EPENDABLE SO RE
LABORATO!

Object-Oriented Analysis and Design

JUNBEOM YOO

Dependable Software Lab.

K KONKUK
UNIVERSITY

Text and Contents

CONTENTS AT A GLANCE

1 Object-Oriented Analysis and Design 2
Iterative, Evolutionary, and Agile 17

2

3 Case Studies 41

PART Il INCEPTION

4 Inception is Not the Requirements Phase 47
5 Evolutionary Requirements 53

6 Use Cases 61

7 Other Requirements 101

J PART Il ELABORATION ITERATION 1 — BASICS
8 Iteration 1—Basics 123
9 Domain Models 131

M m tﬂ ou 1 a g I “ ’ mm“ m 10 System Seq.unncl: Diagrams 173 OOAD
" Operation Contracts 181
u 12 Requirements to Design—Iteratively 195

aﬂd mm w 12 Logieal Architecture and UML Package Diagrams 197
14 Onto Object Design 213
15 UML Interaction Diagrams 221
16 UML Class Diagrams 249
17 GRASP: Designing Objects with Responsibilities 271
18 Object Design Examples with GRASP 321
19 Designing for Visibility 363
20 Mapping Designs to Code 369
21 Test-Driven Development and Refactoring 385
22 UML Tools and UML as Blueprint 395
PART IV ELABORATION ITERATION 2 — MORE PATTERNS
23 Iteration 2—More Patterns 401
24 Quick Analysis Update 407
25 GRASP: More Objects with Responsibilities 413

| PART | INTRODUCTION

26 Applying GoF Design Patterns 435 3
PART V ELABORATION ITERATION 3 — INTERMEDIATE TOPICS DeSIgn Patterns
27 Iteration 3—Intermediate Topics 475

28 UML Activity Diagrams and Modeling 477

29 UML State Machine Diagrams and Modeling 485
30 Relating Use Cases 493

31 Domain Model Refinement 501

32 More SSDs and Contracts 535

33 Architectural Analysis 541 Architecture Style
“Peogle sfien il = whach 5 e best book b mimduce them to e workd of 00 desgn 34 Logical Architecture Refinement 559
Tt st 1 e s . Apglyang LN and! Pafterm s been my ureesenesd choe ™ 35 Package Design 579
~Martin Fawber, authon of LML Drstalled sl Redacioring 36 More Object Design with GoF Patterns 587
L . ar Designing a Persistence Framework with Patterns 621
(1 !':\ I ‘, IJ i l{ 1 I i \ 38 UML Deployment and Component Diagrams 651 Architecture DeSCfiption

38 Documenting Architecture: UML & the N+1 View Model 655

Forewaord by Phelippe Kruchta
rewword 1y Phippe Kruchien PART VI SPECIAL TOPICS

40 More on Iterative Development and Agile Project Management 673

EPENDABLE SOFTWARE 2
LABORATORY

Chapter 1.
Object-Oriented Analysis and Design

Object-Oriented Analysis and Design

* Object-Oriented Analysis (OOA)

— Discover the domain concepts/objects (the objects of the problem domain)

* Object-Oriented Design (OOD)
— Define software objects (static)
— Define how they collaborate to fulfill the requirements (dynamic)

EPENDABLE SOFTWARE

LABORATORY

KU

KONKUK
UNIVERSITY

KU KONKUK
UNIVERSITY

An OOAD Example - Dice Game

Define domain Define interaction Define design class
Define use cases - :
model diagrams diagrams
------------------------------------ 0]l 0o »

Interaction Diagram

| ‘DicaGeme ‘ di: Dic ia;;:"b‘n. \

[|

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.

; getFaceValue() : int
play() roll()

Domain Model Design Class Diagram

EPENDABLE SOFTWARE

]
4
:
:
3

. lawl) \
- If the dice’s face value totals seven, e \ \ i
player wins; otherwise, player loses. ; .) !
fu e eJhalalnO
\
!)
— e\) . —
1 | fua= !gﬁ‘ygﬁn) N
: | ‘
| ‘ \ 1
e b 1 Rolls 2 e ! '
name faceValue i
1 ' 2 i |
Plays i DiceGame Die
| ! i die1 : Die _ 1 2 faceValue : int
DiceGame 1 | i die2 : Die '
| ncludes :

KU wovessmy

UML

* “The Unified Modeling Language (UML) is a visual language for specifying,
constructing and documenting the artifacts of systems.”

« 3 ways to apply (use) UML

— Sketch

» Conceptual perspective

» Informal and incomplete diagrams are created to explore difficult parts of the problem or
solution space. — Intercommunication medium

— Blueprint
» Specification perspective
» Relatively detailed design diagrams are used for code generation.
— Programming language
* Implementation perspective
« Complete executable specification of a software system in UML
— Executable code will be automatically generated.
— Still under development in terms of theory, tool robustness and usability.

bl ﬁ‘
':tgr EPENDABLE SOFTWARE 7
3

LABORATORY

What the UML is Not?

« UML is not an Object-Oriented analysis and design process.

— UML is not a systematic way to develop software systems.

« UML will not teach you an Object-Oriented way of thinking.
— It will not tell you how to design object structures or behaviors.
— It will not tell you whether your design is good or bad.

EPENDABLE SOFTWARE

LABORATORY

KU

KONKUK
UNIVERSITY

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 9
LABORATORY

Chapter 2.
Iterative, Evolutionary, and Agile

Software Development Process and the UF

« Software development process
— A systematic approach to building, deploying and possibly maintaining software

* Unified Process (UP): a popular iterative software development process for
building object-oriented systems
— lterative with fixed-length iterations (mini waterfalls of about 3 weeks)
— Inspired from Agile (i.e., opposite from waterfall)
— Flexible (can be combined with practices from other OO processes)

— A de-facto industry standard for developing OO software

_‘ ' DEPENDABLE SOFTWARE 1 1
LABORATORY

Risk-Driven and Client-Driven Iterative Planning

 The UP encourages a combination of risk-driven and client-driven
iterative planning.
— To identify and drive down the high risks, and
— To build visible features that clients care most about.

* Risk-driven iterative development includes more specifically the practice of
architecture-centric iterative development.
— Early iterations focus on building, testing, and stabilizing the core architecture.

(L2134 ls5[..] [T T T T T T] [[T20]
AN -
AN —-_———
N\ —— -
\\ requirements workshops ----—.___ T T=~__ __
N ~ a" T T == ~—
Imagine this will AN i ——___
ultimately be a 20- s ‘e = P
iteration project. i) @ 1] @©
c =1 c -
@ g g @©
In evolutionary iterative % 5] %
development, the = » = @
. o o
requirements evolve @ o

over a set of the early
iterations, through a
series of requirements o o
workshops (for 90% 90%
example). Perhaps
after four iterations and
workshops, 90% of the
requirements are 30%
defined and refined. 20% . 20%
Nevertheless, only 2% | 5% 8% 10%

A)
10% of the software is Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

1 _
Qn | DEPENDABLE SOFTWARE built. - - = '] 2
= LABORATORY »° a3-week iteration T~ —

2

Fe = —

50%

The UP Practices

 The central idea to UP practices :

A short timeboxed iterative, evolutionary and adaptive development

« Additional best practices and key concepts:

PENDABLE SOFTWARE

Tackle high-risk and high-value issues in early iterations (- Risk-driven, Client-driven)
Continuously engage users for evaluation and feedback (- client-driven)

Build a cohesive, core architecture in early iterations (- Architecture-centric)
Continuously verify quality; test early, often, and realistically

Apply use cases where appropriate

Do some visual modeling (with the UML)

Carefully manage requirements (configuration management

13

KU wovessmy

The UP Phases

A UP project organizes the work and iterations across 4 major phases:
1. Inception : approximate vision, business case, scope, vague cost estimates

2. Elaboration : refined vision, iterative implementation of the core architecture,
resolution of high risks, identification of most requirements and scope, more
realistic estimates

3. Construction : iterative implementation of the remaining lower risk and easier
elements, and preparation for deployment

4. Transition : beta tests, deployment

developmentcycle
A
; . A
iteration phase
(/\ A
4 N
inc. elaporafjion construcition trangition
milestone release increment final production
An iteration end-point A stable executable subset The difference (delta) release
when somesignificant of the final product. The between the releases At this point, the system
decision or evaluation end of each iteration is a of 2 subsequent is released for
occurs. minor release. iterations. production use.

() DEPENDABLE SOFTWARE 14
N LABORATORY

KU wovessmy

The UP Disciplines

A four-week iteration (for example).
A mini-project that includes work in most Note that
disciplines, ending iln a stable executable. although an
L iteration includes
s i d N work in most
up fo'mf’,ﬁ disciplines, the
isciplines 3 E 3 relative effort and
g . : i , | emphasis change
4 Business Modeling A - - ovepr it 9
Focus ‘ RS - ol ; '
of this Requirements | —— — e This example is
haok ‘ S I | D e N suggestive, not
\ esign 11— literal.
Implementation | ——————""" ‘
Tesl
Deployment - @0
Configuration & Change N 77_,77 — 0 i
Management | ————""_ :
Project Management | ——"" N -
. —‘\\——.
Environment
Iterations

) DEPENDABLE SOFTWARE 15
AT LABORATORY

Relationship Between the Disciplines and

Phases

» The relative effort in disciplines shifts to across the phases.

Sample incep- : A transi-
b T e : elaboration construction .
UP Disciplines tion ‘ ‘ IR tion A

_ _ ‘ The relative effort in

Business Modeling : : ‘ — disciplines shifts
_ g : across the phases.
Requirements | ———— e T e e —
. I o T e e aes o L NS NN TN DR O This example is
Design |—— T I T w0 O D suggestive, not literal.
Implementation S 7_;_,_47— “—

— Artifact : A general term for any work product

« Example: code, web graphics, database schema, text documents, diagrams, models
and so on

— Discipline : A set of activities and related artifacts in one subject area
« Example: the activities within requirements analysis

DEPENDABLE SOFTWARE 1 6
LABORATORY

The UP Development Case

 Development Case:
— An artifact in the Environment discipline
— Documenting the choice of practices and UP artifacts for a project

— For example, the development case for the NextGen POS case study :

Discipline Practice Artifact Incep. | Elab. | Const. | Trans.
Iteration- I1 E1l.En | C1.Cn | T1..T2
Business agile modeling Domain Model s
Modeling req. workshop
Requirements |req. workshop Use-Case Model S r
vision box exercise Vision S r
dot voting Supplementary 8 r
Specification
Glossary S r
Design agile modeling Design Model s r
test-driven dev. SW Architecture S
Document
Data Model S r
Implementa- [test-driven dev.
tion pair programming
continuous integration
coding standards
Project agile PM
Management |daily Scrum meeting

y b
it "?DEPENDABLE SOFTWARE 17

B LABORATORY
2]

You Know You Didn’t Understand Iterative KU
Development or the UP When ...

« Some signs that you have not understood what it means to adopt iterative
development and the UP in a healthy agile spirit.

= You try to define most of the requirements before starting design or implementation.
Similarly, you try to define most of the design before starting implementation; you try to
fully define and commit to an architecture before iterative programming and testing.

» You think that inception = requirements, elaboration = design, and construction =
implementation (that is, superimposing the waterfall on the UP).

« You think that the purpose of elaboration is to fully and carefully define models, which are
translated into code during construction.

» You believe that a suitable iteration length is three months long, rather than three weeks
long.

+ You try to plan a project in detail from start to finish; you try to speculatively predict all the
iterations, and what should happen in each one.

EPENDABLE SOFTWARE 1 8
LABORATORY

K K()NKL'K’

EPENDABLE SOFTWARE 1 9
LABORATORY

l{ l] KONKUK
UNIVERSITY

What is Covered in the Case Studies?

« Generally, applications include
— Ul elements,
— Core application logic,
— OS, database access and collaboration with external SW/HW components.

[5 The FOD Stose 0 R Layered Architecture
uantly | ‘ minor focus
Interface >
‘ explore how to connect to
Enter ftem A S0 on... other layers

Our concern !!!

_/

— e g 7 primary focus of
aPQ"caﬂon # ™ case study
logic and (Sale Payment) >

& - N
domain object gt . explore how to
layer s T Y, design objects
S secondary
A focus
technical . Sngilanceipad e
services layer 8 e 4 explore how
_ to design
objects

EPENDABLE SOFTWARE 2 1
LABORATORY

KU sy

Case One: The NextGen POS System

The first case study is the NextGen point-of-sale (POS) system. In this apparently straightforward
problemn domain, we shall see that there are interesting requirement and design problems to
salve. In addition, it's a real problemgroups really do develop POS systems with object
technologies.

A POS system is a computerized application used (in part) to record sales and handle payments;
it is typically used in a retail store. It includes hardware components such as a computer and bar
code scanner, and software to run the system. It interfaces to various service applications, such
as a third-party tax calculator and inventory control. These systemns must be relatively fault-
tolerant; that is, even if remote services are temporarily unavailable (such as the inventory
system), they must still be capable of capturing sales and handling at least cash payments (so
that the business is not crippled).

A POS system increasingly must support multiple and varied client-side terminals and interfaces.
These include a thin-client Web browser terminal, a regular personal computer with something
like a Java Swing graphical user interface, touch screen input, wireless PDAs, and so forth.

Furthermore, we are creating a commercial POS system that we will sell to different clients with
disparate needs in terms of business rule processing. Each client will desire a unique set of logic to
execute at certain predictable points in scenarios of using the system, such as when a new sale is
initiated or when a new line item is added. Therefore, we will need a mechanism to provide this
flexibility and customization.

Using an iterative development strategy, we are going to proceed through requirements, object-
oriented analysis, design, and implementation.

EPENDABLE SOFTWARE 2 2
LABORATORY

K K()NKL'K’

EPENDABLE SOFTWARE 2 3
LABORATORY

Chapter 4.
Inception is Not the Requirements

Phase

I}EPENDABLE

KU KONKUK
UNIVERSITY

What is Inception?

* Most projects require a short initial step to question about:

What is the vision and business case for this project?

Feasible?

Buy and/or build?

Rough unreliable range of cost: Is it $10K-100K or in the millions?
Should we proceed or stop?

* Inception should be short.
— One week for most projects

LABORATORY

SOFTWARE

Most requirements analysis occurs during the elaboration phase, not inception.

26

B

Artifacts Start in Inception

Artifactl 1

Comment

Vision and
Business Case

Describes the high-level goals and constraints, the business case, and
provides an executive summary.

Use-Case Model

Describes the functional requirements. During inception, the names of most
use cases will be identified, and perhaps 10% of the use cases will be
analyzed in detail.

Management Plan

Supplementary Describes other requirements, mostly non-functional. During inception, it is

Specification useful to have some idea of the key non-functional requirements that have
will have a major impact on the architecture.

Glossary Key domain terminology, and data dictionary.

Risk List & Risk Describes the risks (business, technical, resource, schedule) and ideas for

their mitigation or response.

Prototypes and
proof-of-concepts

To clarify the vision, and validate technical ideas.

Iteration Plan

Describes what to do in the first elaboration iteration.

Phase Plan & Low-precision guess for elaboration phase duration and effort. Tools, people,
Software education, and other resources.

Development Plan

Deve—t:rpment A description of the customized UP steps and artifacts for this project. In the
Case UP, one always customizes it for the project.

[]- These artifacts are partially completed in this phase. They will be iteratively refined in subsequent iterations.
Name capitalization implies an officially named UP artifact.

EPENDABLE SOFTWARE

LABORATORY

K

KONKUK
UNIVERSITY

27

How Much UML During Inception?

« The purpose of inception is o collect just enough information to
— establish a common vision,
— decide if moving forward is feasible, and
— decide if the project is worth serious investigation in the elaboration phase.

e Much UML diagramming is not required.

— Inception has more focus on understanding the basic scope and 10% of the
requirements, expressed mostly in text forms.

— In practice, most UML diagramming will occur in the next phase elaboration.

EPENDABLE SOFTWARE

KU wovessmy

28

K K()NKL'K’

EPENDABLE SOFTWARE 2 9
LABORATORY

Chapter 5.
Evolutionary Requirements

Requirements

Requirements
— Capabilities and conditions to which the system must conform

Requirement analysis is

— to find, communicate and organize what is really needed, in a form that is clear
both to clients and team members.

In the UP, requirements are analyzed iteratively and skillfully.

The UP encourages skillful elicitation (finding) via techniques such as
— writing use cases with customers,
— requirements workshops that include both developers and customers,
— ademo of the results of each iteration to the customers, to solicit feedback.

EPENDABLE SOFTWARE 3 1

KUzn
Types and Categories of Requirements

* In the UP, requirements are categorized according to the FURPS+ model

[R. Grady: “Practical Software Metrics for Project Management and Process Improvement”, Prentice-Hall Inc, 1992.]
— Functional : features, capabilities, security
— Usability : human factors, help, documentation
— Reliability : frequency of failure, recoverability, predictability
— Performance : response times, throughput, accuracy, availability, resource usage
— Supportability : adaptability, maintainability, internationalization, configurability

— The “+” in FURPS+ indicates ancillary and sub-factors such as:
* Implementation : resource limitations, languages and tools, hardware, ...
* Interface : constraints imposed by interfacing with external systems
* Operations : system management in its operational setting
+ Packaging : for example a physical box
* Legal: Licensing and so forth

» ltis helpful to use FURPS+ categories as a checklist for requirements
coverage.

PENDABLE SOFTWARE 32
LABORATORY

Quality Attributes/Requirements

* Quality attributes/requirements:
— Usability + Reliability + Performance + Supportability
— Also called “Non-functional requirements”

« The quality attributes often have a strong influence on the architecture of a
system.

b EPE!
A4 LABORATORY
|

33

_ _
How Requirements are Organized

« The UP offers several requirements artifacts. (But, they are all optional.)

— Use-Case Model
* A set of typical scenarios of using a system
» These are primarily for functional (behavioral) requirements.

— Supplementary Specification
« Basically, everything is not in the use cases.
» This artifact is primarily for all non-functional requirements, such as performance or
licensing.
» ltis also the place to record functional features not expressed (or expressible) as use
cases; for example, a report generation.

— Glossary

* |t defines noteworthy terms.
— Vision

» A short executive overview document for quickly learning the project's big ideas.
— Business Rules

+ |t typically describe requirements or policies that transcend one software project.

DEPENDABLE SOFTWARE 34
LABORATORY

K K()NKL'K’

EPENDABLE SOFTWARE 3 5
LABORATORY

KU KONKUK
UNIVERSITY

Use Cases

« Use cases are text stories of some actors using a system to meet goals.
— A mechanism to capture (analyzes) requirements

— An example (Brief format).

* Process Sale: A customer arrives at a checkout with items to purchase. The cashier
uses the POS system to record each purchased item. The system presents a running
total and line-item details. The customer enters payment information, which the system
validates and records. The system updates inventory. The customer receives a receipt
from the system and then leaves with the items.

— Use case is not a diagram, but a text.

Use Case Section Comment

Use Case Name Start with a verb.

Scope The system under design.

Level "user-goal" or "subfunction”

Primary Actor Calls on the system to deliver its services.

Stakeholders and Interests Who cares about this use case, and what do they want?

Preconditions What must be true on start, and worth telling the reader?

Success Guarantee What must be true on successful completion, and worth
telling the reader.

Main Success Scenario A typical, unconditional happy path scenario of success.

Extensions Alternate scenarios of success or failure.

Special Requirements Related non-functional requirements.

Technology and Data Varying I/O methods and data formats.

Variations List

Frequency of Occurrence Influences investigation, testing, and timing of
implementation.

Miscellaneous Such as open issues.
I}EPENDABLE SOFTWARE 37

LABORATORY

Use Case Diagram

* Use case diagram illustrates the name of use cases and actors, and the
relationships between them.

— System context diagram
— A summary of all use cases Use case

system boundary NextGen POS

.
-
~

_ - communication

A {_ Process Sale A : : . altemate
v v \ . netation for
Customer Lo a computer
ACtO r X & Payment system actor
\ ’ Authorization o .~}
” - - N | Service 7
Something with behavior, such as a person, ; &———, Hende Reums)
. . 1 S) " » L
computer system, or organization addor oo L o Colak
- Primary Actor : has user goals fulfilled ol EACIon
. . A~ Cash In © Ascounting
through using services of the SuD (system System
Under Discussion) , €., cashier Menspee _
wactors _ { Analyze Activity H;ag-‘;::m
. . . Sales Activity

- Supporting Actor : provides a service to the System

SuD, e.g., payment authorization service V idat Sty "
- Offstage Actor : has an interest in the behavior i I

. . ysiem Manage Usars .
of the use case, but is not primary or Administrator use case
supporting, e.g., tax agency '
'DEPENDABLE SOFTWARE 38

LABORATORY

Are Use Cases Functional Requirements*

* Yes, Use Cases are requirements, primarily functional (behavioral)
requirements.

— “F” (functional or behavioral) in terms of FURPS+ requirements types
— Can also be used for other types.

' DEPENDABLE SOFTWARE
| LABORATORY

39

KU KONKUK
UNIVERSITY

Three Common Use Case Formats

 Brief:

— Terse one paragraph summary, usually the main success scenario or a happy
path

« Casual:
— Informal paragraph format.
— Multiple paragraphs that cover various scenarios.

Handle Returns

Main Success Scenario: A customer arrives at a checkout with items to return. The cashier
uses the POS system to record each returned item ...

Alternate Scenarios:

If the customer paid by credit, and the reimbursement transaction to their credit account is
rejected, inform the customer and pay them with cash.

If the item identifier is not found in the system, notify the Cashier and suggest manual entry
of the identifier code (perhaps it is corrupted).

If the system detects failure to communicate with the external accounting system, ...

EPENDABLE SOFTWARE 40
LABORATORY

B

* Fully Dressed :

— Includes all steps, variations and supporting sections (e.g., preconditions)

EPENDABLE SOFTWARE
LABORATORY

Use Case Section

Comment

Use Case Name

Start with a verb.

Scope

The system under design.

Level

"user-goal” or "subfunction”

Primary Actor

Calls on the system to deliver its services.

Stakeholders and Interests

Who cares about this use case, and what do they want?

Preconditions

What must be true on start, and worth telling the reader?

Success Guarantee

What must be true on successful completion, and worth
telling the reader.

Main Success Scenario

A typical, unconditional happy path scenario of success.

Extensions

Alternate scenarios of success or failure.

Special Requirements

Related non-functional requirements.

Technology and Data
Variations List

Varying I/O methods and data formats.

Frequency of Occurrence

Influences investigation, testing, and timing of
implementation.

Miscellaneous

Such as open issues.

K

KONKUK
UNIVERSITY

41

B

Example: Process Sale, Fully Dressed Styie

EPENDABLE SOFTWARE
LABORATORY

Use Case UC1: Process Sale

Scope: NextGen POS application

Level: user goal

Primary Actor: Cashier

Stakeholders and Interests:

— Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short-
ages are deducted from his/her salary.

— Salesperson: Wants sales commissions updated.

— Customer: Wants purchase and fast service with minimal effort. Wants easily visible
display of entered items and prices. Wants proof of purchase to support returns.

— Company: Wants to accurately record transactions and satisfy customer interests.
Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo-
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

—Manager: Wants to be able to quickly perform override operations, and easily debug
Cashier problems.

— Government Tax Agencies: Want to collect tax from every sale. May be multiple agen-
cies, such as national, state, and county.

— Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Payment authorization approvals are recorded.

42

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment information to the external
Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, Manager requests an override operation:
1. System enters Manager-authorized mode.
2. Manager or Cashier performs one Manager-mode operation. e.g., cash balance
change, resume a suspended sale on another register, void a sale, etc.
3. System reverts to Cashier-authorized mode.
*b. At any time, System fails:
To support recovery and correct accounting, ensure all transaction sensitive state
and events can be recovered from any step of the scenario.
1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.
2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean
state.
2. Cashier starts a new sale.
1a. Customer or Manager indicate to resume a suspended sale.
1. Cashier performs resume operation, and enters the ID to retrieve the sale.
2. System displays the state of the resumed sale, with subtotal.
2a. Sale not found.
1. System signals error to the Cashier.
2. Cashier probably starts new sale and re-enters all items.

3. Cashier continues with sale (probably entering more items or handling payment).

2-4a. Customer tells Cashier they have a tax-exempt status (e.g., seniors, native peo-
ples)
1. Cashier verifies, and then enters tax-exempt status code.
2. System records status (which it will use during tax calculations)
3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:
2a. There is a human-readable item ID (e.g., a numeric UPC):
1. Cashier manually enters the item ID.
2. System displays description and price.
2a. Invalid item ID: System signals error. Cashier tries alternate method.
2b. There is no item ID, but there is a price on the tag:
1. Cashier asks Manager to perform an override operation.

2. Managers performs override.
3. Cashier indicates manual price entry, enters price, and requests standard
taxation for this amount (because there is no product information, the tax
engine can't otherwise deduce how to tax it)
2c. Cashier performs Find Product Help to obtain true item ID and price.
2d. Otherwise, Cashier asks an employee for the true item ID or price, and does
either manual ID or manual price entry (see above).
3b. There are multiple of same item category and tracking unigue item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.
3c. ltem requires manual category and price entry (such as flowers or cards with a price
on them):
1. Cashier enters special manual category code, plus the price.
3-6a: Customer asks Cashier to remove (i.e., void) an item from the purchase:
This is only legal if the item value is less than the void limit for Cashiers, otherwise a
Manager override is needed.
1. Cashier enters item identifier for removal from sale.
2. System removes item and displays updated running total.
2a. Item price exceeds void limit for Cashiers:
1. System signals error, and suggests Manager override.
2. Cashier requests Manager override, gets it, and repeats operation.
3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.
3-6¢. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS register.
2. System presents a “suspend receipt” that includes the line items, and a sale ID
used to retrieve and resume the sale.
4a. The system supplied item price is not wanted (e.g., Customer complained about
something and is offered a lower price):
1. Cashier requests approval from Manager.
2. Manager performs override operation.
3. Cashier enters manual override price.
4. System presents new price.
5a. System detects failure to communicate with external tax calculation system service:
1. System restarts the service on the POS node, and continues.
1a. System detects that the service does not restart.
1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.
5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2, Cashier enters Customer identification.
3. System presents discount total, based on discount rules.
5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.
a. Customer says they intended to pay by cash but don’t have enough cash:
1. Cashier asks for alternate payment method.
1a. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

43

— d

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.
7b. Paying by credit:
1. Customer enters their credit account information.
2. System displays their payment for verification.
3. Cashier confirms.
3a. Cashier cancels payment step:
1. System reverts to “item entry” mode.
4. System sends payment authorization request to an external Payment Authoriza-
tion Service System, and requests payment approval.
4a. System detects failure to collaborate with external system:
1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.
5. System receives payment approval, signals approval to Cashier, and releases
cash drawer (to insert signed credit payment receipt).
5a. System receives payment denial:
1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.
5b. Timeout waiting for response.
1. System signals timeout to Cashier.
2. Cashier may try again, or ask Customer for alternate payment.
6. System records the credit payment, which includes the payment approval.
7. System presents credit payment signature input mechanism.
8. Cashier asks Customer for a credit payment signature. Customer enters signa-
ture.

9. If signature on paper receipt, Cashier places receipt in cash drawer and closes it.

7c. Paying by check...
7d. Paying by debit...
7e. Cashier cancels payment step:

1. System reverts to “item entry” mode.

7f. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.
9a. There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible):

1. Cashier requests gift receipt and System presents it.

9c. Printer out of paper.

1. If System can detect the fault, will signal the problem.

2. Cashier replaces paper.

3. Cashier requests another receipt.

K KONKUK
UNIVERSITY

Special Requirements:

_ Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.

— Credit authorization response within 30 seconds 90% of the time. _

— Somehow, we want robust recovery when access to remote services such the inven-
tory system is failing.

— Language internationalization on the text displayed.

— Pluggable business rules to be insertable at steps 3and7.

Technology and Data Variations List:

*a. Manager override entered by swiping an override card through a card reader, or
entering an authorization code via the keyboard.

3a. Item identifier entered by bar code laser scanner (if bar code is present) or key-
board.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.

7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt. But within two years, we pre-
dict many customers will want digital signature capture.

Frequency of Occurrence: Could be nearly continuous.

Open Issues:

—What are the tax law variations?

— Explore the remote service recovery issue.

— What customization is needed for different businesses?

— Must a cashier take their cash drawer when they log out? _
— Can the customer directly use the card reader, or does the cashier have to do it?

44

Guideline: Write in an Essential Ul-Free Style

- Essential writing style is to express user intentions and system
responsibilities, rather than concrete actions.
— Concrete use cases are better avoided during early requirements analysis.

— For example: Manage Users use case

Essential Style Concrete Style
1. Administrator identities self. 1. Administrator enters ID and PW in dialog box.
2. System authenticates identity. 2. System authenticates Administrator.
S e 3. System displays the “edit user” window.

4. ...

45

() DEPENDABLE SOFTWARE
oh LABORATORY

KU wovessmy

Guideline: Write Black-Box Use Cases

* Don’t describe the internal working of the system, its components or
design.
— Define what the system does (analysis), rather than how it does it (design).

Black-box style Not

The system records the sale. The system writes the sale to a database.
...or (even worse):

The system generates a SQL INSERT
statement for the sale...

PENDABLE SOFTWARE 46
LABORATORY

Process: Evolutionary Requirements in IteratiVaE=l
Methods

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration- I1 El. En ! C1. Cn | T1.T2
Business Modeling |Domain Model S
Requirements Use-Case Model S r
Vision S r
Supplementary Specification S r
Glossary S r
Design Design Model S r
o

SW Architecture Document

EPENDABLE SOFTWARE 4 7
LABORATORY

Use cases are developed and refined iteratively.

Use Cases of the NextGen POS at the inception phase

Fully Dressed Casual Brief
Process Sale Process Rental Cash In
Handle Returns Analyze Sales Activity Cash Out
Manage Security Manage Users
Start Up
Shut Down

Manage System Tables

DABLE SOFTWARE
LABORATORY

KUESS]

Case Study: Use Cases in the NextGen PC

48

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 49
LABORATORY

Chapter 7.
Other Requirements

Other Requirements Artifacts

Supplementary Specification

— Captures and identifies other kinds of requirements, such as
* reports, documentation, packaging, supportability, licensing, and so forth

Glossary
— Captures terms and definitions; a data dictionary

Vision
— Summarizes the “vision” of the project; an executive summary

Business Rules

— Capture long-living and spanning rules or policies (such as tax laws), that
transcend one particular application

EPENDABLE SOFTWARE 5 1

|

Supplementary Specification

KU KONKUK
UNIVERSITY

« Other requirements, information and constraints not easily captured in the
use cases or Glossary, including system-wide “URPS+” quality attributes.

« Elements of the Supplementary Specification include:

EPENDABLE SOFTWARE

LABORATORY

FURPS+ requirementsfunctionality, usability, reliability, performance, and supportability
reports

hardware and software constraints (operating and networking systems, ...)
development constraints (for example, process or development tools)
other design and implementation constraints

internationalization concerns (units, languages)

documentation (user, installation, administration) and help

licensing and other legal concerns

packaging

standards (technical, safety, quality)

physical environment concerns (for example, heat or vibration)

operational concerns (for example, how do errors get handled, or how often should backups
be done?)

application-specific domain rules

information in domains of interest (for example, what is the entire cycle of credit payment
handling?)

52

Process: Evolutionary Requirements in IteratiVaE=l
Methods

Discipline Artifact Incep. | Elab. | Const. Trans.
Iteration = I1 El1..En| C1..Cn T1..T2
Business Domain Model s
Modeling
Requirements Use-Case Model = r
Vision S r
Supplementary s r
Specification
Glossary = r
Business Rules 5 r
Design Design Model 3 r
SW Architecture s
Document
Data Model s r

EPENDABLE SOFTWARE 5 3
LABORATORY

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 54
LABORATORY

Part 3: Elaboration - lteration 1 Basics

» Chapter 8. lteration 1 Basics

« Chapter 9. Domain Models

 Chapter 10. System Sequence Diagram
» Chapter 11. Operation Contracts

« Chapter 12. Requirements to Design Iteratively

» Chapter 13. Logical Architecture and UML Package Diagrams
» Chapter 14. On to Object Design

* Chapter 15. UML Interaction Diagram

« Chapter 16. UML Class Diagram

« Chapter 17. GRASP: Designing Objects with Responsibilities

« Chapter 19. Designing for Visibility
« Chapter 20. Mapping Designs to Code

Chapter 8.
Iteration 1 Basics

KU wovessmy

What Happened in Inception?

* Inception is a short (only one week) step to elaboration including:
— A sshort requirements workshop
— Most actors, goals, and use cases named
— Most use cases written in brief format (10~20% are written in fully dressed detail)
— Most influential and risky requirements identified
— Version one of the Vision and Supplementary Specification written
— Risk list

— Technical proof-of-concept prototypes and other investigations to explore the
technical feasibility of special requirements

— User interface-oriented prototypes to clarify the vision of functional requirements

— Recommendations on what components to buy/build/reuse, to be refined in
elaboration

— High-level candidate architecture and components proposed
— Plan for the first iteration
— Candidate tools list

EPENDABLE SOFTWARE 57
LABORATORY

]}EPEN

On to Elaboration

Elaboration is the initial series of iterations during which:
— The core, risky software architecture is programmed and tested.
— The majority of requirements are discovered and stabilized.
— The major risks are mitigated or retired.

DABLE SOFTWARE
LABORATORY

58

Iteration 1 Requirements and Emphasis

Book lterations vs. Real Project Iterations

Iteration-1 of the case studies in this book is driven by learning goals rather than true
project goals. Therefore, iteration-1 is not architecture-centric or risk-driven. On a UP
project, we would tackle difficult, risky things first. But in the context of a book
helping people learn fundamental O0OA/D and UML, we want to start with easier
topics.

 The NextGen POS example

— The requirements for the 1st iteration follow:

» Implement a basic, key scenario of the Process Sale use case: entering items and
receiving a cash payment.

* Implement a Start Up use case as necessary to support the initialization needs of the
iteration.

* Nothing fancy or complex is handled, just a simple happy path scenario, and the design
and implementation to support it.

» There is no collaboration with external services, such as a tax calculator or database.

* No complex pricing rules are applied.

R Y
' DEPENDABLE SOFTWARE 59
LABORATORY

KU wovessmy

Implement Requirements Incrementally

* Incremental development for the same use case across iterations
— The requirements for the iteration-1 are subsets of the complete requirements or

use cases.
. ey .
A use case or feature is

1 2 3 often too complex to

.] | J complete in one short
A [3 r\ iteration.

k *,
™ Theretore, different parts

Use Case Use Case Use Case or scenarios must be
Process Sale Process Sale Process Sale allocated to different

I 7/ ' % terations.

F.|
Use Case
Process Rentals

Logng 22

PENDABLE SOFTWARE 60
LABORATORY

KU KONKUK
UNIVERSITY

UP Artifacts Start in Elaboration

« These will not be completed in one iteration; rather will be refined over a
series of iterations.

\ Artifact Comment
Domain Model This is a visualization of the domain concepts; it is similar to a
static information model of the domain entities.
\ Design Model This is the set of diagrams that describes the logical design.

This includes software class diagrams, object interaction
diagrams, package diagrams, and so forth.

Software Architecture A learning aid that summarizes the key architectural issues and
Document their resolution in the design. It is a summary of the
outstanding design ideas and their motivation in the system.
Data Model This includes the database schemas, and the mapping
strategies between object and non-object representations.
Use-Case Storyboards, UI A description of the user interface, paths of navigation, usability
Prototypes models, and so forth.

EPENDABLE SOFTWARE 6 1
LABORATORY

K K()NKL'K’

EPENDABLE SOFTWARE 6 2
LABORATORY

Chapter 9.
Domain Models

KU KONKUK
UNIVERSITY

Domain Model

 Domain model is a visual representation of conceptual classes or real-
situation objects in a domain.
— The most important classic model in OO analysis
— Can act as a source of inspiration for designing software objects and classes.

— Visual dictionary of the noteworthy abstractions, domain vocabulary, and
information contents of the domain

— Not represents software objects

 Domain model is illustrated with class diagrams
— no operations
— domain objects (or conceptual classes)
— associations between conceptual classes
— attributes of conceptual classes

« Domain model is a kind of a preliminary version of class diagram, if we are
well used to the application domain.

EPENDABLE SOFTWARE 64
LABORATORY

Partial Domain Model for NextGen POS

EPENDABLE SOFTWARE
B LABORATORY

concept Sales ltem
or domain —e Lineltem Records-sale-of
object 1
quantity 0.1
*
1.*
— Stocked-in
association wo Contained-in
1 1
Sale Store
attributes H date address
time 0.1 name
1 1
Houses
Paid-by 1.*
1 Register
Captured-on
Payment 1
amount

65

KU wovessmy

Domain Model is Not Software Objects

« A UP domain model is not of software objects such as:
— Software classes (i.e., C++ or Java classes)

— Elements representing artifacts related to the implementation of the system
(e.g., a database or a window)

— Methods (operations)

visualization of a real-world concept in L

Sale | the domain of interest
Domain Model _ | © o _
dateTime it is a not a picture of a software class
-\6 SalesDatabase | software artifact; not part L
»° © of domain model
S Sale
K} software class; not part
a date O .. Of domaln model
time
print()
\ et o

KU wovessmy

Why Create a Domain Model?

» Two reasons to create a domain model:

1. Getting to know the domain during early elaboration iterations, understanding
the concepts involved and their relationships

2. Inspiring the software classes of the domain layer in the design model.
» This prevents software from being far away from the reality of the domain.

* lower representation gap : Use software class names in the domain layer inspired
from names in the domain model, with objects having domain-familiar information and
responsibilities.

' DEPENDABLE SOFTWARE 67
| y LABORATORY

|

A

A Paymentin the Domain Model
is a concept, but a Paymentin
the Design Model is a software
class. They are not the same
thing, but the former inspiredthe
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in

objecttechnology.

EPENDABLE SOFTWARE
LABORATORY

Lower Representation Gap

UP Domain Model
Stakeholder's view of the noteworthy conceptsin the domain.

The object-oriented developer has taken inspiration from the real world domain

in creating software classes.

Therefore, the representational gap between how stakeholders conceive the

Sale
Payment
b 1 Pays-for 1
date
amount .
time
inspires
objects
and
namesin
Sale
Payment
1 Pavef date: Date star
& amount: Money ays-lor tTime: Time
getBalance(): Money getTotal(): Money
UP Design Model

domain, and its representationin software, has been lowered.

KU KONKUK
UNIVERSITY

68

How to Create a Domain Model

« Same as the way of creating class diagrams.
1. Find conceptual classes and draw them in a UML class diagram
2. Add associations and attributes to conceptual classes

* |dentification of Noun Phrases

— ldentify the nouns and noun phrases in a textual description of the domain, and
consider them as candidate conceptual classes and attributes.

Process Sale use case

1. Customer arrives at a POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.

3. Cashier enters item identifier.

4, System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules. Register ltem Store Sale

Cashier repeats steps 2-3 until indicates done.

5. System presents total with taxes calculated. Sales

...................... Rl Cashier Customer Ledger

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

Cash | Product Product

8. System logs the completed sale and sends sale and payment information to the external Fii
Y J P Pav Payment Catalog Description

Accounting (for accounting and commissions) and Inventory systems (to update
inventory).

9. System presents receipt.

_ 10. Customer leaves with receipt and goods (if any).
9 -
i) "?JEPENDABLE SOFTWARE 69

B LABORATORY
2]

Rl

Is the Domain Model Correct?

There is no such thing as a single correct domain model.
— All models are approximations of the domain we are attempting to understand.

The domain model is a primary tool of understanding and communication
among a particular group.

— Correct << Useful

EPENDABLE SOFTWARE

LABORATORY

70

B

Process: lterative and Evolutionary Domain

Modeling

The UP Domain Model is usually both started and completed in the

elaboration phase.

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration = I1 El..En|C1..Cn | T1..T2
Business Modeling | Domain Model 5
Requirements Use-Case Model (SSDs) 5 r
Vision s r
Supplementary 5 r
Specification
Glossary 5 r
Design Design Model 5 r
SW Architecture Document 5
Data Model 5 r

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

71

—_—————
‘ K KONKUK
UNIVERSITY

Sample UP Artifact Relationships

/ DomainModel
Business Sale 1 1.* Liﬁzllf:m . |
Modeling date
\ . quantity T
-/
conceptual classes— t the domain obj_ec_ts, attribu elaboration gf
erms, concepts attribu tes, and associations that some terrpsm
tes, associations undergo state changes the domain m
odel
/ / Use-Case Model ; \
Process Sale Operation: enterltem(...)) conceptual
Cashier: ... classesin
1. Customerarrives Post-conditions: ItemID:... t.he glomain
Require- . msp.'rethfe
ments 2.) names o
3. Cashier enters o tion Contract Gl some
item identifier. 4. peration L-ontracts ossary software
classesin
the design
Use Case Text

o /

/ DesignModel
‘ : ProductCatalog | | : Sale ‘

[1 1
1
enterltem 1

(item|D. quantity) |
Design >

: spec = getProductSpec(itemID)

»

addLineltem(spec, quantity)

A 4

»
»

EPENDABLE SOFTWARE 7 2
LABORATORY

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 7 3
LABORATORY

Chapter 10.
System Sequence Diagram

B

EPENDABLE SOFTWARE
LABORATORY

Business
Modeling

Require-
ments

Sample UP Artifact Relationships

KU KONKUK
UNIVERSITY

Domain Model
Sale 1 1.* Sales
Lineltem
date
quantity
g Use-Case Model \ Vision
Process Sale
;lassee 1.Customer
) arrives ...
Cashier names N
C D 2.Cashier
makes new
- sale.
3. Glossary
parametersand
Use Case Diagram Use Case Text return value details 4| ——
system =
events
% : System
Operation: :Cashier | Suppl t
enterltem(...) make R upplementary
system NewSale() Specification
Post-conditions: operations
i .) enterlte_m
id, quanti
1
kOperation Contracts

System Sequence DiagramS/

starting eventsto design fo/
{
1
I

Design

enterltem

. . I
(itemID, quantity) >:

I spec = getProductSpec(itemID)

Design Model |

: ProductCatalog ‘

Co)

addLineltem(spec, quantity)

A 4

/

75

KU KONKUK
UNIVERSITY

System Sequence Diagram

« System sequence diagram (SSD)

— A picture that shows the events that external actors generate, their order, and
inter-system events, for one particular scenario of a use case.
* the external actors that interact directly with the system,
* the system (as a black box), and
« the system events that the actors generate

— In the sequence diagram notation
— Depict system behavior in terms of what the system does, not how it does it
— Used as input to object design — System operations

« Use cases describe how external actors interact with the software system
we are interested in creating.

— During this interaction, an actor generates system events to a system, usually
requesting some system operation to handle the event.

t E;::l EPENDABLE SOFTWARE 76
| LABORATORY

KU wovessmy

Applying UML: Sequence Diagrams

 The UML does not define something called ‘System Sequence Diagrams’.
— We use the general UML sequence diagram notation.

— The term ‘system’ in SSDs is used to emphasize the application of the UML
sequence diagram to systems viewed as black boxes.

— An SSD shows system events for one scenario of a use case.

x

Process Sale Scenario .
: Cashier System
| I
: makeNewSale >{
Simple cash-only Process Sale scenario: !
. loop) [more items]
1.Customer arrives at a POS checkout i enterltem(itemID, quantity)

with goods and/or services to purchase. i
2. Cashier starts a new sale. |
3. Cashier enters item identifier. :

4.System records sale line item and ettt
presents item description, price, and
running total.

description, total |

[
| |
: [

Cashier repeats steps 3-4 until indicates I |l

done. ' endSale >:

5.System presents total with taxes : ll

calculated. [. |

B.Cashier tells Customer the total, and L<____________£o_ta_l withtaxes_ _____________ |
|

asks for payment.
7.Customer pays and System handles
payment.

77

(r {DEPENDABLE SOFTWARE |
A LABORATORY

‘ KU KONKUK
UNIVERSITY

System Operation

« System operations

— Operations that the system as a black box component offers in its public
interface

— Show system events, which the SUD should have system operations to handle
the system events.

— System Interfaces: the entire set of system operations across all use cases

Process Sale Scenario
System
- Caslhior ysl
: makeNewSale() >:
I L]
; | .
loop ./ [more items) '
| H enteritem{temID, quantity) ._: theso input system events
i 1 invoke system operations
|]
I]
: : the system event enteritem
eyt description, total_ _ _ I invokes a gysiem operation
% : called enterltem and so forth
1]
1 H this is the same as in object-
1] . N
i ' oriented programming when
endSal
: 0 > we say the M53290 foo
| | invokes the method (handling
o lolalwithtaxes ! oparalion)foo
i i
|}]
: makePayment{amount) ’:
| '
|]
I]
A — changedue receipt _ _ _ _ _ _ __ ___ .
I

EPENDABLE SOFTWARE 78
LABORATORY

Guideline: How to Name System Events and
Operations?

+ System events should be expressed at the abstract level of intention rather
than in terms of the physical input device.

« Example : scan(itemlD) vs. enterltem(itemID)
— The enterltem name is better, since it communicates intention rather than the

wWorse name k

input device.
SN
: :System
: Cashier .
better name A ! |
- | enterltem(itemID, quantity) |
>
|
|
scan(itemlID, quantity) [
>
|
|
|
|
|

S DEPENDABLE SOFTWARE 79
LA

BORATORY

KU KONKUK
UNIVERSITY

Process: Iterative and Evolutionary SSDs

 The UP doesn’t mention explicitly SSDs, but we can use them.

— Since the UP is very flexible, allowing any useful technique to be applied in its
context.

« Most SSDs are created during elaboration, when it is useful to

— identify the details of the system events to clarify what major operations which
the system must be designed to handle,

— write system operation contracts, and possibly to support estimation.

Discipline Artifact Incep.| Elab. | Const. | Trans.

Iteration=> I1 E1..En| C1..Cn | T1..T2

Business Modeling | Domain Model s
Requirements Use-Case Model (SSDs) s r
Vision

w w
-

Supplementary
Specification

Glossary s r

Design Design Model s r
SW Architecture Document 5
Data Model s r

EPENDABLE SOFTWARE 80
LABORATORY

K K()NKL'K’

EPENDABLE SOFTWARE 8 1
LABORATORY

Chapter 11.
Operation Contracts

—_—————
‘ K KONKUK
UNIVERSITY

Sample UP Artifact Relationships

Domain Model
Sale 1 1.* Sales
Business Lineltem
Modeling date
quantity
e Use-Case Model \ Vision
Process Sale
Process
C::: 1. Customer
Cashier names ;iwe‘?_:;-
» 13 Cashier ™
- { | enters item ‘,
“.identifier. A Glossary

Require-

ments Use Case Text

Use Case Diagram

. ; system .
the domain ;zeas forr events requirements
objects, € gc;_s - that must be
aftributes, conaitions % Syst satisfied by
and the software
associations Operation:_ent - Cashier I
that undergo .f"é?l.tem(...) N make ! Supplgmeqtary
changes N /| system 1 NewSale() I Specification
S . I p— L4
™l Post-conditions: |oPerations | - |
47 enterltem N
ML « Y (id, quantity) ¢!
[——— |
Operation Contracts System Sequence DiagramS/
starting events to
design for, and
more detailed
requirements that Desian Model
must be satisfied 9 l : ProductCatalog | | : Sale |
by the software I 1 i i
e enteritem ™ | | |
Design { (itemlD, quantity) "; :l i i
:_‘ = ’
ST 1 spec = getProductSpec(itemID) ’i :
I I 1
{ addLineltem(spec, quantity) : J
I T |

EPENDABLE SOFTWARE 8 3
LABORATORY

KU wevary
Operation Contracts

 Operation contracts

— Use a pre- and post- condition form to describe detailed changes to objects in a
domain model, as the result of a system operation.

— Operation contracts are usually used in a Design Model for object methods,
— But, can also be used in a domain model as contracts of high-level system

operations.
Operation: Name of operation, and parameters
Cross References: Use cases this operation can occur within
Preconditions: Noteworthy assumptions about the state of the system or
objects in the Domain Model before execution of the operation.
These are non-trivial assumptions the reader should be told.
Postconditions: This is the most important section. The state of objects in the

Domain Model after completion of the operation. Discussed in
detail in a following section.

EPENDABLE SOFTWARE 84
LABORATORY

KU KONKUK
UNIVERSITY

Example

* An operation contract for the enterltem system operation.

Contract CO2: enterItem

Operation: enterltem(itemID: ItemID, quantity: integer)
Cross References: Use Cases: Process Sale
Preconditions: There is a sale underway.

Postconditions:

- A SalesLineltem instance sli was created (instance creation).
- sli was associated with the current Sale (association formed).
- sli.quantity became quantity (attribute modification).

- sli was associated with a ProductDescription, based on
itemID match (association formed).

The categorizations such as "(instance creation)" are a learning aid, not properly part of the
contract.

EPENDABLE SOFTWARE 8 5
LABORATORY

Postconditions

« Postconditions describe changes in the state of objects in the domain model.
— Not actions to be performed during the operation
— Rather, Observations about the domain model objects that are true when the
operation has finished. (— past tense)
* Instance Creation and Deletion

 Associations Formed and Broken
« Attribute Modification

— Only necessary when the outcome of a system operation is not clear from the
use case description.

» |t will be helpful when there are situations where the details and complexity of required
state changes are awkward or too detailed to capture in use cases.

() DEPENDABLE SOFTWARE 86
oh LABORATORY

KU KONKUK
UNIVERSITY

Example: Enterltem Postconditions

sli.quantity became quantity (attribute modification).

sli was associated with the current Sale

(association formed).

Process Sale Scenario .

: Cashier ‘System
]
] makeNewSale o
] il
t T
loop) [more items | 1
i enterltem(itemID, quantity) __}
»
| |
! I
description, total !
[Pl ption,total______ _______ !
| |
1 I
| 1
| I
I I
! endSale]
I “i
| I
| |
oo lotalwithtaxes !
makePayment(amount) >

sli was associated with a ProductDescription,

based on item|D match (association formed).

A SalesLineIteVZinstance sli was created (instance creation).

Sales Itemn
Lineltem Records-sale-of
’*quantity 0.1
*
1.*
Stocked-in
tained-in
1 1
Sale Store
date address
time 0.1 name
4 1
Houses
Paid-by 1.*
1 Register
Captured-on *
Payment 1
amount
87

. .
Applying UML: Operations, Contracts, and OC

 |nthe UML,

— Operation : a specification of a transformation or query that an object may be
called to execute

— Method : the implementation of an operation
» Specifies the algorithm or procedure associated with an operation

 In the UML metamodel,

— Operations have a signature (name and parameters) and are associated with
constraints (preconditions and postconditions).

— OCL (object constraint Language) iS the formal language for expressing constraints in
UML.

EPENDABLE SOFTWARE 88

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 8 9
LABORATORY

Chapter 12.
Requirements to Design lteratively

Iteratively Analysis and Design

* Analysis : Do the right thing
— The requirements and OOA have focused on learning to do the right thing.
— Understanding some outstanding goals, related rules and constraints.

 Design : Do the thing right
— Design work will stress do the thing right.
— Skillful designing a solution to satisfy the requirements for its iteration.

» Initerative development, a transition from requirements/OOA to
design/implementation occur in each iteration.

EPENDABLE SOFTWARE
LABORATORY

KU

KONKUK
UNIVERSITY

91

K K()NKL'K’

EPENDABLE SOFTWARE 9 2
LABORATORY

Chapter 13.
Logical Architecture and

UML Package Diagrams

KU tavessry

Sample UP Artifact Relationships
Domain
Business l'-'ll_:l%al
Modeling ol Ie
A Supplermentary
Require- Wision Specification Glossary

m
]
0

The logical architecture is influenced by the =
constraints and non-functional requirements
captured in tha Supp. Spec.
i o~ Design Maodel T

-~

>

1
package diagrams ul
of the logical
architecture
(a static viaw) L .’| Domain
—

- Tech
=== Services

 Register ProduciCatalog |
Design interaction diagrams ~ enlerllem
{a dynamic view) ._{I‘IEf'l'llD. quantity
spec = getProductSpec(itemiD)

ST, SR

ﬂ ProductCatalog
class dingrams 5 7
(= static view) . | 3 |
rmakeNewSale)
enteriem...) gelProductSpac...)
! " . I
\\.) -'I

EPENDABLE SOFTWARE 94
LABORATORY

KU wovessmy

Logical Architecture

« The logical architecture is the large-scale organization of the software
classes into packages, subsystems, and layers.

— But, no decision about how these elements are deployed across different
operating system processes or across physical computers in a network.
— the deployment architecture (- UML Deployment Diagram)

« UML Package Diagrams illustrate the logical architecture.
— Can also be summarized as Views in a Software Architecture Document (AD)

 Layer
— A very coarse-grained grouping of classes, packages, or subsystems that has
cohesive responsibility for a major aspect of the system
— Organized such that "higher" layers call upon services of "lower" layers
— Can be depicted easily with UML package diagrams

EPENDABLE SOFTWARE 95

Layered Architecture

KU KONKUK

UNIVERSITY

Typical layers in object-oriented systems:
— User Interface layer

— Application Logic and Domain Objects layer

Software objects representing domain concepts that fulfill application requirements
— Technical Services layer

General purpose objects and subsystems that provide supporting technical services,
such as interfacing with a database or error logging.

Usually application-independent and reusable across several systems

ul ‘

not the Java
Swing ... | SWing libraries, but Web
our GUI classes .
based on Swing \
\\
- \
/// |‘
Ourfocus — — Soma I l
omain I i
= i
1 1 1 /
Sales Payments Taxes ,/
//
/
v
/I /,
/ //
] s
Technical Services Y 7
1 1 "7]
Persistence Logging RulesEngine
() DEPENDABLE SOFTWARE
S y LABORATORY

96

KU wovessmy

Software Architecture

« “Asoftware architecture is the set of significant decisions about the
organization of a software system,
— the selection of the structural elements and their interfaces by which the

system is composed, together with their behavior as specified in the
collaborations among those elements,

— the composition of these structural and behavioral elements into progressively
larger subsystems,

— and the architectural style that guides this organization - these elements and
their interfaces, their collaborations, and their composition.”

Booch, G., Rumbaugh, J, and Jacobson, I. 1999. The Unified Modeling Language User Guide.

' DEPENDABLE SOFTWARE 97
| y LABORATORY

Applying UML: Package Diagrams

 UML package diagrams are often used to illustrate the logical architecture

of a system.

A partial LA of NextGen POS

: DEPENDABLE SOFTWARE
LABORATORY

Presentation

Text 04 ..,

Swing O L
e not the Java B -
ProcessSale "*1..| Swing libraries, but ProcessSale [reepsed qu;ck
Frame our GUI classes Console experiments
based on Swing
Domain |
Sales Pricing
‘ Register ‘ ‘ Sale ‘ PricingStrategy «interface»
Factory |SalePricingStrategy
ServiceAccess Payments
Servi «interface»
Fervtlces CreditPayment ICreditAuthorization
actory ServiceAdapter
Inventory POSRuleEngine Taxes
«interface» . «interface»
IInventory Adapter POSRuleEngineFacade |ITaxCalculatorAdapter
Technical Services |
Persistence — — A general —
LogdJ Jess purpose third- SOAP
DBFacade party rules

engine.

|

Design with Layers

KU KONKUK
UNIVERSITY

 Example: Common Layers in an Information Systems Logical Architecture

EPENDABLE SOFTWARE
LABORATORY

— —

[T —

GUlwindows

reports

speech interface

HTML, XML, XSLT, JSP, Javascript, ...

handles presentation layer requests
workflow

session state

window/page transitions
consolidation/transformation of disparate
data forpresentation

handles application layer requests
implementation of domain rules

domain services (POS, Inventory)

- services may be used by just one
application, but there is also the possibilit
of multi-application services

very general low-level business services
used in many business domains
CurrencyConverter

(relatively) high-level technical services
and frameworks
Persistence, Security

low-level technical services, utilities,
and frameworks

data structures, threads, math,

file, DB, and network I/O

Yy

LG N

—

ul
(AKA Presentation, View)

—
Application }
(AKA Workflow, Process, :
Mediation, App Controller) E‘ |
-
Q|
ol
T |
— [
1
Domain A

(AKA Business, Applicati
on Logic, Model)

—

Business Infrastructure
(AKA Low-level Business Services)

Technical Services (AK
A Technical Infrastructure, Hi
gh-level Technical Services)

1

more

ap

p.

specifi

9

A

Foundation
(AKA Core Services, Base Services, Lo
w-level Technical Services/Infrastructure)

width implies range of applicability 1y,

99

Mapping Code Organization to Layers and UMEE=]
Packages

* Most popular OO languages provide support for packages.

m I // --- Ul Layer))
com.mycompany .nextgen.ui .swing
the Java com.mycompany .nextgen.ui .web
Swing % w......_| Swing libraries, but Web
our GUI clasges N
based on Swing \ // --- DOMAIN Layer
- \ // packages specific to the NextGen project
/’ ! com.mycompany .nextgen.domain.sales
Domain | ¥ E com.mycompany .nextgen.domain.payments
- -] !
Sales ‘ Payments ‘ Taxes .',
// // --- TECHNICAL SERVICES Layer
/7 // our home-grown persistence (database) access layer
/ I//’ com.mycompany .service.persistence
Technical Services I \I; //’/ // third par_ty
- org.apache.log4j
1 1 <=7 [org.apache.soap.rpc
Persistence Logging ‘ RulesEngine
// --- FOUNDATION Layer
// foundation packages that our team creates
com.mycompany .util

EPENDABLE SOFTWARE 1 OO
LABORATORY

Connections Between SSDs, System OperatioASE=
and Layers

* In a well-designed layered architecture,

— The Ul layer objects will forward or delegate the requests from the Ul layer (system
operations) Onto the domain layer for handling.

— The messages sent from the Ul layer to the domain layer will be the messages
illustrated on the SSDs.

:System enterltem()
: Cashier ProcessSale endSale()
Frame

ul | -
Swing makeNewSale() %

makeNewSale()

I
|
}
’]I : Cashier

makeNewSale()
enterltem()

|
|
|
I_enterltem(id, quantitv)’]
: | makeNewSale()
< _description, total _ _ | enterltem() ¢
I | - endSale() ©.
I Domain
|
I
’ endSale() > Register
l 0 ‘
] i
! I
|

the system operations handled by the system in an SSD represent the
operation calls on the Application or Domain layer from the Ul layer

| DEPENDABLE SOFTWARE 101
Y LABORATORY

K K()NKL'K’

]}EPENBABLE SOFTWARE 1 O 2
LABORATORY

Chapter 14.
On to Object Design

KU wovessmy

Designing Objects: Static vs. Dynamic

« Two kinds of object models:
— Static models help design the definition of packages, class names, attributes,
and method signatures (but not method bodies).

« Example: UML class diagram
* Looks like the most important model.

— Dynamic models help design the logic, the code, or the method bodies.
« Example: UML interaction diagrams (sequence diagram, communication diagram)
» Tend to be the more interesting, difficult, and important diagrams to create.

* Relationship between static and dynamic modeling:
— Spend a short period of time on interaction diagrams, then switch to a wall of

related class diagrams.

\
2
Diabort Die ?!2:1 :
L A FacValue " i
Pl 0| . ,

i

UM\ Usss Dn«ﬁm ML Sq_ghu@iubm-\

| DEPENDABLE SOFTWARE 104
‘N LABORATORY

KU

Static Object Modeling

People new to UML tend to think that the important diagram is the static-
view class diagram.

— But, static and dynamic modelling are all important equivalently.
— The most common static object modeling is with UML class diagrams.

Static UML Tools:
— Class diagram
— Package diagram
— Deployment diagram

LABORATORY

KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 1 05

Dynamic Object Modeling

« Most useful design work happens while drawing the UML dynamic-view
interaction diagrams.
— During dynamic object modeling (such as drawing sequence diagrams), W€ reaIIy think the

exact details of what objects need to exist and how they collaborate via
messages and methods.

 Dynamic UML Tools:
— Interaction diagrams (Sequence diagram)
— Statechart diagram
— Activity diagram

| DEPENDABLE SOFTWARE 106
Y LABORATORY

Object Design Skill over UML Notation Ski

 The object design skills are matter, not knowing how to draw UML.
— Since, Drawing UML is a reflection of making decisions about the design.

 Fundamental object design requires knowledge of:

— Principles of responsibility assignment (GRASP)
— Design patterns

Pattern/ yoig
S Description
Principle
S— - — sinterfaces Adapter
Information A general principle of ohject design and responsibility assignment? ‘ “da_ ey
Expert +operafiany() Type: Structural
Assign a responsibility to the information expert—the class that has the information neces- What it is-
sary to fulfill the responsibility. % Convert the interface of a class into
T | another interface dients expect. Lets
Creator Who creates? (Note that Factory is a common alternate solution.) ConcreteAdapter classes work together that couldn't
Adaptee othenwise because of incompatible
Aszsign class B the responsibility to create an instance of class A if one of these is true: -adaptee s re— interfaces.
" aineg / 1 records / | . piedCperation
1. B contains A 4. B records A operation()
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A

GRASP Design Pattern of GoF

E;?:l EPENDABLE SOFTWARE '] 07
; LABORATORY

K KONKUK
UNIVERSITY

]}EPENBABLE SOFTWARE 1 O 8
LABORATORY

Chapter 15.
UML Interaction Diagrams

Interaction Diagrams

« Interaction diagrams illustrate how objects interact via messages.
— Dynamic object modeling

— Sequence diagram

— (+) Communication diagram

— () Interaction overview diagram
— (+) Timing diagram

EPENDABLE SOFTWARE

KU wovessmy

110

4 Interaction Diagrams

:Student

:E-Learning
System

:Database

login(user, pw)

I
I
»!
L]

KU KONKUK
UNIVERSITY

i i check(user, pw)
i il/ check: "ok" Ji
i login: "ok" i i
< 1 |
E getCourses() ,_! i
Sequence diagram
:Student
1: login(user, pw)
2: getCourses()
. i —>
.ESLeégman :Database
yStem 11 .1: check(user, pw)

Communication diagram

EPENDABLE SOFTWARE
LABORATORY

€ logged in
]
= logged out A getCourses
@ login(user, pw) !
1
i
2 ilogin: "ok"
c
£ E busy v ' | A
5 2 A
(] R 1
- 3 idle !
'-.'-! check(user, pw) i check: "ok”
1
|
I
[1
8 |
ﬁ active v :
®©
o
Timing diagram
sd Log In /
o :E-Learning .
:Student System :Database
| |
login(user, pw) |
S P i [else]
H i check(user, pw) i @
i heck: "ok” |
i<login: ok’ e ST *: [authorized]
,,,,,,,,,,,,,,,,,, !
i getCourses() | i
l—‘h 1
1

sd Forum /

Interaction Overview diagram

111

Sequence and Communication Diagram

 Sequence diagrams
— model the collaboration of objects based on a time sequence

« Communication diagrams
— focus on showing the collaboration of objects rather than the time sequence

T A myB : B
: : public class A
doOne : i t =
. - ! private B myB = new BQ);
doTwo >
_ public void doOne()
doThree ._: {
myB.doTwo() ;
; myB.doThree();
i ! }
/7 ..
doOne "‘: A | }
1: doTwo
2: doThree

¥

. myB : B
S‘ DEPENDAB. . coon «vrmuee ! 112

LABORATORY

KU tvansme
Example : Sequence/Communication Diagrams

* An example scenario:
1. The message makePayment is sent to an instance of a Register.
2. The Register instance sends the makePayment message to a Sale instance.
3. The Sale instance creates an instance of a Payment.

Example Sequence Diagram: makePayment public class Sale
= : {
: Register s private Payment payment;
makePayment(cashTendered) ,, | ‘ public void makePayment(Money cashTendered)
makePayment(cashTendered) | s s o {
__create(cashTendered)) . paymen payment = new Payment(cashTendered);
| —T7 /7.
by
// ..
Example Communication Diagram: makePayment T

direction of message |

S e

makePayment(cashTendered) Za 1: makePayment(cashTendered)—+ -Sale J

‘Register

1.1: create(cashTendered) ¢

:Payment l

113

li LABORATORY

Basic Sequence Diagram

 Lifeline boxes and lifelines
« Messages

: Register
I
I
Z doX > !
a found message l
whose sender will not
be specified
-

execution specification k
bar indicates focus of
control

PENDABLE SOFTWARE
LABORATORY

KU wovessmy

Notations

: Sale
I
I
doA]
doB > :
I
doC ..

daD

typical sychronous message
shown with a filled-arrow line

114

+ Lifeline box

| K Eonkuk
UNIVERSITY

— Represent the participants in the interaction, informally and practically
» object(s), class, subsystem, component, etc.

lifeline box representing an
unnamed instance of class Sale

’ :Sale

lifeline box representing an
instance of an ArrayList class,
parameterized (templatized) to
hold Sale objects

sales:
ArrayList<Sale> O...

EPENDABLE SOFTWARE
LABORATORY

lifeline box representing a ﬁ

! i
| related
! example

named instance

&

s1: Sale

lifeline box representing
one instance of class Sale,
selected from the sales

lifeline box representing the class
Font, or more precisely, that Font s
an instance of class Class —an
instance of a metaclass

«metaclass»
Font

|

I
1
|
|
|
|
|

ArrayList <Sale> collection

oF

sales[i]: Sale

1
|
|
1
|
|
|

List is an interface ll

in UML 1.x we could not use an
interface here, but in UML 2, this (or

an abstract class) is legal

=

X : List

115

l{ l] KONKUK
UNIVERSITY

Order of Messages

... on one lifeline ... on different lifelines
| a i | a
| — | E—
c | << Happens before >> c | |

1

]

Traces:
TO1:a—>c
TO2:c— a

... on different lifelines which exchange messages

Traces:
TOl:a—=b=c

]}EPENDABLE SOFTWARE 1 1 6
LABORATORY

3 Types of Messages

* Synchronous message

— Sender waits until it has received a response message
before continuing.

— An execution specification is inserted at target.

 Asynchronous message

— Sender continues without waiting for a response message.

. Response message
— May be omitted if content and location are obvious

PENDABLE SOFTWARE

KU KONKUK

-~ Y
| >
S
- Y

117

]}EPENDABLE

Message Syntax

return = message (parameter: parameterType) : returnType

- For example:
initialize(code)
initialize

d = getProductDescription(id)
d = getProductDescription(id:ltemID)
d = getProductDescription(id:ltemID) : ProductDescription

: Register - Sale
i |
1 .
doX I | Recieve event
=
d1 = getDate ‘/1/
7 "
// o ——Execution specification
Send event getDate vt
e abate ________| |
|
L |

SOFTWARE
LABORATORY

118

Other Types of Messages

 Found message
— Sender of a message is unknown or not relevant. found !
o

 Lost message
— Receiver of a message is unknown or not relevant.

« Time-consuming message |

— Message with duration : Express that time elapses
between the sending and the receipt of a message

— Usually messages are assumed to be transmitted |
without any loss of time. i\j

-Student :Stugjgtt:\nﬂmm
lecturer . .
| enroll |
:Professor : 0 >
i . i
' |
l —A
announcement(lecture) | L
o< i : {2..3 days} I T I
M.. I - :
|

'DEPENDABLE SOFTWARE 119
Y LABORATORY

Singleton Objects

« There is only one instance of a class instantiated : a singleton object
— Implying to the Singleton design pattern

: Register)
€9 : Store i the 't impliesthisisa Dk
- 1 Singleton, and accessed
& doX ! i via the Singleton pattern
1

dos _JI
I

i
PENDABLE SOFTWARE 1 2 O

KU wovessmy

Instance Creation

 To create an instance of a class
— The UML mandates dashed line.

— The message name create is not required ; anything is legal.
« But, it's a UML idiom.

nole that newly created L
objects are placed at their
creation “height”

: Register : Sale

makePayment(cashTenderad)
create(cashTenderad) » : Payment

|
|
1
authorize !

; \(:’?;]:)EPENDABLE SOFTWARE 1 21
) LABORATORY

KU wovessmy

Object Destruction

« To show explicit destruction of an object

— The <<destroy>> stereotyped message, with the large X and short lifeline
indicates explicit object destruction

Sale
I :
_ _create{cashTendered) - - Payment L
L the «destroy» sterectyped
> message, with the large
| .- X% and short lifeline
adestroys »X & indicates explicit object
destruction

; \(:’?;]:)EPENDABLE SOFTWARE 1 22
) LABORATORY

Combined Fragments and Operators

« 12 predefined types of operators

— Model various control structures with frames

KU KONKUK
UNIVERSITY

* Frames : regions or fragments of the diagrams, which has an operator and a guard
— Frames are nested.

Operator Purpose
2 alt Alternative interaction
©
b4 § opt Optional interaction
=
§ 2 loop Repeated interaction
| g
o break Exception interaction
- seq Weak order
Q. i ‘
e strict Strict order
50))
oo par Concurrent interaction

< .- . ‘

8 critical Atomic interaction

ignore Irrelevant interaction
T 0 ; . :
S5 consider Relevant interaction
0 £ . :
o] assert Asserted interaction
d
=3/
b neg Invalid interaction

EPENDABLE SOFTWARE
LABORATORY

123

alt Fragment

To model alternative sequences

 Similar to switch statement in Java

— Guards are used to select the one
path to be executed.

— Multiple operands

« Guards
— Modeled in square brackets
— default: true
— predefined: [else]

« Guards have to be disjoint to
avoid non-deterministic behavior.

' DEPENDABLE SOFTWARE
LABORATORY

:StudentAdmin

:Student :Database
System

o ; i

! register(matNo, exam) J :

: | enter(matNo, exam) |

| | Status = enter: status _ |

| \ |

alt i [status == ok] ; i

| I |

| | |

| register: "ok" \ |

e S 1 [

| \ |
-------- S L EES S EL PP LR EESEREEE

: [status == waiting list free] } :

| I |

| register: "wl" \ I

ke m S 4 [

| \ |

opt I [register on WL == true] } :

| | |

| register(matNo, exam) J :

: | enterWL(matNo, exam) |

r Ll

: \ enterWL: "ok" _:

| register: "ok" \ |

e ——— 4 |

| | |

f }

| | |
———————— R SELE ST LR e P e P LY EERRLEES

: [else] } :

| I |

| register: "error” \ |

e 1 |

| |

f t

124

opt

opt Fragment

:StudentAdmin

« To model an optional sequence e System ‘Database

! register(matNo, exam) J i
.. . . : 'i enter(matNo, exam) |
-« Similar to if statement without else | __ status = enter satus |
branch | | |
alt | [status == ok] \ |
— Exactly one operand | | |
. . . ' _____re_gi_st_eflgki____J :
— Actual execution at runtime is | | |

________ |__________________________ _________________________.I________
dependent on the guard_ : [status == waiting list free] } :
L,,,,I‘igift,efj",‘”i,,,,j i
| \ |
opt IJ [register on WL == true] ‘} i
! register(matNo, exam) J i
i 'i enterWL(matNo, exam) !
| L enterWLi'ok’ |
| register: "ok" \ |
T i |
| T |

———————— e Rttt EEEEEEES
: [else] } :
| register."omor | |
| | |

| e 125

4

loop Fragment

« To model repeatedly-executed sequences
— Exactly one operand

« Keyword loop followed by the minimal/maximal number of iterations
— (min..max) or (min, max)
— default: (*) .. no upper limit

 Guard

— Evaluated as soon as the minimum number of iterations has taken place
— Checked for each iteration within the (min,max) limits

— If the guard evaluates to false, the execution of the loop is terminated.

Notation alternatives:

_ Ioop(1,*)) | loop(3,8) = loop(3..8)
loop is executed at I I loop (8,8) = loop (8)
least once, as long as [a<1] i > 1 —/l (*) =1 (0, *)
a<l1 is true. l< | oop = Loop - seop ity
| |
| >
I

| DEPENDABLE SOFTWARE 126
‘N LABORATORY

break Fragment

« Similar to exception handling
— Exactly one operand with a guard

« If the guard is true:

— Interactions within this operand are
executed.

— Remaining operations of the
surrounding fragment are omitted.

— Interaction continues in the next higher
level fragment.

EPENDABLE SOFTWARE

break -]
K U taversiry

A ‘B
_a |
seq |
I
break [a<1] :
I
I I
I b \I
| i
S i
| g I
| >
| |
B e |

127

loop and break Fragment - Example

:Student e el :Database
System

loop(1,3) J [incorrect password]

login(name, pw)

check(name, pw)

break J [incorrect password]

error message

register(matNo, exam)

enter(matNo, exam)

e 14l ¥ ___1
. ANV IO A . E—

s ——r——t—px——

S i]:)EPENDABLE SOFTWARE 1 28

LABORATORY

A U |

seq Fragment

 Default order of events

 Weak sequencing:
1. Events on different lifelines from different operands may come in any order.

2. Events on the same lifeline from different operands are ordered such that an
event of the first operand comes before that of the second operand.

‘A ‘B G D
seq / | | |
| a3 : : : Traces: AN
:Til : : TOl:a>b—>c—>d—e
e | | T02:a—>c—>b—>d—>e
: : l&: T03:c>a—->b—->d—e
| | | |
| A{ |
| | I e |
| ! >

PENDABLE SOFTWARE 1 2 9
BORA

RO o |

strict Fragment

 Sequential interaction with order

— Messages in an operand that is higher up on the vertical axis are always
exchanged (executed) before the messages in an operand that is lower down on
the vertical axis.

A B C D
strict / i | i
| | [
I a | | |
— | [
| b | [Traces:
B — A N L T0Ol:a=-b->c->d-e
| | I ¢ |
| R
| e |
| | | [
L

| DEPENDABLE SOFTWARE 130
N LABORATORY

KU wovessmy

strict Fragment - Example

) :StudentAdmin lecturer e
:Student Svaer Professor :Printer
strict)] i i i
I I I I
I : I | I
! register(exam) > | |
| | | I
------- e
I I I I
| | | int |
| | : print(exam) .

PENDABLE SOFTWARE 1 3 1
LABORATORY

par Fragment

« To set aside chronological order between messages in different operands
— Execution paths of different operands can be interleaved.

— Restrictions of each operand are respected, but the order of the different

operands is irrelevant
« Concurrency, no true parallelism

‘A ‘B C ‘D
par / | | i
| | |
| a | | |
v ||
e— | |
it el f------- q=------- F--
| | | ¢ |
| o9
| e— |
| | I e |
| | —

PENDABLE SOFTWARE
LABORATORY

Traces:

TO1:a=b—->c—>d-e
T02:a—>c—>b—>d—e
T03:a=»c—>d—->b-e
TO4:a—>c—>d—->e—>b
T05:c~>a—->b—->d-e
TO06:c>a—>d—->b—e
TO07:c>a—>d—->e—->b
T08:c>d—>a—->b—e
T09:c>d—>a—-»e—>b
T10:c>d—>e—>a-b

132

critical Fragment

« Atomic area in the interaction

— To make sure that certain parts of an interaction are not interrupted by

unexpected events

— Order within critical is the default order seq.

Traces: AN

TO1l:a—=>b—>c—>d—->e
T02:a=2>c—>d—=>b—-e
T03:a—->c—>d—>e—>b
TO4.c>d—>a—->b—e
T05:.c>d—>a—>e—>b
T06:c>d—>e—>a—>b

critical

K

KONKUK
UNIVERSITY

A B (S D

= | i i

i '/a | | |

) I I

Hlb | I
(R s s Sy

ﬂ@/ | ¢ |

| : d | |

| < |

| | e |

! | =

EPENDABLE SOFTWARE

133

B

Interaction Reference

KU KONKUK
UNIVERSITY

* Integrates one sequence diagram in another sequence diagram

" doX > ' l :
[doA p! |

I {_'_dOB—’:

I |

EPENDABLE SOFTWARE
LABORATORY

authenticate(id) > ref

|
|
I
I
1
1
1
I
1
I
|
|
1
I
1

AuthenticateUser
|

|

I

|

ref
/" DoFoo

I

=
;
l’ I

I
i

I
[
i
]
]

interaction occurrence
note it covers a set of lifelines

note that the sd frame it relates to
has the same lifelines: B and C

sd AuthenticateUser)
: : [
authenticate(id
doM1
doM2

|
I
|
I
|
I
I
I
I

sd DoFoo /

E

doX

doY

doZ

134

Iteration Over a Collection

« Sending the same message to each object to iterate over all members of a
collection (such as a list or map).
— The selector expression (as lineltems]i] in the lifeline) selects one object from a
group.
— Lifeline participants should represent one object, not a collection.

- al lineltems]i] : - e k
: Sale SalesLineltem This lifeline box represents one
; —G instance from a collection of many
t = getTotal > SalesLineltem objects.

|

lineltems]i] is the expression to
select one element from the
collection of many
SalesLineltems; the i" value
refers to the same “i" in the guard
in the LOOP frame

loop /[< liheltems.size]

I

I

i

E

st = getSubtotal >

3 |
| :
|

| an action box may contain arbitrary language |\
statements (in this case, incrementing ‘i')

| itis placed over the lifeline to which it applies

LABORATORY

S i]:)EPENDABLE SOFTWARE 1 35

Messages to Classes to Invoke Static (or ClasSJE=l
Methods

* You can show class or static method calls by
— using a lifeline box label that indicates the receiving object is a class, or
— more precisely, an instance of a metaclass

message lo class, or a
static method call

ametaclass»

:F
oo Calendar

T
| ~ |

doX I !

* <1 locales = getAvailableLocales e
]

|

|

public class Foo
{
public void doX()
¢ // static method call on class Calendar
Locale[] locales = Calendar.getAvailableLocales();
// ..
}
// .
}

S {DEPENDABLE SOFTWARE '] 36

LABORATORY

Basic Communication Diagram Notations

 Link and Message

— A connection path between two objects indicating some form of possible
navigation and visibility between the objects

— All messages flow on the same line, and many messages may flow along a link.

+ Each message between objects is represented with a message expression and small
arrow indicating the direction of the message.

* A sequence number is added to show the sequential order of messages in the current
thread of control.

first k second L
. third k
msgl = ‘A 1: msgd = ‘B
1.1:msgd ¥
21:msgs 4
2. msgd - [. C
fourth L fifth k
2.2: msg6

sixth L

DEPENDABLE SOFTWARE
LABORATORY

KU wovessmy

Timing Diagram

 Timing diagram
— Shows state changes of the interaction partners that result from the occurrence
of events
* \Vertical axis: interaction partners
* Horizontal axis: chronological order

= logged in
5
2 logged out _ N\ getCourses
n login(user, pw) !
|
|
m H « n
= 1login: "ok
= E \ 4 ! \ 4
%9 busy /:\
o2 idle :
L2 I
L check(user, pw) ! check: "ok"
1
i
I
O] I
: :
e active y |
©
-

S {DEPENDABLE SOFTWARE '] 38

LABORATORY

KU avemsmy

duration constraint

state or condition b
5 Sending response
c timeline \ state change
& Processing \4 \ A4
o \
é Waiting \
B \
4
. {0..400 ms} \
lifeline g o H \ HTTP response
‘\-._‘__“ a2 Processing timeline {5[].21:"} ms} \ reply message
P \ \
2 Idle e m— \
\ \
Resolve URIJ&K \ HTTP request 1L||
E Waiting /’ {100..500 ms}
2 Processing \ .
- Send \
1di synchronous requesﬁi‘\\ event or \
% € message stimulus \
F’_/ Show page \
4
Y,
- 5\
lifeline @ \
~ 2 Idle Waiting X Viewing
0]
=

Z//nss 1s 15s 2s 25s

state, condition or value tick mark value timing ruler

]}EPENDABLE SOFTWARE 1 3 9
LABORATORY

Interaction Overview Diagram

* Interaction overview diagram
— Visualizes order of different interactions

— Allows to place various interaction diagrams in a logical order

— Basic notation concepts of activity diagram

sd Log In /

:Student :E-Learning ‘Database

System
|
login(user, pw)>l
' : check(user, pw)

>

|
|
I
|
|
|
|
|
|
4
|
|
|
|
|
|
|
1

P [else] \@

[authorized]

_‘ ' DEPENDABLE SOFTWARE
LABORATORY

sd Forum /

140

K K()NKL'K’

EPENDABLE SOFTWARE 1 4 1
LABORATORY

Chapter 16.
UML Class Diagram

KU KONKUK
UNIVERSITY

Applying UML: Common Class Diagram Notation

SuperclassFoo
ar
SuperClassFoo { abstract }

officially in UML, the top farmat is B,
used to distinguish the package
name from the class name

unofficially, the second alternative

- classOrStaticAttribute : Int is comman
b | + publicAttribute : String
4 comrl';nn i - privateAttribute
conmipatanents assumedPrivateAttribute y
: isInitializedAttribute : Bool = true o iava.awt:Font
1. classifier name aCollection : VeggieBurger [*] PR, m."
’ attributeMayLegallyBeMull ; String [0..7] iava.awt. Font
Z aitributes finalConstantAttribute : Int = 5 { readOnly } IEvE
= fderivedAttribute plain : Int = 0 { readOnly }
3. operalions ¥
P 2 i bold : Int = 1 { readOnly }
: Stri
+ publicMethod() St - It)
- assumedPublicMethod() e
an interface - privateMethod()
shown with a # protectedMethod() getFontiname : String) : Font
keyword ~ packageVisibleMethod() getName() ; String
wconstructory SuperclassFoo(Long)
methodWithParms(parm1 : String, parm2 : Float)
& methodReturnsSomething() : VeggieBurger
ginterfaces method ThrowsException() {exception ICException}
Runnable abstraciMethody)
abstractMethod2() { abstract} #/ alternate I Fruit
uni) finalMethod() { leaf } // no override in subclass dependency H
= synchronizedMethod() { guarded } - —
W II."I|I -
e in ~ 2. A
- | ri o TN 2 - -
interface h o™ o) i gD
implemantation e !
and ‘ 1
subclassin
= 9 SubclassFoo PurchaseCrder
: 1
% {.; . 3 B
run() orde

association with k

- ellipsis “..." means there may be elements, but not shown
- a blank compartment officially means “unknown” but as a

convention will be used to mean “no members"
EPENDABLE SOFTWARE
LABORATORY

multiplicities

143

KU KONKUK
UNIVERSITY

Design Class Diagram

The same UML class diagrams can be used in multiple perspectives.
— In a conceptual perspective, Domain model
— In a design perspective, Design Class Diagram (DCD)

Domain Model , Sale
Register 4 Captures 1 "
conceptual it
P isComplete : Boolean
perspective ftotal
Register Sale
Design Model 4 | time
isComplete : Boolean
DCD; scftware endSale() currentSale | ftotal
perspective enterltem(...)
makePayment{...} makeLineltern(...)

t | DEPENDABLE SOFTWARE 144
; LABORATORY

KU wovessmy

Object

 Individuals of a system

 Alternative notations:

maxMiller maxMiller:Person :Person

maxMiller maxMiller:Person :Person
firstName = "Max" firstName = "Max" firstName = "Max"
lastName = "Miller" lastName = "Miller" lastName = "Miller"
dob = 03-05-1973 dob = 03-05-1973 dob = 03-05-1973

= No object name

LABORATORY

S | DEPENDABLE SOFTWARE 145

KU wovessmy

Object Diagram

» Depicts objects and their relationships at a specific moment in time

helenlLewis:Student oom:Course
firstName = "Helen" name = "OOM"
lastName = "Lewis" semester = "Summer"
dob = 04-02-1980 hours = 2.0
matNo = "9824321"

mikeFox:Student iprog:Course lh1:LectureHall
firstName = "Mike" name = "IPROG" name = "LH1"
lastName = "Fox" semester = "Winter" seats = 400
dob = 02-01-1988 hours = 4.0
matNo = "0824211"

S {DEPENDABLE SOFTWARE '] 46

LABORATORY

From Object to Class

« Aclass is a construction plan for a set of similar objects of a system.

— Obijects are instances of classes.

« Attributes: structural characteristics of a class
— Different value for each instance (object)

« Operations: behavior of a class

— ldentical for all objects of a class
— not depicted in object diagram

Person

maxMiller:Person

firstName: String
lastName: String
dob: Date

firstName = "Max"
lastName = "Miller"
dob = 03-05-1973

_‘ ' DEPENDABLE SOFTWARE
LABORATORY

Class name 1

Attributes

Operations

—

—

P

Course

name: String

semester: SemesterType

hours: float

getCredits(): int

getLecturer(): Lecturer

getGPA(): float

147

Attribute Syntax - Visibility

Person

firstName: String

lastName: String

dob: Date

address: String[1..*] {unique, ordered}
ssNo: String {readOnly}

/age: int

password: String = "pw123"
personsNumber: int

: DEPENDABLE SOFTWARE
LABORATORY

 Who is permitted to access the attribute.

+ ..

. public: everybody
.. private: only the object itself

#...
.. package: classes that are in the same package

protected: class itself and subclasses

148

Attribute Syntax - Derived Attribute

Person e Attribute value is derived from other attributes or
firstName: String aSSOCiationS.
lastN . Stri .
dob: Date — age: calculated from the date of birth

address: String[1..*] {unique, ordered}
ssNo: String {readOnly}

password: String = "pw123"
personsNumber: int

S DEPENDABLE SOFTWARE 1 49

LABORATORY

Attribute Syntax - Name

Person

i

String
String
Date
String[1..*] {unique, ordered}
. String {readOnly}
int
|- String = "pw123"
(A I t

' DEPENDABLE SOFTWARE
| y LABORATORY

Name of the attribute

KU wovessmy

150

Attribute Syntax - Type

Person

firstName:

lastName:

dob:

address: g[1..*] {unique, ordered}
ssNo: g {readOnly}

lage:

password:
personsNumber:

= "pw123"

' DEPENDABLE SOFTWARE
| LABORATORY

Types of attributes
— Data types

« Primitive data type

— Pre-defined: Boolean, Integer, Unlimited Natural, String

— User-defined: «primitive»
— Composite data type: «datatype»
* Enumerations: «<enumeration»

«primitive» «datatype» «enumeration»
Float Date AcademicDegree
round(): void day bachelor
month master
year phd

— User-defined classes

KU

KONKUK
UNIVERSITY

151

Attribute Syntax - Multiplicity

Person

firstName: String
lastName: String

dob: Date

address: String {unique, ordered}
ssNo: String {readOnly}

/age: int

password: String = "pw123"
personsNumber: int

: DEPENDABLE SOFTWARE
LABORATORY

Number of values which an attribute may contain
— Default value: 1

Notation: [min..max]
— no upper limit: [*] or [0..*]

152

Attribute Syntax - Default Value

Person Default value

firstName: String — Used if the attribute value is not set explicitly by the user

lastName: String

dob: Date

address: String[1..*] {unique, ordered}
ssNo: String {readOnly}

/age: int

password: String =

personsNumber: int

S‘ ' DEPENDABLE SOFTWARE 1 5 3

LABORATORY

Attribute Syntax - Properties

Person

firstName: String
lastName: String
dob: Date

address: String[1..%]
ssNo: String

/age: int

password: String = "pw123"

personsNumber: int

DEPENDABLE SOFTWARE
LABORATORY

» Pre-defined properties

{readOnly} ... value cannot be changed
{unique} ... no duplicates permitted
{non-unique} ... duplicates permitted
{ordered} ... fixed order of the values
{unordered} ... no fixed order of the values

= Attribute specification

Set: {unordered, unique}

Multi-set (Bag): {unordered, non-unique}
Ordered set: {ordered, unique}

List: {ordered, non-unique}

154

Operation Syntax - Parameters

Person

+ getName : void
+ updateLastName : boolean
+ getPersonsNumber(): int

DEPENDABLE SOFTWARE
LABORATORY

= Notation similar to attributes

= Direction of the parameter

= in ... input parameter

» When the operation is used, a value is expected
from this parameter

= out ... output parameter

» After the execution of the operation, the parameter
has adopted a new value

= jnout : combined input/output parameter

Operation Syntax - Type

Person = Types of the return value

getName(out fn: String, out In: String): \
updateLastName(newName: String): bo
getPersonsNumber():

i | DEPENDABLE SOFTWARE ‘] 56
N LABORATORY
p |

Operations and Methods

 Operations

— The full official format of the operation syntax :
+ visibility name (parameter-list) {property-string}

— Guidelines
* Assume that the new version includes a return type.
» Operations are usually assumed public if no visibility is shown.

* An operation is not a method.

— A UML operation is a declaration, with a name, parameters, return type,
exceptions list, and possibly a set of constraints of pre-and post-conditions.

— Not an implementation - rather, methods are implementations.

PENDABLE SOFTWARE
LABORATORY

157

Note Symbols

- A UML note symbol may represent several things, such as:
— UML note or comment, which by definition have no semantic impact
— UML constraint, in which case it must be encased in braces '{...}
— Method body : the implementation of a UML operation

i Register
emethod» k g
/ pseudo-code or a specific language is OK
public void enterltemn(id, gty }
{ endSale()
ProductDescription desc = catalog.getProductDescription(id); centerltem(id, gty)
sale. makelineltem{desc, gty); makeNewSale()
} makePayment{cashTenderad)

y b
() DEePENDABLE SOFTWARE 158
Y LABORATORY

2]

Class Variable and Operation

* Instance variable (= instance attribute) : attributes defined on instance level

« Class variable (= class attribute, static attribute)
— Defined only once per class, i.e., shared by all instances of the class
— Example: counters for the number of instances of a class

e Class operation (= static operation)

— Can be used, if no instance of the corresponding class was created
— Example: constructors, counting operations, etc.

class Person {

Person

public String firstName;

+ firstName: String public String lastName;

+ lastName: String ivate Date dob:

— dob: Date # private Date dob;

address: String[*] protected String[] address;

umber private static int pNumber;
+ getDob(): Date public static int getPNumber() {...}

public Date getDob() {...}

S i]:)EPENDABLE SOFTWARE 1 59

LABORATORY

Operations to Access Attributes in DCDs

« Accessing operations to retrieve or set all (private) attributes
— Example: getPNumber() and setPNumber()

Person

+ firstName: String
+ lastName: String
- dob: Date

address: String[*]

+ getDob(): Date

— Often excluded (or filtered) from the class diagram, since they are too many.
* For n attributes, there may be 2n uninteresting getter and setter operations.

— Most UML tools support filtering their display.

EPENDABLE SOFTWARE 1 60
BOR.

KU wovessmy

Different Levels of Class Detail

< %

Coarse-grained Fine-grained

Course

Course
. + name: String

+ semester. SemesterType

gzrr::ster - hours: float
— /credits: int
Course Foiis e
i + getCredits(): int
getCredits() g its(): i

+ getlLecturer(): Lecturer
ge:ée;}\urer() + getGPA(): float
ge () + getHours(): float

+ setHours(hours: float): void

S ' DEPENDABLE SOFTWARE 1 61
| y LABO ‘ORY

K KONKUK
UNIVERSITY

Types of Class Relationship

<Weaker (lass relationship Stronger Class relationshi>
Dependency Association Aggregation
D — | o——
Dashed Arrow Simple Connecting Line [Empty Diamond Arrow

When objects of one | When objects of one | When one class owns but When one class When one classis a
class work briefly with class work with shares a reference to contains objectsof | type of another class
objects of another class | objects of another class| objects of another class another class

for some prolonged
amount of time

EPENDABLE SOFTWARE

LABORATORY 1 62

KU wovessmy

Dependency

* Models weakest possible relationships between classes
— Aclass needs to know about another class to use objects of that class briefly.
— Not used often in class diagram, but does in component diagram.

AN

The Dependency Arrow

Userinterface f======- beaa -> BlogEntry

EPENDABLE SOFTWARE 1 63
BOR.

KU KONKUK
UNIVERSITY

Dependency - Example

 Example:

— The updatePriceFor method receives a ProductDescription parameter object and
then sends it a getPrice message.

— Therefore, the Sale object has parameter visibility to the ProductDescription, and
message-sending coupling, and thus a dependency on the ProductDescription.

— If the latter class changed, the Sale class could be affected.

the Sale has parameter visibility to a LS
ProductDesecription, and thus some kind of
dependency R
ProductDescription public class Sale
' IR
— 1 . | public void updatePriceFor(ProductDescription description)
1 i] - J/: L {

Money basePrice = description.getPrice();

/7.

updatePriceFor{ ProductDescriplion) l
[SalesLineltem H

By

lineltems

EPENDABLE SOFTWARE 1 64
LABORATORY

KU wovessmy

Association

» Models possible relationships between instances of classes

— When objects of one class work with objects of another class for some prolonged
amount of time.

* givesLectureFor p *
Professor v Student
+lecturer
helenLewis:Student
T neienLewis.otuaent
annaMiller:Professor
\
aulSchubert:Student
P

frankStone:Professor

mikeFox:Student

S {DEPENDABLE SOFTWARE '] 65

LABORATORY

Rl

Binary Association

 Connects instances of two classes with one another

* givesLectureFor p

XK *

Professor Student

+lecturer

PENDABLE SOFTWARE 1 66

LABORATORY

Binary Association - Navigability

* Navigability
— An object knows its partner objects and can therefore access their visible
attributes and operations.

— Indicated by open arrow head or cross

A x——> B

 Example:
— “A can access the visible attributes and operations of B”
— “B cannot access any attributes and operations of A”

« Navigability undefined A B
— Bidirectional navigability is assumed.

EPENDABLE SOFTWARE 1 67
BOR.

[EE=
Navigability - UML Standard vs. Best Practice

UML Standard Best Practice
A B |
— A B
A l<— B
A sl B |
= A > B
A x——> B

DEPENDABLE SOFTWARE 1 68
RATORY

KU wovessmy

Binary Association as Attribute

Professor Professor

+lecturer | *

Sk Student

Student + lecturer: Professor[*]

= Java-like notation:

class Professor {.}

class Student {
public Professor[] lecturer;

un
() DerPenDABLE SOFTWARE 169

I LABORATORY

2

Ways to Show UML Attributes

« Attributes can be shown in three ways:

1. attribute text
» visibility name : type multiplicity = default {property-string}

using the attribute Register Sale

text notation to

2. association line
* a navigability arrow indicate Register has
* multiplicity Saemaans
e arolename = — 7 —— e —— — — — —

» currentSale : Sale

OBSERVE: this style h Reglster | Spie
3 . bOth tog eth er visually emphasizes 1 |
the connection = currentSaleﬁ
between these classes |
using the association notation to indicate
Register has a reference to one Sale instance
L_ Register Sale

thorough and
unambiguous, but some
people dislike the
possible redundancy

1

v

currentSale ; Sale

currentSal

@ .,

ilePENDABLE SOFTWARE 1 70
LABORATORY

|

|5 i
Attribute Text vs. Association Lines for Attributes

 Use the attribute text notation for data type objects, while the association
line notation for others.

— Both are semantically equal.

— But, showing an association line to another class box in the diagram gives visual
emphasis.

. L Register Sale
applying the guideline !

to show attributes as id: Int 1 ~| time: DateTime
attribute text versus as
association lines

I

currentSale

Register has THREE afttributes: Store
1. id

2. currentSale)
3. location |mtidn

address: Address
phone; PhoneNumber

public class Register

{
private int id;
private Sale currentSale;
private Store location;
// ..

3

EPENDABLE SOFTWARE 171

LABORATORY

Rl

n-ary Association

* More than two partner objects are involved in the relationship.
— No navigation directions

Student

*

*
Exam —<> grades

0..1 | +examiner

Lecturer

PENDABLE SOFTWARE 1 72

LABORATORY

KU wovessmy

Association Class

« Association class
— Assign attributes to the relationship between classes rather than to a class itself.

— Treat an association itself as a class, and model it with attributes, operations,
and other features.
+ lllustrated with a dashed line from the association to the association class.
* Necessary when modeling n:m Associations

— Example : If a Company employs many Persons, modeled with an Employs
association, you can model the association itself as the Employment class, with
attributes such as salary and startDate.

Company L Emf;:l_cys L Person

I
I
I
I
I

a person may have | Employment

employment with several

companies salary

startDate

S {DEPENDABLE SOFTWARE '] 73

LABORATORY

KU wovessmy

Singleton Classes

« Singleton class has only one instance of the class.
— "singleton" instance

— In a UML diagram, it is marked with a '1' in the upper right corner of the name
compartment.

— The Singleton design pattern

10 A
ServicesFactory UML notation: this "1'
k : 3 can optionally be used

UML netation: in a o | instance ; ServicesFactory to indicate that only one
class box, an) instance will be created
underlined attribute or accountingAdapter : |AccountingAdapter (a singleton)
methed indicates a inventoryAdapter © linvemtoryAdapter
stalic (class level) taxCalculatorddapter : ITaxCalculatorAdapter
member, rather than ,
an instance member o | getinstance() ; ServicesFactory

getAccountingAdapter() ; lAccountingAdapter

getlnventoryAdapter() : linventoryAdapter

getTaxCalculatorAdapter() : ITaxCalculatorAdapter

() DEPENDABLE SOFTWARE 174
Y LABORATORY

KU wovessmy

Active Class

* An active object runs and controls on its own thread of execution.
— The class of an active object is an active class.

— In the UML, it may be shown with double vertical lines on the left and right sides
of the class box.

active class ﬁ

r Clock
«interface»

Runnable
<

run() run()

() DEPENDABLE SOFTWARE 175
Y LABORATORY

KU

Interfaces

« The UML provides several ways to show interface implementation.
— Formally called interface realization
— 3 Notations:
» Socket + lollipop notation
* Dependency line notation
* Interface implementation
socket line notation A
Window1 - Timer g Window1 uses the Timer ' dependency line notation h
- interface
Window?2 has a dependency on the
it has a required interface Timer interface when it collaborates
| with a Clock2 object
winterfacen Clock2 o
Timer : - s]
] Timer &~ 4 Window2
getTimea() o |
getTime()
. Clockt
implements and
provides the Clock3
Timer interface
Timer) Window3
getTime() la]
getTime() _ - -) socket line natation
lellipop notation indicates Clock3 implements
and provides the Timer interface to clients Windowd has a dependancy on the
Timer interface when it collaborates
l}syznmms S Timer is a provided interface with a Clock3 object

176

KONKUK
UNIVERSITY

-ES "DEFPEN
L
N 4

Aggregation

« Special form of association
— Used to express that a class is part of another class.

» Properties of the aggregation association:
— Transitive: if B is part of A and C is part of B, C is also part of A

— Asymmetric: it is not possible for A to be part of B and B to be part of A
simultaneously.

« Two types:
— Shared aggregation
— Composition

DABLE SOFTWARE
LABORATORY

KU

KONKUK
UNIVERSITY

177

Shared Aggregation

» Expresses a weak belonging of the parts to a whole
— Parts also exist independently of the whole.

« Multiplicity at the aggregating end may be >1.
— One element can be part of multiple other elements simultaneously.
— Spans a directed acyclic graph.
— Syntax: Hollow diamond at the aggregating end

« Example:
— Student is part of LabClass.
— Course is part of StudyProgram.

LabClass <> Student

StudyProgram | Course

EPENDABLE SOFTWARE 1 78
BOR.

Composition

Existence dependency between the composite object and its parts

— One part can only be contained in at most one composite object at one specific

point in time.

— If the composite object is deleted, its parts are also deleted.

— Multiplicity at the aggregating end is max. 1
— The composite objects form a tree.

— Syntax: Solid diamond at the aggregating end

1

Beamer

Example:
— Beamer is part of LectureHall which is part of Building.
. 1 * 0.1
Building @ —— LectureHall @
Hand 4 0. -. Finger

ABLE SOFTWARE
BORATORY

179

Shared Aggregation and Composition

Which model applies?

0..1 4
Car A Tire
1 4
Car L Tire
* 4
Car <> Tire
* 1.2
Car <> Type of Tire

90
2
!

KU wovessmy

180

Shared Aggregation and Composition

* Which model applies?

0.1 4 i A Tire can exist without a car. A i

Car g Tire Tire belongs to one Car at most. <
n

I

1

1 4 _ : , |

Car P Tire A Tire cannot exist without a Car. !
I

|
z

?

* 4 . A Tire can belong to multiple Cars'!

Car <> Tire !
|

I

|

A Car has one or two types of I

* il Tires. Several Cars may have <

. . o)

Car <> Type of Tire the same Type of Tires. P
|

|

Generalization

« Everything of a general class are passed
on to its subclasses.
— Every instance of a subclass is

simultaneously an indirect instance of the
superclass.

— Subclass inherits all characteristics (attributes
and operations), associations, and aggregations

of the superclass except private ones.

— Subclass may have further characteristics,
associations, and aggregations.

 (Generalizations are transitive.

DEPENDABLE SOFTWARE
LABORATORY

Person

[

Employee Student

[

Professor Secretary

182

Generalization - Abstract Class

» Used to highlight common characteristics of their subclasses

{abstract}
A

 Used to ensure that there are no direct instances of the superclass

— Only its non-abstract subclasses can be instantiated.

* Notation: keyword {abstract} or class name in italic font.

{abstract}
Person

L

Woman

DEPENDABLE SOFTWARE
LABORATORY

{abstract}
Person

Person

183

Generalization - Multiple Inheritance

UML allows multiple inheritance.
— Aclass may have multiple superclasses.
— Not allowed for JAVA programming language.

Example:

BLE SOFTWARE
BORATORY

Student

Employee

N7

Tutor

184

With and Without Generalization

Study &
<> Course
Program
1.% *
enrolls teaches
* 1.% *
Student Resea.r =l
Associate
name name
address address
dob dob
ssNo ssNo
matNo acctNo

'DEPENDABLE SOFTWARE

LABORATORY

Faculty

N 1

isAssigned

*

Administrative
Employee

name
address
dob
ssNo
acctNo

VS.

KONKUK
UNIVERSITY

{abstract}
Person
Student
name
address
matNo T
* ssNo
enrolls
1.%
Employee * 1
StudyProgram
acctNo isAssigned
1%
*
Course
*
teaches
1.%

ResearchAssociate

Faculty

AdministrativeEmployee

185

KU wovessmy

Creating a Class Diagram

* Not possible to completely extract classes, attributes and associations from
a natural language text automatically.

* Guidelines
— Nouns often indicate classes
— Adjectives indicate attribute values
— Verbs indicate operations

« Example: “The library management system stores users with their unique ID,
name and address as well as books with their title, author and ISBN number. Ann

Foster wants to use the library.”

Book User
+ title: String + ID: int
+ author: String + name: String
+ ISBN: int + address: String

| DEPENDABLE SOFTWARE 186
N LABORATORY

Example - University Information System

* A university consists of multiple faculties which are composed of
various institutes. Each faculty and each institute has a name. An
address is known for each institute.

« Each faculty is led by a dean, who is an employee of the university.

« The total number of employees is known. Employees have a social
security number, a name, and an email address. There is a distinction
between research and administrative personnel.

« Research associates are assigned to at least one institute. The field of
study of each research associate is known. Furthermore, research
associates can be involved in projects for a certain number of hours,
and the name, starting date, and end date of the projects are known.
Some research associates hold courses. Then they are called lecturers.

« Courses have a unique number (ID), a name, and a weekly duration in
hours.

DEPENDABLE SOFTWARE 1 87
LABORATORY

| K KONKUK

UNIVERSITY

Example - Step 1: Identifying Classes

* Auniversity consists of multiple faculties We model the system “University*
which are composed of various institutes.

Each faculty and each institute has a
name. An address is known for each University
institute.

« Each faculty is led by a dean, who is an
employee of the university.

« The total number of employees is known. Institute
Employees have a social security number,
a name, and an email address. There is
a distinction between research and
administrative personnel.

 Research associates are assigned to at
least one institute. The field of study of
each research associate is known.
Furthermore, research associates can be Administrative Project
involved in projects for a certain number S
of hours, and the name, starting date,
and end date of the projects are known.
Some research associates hold courses. Course
Then they are called lecturers.

- Courses have a unique number (ID), a
name, and a weekly duration in hours.

Faculty

Dean

Employce Research

Associate

Lecturer

Dean has no further attributes than
any other employee

]}EPENDABLE SOFTWARE 1 8 8
LABORATORY

KU KONKUK
UNIVERSITY

Example - Step 2: Identifying the Attributes

« Auniversity consists of multiple faculties
which are composed of various institutes. Faculty
Each faculty and each institute has a
name. An address is known for each

+ name: String

institute.
« Each faculty is led by a dean, who is an Institute
employee of the university. —
The total number of employees is known. e

Employees have a social security number,

a name, and an email address. There is Employee

a distinction between research and pesearch

administrative personnel. + ssNo:int __Associate

) . + name: String + fieldOfStudy: String

 Research associates are assigned to at + email: String

least one institute. The field of study of ! Goumwer nf

each research associate is known. — :

Furthermore, research associates can be A Employos. Project

involved in projects for a certain number + name: String

of hours, and the name, starting date, + start: Date

and end date of the projects are known. * end: Date

Some research associates hold courses.

Then they are called lecturers. Course e
« Courses have a unique number (ID), a + name: String

name, and a weekly duration in hours. " hours: flat

]}EPENDABLE SOFTWARE 1 8 9
LABORATORY

Example - Step 3: Identifying Relationships (1/¢

« Three kinds of relationships:

{abstract}
— Association Employee
. . + ssNo: int
— Generalization + name: String
+ email: String
— Aggregation + counter: int
BT Y Administrati R h
* Indication of a generalization Employee. pssvink
— “There is a distinction between research + fieldOfStudy: String
and administrative personnel.”

— “Some research associates hold courses.
Then they are called lecturers.”

Lecturer

i 1 | DEPENDABLE SOFTWARE ‘] 90
A LABORATORY

Example - Step 3: Identifying Relationships (2/¢

« “Auniversity consists of multiple faculties which are composed of various
Institutes.”

Faculty

+ name: String

1

1.%

Institute

+ name: String
+ address: String

BLE SOFTWARE 1 9 1
TORY

Example - Step 3: Identifying Relationships (3/¢

“Each faculty is led by a dean, who is an employee of the university”

{abstract}
Employee

+ ssNo: int

+ name: String
+ email: String
+ counter: int

1

leads p

0..1

+dean

Faculty

+ name: String

192

(¥ DerENDABLE SO RE
Y LABORATO!

Example - Step 3: Identifying Relationships (4/¢

 “Research associates are assigned to at least one institute.”

Resea_r gl Institute
Associate 1.% 1..2>
+ fieldOfStudy: String + name: String
+ address: String

193

o

Example - Step 3: Identifying Relationships (5/¢

« “Furthermore, research associates can be involved in projects for a certain
number of hours.”

Research

. Institute
Associate 1.% 1.%
+ fieldOfStudy: String + name: String
+ address: String

Participation

1+ hours: int

Lecturer

Project

+ name: String
+ start: Date
+ end: Date

c | DEPENDABLE SOFTWARE '] 94
u LABORATORY

KU wovessmy

Example - Step 3: Identifying Relationships (6/¢

« “Some research associates hold courses. Then they are called lecturers.”

+ name: String
+ id: int
+ hours: float

() DEPENDABLE SOFTWARE
'y LABORATORY

Administrative Research
Employee Associate
+ fieldOfStudy: String
Lecturer
1.
Course teaches
1.% v

195

KU wovessmy

Example - A Complete Class Diagram

{abstract}
Employee

Facult
+ ssNo: int 1 leads » 0..1 y

+ name: String | *dean
+ email: String

+ name: String

+ counter: int 1
1.%
Administrative Research Institute
Employee Associate 1.% 1%
]
+ fieldOfStudy: String + name: String
+ address: String

Participation

7+ hours: int
Lecturer
1.% X
Course . teaches Project
1. v
+ name: String + name: String
+ id: int + start: Date
+ hours: float + end: Date

LABORATORY

S ' DEPENDABLE SOFTWARE 1 96

What’s the Relationship between InteractiofitE==l
and Class Diagrams?

« From interaction diagrams, class diagrams can be generated iteratively.
— When we draw interaction diagrams, a set of classes and their methods emerge.

— Two complementary dynamic and static views are drawn concurrently and
iteratively.

— Example:

» If we started with the makePayment sequence diagram, we see that a Register and
Sale class definition in a class diagram can be obviously derived.

N
% b

I

makePayment{cashTendered) | : !
|
1

-
-

- ‘ makePayment{cashTendered) | I

-

‘ LJ !
’
4 !
! s %
[messages in interaction 7 L . J
8

| | diagrams indicate operation ! ! ir
in the class diagrams i i

classes
s identified in the
\ e interaction

E diagrams are
Sale ~ declared in the
class diagrams

LY
A

\ Register |

\'\ | 1 i
» [>:
currentSale |

4 makePaymeni(...)

| makePayment(...)

S ' DEPENDABLE SOFTWARE 1 97

LABORATORY

K KONKUK
UNIVERSITY

]}EPENBABLE SOFTWARE 1 9 8
LABORATORY

Chapter 17.
GRASP: Designing Objects with

Responsibilities

OOD : Object-Oriented Design

« 0OOD is sometimes taught as some variation of the following:

— “After identifying your requirements and creating a domain model, then add methods
to the appropriate classes, and define the messaging between the objects to fulfill the
requirements.”

« But, it is not enough, because OOD involves deep principles.

— Deciding what methods belong to where and how objects should interact carries
consequences should be undertaken seriously.

« Mastering OOD is hard.
— Involving a large set of soft principles, with many degrees of freedom.
— A mind well educated in design principles is important.
— Patterns can be applied.

ABLE SOFTWARE 200

D.
LABORATORY

KU KONKUK
UNIVERSITY

Object Design with Patterns

* During the UML drawing activity,
we can apply various OO design
principles, such as

— GRASP (General Responsibility Assignment
Software Patterns)

— Gang-of-Four (GoF) design
patterns.

* Design outputs:
— UML interaction diagrams
— Class diagram
— Package diagrams

EPENDABLE SOFTWARE
LABORATORY

Sample UP Artifact Relationships

Dosmaain Moded
Business Sale 1 T hsar’l;ﬂ
el
Modeling dale
e quantity
Use-Case Modsal
Process Sala
Pos e
e WSy istomar Supplemantary
Coutinn COF0 | amves Specification
L .
®3. Cashier
:_ nbers ilam 1 finctianal
" idanlifigr, A TR VN
Require- e Tunctianal fesquirarments
Ui Case Diagiam Lhse Case Text requiramants
RS | that must be dommiin s
ideas for System realized by
e post- avarifs tha abjocts
eondiions '
Inspération for 1 System
riames of T Glossary
Operalion;.... L = i
SO 4
< amerteml,..} make 1
seltwie i i | PP NewSale) !
doemain iy - o S i)
opavanng — = |
objocts Post-conditions 3% 7 anteclimm 0
= n i, quﬂnlll."'}__ ‘: Item U;talls
starting events io Opareticn Conlracts System Sequance Disgrams walidation
desagn for, and g
datiilod posl-
condition io f_..________"_’_ _'_.\
satist Design Madel
v 1 Respester 9 ProgductCatabsg Sk 1
s T i
‘I 7 enlerltem ", '
Dosign | o [BEMIT: quandity) | i |
I Ee g d = getProguctDescriptionfiteriD) 1
I addLinaltemy d, quaniity | %, |
=
I it Producttalalog |
I makedewSala() »] |
st) gelProductDescnption...))

GRASP: A Methodical Approach to Basic OO
Design

« GRASP : A Learning Aid for OO Design with Responsibilities
— General Responsibility Assignment Software Patterns

« The GRASP principles or patterns are a learning aid to help you
— Understand essential object design,
— Apply design reasoning in a methodical, rational, and explainable way,
— based on patterns of assigning responsibilities.

« We can apply the GRASP principles while drawing UML interaction
diagrams.
— Aid for naming, presenting, and remembering basic/classic design ideas

GRASP

« 9 basic OO design principles or basic building blocks in design.

EPENDABLE SOFTWARE
LABORATORY

Creator

Controller

Pure Fabrication
Information Expert

High Cohesion
Indirection

Low Coupling
Polymorphism
Protected Variations

l{ l] KONKUK
UNIVERSITY

203

EPENDABLE SOFTWARE
LABORATORY

Pattern/

T Description
Principle P
Information A general principle of object design and responsibility assignment?
Expert
Assign a responsibility to the information expert—the class that has the information neces-
sary to fulfill the responsibility.
Creator Who creates? (Note that Factory is a common alternate solution.)
Assign class B the responsibility to create an instance of class A if one of these is true:
1. B contains A 4. B records A
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A
Controller What first object beyond the Ul layer receives and coordinates (“controls”) a system opera-
tion?
Assign the responsibility to an object representing one of these choices:
1. Represents the overall “system,” a “root object,” a device that the software is running
within, or a major subsystem (these are all variations of a fucade controller).
2. Represents a use case scenario within which the system operation occurs (a use-case or
session controller)
Low Coupling How to reduce the impact of change?
(evaluative)
Assign responsibilities so that (unnecessary) coupling remains low. Use this principle to
evaluate alternatives.
High How to keep objects focused, understandable, and manageable, and as a side-effect, support
Cohesion Low Coupling?
(evaluative)
Assign responsibilities so that cohesion remains high. Use this to evaluate alternatives.
Polymorphism | Who is responsible when behavior varies by type?
When related alternatives or behaviors vary by type (class), assign responsibility for the
behavior—using polymorphic operations—to the types for which the behavior varies.
Pure Who is responsible when you are desperate, and do not want to violate high cohesion and
Fabrication low coupling?
Assign a highly cohesive set of responsibilities to an artificial or convenience “behavior”
class that does not represent a problem domain concept—something made up, in order to
support high cohesion, low coupling, and reuse.
Indirection How to assign responsibilities to avoid direct coupling?
Assign the responsibility to an intermediate object to mediate between other components or
services, so that they are not directly coupled.
Protected How to assign responsibilities to objects, subsystems, and systems so that the variations or
Variations instability in these elements do not have an undesirable impact on other elements?

Identify points of predicted variation or instability; assign responsibilities to create a stable
“interface” around them.

K

KONKUK
UNIVERSITY

204

KU wovessmy

Information Expert

Name Information Expert
Problem What is a basic principle by which to assign responsibilities to objects?
Solution Assign a responsibility to the class that has the information needed to fulfill it.
e
‘b\\&}?"‘/
t!—\'||:r3‘~'&°~(d~.: IE}aa.n'\'
'.h'_‘"-'—‘——--l | L1

- \ . e J I
g = ct;}d‘ g%‘_\-_'_l.':. l"-"_*""-\) tbﬂ SBM!'! ‘M

Applying Information Expert

A software Board will aggregate all the Square objects. Therefore, Board has
the information necessary to fuffill this responsibility.

205

(r {DEPENDABLE SOFTWARE
A LABORATORY

Creator

Name Creator

Problem Who creates an A?

Assign class B the responsibility to create an instance of class A, if one of these is
true (the more the better):

* B "contains" or compositely aggregates A.

B records A.

B closely uses A.

B has the initializing data for A.

Solution

S DEPENDABLE SOFTWARE 2 O 6

LABORATORY

Example: Creator

Boqrd

™.
| L1t
e——

£ wceVelue

]
Cortasng

Yo
Piece

‘ {lece |Tron thumﬂ._

L name 5 neme oML
| e

Monopoly iteration-1 domain model

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY

foC
trn.ndft. %Cﬁﬁ'ﬁ

§ e 'l"&mf&& (N

__‘;,'ftpit_} S .

=
1
|
1

Applying the Creator pattern in a dynamic model

y
newmi

—

In a DCD of the Design Model, Board has a composite
aggregation association with Squares.
We are applying Creator in a static model.

]Gnari S Do re

207

KU wovessmy

Controller

Name Controller

What first object beyond the Ul layer receives and coordinates ("controls") a system

Problem :
operation?

Assign the responsibility to an object representing one of these choices:
* Represents the overall "system," a "root object," a device that the software is
Solution running within, or a major subsystem (all variations of a facade controller).
* Represents a use case scenario within which the system operation occurs.
(a use case or session controller)

LT {
mf™)
1 R,__ ‘[wb
i i
ple ?m. by Lottt
1_ (R TY
I s

e
— Dﬂrﬁq'm Lmu -

Applying the Controller pattern using MonopolyGame.
Connecting the Ul layer to the domain layer of software objects. 508

(r {DEPENDABLE SOFTWARE
N LABORATORY

23 Design Patterns of GoF

KONKUK

UNIVERSITY

E Abstract Factory E Facade E Proxy
Adapter Factory Method Observer
Bridge [5] Fyweiam Singleton
Builder Intemretar State
Chain of Responsibiity Herator Strategy
Command Medistor Template Method
Compositz Memento Visitor
Decorator Prototype

suezzszor (Chain of Responsibility

Type: Behaviorsl

Whatit is
Awoid coupling the sender of a request o
its receiver by giving more than one object
a chance to handle the request. Chain the
recaiving objects and pass the requast
along the chain until 3n object handles t.

ConereteHandler!
+handieRsquestl)

ConcreteHandler2
+handleRequest(}

Command

Type: Behavioral

What it is
Encapsulate a request as an objest,
theraby leting you parameterize cients
fierent requests, queue or log
requests. and support undosble operations.

Interpreter
Type: Behavioral

What it is
Given a language, define 3 reprasentation
for its grammar along with an interpreter
that uses the representafion o interpret
sentences in the language.

‘ﬂmerpﬂe!(): Context | ‘+imefbf€l() : Context ‘

Iterator

Type: Behaviorsl

What it is:
Provide 3 way o access the slements of
an sequentially without
exposing its underlying representation.

cinterfaces
Herator
=)

‘ < ©

‘icfeabe\be(am): Context | |+next0 Context ‘

informs
s ataces Mediator
iator Colleague
Lk Type: Behavioral
What it is:
Define an object that encapsulates how a
set of objects intersct. Promotes loose
coupling by keeping objects from referring
updates to each other explicitly and it lets you vary

their interacions independently.

ConcreteMediator }—;| ConcreteColleague

Memento

[carter j@—f===

winterfaces

= o]

Adapter

£

Type: Behavioeal

Whatit is:
Without wiolating encapsulation, capture
and externalize an object’s intzmal state
50 that the object can be restorad to this
state later.

Observer
Type: Behavioral

What it is

Define a one-to-many dependsncy betwesn
objects so that when one object changes
state, allits dependents are nofified and
updated automatically.

State

Type: Behavioral

What it is:

Allow an object to alter its behavior when

its intemal state changes. The object wil
appear to change its class.

Strategy

Type: Behavioral

What itis:

Dafine a family of aigorithms,
encapsulate each one, and make them
interchangeable. Lets the algerithm vary

independently from
clients that use it

Template Method
Type: Behavioral

What it is:
Dfine the skeleton of an algarithm in an

‘operation, deferring some steps o subdasses.

Lets subclasses redsfine cerain steps
of an aigorithm without changing the
algorithm's structure.

Type: Structural

* £\ What it is-
i Convert the interface of a class info
! another interface dients expect. Lets
Originator ! classes wark together that couldn't
| othenwise because of incompatible
st o “adaptee interiaces.
+sethlemento(in m : Memento) [+aperation()
winterfaces notifes —
Subj «nterfaces
= Observer Bridge
+attachiin o - Gboerver]
+detach(in o : Observer) +update() Type: Structural
+notify)
What it is:
Decouple an abstraction from its
implementation 50 that the twa can vary
independantly.
ConcreteSubject [opeorves |ConcreteObserver
n 1
|
~updatel] |
winterfaces .
Comy Composite

ConcreteState1 ConcreteState2

children

Type: Structural

Whatitis:

Compase objeats into tree structures to
represent part-whole hierarchies. Lets
clients treat individual objects and

+getGhild{in i - int)

|+handle[) | ‘ﬂ\andle() |

|Cam:rmsu=bequ| |Cam:retesmws|
|+em«=neu

| |+em=nec) |

AbstractClass

[+templatehethod()
fsubMethod()

Visitor
+vizitEler

interfaces
Visitor

Type: Behavioral

+visitElement8in b - ConcreteElements)

Whatit is:
Represent tobe

o of objects uniformly.
Composite
Leaf +operabon()

"ove(auion() | +add(in ¢ - Composite}
+removeiin o : Composite)
+gefChild(in i - int)

ainterfaces
| Cumrﬁtcumpumnl‘ Decorator

[roperationg | ype: Swuctra

What it is:
Attach additional responsibilities to an
object dynamically. Provide a fexible
ahemative to sub-classing for extending

ConcreteDecorator functionaly.

[Sadecotate

[+operation()

|+addedBehavior(}
Facade

Type: Structural

Provide a unified interface to a set of
interfaces in a subsystem. Defines a high-
lewel interface that makes the subsystem

‘ | What it is:

performed on the elements of an
object structure. Lets you define 3

«interfaces
Element

‘iacoqpn’m - Visitor) ‘

new operation without changing
the dlasses of the

which it operatss.

+acceptin v Visitor)

easierto use
FlyweightFactory
- = L Flyweight
[+getFlywsight(in key) +operation(in extrinsic State)
+ Type: Structural
| Client ‘ What it is-
J' Use sharing o support large numbers of
fine grained objects eficiently.
ConcreteFlyweight
|HntrinsicState

-aliState

Proxy

Type: Structural

What it is:

Prowide a surrogate or placeholder for
anather object to control access toit.

Abstract Factory

| oo [ooy

| RealSubject
[0

| [rreau=s)

Type: Creationsl

What it

Frovides aninterface for creating
families of related or dependent
cbjects without specifying their
concrete class.

[oreateProductB()

Builder
Type: Creational

What it is:
Separate the construction of a
complex object from its representing
50 that the same construction
process can create differsnt
representations.

Factory Method

Type: Creational

What it is:

Define an interface for creating an
object, but let subclasses decide whict

class o instantiate. Lets 3 class defer
instantiation o subclasses.

Prototype

Type: Creational

What it is:

Specify the kinds of objects to create
using a prototypical instance, and
create new objects by copying this
prottype.

Singleton
Type: Creational

Whatit is:

Ensure a class only has one instance and

provide 2 global point of acoess toit.

ainterface:

h

ConereteProduct

ConcreteBuilder

[+buiiaPan()
[FostResult])

[+factoryMethod(
" .

K K()NKL'K’

]}EPENBABLE SOFTWARE 2 1 0
LABORATORY

Chapter 19.
Designing for Visibility

Visibility Between Objects

* In message passing between objects,

— For a sender object to send a message to a receiver object, the receiver must be
visible to the sender.

» The sender must have some kind of reference or pointer to the receiver object.

— Example,

* The getProductDesc message sent
from a Register to a ProductCatalog e Bt A
implies that the ProductCatalog instance {

should be visible to the Register instance. i Bkt atncaalbn:

}.,.

: Register : ProductCatalog
|

enterltem

(itemID, quantity) 1 |
desc = getProductDesc(itemID)

i

|
public void enterltem(itemID, gty) A

{

desc = catalog.getProductDesc(item|D)

S i]:)EPENDABLE SOFTWARE 2 1 2

LABORATORY

_1
Visibility

»

« Visibility is the ability of an object to “see” or “have a reference to”
another object.

— When an object A sends a message to an object B, B must be visible to A.
— The issue of scope: “Is one resource (such as an instance) Within the scope of another?”

— 4 common ways that visibility can be achieved from object A to object B:
Attribute visibility : B is an attribute of A.

Parameter visibility : B is a parameter of a method of A.

Local visibility : B is a (non-parameter) local object in a method of A.
Global visibility : B is in some way globally visible.

-l o\ e

EPENDABLE SOFTWARE

Attribute Visibility

« Attribute visibility from A to B exists, when B is an attribute of A.
— Relatively permanent visibility, because it persists as long as A and B exist.
— Very common form of visibility in object-oriented systems

— For example,

» For the class Register, a Register instance may have attribute visibility to a
ProductCatalog, since it is an attribute of the Register.

(A
public void enterltem(itemID, qty)
{

class Register

{

spec = catalog.getSpecification(itemlD)

wssameeani)

private ProductCatalog catalog;..ssqesncesnss=ssr

l o)

enterltem ~Register ‘ ot pialacy J
(itemID, quantity) I
U spec := getSpecification(item|D).I

S i]:)EPENDABLE SOFTWARE 2 1 4

LABORATORY

Parameter Visibility

« Parameter visibility from A to B exists, when B is passed as a parameter to
a method of A.

— Relatively temporary visibility, because it persists only within the scope of the
method.

— The second most common form of visibility in object-oriented systems.

— For example,

* When the makeLineltem message is sent to a Sale instance, a ProductDescription
instance is passed as a parameter. Within the scope of the makeLineltem method, the
Sale has parameter visibility to a ProductDescription.

enteritam(id, gly] — 2: makeLinellem(desc, gty) —=
:Register Sale

1: desc = gelProduciDesc{id)

| 2.1: create(dess, gty)

‘Praduct T
Catalog

makeLinalterm{PraoductDescriplion desc, int giy) h 3l : SalesLinellem

{

sl = new SalesLineliem{dese, glyl

!

i 1 | DEPENDABLE SOFTWARE 215
AT LABORATORY

Parameter to Attribute Visibility

* Itis common to transform parameter visibility into attribute visibility.

— For example,

* When the Sale creates a new SalesLineltem, it passes the ProductDescription in to its
initializing method (in C++ or Java, this would be its constructor). Within the initializing
method, the parameter is assigned to an attribute, thus establishing attribute visibility.

entertiemiid, qty) —e Ragister 2: makeLinaltami{dasc, gty) - T

2: desc = gatProductDescid)
2.1: create(desc, gly)

L
‘Product T

Catakog
public class SalesLineItem
A gl ; SalesLingltem {
if initiadizing method (e.g., a Java constructor) private int quantity; .

SalesLineltem{ProduciDescription desc, int qty) private ProductDescription description;

i
public SalesLineItem (ProductDescription desc, int quantity)
{

il. this.description = desc; this.quantity = quantity;

}

description = desc: N parameter o attribute visibility

public Money getSubtotal()
{

return description.getPrice().times(quantity);
}

EPENDABLE SOFTWARE 2 1 6
LABORATORY

KU wovessmy

Local Visibility

* Local visibility from A to B exists, when B is declared as a local object
within a method of A.

— Relatively temporary visibility, because it persists only within the scope of the
method.

— As with parameter visibility, it is common to transform local visibility into attribute
visibility.

« Two common ways for local visibility:
1. Create a new local instance and assign it to a local variable.
2. Assign the returning object from a method invocation to a local variable.

enterltem(id, gty) k
{

Il local visibility via assignment of returning object
ProductDescription desc = catalog.getProductDes(id);
}
em;r.“em : F{e?ister : ProductCatalog
(itemlD, quantity) |
desc = getProductDesc(itemiD)

R, LT

S ' DEPENDABLE SOFTWARE 21 7

LABORATORY

Global Visibility

Global visibility from A to B exists, when B is global to A.
— Relatively permanent visibility, because it persists as long as A and B exist.
— The least common form of visibility in object-oriented systems

One way to achieve global visibility is

— Assign an instance to a global variable, which is possible in some languages,
such as C++, but not others, such as Java.

The preferred method to achieve global visibility is to use the Singleton
pattern.

EPENDABLE SOFTWARE 2 1 8

LABORATORY

K K()NKL'K’

]}EPENBABLE SOFTWARE 2 1 9
LABORATORY

Chapter 20.
Mapping Designs to Code

KU wovessmy

Mapping Designs to Code

« The UML artifacts created during the design work (Interaction diagrams and DCDs)
will be used as input to the code generation process.

« Implementation in an OO language requires writing source code for:
— class and interface definitions
— method definitions

« Atranslation from UML designs to code is required.
— from class diagrams to class definitions,
— from interaction diagrams to method bodies.

(r {DEPENDABLE SOFTWARE
A LABORATORY

221

KU wovessmy

Creating Class Definitions from DCDs

« DCDs are sufficient to create a basic class definition in an OO language.

— For example,

* From the DCD, a mapping to the attribute definitions(ava fields) and method signatures
for the Java definition (SalesLineltem) is straightforward.

public class SalesLinelte m k
{

private int quantity;

| private ProductDescription description ;
public Saleslineltem(ProductDescription desc, int qt vl {.. }
public Money getSubtotal (}{ ... }

}

ProductDescription
SalesLimeltem i
I 7 description | description : Text
quantity : Integer < [5 = price : Money
} 1 itemID : ltemnl D
getSubtotal () : Money

: S {DEPENDABLE SOFTWARE 2 2 2

LABORATORY

KU wovessmy

Creating Methods from Interaction Diagrams

« The sequence of the messages in an interaction diagram translates to a
series of statements in the method definitions.

— For example,
» The enterltem interaction diagram illustrates the Java definition of the enterltem method.

(Method) The enterltem message is sent to a Register instance;

therefore, the enterltem method is defined in class Register. Message 2: The makeLineltem message is sent to the Sale.

public void enterltem(ItemID itemID, int gty) currentSale. makeLineltem(desc, qty);

enterltem(id, gty) —»- Z:makelineltem(desc, qty) —*
:Register wale

1: desc =getProductDesclid) 2.1: createldesc, qty)

Message 1: A getProductDescription message is sent to

the ProductCatalog to retrieve a ProductDescription. ¥
‘Product

Catalog
ProductDescription desc = catalog.getProductDescription(itemID);

sk SalesLineltem

1.1: desc = getlid)
¥ 2.2:add (sl)
¥
lineltems :

: Map<ProductDescription: : .
B et] List<SalesLineltem:

LABORATORY

: S {DEPENDABLE SOFTWARE 2 2 3

The Register.enterltern Method

h

public class Register

{

private ProductCatalog catalog;
private Sale currentSale ;

public RegisteriProductCatalog pe) ... }
public void endSale() -}

K

KONKUK
UNIVERSITY

PraductCatalag

catalog

blic void enterltem(itemiD id, int gtyl {— |
public void makeNewsale) [|
public void makePayment{Money cashTendered 1. .}
¥

Register

enterltem() & |-

endsale()

enterltemiid; teml O, gty ; Integer)
makeNewSale()

makePayment (cashTendered : Money)

{
ProductDescription desc = catalog.PreductDescription (id);
currentSale makeLineltem{desc, gty) :

i

o
enterltem(id, qty] —» 2:makeLineltem(desc, gty) —*

B

‘Register | Sale

1:desc = getProductDescription {id)

EPENDABLE SOFTWARE
LABORATORY

1}9HProducl.DescL]

Sale

nComplete : Boclean

FSSE “ume ; DateTime

> becomeComplate ()
1 makeLineltem[..)
makeFPayment(...)
getTotali)

224

KU wovessmy

Collection Classes in Code

* One-to-many relationships are common.

— For example, a Sale must maintain (attribute) visibility to a group of many
SalesLineltem instances.

- Sal
ale
public class Sale
[isComplete : Boolean y
- time : DateTime SalesLineitem
lineltems)
private List linelterns = new ArrayListl) ; becomeComplete () P o quantity: Integer
) ! makeLineltern() getSubtotall)

makePayment {)
getTiotall)

A collection class is necessary o h‘
maintain attribute visibility to all the
SalesLimeltemns .

* In OO programming languages, they are usually implemented with the
introduction of a collection object of collection classes.
— List (ArrayList — List interface) : a growing ordered list
— Map (HashMap — Map interface) : a key-based lookup
— Simple array

: S {DEPENDABLE SOFTWARE 2 2 5

LABORATORY

Example : Defining the Sale.makeLineltem 0
Method

« The makelLineltem method of class Sale can be written by inspecting the
enterltem communication diagram.

E h
lineltemns.add(new SalesLineltemi{desc, qty));

}

enterltem(id, qty) —» ' 2: makeLineltem(desc, qty) —* .
‘Register | Sale

2.2:add (s) O
2.1: create(desc, qty)

Y
Y
lineltems:

List<SalesLineltem: sl: SalesLineltem

) h

i 1 | DEPENDABLE SOFTWARE 226
AT LABORATORY

KU wovessmy

Order of Implementation

» Classes need to be implemented from least-coupled to most-coupled.

— For example,
» Possible first classes to implement are either Payment or ProductDescription.

* Next are classes only dependent on the prior implementations; ProductCatalog or
SalesLineltem.

Store °
| address :Addres s | 1 .
name : Text . L o ProductDescription

ProductCatalog
adds.ale 9] description ; Text
— —= price : Mone y
= 1..%| itemiD: itemID
“| getProductDesc (.) I

1
41 o sale o

Registe r isComplete : Boolea n R — o
time ; DateTime _ ales Linelte m .

“| becomeComplet &() .] quantity : Integer

makelineltemn (..)
makePayment (...)
getTotal()

. |
T ;
*| Payment °

> amount : Maney

endSal el) | 1
enterltem...)

makeMewSale ()

makePaymen t(...)

getsubtotal()

A possible order of class implementation and testing
g‘é“pEPENDABLE SOFTWARE 2 2 7

LABORATORY

KONKUK
UNIVERSITY

KU

Example: the NextGen POS Program Solution

Translation from design artifacts to a foundation of code.

— This code defines a simple case; it is not meant to illustrate a robust, fully
developed Java program with synchronization, exception handling, and so on.

// all classes are probably in a package named something like:
// package com.foo.nextgen.domain;

public class Payment

{

private Money amount;

public Payment(Money cashTendered){ amount
public Money getAmount() { return amount; }

cashTendered; }

Store

|

EPENDABLE SOFTWARE
LABORATORY

Uses
address : Address 1 4
name : Text Y
addSale(...) ProductCatalog
1 Looks-in 1 1
>
getSpecification(...)
Houses o
-
1 1
¥ / Sale
Register [date - Date [
: isComplete : Boolean
: Captures N time : Time
. 1
§2?§ﬁ'§r{() 1: 1 | becomeComplete()
makeNewSale() makeIF.’meItem(-

KeP. makePayment(...)
makePayment(...) getTotal()
Logs-completed* *T !

Paid-by

ProductSpecification.

global or locally declared visibility

A dependency of Register knowing about

Recommended when there is parameter,

Contains

1.4

-—

Contains

1.

ProductSpecification

description : Text
price - Money
itemID: ItemID

>

=T T F

7 ~~ Describes
-

*

SalesLineltem

re quantity : Integer

getSubtotal()

Payment

amount : Money

228

public class Register

{

private ProductCatalog catalog;
private Sale currentSale;

public Register (ProductCatalog catalog)

{
this.catalog = catalog;
3
public void endSale()
{
currentSale._becomeComplete();
3
public voud enterltem (ItemlD id, int quantity)
{
ProductDescription desc = catalog.getProductDescription (id);
currentSale._makeLineltem (desc, quantity);
3
public void makeNewSale()
{
currentSale = new Sale();
¥
public void makePayment (Money cashTendered)
{
currentSale.makePayment (cashTendered);
¥

-

K

KONKUK
UNIVERSITY

EPENDABLE SOFTWARE
LABORATORY

Store Uses
address : Address 1 1
name : Text - ProductSpecification
ProductCatalog
addSale(...) Contains description : Text
E— ~—>{ price : Money
b Looks-n 1 1 1.* | itemID: ItemID
getSpecification(...)
Houses — —
— — /ﬂ 1
o Describes
1 1 Sale — -
N - o — -— *
Register : date : Date — -
: isComplete - Boolean SalesLineltem
Captures time - Time : Contains ; »| quantity : Integer
endSale() 1= 1 -
ent:rlllqem(s : 0 . f:f;:ﬁﬂ:ﬂf tre)() getSubtotal()
makeNewSale
makePayment(...)
makePayment(__) getTotal()
Logs-completed® *T 1 Payment
Paid-by

A dependency of Register knowing about
ProductSpecification

Recommended when there is parameter,
global or locally declared visibility.

amount : Money

229

Example: POS Domain Model Packages

After Elaboration - Iteration 3.

00
2
!

Damain

Cora/Misc

Authorization
Transactions

Payments

Products

Sales

230

—

Core/Misc Products !
Slore Sales:
Houses .
Register ‘ ‘ Manager SalesLineltem (.1
addrass 1 1 N
name i Described-by
! Empl
W Product
Description
‘ ProductCatalog]0 +| description
1 1..
price
Paymants itemID
t — YAuthorizes-payments-of . 1
Payman Cara::Slora ! AuthorizationSanvice Records-sale-of ~
SanicaContracl t | Describas
amaunt } | address
T marchantiD name
phoneNurmber *
Paidby o PN Core:: Stocks | |
' prs LS Store 1 * |) 1
i . 5
]] ndli 2] ; Check Cradit
GashPayment | F:mf' PC"'“" Aty | Authorization Autharization
[| LR o s ; Senvice Sorvi
amountT endered * W W " k s
K "\ 1
Authorized by . P
Logs * -
Establishes- Establishes- ; . = 1
eradit-dar identity-for * Cuﬂ{ﬂfﬂﬂf Captured-on - ﬂ?;;;' _
i B i Autharization Transactions::
1 : L PaymentauthonzationFeply Iniliates n o
Accounts | | CrediCard DriversLicense . | oCant e 1
Recaivable | | { i 1 |
oo | expiryDate numbar Linaftarm ! sae SalesLineltem Cashier
| b T - CheckPayments have srara— - date - |
L : identlfies CheckPaymentReplies gt isComplate 1.." lquaniity
1 1] percentage | q = 1 | o 1
Abused-By® | gales; Cusiomer - CredilPayments have =) =
1 " | CredilPaymentReplas aL Core::
1 Store
231

EPENDABLE SOFTWARE
LABORATORY

‘ K[] KONKUK
UNIVERSITY

Partial Layers of POS

(]}
Swing © Text
na notthe Java I =k
ProcessSale 1 Swing libraries, but | ProcessSale [e bk o
Frame our GUI classes Console el
basad on Swing
-Domai'n
Sales Pricing
Registar Sale PricingStrategy winterfacas
Factory 1SalePricingStrategy
ServiceAccess Payments
= 1 winterfaces
E::Imms CreditPayment ICreditAuthorization
chory | ServiceAdapter
Imventory POSRulaEngine | Taxes
ainterfaces sinterfaces
linvenioryAdapter POSRUMENGT A ITaxCalculatorAdapter
Technical Services
Persistence . A general A
—— purposa third-
Logdd Jess SORP
DBFacade ik | party rules
engineg.

]}EPENDABLE SOFTWARE 2 3 2
LABORATORY

Deployment View of POS

Deployment View

£

aSErVErs

- Dell PowerEdge 3600
{ 05=Red Hal Enterprise Linux 4 }
8

wdalabases
 PostareSQL 10
wartifact»
Product Tables _

| SQL over TCP

abarminals

: POSTerming

{ JVM = Sun Hotspot Client 2.0 }

agrtifacts
MextGanClient jar

custom protocols
on top of TCP

SOAP over HTTP

A j 7
aSErvVers

- GenericServer

i

EPENDABLE SOFTWARE
LABORATORY

invaniory L.
and
accounting

r
wSAMVErs
naricSanvar
wsysiems
CreditFayment
Authorizer
_ = y
o5
E‘P\ ! e -~
¥ @,@ 5
|Illll 3 - ..J. .l'-.
HSEMVErs

A i
{ O5=Red Hat Enterprise Linux 4 }

wartifacis
GoodAsGoldTaxCalculalorn exe

K

KONKUK
UNIVERSITY

233

K K()NKL'K’

EPENDABLE SOFTWARE 2 3 4
LABORATORY

Object-Oriented Analysis and Design -
Summary

KU KONKUK
UNIVERSITY

An Short Example of OOAD - Dice Game

Define domain Define interaction Define design class
Define use cases . .
model diagrams diagrams
------------------------------------ 00l ¢ 0|1 JEE

Interaction Diagram
Use Case : Play a Dice Game Lo |
P L di: Die D
- Player requests to roll the dice. N D@f“’*(! ia\«;b‘. \
- System presents results. - atS . ‘

| play() roll()

bomain Model Design Class Diagram

- If the dice’s face value totals seven, -__’_mgg____‘, ‘1
player wins; otherwise, player loses. ' e ?R"Qh!:!!!) : \
\
|)
.............. — el >
....... ! | - LY ‘ 1
, I_.'l é ‘i .\
2 l‘ ‘ i
. : ;
_ Player E Rolls 2| Die o i
name faceValue i i
1 ' 2 P
Biae i i _ DiceGame | | Die
1 P die1 : Die _ 1 2 faceValue : int
_' b die2 : Die '
DiceGame 1 iadiiida P getFaceValue() : int

EPENDABLE SOFTWARE

Software Development Process and the UF

« Software development process
— A systematic approach to building, deploying and possibly maintaining software

* Unified Process (UP): a popular iterative software development process for
building object-oriented systems
— Inspired from Agile
— lterative
— Provides an example structure for how to do OOA/D
— Flexible (can be combined with practices from other OO processes)
— A de-facto industry standard for developing OO software

EPENDABLE SOFTWARE 2 3 7
BOR.

Risk-Driven and Client-Driven Iterative Planning

 The UP encourages a combination of risk-driven and client-driven
iterative planning.
— To identify and drive down the high risks, and
— To build visible features that clients care most about.

* Risk-driven iterative development includes more specifically the practice of
architecture-centric iterative development.
— Early iterations focus on building, testing, and stabilizing the core architecture.

(tl2f3l4ls.1 T T T T T T 1T T 1 [[T20
~ T E =
\ ——
\ ~——
\\ _ requirements workshops ---——...______ S—— -
N ,"” i T - e U=~
Imagine this will \ ! e .. S~
ultimately be a 20- [e o

iteration project.

In evolutionary iterative
development, the
requirements evolve
over a set of the early
iterations, through a
series of reguirements 90% i a0%
workshops (for i
example). Perhaps
after four iterations and
warkshops, 90% of the
requirements are o
defined and refined. 20% S .
Nevertheless, only 2% 5% 8% 10%
2 b ¥ 10% of the software is

requirements \g-
software

reguirements @
software

50%

20%

Y | Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
() DerenDABLE SOFTWARE built. 238

LABORATORY »7 aldweekiteration T =~ _
-, -

KU wovessmy

The UP Phases

A UP project organizes the work and iterations across 4 major phases:
1. Inception : approximate vision, business case, scope, vague cost estimates

2. Elaboration : refined vision, iterative implementation of the core architecture,
resolution of high risks, identification of most requirements and scope, more
realistic estimates

3. Construction : iterative implementation of the remaining lower risk and easier
elements, and preparation for deployment

4. Transition : beta tests, deployment

developmentcycle
A
; . A
iteration phase
(/\ A
4 N
inc. elaporafjion construcition trangition
milestone release increment final production
An iteration end-point A stable executable subset The difference (delta) release
when somesignificant of the final product. The between the releases At this point, the system
decision or evaluation end of each iteration is a of 2 subsequent is released for
occurs. minor release. iterations. production use.

() DEPENDABLE SOFTWARE 239
N LABORATORY

KU wovessmy

The UP Disciplines

A four-week iteration (for example).
A mini-project that includes work in most Note that
disciplines, ending iln a stable executable. although an
L iteration includes
s i d N work in most
up fo'mf’,ﬁ disciplines, the
isciplines 3 E 3 relative effort and
g . : i , | emphasis change
4 Business Modeling A - - ovepr it 9
Focus ‘ RS - ol ; '
of this Requirements | —— — e This example is
haok ‘ S I | D e N suggestive, not
\ esign 11— literal.
Implementation | ——————""" ‘
Tesl
Deployment - @0
Configuration & Change N 77_,77 — 0 i
Management | ————""_ :
Project Management | ——"" N -
. —‘\\——.
Environment
Iterations

g :’?;]:)EPENDABLE SOFTWARE 240
a) LABORATORY

Relationship Between the Disciplines and

Phases

» The relative effort in disciplines shifts to across the phases.

Sample incep-] : transi-
G g : elaboration construction :
UP Disciplines tion . ‘ . - - tion k
_ _ The relative effort in
Business Modeling disciplines shifts
. RS b across the phases.
Requirements o——- — —— — — ——— ——————————
, I ook TR R B s o= DA NN IO IO DO B This example is
Design — : ¢ it E i § | suggestive, not literal.
Q JEEEEEET o T :
Implementation | e 0 e
Phases
Disciplines |Inoeplion|| Elaboration ” Construction ” Transitl'nn|
Business Modeling m\ﬁ_\
Requirements 1 .
Analysis & Design _ il e
Implementation _j_.--- _— _L H\xir-—-». o
Test : . . g
Deployment ‘
Cenfiguration ' ' '
& Change Mamt —_— R ——
Project Management | o ! i ol o e oo o
Environment —— h-_ ___
| Initial || Elab #1 | | Elab #2” Const " Const | Const || Tran ” Than
Iterations
EPENDABLE SOFTWARE 241

LABORATORY

The UP Artifacts and Timing

Sample Unified Process Artifacts and Timing (s-start; r-refine)

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration=# I1 El1..En Cl1l..Cn d B3 (7 7]
Business Modeling |Domain Model 8
Requirements Use-Case Model S r
Vision S r
Supplementary Specification 8 r
Glossary 8 r
Design Design Model s r
SW Architecture Document s
Data Model s r
Implementation Implementation Model (code, html, ...) s r r

EPENDABLE SOFTWARE
LABORATORY

K

+ System Sequence Diagram
+ Operation Contract

Design Model
+ Class Diagram
+ Interaction Diagram
+ Package Diagram

+ Statechart Diagram
+ Activity Diagram
+ Deployment Diagram

KONKUK
UNIVERSITY

242

B

The UP Artifact Relationships

Sample Unified Process Artifact Relationships

EPENDABLE SOFTWARE
LABORATORY

conceptual
classes in
the

domain
inspire the
names of
some
software
classes in
the design

makeNewSale()

Domain Model

Sale Register ProductCatalog

Captured-on

dateTime 1 1

»

domain concepts

Use-Case Model

Process Sale Cashier

Procass ™ o -
f Sale use 1. Customer S L
Cashier ,:::5 BATVES:., e{*en!s :
2. Cashier i

. - L]

i makes new I

= I

sale
e

Use Case Diagrams Use Case Text

use-case Design Model
realization with g
interaction : Register ProductCatalog
diagrams T
I
i]
makeNewSale ot i
create :

enterltem(id, quantity) - | |

desc = getDescription(id } o

addLineltem(desc, quantity)

>

Register ProductCatalog
1

catalog | L _
enterltem(...) getDescription(...) : ProductDescription

‘ KI] KONKUK
UNIVERSITY

: System
!
make)
NewSale >
I
enterltem I
(id, quantity) |
e
>
i

System Sequence Diagrams

the design
classes

- discovered
while designing
UCRs can be
summarized in
class diagrams

243

Connections Between SSDs, System OperatioASE=l
and Layers

* In a well-designed layered architecture,

— The Ul layer objects will forward or delegate the requests from the Ul layer (system
operations) Onto the domain layer for handling.

— The messages sent from the Ul layer to the domain layer will be the messages
illustrated on the SSDs.

:System enterltem()

: Cashier ProcessSale endSale()
Frame

ul | -
Swing makeNewSale() %

makeNewSale()

>

enterltem(id, quantitv)’|
! makeNewSale()

[
|
: : Cashier

makeNewSale()
enterltem()

€ _description, total _ _ _i enterltem() &

l [Domain endSale() O-..ﬁ“_

| =
I

|

i endSale() ’i Register

|

! l

: |

| |

the system operations handled by the system in an SSD represent the ..-"J
operation calls on the Application or Domain layer from the Ul layer

LABORATORY

S DEPENDABLE SOFTWARE 244

What’s the Relationship between Interactio A=E=1
and Class Diagrams?

« From interaction diagrams, class diagrams can be generated iteratively.
— When we draw interaction diagrams, a set of classes and their methods emerge.
— Suggests a linear ordering of drawing interaction diagrams before class diagrams.

— But in practice, these complementary dynamic and static views are drawn
concurrently or iteratively.

— Example:

+ if we started with the makePayment sequence diagram, we see that a Register and
Sale class definition in a class diagram can be obviously derived.

v
" 5

o MakePayment(cashTendered)] : \
I
1

~"’

J“ makePayment(cashTendered) |, | [

'
! L . !
i | messages in interaction L : f
\ | diagrams indicate operations ! ! 1
Y | in the class diagrams i : /| classes

identified in the
interaction

diagrams are
Register Sale ~ declared in the

. 1 class diagrams
\

syl currentSale |
7 makePaymenty...) makePayment(...)

S‘ ' DEPENDABLE SOFTWARE 24 5

LABORATORY

OOD : Object-Oriented Design

« 0OOD is sometimes taught as some variation of the following:

— “After identifying your requirements and creating a domain model, then add methods
to the appropriate classes, and define the messaging between the objects to fulfill the
requirements.”

« But, it is not enough, because OOD involves deep principles.

— Deciding what methods belong to where and how objects should interact carries
consequences should be undertaken seriously.

« Mastering OOD is hard.
— Involving a large set of soft principles, with many degrees of freedom.
— A mind well educated in design principles is important.
— Patterns can be applied.

ABLE SOFTWARE 246

D.
LABORATORY

‘ K[] KONKUK
UNIVERSITY

GRASP

« 9 basic OO design principles or basic building blocks in design.

— Focusing on using the pattern style as an excellent learning aid for naming,
presenting and remembering basic/classic design ideas

— Creator

Pattern/
— Controller e
- Pu re Fabrication Information A general principle of object design and responsibility assignment?

Expert

_ Info rm ation Expert Assign a responsibility to the information expert—the class that has the information neces-

sary to fulfill the responsibility.

Description

- H Ig h C0h93|on Creator Who creates? (Note that Factory is a common alternate solution.)

_ Ind i rection Assign class B the responsibility to create an instance of class A if one of these is true:
1. B contains A 4. B records A
2. B aggregates A 5. B closely uses A

- LOW COU pl i ng ! | 3. B has the initializing data for A
H Controller I What first object beyond the Ul layer receives and coordinates (“controls”) a system opera-
— Polymorphism R) g Bystem oy

tion?

— Protected Va riations Assign the responsibility to an object representing one of these choices:

1. Represents the overall “system,” a “root object,” a device that the software is running
within, or a major subsystem (these are all variations of a facade controller).

2. Represents a use case scenario within which the system operation occurs (a use-case or
session controller)

Low Coupling How to reduce the impact of change?
(evaluative)
Assign responsibilities so that (unnecessary) coupling remains low. Use this principle to

evaluate alternatives. 1

EPENDABLE SOFTWARE 2 4 7
LABORATORY

23 Design Patterns of GoF

KONKUK

UNIVERSITY

E Abstract Factory E Facade E Proxy
Adapter Factory Method Observer
Bridge [5] Fyweiam Singleton
Builder Intemretar State
Chain of Responsibiity Herator Strategy
Command Medistor Template Method
Compositz Memento Visitor
Decorator Prototype

suezzszor (Chain of Responsibility

Type: Behaviorsl

Whatit is
Awoid coupling the sender of a request o
its receiver by giving more than one object
a chance to handle the request. Chain the
recaiving objects and pass the requast
along the chain until 3n object handles t.

ConereteHandler!
+handieRsquestl)

ConcreteHandler2
+handleRequest(}

Command

Type: Behavioral

What it is
Encapsulate a request as an objest,
theraby leting you parameterize cients
fierent requests, queue or log
requests. and support undosble operations.

Interpreter
Type: Behavioral

What it is
Given a language, define 3 reprasentation
for its grammar along with an interpreter
that uses the representafion o interpret
sentences in the language.

‘ﬂmerpﬂe!(): Context | ‘+imefbf€l() : Context ‘

Iterator

Type: Behaviorsl

What it is:
Provide 3 way o access the slements of
an sequentially without
exposing its underlying representation.

cinterfaces
Herator
=)

‘ < ©

‘icfeabe\be(am): Context | |+next0 Context ‘

informs
s ataces Mediator
iator Colleague
Lk Type: Behavioral
What it is:
Define an object that encapsulates how a
set of objects intersct. Promotes loose
coupling by keeping objects from referring
updates to each other explicitly and it lets you vary

their interacions independently.

ConcreteMediator }—;| ConcreteColleague

Memento

[carter j@—f===

winterfaces

= o]

Adapter

£

Type: Behavioeal

Whatit is:
Without wiolating encapsulation, capture
and externalize an object’s intzmal state
50 that the object can be restorad to this
state later.

Observer
Type: Behavioral

What it is

Define a one-to-many dependsncy betwesn
objects so that when one object changes
state, allits dependents are nofified and
updated automatically.

State

Type: Behavioral

What it is:

Allow an object to alter its behavior when

its intemal state changes. The object wil
appear to change its class.

Strategy

Type: Behavioral

What itis:

Dafine a family of aigorithms,
encapsulate each one, and make them
interchangeable. Lets the algerithm vary

independently from
clients that use it

Template Method
Type: Behavioral

What it is:
Dfine the skeleton of an algarithm in an

‘operation, deferring some steps o subdasses.

Lets subclasses redsfine cerain steps
of an aigorithm without changing the
algorithm's structure.

Type: Structural

* £\ What it is-
i Convert the interface of a class info
! another interface dients expect. Lets
Originator ! classes wark together that couldn't
| othenwise because of incompatible
st o “adaptee interiaces.
+sethlemento(in m : Memento) [+aperation()
winterfaces notifes —
Subj «nterfaces
= Observer Bridge
+attachiin o - Gboerver]
+detach(in o : Observer) +update() Type: Structural
+notify)
What it is:
Decouple an abstraction from its
implementation 50 that the twa can vary
independantly.
ConcreteSubject [opeorves |ConcreteObserver
n 1
|
~updatel] |
winterfaces .
Comy Composite

ConcreteState1 ConcreteState2

children

Type: Structural

Whatitis:

Compase objeats into tree structures to
represent part-whole hierarchies. Lets
clients treat individual objects and

+getGhild{in i - int)

|+handle[) | ‘ﬂ\andle() |

|Cam:rmsu=bequ| |Cam:retesmws|
|+em«=neu

| |+em=nec) |

AbstractClass

[+templatehethod()
fsubMethod()

Visitor
+vizitEler

interfaces
Visitor

Type: Behavioral

+visitElement8in b - ConcreteElements)

Whatit is:
Represent tobe

o of objects uniformly.
Composite
Leaf +operabon()

"ove(auion() | +add(in ¢ - Composite}
+removeiin o : Composite)
+gefChild(in i - int)

ainterfaces
| Cumrﬁtcumpumnl‘ Decorator

[roperationg | ype: Swuctra

What it is:
Attach additional responsibilities to an
object dynamically. Provide a fexible
ahemative to sub-classing for extending

ConcreteDecorator functionaly.

[Sadecotate

[+operation()

|+addedBehavior(}
Facade

Type: Structural

Provide a unified interface to a set of
interfaces in a subsystem. Defines a high-
lewel interface that makes the subsystem

‘ | What it is:

performed on the elements of an
object structure. Lets you define 3

«interfaces
Element

‘iacoqpn’m - Visitor) ‘

new operation without changing
the dlasses of the

which it operatss.

+acceptin v Visitor)

easierto use
FlyweightFactory
- = L Flyweight
[+getFlywsight(in key) +operation(in extrinsic State)
+ Type: Structural
| Client ‘ What it is-
J' Use sharing o support large numbers of
fine grained objects eficiently.
ConcreteFlyweight
|HntrinsicState

-aliState

Proxy

Type: Structural

What it is:

Prowide a surrogate or placeholder for
anather object to control access toit.

Abstract Factory

| oo [ooy

| RealSubject
[0

| [rreau=s)

Type: Creationsl

What it

Frovides aninterface for creating
families of related or dependent
cbjects without specifying their
concrete class.

[oreateProductB()

Builder
Type: Creational

What it is:
Separate the construction of a
complex object from its representing
50 that the same construction
process can create differsnt
representations.

Factory Method

Type: Creational

What it is:

Define an interface for creating an
object, but let subclasses decide whict

class o instantiate. Lets 3 class defer
instantiation o subclasses.

Prototype

Type: Creational

What it is:

Specify the kinds of objects to create
using a prototypical instance, and
create new objects by copying this
prottype.

Singleton
Type: Creational

Whatit is:

Ensure a class only has one instance and

provide 2 global point of acoess toit.

ainterface:

h

ConereteProduct

ConcreteBuilder

[+buiiaPan()
[FostResult])

[+factoryMethod(
" .

Mapping Designs to Code

The Register.enterltem Method

public class Register L
{
private ProductCatalog catalog;
private Sale currentSale ;
public Register(ProductCatalog pe) . | ProductCatalog
public veid endsale() (-} catalog
public void enteritem(itemiD id, int gty) .} [1| getProductDesc {-.)
public void makeNewSale () [.. }
public void makePayment(Money cashTendered) (.
i
Sale
enterltem() Register isComplete : Boolean
| | tirme : DateTime
currentiale |
[[* becomeComplete ()
endsale()
enterltemiid; teml D, gty ; Integed) ! makeLineftemi..)

makePayment...)

makeNewsale() getTotal()

makePayment (cashTendered : Money)

" E k
ProductDescription dese = catalog.ProductDescription (id);
currentSale makelineltem{desc, gty) ;

}

enterltem{id, qty] —=] Z:makeLineltem{desc, qty] —*
Register | 1 :Sale

1:dase = getPraductDescription (id)

L

. :F:oli-juct
Catalog
249

EPENDABLE SOFTWARE
LABORATORY

T7 T T KONKUK
4 | A . UNIVERSITY
w— — =

An Overview of Object-Oriented Developm
- What We Covered?

O
Software Architecture Style | 77

| Object-Oriented Design Patterns | |

Software i ols i L
Development i UP | | Origination

i + I S
Sequence i Object-Oriented Analysis and Design | eenee

! 00D | !

i Methods i

Object-Oriented Concepts and Principles
Object-Oriented Programming
A 4 |

]}EPENDABLE SOFTWARE 2 5 O
LABORATORY

