‘Ehcj‘ all
have 1o implement the
uwpdate() method. Heve
we re -?nllowing Mary and
Sue's lead and passing
the measurements to the

obsevvers.

K

KONKUK
UNIVERSITY

23

- KONKUK
public class WeatherData implements Subject { & WeatherData now implements KU v

private ArrayList<Observer> cbservers; the S“E’Jﬁ'{ -'“'ttr"c'a‘:‘t'
private float temperature; ;
private float humidity; We've added an ﬁ'r"‘a'fl-"'st to
private float pressure; hold the Dbservers, and we

eveake it in the tonstruttor.
public WeatherData() ({

observers = new ArravList<Observer>();

} When an observer registers, we
public void registerObserver (Observer o) { & jus-l: add it 4o the end of the list.
cbservers.add (o) ;

} Likewise, when an observer wants to un—

€ vegister, we just take it off the list

public wvoid removeObserver (Observer o) |
int i = cbhservers.index0f (o) ;

if (1 >= 0) { Heve's the fun part; this is where
observers.remove (i) ; we tell all the observers about
} the state. Betause they are

} ﬁ all Obsevvers, we know they all

public void notifyObservers() { L"‘?Ifrpfhtgzdat:i: so we know
for (Chserver bsaerver : observers) { ow notl ‘1 .
cbserver . (pdate (temperature, humidity, pressure);

} when we

} We m{’j@\f the Dbsexvers ”

dated _
public woid asurementsChanged () { zﬂ-‘ 5{1{ :'Ega{'}\cr Sﬁbﬂ“'
notifyObservers() ; e

Heve we implement the Subjctﬂ; intevfate.

measuremen

}

public void setMeasurements (float temperature, fleoat humidity, float pressure) |

this. temperature/ = temperature;
this. humidity =/humidity; . .
this,prassuri pressurz; frjg;mthﬁt wa:-.::d to ship a nice “HSJ_E
measurementsChanged() ; f\—-/) lon with eath book, the Pubhshc'r
} wouldn't Jo for it. So, rather than reading
attual weather data off a devite, we've going
// other WeatherData methods here to use this method to test our display elements.

EPENDABLE SOFTWAR mc&suremgn-ts OF‘F {‘h: wﬁb 24

LABORATORY

; O, for Fun, You tould write tode to érab

‘ KU KONKUK
UNIVERSITY

Implementing the display elements

This display implements Obsevver [t also implements DisplayElement,

because our AP/ is to
i i Lo bk g
so it tan get thanges from the vequive all display elements +o

WeatherData object d implement this interface.

¢

public class CurrentConditionsDisplay implements Observer, DisplayElement {
private float temperature;
private float humidity: - M
i : The tonstruttor is passed the
rivate Subject weatherData;
€ 2 | weatherData object (the Subjeet)
public CurrentConditionsDisplay (Subject weatherData) { a'f"d we use it Jcl:' rcgusjc:r the
this.weatherData = weatherData; d's?la‘f a5 g onsCYVER.
weatherData.registerObserver (this) ;

public wvoid update(float temperature, float humidity, float pressure) {
this. temperature = temperature;

this.humidity = humidity; & When update() is aall:d_.;;
display() ; save the temp and humiaity

} and call display()

public void display() {
System.ocut.println("Current conditions: " + temperature

} + ¥Edageacs-andi Nt hunddlty 008 humddltrn); The display() method

} Jussu ?'r'lh{,'; out the M?S#
N “retent temp and humidity

EPENDABLE SOFTWARE 2 5
LABORATORY

B

Power up the Weather Station

public class WeatherStation {

£ Tm;dnﬁﬁ
want 1o
download the

ﬂgdcj?mitah
Lomme th. DU'E-

public static void main(String[] args) { E_,_.,—"

WeatherData weatherData = new WeatherDatal() ;

CurrentConditionsDisplay currentDisplay =

new CurrentConditionsDisplay (weatherData) ;

Fivst, treate the
WeatherData objcct

% StatisticsDisplay statisticsDisplay = new StatisticsDisplay(weatherData) ;

ForecastDisplay forecastDisplay = new ForecastDisplay (weatherData) ;

these two lines

and vun it

EPENDABLE SOFTWARE
LABORATORY

weatherData.setMeasurements (80, 65, 30.4f) ;
weatherData.setMeasurements (82, 70, 29.2f) ;
weatherData.setMeasurements (78, 90, 29.2f);

Cimulate new weather
med 5ulrtrncn‘|;5-

N Createbie bhse
dh?hysand
pass them the
WeatherData object.

File Edit Window Help StormyWeather

%java WeatherStation

Current conditions: B80.0F degrees and 65.0% humidity

Avg/Max/Min temperature = 80.0/80.0/80.0

Forecast: Improving weather on the way!

Current conditions: B82.0F degrees and 70.0% humidity

Avg/Max/Min temperature = 81.0/82.0/80.0

Forecast: Watch out for cooler, rainy weather
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0
Forecast: More of the same

%

K

KONKUK
UNIVERSITY

26

Using Java’s built-in Observer Pattern (~ Java EE

The Obscwablc ¢\ass keeps

: Kk familiar- In
Leatk of all YO doservers This should loo Vi i
X

)) Wr
and ﬁOJC"E.“S e et iiit?rcvious ¢lass diagram. We left out the
DisplayElement

observers <<interface>> ih‘tﬁ?“caf.c; bu{au
Observable . O coninr ke dis?la\fs okill
Observable is a addObserver() e ‘,,,,P[mcn{ il
CLASS not an deleteObserver()
ih{.’cﬁ[‘ac_c, - nofifyObservers() /
WeatherData |22 ;
extends Observablp. GeneralDisplay StatisticsDisplay ForecastDisplay
update() update() update()
| displ displ
WeatherData g isplay() Isplay()
getTemperature()
60('-5“‘ i \oo¥ getHumidity() A -

The \d getPressure() 0
9:3"‘-‘\‘-\3\(" ?\f‘: ‘5&’ e There will be a few thanges to make Jco:lh-c uﬁd?‘{{i
'E\c_‘_)\"l(,] we el I'an{,hOd -4 ‘thﬂ C-Ohf»""ﬂ& Gbsc\pvcrs’ bu‘t asitd \f

'EH‘S N 3 ®

i intertate,
W whtc\wb\rt ff;‘:'t the same idea... we have a tommon Observer in
Observavle.
now also eall the

te 0 ve() with an u?da’c,cf) method ‘Hﬁ{,’s talled 'b\" the Subjct'{j,.
nt need the vegistert), remo
i:d ioil}‘f{)bscwtrs() methods

anymore; we inhevit that behavior
Lvom the Su?crt.lass.

With Java's built-in support,
all you have to do is extend
Observable and tell it when to
notify the Observers. The APT
does the rest for you.

EPENDABLE SOFTWARE
LABORATORY

‘ K KONKUK
UNIVERSITY

How Java’s built-in Observer Pattern works

« For an Object to become an observer...

— As usual, implement the Observer interface (this time the java.util.Observer interface) and call
addObserver() on any Observable object. Likewise, to remove yourself as an observer, just call

deleteObserver().

« For the Observable (Subject) to send notifications...
— You need to be Observable by extending the java.util.Observable superclass. From there it is a two-
step process:

@D You first must call the setChanged() method to signify T
. . This version £s an
that the state has changed in your object. arbibrary data oﬁ-jt
®@ Then, call one of two notifyObservers() methods: that gets passed
eath Dbserver when it
either notifyObservers() ©OF notifyObservers(Object arg) is notified

« For an Observer to receive notifications...

— It implements the update method, as before, but
the signature of the method is a bit different:

update (Observable o, Cbject arg)
,ﬂ
The Subjeet that sent
the notifitation is passed
in as this arn]umtn{.

This will be the data :}bj,c-:f that was
?asscd to nﬂfif?ﬁbs:h’#ch’s”, or null if
a data object wasn't specikied.

EPENDABLE SOFTWARE 2 8
LABORATORY

B

setChanged()

EPENDABLE SOFTWARE
LABORATORY

Wait, before we get to
that, why do we need this
setChanged() method? We
didn't need that before.

-

Pseudotode for the
Obsevvable tlass

setChanged() { The sg'l;lc_h.}hﬁ{d{} method sets

changed = true v a thanged flag to true
}
; () oml
notifyObservers(Object arg) { notifyQbserverst/ on

if (changed) { = Wﬂﬁ
for every observer on the list { W

call update (this, arg)
! And after it notifies

changed = false w the observers, it sets the
) thanoed JFlag back to false.

notifyObservers() {
notifyObservers(null)

}

}

K

KONKUK
UNIVERSITY

Reworking the Weather Station with the built-iR<E=d
support

Make sure we are importing 3] €) We don't need to keep track of our

the ri5h£ Obsevvable W e i o’asgwerls arifmore, or manage theiv
subelassina Observable. rcgusﬁrﬂ*’;mn a"fj' vemoval (the su?crf:liass

will handle that), so we've removed the

registerObserver(), vemoveObserver() and

import java.util.Observable; notifyObservers() methods.
public class WeatherData extends CObhservable { i yra
private float temperature; Our tonstruttor no lonaer pitis Nestiaitistat] | i :
! T 1 = ArrayList() ;
Prj_vatg float humj_dity; hc:ds to r.‘,.rf&"l:t a dat& . servers = new Arraylis server
private float pressure; / e uibore o Told Dbseviéts

public WeatherData() { } * NO‘BCI! we aren t stnding a data ab‘jﬁ-{,
with the nobfyﬂhscwcrsf} eall. That

ublic void measurementsChanged
B b Igeal) | means we've using the PULL model.

setChanged () ;
notifyObservers () ; ¥

public woid setMeasurements (flcocat temperature, float humidity, float pressure) {
this. temperature = temperature;
this. humidity = humidity;

this.pressure = pressure; © e row fiest ¢all setChanged() to
measurementsChanged () ; indicate the state has thanged
} before La'i|in5 netiﬂﬂbqgwenfl

public float getTemperature() {
return temperature;
}

publiec float getHumidity () {
return humidity;

) \
\ e These methods aven't new, but betause

public float getPressure() { e .
return pressure; =y we ave aoing 1o use pull” we thought
} we d remind You {hcjr ave heve. The
EPENDABLE SOFTWARE } ﬁbs:'ﬂdt'r& 'v.'l” uie ‘H‘IJCm {Q E}C{: 3-{ 'U'\f 30
e WeatherData object’s state.

KU tavmsy

* Now, let’s rework the CurrentConditionsDisplay

Again, make sure we are im?ar{'ma
o the right Observer/ Observable.

/ e We now are implementing the Observer interfate from java-ubl-

import jawva.util.Observable;

import java.util.Cbserver;

public class CurrentConditionsDisplay implements Observer, DisplayElement {
Observable observable;

private Subject weatherData; |

private float temperature;

: idi Our tonstruttor now takes an
rivate float humidity; :
’ ' i e Observable and we use this to
add the eurvent tonditions
public CurrentConditionsDisplay (Observable observable) { ohjef.{. as an Dbsevver.

this.ocbservable = observable;
observable.addObserver (this) ;

z z ? e We've thanged the
public void update (Cbservable obs, Object arg) { r*/ L-Fdafzf} iebhad

if (obs instanceof WeatherData) { to take both an
WeatherData weatherData = (WeatherData)obs; Observable and the
this. temperature = weatherData.getTemperature() ; "Ffiﬂﬂ&l data argument.
this.humidity = weatherData.getHumidity () :
display() ;
}
} In update(), we fivst
make sure the observable
public void display() { is of type WeatherData
System.out.println("Current conditions: " + temperature a‘"z then we use its
+ "F degrees and " + humidity + "% humidity"); = JC_" methods to
obtain the temperature
} and humidi{:\f
} measurements. Al ter
I}EPET_[;ABLESOFTWARE '{_ha‘t wWe ﬂall d|sP|aY{J 31
BORATORY

KU

KONKUK
UNIVERSITY

Running the new code

« Hmm, do you notice anything different? Look again...

— You'll see all the same calculations, but mysteriously, the order of the text output is different. Why
might this happen? Think for a minute before reading on...

« Never depend on order of evaluation of the Observer notifications

— The java.util.Observable has implemented its notifyObservers() method such that the Observers
are notified in a different order than our own implementation. Who's right? Neither; we just chose
to implement things in different ways.

File Edit Window Help StormyWeather

%java WeatherStation

Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0

Forecast: Improving weather on the way!

Current conditions: 82.0F degrees and 70.0% humidity

Avg/Max/Min temperature = 81.0/82.0/80.0

Forecast: Watch out for cocler, rainy weather
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0

Forecast: Mcore of the same

%

EPENDABLE SOFTWARE
LABORATORY

File Edit Window Help TryTihisAtHame

%java WeatherStation

Forecast: Improving weather on the way!

Avg/Max/Min temperature = 80.0/80.0/80.0

Current conditions: B80.0F degrees and 65.0% humidity
Forecast: Watch out for cooler, rainy weather
Avg/Max/Min temperature = 81.0/82.0/80.0

Current conditions: 82.0F degrees and 70.0% humidity

Forecast: More of the same

Avg/Max/Min temperature = 80.0/82.0/78.0

Current conditions: 78.0F degrees and 90.0% humidity
%

32

KU KONKUK
UNIVERSITY

The dark side of java.util.Observable

Doesn't java.util.Observable
violate our OO design principle
of programming to interfaces,
not implementations?

* Yes, good catch.

« Asyou've noticed, Observable is a class, not an /interface, and worse, it doesn’t
even /mplement an interface.

« Unfortunately, the java.util.Observable implementation has a number of
problems that limit its usefulness and reuse.

« That’s not to say it doesn’t provide some utility, but there are some large
potholes to watch out for.

EPENDABLE SOFTWARE 3 3
LABORATORY

K KONKUK
UNIVERSITY

The Observer Pattern in the JDK

, .o Lion Ehat
public class SwingObserverExample { Simple Swing 3??]""3]0:;
JFrame frame: ust ¢veates 3 'z.""c.{
Lhrows a button Wb
public static veoid main(String[] args) {

SwingObserverExample example = new SwingCbserverExample () ;
example.go() ;

}

public void go() {

frame = new JFrame () ;

Makes the devil and

JButton button = new JButton("Should I do it?"): an55| obietts listeners

button.addActionlListener (new AngelListener()); (observers) of the button. 2l alal

button.addActionListener (new DevillListener()):

// Set frame properties here &— _ (Code o set wp +he ﬁ-.-a,,,c goes heve.
}

e Heve ave the elass definitions for Should | do it?

class AngellListener implements ActionListener { the obsevvers, defined as inner

public void actionPerformed (ActionEvent event) { elasses (but ﬁhcy dont have 4o be).

System.out.println("Don't do it, you might regret it!'");

class Devillistener implements ActionListener {

public void actionPerformed(ActionEvent event) {

} ' And here's Fhe output when

System.out.println("Come on, do it!");
we tliek on the button

: Rather than update(), the attionPerformed()
} method aets called when the state in the |
subjct.’c (in +his tase the button) changes. File Edit Window Help HeMadeMeDoTt
D Wl answer %java SwingObserverExample
evil

Come on, do it!

INCIEISLEPR] Don’t do it, you might regret it!

C
EPENDABLE SOFTWARE %
LABORATORY

Tools for your design toolbox

00 Dasies

Plackea? Yion

e hC“‘Cs*'

's o
He‘r:t:??c Re "\C“‘b ev,
i ed designs 3¢

mulh move {lexible and
rcﬁ\'lcr\{: 'bo cha\ngc.

Ghra e dekines 3 N~
entaf O\)S:':;c nty bebween %)
nter ett
when one 90)¢
vavy ts ave
dependen
sukomaticaly
m—

new pattern for tommunitating state to a

U set of objccﬁs in @ loosely toupled manner. We
haven't seen the last of the Observer Pattern
- Jus{: wait wntil we talk about MVC!

EPENDABLE SOFTWARE
LABORATORY

R

The Observer Pattern defines
a one-to-many relationship
between objects.

Subjects, or as we also know
them, Observables, update
Observers using a common
interface.

Observers are loosely coupled
in that the Observable knows
nothing about them, other
than that they implement the
Observer Interface.

You can push or pull data from
the Observable when using
the pattern (pull is considered
more “correct”).

Don’t depend on a specific
order of nofification for your
Observers.

Java has several
implementations of the
Observer Pattern, including
the general pumpose java.util.
Observable.

Watch out for issues with
the java.util.Observable
implementation.

Don't be afraid to create
your own Observable
implementation if needed.

Swing makes heavy use of the
Observer Pattern, as do many
GUI frameworks.

You'll also find the pattern in
many other places, including
JavaBeans and RMI.

KONKUK

UNIVERSITY

35

I(UNIVERSITY

EPENDABLE SOFTWARE 3 6
LABORATORY

“One of a Kind Objects”

5. The Singleton Pattern

K KONKUK
UNIVERSITY

The Singleton Pattern

« Our next stop is the Singleton Pattern, our ticket to creating one-of-a-kind objects for
which there is only one instance.

« You might be happy to know that of all patterns, the Singleton is the simplest in terms of
its class diagram; in fact, the diagram holds just a single class!

« But don’t get too comfortable; despite its simplicity from a class design perspective, we
are going to encounter quite a few bumps and potholes in its implementation.

You talkin' to me or the car?
Oh, and when can T get my aven
mitt back?

T tell ya she's ONE
OF A KIND. Lock atf the
lines, the curves, the body,
the headlights!

EPENDABLE SOFTWARE
LABORATORY

l([I KONKUK
UNIVERSITY

The Little Singleton

« A small Socratic exercise in the style of The Little Lisper

public MyClass {

private MyClass () {}

What does it mean? I suppose 1t 1s a class that can’t be instantiated

because it has a pri\'ate constructor.

Because I'd have to have an instance of the
class to call it, but I can’t have an instance
because no other class can instantiate it. It’s
a chicken and egg problem: I can use the
constructor from an object of type MyClass,
but I can never instantiate that object because
no other object can use “new MyClass()”.

EPENDABLE SOFTWARE 3 9
LABORATORY

KU tavmsy

Okay. It was just a thought. MyClass 1s a class with a static method. We can
What does this mean? call the static method like this:

MyClass.getInstance () ;

public MyClass {

public static MyClass getInstance() {
}

Why did you use MyClass, instead of Well, getInstance() 1s a static method; in other
some object name? words, 1t 1s a CGLASS method. You need to use
the class name to reference a static method.

EPENDABLE SOFTWARE 40
LABORATORY

KU vy

Now can 1 instantiate a MyClass?

public MyClass {
private MyClass() {1}

public static MyClass getInstance () {
return new MyClass();

}

So, now can you think of a second way to instantiate MyClass.getInstance () ;
an object?
Can you finish the code so that only ONE instance Yes, I think so...

of MyClass is ever created?
(You'll find the code on the next page.)

EPENDABLE SOFTWARE 4 1
LABORATORY

Dissecting the classic Singleton Pattern KU S
implementation

L,t-l:_rs yendmE 3 sﬂ{:‘t
Singleton. We ha¥e \g. o
MTCLE% -bj " ga'r".aiﬂl'lc w0 hﬂai- he
] il
g W >
public class Singleton { 03355 'f;m“}h@“

private static Singleton unigquelnstance; &=

// other useful instance variables here .
Dur tonstruttor is

E:""_'_F._-_-_-""‘ il '|

detlaved private; only
Sinalr_{ﬁh tan inil‘,ﬂni:l&{t
this t‘,1.§||:-‘.5..J

private Singleton() {}

if (uniqueInstance == null) { The getinstance() method

uniquelInstance = new Singleton() 5-““55 N way s nstantiake
} the elass and also te return
return uniqueInstance; an instante of it

// other useful methods here é_\
} ot tourse, Sinaleton
L | no15
tlass;) 9 hormal

|{'. Hai o‘thcr < _F || I
variables and mc'th;,:j: : “5-£¢]h£¢

EPENDABLE SOFTWARE 42
LABORATORY

The Chocolate Factory

« The job of the boiler is to take in chocolate and milk, bring them to a boil, and then pass
them on to the next phase of making chocolate bars.

public class ChocolateBoiler {
private boolean empty;
private boolean boiled;

This eode is only started

public ChocelateBoiler () { b | |
empty = true; (_/ when the boiler is empty!
boiled = false;

1
To Kill the boiler 'I{,Jmust be
public void £ill() { gm?{:“fa and, onte it's -Fulh \Elca)
if (isEmpty()) { et the empty and boiled ¥1ags:
'Elﬂpty - false;

boiled = false;
// £ill the boiler with a milk/chocolate mixture

publ::_z void drain{} { L/—\ To dvain the boiler, it must be £l
1.

(!isEmpty () && isBoiled()) { () Lkl Db
i i ; nﬂ‘n-—cm?‘[:\lr‘ and also boiled. Unte
// drain the boiled milk and chocolate FrpaaisL cm?}q Lack b brue.

empty = true;

public void boil() {
if (!isEmpty () && !'isBoiled()) { :
// bring the contents to a boil To bail the mixture, the boiler
boiled = true; J has to be full and not already
1 boiled. Onte it's boiled we set
} the boiled flag to true.

public boclean isEmpty() {
return empty;
1

public boolean isBoiled() ({

EPENDABLE SOFTWARE return boiled; 43
LABORATORY }

KU tavmsy

« Can you help Choc-O-Holic improve their ChocolateBoiler class by turning it into a
singleton?

public class ChocolateBoiler {
private boolean empty;
private boolean boiled;

[::::::]ChocolateBoiler() {

empty = true;
boiled = false;

public void fill () {
if (isEmpty())
empty = false;
boiled = false;
// fill the boiler with a milk/chocolate mixture

}

// rest of ChocolateBoiler code...

EPENDABLE SOFTWARE 44
LABORATORY

KU KONKUK
UNIVERSITY

Applying the Singleton Patten

public class ChocolateBoiler {
private boolean empty;
private boolean boiled;

private static ChocolateBoiler uniqueInstance;

ChocolateBoiler () {

empty = true;
boiled = false;

public static ChocolateBoiler getInstance() {
if (uniquelnstance == null) {
uniquelnstance = new ChocolateBoiler();
}
return uniquelnstance;

}

public void fill () {
if (isEmpty()) {
empty = false;
boiled = false;
// fill the boiler with a milk/chocolate mixture

}

// rest of ChocolateBoiler code...

EPENDABLE SOFTWARE 4 5
LABORATORY

I(KONKUK

UNIVERSITY

1 package headfirst.singleton.chocolate;
2
3 public class ChoceolateBoiler {

4 private boolean empty;

5 private boolean boiled;

6 private static ChocolateBoiler unigueInstance;

7

B= private ChocolateBoiler() {

El empty = true;
1a ; boiled = false; 1 package headfirst.singleton.chocolate;
11 2
12 3 public class ChocolateController {
132 public static ChocolateBoiler getInstance() { as public static void main(String args[]) {
14 if (uniguelnstance == null) { 5 ChocolateBoiler boiler = ChocolateBoiler.getInstance();
15 System.out.println("Creating unique instance of Chocolate Boiler™); 6 boiler.fill(};
16 unigueInstance = new ChocolateBoiler(); L7 boiler.boil();
17 1 i boiler.drain();
18 else { ‘g
19 System.out.println("Returning instance of Choceclate Boiler™); ie // will return the existing instance
gz } 11 CheocolateBeiler boiler2 = ChocolateBoiler.getInstance();

12

22 return wuniguelnstance; '13 }
23 ¥ 14 |]
24
25 public void fill() {
26 if (isEmpty()) {
27 empty = false;
28 boiled = false;
29 /f fill the boiler with a milk/chocolate mixture
T 3
31 3
32
332 public woid drain() {
34 if (lisEmpty() && isBoiled()) {
35 // drain the boiled milk and chocolate
36 empty = true; Creating unique instance of Chocolate Boiler
;; } } Returning instance of Chocolate Boiler
39
48= public woid boil() {
41 if (lisEmpty() && lisBoiled()) {
42 /{ bring the contents to a boil
43 boiled = true;
44 }
45 }
46
478 public boolean isEmpty() {
45 return empty;
49 3
Se
518 public boolean isBoiled() {
52 return boiled;
53 3
54
55 ﬁ

EPENDABLE SOFTWARE 46
LABORATORY

K KONKUK
UNIVERSITY

Singleton Pattern defined

B

No big surprises there. But what’s really going on here?
We're taking a class and letting it manage a single instance of itself. We're also preventing

any other class from creating a new instance on its own. To get an instance, you've got to
go through the class itself.

We’re also providing a global access point to the instance: whenever you need an instance,

just query the class and it will hand you back the single instance. As you've seen, we can
implement this so that the Singleton is created in a lazy manner, which is especially

important for resource-intensive objects.

EPENDABLE SOFTWARE
LABORATORY

The Singleton Pattern cnsures a class has only one
instance, and provides a global point of access to it.

The unia\uclns{:c'int.c
¢lass vaviable holds our
one and only instante

ojﬁgihglc{:on.

Singleton

static uniquelnstance

I/ Other useful Singleton data...

static getinstance()

I/ Other useful Singleton methods...

N Aclass implementing the Sin?,\c{:ov'\
Pattern is move than 3 Singlc»{aon,_
it is a general purpose tlass with its

own sek of data and methods. 47

K KONKUK
UNIVERSITY

We have a problem...

« It looks like the Chocolate Boiler has let us down; despite the fact we improved the
code using Classic Singleton, somehow the ChocolateBoiler’s fill() method was able to
start filling the boiler even though a batch of milk and chocolate was already boiling!

We don't know what happened! The new Singleton
code was running fine. The only thing we can think
of is that we just added some optimizations to
the Chocolate Boiler Controller that makes use of
multiple threads.

EPENDABLE SOFTWARE 48
LABORATORY

A multithreading problem

BE the JVM

We have two threads, each executing this code. Your job is to play the JVM
. and determine whether there is a case in which two threads might get ahold
_ of different hoiler objects. Hint:

: YOll PeaHy jllS‘t need to 1001(at ﬂle ChocolateBoiler boiler =
Sequence OP operations ChocolateBoiler.getInstance () ;

in the getInstance() L0

method and the value of zialilxi)(; ;

uniqueInstance to see

how they might overlap.

Use the code Magnets to help

you study how the code might interleave to create two hoiler objects.

EPENDABLE SOFTWARE 49
LABORATORY

K KONKUK
UNIVERSITY

BE the JVM

Thead Thead Value of
One Two || uniqueInstance
public static ChocolateBoiler null
getInstance() {
)
public static ChocolateBoiler null (13 docSh{',
getInstance () { ’_U\'\ Ohi {:“l
/T ook 50°d.
if (uniquelInstance == null) {
if (uniquelnstance == null) { null
uniquelnstance =
<objectl>

new ChocolateBoiler();

return uniquelnstance; e &

\

uniquelnstance = <0bjECt2K/ TWO di‘F‘FC\"Ch{:

new ChocolateBoiler();

objetts are
<object2> s

s iweinses] rebcdl We hve

two ChotolateBoiler
instances!!/

EPENDABLE SOFTWARE 5 O
LABORATORY

UNIVERSITY

Dealing with multithreading

Our multithreading woes are almost trivially fixed by making getinstance() a
synchronized method:

public class Singleton {

private static Singleton uniquelnstance;

B‘f adding the S\r‘m‘.hroh]z.cd k?:d;j 4:{;
ye
// other useful instance variables here 56{'.%5{'.3%:”.:1 £°TLE E :‘rzﬁ{” -
i its b etore |
wit‘nﬁ Tu;:-lz, is, no two ‘Uh'rt&ds.mﬁ_
L3l - e =
enter the method at the same time.

public static synchronized Singleton getInstance() {
if (uniquelInstance == null) {

private Singleton() {}

unigquelInstance =

new Singleton () ;
}

I agree this fixes the
return uniquelInstance;

problem. But synchronization
is expensive; is this an issue?

// other useful methods here

EPENDABLE SOFTWARE
LABORATORY

KU oeveam
Can we Improve multithreading?

« For most Java applications, we obviously need to ensure that the Singleton works in
the presence of multiple threads. But it is expensive to synchronize the getinstance()
method, so what do we do?

« Well, we have a few options...
1. Do nothing if the performance of getinstance() isn’t critical to your application.

2. Move to an eagerly created instance rather than a lazily created one.

=
Qo ahead and treate an

instante of Singleton
in a statie initializey
This tode is guaranteed
e e to be thread safel

public class Singleton {
private static Singleton uniquelInstance = new Singleton() ;

public static Singleton getInstance() {

return uniquelnstance; R:;_____________ w'c’
} 'mg'it_,a.hf.fj

Ve alrcad‘f 50‘1:' i

so jus{: vetuen it
}

— Using this approach, we rely on the JVM to create the unique instance of the Singleton when the
class is loaded.

— The JVM guarantees that the instance will be created before any thread accesses the static
uniquelnstance variable.

EPENDABLE SOFTWARE 5 2
LABORATORY

K

3. Use “double-checked locking” to reduce the use of synchronization in getinstance().

—

Watch it!

With double-checked locking, we first check to see if an instance is created, and if not, THEN we
synchronize. This way, we only synchronize the first time through, just what we want.

public class Singleton {

private *static Singleton uniguelnstance;

private Singleton() {}

public static Singleton getInstance() { Chetk for an instante and

5y a
if (uniqueInstance == null) { e— if theve nt :’1“";“&*
synchronized (Singleton.class) { ST“Lhrmlud

if (uniqueInstance == null) { (\
uniquelInstance = new Singleton() : Note we only synthronize
} the «F'HrS‘{'. time I;h'r‘ouﬁ'h!l
} L

} Onte in the block, theck a9ain and
i still null, eveate an instante.
return uniqueInstance;
¥ * The volatile keyword ensures that multiple threads
}

handle the uniquelnstance variable torveetly when it
is Eciha initialized to the Qihﬁk{:on instante.

locking. If you mu
consider other meth

Double-checked locking_ doesn’t
work in Java 1.4 or earlier!

Unfortunately, in Java version 1.4 and earﬁ'er, manyrd

JVMs contain implementations of thef vo(ljat:lg,!;?cy!:q;cz e
w improper synchronization for oul

s th st use a JVM other than Java.5,

ods of implementing your Singleton.

53

KONKUK
UNIVERSITY

Q: For such a simple pattern
consisting of only one class,
Singletons sure seem to have some
problems.

A: Well, we warned you up

front! But don't let the problems
discourage you; while implementing
Singletons correctly can be tricky, after

reading this chapter you are now
well informed on the techniques for
creating Singletons and should use
them wherever you need to control
the number of instances you are
creating.

EPENDABLE SOFTWARE
LABORATORY

DU Gestions

Q: Can’t| just create a class in
which all methods and variables are
defined as static? Wouldn’t that be
the same as a Singleton?

A: Yes, if your class is self-
contained and doesn’t depend on

complex initialization. However,
because of the way static
initializations are handled in Java,
this can get very messy, especially if
multiple classes are involved. Often
this scenario can result in subtle,
hard to find bugs involving order

of initialization. Unless there is a
compelling need to implement your
“singleton” this way, it is far better to
stay in the object world.

Q: What about class loaders?

| heard there is a chance that two
class loaders could each end up with
their own instance of Singleton.

A: Yes, that is true as each class
loader defines a namespace. If you
have two or more classloaders, you
can load the same class multiple times
(once in each classloader). Now, if that
class happens to be a Singleton, then
since we have more than one version
of the class, we also have more than
one instance of the Singleton. So, if
you are using multiple classloaders
and Singletons, be careful. One way
around this problem is to specify the
classloader yourself.

K

KONKUK
UNIVERSITY

54

B

EPENDABLE SOFTV
LABORATORY

Q,: I've always been taught that
a class should do one thing and one
thing only. For a class to do two
things is considered bad OO design.
Isn’t a Singleton violating this?

A: You would be referring to

the “One Class, One Responsibility”
principle, and yes, you are correct,
the Singleton is not only responsible

for managing its one instance (and

providing global access), it is also re-

sponsible for whatever its main role is

in your application. So, certainly it can

be argued it is taking on two respon-
sibilities. Nevertheless, it isn't hard

to see that there is utility in a class
managing its own instance; it certainly
makes the overall design simpler. In
addition, many developers are familiar
with the Singleton pattern as itis in
wide use. That said, some developers
do feel the need to abstract out the
Singleton functionality.

Q} I wanted to subclass my
Singleton code, but | ran into
problems. Is it okay to subclass a
Singleton?

= One problem with subclassing
Singleton is that the constructor is
private. You can't extend a class with
a private constructor. So, the first
thing you'll have to do is change
your constructor so that it’s public
or protected. But then, it's not really
a Singleton anymore, because other
classes can instantiate it.

If you do change your constructor,
there's another issue. The
implementation of Singleton is based
on a static variable, so if you do a
straightforward subclass, all of your
derived classes will share the same
instance variable. This is probably
not what you had in mind. So, for
subclassing to work, implementing
registry of sorts is required in the base
class.

Before implementing such a scheme,
you should ask yourself what you
are really gaining from subclassing

a Singleton. Like most patterns, the
Singleton is not necessarily meant
to be a solution that can fit into a
library. In addition, the Singleton code
is trivial to add to any existing class.
Last, if you are using a large number
of Singletons in your application,
you should take a hard look at your
design. Singletons are meant to be
used sparingly.

K

Q: I still don’t totally understand
why global variables are worse than
a Singleton.

A: In Java, global variables are
basically static references to objects.
There are a couple of disadvantages
to using global variables in this
manner. We've already mentioned
one: the issue of lazy versus eager
instantiation. But we need to keep
in mind the intent of the pattern:to
ensure only one instance of a class

exists and to provide global access. A

global variable can provide the latter,
but not the former. Global variables
also tend to encourage developers
to pollute the namespace with lots
of global references to small objects.
Singletons don't encourage this in
the same way, but can be abused
nonetheless.

55

KONKUK
UNIVERSITY

Tools for your design toolbox

nn Pasies
00 Pr’m‘f‘?\es rawo,:
wlation
» s
'wa-ii?sv.iﬁahc what vanie 0"?\'\'\5"

Favor

Program to \n{,crfeaces,
i.n\vlcmewhaﬁons.
\ed desions
i B Tosy S g
S::.l::cn ooyet Lhat nter
Lension
(Classes chould be o?c; f:;l :-
‘Ou{. t.\ost.d «Q‘O\’ madl \

sbrachw\s' Do rat

Deyend on & veke tlasses:

deerd on Lo ed to enswre 1%

instante of a tlass
your application

When Yyou né
on\\f have ont
vunning aroun

\ Lurn to the

EPENDABLE SOFTWARE
LABORATORY

BULLET POIN&

The Singleton Pattern ensures
you have at most one instance
of a class in your application.

The Singleton Pattern also
provides a global access point
to that instance.

Java’s implementation of the
Singleton Pattern makes use
of a private constructor, a static
method combined with a static
variable.

Examine your performance

and resource constraints and
carefully choose an appropriate
Singleton implementation for
multithreaded applications

(and we should consider all
applications multithreaded!).

Beware of the double-checked
locking implementation; it is not
thread-safe in versions before
Java 2, version 5.

Be careful if you are using
multiple class loaders; this
could defeat the Singleton
implementation and result in
multiple instances.

If you are using a JVM earlier
than 1.2, you'll need to create a
registry of Singletons to defeat
the garbage collector.

)

I(UNIVERSITY

EPENDABLE SOFTWARE 5 7
LABORATORY

“Encapsulating Algorithms”

8. The Template Method Pattern

K KONKUK
UNIVERSITY

The Template Method Pattern

« We’re on an encapsulation roll; we’ve encapsulated object creation, method
invocation, complex interfaces, ducks, pizzas...what could be next?

« We’re going to get down to encapsulating pieces of algorithms so that subclasses can
hook themselves right into a computation anytime they want.

« We’re even going to learn about a design principle inspired by Hollywood.

Yeah, he's a great
boss until it comes to getting
down in this hele, then it ALL
becomes MY job. See what I
mean? He's nowhere in sight!

EPENDABLE SOFTWARE
LABORATORY

I{IIKONKUK
UNIVERSITY

It’s time for some more caffeine

. aﬂuﬂ}
ing M
z Goffee Barista Training N
5 3 -E
S#ﬁr uzE cipes Prac]'s
s £olloV ﬂl&iia;g.
v
Bm_.istgsl 'E:; gtarbuz?
a
when PTeP
b
QiarbuzZ Coffee Rec
r
) poil some wate c1iing wate
in
o caffea
(2) B=5 cup
(3) Pour coffee 37 11k
4) had sUIRT a5
{
grorbuzz TeoRECEE
ter
i1 gome W2 rer
) 2o rea in poiling ¥
(3) Pour gea 30 &€
(4) pdd lemon
mf.
and 5hwld o
£ t:aznstailfletﬂ'
i grar z 1y Cﬂn’!'n‘-
a1l recipes &7 ’

EPENDABLE SOFTWARE
LABORATORY

N The vetipe for

cobbee looks a lot
m rﬁhf‘t Ea‘r

é,/ tea, doesn't it
tea,

60

KU
Whipping up some coffee and tea classes

« Here’s the coffee: heee's our Coblee class far making coffee

¢
public class Coffee { Hreve's owr Y€

shraight o

void prepareRecipe () {
boilWater () ;

addSugarAndMilk () ;

public wvoid beoilWater() {

System.out.println("Beiling water") ;

public void brewCoffeeGrinds() {

System.out.println("Dripping Coffee through filter");

public wvoid pourInCup() {

System.out.println("Pouring into cup");

public wvoid addSugarAndMilk() {

System.out.println ("Adding Sugar and Milk"):

EPENDABLE SOFTWARE
LABORATORY

Eath ok the steps is 'm?'lcm

" hod.
brewCoffeeGrinds () ; J\ a Sc?ara{f- et
pourlInCup() ;

e Em. f_g-piitf:l

khe Ly anind manud

\.

anf_ﬂdl as

Eath of these
methods im?lcmcwI:s
oneé S‘LC? {}J‘I-" JE.'HC)
algorithm. Theres 3

e W
i
o
/

method To boll water,
brew the totfee, pour
the tokfee in a tups
and add sugar and milk.

61

KONKUK
UNIVERSITY

« And now the tea...

public class Tea {
This looks very similar to the one

we just implemented in Coffee;
the setond and fourth cher are
different, but it's basically the

same retipe.

void prepareRecipe() {
boilWater() ;
steepTeaBag/() ;

pourInCup () ;
addLemon () ;

public void boilWater() {
System.out.println("Boiling water");

These two
methods ave
specialized to Tea.

public void steepTeaBag() {
System.out.println("Steeping the tea"):;

<«

public void addLemon () {
System.out.println("Adding Lemon") ;

public void pourInCup() {
System.out.println("Pouring into cup"):;

EPENDABLE SOFTWARE
LABORATORY

=

KU vy

Notice that these
{—‘wa mt‘l:hOdS

ave exaetly the
same as they are

n CO“C'FEI!, Seo
ve definitely

ve somg b

duplication going

on heve.

&,/

When we've got code
duplication, that's a good sign we need to
clean up the design. Tt seems like here we

should abstract the commonality into a base
class since coffee and tea are so similar?

62

B

May | abstract your Coffee and Tea?

« Your first cut might have looked something like this:

CaffeineBeverage

The PrepareRccipc() method /-/—\) prepareRecipe)

. . boilWater
.d' er‘s n each subelass, so it P"L””c“‘?ﬂ
is defined as abstract.

The 'boilWa{cr':) and our|nCupl)

methods ave shared b both Subcl(lasscs,
<o Lhey ave dekined in Ehe supertlass.
o

/

Tea

Eaeh subtlass

Each subtlass /\ Coffee

lm?]tml:h£5 its prepareRecipe() prepareRecipe()

own relipe. brewCoffeeGrinds() steepTeaBag()
addSugarAndMilk{) addLemon()

N

The methods s?cc.'\i:it. Jcp
Coﬁcc and Tea s{ay in
the subtlasses-

EPENDABLE SOFTWARE
LABORATORY

4_/- overrides the

Frc?arcRcr_i?cf)
method and
implements its own
relipe.

K

KONKUK
UNIVERSITY

63

KU KONKUK
UNIVERSITY

Taking the design further...

« What else do Coffee and Tea have in common? Let’s start with the recipes.

cof ce in cup

and milk Starbuzz Tea Recipe
ar

(3) B

((1) Boil some water
(2) Steep tea in boiling water
(3) Pour tea in cup
(4) Add lemon

Notice that both recipes follow the same algorithm: prepareRecipe()

€ Boil some water. V\
v D

s¢ av hj‘{', wo ar
© Use the hot water to extract the coffee frasiinry WL i b
ready
or Tea- are ‘H’\C same, ih{o {')p\c base ('.\855-

they just apply
to di ferent
beverages.

€© Pour the resulting beverage into a cup.

O Add the appropriate condiments to the
beverage.

EPENDABLE SOFTWARE 64
LABORATORY

K KONKUK
UNIVERSITY

Abstracting prepareRecipe()

Coffee Tea _ _
_ . . _ void prepareRecipe() {
void pl-repareRecnpe () { void pFepareRecupe () { boilWater () ;
boilWater () ; boilWater () ; b .
brewCoffeeGrinds () ; e steepTeaBag () ; rew () ;
pourInCup() ; pourInCup () ; pourInCLllp ()7
addSugarAndMilk(); &——————3 addLemon (); addCondiments () ;
} } }

CabfeneBeverage 's abstratt,

f et the pedim i Now, the same ?rc?arcR:ci?eE} mcjc.‘hori:;
will be used to make both Tea and Cotvee.

?rc?arcﬂeci?eﬂ s detlared Final bc&.:;scto

we dont want our cubtlasses to be able 2
overvide this method and thanae the H%ﬂt
We ve genevalized steps L and & to brew

beverage and 3ddCondimentsl).

public abstract class CaffeineBeverage {

final void prepareRecipe() { s
boilWater () ;
brew() ;
pourInCup() ;
addCondiments () ;

}

Betause Cotkee and Tea handle these
sbelract void beewl T methods in diffevent ways, {hc\f're going 1o

have +o be deelaved as abstract Let the
subtlasses worry about that shulbfl

abstract void addCondiments(); *—

void boilWater() {

System.out.println("Boiling water") ;

} Remember, we moved these into

the CaﬁcmeBcvcragc tlass
void pourInCup() {

/ {back in our tlass diag]ram}.
System.out.println("Pouring into cup") ;
1

}
EPENDABLE SOFTWARE 6 5
LABORATORY

K KONKUK
UNIVERSITY

£ 7 As in our design, Tea and Cobfee
public class Tea extends CaffeineBeverage | i wikeiad Caﬂ'eineﬁev:rage.
public void brew() {

System.out.println("Steeping the tea") ;

! Tea needs to define brew() and
FuElLe vol & adaCond e)i ‘_\ addCondiments()—the two abstract
System.out.println("Adding Lemon") ; e methods -F'rorn Ca”cihtatucraﬁc-
} Same for Cobfee, extept Cotfee
} deals with tokfee, and Sugar and milk

' and lemon.
public class Coffee extends CaffeineBeverage { nstead of tea hags e

public void brew() {

System.out.println("Dripping Coffee through filter"™) ;
}
public woid addCondiments() {

System.out.println("Adding Sugar and Milk") ;

}
}
CaffeineBeverage
prepareRecipe()
boilWater()
pourlnCup()
brew()
addCondiments()
Coffee ' Tea
Coffee Tea
prepareRacpe() prepareRaciped)
brewCoffeeGrinds() skeegTeaBagl) brew() brew()
addSugarAndhli() addLernon() addCondiments() addCondiments()
EPENDABLE SOFTWARE
B] LABORATORY

What have we don

KU
e?

We've vetognized
that the two recipes
are essentially the
Sdme, although

some of the steps
require diffevent

i >
implementations. So 00
Te'a we've genevalized the ffee
vecipe and placed it Os
(1] Boil some water i in the base ¢lass. e oasomwaf
© Steep the teabad tn thews v (5 o "ecotiee ring
© four teainacwp 8 " offeing
O Adtlonon SUgar anq gy
Caffeine Beverage
generalize © Poil some water generalize

relies on
subclass
for some
steps

J

Tea svbt1as®

© Steep the teabag in the water
© Addlemon

EPENDABLE SOFTWARE
LABORATORY

\?

© EBrew

© Pour beverageina cup relies on

. subclass
@O Add condiments for some
sleps C”#re subejy
14
<)

"

ine Deveraoc
ﬁﬁiﬁ n&hd tontrols the
skeps of the vecive and
evkorms steps | and
ek, but velies on Ted
or Coklee to do steps

1 and k.

© Prew the coffee grinds

O A sugar and wilk

67

KONKUK
UNIVERSITY

| KU S

Meet the Template Method

« The Template Method defines the steps of an algorithm and allows subclasses to provide
the implementation for one or more steps.

/\ P\rc?a\—cRcCiyc() is our template method.
Why?

public abstract class Caffeinesjyé {
Betause:

void final prepareRecipe() { é

L () [t is 3 method, after all

—— (2) |4 serves as a template for an
alg,ori{hm, in Lhis ase, an alaorithm Lor
making catfeinated beverages.

boilWater () ;

brew () ;

pourInCup() ; \

S

L\: In the template, each step of
— the algorithm is represented
/ by a mcfhod.

— Some methods are handled
B by this ¢lass...

addCondiments() ;

|
A

~-and some are handled
b\/ {',hc subclass.

abstract void brew() ;
The methods that need +o
~ be supplied by a subelass are
declaved abstract

)

abstract void addCondiments() ;

void boilWater() {
// implementation
}

void pourInCup() ({
// implementation
}

EPENDABLE SOFTWARE
LABORATORY

K KONKUK
UNIVERSITY

Template Method Pattern defined

« This pattern is all about creating a template for an algorithm.

The Template Method Pattern defines the skeleton
of an algorithm in a method, deferring some steps to
subclasses. Template Method lets subclasses redefine
certain steps of an algorithm without changing the
algorithm’s structure.

« What's a template? As you've seen it’s just a method; more specifically, it's a method that
defines an algorithm as a set of steps. One or more of these steps is defined to be
abstract and implemented by a subclass.

.) , The template method makes use of th
« This ensures the algorithm’s structure stays unchanged, ?r-.m».;vjo;:atlm to ii;lcmc:’c af C

while subclasses provide some part of the implementation. alsrithm It is decoupled from the actual
implementation of these operations.

The AbstractClass m)

tontains the h"?‘a{x AbstractClass
method. primitiveOperation1();
, templateMethod() <« -+ e rereeee e fEeaiiinn mitiveC fion2();
..and abstvact versions primitiveOperation1() "
of the o?ﬂ-a{ions wed — 2 E primitiveOperation2()
in the {cmf’la{:c method. T
ConcreteClass
/ﬁ primitiveOperation1() m
2y be) primitiveOperation2() The ConeveteClass implements
e ™ th X
I
o' ; he whith are Called when
.‘m?\tmtnb"‘%co\u‘vcd \3\: the {xm?‘a{xmcthod() needs {;hcm
EPENDABLE SOFTWARE Ovcva‘k,\or\s Y 69
LABORATORY

pmglake "

Here we have our abstract tlass; it
«s detlaved abstract and meant l:a
be subelassed by ¢lasses that provide

implementations of the operations. Heve's the template method. It's

declaved final to ?rcvcnt subtlasses
From veworking the sequente
skeps in the ait_:,ar'njchm.

abstract class AbstractClass {

final void templateMethod() { The template method

primitiveOperationl () ; defines the sequente of
primitiveOperation2 () ; é/‘_ stcP!J eath represented
by a method.

concreteOperation() ;

abstract void primitiveOperationl () ;5

abstract void primitiveOperation2 () ; In thi
n this C“EM?FCJ two of
{:—hﬂ Prim'r‘tjve GFEIrafnm
void concreteOperation() {

// implementation here tontrete subelasses

We also have a tontrete operation
defined in the abstract class. More
about these kinds of methods in a bit...

EPENDABLE SOFTWARE
LABORATORY

abstract class AbstractClass {

must be imeEmch‘Eed b‘f

K KONKUK
UNIVERSITY

We've changed the
templateMethod() 4o
intlude 3 new methed 2all.

final void templateMethod() {
primitiveOperationl () ;
primitiveOperation2 () ;
concreteCperation () ;
hook () ; We still have our primitive
} methods; these are
\[—\ abstract and implemented

bY tontrete subelasses.
abstract void primitiveOperationl() ;

A tontrete operation is defined in the

abstract void primitiveOperation2() ;
abstract class. This one is der.lare_d ral
<o that subelasses can't overvide it. |

final void concreteOperation() {
// implementation he (_,/
implementation here e used m the Lemplate method

} diveetly, or used by subtlasses.

void hook() {}

7\ We tan also have tontrete methods that do nothing
A tonevete method, but by default; we eall these “hooks” Subtlasses ave free
it does nothing! to overvide these but don't have to. We're going to
see how these ave useful on the next page.

70

B

| KU S

Hooked on Template Method...

« A hook is a method that is declared in the abstract class, but only given an empty or
default implementation. This gives subclasses the ability to “hook into” the algorithm
at various points, if they wish; a subclass is also free to ignore the hook.

EPENDABLE SOFTWARE
LABORATORY

public abstract class CaffeineBeverageWithHook {

final wvoid prepareRecipe() {
boilWater () ;
brew() ;
pourInCup () ; [—\

if (customerWantsCondiments()) {
addCondiments () ;

abstract void brew() ;
abstract void addCondiments() ;

void boilWater () {

System.out.println("Boiling water");

void pourInCup() {

System.out.println("Pouring inte cup");

boolean customerWantsCondiments() {

return true;

With a hook, T can
override the method, or
not. It's my choice. If I don't,
the abstract class provides a

default implementation.

We've added a little conditional
statement that bases its

Sutless on @ tontrete method,
ﬁus{omcvWan{,sCQndimcnfst. I£ the
tustomer WANTS tondiments, only then
do we tall addCondiments()

red @ method
emphy default
This method just
does nothing else

Here we ve dc-["'t

wibh a (mosthy)

'Lm?ﬁtlﬂ"c‘“ 1S

veburns true and

Zl/r-\ This is a hook betause the

subtlass tan overvide this
method, but doesn't have {o.

71

KU KONKUK
UNIVERSITY

Using the hook

public class CoffeeWithHook extends CaffeineBeverageWithHook {
public woid brew() {

System.out.println("Dripping Coffee through filter™):;

public void addCondiments () { u.u'ntrt ou overvide
E g . s
System.out.println("Adding Sugar and Milk"): :;;amﬂnand vovide Your
} / unc,{tohalil
public boolean customerWantsCondiments() {
String answer = getUserInput():

if (answer.tolowerCase() .startsWith("y")) {
return true;

Get the user’s input on

} else { the tondiment detision
return false; <T——— and retuen true or false.
} depending on the input.

private String getUserInput() {
String answer = null;

System.out.print ("Would you like milk and sugar with your coffee (y/n)? ")

BufferedReader in = new BufferedReader (new InputStreamReader (System.in));
try {
answer = in.readLine() ;
} catech (IOException ioce) {
System.err.println("I0 error trying to read your answer'");
}

if (answer == null) {
return "no";

} IK_, if he'd like milk and
& dt asks ‘Lht wsey € .
l’ } R R dls_re::r :md ﬁt‘l',s his m?u{: feom the tommand line. -
EPENDABLE SOFTWARE

LABORATORY

K KONKUK
UNIVERSITY

Let’s run the TestDrive

public class BeverageTestDrive {
public statie wvoid main (String[] args) {

TeaWithHook teaHook = new TeaWithHook () ; £ (reate a tea

CoffeeWithHook coffeeHook = new CoffeeWithHook(); 4 _ A cokfee.

System.out.printin("\ntiaking tea...") e And call ?r:?areRcci?eEJ
41

teaHook .prepareRecipe() ; é#gf onbﬂ{H

System.out.println("\nMaking coffee...");

coffeeHook .prepareRecipe () ;

File Edit Window Help send-more-honesttea

%java BeverageTestDrive

Making tea...
Boiling water A steaming cup of tea, and yes, of
Steeping the tea tourse we want that lemon!

Pouring into cup
Would you like lemon with your tea (y/n)? y
Adding Lemon

ewp of eokkee,
the waistline

Making coffee... And a nice hot
Boiling water but we'll pass on

Dripping Coffee through filter expanding ¢ondiments-
Pouring into cup)

Would you like milk and sugar with your coffee (y/n)? n
%

EPENDABLE SOFTWARE 7 3
LABORATORY

Q_: When I'm creating a template
method, how do | know when to use
abstract methods and when to use
hooks?

A: Use abstract methods when your
subclass MUST provide an implementation
of the method or step in the algorithm.

Use hooks when that part of the algorithm

is optional. With hooks, a subclass may
choose to implement that hook, but it doesn’t
have to.

Q: What are hooks really supposed
to be used for?

A: There are a few uses of hooks. As
we just said, a hook may provide a way for
a subclass to implement an optional part

EPENDABLE SOFTWARE

LABORATORY

therejare no

Dumb Questions

of an algorithm, or if it isn’t important to
the subclass’ implementation, it can skip
it. Another use is to give the subclass

a chance to react to some step in the
template method that is about to happen,
or just happened. For instance, a hook
method like justReOrderedList() allows the
subclass to perform some activity (such as
redisplaying an onscreen representation)
after an internal list is reordered. As you've
seen a hook can also provide a subclass
with the ability to make a decision for the
abstract class.

Q: Does a subclass have to
implement all the abstract methods in the
AbstractClass?

AI Yes, each concrete subclass defines
the entire set of abstract methods and

K

provides a complete implementation of the
undefined steps of the template method’s
algorithm.

Q: It seems like | should keep my
abstract methods small in number,
otherwise it will be a big job to implement
them in the subclass.

A: That's a good thing to keep in

mind when you write template methods.
Sometimes this can be done by not making
the steps of your algorithm too granular. But

it's obviously a trade off: the less granularity,

the less flexibility.

Remember, too, that some steps will be
optional; so you can implement these as
hooks rather than abstract classes, easing
the burden on the subclasses of your
abstract class.

KONKUK
UNIVERSITY

74

‘ K KONKUK
UNIVERSITY

The Hollywood Principle

« With the Hollywood Principle, we allow low-level components to hook themselves into a
system, but the high-level components determine when they are needed, and how.

« The high-level components give the low-level components a “don’t call us, we’ll call you”

treatment.
The Hollywood Principle
Don't call us, we'll call you.
You've heard me say it
m before, and I'll say it again:
But the highf\c"’d don't call me, T'll call youl
n \
High-Level Component Lomponents Lomre
when and how: Q
L,ow’\f.‘J 2 w":off-'i'ic /\ m i'é !J
ppate ™ h
tan Ya\r‘bf’? Anoth 3 #
Lation \4 Low-Level nother -1 &
Ca Component low-level | <7 A bl ‘ g
Component | —e‘ve Component never ¥ |
Cé Is a high—leve| omponent: '
d“’tﬂ'uy. ;-\-'-1 '
{

EPENDABLE SOFTWARE ’
LABORATORY

The Hollywood Principle and Template Methool

Ca”cinchvcrASc is owr 'nigh-—lcvc\
Com?onc'n‘{:- |£ has tontrol over the

Clien
e Lt S - {h{: gfpzc\‘ferages will depend
i ::rqubc‘asscs only when they've needed / abstrae e :‘;E‘Bev{c:;aﬂc
for an im?lcmcn{:a{:non of a method T—— ::‘C*Cfc Teaox Coffi:, awhitzh
m—r o: W:’Ts dCPCnancics in the
boilWater() vl system.
pourinCup()
brew()
addCondiments()

N

Coffee Tea
brew() brew()
addCondiments() addCondiments()

Tea and CotLee never
The SubC’asscs .

&—/ call the Jbstract c\-ass
Provide iMP18mcn£a£SCd san‘)’ to @ al be birc dos

ion details. «alled” Fivst

76

therejare no

Dumb Q1

tuestions
Q: How does the Hollywood Principle

relate to the Dependency Inversion
Principle that we learned a few chapters
back?

AI The Dependency Inversion
Principle teaches us to avoid the use of
concrete classes and instead work as
much as possible with abstractions. The
Hollywood Principle is a technique for
building frameworks or components so that
lower-level components can be hooked

EPENDABLE SOFTWARE
LABORATORY

into the computation, but without creating
dependencies between the lower-level
components and the higher-level layers. So,
they both have the goal of decoupling, but

the Dependency Inversion Principle makes a

much stronger and general statement about

how to avoid dependencies in design.

The Hollywood Principle gives us a
technique for creating designs that allow
low-level structures to interoperate while
preventing other classes from becoming too
dependent on them.

K KONKUK
UNIVERSITY

Q: Is a low-level component
disallowed from calling a method in a
higher-level component?

A: Not really. In fact, a low level
component will often end up calling a method
defined above it in the inheritance hierarchy
purely through inheritance. But we want to
avoid creating explicit circular dependencies
between the low-level component and the
high-level ones.

77

K KONKUK

UNIVERSITY

Pattern Description

Encapsulitte ‘intercbangeable
Template Method behaviors and use delegation to

decide which behavior to use

Subelasses decide how

Strategy
to ?mplement steps in an
a]gor‘itbm

Factory Method Subelasses decide which

concrete classes to create

EPENDABLE SOFTWARE 78
LABORATORY

B

K KONKUK
UNIVERSITY

Template Methods in the Wild

This pattern shows up so often because it's a great design tool for creating frameworks,
where the framework controls how something gets done, but leaves you (the person

using the framework) to specify your own details about what is actually happening at
each step of the framework’s algorithm.

— Sorting
— Java JFrame
— Applet

In training, we study the classic
patterns. However, when we are out in
the real world, we must learn to recognize
the patterns out of context. We must also
learn to recognize variations of patterns,
because in the real world a square hole is
not always truly square.

EPENDABLE SOFTWARE
LABORATORY

79

Tools for your design toolbox

|m?\t.m6v\£a d -3“
woled dest
e kor \ocsely tovT! ¥
S::;:ec:ob")et.h *,ha{, inkevat
Lension
Classes hould be OY»CE‘ f:; ;-L V‘“L\Y\C Ye“\.md
e o . - chs\: ?: sU?crt.\asses
nd on a\ws{vat.ﬁons. Do - H"ah “ g -
3::;\& on contrete ¢lasses- - Wm‘\r:ow ey :\;i“
ur friends- o " : - - \’
s i heyve "€ ed,)
Denktall v well eall Yo ‘ e
on
\ And our newest \’BH:Crn

lets tlasses \m\:lcm:n{\ng
an algorithm defer some

00 Patters .

s ST . steps to subtlasses:
A ‘t P-r_l_.i Y S8 Y
LRI C ' 3
v CD wy ' ,
\a ‘ o 1 - e
H } 5‘ ! ao i ‘r . g = ,D ;_“e ‘U‘e ‘
- i y @ Tem?\a*" Mc‘u‘\od - lm"a“ w“a{‘om
HER R \ekon of 3" algorithm Jpelasses
B LY e 5\“’; - o some SLEES tos Lises vedekine
- s ve derervind hod lets sbelasses '\
: - su Template e of an algorithm I‘M
¥ s 1 €.
- ter h‘_“ sﬁc algorithms shreb i
\ W/
-

EPENDABLE SOFTWARE
LABORATORY

BULLET POIH&

A “template method” defines
the steps of an algorithm,
deferring to subclasses for the
implementation of those steps.

The Template Method
Pattern gives us an important
technique for code reuse.

The template method’s
abstract class may define
concrete methods, abstract
methods and hooks.

Abstract methods are
implemented by subclasses.

Hooks are methods that do
nothing or default behavior in
the abstract class, but may be
overridden in the subclass.

To prevent subclasses from
changing the algorithm in the
template method, declare the
template method as final.

The Hollywood Principle guides
us to put decision-making in
high-level modules that can
decide how and when to call
low level modules.

You'll see lots of uses of the
Template Method Pattern in
real world code, but don't
expect it all (like any pattern) fo
be designed “by the book.”

The Strategy and Template
Method Patterns both
encapsulate algorithms, one
by inheritance and one by
composition.

The Factory Method is a
specialization of Template

Method.

KONKUK
UNIVERSITY

80

I(UNIVERSITY

EPENDABLE SOFTWARE 8 1
LABORATORY

