Clean Code

JUNBEOM YOO

KONKUK University

http://dslab.konkuk.ac.kr

Text and References

Robert C. Martin Series

Clean Code

A Handbook of Agile Software Craftsmanship

Clean Architecture

A Craftsman’s Guide to
Software Structure and Design

‘Head First
Design Patterns

e

Robert C. Martin

Foreword by James O. Coplien

OREILLY*

(¥ DEPENDABLE SOFTWARE 2
'y LABORATORY

I(UNIVERSITY

EPENDABLE SOFTWARE 3
LABORATORY

CLEAN CODE

A 50

® N

Clean Code
Meaningful Names
Functions
Comments
Formatting

Error Handling
Boundaries

K KONKUK
UNIVERSITY

« Two parts to learning craftsmanship: knowledge and work

oF Cocdle G!'U.HL,.[T'q_’ WTFS/ﬂiumrﬂ

‘tfh#
Wt F v }2""53 ’s
\ ,r’? w"{?
= 1\—‘ .I"j — /
ode])| S
code C OcAL u
Ml Review] || "
- | -
e - wre
- . -r._,..-'"
J = 1l = E
BAd code g
Good code. . de. 5

Reproduced with the kind permission of Thom Holwerda,
http:fwwowsosnews.comystory 1 9266/W TFs_m

EPENDABLE SOFTWARE 5
LABORATORY

I(UNIVERSITY

EPENDABLE SOFTWARE 6
LABORATORY

Chapter 2. Meaningful Names

K KONKUK
UNIVERSITY

2. Meaningful Names

 Names are everywhere in software.
— We name our variables, our functions, our arguments, classes, and packages.
— We name our source files and the directories that contain them.

 Because we do so much of it, we'd better do it well.
— Some simple rules for creating good names

EPENDABLE SOFTWARE 8
LABORATORY

KU KONKUK
UNIVERSITY

2.1 USE INTENTION-REVEALING NAMES

« Choosing good names takes time but saves more than it takes.

« The name of a variable, function, or class, should answer the questions:
— What it does?
— Why it exists?
— How it used?

« Ifaname requires a comment, then the name does not reveal its intent.

int d; // elapsed time in days

— The name d reveals nothing.
* It does not evoke a sense of elapsed time, nor of days.
* We should choose a name that specifies what is being measured and the unit of that measurement:

int elapsedTimeInDays;
int daysSinceCreation;

int daysSinceModification;
int fileAgeInDays;

EPENDABLE SOFTWARE 9
LABORATORY

KU KONKUK
UNIVERSITY

« Choosing names that reveal intent make it much easier to understand and
change code.

 What is the purpose of this code? Why is it hard to tell what this code is doing?

public List<int[]> getThem() |
List<int[]> listl = new ArrayList<int[]>{);
for (int[] x : thelList)
if (x[0] == 4)
listl.add(x];
return listl;

|

— The problem is not the simplicity of the code, but the implicity of the code.

« The code implicitly requires us to ask questions such as:
1. What kinds of things are in theList?

2. What is the significance of the zeroth subscript of an item in theList?
3. What s the significance of the value 4?
4. How would I use the list being returned?

EPENDABLE SOFTWARE 1 O
LABORATORY

rafaif |
1
« Assume that we're working in a mine sweeper game. e
— The board is a list of cells called theList. Let’s rename that to gameBoard. —1 11 fiéﬁf
— Each cell on the board is represented by a simple array. teaeo I
— The zeroth subscript is the location of a status value and | 33;'11——{
a status value of 4 means “flagged.” 123 F [C1C100
132 R 2]

« Just by giving these concepts names, we can improve the code considerably:

public List<int[]> getFlaggedCells() |
List<int[]> flaggedCells = new ArrayList<int[]>{);
for (int[] cell : gameBoard)
if icell[STATUS_?ELUE] == FLAGGED)
flaggedCells.add(cell) ;
return flaggedCells;

|

« With these simple name changes, it gets easier to understand what'’s going on.

public List<Cells> getFlaggedCells() |
List<Cell> flaggedCells = new ArrayList<Cells();
for (Cell cell : gameBoard)
if (cell.isFlagged())
flaggedCells.add(cell);
return flaggedCells;

|

EPENDABLE SOFTWARE 1 1
LABORATORY

K'L]‘ KONKUK
UNIVERSITY

2.2 AVOID DISINFORMATION

« Programmers must avoid leaving false clues that obscure the meaning of code.

— We should avoid words whose entrenched meanings vary from our intended meaning.
* hp, aix, and sco would be poor variable names.
— Do not refer to a grouping of accounts as an accountList unless it’s actually a List.

— Beware of using names which vary in small ways.
* XYZControllerForEfficientHandlingOfStrings VS. XYZControllerForEfficientStorageOfStrings

— Spelling similar concepts similarly is information.

« Atruly awful example
— The use of lower-case L or uppercase O as variable names, especially in combination.

inta=1;
if(0==1)
a=01;
else
1=01;

EPENDABLE SOFTWARE 1 2
LABORATORY

2.3 MAKE MEANINGFUL DISTINCTIONS

* Problems happen when programmers write code only to satisfy a compiler.

— Itis not sufficient to add number series or noise words, even though the compiler is
satisfied.

* If names must be different, then they should also mean something different.
— Noise words are another meaningless distinction.
— Noise words are redundant.
public static void copyChars(char al[l, char a2[]) {
for {int i = 0; i < al.length; i++) |
az2[i] = al[i];

}
}

— For example, can you tell the difference?

getActiveAccount() ;
getActiveAccounts () ;
getActiveAccountInfo();

EPENDABLE SOFTWARE 1 3
LABORATORY

KU KONKUK
UNIVERSITY

2.4 USE PRONOUNCEABLE NAMES

« Make your names pronounceable.

* A company | know has genymdhms (generation date, year, month, day, hour, minute, and second)
so they walked around saying “gen why emm dee aich emm ess”.
— | have an annoying habit of pronouncing everything as written, so | started saying “gen-yah-

muddahims.”
class DtaRerdl02 { class Customer |
private Date genymdhms; private Date generationTimestamp;
private Date modymdhms; VS private Date modificationTimestamp;;
private final String pszgint = "102"; ' private final String recordId = "102";
;Hr *;." J,.-'t 63l tJ,-'

b ¥

[} DePenDABLE SOFTWARE 1 4
| LABORATORY

KU KONKUK
UNIVERSITY

2.5 USE SEARCHABLE NAMES

« Single-letter names and numeric constants have a particular problem in
that they are not easy to locate across a body of text.
— MAX CLASSES PER STUDENT vs. the number 7
— The name ¢is a poor choice for any variable.

« Single-letter names can ONLY be used as local variables inside short methods.

for (int j=0; j<34; j++) {
s+=(t[j]*4)/5;
}

VS.

int realDaysPerldealDay = 4;

const int WORK DAYS PER WEEK = 5;

int sum = 0;

for (int j=0; j < NUMBER OF TASKS; j++) {
int realTaskDays = taskEstimate[j] * realDaysPerIdealDay;
int realTaskWeeks = ftrealgays—/ WORK DAYS PER WEEK);
sum += realTaskWeeks; realTaskDays

|

EPENDABLE SOFTWARE 1 5
LABORATORY

KU KONKUK
UNIVERSITY

2.6 AVOID ENCODINGS

« Encoding type or scope information into names simply adds an extra burden
of deciphering.
— Fortran forced encodings by making the first letter a code for the type.

— Modern languages have much richer type systems, and the compilers remember and
enforce the types.

* You don’t need to prefix member variables with m_anymore.

public class Part {
private String m dsc; // The textual description
vold setName(String name)
m_dsc = name;

}
}

public class Part {
String description;
void setDescription(String description) {
this.description = description;

}
}

EPENDABLE SOFTWARE 1 6
LABORATORY

KU KONKUK
UNIVERSITY

2.7 AVOID MENTAL MAPPING

« Readers shouldn’t have to mentally translate your names into other names
they already know.

— This problem generally arises from a choice to use neither problem domain terms (2.14) nor
solution domain terms (2.13).

« Many problems arise with single-letter variable names.

— A'loop counter may be named i or j or k, only if its scope is very small and no other names
can conflict with it.

— There can be no worse reason for using the name c than because a and b were already taken.

EPENDABLE SOFTWARE 1 7
LABORATORY

2.8 CLASS NAMES

Classes and objects should have noun or noun phrase names.
— Such as Customer, WikiPage, Account, and AddressParser.

Avoid obscure and common words.
— Such as Manager, Processor, Data, or Info.

A class name should not be a verb.

| DEPENDABLE SOFTWARE

LABORATORY

18

KU KONKUK
UNIVERSITY

2.9 METHOD NAMES

« Methods should have verb or verb phrase names.
— Such as postPayment, deletePage, or save.

« Accessors, mutators, and predicates should be named for their value and prefixed
with get or set.

string name = employee.getName() ;
customer.setName ("mike");

i
L1

if (paycheck.isPosted(})...

[} DePenDABLE SOFTWARE 1 9
o LABORATORY

2.10 DON'T BE CUTE BN

« If names are too clever, they will be memorable only to people who share the
author’s sense of humor.

» Cuteness in code often appears in the form of colloguialisms or slang.
— Don’t use the name whack() to mean kill().
— Don't tell little culture-dependent jokes like eatMyShorts() to mean abort().

EPENDABLE SOFTWARE 2 O
LABORATORY

KU KONKUK
UNIVERSITY

2.11 PICK ONE WORD PER CONCEPT

 Pick one word for one abstract concept.

— For instance, it's confusing to have fetch, retrieve, and get as equivalent methods of different
classes.

« It’'s confusing to have a controller, a manager and a driver in the same code base.

— What is the essential difference between a DeviceManager and a ProtocolController? Why
are both not controllers or both not managers? Are they both Drivers really?

« Consistent lexicon is a great boon to the programmers who must use your code.

S
l,‘. ' DEPENDABLE SOFTWARE 2 1
- LABORATORY

2.12 DON'T PUN

« Avoid using the same word for two purposes.

« Using the same term for two different ideas is essentially a pun.
— add vs. insert vs. append

KU

KONKUK
UNIVERSITY

22

2.13 USE SOLUTION DOMAIN NAMES

Remember that the people who read your code will be programmers.

Go ahead and use computer science (CS) terms.
— Such as algorithm names, pattern names, math terms, and so forth.

It is not wise to draw every name from the problem domain because

— We don’t want our coworkers to have to run back and forth to the customer asking what
every name means when they already know the concept by a different name.

KU KONKUK
UNIVERSITY

23

2.14 USE PROBLEM DOMAIN NAMES

When there is no “programmer-eese” for what you're doing, use the name from the
problem domain.

— At least the programmer who maintains your code can ask a domain expert what it means.

“Separating solution and problem domain concepts” is part of the job of a
good programmer and designer.

EPENDABLE SOFTWARE 24
LABORATORY

K KONKUK
UNIVERSITY

2.15 ADD MEANINGFUL CONTEXT

* You need to place names in context for your reader by enclosing them in
well-named classes, functions, or namespaces.

— When all else fails, then prefixing the name
may be the last resort.

public class GuessStatisticsMessage |
private String number;
private String verb;
private String pluralModifier;

public String make(char candidate, int count) |
createPluralDependentMessageParts (count) ;
return String.format(
"There %s %s %s%s",

private void printGuessStatistics(char candidate, int count) {
String number;
String verb;

String pluralModifier; verb, number, candidate, pluralModifier);
if (count == 0) { }
number = "no";
verh = "are"; private void createPluralDependentMessageParts(int count) {
plura}Modifier SE lftéé?iﬁie;;LéétersV-
e e } else if (count) {
— mwqw., ==
number e % ! thereIsOneletter();
verb = "is"; } else {
} piura%Modlfler =" VS therehreManyLetters (count) ;
else .

number = Integer.toString(count); }
verb = "are";

pluralModifier = "s"; private void thereAreManyLetters(int count) {
} number = Integer.toString(count);
String guessMessage = String.format{ verb = "are";
"There %s %s %s%s", verb, number, candidate, pluralModifier } pluralModifier = "s";
i
print (guessMessage) ; private veoid therelsOneletter() |
} number = "1";
verb = "is";
pluralModifier = "";

private void thereAreNoLetters() |
number = "no";
verb = "are";

pluralModifier = "sg";
EPENDABLE SOFTWARE } 2 5
LABORATORY }

KU

2.16 DON'T ADD GRATUITOUS CONTEXT

In an imaginary application called “Gas Station Deluxe,” it is a bad idea to prefix
every class with GSD.
— Frankly, you are working against your tools.

— Because whenever you type G and press the completion key, then you are rewarded with a
mile-long list of every class in the system.

Shorter names are generally better than longer ones, so long as they are clear.

Add no more context to a name than is necessary.

KONKUK
UNIVERSITY

PENDABLE SOFTWARE 2 6

LABORATORY

KU KONKUK
UNIVERSITY

FINAL WORDS

« The hardest thing about choosing good names is that it requires good
descriptive skills and a shared cultural background.
— Thisis ateaching issue rather than a technical, business, or management issue.
— As aresult, many people in this field don’t learn to do it very well.

« People are afraid of renaming things for fear that some other developers will object.

— We find that they will be grateful when names change for the better.

* You will probably end up surprising someone when you rename, just like you might with any other
code improvement.

* Follow some of these rules and see whether you don’t improve the readability of
your code.

EPENDABLE SOFTWARE 2 7
LABORATORY

I(UNIVERSITY

EPENDABLE SOFTWARE 2 8
LABORATORY

Chapter 3. Functions

I}EPEN

3. Functions

* Functions are the first line of organization in any program.

« Writing functions well is the topic of this chapter.

DABLE SOFTWARE
LABORATORY

30

K KONKUK
UNIVERSITY

 See how much you can understand it in the next 3 minutes.

public static S8tring testableHtml(
PageData pageData,
boolean includeSuiteSetup
) throws Exception {
WikiPage wikiPage = pageData.getWikiPage();
StringBuffer buffer = new StringBuffer();
if (pageData.hasAttribute("Test")) |
if (includeSuiteSetup) {
WikiPage suiteSetup =
PageCrawlerImpl.getInheritedPage|
SuiteResponder.SUITE SETUP NAME, wikiPage
)i

if (suiteSetup != null) {
WikiPagePath pagePath =
suiteSetup.getPageCrawler() .getFullPath(suiteSetup) ;
String pagePathName = PathParser.render (pagePath);
buffer.append("!include -setup .")
.append (pagePathName)
| .append("\n"} ;
J
WikiPage setup =
PageCrawlerImpl.getInheritedPage("SetlUp", wikiPage);
if (setup != null)
WikiPagePath setupPath =
wikiPage.getPageCrawler () .getFullPath(setup);
String setupPathName = PathParser.render(setupPath);
buffer,append("!include -setup .")
.append (setupPathName)
.append("\n") ;
}
}

buffer.append(pageData.getContent ())
if (pageData.hasAttribute("Test")) {
WikiPage teardown =

EPENDABLE SOFTWARE
LABORATORY

PageCrawlerImpl.getInheritedPage {"TearDown", wikiPage);
if (teardown != null) {
WikiPagePath tearDownPath =
wikiPage.getPageCrawler() .getFullPath{teardown)] ;
String tearDownPathName = PathParser.render (tearDownPath);
buffer.append("\n")
.append("!include -teardown .")
.append (tearDownPathName)
.append ("\n") ;

}

if (includeSuiteSetup) |
WikiPage suiteTeardown =
PageCrawlerImpl.getInheritedPage |
SuiteResponder.SUITE TEARDOWN NAME,
wikiPage
)i
if (suiteTeardown != null) {
WikiPagePath pagePath =
suiteTeardown.getPageCrawler().getFullPath (suiteTeardown);
String pagePathName = PathParser.render (pagePath];
buffer.append("!include -teardcwn .")
.append (pagePathName)
'append(n\nn} ;
| |
|

pageData.setContent (buffer.toStringl(]);
return pageData.getHtml () ;

Listing 3-1 HtmlUtil.java (FitNesse 20070619)

31

S —— R
K KONKUK
UNIVERSITY

« Do you understand the function after three minutes of study?

— Probably not

— There are strange strings and odd function calls mixed in with doubly nested if statements
controlled by flags.

— There’s too much going on in there at too many different levels of abstraction.

* However, with just a few simple method extractions, some renaming, and a little
restructuring, we can capture the intent of the function in the 9 lines.

public static String renderPageWithSetupsAndTeardowns (
PageData pageData, boolean isSuite
) throws Exception {
boolean isTestPage = pageData.hasAttribute("Test");
if (isTestPage) |
WikiPage testPage = pageData.getWikiPagel();
StringBuffer newPageContent = new StringBuffer();
includeSetupPages (testPage, newPageCcntent, isSuite);
newPageContent.append (pageData.getContent ()] ;
includeTeardownPages (testPage, newPageContent, isSuite);
pageData.setContent (newPageContent . toString ()] ;

}

return pageData.getHtml();

Listing 3-2 HtmlUtil.java (refactored)

EPENDABLE SOFTWARE 3 2
LABORATORY

‘ K KONKUK
UNIVERSITY

3.1 SMALL!

* The first rule of functions is that they should be small.

« The second rule of functions is that they should be smaller than that.
— Lines should not be 150 characters long.

— Functions should not be 100 lines long.
* Functions should hardly ever be 20 lines long.

 How short should your function be?
— They should usually be shortened to the below:

public static String renderPageWithSetupsAndTeardowns |
PageData pageData, boolean isSuite) throws Exception {
if (isTestPage(pageData))
includeSetupAndTeardownPages (pageData, isSuite);
return pageData.getHtml();

* The blocks within if statements, else sStatements, while Statements, and so on should be one line long.

— Functions should not be large enough to hold nested structures.

EPENDABLE SOFTWARE 3 3
LABORATORY

l([I KONKUK
UNIVERSITY

3.2 DO ONE THING

« The following advice has appeared for 30 years or more.

— “FUNCTIONS SHOULD DO ONE THING.
THEY SHOULD DO IT WELL.
THEY SHOULD DO IT ONLY. ”

 The problem is that it is hard to know what “one thing” is.

— If afunction does only those steps that are one level below the stated name of the function,
then the function is doing one thing.

— Afunction is doing more than “one thing”, if you can extract another function from it with a
name that is not merely a restatement of its implementation.

EPENDABLE SOFTWARE
LABORATORY

B

Sections within functions is an obvious symptom of doing more than one thing.

— Notice that the generatePrimes function is divided into sections such as declarations,

Initializations, and sieve.

— Functions that do one thing cannot be reasonably divided into sections.

*

This class Generates prime numbers up to a user specified
maximum. The algorithm used is the Sieve of Eratosthenes.
<p=

Eratosthenes of Cyrene, b. c¢. 276 BC, Cyrene, Libya --

d. c. 194, Alexandria. The first man tec calculate the
circumference of the Earth. Also known for working on
calendars with leap years and ran the library at Alexandria.
<p>

The algorithm is quite simple. Given an array of integers
starting at 2. Cross out all multiples of 2. Find the next
uncrossed integer, and cross out all of its multiples.
Repeat untilyou have passed the sguare root of the maximum
value.

* * * * % * * * H* * F * * * * * *

@author Alphonse
@version 13 Feb 2002 atp
Ry

import java.util.*;
public class GeneratePrimes

,-"**
* gparam maxValue is the generation limit.
*]

public static int[] generatePrimes(int maxValue)

if (maxValue »= 2} // the only valid case
{
// declarations
int s = maxvValue + 1; // size of array
boolean[] f = new boolean[s];
int 1i;

// initialize array to true.
for (1 0; 1 < 8; 1++)
fli] true;

// get rid of known non-primes
flol = £[1] = false;

/) sieve
int j;
for (i = 2; 1 < Math.sgrt(s) + 1; i++)

K

KONKUK
UNIVERSITY

if (f[i]) // if 1 is uncrossed, cross its multiples.

for (j
£ (3]

2+ 1; J<8; 7] +=1)
false; // multiple is not prime

// how many primes are there?
int count = 0;

for (1 = 0; 1 < 8; i++)
if (£[i]}
count++; f/ bump count.
int[] primes = new int [count];

// move the primes into the result
for (1 =0, J=0; 1< 8; 1++}

if (£[i]) // if prime
primes[j++] = i;
J
return primes; [/ return the primes

else // maxValue < 2

return new int[0]; // return null array if bad input.

35

KU KONKUK
UNIVERSITY

3.3 ONE LEVEL OF ABSTRACTION PER FUNCTION

« The statements within our function should be all at the same level of abstraction.

* For example, Listing 3-1 violates this rule.
— Atavery high level of abstraction, such as
* getHtml();

— Atan intermediate level of abstraction, such as:
* String pagePathName = PathParser.render(pagePath);

— Remarkably at a low level, such as:
* .append("\n”)

« Mixing levels of abstraction within a function is always confusing.

— Once details are mixed with essential concepts, more and more details tend to accrete within
the function.

EPENDABLE SOFTWARE 3 6
LABORATORY

public static String testableHtml (
PageData pageData,
boolean includeSuiteSetup
) throws Exception {
WikiPage wikiPage = pageData.getWikiPage();
StringBuffer buffer = new StringBuffer();
if (pageData.hasAttribute("Test")) {
if (includeSuiteSetup)
WikiPage suiteSetup =
PageCrawlerImpl.getInheritedPage(
SuiteResponder.SUITE SETUP NAME, wikiPage
i

if (suiteSetup != null) {
WikiPagePath pagePath =

suiteSetup.getPageCrawler() .getFullPath(suiteSetup);

String pagePathName = PathParser.render (pagePath);
buffer.append("!include -setup .")

.append (pagePathName)

.append("\n");

|
I
WikiPage setup =
PageCrawlerImpl.getInheritedPage ("SetUp", wikiPage);
if (setup != null)
WikiPagePath setupPath =
wikiPage.getPageCrawler() .getFullPath(setup);

K KONKUK
UNIVERSITY

PageCrawlerImpl.getInheritedPage ("TearDown", wikiPage];
if (teardown != null) |
WikiPagePath tearDownPath =
wikiPage.getPageCrawler() .getFullPath(teardown);
String tearDownPathName = PathParser.render (tCearDownPath);
buffer.append("\n")
.append (" !include -teardown .")
.append (tearDownPathName)
.append ("\n") ;

|

if (includeSuiteSetup) {
WikiPage suiteTeardown =
PageCrawlerImpl.getInheritedPage|
SuiteResponder.SUITE TEARDOWN NAME,
wikiPage
)i
if (suiteTeardown != null) {
WikiPagePath pagePath =
suiteTeardown.getPageCrawler () .getFullPath (suiteTeardown);
String pagePathName = PathParser.render (pagePath);
buffer.append("!include -teardown .")
.append (pagePathName)
} .append ("\n") ;
}

|

pageData.setContent (buffer.toString());
return pageData.getHtml();

String setupPathName = PathParser.render (setupPath);
buffer.append("!include -setup .")
.append (setupPathName) }
.append ("\n") ;

|

buffer.append(pagelata.getContent ()]
if (pageData.hasAttribute("Test")) {
WikiPage teardown =

Listing 3-1 HtmlUtil.java (FitNesse 20070619)

EPENDABLE SOFTWARE 3 7
LABORATORY

KU tevsmy
« The Stepdown Rule : Reading code from top to bottom

— Read the code like a top-down narrative.

« Every function are followed by those at the next level of abstraction, so that we can read the program,
descending one level of abstraction at a time as we read down the list of functions.

— It looks like a set of TO paragraphs :

* Toinclude the setups and teardowns, we include setups, then we include the test page content, and
then we include the teardowns.

— Toinclude the setups, we include the suite setup if this is a suite, then we include the regular setup.

— To include the suite setup, we search the parent hierarchy for the “SuiteSetUp” page and add an
include statement with the path of that page.

— Tosearch the parent...

« Itisthe key to keeping functions short and making sure they do “one thing.”

EPENDABLE SOFTWARE 3 8
LABORATORY

3.4 SWITCH STATEMENTS

It's hard to make a small switch statement.
— By their nature, switch statements always do N things.

But we can make sure that each switch statement is buried in a low-level class and is
never repeated with polymorphism. - ButIdon't agree that.

NNNNNN SOFTWARE 3 9
T

KU oo
« The code shows just one of the operations that might depend on the type of Employee.

public Money calculatePay(Employee e)
throws InvalidEmployeeType {
switch (e.type) |
case COMMISSIONED:
return calculateCommissionedPayie);
case HOURLY:
return calculateHourlyPay(e);
case SALARIED:
return calculateSalariedPay(e);
default:
| throw new InvalidEmployeeType(e.type);

}

« There are several problems with this function.
— When new employee types are added, it will grow.

— It very clearly does more than one thing.
» There are an unlimited number of other functions that will have the same structure.
— It violates the Single Responsibility Principle (SRP) because there is more than one reason
for it to change.
— It violates the Open Closed Principle (OCP) because it must change whenever new types are
added.

EPENDABLE SOFTWARE 40
LABORATORY

B

* My general rule for switch statements is

EPENDABLE SOFTWARE
LABORATORY

public abstract class Employee {
public abstract boolean isPayday();
public abstract Money calculatePay();
public abstract wvoid deliverPay(Mcney pay);

public interface EmployeeFactory {
public Employee makeEmployee (EmployeeRecord r) throws InvalidEmployeeType;

public class EmployeeFactoryImpl implements EmployeeFactory |
public Employee makeEmployee (EmployeeRecord r) throws InvalidEmployeeType {
switch (r.type) {
case COMMISSIONED:
return new CommissionedEmployee(r) ;
case HOURLY:
return new HourlyEmployee(r);
case SALARIED:
return new SalariedEmploye(r);
default:
} throw new InvalidEmployeeType(r.type);

}
|

KU KONKUK
UNIVERSITY

They can be tolerated if they appear only once, are used to create polymorphic objects, and
are hidden behind an inheritance relationship, so that the rest of the system can’t see them.

41

PizzaStove is implemented as 3 Fattory
Mekhod betause we want to be able to

Provides an abstract EmplovecFactory \[\ L A akieh e o

nberlate Wikh Ehe Factory Method, eath vegion
Fa Ct 0 ry M et h 0] d w aets ks own contrete faetory that
knows how to make pizzas that are
appropriate for the area.

j hith
Eath subelass d:-‘.tdts whi
&om‘.‘rc{c tlass to ms{:ﬁn{:\a{:& —

Employee
public abstract class Employee { = / E‘\
public abstract boolean isPayday(); NEW Y’C""k S{:‘W‘: NYPizzaStore ChicagoPizzaStore
public abstract Money calculatePay(); i S‘tp
| public abstract void deliverPay(Money pay); + makeEmplovei()/? createPizzal) createPizzal) Ch:d&50 e

public interface EmployeeFactory {

} public Employee makeEmployee (EmployeeRecord r) throws InvalidEmployeeType; T}\E Fﬂﬂi’ﬁ"'? Md:hod Tl"-C Fﬂﬂ{rﬁ"}' Mc{h‘?d

public class EmployeeFactoryImpl implements EmployeeFactory {
public Employee makeEmployee(EmployeeRecord r) throws InvalidEmployeeType {
switch (r.type) {
case COMMISSIONED:
return new CommissionedEmployee(r) ;

case HOURLY: This is the ?roduf.{: of the
return new HourlyEmployee(r];)
case SALARIED: PizzaStore. Clients ‘-"“I"f The ChicaaoPizzaStore
return new SalariedEmploye(r); s . itaoor1zza
default: The NYPizzaStore subtlass only rcl‘,‘ on this abstract type- ¢ 3
throw new InvalidEmployeeType (r.type);

. - izzas. subtlass instantiates Gn!‘,{
} instantiates NY 5{-‘7'!: pra=a & C'hi.:&ﬁo s{:‘ﬂc pizzas.

Employee
+ isPayday()

A Brain-Friendly Guide + calculatePay()

_Head First + deliverPay()
Design Patterns

Avold thow your friends know about
embarrassing

] e CommissionedEmployee

WS l Subtlasses are ChicagoStylsChaesePizza

HourlyEmployee | NYStylePepperoniPizza instantiated by the
] NYStyleClamPizza Fac{-pr']l Methods.
Salan'edEmvloyee | .H‘Péﬁ.‘i Eﬁ@lﬁiﬁu
& (7
(r//'7 New Y::rk Chicago
The eveatePizzal) method is parameterized by pizza 42

Lype, so we ¢an veturn many types of pizza products.

3.5 USE DESCRIPTIVE NAMES

« Ward’s principle : “You know you are working on clean code when each routine
turns out to be pretty much what you expected.”

— Half the battle to achieving that principle is choosing good names for small functions that do

one thing.
— The smaller and more focused a function is, the easier it is to choose a descriptive name.

 Choosing descriptive names will clarify the design of the module in your mind
and help you to improve it.
— Along descriptive name is better than a short enigmatic name.
— Along descriptive name is better than a long descriptive comment.

« Be consistent in your names.
— Use the same phrases, nouns, and verbs in the function names you choose for your modules.

— For example,

» For he names includeSetupAndTeardownPages, includeSetupPages, includeSuiteSetupPage, and includeSetupPage, then
you’d ask yourself: “What happened to includeTeardownPages, includeSuite TeardownPage, and
includeTeardownPage?”

EPENDABLE SOFTWARE 4 3
LABORATORY

3.6 FUNCTION ARGUMENTS

« The ideal number of arguments for a function is zero (niladic).
— Next comes one (monadic), followed closely by two (dyadic).
— Three arguments (triadic) should be avoided where possible.
— More than three (polyadic) requires very special justification and shouldn’t be used anyway.

* Arguments are hard.
— Our readers would have had to interpret the argument each time they saw it.
— Testing every combination of appropriate values can be daunting.

— Output arguments are harder to understand than input arguments.
* We don’t usually expect information to be going out through the arguments.

« One input argument is the next best thing to no arguments.

EPENDABLE SOFTWARE 44
LABORATORY

| 5 Ui
3.6.1 Common Monadic Forms

« There are two very common cases to pass a single argument into a function.
1. Asking a question about that argument, as in boolean fileExists(“MyFile”).

2. Operating on that argument, transforming it into something else and returning it.
» For example, InputStream fileOpen(“MyFile”) transforms a file name String into an InputStream return value.

« A somewhat less common is an event.

— Thereis an input argument but no output argument.
* void passwordAttemptFailedNtimes(int attempts)

— It should be very clear to the reader that this is an event.

« Tryto avoid any monadic functions that don’t follow these (three) forms.

[} DePenDABLE SOFTWARE 4 5
o LABORATORY

KU KONKUK
UNIVERSITY

3.6.2 Flag Arguments

« Flag arguments are ugly.
— Passing a boolean into a function is a truly terrible practice.

— It immediately complicates the signature of the method, loudly proclaiming that this function
does more than one thing.
* Itdoes one thing if the flag is true and another if the flag is false!

* For example, the method call render(true) is just plain confusing to a poor reader.

private String render(boolean isSuite) throws Exception {
this.isSuite = isSuite;
if (isTestPage())
includeSetupAndTeardownPages () ;
return pageData.getHtml();

— We should have split the function into two: renderForSuite() and renderForSingleTest().

EPENDABLE SOFTWARE 46
LABORATORY

KU KONKUK
UNIVERSITY

3.6.3 Dyadic Functions

« A function with two arguments is harder to understand than a monadic function.
— For example, writeField(name) is easier to understand than writeField(output-Stream, name).

« Even obvious dyadic functions like assertEquals(expected, actual) are problematic.
— How many times have you put the actual where the expected should be?

— The two arguments have no natural ordering. But the expected, actual ordering is a convention
that requires practice to learn.

 However, you should be aware that dyads comes at a cost and should take advantage
of other mechanisms available to you to convert them into monads.

EPENDABLE SOFTWARE 47
LABORATORY

KU KONKUK
UNIVERSITY

3.6.4 Triads

* Functions that take three arguments are significantly harder to understand than
dyads.

— The issues of ordering, pausing, and ignoring are more than doubled.
* | suggest you think very carefully before creating a triad.

« For example, consider the common overload of assertEquals that takes three arguments:
assertEquals(message, expected, actual).

— How many times have you read the message and thought it was the expected?

EEEEEEEEE SOFTWARE 4 8
LABORATORY

K'L]‘ KONKUK
UNIVERSITY

3.6.5 Argument Objects

« When a function seems to need more than two or three arguments, it is likely that
some of those arguments ought to be wrapped into a class of their own.

 For example,

Circle makeCircle(double x, double y, double radius);
Circle makeCircle (Point center, double radius);

* Reducing the number of arguments by creating objects out of them may seem like
cheating, but it’s not.

— When groups of variables are passed together, they are likely part of a concept that
deserves a name of its own.

EPENDABLE SOFTWARE 49
LABORATORY

KU KONKUK
UNIVERSITY

3.6.6 Argument Lists

« Sometimes we want to pass a variable number of arguments into a function.

 For example,

String.format ("%s worked %.2f hours.", name, hours);

— If the variable arguments are all treated identically, as they are in the example above, then
they are equivalent to a single argument of type List.
— By that reasoning, String.format is actually dyadic.

public String format(String format, Object... args)

« Functions that take variable arguments can be monads, dyads, or even triads.
But it would be a mistake to give them more arguments than that.
vold monad(Integer... args);

vold dyad(String name, Integer... args);
void triad(String name, int count, Integer... args);

EPENDABLE SOFTWARE 5 O
LABORATORY

3.6.7 Verbs and Keywords

« Choosing good names for a function can go a long way toward explaining the intent
of the function and the order and intent of the argquments.

* In the case of a monad, the function and argument should form a very nice
verb/noun pair.
— For example, write(name) is very evocative. Whatever this “name” thing is, it is being “written.
— An even better name might be writeField(name), which tells us that the “name” thing is a “field.”

« With the keyword form of a function name, we encode the names of the arguments
into the function name.
— For example, assertEquals might be better written as assertExpectedEqualsActual(expected, actual).
« This strongly mitigates the problem of having to remember the ordering of the arguments.

(¥ DEPENDABLE SOFTWARE 51
| LABORATORY

KU KONKUK
UNIVERSITY

3.7 HAVE NO SIDE EFFECTs

« Side effects are lies.

— Your function promises to do one thing, but it also does other hidden things.
* Sometimes it will make unexpected changes to the variables of its own class.
« Sometimes it will make them to the parameters passed into the function or to system globals.

— Often result in strange temporal couplings and order dependencies.

 For example,
— This function uses a standard algorithm to match a userName 10 a password.
— Butitalso has a side effect. It calls to Session.initialize().

public class UserValidator |
private Cryptographer cryptographer;

public boolean checkPassword(String userName, String password] {
User user = UserGateway.findByName {userName);
if (user != User.NULL) {
String codedPhrase = user.getPhraseEncodedByPassword();
String phrase = cryptographer.decrypt (codedPhrase, password);
if ("Valid Password".equals(phrase)) {
Segsion.initialize();
return true;

}

return false;

EPENDABLE SOFTWARE 5 2
LABORATORY

3.7.1 Output Arguments

« Arguments are most naturally interpreted as inputs to a function.
— For example, is s an input or an output?

appendFooter(s);

* Does this function append s as the footer to something? Or does it append some footer to s?

— What about the signature of the function?

public void appendFooter (StringBuffer report)

* In the days before object-oriented programming, it was sometimes necessary to have
output arguments.
— However, in OO languages, this is intended to act as an output argument.
— In other words, it would be better for appendFooter to be invoked as report.appendFooter();

 Ingeneral, output arguments should be avoided.

— If your function must change the state of something, let it change the state of its owning
object.

A B

() DEPENDABLE SOFTWARE 5 3
= 1 ?‘
a

LABORATORY

KU KONKUK
UNIVERSITY

3.8 COMMAND QUERY SPEARATION

 Functions should either do something or answer something, but not both.

— Command vs. Query : doing both often leads to confusion.

» Either your function should change the state of an object, or it should return some information about that
object.

 For example,

1f (set("username", "unclebob"))...

— What does it mean?

* Asking whether the “username” attribute was previously set to “unclebob”? — Query
» Asking whether the “username” attribute was successfully set to “unclebob”? — Command & Query

— The real solution is to separate the command from the query so that the ambiguity cannot
occur.

if (attributeExists("username")) |
setAttribute ("username”, "unclehob");

EPENDABLE SOFTWARE 54
LABORATORY

KU KONKUK
UNIVERSITY

3.9 PREFER EXCETIONS TO RETURNING ERROR CODES

Returning error codes from command functions is a subtle violation of
command query separation.
— It promotes commands being used as expressions in the predicates of if statements.

. if(deletePage(page) —— E_OK) if (deletePage(page) == E OK) {

if (registry.deleteReference (page.name] == E 0K |
if (configKeys.deleteKey(page.name.makeKey()) == E_OK){
logger.log("page deleted");
} else |

logger.log("configKey not deleted");

} else |
logger.log("deleteReference from registry failed");

} else {
logger.logi"delete failed");
return E ERROR;

|

« If you use exceptions, the error processing code can be separated from the happy
path code and can be simplified:

try {
deletePage (page) ;
registry.deleteReference (page.name) ;
configKeys.deleteKey(page.name.makeKey()) ;

catch (Exception e) {
logger.log(e.getMessage());
}

EPENDABLE SOFTWARE 5 5
LABORATORY

KU KONKUK
UNIVERSITY

3.9.1 Extract Try/Catch Blocks

* But Try/catch blocks are ugly in their own right.

— They confuse the structure of the code.
— They mix error processing with normal processing.

« Itis better to extract the bodies of the try/catch blocks out into functions of their own.

— The delete function is all about error processing.
The deletePageAndAllReferences function is all about the processes of fully deleting a page.

public void delete(Page page) |

try {
deletePageAndAl 1References (page) ;

catch (Exception e) {

try { f
deletePage (page) ; logError (e) ;

registry.deleteReference (page.name) ;
configKeys.deleteKey (page.name.makeKey()); }
catch (Exception e) { private void deletePageAndAllReferences (Page page) throws Exception {
deletePage (page) ;
logger.log(e.getMessage ()] ; registry.deleteReference (page.name) ;
configKeys.deleteKey (page.name.makeKey()] ;

}

private void logError(Exception e) {
logger.log(e.getMessage()) ;

EPENDABLE SOFTWARE 5 6
LABORATORY

KU KONKUK
UNIVERSITY

3.9.2 Error Handling Is One Thing

« Functions should do one thing and error handling is one thing.

« A function that handles errors should do nothing else.

— If the keyword try exists in a function, it should be the very first word in the function and that
there should be nothing after the catch/finally blocks.

public void delete(Page page) {

try {
deletePageAndAllReferences (page) ;

catch (Exception e) {
logErrorie) ;
}'
|

private void deletePageAndAllReferences(Page page) throws Exception {
deletePage (page) ;
registry.deleteReference (page.name) ;
configKeys.deleteKey (page.name.makeKey ()) ;

private void logError(Exception e) |
logger.log(e.getMessage()) ;

EPENDABLE SOFTWARE 5 7
LABORATORY

3.9.3 The Error.java Dependency Magnet

* Returning error codes usually implies that there is some class or enum in which all the
error codes are defined.

public enum Error {
OE,
INVALID,
NO SUCH,
LOCKED,
OUT_OF_RESOURCES,
WAITING FOR EVENT;

» Classes like this are a dependency magnet; many other classes must import and use

them.
— When the Error enum changes, all those other classes need to be recompiled and redeployed.

— Programmers don’t want to add new errors because then they have to rebuild and redeploy
everything. So, they reuse old error codes instead of adding new ones.

 When you use exceptions, then new exceptions are derivatives of the exception class.
— They can be added without forcing any recompilation or redeployment
— This is an example of the Open Closed Principle (OCP).

EPENDABLE SOFTWARE 5 8
LABORATORY

3.10 DON'T REPEAT YOURSELF | %

 Duplication may be the root of all evil in software.

« Many principles and practices have been created for the purpose of controlling or
eliminating it. For example,
— All of Codd’s database normal forms serve to eliminate duplication in data.

— Consider also how object-oriented programming serves to concentrate code into base classes
that would otherwise be redundant.

— Structured programming, Aspect Oriented Programming, Component Oriented
Programming, are all, in part, strategies for eliminating duplication.

« Since the invention of the subroutine, innovations in software development have
been an ongoing attempt to eliminate duplication from our source code.

« Listing 3-1 vs. Listing 3-7

EEEEEEEEE SOFTWARE 5 9
B

public static String testableHtml{
PageData pageData,
boolean includeSuiteSetup
) throws Exception {
WikiPage wikiPage = pageData.getWikiPagel);
StringBuffer buffer = new StringBuffer();
if (pageData.hasAttribute("Test")) {
if (includeSuiteSetup) |
WikiPage suiteSetup =
PageCrawlerImpl.getInheritedPage |
SuiteResponder,SUITE SETUP NAME, wikiPage
)i

if (suiteSetup != null) |
WikiPagePath pagePath =

suiteSetup.getPageCrawler (] .getFullPath(suiteSetup] ;

String pagePathName = PathParser.render (pagePath);
buffer.append("!include -setup .")
.append (pagePathName)
} .append ("\n") ;
|
WikiPage setup =
PageCrawlerImpl.getInheritedPage ("SetUp", wikiPage);
if (setup != null)
WikiPagePath setupPath =
wikiPage.getPageCrawler () .getFullPath(setup);
String setupPathName = PathParser.render(setupPath);
buffer.append("!include -setup .")
.append (setupPathName)
.append("\n") ;

}

buffer.append (pageData. getContent{]]
if (pageData.hasAttribute("Test")) {
WikiPage teardown =

EPENDABLE SOFTWARE
LABORATORY

KU tavmsy

PageCrawlerImpl.getInheritedPage ("TearDown", wikiPage);
if (teardown != null) {
WikiPagePath tearDownPath =
wikiPage.getPageCrawler() .getFullPath(teardown) ;
String tearDownPathName = PathParser.render (tearDownPath);
buffer.append("\n")
.append("!include -teardown .")
.append (tearDownPathName]
.append ("\n") ;

}

if (includeSuiteSetup) {
WikiPage suiteTeardown =
PageCrawlerImpl.getInheritedPage |
SuiteResponder.SUITE TEARDOWN NAME,
wikiPage
)i
if (suiteTeardown |= null) {
WikiPagePath pagePath =
suiteTeardown.getPageCrawler () .getFullPath (suiteTeardown);
String pagePathName = PathParser.render (pagePath);
buffer.append("!include -teardown .")
.append ([pagePathName]
.append("\n");
|
} |
pageData.setContent (buffer.toString()];
return pageData.getHtml();

Listing 3-1 HtmlUtil.java (FitNesse 20070619)

60

package fitnesse.html;

return pageData.hasAttribute("Test");

private boolean isTestPage() throws Exception {
import fitnesse,responders,run,SuiteResponder;

import fitnesse.wiki.*; 1
public class SetupTeardownIncluder { private void includeSetupAndTeardownPages() throws Exception
private PageData pageData; ;nc}ugegetugPa%eséigb
private boolean isSuite; %Eglud:ngidgingg esk)-
private WikiPage testPage; i dagePa eContent?)-
private StringBuffer newPageContent; 2 D g !

private PageCrawler pageCrawler;

private void includeSetupPages() throws Exception {
if (isSuite)
includeSuiteSetupPage() ;
includeSetupPage() ;

public static String render(PageData pageData) throws Exception {
return render (pageData, false);

public static String render(PageData pageData, boclean isSuite)
throws Exception |
return new SetupTeardownIncluder (pageData) .render(isSuite);

private void includeSuiteSetupPage(] throws Exception {
include (SuiteResponder.SUITE_SETUP NAME, "-setup"];

private void includeSetupPage() throws Exception |

private SetupTeardownIncluder(PageData pageData) { include ("SetUp", "-setup");

this.pageData = pageData;
testPage = pageData.getWikiPage();

g:ggg;ggéiie;ttﬁsggiggégigggggggif%?r{]I private void includePageContent () throws Exception {

| newPageContent . append (pageData.getContent ()) ;

private String render(boolean isSuite) throws Exception {
this.isSuite = isSuite;
if (isTestPage())
includeSetupAndTeardownPages (] ; 3
return pageData.getHtml();

private void includeTeardownPages (] throws Exception {
includeTeardownPage() ;
if (isSuite)
includeSuiteTeardownPage() ;

private void updatePageContent() throws Exception { private void includeTeardownPage() throws Exception |
pageData.setContent (newPageContent. toString()); include ("TearDown", "-teardown");

private void include(String pageName, String arg) throws Exception | private void includeSuiteTeardownPage() throws Exception {
WikiPage inheritedPage = findInheritedPage (pageName) ; include (SuiteResponder.SUITE_TEARDOWN NAME, "-teardown");

if (inheritedpage != null) {
String pagePathName = getPathNameForPage (inheritedPage) ;
buildIncludeDirective (pagePathName, arg];
}
}

private WikiPage findInheritedPage(String pageName) throws Exception {
return PageCrawlerImpl.getInheritedPage (pageName, testPage);

private String getPathNameForPage (WikiPage page) throws Exception { LIStlng 3-7 SetupTeardownIncIuder.java
WikiPagePath pagePath = pageCrawler.getFullPath{page);
return PathParser.render (pagePath);

private void buildTncludeDirective(String pagePathName, String arg) {
newPageContent
.append ("\n!include ")
.append (arg)
.append(" .")

{
{
.append (pagePathName)
“EPENMBLE SOFTWARE .append ("\n") ; 6 'I

LABORATORY }

KONKUK
1 2 K UNIVERSITY

package fitnesse.html; private boolean isTestPage() throws Exception |
return pageData.hasAttribute("Test");

import fitnesse.responders.run.SuiteResponder; }
import fitnesse.wiki.*;

private void includeSetupAndTeardownPages() throws Exception

public class SetupTeardownIncluder { includeSetupPages () ; (1)
private PageData pageData; includePageContent (); (2)
private boclean isSuite; includeTeardownPages(); (3)
private WikiPage testPage; updatePageContent () ; (4)
private StringBuffer newPageContent; }

private PageCrawler pageCrawler;

private void includeSetupPages() throws Exception |

if (isSuite)
pub;zé‘static String render (PageData pageData) throws Exception { includeSuiteSetupPagel) ;
return render (pageData, false); includeSetupPage () ; (1)
}
public static String render(PageData pageData, boolean isSuite) private void includeSuiteSetupPage() throws Exception {
throws Exception { include (SuiteResponder.SUITE SETUP NAME, "-setup"];
return new SetupTeardownIncluder (pageData) .render {isSuite); (1-1)
private void includeSetupPage() throws Exception {
private SetupTeardownIncluder (PageData pageData) | include ("SetUp", "-setup");
this.pageData = pageData;
testPage = pageData.getWikiPagel(); : — :
pageCrawler = testPage.getPageCrawler(); private void includePageContent() throws Exception {
newPageContent = new StringBuffer(); newPageContent . append (pageData.getContent ()] ; (2)
}
private String render(boolean isSuite) throws Exception | private void includeTeardownPages() throws Exception {
this.isSuite = isSuite; ??Cl(‘.lde“?“?mpage”‘
if (isTestPage()) It (isSuite)
iHeluasest ipAiTeardouibaes fi } includeSuiteTeardownPage () ; (3)
return pageData.getHtml () ;
private void includeTeardownPage() throws Exception |{

include("TearDown", "-teardown");

(3-1)
private void includeSuiteTeardownPage() throws Exception |
include (SuiteResponder.SUITE _TEARDOWN NAME, "-teardown");

LABORATORY

I}EPENDABLESOWARE Listing 3-7 SetupTeardownincluder.java 62

KONKUK
2 K UNIVERSITY

private boolean isTestPage() throws Exception |
return pageData.hasAttribute("Test");

private void includeSetupAndTeardownPages() throws Exception 3
includeSetupPages(); (1)
includePageContent(]; (2) private vold updatePageContent () throws Exception {
includeTeardownPages(); (3) pageData.setContent (newPageContent.toString()) ; (4)

updatePageContent () ; (4)

|

private void include(String pageName, String arg) throws Exception {

private void includeSetupPages() throws Exception | WikiPage imheritedPage = findInheritedPage(pageName);

if (isSuite) if (1pher1tedPage 1= null) .

includesui teSetuppage() ; String pagePatiitane - getPathNameFarPage irheritedrage);
includeSetupPage () ; (1) | bag et L
} (1-1) (3-1)

private void includeSuiteSetupPage() throws Exception { private WikiPage findInheritedPage(String pageName) throws Exception {

include (SuiteResponder.SUITE_SETUP_NAME, "-setup"); return PageCrawlerImpl.getInheritedPage (pagelName, testPage);

(1-1)

private void includeSetupPage() throws Exception | private String getPathNameForPage (WikiPage page) throws Exception |

include ("SetUp", "-setup"); WikiPagePath pagePath = pageCrawler.getFullPath(page);

return PathParser.render (pagePath);

private void includePageContent() throws Exception | ,

newPageContent . append (pageData.getContent ()] ; (2) private void buildIncludeDirective(String pagePathName, String arg) {

newPageContent
.append ("\n!include ")

private void includeTeardownPages() throws Exception | *299223E$191)

includeTeardownPage () ; -app :

. : . .append (pagePathName)

if (isSuite) append ("\n");

includeSuiteTeardownPage () ; (3) ’ '

private void includeTeardownPage(] throws Exception {
include ("TearDown", "-teardown");
(3-1)

private void includeSuiteTeardownPage() throws Exception |
include (SuiteResponder.SUITE_TEARDOWN NAME, "-teardown");

LABORATORY

I}EPENDABLESOWARE Listing 3-7 SetupTeardownincluder.java 63

KU KONKUK
UNIVERSITY

3.1 STRUCTURED PROGRAMMING

« Some programmers follow Edsger Dijkstra’s rules of structured programming.
— “Every function and every block within a function should have one entry and one exit.”

— There should only be one return statement in a function, no break or continue statements in a
loop, and never, ever, any goto Statements.

« Itisonlyin larger functions that such rules provide significant benefit.
— Those rules serve little benefit when functions are very small.

« Ifyou keep your functions small, then the occasional multiple return, break, Or continue
statement does no harm and can sometimes even be more expressive than the single-

entry, single-exit rule.
— As goto only makes sense in large functions, it should be avoided.

[} DePenDABLE SOFTWARE 64
o LABORATORY

KU KONKUK
UNIVERSITY

HOW DO YOU WRITE FUNCTIONS LIKE THIS?

« Writing software is like any other kind of writing.

 When you write a paper or an article, you get your thoughts down first, then you
massage it until it reads well.

— The first draft might be clumsy and disorganized, so you wordsmith it and restructure it and
refine it until it reads the way you want it to read.

When I write functions, they come out long and complicated.
— They have lots of indenting and nested loops.
— They have long argument lists. The names are arbitrary, and there is duplicated code.
— But I also have a suite of unit tests that cover every one of those clumsy lines of code.

« Then | massage and refine that code, splitting out functions, changing names,
eliminating duplication.
— | shrink the methods and reorder them.
— Sometimes | break out whole classes, all the while keeping the tests passing.
— Inthe end, I wind up with functions that follow the rules I've laid down in this chapter.

| don’t write them that way to start. | don’t think anyone could.

EEEEEEEEE SOFTWARE 6 5

KU KONKUK
UNIVERSITY

CONCLUSION

The art of programming is the art of language design.

— Every system is built from a domain-specific language designed by the programmers to
describe that system.

— Functions are the verbs of that language, and classes are the nouns.

» Master programmers think of systems as stories to be told rather than programs to
be written.

— They use the facilities of their chosen programming language to construct a much richer and
more expressive language that can be used to tell that story.

« This chapter has been about the mechanics of writing functions well.
— Ifyou follow the rules herein, your functions will be short, well named, and nicely organized.

« But never forget that your real goal is to tell the story of the system, and that the
functions you write need to fit cleanly together into a clear and precise language to
help you with that telling.

EEEEEEEEE SOFTWARE 6 6
LABORATORY

I(UNIVERSITY

EPENDABLE SOFTWARE 67
LABORATORY

