
Advanced Software Engineering
Introduction to Model Checking

JUNBEOM YOO
KONKUK University

Text

2

FORMAL VERIFICATION : BASIC

3

 Automata
 Temporal Logic
 Model Checking
 Property Patterns

1. Automata

1. Automata

• Model checking consists in verifying some properties of the model of a
system.

– Modeling of a system is difficult.
• No universal method exists to model a system.
• Best performed by qualified engineers

• This chapter describes a general model which serves as a basis.

• Organization
– Introductory Examples
– A Few Definitions
– A Printer Manager
– A Few More Variables
– Synchronized Product
– Synchronization with Messaging Passing
– Synchronization by Shared Variables

5

1.1 Introductory Examples

• (Finite) Automata
– A machine evolving from one state to another under the action of transitions
– Graphical representation
– Best suited for verification by model checking techniques

6

03:58… 03:59 04:00 …

An automate model of a digital watch (24x60=1440 states)

0 1

2

dec

decinc

dec inc

inc

Ac3 : a modulo 3 counter

7

• A digicode door lock example
– Controls the opening of office doors
– The door opens upon the keying in of the correct character sequence,

irrespective of any possible incorrect initial attempts.
– Assumptions:

• 3 keys A, B, and C
• Correct key sequence : ABA

8

1 2 3 4
AB

A

C

AB , C

B , C

• Two fundamental notations
– execution

• A sequence of states describing one possible evolution of the system
• Ex. 1121 , 12234 , 112312234 ← 3 different executions

– execution tree
• A set of all possible executions of the system in the form of a tree
• Ex. 1

11, 12
111, 112, 121, 122, 123
1111, 1112, 1121, 1122, 1123, 1211, 1212, 1221, 1222, 1223, 1231,1234
…

9

1

1 2

1 2 1 2 3

1 2 1 2 3 1 2 1 2 3 1 4

• We now associate each automaton state with a number of elementary
properties which we know they are satisfies.

– Since our goal is to verify system model properties.

• Properties
– Elementary property

• (atomic) Proposition
• Associated with each state
• True or False in a given state

– Complicated property
• Expressed using elementary properties
• Depends on the logic we use

10

pred2

PBPA

pred3

PA

• For example,
• PA : an A has just been keyed in
• PB : an B has just been keyed in
• PC : an C has just been keyed in
• pred2 : the proceeding state in an execution is 2
• pred3 : the proceeding state in an execution is 3

• Properties of the system to verify
1. If the door opens, then A, B, A were the last three letters keyed in, in that order.
2. Keying in any sequence of letters ending in ABA opens the door.

• Let’s prove the properties with the propositions

11

1.2 A Few Definition

• An automaton is a tuple A = < Q, E, T, q0, l > in which
– Q : a finite set of states
– E : the finite set of transition labels
– T ⊆ Q ⅹ E ⅹ Q : the set of transitions
– q0 : the initial state of the automaton
– l : the mapping each state with associated sets of properties which hold in it

• Prop = {P1, P2, … } : a set of elementary propositions

12

A = < Q, E, T, q0, l >
– Q = {1, 2, 3, 4}
– E = {A, B, C}
– T = { (1,A,2), (1,B,1), (1,C,1),

(2,A,2), (2,B,3), (2,C,1),
(3,A,4), (3,B,1), (3,C,1) }

– q0 = 1

– l =

1 → ø
2 → {PA}
3 → {PB, pred2}
4 → {PA, pred3}

1 2
PA

3
pred2

PB

4
pred3

PA

AB
A

C

AB , C

B , C

The digicode with
its atomic propositions

13

• Formal definitions of automaton’s behavior
– a path of automaton A :

– A sequence σ, finite or infinite, of transitions which follows each other
– Ex.

– a length of a path σ :
– | σ |
– σ ‘s potentially infinite number of transitions: | σ | ∈ N ∪ {ω}

– a partial execution of A :
– A path starting from the initial state q0
– Ex.

– a complete execution of A :
– An execution which is maximal.
– Infinite or deadlock

– a reachable state :
– A state is said to be reachable,

– If a state appears in the execution tree of the automaton
– If there exists at least one execution in which it appears

3 → 1 → 2 → 2 B A A

1 → 2 → 2 → 3 A A B

14

1.3 Printer Manager

15

Propositions
W : Waiting
P : Printing now
R : Rest for now0

RA
RB

1
WA
RB

2
RA
WB

5
PA
WB

4
WA
PB

3
WA
WB

7
RA
PB

6
PA
RB

endA

endA

endB

endB

begA

begAbegB

begB

reqA

reqA

reqAreqB

reqB

reqB

A printer shared by two users

A = < Q, E, T, q0, l >
– Q = {0, 1, 2, 3, 4, 5, 6, 7}
– E = {reqA, reqB, begA, begB, endA, endB}
– T = { (0,reqA,1), (0,reqB,2), (1,reqB,3), (1,begA,6), (2,reqA,3),

(2,begB,7), (3,begA,5), (3,begB,4), (4,endB,1), (5,endA,2),
(6,endA,0), (6,reqB,5), (7,endB,0), (7,reqA,4) }

– q0 = 0

– l =

0 → {RA, RB} , 1 → {WA, RB}
2 → {RA, WB} , 3 → {WA, WB}
4 → {WA, PB} , 5 → {PA, WB}
6 → {PA, RB} , 7 → {RA, PB}

16

• Properties of the printer manager to verify
1. We would undoubtedly wish to prove that any printing operation is preceded by a

print request.
• In any execution, any state in which PA holds is preceded by a state in which the

proposition WA holds.
2. Similarly, we would like to check that any print request is ultimately satisfied.

(→ fairness property)
• In any execution, any state in which WA holds is followed by a state in which the

proposition PA holds.

• Model checking techniques allow us to prove automatically
• Property 1 is TRUE.
• Property 2 is FALSE,

• A counterexample : 0 1 3 4 1 3 4 1 3 4 1 3 4 1 …

17

1.4 Few More Variables

• It is often convenient to let automata manipulate state variables.
– Control : states + transitions
– Data : variables (assumes finite number of values)

• An automaton interacts with variables in two ways:
– Assignments
– Guards (guarding conditions)

18

19

1 2 3 4
AB

A

if ctr < 3
A
ctr := ctr + 1

if ctr < 3 (guard)
B , C (transition label)
ctr := ctr + 1 (assignment)

err

if ctr < 3
B, C
ctr := ctr + 1

ctr := 0

if ctr < 3
C
ctr := ctr + 1 if ctr = 3

A, C
ctr := ctr + 1

if ctr = 3
B, C
ctr := ctr + 1

if ctr = 3
B, C
ctr := ctr + 1

The digicode with guarded transitions

No more than 3 mistakes !!!

• It is often necessary, in order to apply model checking methods,
• to unfold the behaviors of an automaton with variables
• into a state graph
• in which the possible transitions appear, and the configurations are clear marked.

• Unfolded automaton = Transition system
• has global states
• transitions are no longer guarded
• no assignments on the transitions

20

21

A B A

B,C

B,C

B,C

B,C B,C

B,C

B,C

B,C

A

A

A

B

B

B

A

A

A

A

A

A

C

C

C

A, C

1
ctr=0

1
ctr=1

1
ctr=2

1
ctr=3

2
ctr=0

2
ctr=1

2
ctr=2

2
ctr=3

err
ctr=4

3
ctr=0

3
ctr=1

3
ctr=2

3
ctr=3

4
ctr=0

4
ctr=1

4
ctr=2

4
ctr=3

The digicode with error counting
(Unfolded automaton)

Unfolding

1.5 Synchronized Product

• Real-life programs or systems are often composed of modules or subsystems.
– Modules/Components  (composition)  Overall system
– Component automata  (synchronization)  Global automaton

• Automata for an overall system often has so many global states.
– Impossible to construct it directly (State explosion problem)

– We need to construct it with small component automata.
• Two composition ways

– With synchronization (= Synchronized product)
– Without synchronization (= Cartesian product)

22

23

• An example without synchronization
– A system made up of three counters (modulo 2, 3, 4)
– They do not interact with each other.
– Global automaton = Cartesian product of three independent automata

AC3

0,0,3

0,0,2

0,0,1

0,0,0

0,1,3

0,1,2

0,1,1

0,1,0

0,2,3

0,2,2

0,2,1

0,2,0

1,0,3

1,0,2

1,0,1

1,0,0

1,1,3

1,1,2

1,1,1

1,1,0

1,2,3

1,2,2

1,2,1

1,2,0

AC2

AC4

2*3*4 = 24 states
3*3*3 - 1 = 26 transitions per a state

(Inc, Dec, -)

 24 * 26 = 624 transitions

24

• An example with synchronization
– There are a number of ways depending on the nature of the problem.
– Ex. Allowing only “inc, inc, inc” and “dec, dec, dec” (24*2=48 transitions)
– Ex. Allowing updates in only one counter at a time (24*3*2=144 transitions)

• Synchronized product
– A way to formally express synchronizing options
– Synchronized product = Component automata + Synchronized set

– A1 ⅹ A2 ⅹ … ⅹ An : Component automata

– A = < Q, E, T, q0, l >
– Q = Q1 ⅹ Q2 ⅹ … ⅹ Qn

– E =

– T =

– q0 = (q0,1 , … , q0,n)
– l((q1 , … , qn)) =

– : Synchronized set
1≤i≤n

Sync ⊆ ∏ (Ei ∪ {-})

∏ (Ei ∪ {-})
1≤i≤n

((q1, …. , qn), (e1, … , en), (q’1, … , q’n)) | for all i,
(ei = ‘-’ and q’i = qi) or (ei ≠ ‘-’ and (qi, ei, q’i) ∈ Ti)

∪ li (qi)1≤i≤n

25

• An example with synchronization
– Allowing only “inc, inc, inc” and “dec, dec, dec” (24*2=48 transitions)

→ Strongly coupled version of modular counters
– Sync = { (inc, inc, inc), (dec, dec, dec) }

– T = ((q1, …. , qn), (e1, … , en), (q’1, … , q’n)) | (e1, … , en) ∈ Sync
(ei = ‘-’ and q’i = qi) or (ei ≠ ‘-’ and (qi, ei, q’i) ∈ Ti)

0,0,2

0,0,0

0,1,2

0,1,1

0,2,2

0,2,0

1,0,3

1,0,1

1,1,3

1,1,1

1,2,3

1,2,1
12 states

24 transitions
(inc, inc, inc) (dec, dec, dec)

Accc
coupl

• Reachable states
– Reachability depends on the synchronization constraints

• Reachability graph
– Obtained by deleting non-reachable states
– Many tools to construct R.G. of synchronized product of automata
– Reachability is a difficult problem.

– State explosion problem

26

1,2,3

0,0,0

0,1,2

1,1,1

1,0,1

0,2,2

0,2,0

1,0,3

1,1,3

0,1,0

0,0,2

1,2,1

dec

inc

dec

inc

dec

inc

dec

inc

dec

inc

dec

inc

dec

inc

dec

inc

dec

inc

dec

inc
dec inc decinc

Accc
coupl

Rearranged automaton → modulo 12 counter

1.6 Synchronization with Message Passing

• Message passing framework
– A special case of synchronized product
– !m : Emitting a message
– ?m : Reception of the message

– Only the transition in which !m and ?m pairs are executed simultaneously is
permitted.

– Synchronous communication
• Control/command system

– Asynchronous communication
• Communication protocol (using channel/buffer)

27

28

• Smallish elevator
– Synchronous communication (message passing)
– One cabin
– Three doors (one per floor)
– One controller
– No request from the three floors

0

?down

1 2
?down ?down

?up

?up?up

The cabin

C

?close_i

O

The ith door

?open_i

?open_i

?close_i

!close_2

!open_2

!close_1

!open_1

!close_0

!open_0

free2

free1

free0

on2

on1

on0

0->2

2->0

!up

!up

!down

!down

!down

!down

!up

!up

The controller

29

• An automaton for the smallish elevator example
– Obtained as the synchronized product of the 5 automata

– (door 0, door 1, door 2, cabin, controller)
– Sync = { (?open_0, -, -, -, !open_0), (?close_0, -, -, -, !close_0),

(-, ?open_1, -, -, !open_1), (-, ?close_1, -, -, !close_1),
(-, -, ?open_2, -, !open_2), (-, -, ?close_2, -, !clsoe_2),
(-, -, -, ?down, !down), (-, -, -, ?up, !up) }

• Properties to check
• (P1) The door on a given floor cannot open while the cabin is on a different floor.
• (P2) The cabin cannot move while one of the door is open.

• Model checker
• Can build the synchronized product of the 5 automata.
• Can check automatically whether properties hold or not.

1.7 Synchronization by Shared Variables

• Another way to have components communicate with each other
– Share a certain number of variables
– Allow variables to be shared by several automata

– Ex. The printer manager in Chapter 1.3
• Problem: Fairness property is not satisfied.

30

• The printer manager synchronized with a shared variable
– Shared variable: turn

• Fairness property: “Any print request is ultimately satisfied.”
– No state of the form (y, t, -) is reachable.
– TRUE in the model
– But this model forbids either user from printing twice in a row.

31

x y

The user A
if turn=A, printA

turn:=B

z t

The user B
if turn=B, printB

turn:=A

printA

turn:=B

printB

turn:=A

x, z
A

x, t
B

x, z
B

y, z
A

32

• Printer manager : A complete version with 3 variables [by Peterson]

– rA : a request from user A
– rB : a request from user B
– turn : to settle conflicts
– Satisfies all our properties.

1 2

turn:=B

4 3

if turn = A, printA

rA := false

rA := true

if rB = false, printA

The user A

1 2

turn:=A

4 3

if turn = B, printB

rB := false

rB := true

if rA = false, printB

The user B

A = < Q, E, T, q0, l >
– Q = A ⅹ B ⅹ rA ⅹ rB ⅹ turn

4 ⅹ 4 ⅹ 2 ⅹ 2 ⅹ 2 = 128 states (only 128 reachable states)

AⅹB

33

2. Temporal Logic

2. Temporal Logic

• Motivation:
– The elevator example includes two properties

• “Any elevator request must ultimately be satisfied.”
• “The elevator never traverses a floor for which a request is pending without satisfying this

request.”
→ Dynamic behavior

– In a first order logic,

– But, the above notation (mathematics) is quite cumbersome.

• Temporal Logic is a different formalism, better suited for our situation.

35

• ∀t, ∀n (app(n, t) ⇒ ∃t’ > t : serv(n, t’))
(app(n, t) ∧ H(t’) ≠ n ∧ ∃ttrav :

• ∀t, ∀t’ > t, ∀n, t ≤ ttrav ≤ t’ ∧ H(ttrav) = n)
⇒ (∃tserv : t ≤ tserv ≤ t’ ∧ serv(n, tserv))

2. Temporal Logic

• Temporal Logic
– A form of logic specifically tailored for statements and reasoning

• involving the notion of order in time
– Compared with the mathematical formulas

• clearer and simpler
• immediately ready for use (linguistic similarity of operators)
• formal semantics (specification language tools)

• Organization
– The Language of Temporal Logic
– The Formal Syntax of Temporal Logic
– The Semantics of Temporal Logic
– PLTL and CTL: Two Temporal Logics
– The Expressivity of CTL*

36

2.1 The Language of Temporal Logic

• CTL*
– serves to formally state the properties concerned with the execution of a system
– variants (CTL, PLTL, LTL)
– 6 characteristics

1. Atomic Propositions
– warm, ok, error

2. Proposition Formula
– using Boolean combinators
– true, false, ￢, ∨, ∧, ⇒ (if then), ⇔ (if and only if)

– error ⇒ ￢ warm
(if error then not warm)

37

q0
warm

ok

q1
ok

q2
error

σ1 : (q0: warm, ok)  (q1: ok)  (q0: warm, ok)  (q1: ok)  …
σ2 : (q0: warm, ok)  (q1: ok)  (q2: error)  (q0: warm, ok)  (q1: ok)  …
σ3 : (q0: warm, ok)  (q1: ok)  (q2: error)  (q2: error)  (q2: error)  …

38

3. Temporal combinators
• about the sequencing of states along an execution

• X : next state
• F : a future state
• G : all the future states

• X P : the next state satisfies P
• F P : a future state satisfies P without specifying which state

 P will hold some day (at least once)
• G P : all future states will satisfy P

 P will always be

• alert ⇒ F halt : if we are currently in a state of alert, then we will later be in
a halt state.

• G (alert ⇒ F halt) : at any time, a state of alert will necessarily be followed
by a halt state later.

• G (warm ⇒ F ￢warm) : true
• G (warm ⇒ X ￢warm) : true

• G is the dual of F
• G ф ≡ ￢ F￢ф

σ2 : (q0: warm, ok)  (q1: ok)  (q2: error)  (q0: warm, ok)  (q1: ok)  …

39

4. Arbitrary nesting of temporal combinators
• giving temporal logic its power and strength

• GF ф : always there will some day be a state such that ф,
ф is satisfied infinitely often along the execution considered

• FG ф : all the time from a certain time onward, at each time instant,
possibly excluding a finite number of instants

• GF warm ∨ FG error

5. U combinator
• for until
• ф1 U ф2 : ф1 is verified until ф2 is verified

ф2 will be verified some day, and ф1 will hold in the meantime

• G (alert ⇒ (alarm U halt)) : starting from a state of alert, the alarm remains activated
until the halt state is eventually and inexorably reached.

• F ф ≡ true U ф
• ф1 W ф2 ≡ (ф1 U ф2) ∨ G ф1 : weak until

40

6. Path quantifier
• A ф : all the executions out of the current state satisfy property ф
• E ф : from the current state, there exists an execution satisfying ф

• EF P : it is possible (by following a suitable execution) to have P some day
• EG P : there exists an execution along which P always holds

• AF P : we will necessarily have P some day (regardless of the chosen execution)
• AG P : always true

P

P

P

P

P

P P

P

P P

P P P P

EF P : EG P :
(= E￢ F￢P)

AF P :
(= ￢ E￢FP)

AG P :
(= ￢ EF ￢P)

2.2 Formal Syntax of Temporal Logic

• Abstract grammar
– needs parentheses, operator priority, specific set of atomic propositions, etc.

– Most model checkers use a fragment of CTL* - CTL or LTL.

– ф , Ψ : : = P1 | P2 | … (atomic proposition)
| ￢ф | ф ∧Ψ | ф ⇒Ψ | … (boolean combinators)
| Xф | Fф | Gф | ф UΨ | … (temporal combinators)
| Eф | Aф (path quantifiers)

41

2.3 The Semantics of Temporal Logic

• Kripke structure
– Name of the models of temporal logic
– Propositions labeling the states are important in CTL*
– Transition labels (E) are neglected. A = < Q, T, q0 , l > , T ⊆ Q x Q

• Satisfaction
– A,σ,i ㅑф

• “at time i of the execution σ, ф is true.”
• where σ is an execution of A, which not required to start at the initial state
• A is often omitted.

– σ,i ㅑф : ф is satisfied at time i of σ
– σ,i ㅑф : ф is not satisfied at time i of σ

– A ㅑф iff σ,0 ㅑΦ for every execution of σ of A
• “the automaton A satisfies ф”
• A ㅑ ф ≠ A ㅑ¬ф
• σ,i ㅑф = σ,i ㅑ¬ф

42

43

Semantics of CTL*

CTL*
- Time is discrete.
- Nothing exists between i and i + 1.
- The instants are the points along the executions

2.4 PLTL and CTL: Two Temporal Logics

• Two most commonly used temporal logics in model checking tools
– PLTL (Propositional Linear Temporal Logic)

– CTL (Computational Tree Logic)

– fragments of CTL*

• PLTL
– No path quantifiers (A and E)
– Linear time logic  Path formula

• Ex. PLTL cannot distinguish A1 from A2

44

P,QA1 :

P

Q

P,QA2 :

P

Q

P
Execution 1 : {P, Q} . {P}. {-}
Execution 2 : {P, Q} . {P} . {Q}

45

• CTL
– Temporal combinators (X, F, U) should be under the immediate scope of path quantifier (A, E)
– EX , AX , EU , AU , EF , EG , AG , AF , …
– State formulas

– Truth only depends on the current state and the automaton regions made reachable by it
– Not depending on a current execution
– q ㅑф : ф is satisfied in state q

– CTL can distinguish automata A1 and A2

– Potential reachability : AG EF P
– Do not allow to express very rich properties along the paths.

P,QA1 :

P

Q

P,QA2 :

P

Q

P
A1,q0 ㅑ AX (EXQ ∧ EX¬Q)
A2,q’0 ㅑ AX (EXQ ∧ EX¬Q)

• Which to choose CTL or PLTL ?
– To state some properties : PLTL
– To perform exhaustive verification of a system : CTL

– For both purposes : CTL*
• Less popular
• More complicated than PLTL

– CTL + Fairness properties : FCTL

– If we use model checking tools, we have no choice
– SMV : CTL / PLTL
– SPIN : PLTL
– VIS : CTL / PLTL

– No model checking tool for CTL*

46

47

3. Model Checking

3. Model Checking

• Motivation:
– Describe the principles underlying the algorithms used for model checking

– The algorithm to find out whether a given automaton satisfies a given temporal
formula

• Different algorithms for CTL and PLTL

• Organization
– Model Checking CTL
– Model Checking PLTL
– The State Explosion Problem

49

3.1 Model Checking CTL

• Model checking algorithm for CTL
– Developed in 1980s
– Runs in time linear in each of its components (automaton and CTL formula)
– Relies on the fact that CTL can only express state formulas

• Basic principles
– procedure marking

• Starting from a CTL formula ф
• Mark for each state q of the automaton and for each sub-formula ψ of ф,
• Whether ψ is satisfied in state q

• Complexity of the algorithm
– Model checking “ does A,q0ㅑΦ ? ” for a CTL formula Φ
– can be solved in time O(|A| ⅹ |Φ|)

• O(|A|) : for marking the automaton
• O(|Φ|) : for each sub-formula in Φ

– Linear!!!

50

51

3.2 Model Checking PLTL

• Model checking algorithm for PLTL
– Developed in 1980s, but too technical to cover in this course

– Not possible to rely on marking the automaton states, since PLTL uses path
formulas.

• A finite automaton will generally give rise to infinitely many different executions,
themselves often infinite in length.

– Hence, PLTL uses a language theory : ω-regular expression
• An extension of a regular expression
• “*” : an arbitrary but finite number of repetitions

– (a b* + c)*
• “ω”: an infinite number of repetitions

52

53

• Basic principle
– Model checking “ does Aㅑф ? ” for a PLTL formula ф
– Reduces to a “ Are all the execution of A described by εф ? “

– A PLTL model checker construct an automaton B¬ф (recognizing executions which do not satisfy ф)

– Strongly synchronize A and B¬ф  A⊙B¬ф

– Finally reduces to “ Is the language recognized by A ⊙B¬ф empty ?”

• A simple example
– ф : G(P ⇒ XF Q) : Any occurrence of P must be followed (later) by an occurrence of Q
– B¬ф : There exists an occurrence of P after which we will never again encounter Q

ⅹ

ⅹ

q0

P, Q
P, ¬Q
¬P, Q

¬P, ¬Q

u0 :

q1

P, Q
P, ¬Qu1 :

P, ¬Q
¬P, ¬Qu2 :

If it infinitely often stays in q1, then is B¬ф satisfied.

54

q0
P, Q

P, ¬Q
¬P, Q

¬P, ¬Q

u0 :

q1

P, Q
P, ¬Qu1 :

P, ¬Q
¬P, ¬Qu2 :

If it infinitely often stays in q1, then is B¬ф satisfied.

B¬ф :

A :

¬P
¬Q

¬P
¬Q

P
Q

¬P
¬Q

t1

t2

t4

t3

t5

ф : G(P ⇒ XF Q)

“ Does Aㅑф ? ”

55

A B¬ф : ⅹ⊙

ⅹ⊙

¬P
¬Q

¬P
¬Q

P
Q

¬P
¬Q

t1 u0

ⅹ⊙t2 u0

ⅹ⊙t4 u0

ⅹ⊙t3 u0

ⅹ⊙t5 u0

ⅹ⊙

¬P
¬Q

¬P
¬Q

P
Q

¬P
¬Q

t1 u2

ⅹ⊙t2 u2

ⅹ⊙t4 u2

ⅹ⊙t3 u2

ⅹ⊙t5 u1

There are behaviors of A accepted by A B¬фⅹ⊙

 The language recognized by is nonempty.A B¬фⅹ⊙

 Aㅑф

56

• Construction of B¬ф
– Very difficult technically
– Automaton B¬ф must in general be able to recognize infinite words
 Büchi automata

• Complexity of the algorithm
– B¬ф has size O(2|ф|) in the worst case
– has size O(|A| ⅹ |B¬ф |)
– If fits in computer memory, we can determine it in time O(|A| ⅹ |B¬ф |)
– Model checking “does A, q0ㅑф ?“ for a PLTL formula ф can be done in time O(|A| ⅹ 2|ф|)

• Reachability analysis
– We can say that B¬ф observes the behavior of A when the two automata are synchronized.
– Observable automata = formal specification of the desired property

• UPPAAL
• SPIN

A B¬фⅹ⊙
A B¬фⅹ⊙

3.3 The State Explosion Problem

• State explosion problem
– The main obstacle encountered by model checking algorithms

– The algorithms rely on explicit construction of the automaton A
• Traversal and marking (in case of CTL)
• Synchronization with B¬ф and seeking of reachable states and loops (in case of PLTL)

– In practice, the number of states of A is quickly very large.
• If we use values that are not priori bounded (integers, a waiting queue, etc.), we cannot even apply

it.

– Explicit model checking → Symbolic model checking (Chapter 4)

57

58

Patterns of Temporal Properties

• Writing the temporal logic formulas expressing desired system properties is
important but difficult.

– No silver bullet
– No automatic generation

• 4 classification (categories/patterns) according to verification goals
– Reachability property

• Some particular situation can be reached.
– Safety property

• Under certain condition, something never occurs.
– Liveness property

• Under certain condition, something will ultimately occur.
– Fairness property

• Under certain condition, something will (or not) occur infinitely often.

– Deadlock freeness

59

4. Properties

Reachability Properties

6. Reachability Properties

• Reachability property
– Some particular situation can be reached.

– Examples:
• (R1) “ We can obtain n<0 ”
• (R2) “ We can enter a critical section ”  simple
• (R3) “ We cannot have n<0 “
• (R4) “ We cannot reach the crash state “  negation of the simple
• (R5) “ We can enter the critical section without traversing n=0 “  with conditional restricts
• (R6) “ We can always return to the initial state “  stronger / nested
• (R7) “ We can return to the initial state “

62

6.1 Reachability in Temporal Logic

• EF Φ
– “ There exists a path from the current state along which some state satisfying Φ “

– (R1) “ We can obtain n<0 ”
• EF (n<0)

– (R2) “ We can enter a critical section ”
• EF crit_sec

– (R3) “ We cannot have n<0 “
• ¬EF (n<0)

– (R4) “ We cannot reach the crash state “
• ¬EF crash
• AG ¬crash
• “ Along every path, at any time, ¬crash ”

– (R5) “ We can enter the critical section without traversing n=0 “
• E (n≠0) U crit_sec
• “ There exists a path along which n ≠ 0 holds until crit_sec becomes true. “

– (R6) “ We can always return to the initial state “
• AG (EF init)

– (R7) “ We can return to the initial state “
• EF init

63

6.2 Model Checkers and Reachability

• Reachability properties are typically the easiest to verify.
– All model checkers can answer it in principle by simply examining their

reachability graph.

• But, they do vary in richness.
– conditional reachability
– nested reachability
– etc.

• Design/CPN is specifically designed for reachability property verification.

64

6.3 Computation of the Reachability Graph

• The effective construction of set of reachable states are non-trivial.
– Several automata are synchronized.

• Algorithms dealing with reachability problems
1. Forward chaining
2. Backward chaining
3. “On-the-fly” exploration

• Forward chaining
– A natural approach, from initial states → add their successors → until saturation
– Difficulty:

• Potential explosion of the set constructed

65

• Backward chaining
– from target states → add immediate predecessors → until saturation, then, test

whether some initial states are in there
– Difficulties:

1. Target states need to be fixed before.
2. Computing immediate predecessors is generally more complicated than that of

successors.

• “On-the-fly” exploration
– Explore the reachability graph without actually building it

• Construction is performed partially, as the exploration proceeds, without remembering
everything already visited.

– Background assumption
• Present-day computers are more limited in memory resources than in processing

speed
– It is efficient mostly when

1. Target set is indeed reachable. (“Yes” requires no exhaustive explorations)
2. Can operate in forward or backward manners (The forward is the traditional)
3. May apply to some systems with infinitely many states

66

67

Safety Properties

7. Safety Properties

• Safety property
– Under certain conditions, an (undesirable) event never occur.

– Examples:
• (S1) “ Both processes will never be in their critical sections simultaneously (mutual exclusion) ”
• (S2) “ Memory overflow will never occur ”
• (S3) “ The situation … is impossible “
• (S4) “ As long as the key is not in the ignition position, the car won’t start “  with conditions

• ¬ safety property = reachability property
• ¬ reachability property = safety property

69

7.1 Safety Properties in Temporal Logic

• AG ㄱΦ
– “ Φ never occurs. “

– (S1) “ Both processes will never be in their critical sections simultaneously ”
• AG ¬(crit_sec1 ∧ crit_sec2)

– (S2) “ Memory overflow will never occur ”
• AG ¬overflow

– (S3) “ The situation … is impossible “
• AG ¬situation

– (S4) “ As long as the key is not in the ignition position, the car won’t start “
• A (¬start W key) ← using weak until : it is a safety property
• A (¬start U key) ← using strong until : Not a safety property!

70

7.2 A Formal Definition

• Syntactic characterization
– Safety properties can be written in the form AG Φ¯

• Φ¯ is a past temporal formula
– When a safety property is violated, it should be possible to instantly notice it.

• We can only notice it, in the current state, relying on events which occurred earlier.

• Temporal logic with past
– CTL* does not provide past combinators.
– But, we can use a mirror image of future combinators (F-1, X-1)

• AG Φ¯ in practice
– (S1) AG ¬(crit_sec1 ∧ crit_sec2)

• ¬(crit_sec1 ∧ crit_sec2) is a Φ ¯
– (S4) A ¬start W key

• Can be rewritten in the form: AG (start ⇒ F-1 key)
• “ It is always true (AG) that if the car starts, then (⇒) the key was inserted beforehand (F-1). “

71

7.3 Safety Properties in Practice

• Safety properties are verified simply by submitting it to a model checker. But,
in real life, hurdles spring up.

• A simple case: non-reachability
– The most safety properties
– ¬EF (crit_in1 ∧ crit_in2) = AG Φ¯

• ¬(crit_in1 ∧ crit_in2) is a present formula

• Safety without past
– A (¬start W key) vs. AG (start ⇒ F-1 key)
– No model checker is able to deal with past formulas. So, mixed logics are used.
– The problem is their identification.

→ If they are identified, then it can be dealt with similarly
→ Otherwise, we have to use the method of history variables (in section 7.4)

• Safety with explicit past
– No model checker is able to handle temporal formula with past.
– Two approaches:

1. Eliminate the past (in principle, it is possible to translate mixed formulas to pure-future ones)
– AG (ф⇒ F-1 ψ) ≡ A (¬фW ψ) , but not easy.

2. History variable method (section 7.4) 72

73

Liveness Properties

8. Liveness Properties

• Liveness property
– Under certain conditions, some event will ultimately occur.

• Some happy event will occur in the end.

– Examples:
• (L1) “ Any request will ultimately be satisfied ”
• (L2) “ By keeping on trying, one will eventually succeed ”
• (L3) “ If we call on the elevator, it will bound to arrive eventually “
• (L4) “ The light will turn green (some day regardless of the system behavior)“
• (L5) “ After the rain, the sunshine “
• (L6) “ The program will terminate “

– Two broad family of liveness properties
1. Simple liveness : progress (Chapter 8)
2. Repeated liveness : fairness (Chapter 10)

75

8.1 Simple Liveness in Temporal Logic

• F Φ
– “ Φ will ultimately occur. “

– (L1) “ Any request will ultimately be satisfied ”
• AG (req ⇒ AF sat)

– (L7) “ The system can always return to its initial state ”
• AG EF init

– P U Q
• “ Along the execution, we will find a state satisfying Q and P will hold for all the states

encountered in the meantime “
• Regarded as a liveness property
• P U Q ≡ F Q ∧ (P W Q)

(liveness) (safety)
• A(PUQ) and E(PUQ) are all liveness properties.

76

8.2 Are Liveness Properties Useful?

• Abstract liveness properties

– “ If we call on the elevator, it is bound to arrive eventually “
• It yields no information, from a utilitarian viewpoint.
• “Abstract” liveness property

– “ An event will occur within at most x time unit “
• It is useful, but became a safety property.
• “Bounded” liveness property

– But, it is still useful
• “Abstract” is more general than “concrete”.
• “Abstract” is more efficient than “concrete”.
• “Abstract” and “concrete” are not contradictory.

77

8.3 Liveness in the Model and the Properties

• Two different roles in the verification process
1. Liveness properties : we wish to verify
2. Liveness hypotheses : we make on the system model

• When we use a mathematical model(automata) to represent a real system,
– The semantics of the model in face define implicit safety and liveness hypotheses.
– Safety hypothesis :

• Clear
• It can flip from q to q’ only if it includes a transition going from q to q’.

– Liveness hypothesis :
• Not clear
• The system will chain transitions as long as possible to a block state or accepting states.
• “The system does not terminate without reason, or remain inactive indefinitely without reason.”
• Can be subtle and cause errors :

• One must be aware of the premises of the models used and check their adequacy.

78

In state x, will always end up wishing printing.
 Different from the real world’s behavior !!!

8.4 Verification under Liveness Hypotheses

• Verify that specific model behaviors satisfy a given property :
– Φv : only the model which the liveness hypotheses hold
– Ψ : a property

– Verify Φv ⇒ ψ is sufficient.

– If ψ is a CTL property
• AF (E PUQ)  A (Φv ⇒ FE (Φv ∧ P U Q))

79

8.5 Bounded Liveness

• Bounded liveness property
– A liveness property that comes with a maximal delay which the desired situation must occur
– Safety properties from a theoretical viewpoint``
– Can be rewritten in a form AG (ψ2 ⇒ F-1 ψ1)
– Not as important as safety properties

• Bounded liveness in timed systems
– Often used in the specification of timed systems (in Chapter 5)
– Explicit constraints on delays  TCTL !!!

– (BL1) “ The program terminates in less than ten seconds “
• AF<10s end  bounded liveness property
• AG (¬end ⇒ F-1

<10s start)  safety property

– (BL2) “ Any request is satisfied in less than five minutes “
• AG (req ⇒ AF<5m sat)  bounded liveness property
• AG (¬(F-1

=5mreq ∧ G-1
≤5m¬sat)  safety property

80

81

Deadlock-Freeness

9. Deadlock-Freeness

• Deadlock-freeness
– A special property, “ The system can never be in a situation on which no

progress is possible. ”

– Correct property relevant for systems that are supposed to run indefinitely
• A set of properly identified final states will be required to be deadlock-free.

83

9.1 Safety? Liveness?

• AG EX true
– “ Whatever the state reached may be (AG), there will exist an immediate

successor state (EX true) ”

– Not the form of AGф-1

– Deadlock-free is not a safety property.
– Can be verified if the model checker can handle AG EX true.

84

9.2 Deadlock-freeness for a Given Automaton

• We sometimes think of deadlock-freeness as a safety property
– For a given automaton, we can describe the deadlock states explicitly.
– But, it is up to the automaton we obtain.

– For example,

85

s1 s2
x:=0, y:=0

x = x + 1

y = y + 1

s3
if x = y

if x > 0
x := x + 1

AG EX true  hold! (liveness property)
AG ¬(s3 ∧ x≤0)  hold! (safety property)

s1 s2
x:=0, y:=0

x = x + 1

s3
if x = y

if x > 0
x := x + 1

AG EX true  not hold! (liveness property)
AG ¬(s3 ∧ x≤0)  hold! (safety property)

A

A’

9.3 Beware of Abstractions!

86

s1 s2
x:=0, y:=0

x = x + 1

y = y + 1

s3
if x = y

if x > 0
x := x + 1

s1 s2
x:=0, y:=0

x = x + 1

s3
if x = y

if x > 0
x := x + 1

A

A’

s1 s2 s3

A’’

Abstraction

Abstraction

Deadlock-free

Deadlock

Deadlock-free

87

Fairness Properties

10. Fairness Properties

• Fairness Property
– Under certain conditions, an event will occur (or will fail to occur) infinitely often

– Examples:
• (F1) “ The gate will be raised infinitely often”
• (F2) “ If access to a critical section is infinitely often requested, then access will be

granted infinitely often “

– repeated liveness or repeated reachability

89

10.1 Fairness in Temporal Logic

• GF P
– “ We meet a state in which P holds infinitely often. ”

• There is no last state in which P holds.

– Fairness properties cannot be expressed in pure CTL
• (F1) “ The gate will be raised infinitely often.”
 A (GF gate_raised)

• (F2) “ If access to a critical section is infinitely often requested, then access will be
granted infinitely often. ”
 A (GF crit_req ⇒ FG crit_in)

– FCTL or ECTL+
• CTL + fairness
• O(|A| ⅹ |ф|2)

• Many tools (like SMV) considers the fairness hypotheses as part of model rather than
choosing FCTL.

90

10.2 Fairness and Nondeterminism

• In practice, fairness properties are used to describe the form of some
nondeterministic sequences.

– “ When a nondeterministic choice occurs at some point, it is often assumed to be
fair. ”

– For example,
• A die with six faces
• Its behavior is fair, if it fulfills the property:

– A (GF 1 ∧ GF 2 ∧ GF 3 ∧ GF 4 ∧ GF 5 ∧ GF 6)

– Fairness properties can be viewed as an abstraction of probabilistic properties.

91

10.3 Fairness Properties and Fairness Hypotheses

• Fairness properties are very often used as hypotheses.

• An example:
– Classical alternating bit protocol

• A : a transmitter
• B : a receiver
• AB : a line for messages
• BA : a line for message acknowledgements
• Messages can be lost  non-deterministic behavior of AB and BA

– Liveness property : “Any emitted message is eventually received.”
• G (emitted ⇒ F received) : Fail !!!
• The model allows to systematically lose all messages.
• Our original intension : “unreliable” line, not the whole lose  Fairness hypothesis !!!
• A (GF ¬loss ⇒ G (emitted ⇒ F received))

fairness hypothesis liveness property

– Repeated liveness property : “ If infinitely many messages are emitted, then infinitely many
messages will be transmitted.”

repeated liveness property
• A (GF ¬loss ⇒ (GF emitted ⇒ GF received))

fairness hypothesis repeated liveness hypothesis

92

10.4 Strong Fairness and Weak Fairness

• Fairness property
– “If P is continually requested, then P will be granted (infinitely often).”
– Weak fairness : without interruption
– Strong fairness : possibly with interruption
– No difference when using them for model checking of finite systems

• Weak fairness
– Assume that P is requested without interruption

• (FG request_P) ⇒ F P
• (FG request_P) ⇒ GF P

• Strong fairness
– Assume that P is requested in an infinitely repeated manner, possibly with

interruptions
• (GF request_P) ⇒ F P
• (GF request_P) ⇒ GF P

93

10.5 Fairness in the Model or in the Property?

• The best way is

– Model = automaton + fairness hypothesis
• Pros: Fairness hypothesis can change independently from the automata model.

– Ex. SMV model checker

94

95

FORMAL VERIFICATION : ADVANCED

96

 Symbolic Model Checking
 Timed Automata

5. Symbolic Model Checking

4. Symbolic Model Checking

• Symbolic model checking
– Any model checking method attempting to represent symbolically states and

transitions
– A particular symbolic method in which BDDs(Binary Decision Diagram) are used to

represent the state variables
– Represent very large sets of states concisely, as if they were in bulk.

• Motivation:
– State explosion is the main problem for CTL or PLTL model checking.
– State explosion occurs whenever we represent explicitly all states of automaton

we use.

• Organization
– Symbolic Computation of State Sets
– Binary Decision Diagrams (BDD)
– Representing Automata by BDDs
– BDD-based Model Checking

98

4.1 Symbolic Computation of State Sets

• Iterative computation of Sat(ф)
– A = <Q, T, … >
– Pre(S) : immediate predecessors of the states belonging to S in Q
– Sat(ф) : set of states of A which satisfy ф

• ψ is the sub-formulas of ф

– Sat(¬ψ) = Q \ Sat(ψ)
– Sat(ψ∧ψ’) = Sat(ψ) ∩ Sat(ψ’)
– Sat(EX ψ) = Pre(Sat(ψ))
– Sat(AX ψ) = Q \ Pre(Q \ Sat(ψ))
– Sat(EF ψ) = Pre*(Sat(ψ))
– … (others are defined in a similar way)

– The algorithms in Section 3.1 is an particular implementation of Sat(ф)
– Hence, Sat(ф) is an explicit representation of the state sets.

99

/* ==== Computation of Pre*(S) ==== */
X := S;
Y := { };
while (Y != X) {

Y := X;
X := X ∨ Pre(X);

}
return X;

100

• Which symbolic representations to use ?
– We have to access the following primitives:

1. A symbolic representation of Sat(P) for each proposition P ∈ Prop.
2. An algorithm to compute a symbolic representation of Pre(S) from a symbolic

representation of S.
3. Algorithms to compute the complement, the union, and the intersection of the symbolic

representations of the sets.
4. An algorithm to tell whether two symbolic representations represent the same set.

• Systems with infinitely many states
– Symbolic approach naturally extends to infinite systems.
– New difficulties:

1. Much trickier to come up with symbolic representations.
2. Iterative computation Sat(ф) is no longer guaranteed to terminate.

4.2 Binary Decision Diagram (BDD)

• BDD
– A particular data structure very commonly used for representing states sets

symbolically
– Proposed in 1980s ~ early in 1990s

– Make possible the verification of the system which cannot represent explicitly.

– Advantages:
• Efficiency
• Simplicity
• Easy Adaptation
• Generality

101

102

• BDD structure example
• n boolean variables x1, x2, … , xn associated with a tuple < b1, b2, … , bn >

• Suppose n = 4,
• The set S of our interest is the set such that (b1 ∨ b3) ∧ (b2 ⇒ b4) is true.

• We have several ways to represent the set:
• S = {<F,F,T,F>, <F,F,T,T> , … >
• S = (b1 ∨ b2) ∧ (b3 ⇒ b4)
• S = (b1 ∧ ¬b2) ∨ (b1 ∧ b4) ∨ (b3 ∧ ¬b2) ∨ (b3 ∧ b4)  DNF
• …
• Decision Tree ← Our choice.

b2?

F F T T F F F T

b3? b3?

b4?b4?b4?b4?

n2

n4 n5

n8 n9 n10 n11

b2?

T T T T F T F T

b3? b3?

b4?b4?b4?b4?

n3

n6 n7

n12 n13 n14 n15

b1?

n1

F

F

F

F F F F F F F FT T T TT T T T

T

T

TTTT

T F

FF F

103

• Decision tree reduction
– A BDD is a reduced decision tree.
– Reduction rules:

1. Identical sub-trees are identified and shared. (n8 and n10)
→ leads to a directed acyclic graph (dag)

2. Superfluous internal nodes are deleted. (n7)

– Advantages:
1. Space saving
2. Canonicity

b2?

F F T T F F F T

b3? b3?

b4?b4?b4?b4?

n2

n4 n5

n8 n9 n10 n11

b2?

T T T T F T F T

b3? b3?

b4?b4?b4?b4?

n3

n6 n7

n12 n13 n14 n15

b1?

n1

F

F

F

F F F F F F F FT T T TT T T T

T

T

TTTT

T F

FF F

Reduced

b2? b2?

b1?

b3? b3?

b4?

F T

F

F

F F

F

F

T

T

T

T

T

T

Decision tree BDD

104

• Canonicity of BDDs
– BDDs canonically represent sets of boolean tuples. (fundamental property of BDDs)

– If the order of the variable xi is fixed, then there exists a unique BDD for each set
S.

– Properties of BDDs
1. We can test the equivalence of two BDDs in constant time.
2. We can tell whether a BDD represents the empty set simply by verifying whether it is

reduced to a unique leaf F.

• Operations on BDDs
– All boolean operations

1. Emptiness test
2. Comparison
3. Complementation
4. Intersection
5. Union and other binary boolean operations
6. Projection and abstractions

– Complexity : linear or quadratic (for each operation)
→ The same state explosion problems still exist.

4.3 Representing Automata by BDDs

• Before applying BDDs to symbolic model checking, we need to restate
– Representing the states by BDDs
– Representing transitions by BDDs

• Representing the states by BDDs
– Consider an automaton A with

• Q = {q0, … , q6}  b1
1, b2

1, b3
1

• var digit:0..9  b1
2, b2

2, b3
2, b4

2

• var ready:bool  b1
3

• < b1
1, b2

1, b3
1, b1

2, b2
2, b3

2, b4
2, b1

3 >
• < F, T, T, T, F, F, F, F > = <q3, 8, F >

– Let’s represent Sat(ready ⇒ (digit > 2))
• States <q, k, b> such that if b = T and k > 2
• ready ⇒ (digit > 2) ≡ ¬ ready ∨ (digit > 2)

105

b2
2

b1
2

b3
2 b3?

b4?

F T

F

F

T

F

F

T

T
T

b1
3

F

T

b4
2

106

• Representing transitions by BDDs
– The same idea is applied.
– <q3, 8, F > → <q5, 0, F > : < F, T, T, T, F, F, F, F, T, F, T, F, F, F, F, F >

– For example,

– (<q, k, b>, <q’, k’, b’>)
 q = q1, k ≠ 0, q’ = q2, k’ = k , b’ = T

 (¬b1
1 ∧ ¬b2

1 ∧ b3
1)

∧ (b1
2∨b2

2∨b3
2∨b4

2)
∧ (¬b’ 11 ∧ b’ 21 ∧ ¬b’ 31)
∧ (b’ 12⇔b1

2 ∧ b’ 22⇔b2
2 ∧ b’ 32⇔b3

2 ∧ b’ 42 ⇔ b4
2)

∧ b’ 13

q1 q2
if digit ≠ 0, ready := T

4.4 BDD-based Model Checking

• BDDs can serve as an instance of symbolic model checking scheme.
– Provide compact representations for the sets of states in an automaton
– Support the basic sets of operations
– Computation of Pre(S) in section 4.1 is very simple.

• Implementation
– SMV (chapter 12)

– Efficiency of BDDs depends on
• BT representing the transition relation T (as containing pairs of states)
• Choice of ordering for the boolean variables

– Very easy to explode exponentially.

• Perspective
– Widely used from early 1990s
– Current work on model checking

• Aiming at applying BDD technology to solve more verification problems (ex. program equivalence)

• Aiming at extending the limits inherent to BDD-based model checking
– Widely used throughout the VLSI design industry.

107

108

6. Timed Automata

5. Timed Automata

• “Temporal”
– “Trigger the alarm action upon detecting a problem”

• “Real-Time”
– “Trigger the alarm less than 5 seconds after detecting a problem”

• Timed Automata
– Proposed by Alur and Dill in 1994.
– An answer to this “real-time” needs

• Organization
– Description of a Timed Automata
– Networks of Timed Automata and Synchronization
– Variants and Extensions of the Basic Model
– Timed Temporal Logic
– Timed Model Checking

110

5.1 Description of Timed Automata

• Two fundamental elements of timed automata
1. A finite automaton (assumed instantaneous between states)

2. Clocks

• An example

111

init

c ≥ 5, ?msg, c := 0

verify alarm
- , ?msg, c := 0 c < 5 , ?msg, -

• Clocks and transitions
– Clocks

• Variables having non-negative real values in R
• All clocks are null in the initial system states.
• All clocks evolve at the same speed, synchronously with time.

– Transitions
• Three items
• A guard
• An action (label)
• Reset of some clocks

– The system operates as if equipped with
• A global clock
• Many individual clocks (each is synchronized with the global clock)

112

113

• Configurations and executions
– Configuration of the system

• (q, v)
– q : a current control state of the automaton
– v : the value of each clock

• We also refer to v as a valuation of the automaton clocks.
• Timed automata does not fix the time unit under consideration

– Execution of the system
• (usually infinite) sequence of configurations
• A mapping ρ from R to the set of configuration

• Configurations change in two ways
– Delay transition
– Discrete transition (or action transition)

• Trajectory
– ρ(0) : the initial state
– ρ(12.3) = (verify, 2.1)

(init, 0) → (init, 10.2) → (verify, 0) → (verify, 5.8) → (verify, 0) → (verify, 3.1) → (alarm, 3.1) → …
?msg ?msg ?msg

Delay transition

Discrete transition

5.2 Networks of Timed Automata and Synchronization

• It is useful to build a timed model in a composite fashion, by combining
several parallel automata synchronized with one another.
→ a timed automata network

• Executions of a timed automata network
– All automata components run in parallel at the same speed
– Their clocks are all synchronized to the same global clock

– (q , v) : a network configuration
• q : a control state vector
• v : a function associating each network clock with its value at the current time

• Synchronization
– Timed automata synchronize on transitions (as usually) by resetting the clocks.
– The clocks which were not reset are unchanged.
– No concurrent write conflicts on clocks, since reset writes a zero value and nothing else.

114

115

App Exit

far near on far

far near

on

App
Ct := 0

2 < Ct < 5
Ct := 0

1 < Ct < 2
Exit

up lower

App
Cb := 0

raise down

App

AppExit

Exit

App
Cb := 0

Exit
Cb := 0

Exit
Cb := 0

1 < Cb < 2 1 < Cb < 2

Train Gate

• Example : modeling a railroad crossing

5.3 Variants and Extensions of the Basic Models

• Many variants, and three extensions

• Invariants
– Liveness hypothesis in the untimed model
– Invariant: a state’s condition on the clock values, which must always hold in the

state
– Example: near (invariant: Ht < 5), on (invariant: Ht < 2), lower/raise (invariant: Hb

< 2)

• Urgency
– Used when cannot tolerate a time delay
– Represented in the system configurations, not in the transitions
– Allowing urgent/synchronized behaviors in a more natural way

• Hybrid linear system
– Models dynamic variables (in a form of differential equations)

– HyTech

116

x < 2
c1

y < 2
c2

c3c3

5.4 Timed Temporal Logic

• Given a system described as a network of timed automata, we wish to be
able to state/verify properties of this system

– Temporal properties
• “When the train is inside the crossing, the gate is always closed.”

– Real-time properties
• “The train always triggers an Exit signal within 7 minutes of having emitted an App

signal.”

• Three ways to formally state real-time properties
1. Express it in terms of the reachability of some sets of configurations
2. Use observer automata in PLTL model checking

• Given a property ф , a network R
• Testing reachability of some states in the product R || Aф
• UPPAAL , HYTECH

3. Use a timed logic
• TCTL (Timed CTL), etc.

117

118

• TCTL (Timed CTL)

• Φ , Ψ : : = P1 | P2 | … (atomic proposition)
| ￢Φ | Φ ∧Ψ | Φ ⇒ Ψ | … (boolean combinators)
| EF(~k)Φ | EG(~k)Φ | EΦ U(~k)Ψ (temporal combinators)
| AF(~k)Φ | AG(~k)Φ | AΦ U(~k)Ψ (path quantifiers)

• ~ : any comparison symbol from {< , ≤ , = , ≥ , >}
• k : any rational number from Q. (real number)
• Operator X does not exist in TCTL

• Example :
• AG (pb ⇒ AG(≤5) alarm)

• “If a problem occurs, then the alarm will sound immediately and it will sound for at least
5 time units.”

• AG (￢far ⇒ AF(<7) far)
• “When the train is located in the railway section between the two sensors App and Exit, it

will leave this section before 7 time units.”

5.5 Timed Model Checking

• With timed automata and TCTL logic
• We wish to obtain a model checking algorithm for them.

• Difficulties : Automaton has an infinite number of configurations, since
– Clock values are unbounded
– The set of real numbers used in clocks is dense

– Overcome it with the equivalence classes, called “regions”

– Example: x1, x2 ~ k with k = 0, 1, 2
• 28 regions

119

x1

x2

(1) (2)

(1)

r0

r9

r27

r8

r7

r4

120

• Complexity

• Model checking algorithms are complicated.
• The number of regions grows exponentially.

• O(n!Mn)
• n: number of clocks
• M: upper bounds of every constant

• No general and efficient method is likely to exist. (vs. linear complexity in CTL)
• PSPACE-complete problem

• Existing tools focus on defining adequate data structures for handing sets of regions
 “zones”

• Existing tools have been successfully used
- UPPAAL
- HyTech
- (KRONOS)
- SpaceEx (PHAver) ← for Hybrid System (CPS)

121

FORMAL VERIFICATION
TOOLS AND CASE STUDIES

122

7. Formal Verification Tools

Introduction

• Formal modeling methods and tools (graphical methods only)

– SCR
– NuSCR (NuSRS)

– Statecharts Statemate MAGNUM)

– RSML / SpecTRM
– Petri-Nets (Design/CPN)

– Timed Automata (UPPAAL)

• Formal verification (model checking) tools
– SMV
– SPIN
– VIS
– CBMC
– DESIGN/CPN
– UPPAAL
– HyTech

124

SCR
■ Software Cost Reduction (SCR) 1)

1) http://www.nrl.navy.mil/itd/chacs/5546/SCR

125

126

Main Window
- Condition table
- Event table
- Mode Transition table

127

128

129

130

NuSCR

131

■ NuSCR

A Formal requirements specification language customized for nuclear I&C systems

- Customizing SCR for nuclear domain

- Consisting of 4 constructs
+ SDT (Structured Decision Table)
+ FSM (Finite State Machine)
+ TTS (Timed Transition System)
+ FOD (Function Overview Diagram)

- Various Supporting for seamless verification and safety analysis

- A starting point of the NuDE framework

SDT

FSM / TTS

NuSRS – NuSCR Modeling Environment
132

133

Statecharts

134

■ IBM Rational Statemate MAGNUM

A graphical working environment developed by David Harel

- Create a visual, graphical specification that clearly and precisely represents the intended
functions and behavior of the system

- The Statecharts specification may be executed, or graphically simulated

- The 3 views of the system mode
+ Module-charts
+ Activity-charts
+ Statecharts

- Generates C, Ada, VHDL and Verilog code

- Formal verification through in-house model checker

135

Statechart

Ativity-chart

Design/CPN

136

■ Design/CPN (CPN Tools 4.0)

A tool for editing, simulating, and analyzing Colored Petri nets1)

- CPN Editor : construction, modification and syntax check of CPN models (CPN Editor)

- CPN Simulator : interactive and automatic simulation of CPN models (CPN Simulator)
+ simulation-based performance analysis of CPN models

- Occurrence Graph Tool : construction and analysis of occurrence graphs for CPN models
→ state spaces or reachability graphs/trees

1) http://cpntools.org/

137

Timed Automata

138

■ Timed Automata (UPPAAL)

An integrated tool environment for modeling, validation and verification of real-time systems
modeled as networks of timed automata, extended with data types (bounded integers, arrays, etc.) 1)

1) http://www.uppaal.org/

- Use timed automata to analyze timed systems

- Graphical editor
- Graphical simulator
- Verifier

- Model checking
+ CTL reachability analysis based on AG / EF

139

Timed automata models in UPPAAL

140

141

SMV

142

■ SMV

A symbolic model checker of CLT formulae on networks of automata with shared variables1)

- The first model checker using the BDD technology

- Suited for fully checking a complex system
- Input : SMV input program language or Verilog program
- CTL model checking

- No support for (systematic) simulating

1) http://www.cs.cmu.edu/~modelcheck/smv.html

143

The SMV input program (Cadence SMV) The result (counterexample) of the CTL model checking

SPIN

144

■ SPIN

A tool for analyzing the logical consistency of concurrent systems, specifically of data
communication protocols 1)

- Developed at Bell Labs in the Unix group of the Computing Sciences Research Center, starting
in

1980.

- The system is described in a modeling language called Promela (Process Meta Language)
+ Allowing for the dynamic creation of concurrent processes

- Communication via message channels can be defined to be synchronous (i.e., rendezvous),
or asynchronous (i.e., buffered).

- Simulator
- Verification: LTLT model checking or assertion

1) http://spinroot.com/spin/whatispin.html

145

The PROMELA program

146

The verification/simulation results with sequence diagram

VIS

147

■ VIS

A system for formal verification, synthesis, and simulation of finite state systems 1)

- Simulation of logic circuits (proof of concept only)
- Formal "implementation" verification of combinational and sequential circuits (proof of concept only)
- State-of-the-art formal "design" verification using fair CTL model checking and language emptiness
- Logic synthesis via hierarchy restructuring and a path to and from SIS

- Input : Verilog HDL through vl2mv (into BLIF-MV format)

- No GUI

1) http://vlsi.colorado.edu/~vis/

VIS Analyzer 3.0

148

CBMC

149

■ CBMC (C Bounded Model Checker)

A Bounded Model Checker for ANSI-C and C++ programs 1)

- Verifying array bounds (buffer overflows), pointer safety, exceptions and user-specified assertions
- Checking ANSI-C and C++ for consistency with other languages, such as Verilog

- Performing unwinding the loops in the program and passing the resulting equation to a decision
procedure

- Supporting dynamic memory allocation using malloc and new

1) http://www.cprover.org/cbmc/

150

151

HyTech

152

■ HyTech

An automatic tool for the analysis of a linear hybrid system with temporal requirements1)

- Hybrid systems are specified as collections of automata with discrete and continuous components
- Temporal requirements are verified by polyhedral model checking

- Input: Linear hybrid automata (discrete + continuous variables)
+ closed system (no external input)

- No GUI

1) http://embedded.eecs.berkeley.edu/research/hytech/

153

SpaceEx

154

■ SpaceEx

A tool platform is designed to facilitate the implementation of algorithms related to reachability
and safety verification of hybrid systems 1)

- Safety and reachacility verification

- Input: SX language (Hybrid automata)
+ Non-linear hybrid automata

- Supporting External inputs
- But, hard to interpret counter-examples

1) http://spaceex.imag.fr/

155

156

157

Statechart Diagram

Statechart Diagram

• Every object takes a finite number of different states during its life.

• State machine (=Statechart) diagram is used as follows:
– to model the possible states of a system or object
– to show how state transitions occur as a consequence of events
– to show what behavior the system or object exhibits in each state

159

State

• States : nodes of the state machine

• When a state is active,
– The object (or system) is in that state.
– All internal activities specified in this state can be executed.

• An activity can consist of multiple actions.
• State operations

– entry / Activity(...)
• Executed when the object enters the state

– exit / Activity(...)
• Executed when the object exits the state

– do / Activity(...)
• Executed while the object remains in this state

: Initial state - Pseudostate

: Final state - Real state

: Terminate node - Pseudostate

160

Transition

• Change from one state to another

161

Source state Target stateTransition

Event Guard Sequence of actions

Transition : Examples

162

If event1 occurs
 Object leaves state1 and Activity2 is executed
 Activity3 is executed
 Object enters state1 and Activity1 is executed

If e1 occurs and g1 evaluates to true, A1 is
aborted and the object changes to S2

As soon as the execution of A1 is finished, a
completion event is generated; if g1 evaluates to true,
the transition takes place; If not, this transition can
never happen.

Transition - Sequence of Activity Executions

• Assume S1 is active … what is the value of x after e occurred?

163

S1 becomes active, x is set to the value 4

S1 is left, x is set to 5

e occurs, the guard is checked and evaluates to true

The transition takes place, x is set to 10

S2 is entered, x is set to 11

Composite State

• Synonyms: complex state, nested state (→OR state)
• Contains other states → “substates”

– Only one of its substates is active at any point in time.
– Arbitrary nesting depth of substates

164

Composite state

Substates

Example : Entering a Composite State

• Transition to the boundary
– Initial node of composite state is

activated.

165

Event State Executed
Activities

Beginning S3

e2 S1/S1.1 a0-a2-a3-a4

Example : Entering a Composite State

• Transition to a substate
– Substate is activated.

166

Event State Executed
Activities

Beginning S3

e1 S1/S1.2 a0-a1-a3-a7

22

Example : Exiting from a Composite State

• Transition from a substate

167

Event State Executed
Activities

Beginning S1/S1.1 a3-a4

e3 S2 a6-a5-a2-a1

Event State Executed
Activities

Beginning S1/S1.1 a3-a4

e5 S2 a6-a5-a3-a1

Example : Exiting from a Composite State

• Transition from the composite state

168

No matter which substate of S1
is active, as soon as e5 occurs,
the system changes to S2

Event State Executed
Activities

Beginning S1/S1.1 a3-a4

e4 S1/S1.2 a6-a7

e4 S2 a8-a5-a1

Example : Exiting from a Composite State

• Completion transition from the
composite state

169

Orthogonal State

• Composite state is divided into two or more regions separated by a dashed l
ine. (→ AND State)

– One state of each region is always active at any point in time,
– concurrent substates

• Entry: Transition to the boundary of the orthogonal state activates the initial
states of all regions.

• Exit: Final state must be reached in all regions to trigger completion event.

170

parallelization node synchronization node

Submachine State (SMS)

• To reuse parts of state machine diagrams in other state machine diagrams
– Notation: state:submachineState

• As soon as the submachine state is activated, the behavior of the submachi
ne is executed.

– Corresponds to calling a subroutine in programming languages

171

Refinement symbol

History State

• To remembers which substate of a composite state was the last active one
– Activates the “old” substate and all entry activities are conducted sequentially fro

m the outside to the inside of the composite state

• Shallow history state restores the state that is on the same level of the co
mposite state.

• Deep history state restores the last active substate over the entire nesting
depth.

172

Example: History State

173

Event State

Beginning S5

e1 S4/S1/S1.1

e2 S1.2

e10 S5

e9 (H→) S1/S1.1

Example: History State

174

Event State

Beginning S5

e1 S4/S1/S1.1

e2 S1.2

e10 S5

e8 (H*→) S1.2

Example: History State

175

Event State

Beginning S5

e9 (H→) S1/S1.1

Example: History State

176

Event State

Beginning S5

e8 (H*→) S3/S3.1

More Examples : Vending Machine

177

More Examples : Keyboard

178

=

More Examples : Cruise Control System

179

180

Statecharts Modeling

181

Statechart Modeling - CVM

• Let’s perform the Statechart modeling for CVM (Coffee Vending Machine).
– Consisting of one or several control SW(s) and various HWs

• Modeling tool:
– StarUML
– YAKINDU Statecharts
– 종이와 연필

• Modeling features
– Common CVMs
– 5 different coffees with different value : input
– Coins : 50, 100, 500, 1000 : input
– Refund : output
– Out-of-services : output
– Vending : output

182

CVM - A Draft Architecture

183

SW
Control

Button Control
SW

Coin Control
SW

Display Control
SW

Production Control
SW

Button HW

Coin HW

Display HW

Production
HW

CVM Software

CVM – A StarUML Example

184

event [cond] / actions

前 시스템 상태

後 시스템 상태

185

Example : 커피 자판기 모델 (YAKINDU Statecharts)

186

YAKINDU Statechart Tool

• YAKINDU statechart tool
– https://www.itemis.com/en/yakindu/state-machine/

187

Example : 커피 자판기 모델 (YAKINDU Statecharts)

188

On state
(4 orthogonal region)

동전

추출

보충 알람

Off state

Refund state

커피 자판기 모델

• It consists of 2 state and 1 orthogonal state (with 4 region)

– 1. Off state

– 2. Refund state

– 3. Operation state (orthogonal state)
• 동전 (Coin_region)
• 추출 (Operation_region)
• 보충 (Material_region)
• 알람 (Alarm_region)

189

커피 자판기 모델

• Definition of the event and variable
– Each event has a valuable data type

190

Off state

• 자판기의 off 상태 표시
– Start event를 통해서 off/operation state로의 전환 담당

191

On_operation state - Coin_region

• 자판기 사용을 위한 동전 삽입 region
– Stay 상태에서 언제든 삽입 가능

192

On_operation state - Operation_region

• 자판기 에서 추출을 위한 부분
– 3 종류의 커피 추출 (specialMilk, milk, specialBlack)
– 추출 이벤트에 따라 재료 확인 후 일정 시간 후 추출

• 재료 부족 시 알람 이벤트 및 일정 시간 이후에 환불 진행

193

On_operation state - Operation_region

• An example of the specialMilk

194

On_operation state - Material_region

• 재료 보충 관련 region
– Coin_region을 stop으로 변경 후 재료 보충 진행

195

On_operation state - Alarm_region

• Alarm 관련 region
– 알람 이벤트 후 일정 시간 후 off

196

Refund state

• 환불 event, 재료 부족 event에 따라 환불 진행하는 state

197

SIMULATION

198

Simulation

• Start simulation

199

Simulation

• Insert the event and value in simulation properties

200

Event with value

Simulation

201

State representation in
simulation

Simulation [1/4]

202

Case of special milk

Simulation [2/4]

203

Decrease coffee

Simulation [3/4]

204

Decrease water

Simulation [4/4]

205

Decrease milk & coin

206

Introduction to SMV

207

Model Checking

• Model checking
– An automatic technique for verifying properties of a finite model of a system.

• General approach:
– Construct M ← a model of the behavior of the system

(given as kripke structure, finite automata). M must be finite.
– Specify ф ← a property expected of the system (given as Temporal Logic)
– Check that M satisfies ф, if not , produce counter-example.

• Examples of model checking tools:
– SMV, SPIN, UPPAAL, Kronos

208

SMV: Symbolic Model Verifier

• Ken McMillan
– Symbolic Model Checking: An Approach to State Explosion Problem, 1993

• Modeling Language
– Modularized and hierarchical descriptions
– Finite data types: boolean, enum, int, etc.
– Array, loops, if-close, etc.
– Non-determinism, parallel execution

• Property specification Language
– CTL and LTL
– safety, liveness, deadlock
– Fairness

• Cadence SMV: command line and GUI for
Windows / Linux / Sun-OS

– Other SMV versions: CMU-SMV, NuSMV

209

NuSMV

• Re-implementation at IRST

• http://nusmv.fbk.eu/

210

Running NuSMV (Interactively)

• NuSMV -int
– Runs NuSMV in interactive mode

• read_model –i <filename>
– Reads a system spec. from file

• go
– Builds the internal representation of the model

• check_fsm
– Checks whet

• compute_reachable
– Computes set of reachable states first
– The model checking algorithm traverses only the set of reachable states instead of

complete state space.
– Useful if reachable state space is a small fraction of total state space

• check_ctlspec [check_ltlspec]
– Checks all the CTL properties [LTL properties] included in the file

211

A Sample SMV Program

212

213

214

215

216

217

218

219

220

221

222

Model을 수정해서 해당
Spec.을 만족하게끔 합니다!

223

224

225

226

227

228

229

230

231

232

233

234

235

NuSMV Verification

236

The NuSMV Verification - CVM

• Let’s perform the NuSMV verification upon CVM (Coffee Vending Machine).

• Modeling :
– The SMV input program (.SMV)
– Use your Statecharts model as a base reference.

• Formal Verification :
– Use NuSMV or Cadence SMV

• Properties to verify
– Deadlock freeness
– Basic functions
– Important functions

• “100원을 넣고 커피를 누르면, 항상 커피가 나온다.”
• “동전을 넣지 않으면, 커피가 절대로 나오지 않는다.”
• “100원을 넣고 커피3을 누르면, 반드시 커피3이 나온다.”
• “환불을 누르면, 남은 금액이 환불된다.”
• “재고가 없을 때는 절대로 커피가 나오지 않는다.”

237

The Cadence SMV

238

Verification with symbolic model checker

• NuSMV
– NuSMV is a reimplementation and extension of SMV, the first model checker

based on BDDs. NuSMV has been designed to be an open architecture for
model checking, which can be reliably used for the verification of industrial
designs, as a core for custom verification tools, as a testbed for formal
verification techniques, and applied to other research areas.

239

Manual Transformation
(일부 축소)

MODULE coin

• Coin 의 증가/감소에 대한 모듈
– 증가: 0, 100, 500, 1000 중 선택하여 증가
– 감소: 추출 시 커피의 가격에 맞게 감소

240

MODULE timer

• Alarm의 timer
– 1000 cycle 후 종료 하도록 timeout 전달

241

MODULE alarm

• 재료 부족 시 알람에 대한 모듈
– 재료 부족이 TRUE일 경우 alarm on
– 일정 시간 이후 (timeout) off로 전환

242

MODULE main

• Vending machine의 main
– 현재 머신의 상태 관리 (off, on_operation, refund)
– 현재 머신의 정보 저장 (water, milk, coffee, coin)
– 다른 MODULE process (timer, alarm, coin)
– Command에 따라 상태 변화 (onoff, refund, coffee)
– 커피 추출에 따른 상태 변화 및 정보 변경

243

MODULE main [VAR]

244

• FSM을 구성하는 모든 요소를 Variables로 표현합니다.
– External Events / Internal Events
– State Variables / States

• 각 변수에 대한 ASSIGN을 정의합니다.
– Assign이 없는 변수는 random하게 (nondeterministic) 값이 할당됩니다.

MODULE main [ASSIGN]

245

MODULE main [ASSIGN]

246

MODULE main [SPEC]

247

CTL property

248

No. CTL SPEC Description

1 SPEC AG EX TRUE Deadlock

2 SPEC EF (state = off -> state = On_operation) 머신이 off 상태 일 때 on 이 될 수 있다.

3 SPEC EF (state = On_operation -> state = off) 머신이 on 상태 일 때 off 될 수 있다.

4 SPEC EF (state = On_operation -> current_coin != 0) 머신이 on 상태일 때 코인이 증가할 수 있다.

5 SPEC AF (alarm_on.alarm_on = TRUE -> alarm_on.alarm_on = FALSE) 알람이 on 이면 항상 미래에 off가 된다.

6 SPEC AX (state = refund & current_coin != 0 -> current_coin = 0) Refund state 이면 항상 다음에 coin이 초기화 된다.

7
SPEC AX (current_coin = 300 & state = On_operation & coffee_command =
specialMilk -> (current_coin = 0))

300 coin을 넣고 specialMilk를 요청하면 coin이 0 이 된다.

8
SPEC AX (current_coin = 500 & state = On_operation & coffee_command =
black -> (current_coin = 200))

500 coin을 넣고 black을 요청하면 coin이 200 이 된다.

9
SPEC AF (current_milk = 1000 & state = On_operation & coffee_command =
specialMilk -> EX(current_milk = 980))

specialMilk를 요청하면 우유가 20 감소한다.

10
SPEC AF (current_coffee = 1000 & state = On_operation & coffee_command =
black -> EX(current_coffee = 970))

Black을 요청하면 커피가 30 감소한다.

11
SPEC AG (current_coffee < 30 & state = On_operation & coffee_command =
black -> alarm_on.alarm_on = TRUE)

커피가 30 이만일 때 black을 요청하면 항상 알람이 울린다.

12
SPEC AG (current_milk < 20 & state = On_operation & coffee_command =
specialMilk -> alarm_on.alarm_on =TRUE)

우유가 20 미만일 때 specialMilk를 요청하면 알람이 울린다.

The SMV Modeling Checking - Commands

249

The SMV Modeling Checking – Verification Result

250

• 2 bugs seeded

The SMV Modeling Checking - Batch Mode

251

