.Formal Verification Problems in a Big Data World: Towards
Mighty Synergy

In this paper we introduce a distributed approach which exploits techniques typically used by the
“big data” community to enable verification of very complex systems using “big data” approaches and
cloud computing facilities.

Problem

— the development of techniques and tools able to cope with the complexity of models coming from

real word examples.

— the state explosion problem.

Solution

— symbolic model checking with ordered binary decision diagrams (especially in the area of

hardware verification), partial order reduction techniques, and bounded model checking



— Demonstration
— Distributed CTL Model Checking

— Our distributed MapReduce approach is based on the fixed-point characterizations of the
basic temporal operators of CTL to evaluate in parallel massive sets of states satisfying a
given formula. The basic idea is to apply an iterative MapReduce algorithm, where at each
iteration we compute the predicate transformer on the output of the previous iteration

until we reach the fixed-point.



2.Dynamic Models for the Formal Verification of Big
Data Applications Via Stochastic Model Checking

— Definition

9

In this paper we propose a modeling framework for BDAs. A key feature of our framework
Is that it allows to apply verification techniques to prove properties of the given models.
The proven properties are then supposed to hold for the BDAs execution. This approach
generates models of the application execution by abstracting only the characteristics of the

framework and application that are relevant from the verification perspective.

— Solution

%

In this paper we presented a first-principle modeling framework for the execution of BDAs.
First-principle modeling provides guarantees on the generality of the model, and most
important, allows us to synthesize control strategies (e.g., the resource allocation policy in

xSpark) and validate them.



— Demonstration

— We implemented the proposed model family in the stochastically model checker UPPAAL

and we used the implementation to show:

— (i) that the model captures the behavior of an application running on a cluster of

machines:

— (i) that probabilistic queries can be done on the behavior of the application and of

the resource allocation policy.



3.Big Data Analytics for QoS Prediction Through
Probabilistic Model Checking

-  Definition

- In this paper we propose a model checking based approach to predict QoS(quality of service
(QoS) prediction) of a formally described process.

— Solution

— The continuous model checking is enabled by the usage of a parametrized model of the monitored

system, where the actual value of parameters is continuously evaluated and updated by means of
big data tools.
— 1) Specification of the parameterized QoS stochastic model and QoS constraints to monitor

2) Real-time data analysis and parameters synthesis

)
)
3) Generation of the internal state-transition Model representation
) Execution of the Probabilistic Model-Checking to quantify the likelihood of future QoS state
)

4
5

NN N\ Z

QoS Verification



— Demonstration

— The proposed QoS Prediction approach has been validated with
respect to a Smart Grid (SG) case study. SG Is the integration of

the IT infrastructure into a traditional power grid in order to

1 .
.1 System Parametric

continuously exchange and process information to better control ’ Model

the production, consumption and distribution of electricity. For .-

this purpose Smart Meters (SMs) devices are used to measure Big Data Analytics .
Based Real-Time ra-’lcu:;TItC[.heckmg

variations of electric parameters (e.g. voltage, power, etc.) and Monitoring

send such data to a computational environment which, in turn,

QoS Violation States

analyze and monitor it in a real-time fashion. In this case study, Probability

our tool performs the remote monitoring on behalf of an Energy

The QoS Monitoring and Prediction achitecture

Distributor (ED) which purchases electric power from Energy
Producers (EPs) and retails it to Energy Consumers (ECs). The
primary goal of the ED is to balance the purchased electric power

with respect to the variations of power demand.



4 A Methodology for Real-Time Data Verification
exploiting Deep Learning and Model Checking

- Definition

— This paper presents a methodology for real-time data extraction and verification. In particular,
considering the lacking of real-time data in sport analytics context, we propose a method to
generate a data-set of player positions from soccer game videos, considering deep learning
techniques, in order to extract player position, in terms of x-axis and y-axis, related to the

accuracy of the detection.

-  Problem

— In outdoor situations like on a soccer field, there are different parameters that affect the
robustness of the algorithms, such as the lightning, the environmental conditions, the distance

of the pitch from the camera, and also the colors of the teams involved in the analysis.



Solution

 providing a set of pre-processing functionalities such as loading CSV file,

deleting of specific rows and saving the modified CSV file;

e« providing variable discretization in the loaded CSV, exploiting two different

discretization methods: equal frequency or equal width method;
e building of CCS model from the CSV and load the property file;

« performing model checking of the property file loaded on the constructed
CCS (Figure 3).

'95%"

'92%'
'88%"
'98%’

>
]
]
>

"1216','1096",
"411','131°, ..
'782','633",
*1113','993",

Fig. 3: Dunuen functionality.

‘frame','acc_glsl','x_glsl','y glsl', ...,'acc_gls2','x_gls2','y gls2", ...

..., '96%","1078",'874", ...
.,'97%','578",'752", ...

wevy'NULL','NULL','NULL', ...

.e.,'86%','778",'1271", ...

Fig. 4: CSV data structure.



5.Big Data on Linear Temporal Logic Formulas

-~ Problem
— The existing Linear Temporal Logic (LTL) formula sets are small ones.
- Solution
— an algorithm for generating LTL formulas is proposed in this study, which can precisely fix

the length of random formulas. First, we set an external loop controlling the number of
generated formulas. Second, an inner loop Is set to control the length of formulas. Final,
a set consisting of 10 million formulas is generated. The experimental results confirm the
comparative advantages of the new method. To the best of our knowledge, this is the first

big-data-oriented set of LTL formulas that is expected to become a benchmark one.



Algorithm 1. An algorithm for generating LTL formulas
INPUT:
the length of each formula: n,
the number of randomly generated LTL formulas: m
OUTPUT: all LTL formulas
BEGIN
A:={X,G,F,ULAV};
B(0):={p.q.r}:
for 1=1 to m:
for j=1 to n:
randomly select a logical operator x from A;
if X 1s an unary operator, then
randomly select a formula y from B(j-1);
new_formula:=xy;
add new formula to B(j);
else // x 1s a binary operator

randomly select a formula yl from
B(random(s)); // random(s) € (<=s<=j-1

randomly select a formula y2 from B(j-1-
random(s));

new formula:=ylxy2;

add new_formula to B(j);

Demonstration

Such works can compare the performance and efficiency among different LTL
model checking algorithms on small samples. In contrast, the big data set
presented in this work contains ten million LTL formulas, which makes it possible
to compare different LTL model checking algorithms and LTL satisfiability
checking algorithms on large-scale samples. In addition, with the new method at
hand, users can further build a bigger data set consisting of one hundred million
formulas within ten days, only on a personal computer. After all, today's LTL has
been used widely, making a study on LTL with small samples likes a toy, which
can no longer meet the needs of the era of big data. This background can help
us understand the potential benefits of using a larger scale set of LTL formulas
established in this work.

¢ To verify the effectiveness of algorithm 1.
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6. Recommender systems in model-driven engineering

— Purpose

— This study aims to serve as a guide for tool builders and researchers in understanding
the MDE tasks that might be subject to recommendations, the applicable

recommendation techniques and evaluation methods, and the open challenges and

opportunities in this field of research.

Structural diagram
Meta-model R ot constraints
I

«cnnﬂorms»

transformation

code/text |I
artefact

Fig.1 Main elements of MDE solutions




Summary

— In this paper , we have presented a systematic mapping review of existing research works on RSs
for MDE. We have classified those works along four main dimensions (domain, tooling,

recommendation and evaluation) characterized by means of feature models.

— The review has allowed answering three research questions. First, we have seen that current RSs
mainly target model completion and repair. Second, the most used recommendation methods In
MDE are knowledge-based and content-based. Finally, we have identified research gaps and
opportunities in the area, like implementing RSs to help in developing transformations and code
generators, finding and reusing artefacts and creating artefacts from scratch. We encourage the

community to pick these challenges to improve the current MDE practice and tooling.

Table1 Terms used in the formal search query

Recommender systems/purpose Modelling/MDE

Recommender Model-driven

Recommendation Domain-specific language

Model completion State machine
Model reuse

Model repair

Transformation completion

Transformation reuse

Transformation repair UML
Generator completion

Generator reuse

Generator repair

Quick fix

Quick fixes

Assistant




7. Automatic B-model repair using model checking and machine
learning

—  Problem

— The B-method, which provides automated verification for the design of software systems, still

requires users to manually repair faulty models.
- Solution

— This paper proposes B-repair, an approach that supports automated repair of faulty models
written in the B formal specification language. After discovering a fault in a model using the B-
method, B-repair is able to suggest possible repairs for the fault, estimate the quality of
suggested repairs and use a suitable repair to revise the model. The suggestion of repairs is
produced using the /solation method, which suggests changing the pre-conditions of operations,
and the Revision method, which suggests changing the post-conditions of operations. The
estimation of repair quality makes use of machine learning techniques that can learn the
features of state transitions. After estimating the quality of suggested repairs, the repairs are
ranked, and a best repair is selected according to the result of ranking and is used to revise
the model.



- Demonstration

%

This approach has been evaluated using a set of finite state machines seeded with faults and a
case study. The evaluation has revealed that B-repair is able to repair a large number of faults,
Including Iinvariant violations, assertion violations and deadlock states, and gain high accuracies
of repair. Using the combination of model checking and machine learning-guided techniques, B-

repair saves development time by finding and repairing faults automatically during design.



8. Business Application Modeler: A Process Model Validation
and Verification Tool

— Purpose

— We present the Business Application Modeler (BAM), which is a modeling and Validation &

Verification tool that integrates modeling of processes and formal graphical validation rules.

— These rules can be automatically applied to process models. In particular, the modeler is
supported by visualizations of checking results directly in the process models. Next to

highlighting mechanisms this support includes recommendations for the correction of errors.

Contribution
(Business)

Process Fntion 11 Figure 1 depicts BAM's core areas. First, the modeling environment to model
Hodets - processes, graphical validation rules and visualize checking results. Second, the
Validation & Verification which enables the automated checking whether the
processes models comply to the rules.

In this contribution we extended BAM with mechanisms for the visualization of
results.

Verification

Bta
c
® .S
ER
3
<S

Visualization of
Results in the
Process Model

Modeling Environment

Fig. 1. Structure of BAM and the general validation process.



BUSINESS APPLICATION MODELER

A

BAM provides a rule editor that allows the graphical modeling of validation rules. The notation for these rules is the
Graphical Computational Tree Logic (G-CTL).
B

Basically, BAM allows to adapt multiple checking techniques via a plug-in interface.
C

Additionally, a concept called MultiView is implemented in BAM. MultiViews allow the assignment of specific
responsibilities in the process modeling workflow and provide mechanism to handle the increasing complexity of process

models.
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Fig. 2. A G-CTL example rule, requiring the deletion of personal data [5]. upper pattern are highlighted. A recommendation is presented under the rule.




9. Automated verification of model transformations
based on visual contracts

- Purpose
— In this paper we fill this gap by proposing a declarative language for the specification of
visual contracts, enabling the verification of transformations defined with any
transformation language. The verification is performed by compiling the contracts into
QVT(Query/View/Transformation) to detect disconformities of transformation results

with respect to the contracts.

— Solution

— based on the well-known design by contract paradigm, we have presented a visual,
declarative language called PAMOMO to specify behavioral semantic contracts for M2M

transformations in an implementation-independent way.



- Demonstration

— Using PAMOMO to verify its own translation into QVT-relations

PAMOMoO metamodel nablingCondition 0.. QVT-Relations metamodel . e . . . . )
oo <3| ConstraintGraph fra e e Fig. 33 A positive invariant for ~ P{ConditionsToRelationsWithPseudodomain)
Specifica S| name: Sting | -t0-QVT- i :
o Sting O e PAMOMOo-t0-QVT-R PaMoMo i QVT-Relations
sourceMMAlias : String sourceGraph ] rule ,
targetMMNl;i'S"mg 1\‘5raph o . :Pattern ] :Relation
MMAlias : String —>{ name : String [ «~ | RelationDomain — ! —
% isTopLevel - Bool [®qomal Sin name=Z ! name=Z
objects /¢ rafarsT: 5 S ?;:mh:d-(aél:g Bool . ]
Object srersio e e isEnforceable | Bool pattern constraint |
patterns ect ] -
s Frame - Sinna | 0.1 0.1 0. . i domain
Pattem - e - kg IS [ pato ] conditon | :ConstraintGraph | i ["RelationDomain |
réacrtisfﬁnlvg s . P OclExpression bindsTa source target | : domain
iy ] Graph | | :RelationDomain
o\ ] :
[Preaicate [ a—— _ | :Graph | | :Graph | i
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Fig. 32 PAMoMo (left) and QVT-R (right) metamodels

sourceObjs.size() =0 OR targetObjs.size() =0
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10. Patterns in property specifications for finite-state

verification
- Purpose
— In a recent paper, we proposed a pattern-based approach to the presentation,

codification and reuse of property specifications for finite-state verification. Since then,
we have carried out a survey of available specifications, collecting over 500 examples of
property specifications. We found that most are instances of our proposed patterns.
Furthermore, we have updated our pattern system to accommodate new patterns and
variations of existing patterns encountered in this survey. This paper reports the results

of the survey and the current status of our pattern system.



— Demonstration

— An example of a property specification
pattern is given in Figure 1 (we use a
variant of the “gang-of-four” pattern

format ).

— A pattern comprises a name or names, a
precise statement of the pattern’s intent
(I.e., the structure of the behavior
described); mappings into common
specification formalisms, examples of
known uses, and relationships to other

patterns.

Precedence

Intent
To describe a relationships between a pair of events/states where the occurrence of the first is a necessary
pre-condition for an occurrence of the second. We say that an occurrence of the second is enabled by an
occurrence of the first. Also known as Enables.

Example Mappings
In these mappings S enables the oceurrence of P,

CTL S precedes P:
Globally =E[~S U(P A =85))]
Before R =E[(~5 A =R) U(P A =8 A=RAEF(R))]
After Q ~E[~Q U(Q A~E[-S U(P A=5)))]
Between @ and B AG(Q = ~E[(=S A ~R) U(P A -8 A -R A EF(R))])
After Q until R AG(Q = ~E[(~8 A ~R) U(P A =8 A ~R)))
LTL 5 precedes
Globally OP - (~P U(S A ~P))
Before R SR = (~PU(SVR))
After Q O-Q V O(Q A (~P U(S v O~P)))
Between Q and B O((@QAOR) = (=P U(SV R)))
After @ until & O(Q = ((=P U(5 v R)) v O=P))

Quantified Regular Expressions Let £ be the set of all events, let [~F, Q, R] denote the expression that
matches any symbol in & except P, @, and R, and let e’ denote zero or one instance of expression e.
Event § precedes P:

Globally i 8

Before R " F R]*: 8, %)
After Q H{* 1} )’

Between Q and R * 8 [=R]"); /[~

[P ] Q1) (@ [-R)")
After @ until R H*HIC l'. S, [—R]'.‘J.‘J:R'. -Q")%;
~R]")))’

Examples and Known Uses
Precedence properties occur quite commonly in specifications of concurrent systems. One example is describing
a requirement that a resource (e.g., a lock) is only granted in response to a request,

Precedence and response properties often go together. A response property says that when § occurs then an
occurrence of P must follow. If we want to restrict P to only follow S then we use a precedence property.
Note that these properties do not guarantee a one-to-one correspondance between an occurrence of § and an
occurrence of P, Such additional constraints can be added using the constrained variations of these patterns,

The mappings given in this pattern do not describe precedence properties where P and S occur simultanously
(i.e., S must strictly precede P). To relax this constraint use the possibly empty variation of the pattern.

Relationships
A generalization of precedence properties that allows for multiple separate states/events to constitute P and
5 ig called the precedence chain pattern,

Figure 1: Precedence Pattern
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speedup.

In this paper we presented a first-principle modeling
framework for the execution of BDAs. First-principle
modeling provides guarantees on the generality of
the model, and most important, allows us to
synthesize control strategies (e.g., the resource
allocation policy in xSpark) and validate them.

To support Big Data analysis of QoS information in
this paper ,we have proposed a QoS prediction
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and quantitative analysis performed by a
probabilistic model-checking technique.

In this work, we proposed a methodology to
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verify behavioral properties exploiting formal
methods.

In contrast, the big data set presented in this
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it possible to compare different LTL model checking
algorithms and LTL satisfiability checking algorithms
on large-scale samples.
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This study aims to serve as a guide for tool builders 6
and researchers in understanding the MDE tasks

that might be subject to recommendations, the
applicable recommendation techniques and
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opportunities in this field of research.

This paper proposes B-repair, an approach that 7
supports automated repair of faulty models written
in the B formal specification language.

BAM allows the specification of formal, graphical 8
validation rules (G-CTL) on the level of process

models. Rules can be specified in a reusable manner,
allowing to automatically check the process model

for these properties (requirements).

In this paper we fill this gap by proposing a 9
declarative language for the specification of visual
contracts, enabling the verification of

transformations defined with any transformation
language.

We have described an updated pat- tern systemwe 10
developed for property specifications in finite-state
verification and have collected a large sam- ple of
specifications that suggests that most property
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