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1. Automata

« Model checking consists in verifying some properties of the model of a

system.

* This chapter describes a general model which serves as a basis.

Modeling of a system is difficult.
» No universal method exists to model a system.
» Best performed by qualified engineers

* Organization

Introductory Examples

A Few Definitions

A Printer Manager

A Few More Variables

Synchronized Product

Synchronization with Messaging Passing
Synchronization by Shared Variables
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1.1 Introductory Examples

* (Finite) Automata
— A machine evolving from one state to another under the action of transitions
— Graphical representation
— Best suited for verification by model checking techniques

An automate model of a digital watch (24x60=1440 states)
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dec

A.; : a modulo 3 counter
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A digicode door lock example

— Controls the opening of office doors

— The door opens upon the keying in of the correct character sequence,
irrespective of any possible incorrect initial attempts.

— Assumptions:
« 3keysA,B,and C
» Correct key sequence : ABA




« Two fundamental notations

— execution

* A sequence of states describing one possible evolution of the system
« Ex. 1121 ,12234 , 112312234 < 3 different executions

— execution tree

» A set of all possible executions of the system in the form of a tree

« Ex. 1
11, 12
111, 112, 121, 122, 123
1111, 1112, 1121, 1122, 1123, 1211, 1212, 1221, 1222, 1223, 1231,1234
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We now associate each automaton state with a number of elementary
properties which we know they are satisfies.

— Since our goal is to verify system model properties.

Properties

— Elementary property
» (atomic) Proposition
» Associated with each state
* True or False in a given state

— Complicated property
* Expressed using elementary properties
» Depends on the logic we use

KU
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For example,
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P, : an A has just been keyed in
Py : an B has just been keyed in
P, :an C has just been keyed in
pred, : the proceeding state in an execution is 2
pred, : the proceeding state in an execution is 3

Properties of the system to verify
1. If the door opens, then A, B, A were the last three letters keyed in, in that order.
2. Keying in any sequence of letters ending in ABA opens the door.

Let’s prove the properties with the propositions

B,C A
O Q PL&
A
— B
. C ‘

11



1.2 A

Few Definition

« Anautomatonisatuple A=<Q,E,T,q, [>inwhich

Q : a finite set of states

E : the finite set of transition labels

T &Q x E x Q: the set of transitions
q, : the initial state of the automaton

[ : the mapping each state with associated sets of properties which hold in it
 Prop ={P1, P2, ...} : a set of elementary propositions

12



A=<Q,ET,q,l>

- Q=1{1,2, 3,4}

- E={A,B,C

- T={(142), (1,B1), (1,C1),

— {4

(24,2), (2,B3), (2,C1),
(3.44), 3B1), 3,C1)}

=1

11— g

2 — {P,}

3 — {Pp pred.}
4— {P, pred,}

R

The digicode with

v its atomic propositions
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 Formal definitions of automaton’s behavior

— a path of automaton A :
— Asequence o, finite or infinite, of transitions which follows each other
- Ex3%142472
— alength of a path o :
- lol
— 0 ‘s potentially infinite number of transitions: |o| € N U {w}
— a partial execution of A :
— Apath starting from the initial state q,
- Ex14 24253
— a complete execution of A :
— An execution which is maximal.
— Infinite or deadlock

— a reachable state .
— Astate is said to be reachable,
— If a state appears in the execution tree of the automaton
— If there exists at least one execution in which it appears

EPENDABLE SOFTWARE
LABORATORY



K KONKUK
UNIVERSITY

1.3 Printer Manager

Propositions

W : Waiting

P : Printing now
endg R : Rest for now

A printer shared by two users

end,

EPENDABLE SOFTWARE 1 5
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A=<Q,ET,q,l>

- Q=1{0,1,23,4,5,6, 7}

— E = {req, reqg beg, begy end,, endg}

— T = {(0,requ1), (O,reqp2), (1,reqg3), (1,beg,6), (2,req,3),

(2,begg7), (3,beg,5), (3,begz4), (4,endg1), (5end,,2),
(6,end,,0), (6,reqg5), (7,endg0), (7,req,4) }

0—{R, Ry, 1—{W, Ry
o] 2o Ry Wi, 3o (W, Wy
- 1=74-5(W, P, 5 {P, Wy

6 — {P, Ry} , 7 — {Ry Py

Propositions
W : Waiting
P : Printing now

A printer shared by two users

end,

" endy R : Rest for now
B
reqg

begy

Fre
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Properties of the printer manager to verify
1. We would undoubtedly wish to prove that any printing operation is preceded by a
print request.

* In any execution, any state in which P, holds is preceded by a state in which the
proposition W, holds.

2. Similarly, we would like to check that any print request is ultimately satisfied.
(— fairness property)

* In any execution, any state in which W, holds is followed by a state in which the
proposition P, holds.

Model checking techniques allow us to prove automatically
* Property 1is TRUE.

 Property 2 is FALSE,
« Acounterexample: 01341341341341 ...

NNNNNN SOFTWARE 1 7



1.4 Few More Variables

It is often convenient to let automata manipulate state variables.
— Control : states + transitions
— Data : variables (assumes finite number of values)

An automaton interacts with variables in two ways:
— Assignments
— Guards (guarding conditions)

PENDABLE SOFTWARE
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if ctr < 3 ifctr<3
B, C At tr +1
= ctr:=ctr +
ctr:=ctr+1 ifctr<3 (guard)

B,C (transition label)
ctr := ctr + 1 (assignment)

)
N\t

>

ctr:=0
ifctr<3
C
ctr :=ctr + 1 if ctr =3
ifctr=3
ctr:=ctr+1 B, C
ctr:=ctr+1
ifctr=3
B,C
ctr:=ctr+1

No more than 3 mistakes !!!

The digicode with guarded transitions

19




» Itis often necessary, in order to apply model checking methods,

to unfold the behaviors of an automaton with variables
into a state graph

in which the possible transitions appear, and the configurations are clear marked.

 Unfolded automaton = Transition system

has global states
transitions are no longer quarded
no assignments on the transitions

20



ifetr<3 ifctr<3
Be At tr +1 K 1}\ f?&“‘#

- ctr:=ctr + IN IRSITY
ctr = ctr +1 ifctr<3 (guard) -

B,C (transition label)
ctr:= ctr + 1 (assignment)

ctr:=0
ifctr<3
C
ctr:=ctr+1
¥ ctr:=ctr+1
ifctr=3
B,C
ctr:=ctr+1

No more than 3 mistakes !!!

The digicode with guarded transitions

Unfolding

The digicode with error counting
“ (Unfolded automaton)
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1.5 Synchronized Product

Real-life programs or systems are often composed of modules or subsystems.
— Modules/Components - (composition) = Overall system
— Component automata - (synchronization) - Global automaton

Automata for an overall system often has so many global states.
— Impossible to construct it directly (State explosion problem)

— We need to construct it with small component automata.
« Two composition ways
— With synchronization (= Synchronized product)
— Without synchronization (= Cartesian product)

NNNNNN SOFTWARE 2 2
T



K KONKUK
UNIVERSITY

 An example without synchronization
— A system made up of three counters (modulo 2, 3, 4)
— They do not interact with each other.
—  Global automaton = Cartesian product of three independent automata

2*3*4 = 24 states
3*3*3 - 1 = 26 transitions per a state
(Inc, Dec, -)

- 24 * 26 = 624 transitions

EPENDABLE SOFTWARE 2 3
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 An example with synchronization
— There are a number of ways depending on the nature of the problem.
— Ex. Allowing only “inc, inc, inc” and “dec, dec, dec” (24*2=48 transitions)
— Ex. Allowing updates in only one counter at a time (24*3*2=144 transitions)

 Synchronized product
— Away to formally express synchronizing options
— Synchronized product = Component automata + Synchronized set

- A/ XA, x ... x A, : Component automata

— A=<Q,E’T’q0,l>
- Q=Q, x Q,x ... x Q,
- E= [J](E;U{})

1<1=n

— T= ((qb ceee g qn)> (615 sy en)7 (q’l’ tec q’n)) | fOI' all i’
(e;="-"and q;=q;) or (e;# - and (g; e;, ) € T))

- Qo=(Qo1s Q0
— K@ ) =Y ()

- Sync < [] (E; U {-}) :Synchronized set

1<i<n

) DEPENDABLE SOFTWARE 2 4
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* An example with synchronization

— Allowing only “inc, inc, inc” and “dec, dec, dec” (24*2=48 transitions)
— Strongly coupled version of modular counters

— Sync ={(inc, inc, inc), (dec, dec, dec) }

T {((ql, s @), (€4 e, (@) o5 @) | (ey-nn s ) E Sync}

(e;="-"and q;=gq; or(e;# - and (g, e, q) € T})

1,0,3 1,1,3 1,2,3

12 states

24 transitions
(inc, inc, inc) (dec, dec, dec)

) ) . y [l
EPENDABLE SOFTWARE 2 5
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« Reachable states
— Reachability depends on the synchronization constraints

coupl
Rearranged automaton A,.. — modulo 12 counter

 Reachability graph
— Obtained by deleting non-reachable states
— Many tools to construct R.G. of synchronized product of automata

— Reachability is a difficult problem. dec @ % @ o

—  State explosion problem
" dec m dec @ dec

inc |dec

inc inc

dec dec
ine @ inc

dec

26
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1.6 Synchronization with Message Passing

* Message passing framework
— A special case of synchronized product
— Im : Emitting a message
— ?m : Reception of the message

— Only the transition in which !m and ?m pairs are executed simultaneously is
permitted.

— Synchronous communication
« Control/command system

— Asynchronous communication
« Communication protocol (using channel/buffer)



« Smallish elevator

— Synchronous communication (message passing)

— One cabin

— Three doors (one per floor)

— One controller

— No request from the three floors

?down ?up
The cabin

?down

?close i ?open_j

?close i

The ith door

EPENDABLE SOFTWARE
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* An automaton for the smallish elevator example
— Obtained as the synchronized product of the 5 automata

—  (door 0, door 1, door 2, cabin, controller)

- Sync ={(?open_0, -, -, -, lopen_0), (?close_0, -, -, -, Iclose_0),
(-, 7open_1, -, -, lopen_1), (-, ?close_1, -, -, Iclose 1),
(-, -, 7open_2, -, lopen_2), (-, -, ?close_2, -, Iclsoe_2),
(-, -, -, ?7down, !down), (-, -, -, ?up, 'up) }

* Properties to check
« (P1) The door on a given floor cannot open while the cabin is on a different floor.
* (P2) The cabin cannot move while one of the door is open.

 Model checker
« Can build the synchronized product of the 5 automata.
« Can check automatically whether properties hold or not.

EPENDABLE SOFTWARE 2 9
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1.7 Synchronization by Shared Variables

* Another way to have components communicate with each other
— Share a certain number of variables
— Allow variables to be shared by several automata

— Ex. The printer manager in Chapter 1.3
* Problem: Fairness property is not satisfied.

. Propositions
A printer shared by two users W : Waiting

P : Printing now
R : Rest for now

EPENDABLE SOFTWARE 3 O
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* The printer manager synchronized with a shared variable
— Shared variable: turn

« Fairness property: “Any print request is ultimately satisfied.”

— No state of the form (y, t, -) is reachable.
— TRUE in the model
— But this model forbids either user from printing twice in a row.

The user A
if turn=A, print,

a turn:=B u

The user B

E if turn=B, printg I

turn:=A

EPENDABLE SOFTWARE 3 1
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* Printer manager : A complete version with 3 variables [by Peterson]
— r,:arequest from user A
— rg:arequest from user B
— turn : to settle conflicts
— Satisfies all our properties.

The user A The user B

r, .= false turn:=B rg .= false turn:=A
if turn = A, print, if turn = B, printg

if rg = false, print, if r, = false, printg

AAxB = < Q) E) T) qo) l >
- Q=AXBXryXxrgXx turn
4 x 4 x 2 x 2 x 2=128 states (only 128 reachable states)

EPENDABLE SOFTWARE 3 2
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2. Temporal Logic

Motivation:

— The elevator example includes two properties
» “Any elevator request must ultimately be satisfied.”

» “The elevator never traverses a floor for which a request is pending without satisfying this
request.”

— Dynamic behavior

— In a first order logic,

« Vt,Vn(app(n,t) > dt'>t:serv(n,t))
(app(n,t) N Ht)#+#n N Jt,.4:
e Vit V>t Vn, t<tp, <t N H(t,,) =n)

trav
= (4 Fsery + U= Lgeryy < t'/\ serv(n, tserv) )

— But, the above notation (mathematics) is quite cumbersome.

Temporal Logic is a different formalism, better suited for our situation.

PENDABLE SOFTWARE
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2. Temporal Logic

« Temporal Logic

— Aform of logic specifically tailored for statements and reasoning

* involving the notion of order in time
Compared with the mathematical formulas
» clearer and simpler
» immediately ready for use (linguistic similarity of operators)
« formal semantics (specification language tools)

* Organization

The Language of Temporal Logic
The Formal Syntax of Temporal Logic
The Semantics of Temporal Logic
PLTL and CTL: Two Temporal Logics
The Expressivity of CTL*

e

36
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2.1 The Language of Temporal Logic

« CTL*
— serves to formally state the properties concerned with the execution of a system
— variants (CTL, PLTL, LTL)

— 6 characteristics

1. Atomic Propositions
— warm, ok, error

2. Proposition Formula
— using Boolean combinators
— true, false, —, v, A, = (if then), < (if and only if)

C

0, : (qg: warm, ok) = (qy: ok) = (qgq: warm, ok) = (gy: ok) > ...
0, : (g warm, ok) = (g;: ok) = (qg,: error) = (qg,: warm, ok) = (gq: ok) > ...
03 : (qg: warm, ok) = (qy: ok) = (q,: error) = (qg,: error) = (q,: error) 2> ...

EPENDABLE SOFTWARE 3 7
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— efrror = —warm
(if error then not warm)



KU Gavasr
3. Temporal combinators
« about the sequencing of states along an execution

X : next state
F - a future state 0, : (go: warm, ok) = (qq: ok) = (q,: error) > (g, warm, ok) = (qg;: ok) > ...

G : all the future states

« X P: the next state satisfies P

 F P: afuture state satisfies P without specifying which state
- P will hold some day (at least once)

G P: all future states will satisfy P
- P will always be

 alert = F halt : if we are currently in a state of alert, then we will later be in
a halt state.

G (alert = F halt) : at any time, a state of alert will necessarily be followed
by a halt state later.

e G (warm = F —warm ) : true
G (warm = X —warm ) : true

e Gisthedual of F
c Gg¢p= —F—g

EEEEEEEEE SOFTWARE 3 8
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4. Arbitrary nesting of temporal combinators
« giving temporal logic its power and strength

« GF ¢: always there will some day be a state such that ¢,
@ is satisfied infinitely often along the execution considered

« FG ¢: all the time from a certain time onward, at each time instant,
possibly excluding a finite number of instants

e GF warm v FG error qz
5. U combinator
e for until

«  @,U ¢@,: @, is verified until ¢, is verified

@, will be verified some day, and @, will hold in the meantime

« G (alert = ( alarm U halt)) : starting from a state of alert, the alarm remains activated
until the halt state is eventually and inexorably reached.

- Fog=trueU ¢
« ¢, W ¢,=(¢,U @) v G ¢, : weak until

EPENDABLE SOFTWARE 3 9
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6. Path quantifier

EF P:

EPENDABLE SOFTWARE
LABORATORY

A ¢ : all the executions out of the current state satisfy property ¢
E @ : from the current state, there exists an execution satisfying ¢

EF P : itis possible (by following a suitable execution) to have P some day
EG P : there exists an execution along which P always holds

AF P : we will necessarily have P some day (regardless of the chosen execution)
AG P: always true

40
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2.2 Formal Syntax of Temporal Logic

 Abstract grammar
— needs parentheses, operator priority, specific set of atomic propositions, etc.

— Most model checkers use a fragment of CTL* - CTL or LTL.

- ¢, WYW::=P1|P2].. (atomic proposition)
| 7| D AW |d=W .. (boolean combinators)
| Xd | FO | Gd | o UWY | .. (temporal combinators)
| Ed | Ad (path quantifiers)

I DEPENDABLE SOFTWARE 4 1
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2.3 The Semantics of Temporal Logic

* Kripke structure
— Name of the models of temporal logic
— Propositions labeling the states are important in CTL*
— Transition labels (E) are neglected. A=<Q,T,q,,l>, T SQx Q

« Satisfaction
. We )
« “at time 1 of the execution o, @ s true.”
» where o is an execution of A, which not required to start at the initial state
« A is often omitted.
— o, F@ : ¢is satisfied at time i of o
— o, ¢ : ¢is not satisfied at time i of o

— A f¢ iff 6,0 F @forevery execution of o of A
« “the automaton A satisfies ¢"
«c Al ¢ # Af-g
c ol ko =01 -0

42
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Semantics of CTL*

- Time is discrete.
- Nothing exists between jand i + 1.
- The instants are the points along the executions

CTL*

LABORATORY
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2.4 PLTL and CTL: Two Temporal Logics

« Two most commonly used temporal logics in model checking tools
— PLTL (Propositional Linear Temporal Logic)
— CTL (Computational Tree Logic)
— fragments of CTL*

 PLTL
— No path quantifiers (A and E)

— Linear time logic = Path formula
« Ex. PLTL cannot distinguish A, from A,

Execution 1: {P, Q}. {P}. {-}
Execution 2 : {P, Q} . {P} . {Q}

44
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- CTL

— Temporal combinators (X, F, U) should be under the immediate scope of path quantifier (A, E)
— EX,AX,EU,AU,EF,EG, AG, AF, ...
— State formulas
— Truth only depends on the current state and the automaton regions made reachable by it
— Not depending on a current execution
— q k¢ : ¢is satisfied in state g

— CTL can distinguish automata A, and A,

A,q, b AX(EXQ A EX=Q)
A,,q’, ¥ AX(EXQ N EX-Q)

— Potential reachability : AG EF P
— Do not allow to express very rich properties along the paths.

EPENDABLE SOFTWARE 4 5
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Which to choose CTL or PLTL ?
— To state some properties : PLTL
— To perform exhaustive verification of a system : CTL

— For both purposes : CTL*
* Less popular
* More complicated than PLTL

— CTL + Fairness properties : FCTL

— If we use model checking tools, we have no choice
— SMV:CTL/PLTL
— SPIN : PLTL
— VIS :CTL/PLTL

— No model checking tool for CTL*

EPENDABLE SOFTWARE
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3. Model Checking

* Motivation:
— Describe the principles underlying the algorithms used for model checking

— The algorithm to find out whether a given automaton satisfies a given temporal
formula

Different algorithms for CTL and PLTL

« Organization
— Model Checking CTL
— Model Checking PLTL
— The State Explosion Problem

BLE SOFTWARE
LABORATORY
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3.1 Model Checking CTL

* Model checking algorithm for CTL
— Developed in 1980s
— Runs in time linear in each of its components (automaton and CTL formula)
— Relies on the fact that CTL can only express state formulas

« Basic principles
— procedure marking
+ Starting from a CTL formula ¢

* Mark for each state g of the automaton and for each sub-formula y of ¢,
*  Whether y is satisfied in state g

« Complexity of the algorithm
— Model checking “does A,q, k @ ? " for a CTL formula @

— can be solved in time O( |A| x |®])
*  O(|A]) : for marking the automaton
* O(|9)|) : for each sub-formula in @

— Linear!!!

DEPENDABLE SOFTWARE
LABORATORY
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procedure marking(phi)

case 1: phi =P
for all q in Q, if P in 1(q) then do q.phi := true,
else do q.phi := false.

case 2: phi = not psi
do marking(psi);
for all q in Q, do q.phi := not(q.psi).

case 3: phi = psil /\ psi2
do marking(psil); marking(psi2);
for all q in Q, do q.phi := and(q.psil, q.psi2).

case 4: phi = EX psi

do marking(psi); case 6: phi = A psil U psi2
for all q in Q, do q.phi := false; /* initialisation */ do marking(psil); marking(psi2);
for all (q,q’) in T, if q’.psi = true then do q.phi := true. L = {} /* L: states to be processed */
for all q in Q,
case 5: phi = E psil U psi2 q.nb := qegreet;q); q.]'ahi := false; /* initialisation */
do marking(psil); marking(psi2); for all q in Q, if q.psi2 = true then do L := L + {q};
for all g in @ while L nonempty {
: y P ) draw q from L; /* must mark q */
q.phi := false; q.seenbefore := false;/* initialisation */ L:=L-{q}
L = {}: /* L: states to be processed */ q.phi := true;
for all q in Q, if q.psi2 = true then do L :=L + { q }; for all (q’,q) in T { /* q’ is a predecessor of q */
while L nonempty { q’.nb := q’.nb - 1; /* decrement */
draw q from L; /* must mark q */ if (q’.nb = 0) and (q’.psil = true) and (q’.phi = false)
L:=L-{q}; then do L :=L +{ q’ };
q.phi := true; }
for all (q’,q) in T { /* q’ is a predecessor of q */ }
if q’.seenbefore = false then do {
q’.seenbefore := true;
if q’.psil = true then do L :=L + { q’ };
}
¥

F

EPENDABLE SOFTWARE 5 1
LABORATORY



e

3.2 Model Checking PLTL

* Model checking algorithm for PLTL
— Developed in 1980s, but too technical to cover in this course

— Not possible to rely on marking the automaton states, since PLTL uses path
formulas.

« Afinite automaton will generally give rise to infinitely many different executions,
themselves often infinite in length.

— Hence, PLTL uses a language theory : w-regular expression
» An extension of a regular expression

T3

. . an arbitrary but finite number of repetitions
— (ab*+c)*

“, 1.

« “w”: an infinite number of repetitions

IDEPENDABLE SOFTWARE 5 2
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« Basic principle
— Model checking “does A k ¢ ? ” for a PLTL formula ¢
— Reduces to a “ Are all the execution of A described by £, ? “

— APLTL model checker construct an automaton B_ 4 (recognizing executions which do not satisfy ¢)
— Strongly synchronize A and B, > A®B._,

— Finally reduces to “ Is the language recognized by A ® B, empty ?”

 Asimple example
— @:GP = XF Q) : Anyoccurrence of P must be followed (later) by an occurrence of Q
— B_, @ There exists an occurrence of P after which we will never again encounter Q

P: ﬂQ

If it infinitely often stays in q,, then is B., satisfied.

P, Q
P, -
w: Ly

~P, -Q

EPENDABLE SOFTWARE 5 3
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@ : G(P = XF Q)

P: _'Q
U, -P, -Q

If it infinitely often stays in q,, then is B., satisfied.

Bﬂqj :

“Does Af¢?”
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LABORATORY



K KONKUK
UNIVERSITY

There are behaviors of A accepted by A ® B 4

- The language recognized by A ® B_, IS nonempty.
>AfQ

EPENDABLE SOFTWARE 5 5



« Construction ofBﬂcp
— Very difficult technically

— Automaton B_, must in general be able to recognize infinite words
- Buchi automata

« Complexity of the algorithm
— B_, has size O(2|9) in the worst case
- A® B_, hassize O(lA| x [B_s)
— If A® B_, fits in computer memory, we can determine it in time O(|A| x |B_;|)
— Model checking “does A, q, F ¢ ?" for a PLTL formula ¢ can be done in time O(|]A| x 2I4l)

« Reachability analysis
— We can say that B, observes the behavior of A when the two automata are synchronized.
— Observable automata = formal specification of the desired property
«  UPPAAL
« SPIN

| DEPENDABLE SOFTWARE
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3.3 The State Explosion Problem

« State explosion problem
— The main obstacle encountered by model checking algorithms

— The algorithms rely on explicit construction of the automaton A
» Traversal and marking (in case of CTL)
» Synchronization with B¢ and seeking of reachable states and loops (in case of PLTL)

— In practice, the number of states of A is quickly very large.

» |If we use values that are not priori bounded (integers, a waiting queue, etc.), W& cannot even apply
it.

— Explicit model checking — Symbolic model checking (Chapter 4)
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e  Writ

rns of Temporal Properties

ing the temporal logic formulas expressing desired system properties is

important but difficult.

No silver bullet
No automatic generation

« 4 classification (categories/patterns) according to verification goals

Reachability property
« Some particular situation can be reached.
Safety property
» Under certain condition, something never occurs.
Liveness property
» Under certain condition, something will ultimately occur.
Fairness property
» Under certain condition, something will (or not) occur infinitely often.

Deadlock freeness
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Reachability Properties



6. Reachability Properties

 Reachability property
— Some particular situation can be reached.

— Examples:

(R1) “ We can obtain n<0”

(R2) “ We can enter a critical section” < simple

(R3) “ We cannot have n<0 “

(R4) “ We cannot reach the crash state “ < negation of the simple

(R5) “ We can enter the critical section without traversing n=0 “ < with conditional restricts
(R6) “ We can always return to the initial state “ < stronger / nested

(R7) “ We can return to the initial state “
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6.1 Reachability in Temporal Logic

- EF @

— “There exists a path from the current state along which some state satisfying @ “

— (R1) “ We can obtainn<0Q”
« EF (n<0)
— (R2) “ We can enter a critical section”
* EF crit_sec
— (R3) “ We cannot have n<0 “
«  -EF (n<0)
— (R4) “ We cannot reach the crash state “
* -EF crash
* AG -crash
* “Along every path, at any time, -crash ”
— (R5) “ We can enter the critical section without traversing n=0 *
 E (n#0) U crit_sec
* “ There exists a path along which n # 0 holds until crit_sec becomes true. “
— (R6) “ We can always return to the initial state “
 AG (EF init )
— (R7) “ We can return to the initial state *
* EF init

LABORATORY
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6.2 Model Checkers and Reachability

« Reachability properties are typically the easiest to verify.

— All model checkers can answer it in principle by simply examining their
reachability graph.

« But, they do vary in richness.
— conditional reachability
— nested reachability
— etc.

« Design/CPN is specifically designed for reachability property verification.

DEPENDABLE SOFTWARE



6.3 Computation of the Reachability Graph

 The effective construction of set of reachable states are non-trivial.
— Several automata are synchronized.

* Algorithms dealing with reachability problems
1. Forward chaining
2. Backward chaining
3. “On-the-fly” exploration

« Forward chaining
— A natural approach, from initial states — add their successors — until saturation
— Difficulty:
Potential explosion of the set constructed



« Backward chaining

— from target states — add immediate predecessors — until saturation, then, test
whether some initial states are in there
— Difficulties:
1. Target states need to be fixed before.

2. Computing immediate predecessors is generally more complicated than that of
sSuccessors.

*  “On-the-fly” exploration
— Explore the reachability graph without actually building it

» Construction is performed partially, as the exploration proceeds, without remembering
everything already visited.

— Background assumption
* Present-day computers are more limited in memory resources than in processing
speed
— ltis efficient mostly when
1. Target set is indeed reachable. (“Yes” requires no exhaustive explorations)
2. Can operate in forward or backward manners (The forward is the traditional)
3. May apply to some systems with infinitely many states
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7. Safety Properties

« Safety property
— Under certain conditions, an (undesirable) event never occur.

— Examples:
* (S1) “ Both processes will never be in their critical sections simultaneously (mutual exclusion) ”
« (S2)“ Memory overflow will never occur”
* (S3) “ The situation ... is impossible “
* (S4) “As long as the key is not in the ignition position, the car won'’t start “ <« with conditions

« ~ safety property = reachability property
» ~ reachability property = safety property

S
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7.1 Safety Properties in Temporal Logic

« AG O

— “ @ never occurs. “

— (S1) “ Both processes will never be in their critical sections simultaneously ”
* AG ~(crit_sec1 A crit_sec2)

— (S2) “ Memory overflow will never occur ”
« AG —overflow

— (S3) “ The situation ... is impossible *
* AG ~situation

— (S4) “ As long as the key is not in the ignition position, the car won't start “

 A(-start W key) < using weak until : it is a safety property
 A(-start U key) < using strong until : Not a safety property!

70



7.2 A Formal Definition

« Syntactic characterization
— Safety properties can be written in the form AG @
« @ s a pasttemporal formula

— When a safety property is violated, it should be possible to instantly notice it.
« We can only notice it, in the current state, relying on events which occurred earlier.

« Temporal logic with past
— CTL* does not provide past combinators.
— But, we can use a mirror image of future combinators ( F-1, X-1)

« AG @ in practice
— (S1) AG ~(crit_sec, A crit_sec,)
~(crit_sec, A crit_sec,) isa @
— (S4) A ~start W key

Can be rewritten in the form: AG (start = F' key)
" It is always true (AG) that if the car starts, then (=) the key was inserted beforehand (F-1). “

e
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7.3 Safety Properties in Practice

« Safety properties are verified simply by submitting it to a model checker. But,
in real life, hurdles spring up.

* A simple case: non-reachability
— The most safety properties
— -EF (crit_in, A crit_in,) = AG @
~(crit_in, A crit_in,) is a present formula

« Safety without past
— A (ostart W key) vs. AG (start = F1 key)
— No model checker is able to deal with past formulas. So, mixed logics are used.

— The problem is their identification.
— |If they are identified, then it can be dealt with similarly
— Otherwise, we have to use the method of history variables (in section 7.4)

« Safety with explicit past
— No model checker is able to handle temporal formula with past.

— Two approaches:

1. Eliminate the past (in principle, it is possible to translate mixed formulas to pure-future ones)
- AG(p=FTy)=A(-¢p W p) , but not easy.

2. History variable method (section 7.4)
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8. Liveness Properties

 Liveness property

— Under certain conditions, some event will ultimately occur.
« Some happy event will occur in the end.

— Examples:
* (L1) “ Any request will ultimately be satisfied ”
* (L2) “ By keeping on trying, one will eventually succeed ”
« (L3) “ If we call on the elevator, it will bound to arrive eventually “
» (L4) “ The light will turn green (some day regardless of the system behavior)*
» (L5) “ After the rain, the sunshine “
* (L6) “ The program will terminate “

— Two broad family of liveness properties
1. Simple liveness : progress (Chapter 8)
2. Repeated liveness : fairness (Chapter 10)
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8.1 Simple Liveness in Temporal Logic

.« Fo

“ @ will ultimately occur. “

(L1) “ Any request will ultimately be satisfied ”

AG (req = AF sat)

(L7) “ The system can always return to its initial state ”

AG EF init

PUQ

“ Along the execution, we will find a state satisfying Q and P will hold for all the states
encountered in the meantime “

Regarded as a liveness property

PUQ = FQ A~ (PWQ)
(liveness)  (safety)

A(PUQ) and E(PUQ) are all liveness properties.
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8.2 Are Liveness Properties Useful?

» Abstract liveness properties

— “If we call on the elevator, it is bound to arrive eventually “
It yields no information, from a utilitarian viewpoint.
« “Abstract” liveness property

— “An event will occur within at most x time unit “
» |tis useful, but became a safety property.
* “Bounded” liveness property

— But, it is still useful

“Abstract” is more general than “concrete”.
“Abstract” is more efficient than “concrete”.
“Abstract” and “concrete” are not contradictory.

DEPENDABLE SOFTWARE
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8.3 Liveness in the Model and the Properties

« Two different roles in the verification process
1. Liveness properties : we wish to verify
2. Liveness hypotheses : we make on the system model

When we use a mathematical model(automata) to represent a real system,
— The semantics of the model in face define implicit safety and liveness hypotheses.
— Safety hypothesis :
* Clear
» It can flip from g to @’ only if it includes a transition going from q to q.
— Liveness hypothesis :
* Not clear
+ The system will chain transitions as long as possible to a block state or accepting states.

+ “The system does not terminate without reason, or remain inactive indefinitely without reason.”
+ Can be subtle and cause errors :

The user A _
if turn=A4, print,

In state x, will always end up wishing printing.
- Different from the real world’s behavior !!!
turn:=B

«  One must be aware of the premises of the models used and check their adequacy.

y A Y

[V DEPENDABLE SOFTWARE 7 8
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8.4 Verification under Liveness Hypotheses

« Verify that specific model behaviors satisfy a given property :
— @, :only the model which the liveness hypotheses hold
— W :aproperty

— Verify @, = y is sufficient.

— If wis a CTL property
-« AF(EPUQ) > A(®,=FE(®, APUQ))

DEPENDABLE SOFTWARE



8.5 Bounded Liveness

 Bounded liveness property
— Aliveness property that comes with a maximal delay which the desired situation must occur
— Safety properties from a theoretical viewpoint™
— Can be rewritten in a form AG (y, = F' ¢))
— Not as important as safety properties

 Bounded liveness in timed systems
— Often used in the specification of timed systems (in Chapter 5)
— Explicit constraints on delays - TCTL !l

— (BL1) “ The program terminates in less than ten seconds “
+ AF_, end < bounded liveness property
* AG (mend = F_, start) & safety property

— (BL2) “ Any request is satisfied in less than five minutes *
*+ AG (req = AF_, sat) < bounded liveness property
« AG (~(F'5req A G'_s,msat) € safety property

(¥ DerenDABLE SOFTWARE 80
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9. Deadlock-Freeness

* Deadlock-freeness

— A special property, “ The system can never be in a situation on which no
progress is possible. ”

— Correct property relevant for systems that are supposed to run indefinitely
» A set of properly identified final states will be required to be deadlock-free.
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9.1 Safety? Liveness?

« AG

EX true

“ Whatever the state reached may be (AG), there will exist an immediate
successor state (EX true) ”

Not the form of AG ¢

Deadlock-free is not a safety property.
Can be verified if the model checker can handle AG EX true.
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9.2 Deadlock-freeness for a Given Automaton

« We sometimes think of deadlock-freeness as a safety property
— For a given automaton, we can describe the deadlock states explicitly.
— But, it is up to the automaton we obtain.

— For example,

if x>0
A et x:=x+1
x:=0, y:=0 AG EX true - hold! (liveness property)
Q - e AG 7(s3 A x<0) -> hold! (safety property)
~_ x=y

y=y+1
if x>0

A’ X:=x+ 1

x=x+1
Q if x=y

EEEEEEEEE SOFTWARE 8 5
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AG EX true - not hold! (liveness property)
AG ~(s3 A x<0) -> hold! (safety property)
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9.3 Beware of Abstractions!

if x>0
A X:=x+ 1
X=x+1

x:=0, y:=0
ve f x=y e Deadlock-free

y=y+1
Abstraction‘
if x>0
A’ X:=x+ 1
X=x+1

x:=0, y:=0

Deadlock
if x=y
Abstraction ‘

Deadlock-free
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10. Fairness Properties

 Fairness Property
— Under certain conditions, an event will occur (or will fail to occur) infinitely often

— Examples:
* (F1)“ The gate will be raised infinitely often”

« (F2)“If access to a critical section is infinitely often requested, then access will be
granted infinitely often “

— repeated liveness or repeated reachability
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10.1 Fairness in Temporal Logic

- GFP

— “We meet a state in which P holds infinitely often. ”
« There is no last state in which P holds.

— Fairness properties cannot be expressed in pure CTL

* (F1) “ The gate will be raised infinitely often.”
- A ( GF gate_raised )
« (F2)“ If access to a critical section is infinitely often requested, then access will be

granted infinitely often. ”
- A ( GF crit_req = FG crit_in)

— FCTL or ECTL+
« CTL + fairness
« O(|Al x |¢1?)

 Many tools (like SMV) considers the fairness hypotheses as part of model rather than
choosing FCTL.

KONKUK
UNIVERSITY
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10.2 Fairness and Nondeterminism

* |n practice, fairness properties are used to describe the form of some
nondeterministic sequences.

— “When a nondeterministic choice occurs at some point, it is often assumed to be
fair. ”

— For example,
» Adie with six faces

 Its behavior is fair, if it fulfills the property:
— A(GF1AGF2AGF3AGF4AGFS5AGFG6)

— Fairness properties can be viewed as an abstraction of probabilistic properties.

IDEPENDABLE SOFTWARE 9 1
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10.3 Fairness Properties and Fairness Hypotheses

- Fairness properties are very often used as hypotheses.

 An example:

— Classical alternating bit protocol
* A:atransmitter
« B :areceiver
+ AB: aline for messages
+ BA: aline for message acknowledgements
* Messages can be lost 2 non-deterministic behavior of AB and BA

— Liveness property : “Any emitted message is eventually received.”
* G (emitted = F received ) : Fail !
* The model allows to systematically lose all messages.
* Our original intension : “unreliable” line, not the whole lose - Fairness hypothesis !
* A(GF ~loss = G ( emitted = F received ) )

fairness hypothesis liveness property

— Repeated liveness property : “ If infinitely many messages are emitted, then infinitely many
messages will be transmitted.”

repeated liveness property

* A(GF —loss = ( GF emitted = GF received ) )

fairness hypothesis repeated liveness hypothesis

_‘ | DEPENDABLE SOFTWARE 9 2
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10.4 Strong Fairness and Weak Fairness

« Fairness property
— “If P is continually requested, then P will be granted (infinitely often).”
— Weak fairness : without interruption
— Strong fairness : possibly with interruption
— No difference when using them for model checking of finite systems

« Weak fairness

— Assume that P is requested without interruption
(FGrequest P)=FP
(FGrequest P)=GFP

« Strong fairness

— Assume that P is requested in an infinitely repeated manner, possibly with
interruptions
(GFrequest P)=FP
(GF request P)=GFP



10.5 Fairness in the Model or in the Property?

« The best way is

— Model = automaton + fairness hypothesis
Pros: Fairness hypothesis can change independently from the automata model.

— Ex. SMV model checker
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= Timed Automata
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4. Symbolic Model Checking

« Symbolic model checking

— Any model checking method attempting to represent symbolically states and
transitions

— A particular symbolic method in which BDDs(Binary Decision Diagram) are used to
represent the state variables

— Represent very large sets of states concisely, as if they were in bulk.

 Motivation:

— State explosion is the main problem for CTL or PLTL model checking.

— State explosion occurs whenever we represent explicitly all states of automaton
we use.

« Organization
— Symbolic Computation of State Sets
— Binary Decision Diagrams (BDD)
— Representing Automata by BDDs
— BDD-based Model Checking

_‘ | DEPENDABLE SOFTWARE 9 8
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4.1 Symbolic Computation of State Sets

 Iterative computation of Sat(g)
— A= <Q, T, >

Pre(S) : immediate predecessors of the states belonging to S in Q

Sat(¢) : set of states of A which satisfy @
*  is the sub-formulas of ¢

Sat(~y) = Q\ Sat(y)

Sat(wAy’) = Sat(w) N Sat(y’)
Sat(EX y) = Pre(Sat(y))
Sat(AX @) = Q \ Pre(Q \ Sat(y))

Sat(EF w) = Pre*(Sat(y))
... (others are defined in a similar way)

The algorithms in Section 3.1 is an particular implementation of Sat(g)
Hence, Sat(@) is an explicit representation of the state sets.

KU tavmsy
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« Which symbolic representations to use ?

— We have to access the following primitives:
1. A symbolic representation of Sat(P) for each proposition P & Prop.

2. An algorithm to compute a symbolic representation of Pre(S) from a symbolic
representation of S.

3. Algorithms to compute the complement, the union, and the intersection of the symbolic
representations of the sets.

4. An algorithm to tell whether two symbolic representations represent the same set.

« Systems with infinitely many states

— Symbolic approach naturally extends to infinite systems.
— New difficulties:

1. Much trickier to come up with symbolic representations.
2. lterative computation Sat(¢) is no longer guaranteed to terminate.
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4.2 Binary Decision Diagram (BDD)

- BDD

— A particular data structure very commonly used for representing states sets
symbolically

— Proposed in 1980s ~ early in 1990s

— Make possible the verification of the system which cannot represent explicitly.

— Advantages:

Efficiency

« Simplicity
Easy Adaptation

* Generality
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« BDD structure example
« n boolean variables x,, x,, ... , x,, associated with a tuple < b, b,, ..., b, >
* Suppose n = 4,
« The set S of our interest is the set such that (b, V b;) A (b, = b,) is true.

 We have several ways to represent the set:
« S ={<FFTF>, <FFTT>,..>
« S=(,Vb)A(b,>b)
« S=(b,A=b)V (b, Ab)V (b, N =b)V (b, \b,) < DNF

- Decision Tree < Our choice. n,

EPENDABLE SOFTWARE 1 O 2
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 Decision tree reduction
— ABDD is a reduced decision tree.

— Reduction rules:

1. Identical sub-trees are identified and shared. (ng and n,,)
— leads to a directed acyclic graph (dag)

2. Superfluous internal nodes are deleted. (n)

— Advantages:
1. Space saving
2. Canonicity

Reduced

I}EPENDABLE SOFTWARE Dec I s I o n tree 1 0 3
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« Canonicity of BDDs
— BDDs canonically represent sets of boolean tuples. (fundamental property of BDDs)

— If the order of the variable x; is fixed, then there exists a unique BDD for each set
S.
— Properties of BDDs
1. We can test the equivalence of two BDDs in constant time.

2. We can tell whether a BDD represents the empty set simply by verifying whether it is
reduced to a unique leaf F.

* Operations on BDDs

— All boolean operations

1. Emptiness test
Comparison
Complementation
Intersection
Union and other binary boolean operations

6. Projection and abstractions
— Complexity : linear or quadratic (for each operation)

— The same state explosion problems still exist.

A A
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4.3 Representing Automata by BDDs

« Before applying BDDs to symbolic model checking, we need to restate
— Representing the states by BDDs
— Representing transitions by BDDs

 Representing the states by BDDs

— Consider an automaton A with
 Q=A{q, .-,qs > b',b2, b3,
« vardigit:0..9 > b\, b2, b3, b4,
» varready:bool - b,
« <b',b?,b3,b",, b2, b3, b4, b, >
« <FT,T,T,F,F,FF>=<q,8,F>

— Let’s represent Sat(ready = (digit > 2))
« States <q, k, b> such that if b = Tand k > 2
« ready = (digit > 2) = -ready V (digit > 2)

K[]’ KONKUK
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« Representing transitions by BDDs

The same idea is applied.
<q4; 8,F>—<q,0,F> :<FT, T, T,FFF, T,F,T,F,F,FF

For example,

mdigit # 0, ready := T 0

(<q, k, b>, <q’, k’, b™>)
eqquk:#O,Q’=q2,k’=k,b’=T

> (=b', A =b2, A b3)
A (b1, Vb2,V b3,V b4,)
A (b1 A B2, A =b’3)
A (B0 A b 2,eb2, A b3,ebs, A b4, < bi,)
N b’13

K‘L]‘ KONKUK
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4.4 BDD-based Model Checking

 BDDs can serve as an instance of symbolic model checking scheme.
— Provide compact representations for the sets of states in an automaton
— Support the basic sets of operations
— Computation of Pre(S) in section 4.1 is very simple.

 Implementation
- SMV (chapter 12)
— Efficiency of BDDs depends on

* B, representing the transition relation T (as containing pairs of states)
« Choice of ordering for the boolean variables

— Very easy to explode exponentially.

 Perspective
— Widely used from early 1990s

— Current work on model checking
« Aiming at applying BDD technology to solve more verification problems (ex. program equivalence)
« Aiming at extending the limits inherent to BDD-based model checking

— Widely used throughout the VLSI design industry.
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5. Timed Automata

 “Temporal”

“Trigger the alarm action upon detecting a problem”

e “Real-Time”

“Trigger the alarm less than 5 seconds after detecting a problem”

« Timed Automata

Proposed by Alur and Dill in 1994.
An answer to this “real-time” needs

* Organization

Description of a Timed Automata

Networks of Timed Automata and Synchronization
Variants and Extensions of the Basic Model
Timed Temporal Logic

Timed Model Checking
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5.1 Description of Timed Automata

« Two fundamental elements of timed automata

1. Afinite automaton (assumed instantaneous between states)
2. Clocks

 Anexample

c>5 ?msg, c:=0

-,?’msg, c:=0 c<5,7?msgq, -

DABLE SOFTWARE
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 Clocks and transitions

— Clocks
« Variables having non-negative real values in R
» All clocks are null in the initial system states.
» All clocks evolve at the same speed, synchronously with time.

— Transitions
» Three items
 Aguard
* An action (label)
* Reset of some clocks

— The system operates as if equipped with
A global clock
« Many individual clocks (each is synchronized with the global clock)

c25 msg c:=0

o~ ..

7 - \

\ )
. )
N
o -,?msg,c:O@ c<5,?msg,-®
112
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IR
« Configurations and executions
— Configuration of the system

* (9, V)
— @ :acurrent control state of the automaton
— v the value of each clock

 We also refer to v as a valuation of the automaton clocks.
 Timed automata does not fix the time unit under consideration

— Execution of the system
* (usually infinite) sequence of configurations

« A mapping p from R to the set of configuration 5 msg ci= 0

TN
» Configurations change in two ways (

)
i’ N\ e
— Delay transition N\
. iy . ign - 7 = ? -
— Discrete transition (or action transition) o ‘mse €= 0 @ <5 ‘mea @

Discrete transition

?msg ?msg

(init, 0) — (init, 10.2) = (verify, 0) — (verify, 5.8) — (verify, 0) — (verify, 3.1) — (alarm, 3.1) — ...

Delay transition

« Trajectory
— p(0) : the initial state
- p(12.3) = (verify, 2.1)

EPENDABLE SOFTWARE 1 1 3
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5.2 Networks of Timed Automata and Synchronization

« ltis useful to build a timed model in a composite fashion, by combining
several parallel automata synchronized with one another.
— a timed automata network

« Executions of a timed automata network
— All automata components run in parallel at the same speed
— Their clocks are all synchronized to the same global clock

— (g, v): a network configuration

* g :acontrol state vector
« v : afunction associating each network clock with its value at the current time

« Synchronization
— Timed automata synchronize on transitions (as usually) by resetting the clocks.

— The clocks which were not reset are unchanged.
No concurrent write conflicts on clocks, since reset writes a zero value and nothing else.

114
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far near far

Exit App

Train

« Example : modeling a railroad crossing
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5.3 Variants and Extensions of the Basic Models

Many variants, and three extensions

Invariants
— Liveness hypothesis in the untimed model

— Invariant: a state’s condition on the clock values, which must always hold in the
state

— Example: near (invariant: Ht < 5), on (invariant: Ht < 2), lower/raise (invariant: Hb
<2)

Urgency
— Used when cannot tolerate a time delay X <2 y <2
— Represented in the system configurations, not in the transitions ‘! <2
— Allowing urgent/synchronized behaviors in a more natural way
a3 a3

Hybrid linear system
— Models dynamic variables (in a form of differential equations)

— HyTech

B
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5.4 Timed Temporal Logic

Given a system described as a network of timed automata, we wish to be
able to state/verify properties of this system
— Temporal properties
* “When the train is inside the crossing, the gate is always closed.”
— Real-time properties

« “The train always triggers an Exit signal within 7 minutes of having emitted an App
signal.”

Three ways to formally state real-time properties
1. Express it in terms of the reachability of some sets of configurations
2. Use observer automata in PLTL model checking
» Given a property ¢, a network R

« Testing reachability of some states in the product R || A@
« UPPAAL , HYTECH

3. Use atimed logic
« TCTL (Timed CTL), etc.



B

+ TCTL (Timed CTL)

c O, W¥Y..=P P .. (atomic proposition)
| @ | oAy | 0= ¥| .. (boolean combinators)
| EF @ | EG.y@| E@Q U n¥ (temporal combinators)
| AF L@ | AG_y®@ | AD U ¥ (path quantifiers)

* ~:any comparison symbol from {<, <, =, >, >}
k : any rational number from Q. (real number)
Operator X does not exist in TCTL

«  Example :
* AG (pb = AGs alarm)
« "If a problem occurs, then the alarm will sound immediately and it will sound for at least
5 time units.”
*  AG (—far = AF far)
. “When the train is located in the railway section between the two sensors App and Exit, it

will leave this section before 7 time units.”

' DEPENDABLE SOFTWARE 1 1 8
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5.5 Timed Model Checking

« With timed automata and TCTL logic
« We wish to obtain a model checking algorithm for them.

« Difficulties : Automaton has an infinite number of configurations, since
— Clock values are unbounded
— The set of real numbers used in clocks is dense

— Overcome it with the equivalence classes, called “regions”

— Example: x1,x2 ~k withk=0, 1, 2 X,
« 28 regions ‘4

70 e O e O emmmm——— X,

"""""""" m @

r8 119




« Complexity

* Model checking algorithms are complicated.
«  The number of regions grows exponentially.

«  O(n'M")
. n: number of clocks
. M: upper bounds of every constant

* No general and efficient method is likely to exist. ( vs. linear complexity in CTL)
« PSPACE-complete problem

«  Existing tools focus on defining adequate data structures for handing sets of regions
- “zones”

« Existing tools have been successfully used
- UPPAAL
- HyTech
- (KRONOS)
- SpaceEx (PHAver) — for Hybrid System (CPS)

LABORATORY
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FORMAL VERIFICATION
TOOLS AND CASE STUDIES



7. Formal Verification Tools



Introduction

* Formal modeling methods and tools (graphical methods only)

SCR

NuSCR (NuSRS)

Statecharts Statemate MAGNUM)
RSML / SpecTRM
Petri-Nets (Design/CPN)

Timed Automata (UPPAAL)

 Formal verification (model checking) tools

SMV

SPIN

VIS

CBMC
DESIGN/CPN
UPPAAL
HyTech

KU v
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SCR

B Software Cost Reduction (SCR)

D http://www.nrl.navy.mil/itd/chacs/5546/SCR

f{ NRL/ ITD / CHACS

CHACS Home

Contact Us
Mission Statement
Objectives
Demographics

Focus Area

wm

Major Accomplishments

Sections

COMSEC Systems
(5941)

Computer Security
5547

Formal Methods (5543)

(%]

Metwork Security
(5544)
Mobile Systems
Security (5545)
Software Engineering
(5546
Software Cost
Reduction (SCR)
Toolset
System
Requirements

Compon

Owvervi

ent

ew

Publications

EPENDABLE SC
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Sections / Software Engineering (5546) / Software Cost Reduction (SCR) Toolset

Software Cost Reduction (SCR) Toolset

Overview System Requirements Component Overview
This toolset was created to help developers build specifications with greater assurance that the reguirements will be

complete, and the resulting software error-free. This is especially important for critical systems. The method for
creating specifications is based on a scalable tabular notation.

The toolset is an integrated suite of tools for specifying and analyzing software requirements. The table-based system uses a
language that engineers and computer system developers can quickly feel comfortable with. While the algorithms used in the
toolset are based in mathematical logic, the user does not need to know this to successfully use the toolset.

The toolset consists of an editor for creating specifications, a consistency and completeness checker, a browser for picturing
dependencies, and a simulator for testing the created specification. Some versions also include model checking and theorem
proving extensions.

Selected Publications

Heitmeyer CL, Jeffords R. 2007, Applying a Formal Requirements Method to Three NASA Systems: Lessons Leamed. 2007
|IEEE Aerospace Conference.

2007

Heitmeyer CL, Archer M, Bharadwaij R, Jefiords B. 2005. Tools for constructing reguirements specifications: The SCR toolset at
the age of ten. international Journal of Computer Systems Science and Engineering. 20{1):18-35

2005

2002 Heitmeyer CL, Marciniak JJ. 2002. Software Cost Reduction. Encyclopedia of Software Engineering. 2

125



- SiSnoerrs.ssl BE]E

File Edit Errors Tools Settings

V- Dictionaries
. Types
[ Pressure
[ switch
%/ Mode Classes
0= M_Pressure
ERF11%= PermitStatus
%/ Constants
A low
[ permit
%/ Variables
[= Monitored
[= Term
%/ Controlled
5= OVERRIDDEN_modeless_event
BHf1)5= safety_Injection
[> Assertions
[> Assumptions
[ Modules
V- Functions
%/ Condition
0= MajorityPermit
B30 MajorityLow
BHFOEE safety_Injection
“/ Event
A1) OVERRIDDEN_modeless_event
BHF1%= OVERRIDDEN
% Mode Transition
BHFUEE M_Pressure
BEFOEE PermitStatus

checks not run yet ﬁ

| DEPENDABLE SOFTWARE

LABORATORY
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Main Window
- Condition table
- Event table
- Mode Transition table
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Editor
The specification consists of two basic types of tables. The first is dictionaries, which describe the types used in the
specification, variables, and other objects used to describe the specification with the second table type.

The second type of table describes functions; that is, given certain events or conditions, and the current state of the
application, what is the output value of a given variable?

The tables include editing functions for building and changing the developing specification.

Variable Dictionary L@
A —
Vi Con [ Match Case |Comtains =
Name Initial Value Vale Comment
Block ' DGB | [Mon v/ switch ~| off = A ] =]
MajorityLow ' DGB  |Term <~ |Boolean v | TRUE = o 1 Tave  ~|
MajorityPermit  DGB | Term <+ |Boolean v | TRUE = o 1 | [Tae  +
OVERRIDDEN DGR | Term v/ [Boolean v | TRUE | o Tr | e~
gs\ﬁia?m'm“de' DGB | Con <~ |Boolean  ~v| TRUE > T | |[Table
PE ' DGB | [Mon | [Pressue  ¥| 14 0.05% ]
PG DGR | [Mon | [Pressure | 14 0.05% ]
PR ' DGB | Mon | |pressure v | 12 0.05% ]
Reset | DGB | |Mon ¥/ switch ~| off = nya _
Safety_Injection | | [con =] |switen ~ | |oFF | | | Table |

LABORATORY
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Consistency Checker

This checks for correctness and consistency in the tables that describe the specification. Kinds of checks done are
syntax and type checking, circular definitions, missing cases, undefined variables, and non-determinism. Any errors found are
displayed in the main window under the affected object, making it easy for the user to locate and correct the error.

Safety!Injection Condition Function SIEIES

v v

TYPE+ DISJ COVG

Safety_Injection Condition Function
Defines a Controlled Variable

Name [Safety_Injection | Mode Class [M_Pressure
Modes Conditions Coruneris
Normal | FALSE TRUE
Low MOT OVERRIDDEM OVERRIDDEM
YoterFailure TRUE FALSE
Safety_Injection = (0] OFF

1L

HH 5= Safety_Injection

I DEPENDABLE SOFTWARE
LABORATORY

R
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Dependency Browser
An existing specification is analyzed to find which objects in the specification depend on which other objects (eg,
variables), and a graph of the dependency relationship is created and displayed by this component.

This allows the user to create scenarios, and play them out to check that the specification behaves as expected. The
simulator can be run from within the SCR toolset, or it can run separately when code is generated from the specification (one
of the functions of the toolset).

Simulator

DependencyGraph Window BHEE

File Actions Settings

| EN 00 NEW UPDATE e + s o 6

I PR — ?;LI::IEIDDLH_lrcGeEssI
l PG ———— MajorityLow
| /
MajorityP ermit Te—
l Block I Perm|TSTafus1“' .
l Reset " OVERRIDDEN Safetv_lnjectinrl

Deselected 0 nodes

S DEPENDABLE SOFTWARE 1 29

LABORATORY




Simulator

The simulator display takes two basic forms. One is an automatically generated tabular display, [associate with the
simulator.gif] and the other is graphical, tailored to specific applications. This version requires user extensions,
based on a framework built into the toolset,

PENDABLE SOFTWARE
LABORATORY

A B C D

] SCR Monitored Variables

&“ & [ | [ SCR Mode Classes

& [ | ] scr controlled Variables

[ Events

Block |[OFF v
PEE
poe ]
PRI ]

Reset |QFF b

OVERRIDDEM_modeless_event
Safety_Injection

M _Pressure
Permitstatus

[] SCR Term Variable

MajoritylLow
MajorityPermit
OVERRIDDEN

Z&Z N [ Log

Sinualator ftlem

GUI panel constructed

---Initial State

PC = 14 PernitStatus = BelowPernissive
Block = OFF OVERRIDDEN = true
PB = 14 MajorityPernit = true
Reset = OFF Safety_Injection = OFF
PR = 14 M_Pressure = Low
Majoritylow = true

OVERRIDDEN_modeless_event = true

KU KONKUK
UNIVERSITY
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NuSCR

Bl NuSCR

A Formal requirements specification language customized for nuclear I&C systems

- Customizing SCR for nuclear domain

- Consisting of 4 constructs
+ SDT (Structured Decision Table)
+ FSM (Finite State Machine)
+ TTS (Timed Transition System)
+ FOD (Function Overview Diagram)

- Various Supporting for seamless verification and safety analysis

- A starting point of the NuDE framework

Journal of
J CS c&?ﬁ:ﬁrmg Science and Engineering ReQ ular Pa per
Journal of Computing Science and Engineering,
Vol. 11, No. 1, March 2017, pp. 9-23

NuDE 2.0: A Formal Method-based Software Development,
Verification and Safety Analysis Environment for Digital I&Cs in
NPPs

Eui-Sub Kim, Dong-Ah Lee, Sejin Jung, and Junbeom Yoo*
Division of Computer Science and Engineering, Konkuk University, Seoul, Korea
atang3dfa konkuk.ac.kr, ldalove@konkuk.ac.kr, jsjj0728@ konkuk.ac.kr, jbyoo@konkuk.ac. kr

Conditions
k_3_MIN <= 1_X (= k_X_Max T F
Actions
f_X Malid i=10 o
f__Malid = 1 ¥
SDT
N
Trip_By |
¥\ _logic |
- "'C.ondfc and nof7
gggg_g and not - Cond 4
Ith X Tip=0 - /th_X_Trip:= 1
T g Cond_a \ #
/ \4 and not cond_d / \
}: Waiting \ } Normal |
\ " /
) / not cond_a \ P
~._ and notcond_d \\
~
~ \
Cond_d T -
Jth_X_Trip:=0 ~ not Cond_t
. Tth X Trip:=d
- ™~
~ \
[ Trip_By |
FSM/TTS "\\_Error/
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& NuSRS - Eclipse Platf
File Edit Navigate Search Project MuDE MuSRS Run Window Help

IFs -

MO g R ERDER AEBEE|

& Common Navigator 3 T O =8 Hierarchy Window 5 = b
B v
) BS 9 [ Root
4 (= New Nude ¢ JaBP

G FEDtC o 9g_L0_SG1_LEVEL
(= FBDtoVerilog & 9 g_VAR_OVER_PWR
(= NuSCRtoFBD o 5 g_HI_LOG_POWER

4 (= MNUSRS ¢ 90 LO_PZR_PRESS

& (NUSCR) RES BP (20130716)xm 90 5G1_LO_FLOW

& 9 g_HI_LOCAL_POWER

Description Window &2 = E

¢ [ 0_VAR_OVER_PWR
¢ [ Description

[ 71 mpee BB (HSH S

& 3 TemplateNumber

[»

¢ 3 Input
[} f_VAR_OVER_PWR_PV - 0.30
[} I_VAR_OVER_PWR_NManu_Te
[ f_vAR_OVER_PWR_MT_Quen
[ f_VAR_DVER_PWR_Trip_Statl
[} f_VAR_OVER_PWR_Pirp_Stat
[ _Mod_Err: boolean
[} f_VAR_OVER_PWR_Chan_Er
[} f_VAR_OVER_PWR_Op_Byp_|
¢ =3 Output
I~ [ f_VAR_OVER_PWR_Val_Out:
[ 1_vAR_OVER_PWR_Pirp_SP
[} f_VAR_OVER_PWR _Trip_SP:| |
[ th_vAR_OVER_PWR_Ptrp_Lo
[y th_vAR_OVER_PWR_Trip_Lo
[ f_VAR_OVER_PWR_PV_Err: g
[} f_VAR_OVER_PWR _Trip_Out

[«1

| A LD NDEFR S S

KONKUK

UNIVERSITY

Lo

() Diagram Window &5 = E
O Root (0 g 8P | O 0_VAR_OVER_PWR x e
& v YAR_OVER_PWR_P|
O f_VAR_OVER_PWR_Manu VM_OVER_PWR_Vai-ttt f_u%R_OVER_PWR_vEI i
f_VAR_OVER_PWR_MT_Query
O
hR_OVER_PWR_In 5P
@]
= fR_OVER_PWR_Trip|SP
_VAR_OVER_PWR_Trip_9
b oR
®
R _OVER_PWR_Ptp—sf R_OVER_PWR_Ptrp|SP
- = = . =
f_VAR_OVER_PWR_Plrp_Status \
h_\gdR_OWER_PWR_Trip_|Logic
Th_¥ _R_OVER_PWR_Ptrp Logic
MAR_OVER_PWR_PY_[Erm
KT 0 I D
[ Type Window 2 & - n

1 1 ] (¥

I_Mod_Err : boolean
T_VAR_OVER_PWR_Chan_Err: boolean
f_VAR_OVER_PWR_MT_Query : boolean
T_VAR_OVER_PWR_Manu_Test : 0..30000
T_VAR_OVER_PVWR_Op_Byp_Init: boolean
[T_VAR_OVER_PWR_PV: 0..30000
f_VAR_OVER_PWR_PV_ErT : boolean
T_VAR_OVER_PWR_Ptrp_Out: boolean
[_VAR_OVER_PWR_Ptrp_SP: 0..30000
f_VAR_OVER_PWR_Ptrp_Status : boolean
f_VAR_OVER_PWR_Trip_Out : boolean
T_VAR_OVER_PWR_Trip_SP: 0.30000

lE LIAD AT MMAIN Trin Cintun s hanl

I

0 jtems selected
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NuSRS — NuSCR Modeling Environment
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Safety Analysis NuDE Navigator

Requirements
L Analysis

Quick Checker

NuSCR

-

Fault Tree Analysis

NuSRS _ NuFTA

Safety Analysis

7
4 NuSTPA ——|
= STAMP/STPA
AL EEETEPEEEAEE LA L, | NuSCRtoSMV
+ SMV —~— Verification

>

NuSCRtoFBD

Model checking

FBD Checker

E ~
FBD Simulator

Safety Analysis

Fault Tree Analysis

Verification

FBDtoC

.

Equivalence checking S VIS Analyzer
Model checking

FBDtoVerilog 2.0/2.1

Executable |

Code

PLC
In Commercial
 PLC Software Engineering Tools

/FBDtoVHDL Verilog/VHDL
Libero Linker
PLC i FPGA
Implementation Implementation
FBD -
. Verilog
FBDtoVerilog 1.0 /VHD
. COTS Synthesizer
C Simulator COTS Compiler
FBD-C Comparator Verification Verification
HW-CBMC* CVEC IST-FPGA
i (Equivalence Checking) (Co-Simulation)
Verification Verification : Scenario Generator
: ; : Netlist & Co-Simulator
Co-Simulation Medel checking (EDIF + ModelSim®

In Commercial
FPGA Software Synthesis Tools

o
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Statecharts

B I1BM Rational Statemate MAGNUM

A graphical working environment developed by David Harel

- Create a visual, graphical specification that clearly and precisely represents the intended
functions and behavior of the system

- The Statecharts specification may be executed, or graphically simulated

- The 3 views of the system mode
+ Module-charts
+ Activity-charts
+ Statecharts

Compuling McGraw-Hill

- Generates C, Ada, VHDL and Verilog code

- Formal verification through in-house model checker

Modeling

Reactive S
Systems with £
- Statecharis

EPENDABLE SOFTWARE
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START_SERVER[PORT>=1024]/

/ /Fs! (SOCKET) oot \
.—j_\’

A CREATE_SO0CKET;
] BIND_SOCKET;
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' 1 1 . i [SOCKET]/
: . H H STOP_SERVER/ LISTEN_SOQKET ;
i GEAN_STATWS | ! MEX STORE STATUS * CLOSE_SOCKET ;
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Design/CPN

l Design/CPN (CPN Tools 4.0)

1) http://cpntools.org/

A tool for editing, simulating, and analyzing Colored Petri nets")

- CPN Editor : construction, modification and syntax check of CPN models (CPN Editor)

- CPN Simulator : interactive and automatic simulation of CPN models (CPN Simulator)
+ simulation-based performance analysis of CPN models

- Occurrence Graph Tool : construction and analysis of occurrence graphs for CPN models
— state spaces or reachability graphs/trees

(600 ‘& CPN Tools (Unversion 3.9.5, August 2013)
¥Tool box
Auxiliary New Page
Create
Declare
Hierarchy question  Create
Monitoring -
Net
Simulation
State space
Style
View
Development
»Help
» Options
¥ support.cpn
Step: 0
Time: 0 check
» Options Knowledge
» Histary e
»Declarations

Ba
Sim
» Monitors « . N k » nu
New Page | "0|
EPENDABLE SOFTWARE @ o foundAnswerl
LABORATORY question

ctats

& WA
oA
e

Coloured

Petri Nets

MiEaEing sed Walida
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® File Edit CPN Aux Set Makeup Page Group Text Hlign‘

Transition

Text: Off

Page Scale: 100%

Phone#1

y_¥
onnected

X i I
® bs
W

s BreakSen#

—_—

[

A

S=——— Dialing#3

— RepConSen
| ¥

—_—
Continuous

—_—

o ™

=

o
(1]
-

)
[

=
o
=4
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Order.

My MSC

[if (order = Big)

[if {order = Big)

then staff = Expert then equip = Fast
else true] else true]
Enter Order
order (order, staff)
@ ProductShipped
Order Entered
“ e (e
E n 7 3
Process Order
(order, staff)
(order, staff) @+10
OrderProcessed
Processed order
staff
Staff Equipment Ship Product
] /o Staff Pool [F] o Equip Pool
(order, staff) @+
staff
Binder 7 |
I
Mew Page

[Sender ] [Receiver ]

l praduce

product
»>

B Consume

Packpt 1

\QQ{L:I 1
Wﬁt 2
\r@;ct 2]

-

val msc = MSC.createMsC ("My MSC")

MSC.addProcess{msc, "Sender");
MSC.addProcess(msc, "Receiver")

MSC.addInternalEvent(mse, "Sender”, "produce”);
MSC.addEvent{msc, "Sender"”, "Receiver”, "product”);
MSC.addEvent{msc, "Receiver”, "Receiver", "consuma")

MSC addl insimar "Parkat 1")
val el = "eventd" : string
val 82 = "eventl" : string
val &3 = "event2" : string

val el = MSC startEvent{msc, "Sender”, "product 1");
val @2 = MSC startEvent({msc, "Sender”, "product 2");
val 83 = MSC startEvent(mse, "Sender”, "product 3")
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Timed Automata

Bl Timed Automata (UPPAAL)

) http://www.uppaal.org/

An integrated tool environment for modeling, validation and verification of real-time systems
modeled as networks of timed automata, extended with data types (bounded integers, arrays, etc.)

- Use timed automata to analyze timed systems

- Graphical editor
- Graphical simulator
- Verifier

- Model checking
+ CTL reachability analysis based on AG / EF

Uppva

EPENDABLE SOFTWARE 1 38
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SWisensor NAVsensor GPSsensor GCSsensor Ticker
SharedVar0
Idle Idle |dle clk == t20ms
clk == t50ms clk == t100ms clk == t100ms dla
clk == 1100ms ch == 1100ms ldle \ Tk mutex Cho?
chani! 1 X 7
clk <= t20m
. Preempted
Menitored Menitored Menitored Monitored clk =0, tick = true
Monitor Reader(
e Ready
SharedVar1 SharedVar2 SharedVar3 SharedVard
dle idle idle idle
nutexCh1? nutex Ch2? nutexCh3? Tiutex Chd ? . o
o 7 i A7 o 7 i 7 Sansingd '.. -. Sensing2
'. Praampted . Praempted . Preempted . Preampted oA
ock_mutex Chi
Wirite: Vilait
Reader1 Reader2 Reader3
Ctr
ldle a2 Raady (i g—— Ready Idlle Ready
Idle Va1 Ysingo Wait2 0 e mutexCha) aitd
fick l','.:\--"|I OCH T .l'_:_i:"\-I-K." ock mute >_;:--|\!'"‘ OCK_ T Kk texCh2!
mlock_mutexCh2! mlock_mutexCh2! fick = false, P
dk=0 . ok mutexChil
@ virite @ write . aits
Wiaitd () Wiaitd () ck_mutexCh2! e Chiat
2k _mutex CH1! 2k _mutex CH1! ck_mutexChal Using3
nlock_mutexCh3l Using2
Fay
ook mutexChal Nl texCh2l 2 ook m k_mutexCho!
¥ Usings Vidaitd Usingd
Wait1 Wait1 Wited
Timed automata models in UPPAAL
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%% D/ITRC/Z=TH ITRC/uppaal/new/013xml - UPPAAL =B %

File Edit View Tools Options Help

Dag|ea e e [{@-we

| Editor | Simulatar| Verifier|

Overview
(Ctr.Waitd Ctr.clk » t20ms 88 Reader? Writed)

Check
Insert
Rermove

Cornments

Query
All (Ctr.Wait4 && Ctr.clk = t20ms && Reader2 Writed)

Comment
Controller doesn‘t wait to access SharedVar4 over 20 ms while Reader2 accesses SharedVard

P

status

AL H(Ctr, Waitd &8 Ctr.clk » t20ms && Reader? Writed)

Property is not satisfied,

AL1 1(Ctr, Wait3 8& Ctr.clk > t20ms && Reader?, Write3)

Praperty is not satisfied,

AT 1(Cr,Wait2_0 || Cir,Wait2_1) && Ctr,clk > t20ms && (Reader0,Write] || Reader], Writel || Reader2 Write2
Property is not satisfied,

ALT K Ctr, Waitl && Cir.clik > t20ms && (ReaderD, Write1 | | Readerl, Write 1))

Property is not satisfied,

AL] 1(Ctr, WaitD &8 Ctr,clk > t20ms && Reader3, Write)

Property is not satisfied,

«| i ]
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.

TG D/ITRC/H=0) ITRC/uppaal/new/013xml - UPPAAL

oT®| = ,|‘E

File Edit iew Tools Options Help

Ralaae{ews

- Simulator | Varifier

[

Drag out

,[ Drag out

Enabled Transitions

Ticker -
chanl: Mavsensor —» Maonitar

chanl: GPSsensor ——» Monitor

chan3: SWhsensor ——» Monitar

—» Sharedvar3

unlock_mutexCh3: Reader?

MNext ][ Reset

Sirnulation Trace

LIATE, TUTE, TATE, TUTE, TUTE, FTEETTTHELL, TUTE, TUl
unlock_rmutexCh1: Reader? --» Sharedvar
tidle. Idle, Idle, Idle, Idle, Idle, Idle, |dle, Pree
lock_rmutexCh3i Reader? --» SharedVard
(Idle. 1dle, [dle, Idle, ldle, |dle, [dle, Preempte
unlock_rmutexCha: Reader3 --» SharedVard
{Idle, 1dle, Idle, Idle, ldle, |dle, Idle, Preempte
lock_mutexChd: Ctr —-> SharedVard

{ldle, Idle, ldle, Idle, Idle, |dle, Idle, Preempte
unlock_mutexChd: Ctr —» SharedVard

{Idle. 1dle, Idle, |dle, ldle, |dle, |dle, Preempte
lock_mutexCh1: Cir —-» SharedWarl

tIdle. Idle, |dle, Idle, ldle, Preempted. |dle. F‘rj

tick =1
Mévsensor,interyal = 100
GFSsensor,interyal = 100
GCSzensaor, mininterval =
GCEsensor maxinterval =
SWrdsensar interval = G0
Ticker.interval = 20
Ctr,interval = 20
MaVsensar,clk = 100
GPSsensor.clk = 100
GCSzensarclk =10
SWhsensor clk = &0
SharedVarl clk in [20.40]
Sharedvarl,clk =0
SharedvarZ, clk = 100
SharedVard,clk in [50.60]
SharedVard,clk =0
Ticker,clk = 20

Ctr,clk in [20.40]
Mavsensar,clk = GPSsen
GPSsensar,clk - GCS=en
SWhisensor clk - GCSsern
SWrAsensaor clk - Shared
SharedVarl clk - Ctr,clk in
SharedVars, clk - Shared
SharedVars, clk - Shared
Ticker.clk - SharedWard.c

NAVsensor

W b

GPSsensor

Maniaud

GCSsensor

=)
(.

Mok

SWhsensor

Manioud

13

m

SharedVar0 SharedVar1 SharedVar2 SharedVar3 SharedVard
/:j. /:j‘ /:j /ﬂj /j

Monitor Reader0 Reader1 Reader2

Fod

:.S:i:.l
Reader3 -

Ticker Ctr
/{ u s Al /"‘: Ll g ac U-u:;"_\_ il

unlock_rmutexCh1: Ctr —> Sharedarl e I.-'f kg2
tIdle, Idle, Idle, Idle, Idle, |dle, Idle, Preemptejes — Lirgd
4 L 3 -
Trace File: SharedvWar0 Sharedvar1 Sharedvar2 SharedvVar3 Sharedvard Monitor Beader0 Beader1 Reader2
F
Miset HED|E'_-.-' locl mutexCh3
Open Save Auto
[ B ][ ][ l m @E] @@ [ Preempted] [ Preempted] [ IDLE] @@ @@ @iteal
U unloch_mute_
Slow Fast ¢ 52
] 1 r [ T r
CroNUADLE Swr 1 ywARs 1<t 1
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SMV

H SMV

1) http://www.cs.cmu.edu/~modelcheck/smv.html

A symbolic model checker of CLT formulae on networks of automata with shared variables™

- The first model checker using the BDD technology

- Suited for fully checking a complex system

- Input : SMV input program language or Verilog program
- CTL model checking

- No support for (systematic) simulating

Carnegie Mell . V-
e Model Checking @CMU & 2
Homel] [People] [Software] [Publications] Support] [Links] [Internal

The SMV System

| DEPENDABLE SOFTWARE 1 42
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File Prop Yiew Goto History Abstraction Help

[ arowurl Properties | Results | Cone | Using | Groups |

Name | Layer |

B:, flop.Jevel):

cycle

f_Mod_Emr

{ VAR_OVER_PWR_Chan_Em
f_ VAR_OVER_PWR_MT_Query
{ VAR_OVER_PWR_Manu_Test

Source [ Trace | Log |

File Show
== SHV Input for g VAR_OVER_PWR £

== SHV Input for £ VAR _OVER_PWR Val Out

NODULE m_f VAR _OVER_PVR Val Out(f VAR OVER_PWR PV, £ VAR OVER_PWR HNa
nu Test, £ VAR OVER PVR_NT Query, cycle, sec)
VAR
£ _VAR_OVER_PWR Val Out :
-= inputs

0..100:

STATE : (_init_, =0, s1):
ASSIGN

iNnit (STATE) := _inic_;

next (STATE) := case
FROM-_init_ =-TO-sO-taken : =20:
FROM-30~TO-s30~-taken : s0;
FROM-31-TO-30-taken : s0;
FROM-_init -TO-sl-taken : s1;
FROM-s0-TO-s1-taken : sl1;
FROM-31-TO-sl-taken : sl;
1 : STATE:

esac;

-=- Qutputs
initif VAR OVER PWR Val Out) := O: ;l_]

The SMV input program (Cadence SMV)

EPENDABLE SOFTWARE
LABORATORY

T4 1205smy =

File Prop View Goto History Abstraction Help
Browser | Froperties l Eesulls] Cone | Using | Groups |
|All results H

Property | Result | Time |
(EF ((state=operata1)&(alarm=1])} false Sat Dec 10 20:30:26 ik {0 e pLiv) 2011
(EF [{state=connect{)&(alarm=1))} tiue Sat Dec 10 20:30:25 efslsf el 1 sl 2014
AP (fempeba)8(-(etato=cioato)]) false  SatDec 103026 e gl 2o

.'ioun:elIracel].ugl

Flle Edit Run View

T Y k2 o L)
1{&:.1; o o o o o

Loey| 0 0 (] a ]

slarm| 0 0 0 0 D

ohs|o 54 0 a b

Jm ready notice |create |operated connectd
tamp| &% &4 o &g &g

i-searcﬂ :l

The result (counterexample) of the CTL model checking
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SPIN

H SPIN

) http://spinroot.com/spin/whatispin.html

A tool for analyzing the logical consistency of concurrent systems, specifically of data
communication protocols )

- Developed at Bell Labs in the Unix group of the Computing Sciences Research Center, starting
in
1980.

- The system is described in a modeling language called Promela (Process Meta Language)
+ Allowing for the dynamic creation of concurrent processes

- Communication via message channels can be defined to be synchronous i.e., rendezvous),
or asynchronous (i.e., buffered).

- Simulator
- Verification: LTLT model checking or assertion

THE //
SPIN MODEL
CHECKER

; et
Verifying .

Multi-threaded
Software -
with Spin

. . N\
—— \

i
1

“
=
z
2
(o)
o
m
=
(@]
I
m
N
Fal
m
=~

plssgainio Gerard J. Holzmann
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=

SPIN CONTROL 5.2.3 — 25 November 2009 BEE

Fi

le.. | Edit.. | View.. | Run.. | Help [SPIN DESIGM VERIFICATICN

s

il
assert| (mutex_0 1= 2) &&

(mutex_11=2) &&
(mutex_2 1= 2) &&
(mutex_3 1= 2) &&
(mutex_41=2))

init

chan semal = [0] of {bit};
chan sema’ = [0] of {bit};
chan semaz = [0] of {bit};
chan sema3 = [0] of {bit};
atomic{
run monitarisemad, semal, semaz, semai);

run readerdisemal);
run reader1(semal);
run reader2({semaz};
run reader3(sema3);
run controller)

<done preprocesss
op simulations>

e AT ST el 1T Ao S ol B o T B B ol T o T B Y

2| Linear Time Temporal Logic Formulae

= B

The PROMELA program

EPENDABLE SOFTWARE
LABORATORY

Formula: |[] (sensor_send -= <= reader_recy)

<>|U|-}|m[||:-r|"|c:-

Operators: []

Property holds for: ¢ All Bxecutions (desired behavier) © Mo Bxecutions (error behavior)

Motes:
# Use Load to open a file or a template.

-

Load...

Symbol Definitions:
= #define sensor_send sensor[0] == 1
#define reader_recy semaphorel ==

Mever Claim: Generate
-~ lll'll*
I « Formula &s Typed: [1  (sensor_send -> <> reader_recy)
E + The Mever Claim Below Corresponds
+ To The Hegated Formula !([] (sensor_send —> <> reader_recy))
+ (formalizing violations of the ariginal)
+
- nevar { A+ 1011 (sensor_send —» <> reader_recy)) +/

Werification Result: valid

3 never clalm +
assertion violations + (if within scope of claim)
acceptance  cvcles + (fairness disabled)
invalid end states - (disabled by never clain)

state-vector B4 byte, depth reached 130333, errors: O
B 800471 states, stored (B48576 visited)

. e

Run Werification

Close | Save As.
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¥2| Simulation Output = B % K| Sequence Chart @M
Search for: | Find m’@ 5 =
PR TS M et e S RS Ll e L e — 1] 1o 1
1089; proc 6 (reader_4)line 37 "pan_in” (state &) [mutex_A =10] \\ =
1090; proc & (reader_4) line 111 "pan_in" (state 12} [sema = 0] ‘\{3@ :4 L
1091: prac 6 (reader_4) line 112 "pan_in" (state 14) [.{goto]] 13
1092: prac 2 (monitary line 121 "pan_in” (state 733 [(1]] EE‘-—-._____
1093; proc 2 (manitor) line 120 "pan_in" (state 68) [data = 3] --___3_4____‘
1094; proc 5 (reader_3)line 102 "pan_in" (state 32) [sema =10] ’ repder 3:5
1095: proc 5 (reader_3)line 103 “pan_in” (state 34} [(goto)] 50
1096: prac 2 (monitory line 121 "pan_in” (state ¥2) [.(goto)] [57
1097 prac 2 (monitary line 138 "pan_in” (state 89} [.(goto)]
1088: proc 2 (monitor) line 131 "pan_in” (state 88) [({data==3)]] epder 1
10949; proc 2 (manitor) line 134 "pan_in” (state -) [values: 311] 58
1099, proc 2 (maonitor) line 134 "pan_in” (state 45} [sema_ch_31] Eg-———____
1100: prac 5 (reader_3) line 98 "pan_in” (state -) [values: 371] - -
1100 prac 5 (reader_3) line 97 "pan_in” (state 33) [sema_ch?sema] -____"‘EE
1101 proc 5 {reader_3)line &7 "pan_in” (state 11) [[{mutex_D==0)]] EE—————___
i |
Single Step | Run Savein: | sim.out Clear | Cancel L]
(o |
_—‘—\—u—____*
k| Data Values = B & ']'"“——-—_.\ﬁ% N
Search for: | Find (127 oo |
(S— ———____!__-1-_._____
~ data = 3 _'_'_‘—‘—EZS
mutex_A =0 5 |
mutex_ B = 0 E‘IE\K‘N:
mutex_C =0
mutex_D =0 146 |
mutex_E = 0 (e b
-
158
- = T P
S
The verification/simulation results with sequence diagram
I}EPENDABLE SOFTWARE 146
LABORATORY



VIS

W VIS

R

") http://visi.colorado.edu/~vis/

A system for formal verification, synthesis, and simulation of finite state systems )

- Simulation of logic circuits (proof of concept only)
- Formal "implementation" verification of combinational and sequential circuits (proof of concept only)

- State-of-the-art formal "design" verification using fair CTL model checking and language emptiness

- Logic synthesis via hierarchy restructuring and a path to and from SIS
- Input : Verilog HDL through vi2mv (into BLIF-MV format)

- No GUI

VIS

W15-2.4 Releaze ( Release Motes , Download WS-2.4)

WIS Users Mailing List Archive (achieved before Aug. 2003)
WIS Users Mailing List Archive (new)

VIS FAQ

I DEPENDABLE SOFTWARE
LABORATORY

147



vig release 20 (compibed Thu Jun 26 10:08: 16 2008)

vism read bl mv h_X_Pretrap_Manuwal mv ¢ ¥ = \
vig faiten_hierarchy B Vereaton -Emumm oo \?-urm ooun Charta s oot e B

wigm aranic_onder E Property & Result table

wis> build_partition_mdds

B Flow chart |

Praperty | Result -
wis samulate -1 inputVectorl i AG((((EB.BB AAALImer=0>=1 * BB BE ARAlimer=1==0) *BE.BBA.. Fallad
. . A5 (BB BE AfAlimer=0=1 BE BB ARAlimer<1-=0) " BEBBA_ Falled
# vig release 2.0 (compiled Thu Jun 26 11:08:16  2008) AG({((BB.BB AAAlImer=0-=1 * BE BB AAAimer<1==0) * BB.BBA.. [Passed

& Hewk: I'ﬂ.a.iﬂ N.'J((((BB BE AAAlimer=0>=1* BE BB AAAimer<1>=0) "BE.BEA . Passed i __Raw:1010000

# Lipul Vectors File: inputyector |t

dnputs T X Raw<0> [ X _Baw<l>§ X _Raw<2> [ X _Raw<i>{_X_Rawci>
{_X_Raw<S> [ X_Raw<ho iemp

Janches AA Prev_th Reser Ini AA siate AA nmer BB Prev_Pk_Swne

BB X_Prev_| PFTEP<> BE. f X Prev PTSP<1>BB.I X _| Pmr PTS Pl

l‘f *_Raw. 1000111 1.3_Rawe1000111

BE.I_X_Prev_PTSP<3> BE.L_X_Prev_PTSP<d> BB.[_X_Prev_PTSP<S> . S— 08T T2 l
il - il - - = 1 1 _Raw. 1011011, |AAX_Prev 0110101, BEBEARALM . (2 || T_X_Raw:1000111
BB X Prev PTSP<t> BE.f_X_wi> BH.{ X k<> BE{ X _ <2 ] 1 Raw. 1011011, [AALX_Prev. 0111000, BE.BEARALM... |3
BB.L_X_10<3= BE.f X_t<i> BR.{_X_ol<f> BB.{_X_tl<f> CC1 X_Prev<i> g T A e L S A
C'E'_t’_x_FrE'l.*ﬂ} E'E_f_x F'L-E'I.ﬂb-_f_"ﬂ_.f ¥ [nm...{gb. E'C_f ¥ m:{; ; :ﬁﬁx:g::gﬂ m:ﬁ:;:v: ?éééﬁégiggg:mﬂ = : B
CCA X_Preves=CCF_ X_Prev<s> DD.state DD.th_Prev X _Pretrip DD timer T DR 01101 A P 1000117 BB BB AT 15|~
B'.h :.: hﬂ.ﬂp‘ B f_}(_Raw;IDDD‘IH: MI_X_P:::IWUDHl:BEIEBMA:t::. ] if_X_Raw:WDUTH .
initial 0 ADTSS1001001 110111 111011111811T0 5 Rew 100011 T A Prav {0007 E0 88 AT 11 :
11 TX_Raw; 1000111 ; [AATX_Pray. 1000111 ; BB BBAAALIM... (12
12 TX_Raw. 0010000, |AAT_X_Prev 1000100, BB BEAAATIM . 13 | | |
1 aw: 101 : 1 TRV 111 ; im, [} =11l
Start_vectors 14— DR 000111 AL e 100011 BB AR 15 || o7 sl
81 X_Raw<le { X_Raw<l>{ X_Raw<?>{ X_Raw<i>{ X_Raw<d> —
f X Raw<S= [ X Raw<t>iemp ; AA Prev_th_Reset_Ini AA state AA limer
BE.Prev_Pk_State BB.T_X_Prev_PTSP<(> BE.f_X_Prev_PTSP<l> Cr -
BRI X_Prev_PTSP<2> BE.f_X_Prev PTSP<i= BEL X Prev PTSP<gs ""“"“' B v
BE.f X_Prev PTSP<S> BE.L X_Prev PTSP<t> BE.L X_i<0> BE.{ X_0<I> B m— A =
BE._X <> BE.f_X_i> BR.{_X_tkd> BE.T_X_tl<8> BE.T_X_pi<fs> ﬂf“i — e
COL_X_Prevals OCf_X_Prevels CC.5_X_Preve2> CC.T_X_Preveis e . e
CCL_X_Preveds OCf_X_Prevads> CC.1_X_Prevat> DD state o [
DD.th_Prev_X_Pretrip DD timer ; th_X_Pretrip RS 1 [ - -
1N F_X 61 IN: 161
1011 1100;0A0TS SI00100111011111101 111181170 ;1 ;ﬂ. — H%EWW
10111101;0A0TS SI001001101011110101111S11T1 31 | s
10111 101:1AITOSOL10000001101 11011001 1S1I1T2:1 o I
10111101:0A0T1 S41100011001011100101118117T3 31 ® Integer format () Binary format
INI111G1;0A0T2 S4110001110001011000111311T4 01 WL~ |[#state] input | FileOutout | File20utput | FileiState | File2State
101111001:0A0T3 S41100011011101101110018117T5 :0 L T S ey e T TD
1011 1101:0A0T4 S4110001111010111101011S500T5 0 T el 1 1 ST1T1 ST1T1
1011 1100;0A0TS S4110001100010110001011S500T5 ;0 7 el 7 1 ST1712 511712
1011 1100;0A0TS S4110001110100111010011S800TS ;0 3 |6l 1 1 511713 ST1713
10111 100:0A0TS S4110001101000110100011S00T0 :0 VIS Analyzer 3.0 - : : e e
1011 1100:0A0TS S4110001001111010111101S8007T0 ;0 e - - T —r
10111100:0A0TS S4110001100111010011101S007T0 31 T xEs 8 5 S50 55070
#Fmal State : 0 ADTS S4 110000 1000010 POkl 0001 SO0 TH g T X52 1 0 Nl Nl
“EPE'\&?’;ﬁfgg‘"A“E Merification and model check Ready 148
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CBMC

Bl CBMC (C Bounded Model Checker)

1) http://www.cprover.org/cbmc/

A Bounded Model Checker for ANSI-C and C++ programs )

- Verifying array bounds (buffer overflows), pointer safety, exceptions and user-specified assertions
- Checking ANSI-C and C++ for consistency with other languages, such as Verilog

- Performing unwinding the loops in the program and passing the resulting equation to a decision
procedure
- Supporting dynamic memory allocation using malloc and new

Daniel Kroening
Ofer Strichman

O SV Group Home [ Software Verification [ Hardware Verification

Carnegie Mellon

. 4 Decision
= Bounded Model Checking
Homena for ANSI-C *

Procedures

EPENDABLE SOFTWARE 1 49
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& CbmcSatabs - md2_bounds.c - Eclipse SDK

K KONKUK
UNIVERSITY

File Edit Refactor MNavigate Search Project Run  Window Help

IB-HE[$-0-Q%- | |v6-

-

B %C!C++ [T CbhmcSatabs

M Claims - SATABS - md2_bounds.tsk X

‘5. Navigator 23 = O |[E £ md2_bounds. tsk B L md2_bounds.c 3 =0
BV ”~
i B8 for (i = 0; i < 16; i+4) -
[=-1=* demo ~
[+-[= Results
""" project /* Encrypt block (18 rounds).
En bounds. tsk y
L fotrd. sk . = 0
8 Lint_overflow,tsk ’
i~ — for (i = 0; i < 18; i++) {
LB __
g Md2_bounds. sk for (3 = 0; 3§ < 48; j++)
e pointer_obj.tsk
Hn pointer_to_local. tsk )
E“ amall-c++. sk L] t = (t + 1) & Oxff: -
~B L threads 1 tsk H =
IBE thraade? bk :
=0

Check Selection Checkby File Checkby Property Check Al | Stop Selection Stop All | Stop Session  Terminate Session  Reset Session

| File

| Property

| Description

| Expression s

v md2_bounds.c
v md2_bounds.c
R md2_bounds.c
R md2_bounds.c

array bound
array bound
array bound
array bound

taf md2_bounds.c bounds
W md2_bounds.c bounds
md2_bounds.c bounds

3| mdz bounds.c __________lbonds _______________laiay " upper bound 32

dereference failure: array “state’ lower bound
dereference failure: array “state’ upper bound
dereference failure: array “blodk’ lower bound
dereference failure: array “block’ upper bound

array " upper bound

array “PI_SUBST upper bound

array "' upper bound

1 < 0) |] We::md?2_bounds::MDZTr
I(c::md2_bounds::MDZTransform::

10 < 0) 1] We::md2_bounds::MDZTr
I(c::md2_bounds: :MDZTransform::
TRLE L
t < 258

TRLUE

10 < 0) ] Wersmd2_bounds::MDZTr

md2_bounds.c array bound
md2 bounds.c bounds

W

'W' md2_bounds.c array bound
W

ha/

<

dereference failure: array “block’ lower bound
dereference failure: array “block upper bound
arrav "PI SUBST' uooer bound

I(c::md2_bounds: :MDZTransform::
(t ~ funsianed intf=(i + blodh = ¥

»

Trace | Problems |ELf Log 52

=

Running Cadence SMV: smy -force -sift

Cadence SMY produced counterexample

Simulating abstract transitions of counterexample on concrete program
Spurious transition found

Trace is spurious

Refining transition

=¥ CEGAR. Loop Iteration &

Running Cadence SMV: smy -force -sift

> | OO

||

EPENDABLE SOFTWARE
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& CbmcSatabs - threads2.c - Eclipse SDK
File Edit Refactor Mavigate Search Project Run  Window Help

Jr{j' =Jﬁ,ﬂv%vJ&J“:<}jv:v E5 BRc/c++ | [ chmesatabs
5. Navigator &3 = 0|/l L md2_baunds. tsk L md2_bounds.c L threads2, tsk BL threads2.c =0
& - g=1; F
4 | = = if (g==2) e
[=-1=% demo i
= Resglts o=3;
project assert (gl=4);
gt bounds. tsk !
B fpratsk ,
B int_overflow. tsk
L md2_bounds. tsk . .
B poirter_oby.tsk int main()
4 _obj.
L pointer_to_local. tsk {
llﬁ small-c++.tsk pthread t 1dl, idd; =
nﬁ threads 1.tsk
ﬂﬁ threads 2. tsk pthread create(&idl, WULL, t1, NULL):
pthread create(&idd, NULL, t2, NULL); __
H st
KL Claims - SATABS - threads2.tsk 22 =0
Check Selection Checkby Fle Checkby Property Check Al | Stop Selection Stop Al | Stop Session Terminate Session  Reset Session
| File | Property | Description | Expression
X, threads2.c assertion gesertion gl=4
< Iii s
e < o
o CPROVER_alloc = P
i CPROVER _alloc_size = Variable | Value | Type
cg in cit2iarg NULL void *
c::tl..arg = NULL coitliarg NULL void *
c:g =0 cii_ CPROVER _alloc bool [INFINITY]
c::t2::arg = NULL g 4 int
teg= 5 c::_ CPROVER alloc_size unsigned int [INFINITY]
cig =
g =
g =

KONKUK
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HyTech

Bl HyTech

1) http://embedded.eecs.berkeley.edu/research/hytech/

An automatic tool for the analysis of a linear hybrid system with temporal requirements?’
- Hybrid systems are specified as collections of automata with discrete and continuous components
- Temporal requirements are verified by polyhedral model checking

- Input: Linear hybrid automata (discrete + continuous variables)
+ closed system (no external input)

- No GUI

( THE DONALD 0. PEDERSON
= CENTER FOR ELECTRONIC SYSTEMS DESIGN NGsinaces =t

orkspaces
Welcome to the Embedded Website  home about people publications calendar search  optons login

HyTech: The HYbrid TECHnology Tool

' DEPENDABLE SOFTWARE 1 52
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Railroad Crossing :

Train

"—_.'-l’l': I.:
2000 f/ 210008 e 02 []\,

[=5l, —au] R \
N

r o= 100
o= (200020 ) | pat

Gate
N

el
N ’/\w\ 4

o //’\ -
\ / 1Y _/

Controller

. il

~ U
|f/r.'l.'1|.'1 v ~

LT~ D

i " _'J l.-||I|

e ~ 10
~—.- |’||II|JJ..'| “-n, ™

-;nf; - .;-' ? wqud-x\\x_z/f

I T

| | Jili |

Train, Controller, and Gate

[ Ubuntu (a3 =1 -

N Trai
Gate \ rain
= ZC] I ] \
i
\ |= x = |
Controller
P
Number of | Number of .
TS i N CPU time
0 < S#/d locations transitions
When the train is within 10 meters to the gate,
36 90 0.2 sec.

the gate is always fully closed.

2 ‘ | DEPENDABLE SOFTWARE
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jaeyeon@jaeyeon-VirtualBox: ~/HyTech_linux

HyTech: symbolic model checker for embedded systems
Version 1.84f (last modified 1/24/82) from v1.84a of 12/6/96
For more info:
email: hytech@eecs.berkeley.edu
http://www.eecs.berkeley.edu/~tah/HyTech

Warning: Input has changed from version 1.88(a). Use -i for more info

Mumber of iterations required for reachability: 9
Generating trace to specified target region
Time: 0.000
Location: closed.q.inflow_3
& contents

& closing_time = & 4inflow + 39

Time: 0.000
Location: closed.ql.inflow_3
on_off =1 & contents

& closing_time =

& 4inflow + 39

VIA: on_off_e_1

Time: 0.000
Location: open.qg.inflow_3

=1 & contents & closing_time =

& 4inflow + 39

Time: 9.750
Location: open.q.inflow_3
on_off = 1 & 4contents 39

& closing_time & inflow = 0@

1IIIII!III Ll IIII:

(<]
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SpaceEx

l SpaceEx

") http://spaceex.imag.fr/

A tool platform is designed to facilitate the implementation of algorithms related to reachability
and safety verification of hybrid systems ")

- Safety and reachacility verification

- Input: SX language (Hybrid automata)
+ Non-linear hybrid automata

- Supporting External inputs
- But, hard to interpret counter-examples

S a C e E x About SpaceEx Documentation Run SpaceEx Downloads
State Space Explorer

= Learn more about SpaceEx
= : + Download SpaceEx
b 1

z-r _
‘ = Subscribe to the newsletter

N\ E

The verification of continuous and hybrid systems is a challenging problem, and various approaches
are cumently being investigated to overcome the complexities of representing and computing with
continuous sets of states. Since verification problems are generally undecidable for such systems,
experimental results are vital for evaluating and developing new ideas.

The SpaceEx tool platiorm is designed to facilitate the implementation of algorithms related to

reachability and safety verification.
EPENDABLE SOFTWARE 1 54
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r|é| SpaceEx - Model Editor (0.8.406) - barrel-packing.spaceex.xml L ' ' ' ' ' r a \ A l n rv }f\(—?\r-\r}é}nlw(

File Edit Help

NEICIEIEREIE] |

[BehaviorModeI X ’/timer e |

param

closing_m1

closed_neg0 closed_m2

e_1 == maxl
e_1'==1fcont

i maxl'==

switch = off & e_1 »= maxl

el <=maxl switch < off & e_1 >= maxi3

e_1'==1&cont
& maxl'==10

e_l'==1&content'=
& maxl'==

e_1 < maxl

agk:5|ng_m2
e_1 == maxl
e_1'==1&cont
& maxl'==

- switch == off & e_1 >= maxl
closed_asap

closed_mi e_1:=08&maxl = 10008&=:=0

e Rl T = il
E S WSO '
“---..#""‘ & maxl'==0

e_1 >=maxl
e_l'==1&cont
& maxl'==10

switch == on &1 e_1 >=mart

e_1l:=08&maxl = 1&e:=0

on off == on & cp
e 1 =10 & mga

e_1 == maxl
e_1'==1fcont
& maxl'==

open_asap
a-sWitch !

on_off < off & content <=9

on_off = off & content <= ¢
- on_o

open_mz2

content <=9
e_l'==0&content'==2!
& maxl'==

open_mil

open_negd content »>= 9
gE—— | &_1'==0&content'==2&switch'==

& maxl'==

® content <= 91
e_1'==0&cont
B maxl'==10

on_off < off & content == 9

on_off = on & content =9

note: component BehaviorModel

EPENDABLE SOFTWARE | —— 1 5 5
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S p a C e E x [Virtual Machine Server] Home About SpaceEx Documentation Run SpaceEx Downloads Contact

Model = Specification | Options  Qutput = Advanced Console Reparts
* || Iteration 555... 556 sym states passed, 3 wating 0.004s = 2.31s elapsed
System  Cf|_Fill_System = |Update e Iteration 536... 557 sym states passed, 2 waiting 0.003s 2002K8 memory
E--m_mr_ Iteration 557... 558 sym states passed, 1 waiting 0.003s SpaceEx output file : output ().

Iteration 558... 559 sym states passed, 2 waiting 0.002s
Iteration 559... 560 sym states passed, 2 waiting 0.005s
Iteration 560... 561 sym states passed, 1 waiting 0.004s
Iteration 561... 562 sym states passed, 0 waiting 0.004s
7Y Found fixpoint after 562 iterations.

E"'Contmlled 1 Controller_Le, valve, motor, posttion, level,
| Controller_l.e_sx, Filer_l.e, Filer_l.e_sx, Conveyer_le = t

i'“'B‘.aueitav-1:t:n|1up-c:nents : Controller_1, Filler_1, Conveyer_1, timer_1

Initial states

— Computing reachable states done after 2.162s
Cantroller_1.e==0 & valve==0 & motor==0 & position==0 & = )
level==0 & Controller_1.6_sx==0 & Filler_1.e==0 & Forbidden states are not reachable. a
Filler_1.e_sx==0 & Conveyer_1.e_sx==0&1t==0 & Output of reachable states... 0s -

loc{Controller_1)==init_asap & loc(Filler_1)==5top_asap &
loc(Conveyer_1)==5Stop_asap

Graphics
{ -
Forbidden states [ 7]
level=10 || position =10
i
Anab’SE ’ Stal’t ] | StUD | 12 T I — 7T 1 1 1 r 17T 1.2 T T T T T T 12 T T T T T
H 1
i
; - 10 b (] S b iof 1
Execution terminated
4 08t - (R4S A nar -
D& E 0.6k - nef g
[EYS E D.4f - 04t g
ozf - n.2f E ozt g
D [ e e . 0.0 | 0.0
_{I2 1 1 1 1 1 _Dz 1 1 1 1 1 _02 1 1 1 1 1
-02 00 02 04 06 08 10 12 -02 00 02 D4 08 08 10 12 -02 D0 02 04 06 08 10 12

EPENDABLE SOFTWARE 1 5 6
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Statechart Diagram

Every object takes a finite number of different states during its life.

State machine (=Statechart) diagram is used as follows:
— to model the possible states of a system or object
— to show how state transitions occur as a consequence of events
— to show what behavior the system or object exhibits in each state
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State

- States : nodes of the state machine [ S j

« When a state is active,
— The object (or system) is in that state.
— All internal activities specified in this state can be executed.
» An activity can consist of multiple actions.
« State operations

— entry / Activity(...)
« Executed when the object enters the state

— exit/ Activity(...) S
« Executed when the object exits the state entry/Activity(...)
— do / Activity(...) do/Activity(...)
@inActivity(...) D

« Executed while the object remains in this state

. Initial state - pseudostate
. : Final state - Real state
@ : Terminate node - Pseudostate

'DEPENDABLE SOFTWARE 1 6 O
AT



Transition

Change from one state to another

_‘ | DEPENDABLE SOFTWARE

e [g] / A{T\
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Transition : Examples

[ statel

\

entry/Activity1
exit/Activity2

.

/

event1/Activity3

S1 e1[g1]

S2

\

S$1 [g1]
do/A1

@

If eventl occurs

= Object leaves statel and Activity2 is executed
= Activity3 is executed

= QObject enters statel and Activityl is executed

If e1 occurs and g1 evaluates to true, a1 is
aborted and the object changes to s2

As soon as the execution of a1 is finished, a
completion event is generated; if g1 evaluates to true,

the transition takes place; If not, this transition can
never happen.
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Transition - Sequence of Activity Executions

» Assume 81 is active ... what is the value of x after e occurred?

N
( S1 e[x==4]/x=x*2 ( 52 w
entry/x=4 entry/x++
exit/x++ )

s1 becomes active, x is set to the value 4

e occurs, the guard is checked and evaluates to true

sl is left, x is set to 5

The transition takes place, x is set to 10

S2 is entered, x is set to 11
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Composite State

« Synonyms: complex state, nested state (—OR state)

 Contains other states — “substates”
— Only one of its substates is active at any point in time.
— Arbitrary nesting depth of substates

S3 e

)
e2 4 S1 A

s1.1/%%s]s1.2]8% e3

e3

2 ‘ | DEPENDABLE SOFTWARE 164
| y BORA



Example : Entering a Composite State

Executed
 Transition to the boundary S DL Activities
— Initial node of composite state is Beginning S3
activated.
e2 S1/81.1 a0-a2-a3-a4
it el/at
@®— exit/a0
—
e2/32 entry/a3
exit/ad
—> ——
. o4 S1.2 el
@ — entry/a4d —> entry/a7 —@© ——>@©
exit/ab exit/a8

DEPENDABLE SOFTWARE




Example : Entering a Composite State

E ted
 Transition to a substate Event State A’éﬁf,'i’tiis
— Substate is activated. Beginning S3
el S1/S1.2 a0-a1-a3-a7
S3 e1/a1
@®— exit/a0
—— 4 N\
e2/a2 entry/a3
exit/ad
S \4
[ S11 ed ed
@ > entry/ad4 ——> entry/a7 —>@ ——>@
kexit/a6 ) exit/a8

N

DEPENDABLE SOFTWARE

J
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Example : Exiting from a Composite State

E ted
- Transition from a substate Event phite e
Beginning S1/51.1 a3-a4
e3 S2 ab-a5-a2-a1
i S1 b
entry/a3 e5/a3
exit/as \l/
é ) 4 ™ ™
s14 ), (812 ), ( ”
@®—> @ > entry/ad ——> entry/a7 —>@® > entry/al —>@
exit/ab exit/a8
& J \. J " J
\_ J
e3/a2

DEPENDABLE SOFTWARE
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Example : Exiting from a Composite State

Executed
« Transition from the composite state 2L SELE Activities
Beginning S1/51.1 a3-a4
eb S2 ab-a5-a3-a1
g S1 A
entry/a3 e5/a3
exit/ad \I/
~ R f R e R
S1.1 el S1.2 el e3
@ > @ > centry/ad —> entry/a7 —@ > entry/al —>@
exit/ab exit/a8
- Y, . Y, . J
\_ J
e3/a2

DEPENDABLE SOFTWARE




Example : Exiting from a Composite State

Executed
« Completion transition from the SUE DELL Activities
composite state Beginning S1/S1.1 a3-ad
ed S1/51.2 a6-a7
e4 S2 a8-a5-a1
C S1 )
entry/a3 eb5/a3
exit/ad
~ A s R
S1.1 o4 S$1.2 4 e3
®— @ > cniry/a4 —>{entry/a7 —>® entry/a1 ®
exit/ab exit/a8
- J \_ /
\_ Y,

e3/a2

DEPENDABLE SOFTWARE
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Orthogonal State

« Composite state is divided into two or more regions separated by a dashed |
ine. (— AND State)

— One state of each reqgion is always active at any point in time,
— concurrent substates

« Entry: Transition to the boundary of the orthogonal state activates the initial
states of all regions.

« Exit: Final state must be reached in all regions to trigger completion event.

4 S1 N\

region A

() o-f) o) o ()

- (RO
o) ) )
- J

DEPENDABLE SOFTWARE 1 70
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Submachine State (SMS) | Sﬁ""&;]

To reuse parts of state machine diagrams in other state machine diagrams
Notation: state:submachineState

As soon as the submachine state is activated, the behavior of the submachi
ne is executed.

— Corresponds to calling a subroutine in programming languages

W grade \fr _
.e[ not graded J /k graded.gragt:-:O

i grade R
1 change _(
positive negative
)~ change |
\ Y,

DEPENDABLE SOFTWARE 1 7 1
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History State

 To remembers which substate of a composite state was the last active one

— Activates the “old” substate and all entry activities are conducted sequentially fro
m the outside to the inside of the composite state

 Shallow history state restores the state that is on the same level of the co

mposite state. @

- Deep history state restores the last active substate over the entire nesting

depth. @

| DEPENDABLE SOFTWARE 1 72
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Example: History State

f S4 )
o1 - S1 Event State
o 32 s1.2183 e5 ® Beginning S5
e10
E e S4/S1/S1.1
ed e’
o5 .9 g e2 S1.2
. ( )
. j 336 e10 S5
c 2 c
>(H* S3.2
N ’L e9 (H—) S1/S1.1
\_ J

I DEPENDABLE SOFTWARE 1 73
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Example: History State

f S4 )
o1 - S1 Event State
o 82 s1.2|€3 e5 ® Beginning S5
e10
b e S4/S1/S1.1
ed e’
o5 | &9 e e2 S1.2
. ( )
. j 336 e10 S5
¢ ) ¢
>(H* S3.2
N ’L e8 (H*—) S1.2
\_ J

| DEPENDABLE SOFTWARE 1 74
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Example: History State

4 S4
e1 ( S1
P e2 $1.2 e3 e5 ®

e10 Y

e4 e’

o> s5 | @)
j S3
e8 >@ eb S3.2
=

Event State
Beginning S5
e9 (H—) S1/S1.1
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Example: History State

4 S4
e1 ( S1
P e2 $1.2 e3 e5 ®

e10 Y

e4 e’

o> s5 | @)
j S3
e8 >@ eb S3.2
=

Event State
Beginning S5
e8 (H*—) S3/S3.1
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More Examples : Vending Machine

?

Idle W
entry / amount := 0
do / display(greeting)

insert(c:Coin)

Accumulate insert(c:Coin)

entry / amount := amount+c.amount
do / display(amount)

select(i:ltem)[amount is enough for i]

( Vend h

entry / amount := amount-i.cost J

do / dispense(i); display(vending)

[amount > 0]

MakeChange
&jo / return(amount) )

LABORATORY
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More Examples : Keyboard

(" keyboard
main_keypad : numeric_keypad
® ’/ default N\ : ’/ numbers Y
tI’«NY KEY : NUM KEYJ
CAPS_LOCK | - NUM_LOCK
(ANY KEY CAPS_LOCK : ‘NUM_KEY NUM_LOCK
l l |
caps locked T\ : 4 arrows N\
|
€ Ji1 C J |

EPENDABLE SOFTWARE 1 7 8
B



More Examples : Cruise Control System

offBtnClick

#BtnClick
onBtnClick|  |© o o"C

( Idle

offBtnClick

cancelBtnClick

offBtnClick entry / speed := undefined
setBtnClick
cancelBtnClick
offBtnClick cancelBtnClick

( SetCruisingSpeed ‘

entry / speed := currentSpeed

cancelBtnClick

setBtnClick \I/
MaintainSpeed

do / maintain(speed) setBtnClick

resumeBtnRelease setBtnRelease
Accelerate Decelerate
do/ accelerate | resumeBtnPress setBinPress | 45 / decelerate
brake
resumeBtnClick clutch
setBtnClick
Suspended
offBtnClick

entry / releaseControl cancelBtnClick

' DEPENDABLE SOF TWARE
1 ?‘ LABORATORY

(o)

onBtnClick

offBtnClick

4 Idle h

try / d := undefined
\enry spee undefine )

setBtnClick

cancelBtnClick

4 Cruising

setBtnClick ( SetSpeed

L o

kentry / speed := currentSpeed J

resumeBtnRelease

MaintainSpeed

do / maintain(speed)

resumeBtnPress

Accelerate

l do / accelerate ]

resumeBtnClick

brake
clutch

( Suspended w

Qantry / reIeaseControu

setBtnPress

setBtnRelease

Decelerate

l do / decelerate l
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Statechart Modeling - CVM

* Let’s perform the Statechart modeling for CVM (Coffee Vending Machine).
— Consisting of one or several control SW(s) and various HWs

* Modeling tool:
— StarUML

— YAKINDU Statecharts
- S0oleraHd

ﬂ

0
n
n
w
' 4
4,
7]

* Modeling features
— Common CVMs
— 5 different coffees with different value : input
— Coins : 50, 100, 500, 1000 : input
— Refund : output
— Out-of-services : output
— Vending : output

o]

182



CVM - A Draft Architecture

CVM Software

Button Control

SW Button HW

SW

Control Coin Control

SW Coin HW

Display Control

SW Display HW

Production Control Production
SW HW

EPENDABLE SOFTWARE 1 8 3
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CVM - A StarUML Example

CVM System

NESRYL

event [cond] / actions

N #® A E HEY

Coin COntrol )

entry/OpaqueBehaviorl
entry/Activityl

EPENDABLE SOFTWARE 1 84
LABORATORY



K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 1 8 5
LABORATORY



R

Example : 71| X}E7] 23 (YAKINDU Statecharts)

bar s

[ ]
1
o
1 (]
1
on_sparation
L ]
. [ ]
} L ]
Cpamtien_stwy 1
¥ ¥ | S Alarms_ef?
3 ¥ ¥ i (]
—F

e

Bll_rllke

1 r 1
Coffes_tpeciaiMili Coffea_mlik Coffee_ipaciniBlaci

]
Hix_milk:
< 150 e

- raiew

ey

rafung a2 |

a LABORATORY T
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YAKINDU Statechart Tool

*  YAKINDU statechart tool
— https://www.itemis.com/en/yakindu/state-machine/

it Services  Products  Company  Blog  Career Contact

o =)
b YAKINDU statecuart TooLs Home  Documentation  Licenses  Training  Community  Download

the concept of state machines
|Ll DOWNLOAD NOW <+ | BUY A LICENSE

-
e ®-
Editin ' L
2 &
YAKINDU S ools features an intuitive combination of graphical and textual notation for modeliing state diagrams. While states Ly S——— @~
n, all declarations and actions are specified using a textual notation . e
2 usability of ¢ ditor s simply fascinating 1 | e

EPENDABLE SOFTWARE _ b w———
LABORATORY . , B (e




Example : 71| X}E7] 23 (YAKINDU Statecharts)

)

Off state

L ]
on
L]
1
Cob_mgks [ Coaarmtco_wges
.
— .
1
Ean_stay ]
o —
¥
ek s
Cein_step
= i
s
axuenned
ERIE R

DEPENDABLE SOFTWARE
LABORATORY

4
¥

SENSEIAZAE [maEtre e 2 3E

1
Coffea_rzaciuiMili

PRSES

Cpamtien_stxy

3
Mix_rilic

- 2 157 am e

Refund state

On state
(4 orthogonal region)

n_cpention

1
1
Coffae_spaciaiBiack
Sezal ez
L
L
ezt et - 50
e L L T

* vt mgen

w2
o
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It consists of 2 state and 1 orthogonal state (with 4 region)
— 1. Off state
— 2. Refund state

— 3. Operation state (orthogonal state)
- &7 (Coin_region)
« ZZ (Operation_region)
- H3Z (Material_region)
- L2 (Alarm_region)

KU

KONKUK
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Hu| Xpeo| 22

EPENDABLE SOFTWARE
LABORATORY

Definition of the event and variable
— Each event has a valuable data type

@CycleBased(200

interface start
in event cn
in event off

interface user:
in event insertCoin : integer
in event refund
in event specialMilk
in event milk
in event specialBlack
in event alarm

interface machine:
var currentCaoin : integer
var currentMilk : integer = 1000
var currentWater :integer = T0C0

var currentCoffee © integer = 500
var stay : boolean = false

interface manager:
in event fillWater : integer
in event fillCoffee : integer
in event fillMilk : integer
in event stop
in event start

/f Define events and

/f and variables here.

KU

KONKUK
UNIVERSITY
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Off state

o  XHEZ|9| off 2T E HEA|
— Start eventE £l A off/operation state 22| M %t &

|

Off

start.on start.off

EPENDABLE SOFTWARE 1 9 1
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On_operation state - Coin_region

« AHHVIAMES ?I2 ST & 2 region
Stay & EffO| M QK| = &) 7t
¥
4 Coin_region
@
userinsartCoin / mechine.cumentCoin = l

machine.currentCoin+valueof({userinsertCoin)
[ e

3 [ 1

menagerstopmanalger.star

¥
Coin_stop

S -EQDEPENDABLE SOFTWARE 1 9 2
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On_operation state - Operation_region

L—

- A 0N F=ES Rl

DEPENDABLE SOFTWARE
LABORATORY

- 35/2l O F= (spec
TE OMEQ mz

- Mz 55 A &€& O

ilk, milk, specialBlack)

S Ol [
AL =

O X4
28 Azt o|=0f 2=

==

T =

X|SH
o

L—

“ Opesration_region

machine.

]
Mix_water

us=relarm; machine stay = tus
|

ry 35 [machind current)
rmachine cur=ntiater
LS
Mix_milk
entry [machine.curentMik <
machine.stay = trus

=very 3s [machine
¢ machine.currer

entry / machine. currentCain -

currentCaffes -= 20; fachine.sta,

——
" +
uzer spcialMilk [machine camkniCoin == 300]
r
Coffes_specialMilk
Special_milk
L]
Prepare_coffee
sntry [machine curentioffes < 20] / rais
uzeralarm; machine stay = tue
after 25

mvery Zx [machine curentCofTd= == 20] /

entry [machine.cumentiWater < 10] /raise

0: machine stay = false

Operation_stay

uszrmilk [machine.currentCoin >= 200]

Caffes_milk

Milk

L]
Prepare_coffee
entry [machine. currentCaffes < 10] / rais

uzeralarm; machinz.stay = truz

mvery 2s [machine curentCoffas
machine curentCoffes -= 10; mach
arer 22
L}
Mix_water

=ntry [machine. currentiater < 10] /
useralam; machine sty = truz
1

stay = false

=nitry [machine.currentMilk < raize Lz=ralamm;
machine stay = true

mvery 3= [machine currentHilk] 1
{ machine currentMilk -= 10; fachine stay = fals
r
end
=ntry  machine.currentCoin -= 200

userspecialBiack [machine.crentCoin > = 500]

L]
Coffes_specialBlack

Special_black

]
Prepare_caffee
=ntry [machine currentCoffes < 30] /

userelarm; machine. stay = truz

mvary 25 [machine cumentioffas = 20]
machine cumentCoffes -= 20; fnachi

7 [ = falze

entry [machine. curr=ntih
uzeralarm; machine stay = truz

currentiWater - machine.stay = falzz

entry / machine currentCoin

KU

KONKUK
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On_operation state - Operation_region

* An example of the specialMilk

D EPENDABLE SOFTWARE
i LABORATORY

afte

r 2s

user.specialMilk [machine.clirrentCoin >= 300]

Coffee_specialMilk

Special_milk

Prepare_coffee

entry [machine.currentCoffee < 20] / raise
user.alarm; machine.stay = true

every 2s [machine.currentCoffee >= 20] /
machine.currentCoffee -= 20; machine.stay = false

Mix_ water
entry [machine.currentWater < 10] /raise
user.alarm ; machine.stay = true

every 3s [machine.currentWater >=10]
/ machine.currentWater -= 10; machine.stay = false

Mix_ milk
entry [machine.currentMilk < 10] /raise user.alarm;
machine.stay = true

every 3s [machine.currentMilk >= 10]
/ machine.currentMilk -= 10; machine.stay = false

end
entry / machine.currentCoin -= 300
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On_operation state - Material _region

- M= 2= £H region
— Coin_regionS stopl 2 HAE Z Xz 2= 7

ot

@
Fill_coffee
entry /machine.currentCoffee +=
valueof (managerfllCoffee)
Fill_milk
entry /ma chine.currentMilk += )
valueof (managerfllMilk) after 4s / raise manager.start
managerfillCoffee / raise managerstop
after 4s /|raise managerstart
managearfllMilk / raise managerstop ?
Y

2- Material_stay

1-—

managerfillwater /raise nmanagersto

aftern 45 / raise managerstart

Fill_water
entry /machine.curentWater +=
valueof (managerfillwater)

;’JJEPENDABLE SOFTWARE 1 9 5
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On_operation state - Alarm_region

« Alarm 23 region

- ZHOIHME = SF A|Zh = off

L

Alarm_ off

user.a
f‘d EIR%F 10s

Alarm_on

| DEPENDABLE SOFTWARE 1 96
| BOR,



Refund state

. 2= event, ME 5

= eventl| 2} 2HE

LI SL= state

every 60s [machine.staly ==

every 60s [machine

.stay == true]

every 60s [machine.stay == true]

197
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Simulation

« Start simulation

& i - Colfes_mchine/model /et mainct - YAKINDU 5
Fa Tait Disgeam Navigite Search Froject Run Window Help

K KONKUK
UNIVERSITY

- =] =

QY Q- Q= il e - o - [T o TR Y| [wsick access| | g | WY@
{5 Project Explorer 1 = 0 % coffeemansct i g buldproperties o defmltsgen  [1] Coffes, il [1) Kofte = 0 S outine ) Simulation 5
E S ™ b "% Statechat colfes_main - male
+ L Coffes maching 1 coffer_main el o R — o
B oylellined? l_r
Hame walue
inberiace stut st | mam min
—_— e |
in event off — ] P wEs
imetace e T : : : i
In event insersCoin : integer
in event refund ) ) ) ) —_
I cvent speciiMI R - e e o 3¢5 [T R R
in event milk. -
in event specialilack ] g
in event alarm Comtlon_sppei i itn ot Tt _sper ek
interface mazhine. Eaiasbap v - sy c
VaF CuentCoin - inbager . - el
var cumentMilk - integer = 1 — H ==
VAP uMERTWATe © Integar 1
var cumentCerfie | integer = + N
o e 4 T S— — T — T -
tikiom; macisa i @ il maahivm ey s : b ey s
I — a L B
T et e - nckger e 1) riey o ot erasncum e
in event llCtes : i e aerCatn s 3 pashi ar » tone Pt v maines sorwente 28 35
in event SIIMI : Intiger Al -
i Y meter G
S .
e ®
A=l =y e
i ®
e |
atn s o T o -
[ ——
T acrira et w15 s sy w Tea I -
=
£ B e e B sy merg e e
e i (e, o
e
s
Yo 1 o 40 s i w8 i}
L e
v
€ 3
[T Propesties =2 |f v
*. Statechart coffee, main
Motlel fuart Mamm: Docurrenaton s
Diagram | |<ctee,main
= Suatechart domain | w

EPENDABLE SOFTWARE
LABORATORY

199



I; UNIVERSITY

Simulation > U Es| B e

coffee_main [active] ~| @ 00:00:07.600

Mame Value

W §} st
F on

* Insert the event and value in simulation proper _' =

W=
F insertcoin 0
F refund .
F L:;!:Elmnk Event with value
F milk
F specialBlack
F alarm

v =} machine
¥} currentCoin ]
(%} currentMilk 1000
[x} currentWater 1000
(x} currentCoffee 500
=} stay [] false

v =} manager
fllwa

fillCoffes o}

' ter o}
- fillMilk [1]

+

w1

n
fu IQ
= =1

I
v =} time events

|'. Coffee specialMilk_time event 0

|'. Prepare coffee time event O

|'. Mix_water_fime event 0

|'. Mix_milk_time event 0

|'. end time event 0

|'. Coffes_milk_time_svent_ O

|'. Prepare_coffee_time_event 0
e Mixw
|'. Mix_milk_time_event 0
|'. end_time_event 0

|'. Coffee_specialBlack_time_event 0
|'. Pre| coffes time_event

|'. Mix_water_time_event_0

|'. end_fime_svent 0

|'. Fill_water_time_svent_0
|'. Fill_milk_time_gvent 0
|'. Fill_coffes time_event 0
|'. Alarm_cn_time_event 0
F@ refund_time_event 0

EPENDABLE SOFTWARE 2 0 O
LABORATORY

ater time_event 0

-
U
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Simulation

" ws - Coffes machine/madel/coffes_main.sct - YAKINDU SCT

LABORATORY

Filt Edit Diagram Mavigate Segrch Project Bun Window Help
N EHEIYiRO Qg i B o o - BRI 7 (Ao | B Hi | & 28 [ < E -
Iy Progect Explocer i = 0O % coffes mansct = | g buldproperties o defaultsgen 4] Coffee s 14 KCoffee s =0
B% T » % Smtechan coffee main
» 2 Cofies maching 4 cottee main i 3
@ Cyclelacnd]100)
Interface starc .
in event on 4 H
i e i ! State representation in
Interface user _] M .
in event insertCon : integer — = SlmUIatlon
in event rifund
I event specialhile
In event milk —
in event specialilack - — — ——
in event alarm
interface machane: -
WP CLITEnEC o intiger ==l ._l p—— T
war cumentMilk. | integes = T ] —
Var curentWater : integer r . Entry
wvar curentCoffes : integer = P S ——— e oo e o2 =
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Interface start
in event on
in event off

Interface user
in event insertCoin : integer
im event refund
In event specialhil
In event milk
in event tpecislilack
in event alarm

interface machine:
ar currenice
war currentMilk |
Var curentWater © integer

wvar curentCoffes : integer = 500

var stay * bockean = faka

Interface manager:
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Interface user
in event insertCoin : integer
im event refund
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In event milk
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Simulation [4/4]
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Introduction to SMV



Model Checking

Model b - YES
otei ]

Property Checking tool NO
W Counter Example

Over flow

* Model checking
— An automatic technique for verifying properties of a finite model of a system.

* General approach:

— Construct M < a model of the behavior of the system
(given as kripke structure, finite automata). M must be finite.

— Specify @ < a property expected of the system (given as Temporal Logic)
— Check that M satisfies ¢, if not, produce counter-example.

« Examples of model checking tools:
— SMYV, SPIN, UPPAAL, Kronos

| DEPENDABLE SOFTWARE 2 O 8
| BOR,



SMV: Symbolic Model Verifier

 Ken McMillan
— Symbolic Model Checking: An Approach to State Explosion Problem, 1993

 Modeling Language
— Modularized and hierarchical descriptions e o i G i s e
— Finite data types: boolean, enum, int, etc. | L,,||""' |
— Array, loops, if-close, etc.
— Non-determinism, parallel execution

* Property specification Language e EEE -
— CTLand LTL
— safety, liveness, deadlock R
 Fairmess

.+ Cadence SMV: command line and GUI for s
Windows / Linux / Sun-OS == e
— Other SMV versions: CMU-SMV, NuSMV
209
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NuSMV

 Re-implementation at IRST

« http://nusmv.fbk.eu/

EPENDABLE SOFTWARE
LABORATORY

NuSMY: a new symbolic model checker

e NUSMYV 2.6.0 is OUT!

neanUXmv 1.0.0 a new symbolic model checker for the analysis of
synchronous finite-state and infinite-state systems is OUT

NuSMV 2.6.0 is a major release that comes after four years passed working under the surface. The release provides some
new features, many bug fixes and optimizations, and substantial differences in the software architecture and building
system.

Follow this link to retrieve a copy.

Read the announce for NuSMV 2.6.0.
Read the announce for NuSMV 2.5.4.
Read the announce for NuSMV 2.53.
Read the announce for NuSMV 2.5.2.
Read the announce for NuSMV 2.5.1.
Read the announce for NuSMV 2.5.0.
Read the announce for NuSMV 2.43.
Read the announce for NuSMV 2.4 2.
Read the announce for NuSMV 2.4.1.
Read the announce for NuSMV 2 4 0
Read the announce for NuSMV 2.3.1.
Read the announce for NuSMV 2.3.0.
Read the announce for NuSMV 2.2.5.
Read the announce for NuSMV 2.2 4.
Read the announce for NuSMV 2.2.3.
Read the announce for NuSMV 2.2.2.
Read the announce for NuSMV 2.2.7.
Read the announce for NuSMV 2.2,
R.ead the announce for NuSMV 2.1.
Read the announce for NuSMV 2.

Links to some projects using NuSMV

NuSMYV 2 is OpenSource!

New versions of NuSMV are distributed under the LGPL v2.1 license. This 1s an Open Source license that allows free
academic and commercial usage of NuSMV. For further information follow this link.

ﬁ Overview

WS RAL ie a crrmbhinlic maadal chaclrar dar-alanad ae 5 indat seadact hatiraan-




Running NuSMV (Interactively)

e NuSMYV -int
— Runs NuSMV in interactive mode

 read_model —i <filename>
— Reads a system spec. from file

° go

— Builds the internal representation of the model

« check _fsm
— Checks whet

« compute_reachable
— Computes set of reachable states first

— The model checking algorithm traverses only the set of reachable states instead of
complete state space.

— Useful if reachable state space is a small fraction of total state space

« check_ ctispec [check_lItispec]
— Checks all the CTL properties [LTL properties] included in the file



A Sample SMV Program

recuest = false | contrel =
ready (R)
. J

MODULE main
VAR
request: boolean;
state: {ready, busy};
ASSIGN
init(state) := ready;
next(state) :=
case
state=ready & request: busy;
1: {ready, busy};
esac;

LTLSPEC G(request -> F (state = busy))

raguast = trua

212



NuSMV

NuSMYV provides:
1. A language for describing finite state models of systems

» Reasonably expressive
» Allows for modular construction of models

2. Model checking algorithms for checking specifications written
in LTL and CTL (and some other logics) against finite state
machines.



A first SMV program

MODULE main

VAR
b0 : boolean
ASSIGN
init(b0) := FALSE;
next(b0) := 1b0;

An SMV program consists of:

» Declarations of state variables (b0 in the example); these
determine the state space of the model.

» Assignments that constrain the valid initial states
(init(b0) := FALSE).

» Assignments that constrain the transition relation
(next (b0) := !b0).



Declaring state variables

SMV data types include:

boolean:

X : boolean;

enumeration:

st : {ready, busy, waiting, stopped};
bounded integers (intervals):

n : 1..8;

arrays and bit-vectors

arr : array 0..3 of {red, green, blue};
bv : signed word[8];



Assignments
initialisation:
ASSIGN
init(x) := expression ;

progression:

ASSIGN
next(x) := expression ;

immediate:

ASSIGN
y = expression ;

or

DEFINE
y := expression ;



Assignments

» If no init() assignment is specified for a variable, then it is
initialised non-deterministically;

» If no next() assignment is specified, then it evolves
nondeterministically. i.e. it is unconstrained.

» Unconstrained variables can be used to model nondeterministic
inputs to the system.

» Immediate assignments constrain the current value of a
variable in terms of the current values of other variables.

» Immediate assignments can be used to model outputs of the
system.



Expressions

expr = atom
number

id

Lexpr

expr > expr
exprexpr]
next(expr)
case_expr
set_expr

where € {&, |, +,—-,%,/,=,1=,< <= ..

symbolic constant
numeric constant
variable identifier
logical not

binary operation
array lookup

next value

3



Case Expression

case_expr ::=
case
exXprq; :  expryi;

EXPlran  E€XPrpn;
esac

» Guards are evaluated sequentially.

» The first true guard determines the resulting value



Set expressions

Expressions in SMV do not necessarily evaluate to one value.

» In general, they can represent a set of possible values.
init(var) := {a,b,c} union {x,y,z} ;

» destination (lhs) can take any value in the set represented by
the set expression (rhs)

» constant c is a syntactic abbreviation for singleton {c}



LTL Specifications

» LTL properties are specified with the keyword LTLSPEC:
LTLSPEC <1tl_expression> ;

» <1tl_expression> can contain the temporal operators:
X_ F_G_ _U_

» E.g. condition out = 0 holds until reset becomes false:
LTLSPEC (out = 0) U (!reset)



ATM Example

MODULE main
VAR
state: {welcome, enterPin, tryAgain, askAmount,
thanksGoodbye, sorry};
action: {cardIn, correctPin, wrongPin, ack, cancel,
fundsOK, problem, none};

ASSIGN
init(state) := welcome;
next (state) := case
state = welcome & action = cardIn : enterPin;

state = enterPin & action = correctPin : askAmount ;

state = enterPin & action = wrongPin . tryAgain,
state = tryAgain & action = ack . enterPin,
state = askAmount & action = fundsOK : thanksGoodbye;
state = askAmount & action = problem . sorry,;
state = enterPin & action = cancel : thanksGoodbye;
TRUE : state;

esac;

LTLSPEC F( G state = thanksGoodbye
| G state = sorry

);




Running NuSMV

Batch
$ NuSMV atm.smv

Interactive

$ NuSMV -int atm.smv
NuSMV > go

NuSMV > check_ltlspec
NuSMV > quit

» go abbreviates the sequence of commands read_model,
flatten_hierarchy, encode_variables, build_model.

» For command options, use -h or look in the NuSMV User
Manual.



Expected Failure

NuSMV > check_ltlspec
-- specification F ( G state = thanksGoodbye
| G state = sorry) is false

-— as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-

state = welcome

input = cardln
-> State: 1.2 <-

state = enterPin

input = correctPin
-— Loop starts here
-> State: 1.3 <-

state = askAmount

input = ack
-> State: 1.4 <-



Unexpected Failure

—-— specification
( F ( G !'(state = askAmount)) ->
F ( G state = thanksGoodbye | G state = sorry))
is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 2.1 <-
state = welcome
input = cardIn
-- Loop starts here
-> State: 2.2 <-
state = enterPin
input = ack
-> State: 2.3 <-



Success

—-— specification
cardIn) &

( G (((state = welcome -> F input
(state = enterPin ->
F (state = enterPin &
(input = correctPin | input = cancel)))) &
(state = askAmount -> F (input = fundsOK
| input = problem))) ->
F ( G state = thanksGoodbye | G state = sorry))
is true



CHWINDOWSHsystem3 2% cmd.exe

iUz ersWIUNEEOM YOO=Mu=SMY ATH, smw

wxx This iz NuSMY 2 .8.0 (compiled on Wed Oct 14 15:37:51 2015)

#»#» Fnabled addons are’ compass

xxx For more information on MuSMY see <htte!//nusmy. fhk . eu>

wax or emall to <nusmv—users@)ist.thlk,eu,

##xx Plegzse report bugs to <Flease report bugs to <nusmv—users@fbk eu>=

wxx Copyright (c) 2010-2014, Fondazicne Bruno Kessler

xxx This wersion of MusMY is |inked to the CUDD |ibrary wersion 2.4.1
wxx Copyr jght (o) 1995-2004, Regents of the University of Colorado

wox This wersion of MusMY is linked to the Minisat AT solwver,
waw Ses httpl S minisat . se/Minisat html

wxx Copyright (o) 2003-20068, Miklas Een, Niklas Sorensson

=xx Copyright (o) 2007-2010, Miklas Sorensson

— specification F { G state = thanksGoodbye | G state = sorry) s false
—— as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Tvpe! Counterexample
= State:r 1.7
state = welcome
action = cardln
- Stater 1.2 <-
state = enterPin
action = correctPin
— Loop starts here
- Stater 1.3 <-
state = askimount
action = ack
== Stater 1.4 <-
— specification ( F ( G '{state = askémount)) -> F { G state = thanksGoodbwe | G state = sorry))  is false
—— as demonstrated by the fol lowing execution sequence
Trace Description: LTL Counterexample
Trace Twpe: Counterexample
- State: 2.1 <-
state = welcome
action = cardln
— Loop starts here
== Ltate: 2.2 <-
state = enterPin
action = ack
—> Ltate: ¢.3 <-
— specification [ G (((state = welcome -» F action = cardln) & (state = enterFin —> F (state = enterPin & (action = correctPin | action =
cancel 131} & (state = askdmount —> F (action = fundsCK | action = problem))) —> F { G state = thanksGoodbwe | G state = sorrv))  is true

C #lsersWIUNBEOM YOO




Modules

MODULE counter
VAR digit : 0..9;
ASSIGN
init(digit) := O;
next(digit) := (digit + 1) mod 10;

MODULE main
VAR cO : counter;
cl : counter;
sum : 0..99;
ASSIGN
sum := cO.digit + 10 * cl.digit,

» Modules are instantiated in other modules. The instantiation is
performed inside the VAR declaration of the parent module.

» In each SMV specification there must be a module main. It is
the top-most module.

» All the variables declared in a module instance are visible in the
module in which it has been instantiated via the dot notation
(e.g., cO.digit, cl.digit).



Modules

MODULE counter
VAR digit : 0..9;
ASSIGN
init(digit) := O;
next(digit) := (digit + 1) mod 10;

MODULE main
VAR cO : counter;
cl : counter;
sum : 0..99;
ASSIGN
sum := cO0.digit + 10 * cl.digit,

LTLSPEC
F sum = 13;

» Is this specification satisfied by this model?



—-— specification F sum = 13 1is false

-— as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

-— Loop starts here

-> State: 1.1 <-
cO.digit = O
cl.digit = O
sum = 0O

-> State: 1.2 <-
cO.digit = 1
cl.digit =1
sum = 11

-> State: 1.3 <-
cO.digit = 2
cl.digit = 2

sum = 22



B¥ C:HWINDOWSHsystem32Wemd.exe
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Modules with parameters

MODULE counter (inc)
VAR digit : 0..9;

ASSIGN
init(digit) := O;
next(digit) := inc ? (digit + 1) mod 10

: digit,
DEFINE top := digit = 9;

MODULE main
VAR cO : counter(TRUE);
cl : counter(cO.top);
sum : 0..99;
ASSIGN
sum := cO.digit + 10 * cl.digit,

» Formal parameters (inc) are substituted with the actual
parameters (TRUE, cO.top) when the module is instantiated.

» Actual parameters can be any legal expression.
» Actual parameters are passed by reference.



-- specification F sum = 13 1is true

B 1% CwWINDOWSwsysten32wcmd.exe - O Y

ed Oct 14 15:37:51 2015)

ol Snusmey, Thk e




Summary

» Introduction to NuSMV

» H&R Section 3.3

» NuSMV Tutorial:
http://nusmv.fbk.eu/NuSMV/tutorial/v26/tutorial.pdf

» NuSMYV Start-up Guide on FV Web Page

» Next time:
» Introduction to the practical exercise.
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NuSMYV Verification



K

KU v

The NuSMV Verification - CVM

* Let’s perform the NuSMV verification upon CVM (Coffee Vending Machine).

 Modeling :
— The SMV input program (.SMV) e e e |
— Use your Statecharts model as a base reference.

« Formal Verification : —

— Use NuSMV or Cadence SMV

» Properties to verify
— Deadlock freeness
— Basic functions
— Important functions

. 10092 91 AHWS 20, ¥4 ALt L2 |
. CEXS YK RO, AW} M2 LtRX| Lt The Cadence SMV

« “100¥= @1 U35 +2H, Y EA] HL30]| Lt2LC}”

- 2ES FEH 2 590| ghEEl0t
« ‘Mt gl M= 2HE AHU|7 LIRA| =0}
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Verification with symbolic model checker

e NuSMV

— NuSMV is a reimplementation and extension of SMV, the first model checker
based on BDDs. NuSMV has been designed to be an open architecture for
model checking, which can be reliably used for the verification of industrial
designs, as a core for custom verification tools, as a testbed for formal
verification techniques, and applied to other research areas.

main

state : {off, On

3 1 .
=" e _— : 7 current_coin

= s alarm_tim mer();
= - . i ] chec state, current_coin);
e Manual Transformation mﬂ:atﬁi;l{?'_‘m-*-lm'i"m-‘-=
—rten ey i olHd 2= A xS SR T
T (ET ='1'-l-)
: ® init(state) := off;
? next(state) :=
state = off & onoff_command = TRUE : O
- ] state = On_operation & onoff_command =

st = On_operation & refund_command =
state = refund : On_operation;
E : state;

next(current_coin):=

state = off | state = On_operation : current_coin;
state = refund : @;

A B

[V DEPENDABLE SOFTWARE

|

EF (state = off -» state = On_operation)

EF (state = On_operati -» current_coin != @)

AF (alarm_on.alarm_on = TRUE -»> alarm_on.alarm_on = FALSE)
AX (state = refund -» current_cein = @)

coin(machinestate, current_coin)
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S

MODULE coin

- Coin 2| S7H& 20| Cligt 2=
— §7r o 100, 500, 1000 & MEHSIO 57}
== Al AL 7tH0| A H A

EPENDABLE SOFTWARE
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[

coin(machinestate, current_coin2, coffee_command)

coin_value : {©, 100, 508, 1600};
coin_reduce : {©, 200, 300};

init(coin_value):=

next(coin_value):

machinestate
TRUE : O,

2

init(coin_reduce):
next(coin_reduce):

machinestate =
machinestate =

machinestate
TRUE : ©;

2

main.current_coin

e;

On_operation : {@, 1@, 5ee, 16e6};

o;

On_operation & coffee_command specialMilk:

On_operation & coffee_command = milk: 2086;
On_operation & coffee_command black: 3©8;

:= current_coin2 + coin_value - coin_reduce;

240



MODULE timer

e Alarm?| timer

— 1000 cycle & S & ST = timeout M &

'g‘ EPENDABLE SOFTWARE
5

LABORATORY

timer

time : ©..1009;

init(time)
next(time)

timeout_alarm

_Ej;

(time + 1)

= time

KU v
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MODULE alarm

. ME BE= Al A2 OISt R E
— M= E=0| TRUEY &2 alarm on
— X A|Zt O|Z (timeout) off 2 T2t

alarm(material_lack, timeout)

alarm_on : boolean;

init(alarm_on)

next(alarm_on)

material lack = TRUE : TRUE;
timeout.timeout_alarm = T
TRUE : FALSE;

2

i lhff“‘

() DEerPENDABLE SOFTWARE
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MODULE main

« Vending machine2| main

AKX Aol AEH 22| (off, on_operation, refund)
A Ao HE XE (water, milk, coffee, coin)
C}2 MODULE process (timer, alarm, coin)
CommandOf| 2} 2 Elf H3} (onoff, refund, coffee)
AL =0 HE HEf Hat 2 2 HE
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MODULE main [VAR]

. FSME 1Mdl= ZE QA E VariablesE B3|}
— External Events / Internal Events
— State Variables / States
« 2t H=0 CH3 ASSIGNS Ol BtLCt,
— AssignO| 8= #H== randomdt#| (nondeterministic) 440| & & L|Ct.

state : {off, On_operation, refund};

onoff_command : boolean;

refund_command : boolean;

material lack : boolean;

coffee_command : {NONE, specialMilk, milk, black};

alarm_timeout : process timer();
coin_check : process coin(state, current_coin, coffee_command);
alarm_on : process alarm(material lack, alarm_timeout);

current_water: ©..1600,
current_milk: ©..1000;
current_coffee: ©..1000;
current coin : 6..2000;

| B Y
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MODULE main [ASSIGN]

init(state) := off;
next(state) :

state = off & onoff_command = TRUE : On_operation;
state On_operation & onoff_command = FALSE : off;
state On_operation & refund_command = TRUE : refund;
state refund : On_operation;

TRUE : state;

El

init(current_milk) := 1e60;
next(current_milk)

current_coin >= 300 & state = On_operation & coffee_command specialMilk & current_milk >= 2@ : current_milk - 280;
current_coin >= 200 & state = On_operation & coffee_command = milk & current_milk >= 18 : current_milk - 18;

state = On_operation & coffee_command = specialMilk & current_milk < 20 : current_milk;

TRUE : current_milk;

2

init(current_water) := 1000;
next(current_water)

current_coin >= 380 & state = On_operation coffee_command = specialMilk & current_water >= 28 : current_water -
current_coin >= 300 & state = On_operation coffee_command black & current_water >= 20 : current_water - 28;
current_coin >= 200 & state = On_operation coffee_command = milk & current_water >= 2@ : current_water - 20;
TRUE : current_water;

2

init(current_coffee) := 1000;
next(current_coffee)

current_coin >= 300 & state = On_operation coffee_command = specialMilk & current_coffee >= 20 : current_coffee
current_coin >= 300 & state = On_operation coffee_command black & current_coffee >= 38 : current_coffee - 30;
current_coin >= 200 & state = On_operation coffee_command milk & current_coffee >= 10 : current_coffee - 18;
TRUE : current_coffee;

3
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MODULE main [ASSIGN]

init(coffee_command) := NONE;
next(coffee_command)

state = On_operation : {NONE, specialMilk, milk, black};
state = On_operation : NONE;
3
init(material_lack) := FALSE;
next(material lack)

current_milk < 10 | current_coffee < 18 | current_water < 20 : TRUE;

coffee_command = black & current_coffee < 38 : TRUE;
coffee_command specialMilk & (current_milk < 2@ | current_coffee < 20)
TRUE : FALSE;

2

init(current_coin) := 9;
next(current_coin):=

state off | state = On_operation : current_coin;
state refund : ©;

2

A B
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MODULE main [SPEC]

EX TRUE

(state
(state

off -> state On_operation)
On_operation -> state = off)

(state
(alarm_on.alarm_on
(state

On_operation -> current_coin != @)
TRUE -> alarm_on.alarm_on
refund & current_coin != @ -> current_coin

FALSE)
@)

300 & state =
508 & state =

(current_coin =
(current_coin

(current_milk 1000 & state
(current_coffee leee & state
(current_coffee < 30 & state

(current_milk < 20 & state

On_operation & coffee_command

On_operation & coffee_command =
On_operation & coffee_command

On_operation & coffee_command
On_operation & coffee_command
On_operation & coffee_command

KONKUK
UNIVERSITY

KU

specialMilk -> (current_coin
black -> (current_coin 200))

e))

specialMilk -> EX(current_milk = 980))
black -> EX(current_coffee = 9708))
black -> alarm_on.alarm_on =TRUE)
specialMilk -> alarm_on.alarm_on =TRUE)

- gspecification AG (EX TRUE) is true

- specification EF (state = off -> state = On_operation) is true

- specification EF (state = On_operation -> state = off) is true

- specification EF (state = On_operation -> current coin 1= 0) is true

- specification AX ((state = refund & current coin = 0) -> current coin = 0) is true

- gpecification AX (((current coin = 300 & state = On_operation) & coffee command = specialMilk) -> current coin = 0) is true

- specification AX (((current coin = 500 & state = On_operation) & coffee command = black) -> current coin = 200) is true

- specification AF (((current milk = 1000 & state = On operation) & coffee command = specialMilk) -> EX current milk = 980) is true
- specification AF (((current coffee = 1000 & state = On_operation) & coffee command = black) -> EX current _coffee = 970) is true

- specification AF (alarm on.alarm on = TRUE -> alarm on.alarm on = FALSE) is true

- gpecification AG (((current coffee < 30 & state = On_operation) & coffee command = black) -> alarm on.alarm on = TRUE) is true

- gpecification AG (((current milk < 20 & state = On_operation) & coffee command = specialMilk) -> alarm on.alarm on = TRUE) is true
;’I}EPENDABLE SOFTWARE 247
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CTL property

([} CTL SPEC Description
1 SPEC AG EX TRUE Deadlock
2 SPEC EF (state = off -> state = On_operation) A1 O] off &fEf & I on O] & == RULCE.
3 SPEC EF (state = On_operation -> state = off) HAI0| on HEf & M off E = RULCH
4 SPEC EF (state = On_operation -> current_coin != 0) 40| on MEfY I} A Q10| F7IE 5= UL}
5 SPEC AF (alarm_on.alarm_on = TRUE -> alarm_on.alarm_on = FALSE) UEO0| on O|H 2Hat O|2H0f off7} =ICf.
6 SPEC AX (state = refund & current_coin != 0 -> current_coin = 0) Refund state O] 2t&t CHZ 0] coinO| 7|3} =L,
v SPEQ AX‘ (current_coin :.300 & state = On_operation & coffee_command = 300 coin Y1 specialMilkS 2&3}H coinO| 0 O] EC},
specialMilk -> (current_coin = 0))
SPEC AX (current_coin = 500 & state = On_operation & coffee_command = Lo g4 S OMBLH ~nind ol EIC
8 Llack > (current_coin = 200)) 500 coing &1 blacks 283tH coin0| 200 O] ECF.
SPEC AF (current_milk = 1000 & state = On_operation & coffee_command = CIMIKE QMBI ©0 7 SEABIC
: specialMilk -> EX(current_milk = 980)) specialMilk& 28oHA £ 7F 20 ZA.
SPEC AF (current_coffee = 1000 & state = On_operation & coffee_command = S oMM A7 ZEABIC
0 Dlack -> EX(current_coffee = 970)) Blacks RYSHH FI7t 30 &AL,
SPEC AG (current_coffee < 30 & state = On_operation & coffee_command = 5 15 olotal [ oS OXBIO SHAF OLEIO| 23|[0
11 black -> alarm_on.alarm_on = TRUE) 1| 7F 30 O| 2t [ blackE RESIH 2o Y&E0| SEICH
12 SPEC AG (current_milk < 20 & state = On_operation & coffee_command = 297} 20 O|BHY [ specialMilkE 2438}81 2ao| 22ic}

specialMilk -> alarm_on.alarm_on =TRUE)
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The SMV Modeling Checking - Commands

BN 15 CHWINDOWSHsystem3 28 cmnd.exe - NUSMY -int — O w

on Wed Oct 14 15:37:51 2015]
oA nusmy, Thk ., eu>

<nusmv-use

##########################################################

The transition relation is total:

#### ####

as been completed,
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The SMV Modeling Checking — Verification Result

* 2 bugs seeded

MWusMyY = check_ct|spec

—— specification &G (EX TRUE) is true

—— specification EF (state = off —> state = On_operation) is true

—— specification 4G (state = off —> (state = On_operation & state = refund)) iz false
—— as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

state = off

onoff_command = FALSE

refund_command = FALSE

material_lack = FALSE

coffes_command = NOME

alarm_timecut . time = 0

coin_check.coin_value = 0

coin_check.coin_reduce = 0

alarm_on.alarm_on = FALSE

current_water = 1000

current_milk = 1000

current_coffes = 1000

current_coin = 0

alarm_timeout . timeout_alarm = TEUE

coin_check.main.current_coin = 0

specification EF (state = On_operation —> state = off) iz true

specification EF (state = On_operation —* current_cain !'= 0) is ftrue

specification &% ((state = refund & current_coin '= 0) = current_coin = 0)  is frue

specification AX (({current_coin = 300 & state = On_operation) & coffee_command = specialMilk) —> current_coin = 0} is true

speciTication A% (({current_coin = 300 & state = On_operation) & coffee_command = speciallilk) —» current_coin = 100} is true

specification &% (({current_coin = 500 & state = On_operation) & coffee_command = hlack) —» current_cain = 200) is true

cspecification AF (€

specification &F ((
4F (a
el
A5G 00

i _
Ccurrent_milk = 1000 & state = On_operation) & coffee_command = specialMilk) —> EX current_milk = 980) is frue
(current_coffee = 1000 & state = On_operation) & coffee_command = black) —-» EX current_coffes = 9700 s true
arm_on.alarm_on = TRUE == alarm_on.alarm_on = FALSE)  is true

(current_coffee < 30 & state = On_operation) & coffee_command = klack) —> alarm_on.alarm_on = TRUE) is true
Ccurrent_milk < 20 & state = On_operation) & coffee_command = specialMilk) —> alarm_on.alarm_on = TRUE)  is true

specification

speciftication

- specification
NUSMV P
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The SMV Modeling Checking - Batch Mode

G #lsersWIUNBEOM YOO=NUSHY coffee(ibvoo)  smy
This is MusMy 2.6.0 (compiled on Wed Oct 14 15:37:51 2015
Enabled addons are! compass
For more information on MUSMY see <http!//nusmy, fhk, eu>
or email to <nusmv-users@|ist. fhk. eu>,
Please report bugs to <Please report bugs to <nusmv-users@fbk ., eu>>

Copwright () 2010-2014, Fondazione Bruno Kessler

This wversion of MuSMY is |inked to the CUDD library version 2.4.1
Copyright (c) 1995-2004, Regents of the University of Colorado

Thizs wversion of MuSMY is |inked to the MiniSat SAT solwver,
see http /dminisat se/MiniSat. himl

Copwright () 2003-2006, Miklas Een. Niklas Sorensson
Copyright () 2007-2010, MNiklas Sorensson

WARMIMG #** Processes are still supported, but deprecated. Ak
WARMIMG *** |n the future processes may be no longer supported, #xxx

WARMIMG #** The model contains PROCESSes or |Shs, #xx
The HRC hierarchy will not be usable, ##=
—— specification AG (EX TRUE) is true
—— specification EF (state = off —> state = On_operation) is true
—— specification 4G (state = off > (state = On_operation & state = refund)) is false
— as demonstrated by the following execution sequence
Trace Description: CTL Counterexamele
Trace Tvpe! Counterexams|e
- Stater 1.1 <=
state = off
onoff_command = FALSE
refund_command = FALSE
material_lack = FALSE
coffee_command = NOME
alarm_timecut . time = 0
coin_check . coin_value = 0
coin_check . coin_reduce = 0
alarm_on.alarm_on = FALSE
current_water = 1000
current_milk = 1000
current_coffes = 1000
current_coin =0
alarm_timeout . timecut_alarm = TRUE
coin_check .main.current_coin = 0
specification EF (state = On_cperation —> state = off) is true
specification EF (state = On_cperation —> current_coin != 0) is true
specification AX ((state = refund & current_coin != 0) => current_coin = 0) s true
specification &% (((current_coin = 300 & state = On_operation) & coffee_command = specialMilk) == current_coin
specification &% (((current_coin = 300 & state = On_operation) & coffee_command = specialMilk) —= current_coin
specification &% (((current_coin = 8500 & state = On_operation) & coffee_command = black) == current_coin = 2000 is true
specification &F (((current_milk = 1000 & state = On_operation) & coffes_command = specialMilk) —> EX current_milk = 9800 is true
specification ig E((Current_coffee = 1000 & state = On_operation) & coffee_command = black) —» EX current_coffes = 970) s true
a
bE O
e

0 is true
1003 is true

specification larm_on.alarm_on = TRUE == alarm_on.alarm_on = FALSE} iz true
specification
speciftication

G #WlsersW]UNBEOM YOO

[current_coffes < 30 & state = On_operation) & coffee_command = black) —> alarm_on.alarm_on = TRUE) is true
G C{{current_milk < 20 & state = On_operation) & coffee_command = speciallilk) —> alarm_on.alarm_on = TRUE} is true
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