
Design Patterns

건국대학교
유준범

Contents
1. Intro to Design Patterns (The Strategy Pattern)
2. The Observer Pattern
3. The Decorator Pattern
4. The Factory Pattern
5. The Singleton Pattern
6. The Command Pattern
7. The Adapter and Façade Patterns
8. The Template Method Pattern
9. The Iterator and Composite Patterns
10. The State Pattern
11. The Proxy Pattern
12. Composed Patterns
13. Better Living with Patterns

2

Text and References

3

4

2. The Observer Pattern

“Keeping your Objects in the know”

The Observer Pattern
• Don’t miss out when something interesting happens!

• We’ve got a pattern that keeps your objects in the know when something they might care
about happens. Objects can even decide at runtime whether they want to be kept
informed.

• The Observer Pattern is one of the most heavily used patterns in the JDK, and it’s
incredibly useful. Before we’re done, we’ll also look at one-to-many relationships and
loose coupling (yeah, that’s right, we said coupling).

6

• Congratulations! Your team has just won the contract to build Weather-O-Rama, Inc.’s
next-generation, Internet-based Weather Monitoring Station.

7

The Weather Monitoring Application overview

• Our job is to create an app that uses the WeatherData object to update three displays
for current conditions, weather stats, and a forecast.

8

Unpacking the WeatherData class

9

• As promised, the next morning the WeatherData source files arrive. When we peek
inside the code, things look pretty straightforward:

10

• Our job is to implement measurementsChanged() so that it updates the three displays
for current conditions, weather stats, and forecast.

What do we know so far?
• The WeatherData class has getter methods for three measurement values:

temperature, humidity and barometric pressure.

• The measurementsChanged() method is called any time new weather measurement
data is available. We don’t know or care how this method is called; we just know that
it is.

11

• We need to implement three display elements that use the weather data: a current
conditions display, a statistic display and a forecast display. These displays must be
updated each time whenever WeatherData has new measurements.

• The system must be expandable - other developers can create new custom display
elements and users can add or remove as many display elements as they want to the
application. Currently, we know about only the initial three display.

12

Taking a first attempt - misguided

13

14

What’s wrong with our implementation?

15

Meet the Observer Pattern

16

• You know how newspaper or magazine subscriptions work:
① A newspaper publisher goes into business and begins publishing newspapers.
② You subscribe to a particular publisher, and every time there’s a new edition it gets

delivered to you. As long as you remain a subscriber, you get new newspapers.
③ You unsubscribe when you don’t want papers anymore, and they stop being delivered.
④ While the publisher remains in business, people, hotels, airlines, and other businesses

constantly subscribe and unsubscribe to the newspaper.

Publishers + Subscribers = Observer Pattern

17

The Observer Pattern defined

18

• The subject and observers define the one-to-many relationship. The observers are
dependent on the subject such that when the subject’s state changes, the observers get
notified. Depending on the style of notification, the observer may also be updated with
new values.

• There are a few different ways to implement the Observer Pattern, but most revolve
around a class design that includes Subject and Observer interfaces.

The Observer Pattern defined: The class
diagram

19

The power of Loose Coupling

20

• When two objects are loosely coupled, they can interact, but have very little
knowledge of each other.

• The Observer Pattern provides an object design, where subjects and observers are loosely
coupled. Why?
– The only thing the subject knows about an observer is that it implements a certain interface (the

Observer interface).
– We can add new observers at any time.
– We never need to modify the subject to add new types of observers.
– We can reuse subjects or observers independently of each other.
– Changes to either the subject or an observer will not affect the other.

• Loosely coupled designs allow us to build flexible OO systems that can handle change,
because they minimize the interdependency between objects.

Designing the Weather Station

21

22

다른 Display들도 register를 위해
WeatherData를 subject로 받아야합니다.

Implementing the Weather Station

23

24

Implementing the display elements

25

Power up the Weather Station

26

Using Java’s built-in Observer Pattern (~ Java 8)

27

How Java’s built-in Observer Pattern works

28

• For an Object to become an observer...
– As usual, implement the Observer interface (this time the java.util.Observer interface) and call

addObserver() on any Observable object. Likewise, to remove yourself as an observer, just call
deleteObserver().

• For the Observable (Subject) to send notifications...
– You need to be Observable by extending the java.util.Observable superclass. From there it is a two-

step process:
① You first must call the setChanged() method to signify

that the state has changed in your object.
② Then, call one of two notifyObservers() methods:

• For an Observer to receive notifications...
– It implements the update method, as before, but

the signature of the method is a bit different:

setChanged()

Reworking the Weather Station with the built-in
support

30

31

• Now, let’s rework the CurrentConditionsDisplay

Running the new code

32

• Hmm, do you notice anything different? Look again...
– You’ll see all the same calculations, but mysteriously, the order of the text output is different. Why

might this happen? Think for a minute before reading on...

• Never depend on order of evaluation of the Observer notifications
– The java.util.Observable has implemented its notifyObservers() method such that the Observers

are notified in a different order than our own implementation. Who’s right? Neither; we just chose
to implement things in different ways.

The dark side of java.util.Observable

• Yes, good catch.

• As you’ve noticed, Observable is a class, not an interface , and worse, it doesn’t
even implement an interface.

• Unfortunately, the java.util.Observable implementation has a number of
problems that limit its usefulness and reuse.

• That’s not to say it doesn’t provide some utility, but there are some large
potholes to watch out for.

33

The Observer Pattern in the JDK

34

35

Tools for your design toolbox

36

5. The Singleton Pattern

“One of a Kind Objects”

The Singleton Pattern
• Our next stop is the Singleton Pattern, our ticket to creating one-of-a-kind objects for

which there is only one instance.

• You might be happy to know that of all patterns, the Singleton is the simplest in terms of
its class diagram; in fact, the diagram holds just a single class!

• But don’t get too comfortable; despite its simplicity from a class design perspective, we
are going to encounter quite a few bumps and potholes in its implementation.

The Little Singleton

39

• A small Socratic exercise in the style of The Little Lisper

40

41

Dissecting the classic Singleton Pattern
implementation

42

The Chocolate Factory

43

• The job of the boiler is to take in chocolate and milk, bring them to a boil, and then pass
them on to the next phase of making chocolate bars.

• Can you help Choc-O-Holic improve their ChocolateBoiler class by turning it into a
singleton?

44

Applying the Singleton Patten

45

46

Singleton Pattern defined

47

• No big surprises there. But what’s really going on here?
• We’re taking a class and letting it manage a single instance of itself. We’re also preventing

any other class from creating a new instance on its own. To get an instance, you’ve got to
go through the class itself.

• We’re also providing a global access point to the instance: whenever you need an instance,
just query the class and it will hand you back the single instance. As you’ve seen, we can
implement this so that the Singleton is created in a lazy manner, which is especially
important for resource-intensive objects.

We have a problem…
• It looks like the Chocolate Boiler has let us down; despite the fact we improved the

code using Classic Singleton, somehow the ChocolateBoiler’s fill() method was able to
start filling the boiler even though a batch of milk and chocolate was already boiling!

48

A multithreading problem

49

50

Dealing with multithreading

51

• Our multithreading woes are almost trivially fixed by making getInstance() a
synchronized method:

Can we Improve multithreading?

52

• For most Java applications, we obviously need to ensure that the Singleton works in
the presence of multiple threads. But it is expensive to synchronize the getInstance()
method, so what do we do?

• Well, we have a few options...

1. Do nothing if the performance of getInstance() isn’t critical to your application.

2. Move to an eagerly created instance rather than a lazily created one.

– Using this approach, we rely on the JVM to create the unique instance of the Singleton when the
class is loaded.

– The JVM guarantees that the instance will be created before any thread accesses the static
uniqueInstance variable.

3. Use “double-checked locking” to reduce the use of synchronization in getInstance().
– With double-checked locking, we first check to see if an instance is created, and if not, THEN we

synchronize. This way, we only synchronize the first time through, just what we want.

53

54

55

Tools for your design toolbox

56

57

8. The Template Method Pattern

“Encapsulating Algorithms”

The Template Method Pattern
• We’re on an encapsulation roll; we’ve encapsulated object creation, method

invocation, complex interfaces, ducks, pizzas...what could be next?

• We’re going to get down to encapsulating pieces of algorithms so that subclasses can
hook themselves right into a computation anytime they want.

• We’re even going to learn about a design principle inspired by Hollywood.

It’s time for some more caffeine

60

Whipping up some coffee and tea classes

61

• Here’s the coffee:

62

• And now the tea…

May I abstract your Coffee and Tea?

63

• Your first cut might have looked something like this:

Taking the design further…
• What else do Coffee and Tea have in common? Let’s start with the recipes.

• Notice that both recipes follow the same algorithm:

64

prepareRecipe()

Abstracting prepareRecipe()

65

66

What have we done?

67

Meet the Template Method
• The Template Method defines the steps of an algorithm and allows subclasses to provide

the implementation for one or more steps.

Template Method Pattern defined

69

• This pattern is all about creating a template for an algorithm.

• What’s a template? As you’ve seen it’s just a method; more specifically, it’s a method that
defines an algorithm as a set of steps. One or more of these steps is defined to be
abstract and implemented by a subclass.

• This ensures the algorithm’s structure stays unchanged,
while subclasses provide some part of the implementation.

70

Hooked on Template Method…

71

• A hook is a method that is declared in the abstract class, but only given an empty or
default implementation. This gives subclasses the ability to “hook into” the algorithm
at various points, if they wish; a subclass is also free to ignore the hook.

Using the hook

72

Let’s run the TestDrive

73

74

The Hollywood Principle

75

• With the Hollywood Principle, we allow low-level components to hook themselves into a
system, but the high-level components determine when they are needed, and how.

• The high-level components give the low-level components a “don’t call us, we’ll call you”
treatment.

The Hollywood Principle and Template Method

76

77

78

Template Methods in the Wild

79

• This pattern shows up so often because it’s a great design tool for creating frameworks,
where the framework controls how something gets done, but leaves you (the person
using the framework) to specify your own details about what is actually happening at
each step of the framework’s algorithm.
– Sorting
– Java JFrame
– Applet

Tools for your design toolbox

80

81

