
OOAD/UML 기본

건국대학교
유준범

Contents
1. An Introduction to Object-Oriented Development

– Object-Oriented Development
– Object-Oriented
– Object-Oriented Principles
– UML

2. Object-Oriented Analysis and Design
– Part I. Introduction
– Part II. Inception
– Part III. Elaboration Iteration 1 - Basics

• OO Analysis
• OO Design
• OO Implementation

3. Advanced Topics in UML
– Statechart Diagram
– Component Diagram
– Extension Mechanism of UML

4. Object-Oriented Analysis and Design - Summary

2

Contents at a Glance

3

Contents in Detail

4

대주제 차시 소주제 학습 목표 상세 내용

1.
An Introduction

to Object-
Oriented

Development

1 2 Object-Oriented
Development

• ‘소프트웨어 개발’을 정의할 수 있다.
• OOAD 와 SASD의 차이점을 구분할 수 있다.
• 다양한 소프트웨어 개발 방법론/프로세스를

구분하고 정리할 수 있다.

• OOAD vs. SASD
• Software Development Process

3 Object-Oriented • 객체지향 (Object-Oriented)을 정의할 수 있다. • Object-Oriented

4 Object-Oriented
Principles • 객체지향 Principles을 이해하고 적용할 수 있다. • Object-Oriented Principles

5 6 UML • UML 2.0을 구성하는 13개 다이어그램들의
목적을 이해할 수 있다. • 13 UML Diagrams

Contents in Detail

5

대주제 차시 소주제 학습 목표 상세 내용

2.
Object-

Oriented
Analysis and

Design

7 Part I. Introduction • OOAD 및 UP 기본개념을 정리할 수 있다.
• 교재의 Case Study 내용을 확인할 수 있다.

• Chapter 1. Object-Oriented Analysis and
Design

• Chapter 2. Iterative, Evolutionary, and Agile
• Chapter 3. Case Studies

8 9 Part II. Inception

• UP 기반 OOAD의 첫 단계인 Inception 단계를
이해할 수 있다.

• Inception 단계의 활동을 수행할 수 있다.
• 기능/비기능 요구사항을 구별할 수 있다.
• Use Case를 활용할 수 있다.

• Chapter 4. Inception is Not the Requirements
Phase

• Chapter 5. Evolutionary Requirements
• Chapter 6. Use Cases
• Chapter 7. Other Requirements

10
Part III. Elaboration
Iteration 1 – Basics

- OOA

• Analysis 단계의 활동을 이해할 수 있다.
• Domain model의 목적을 이해하고 활용할 수 있

다.

• Chapter 8. Iteration 1 Basics
• Chapter 9. Domain Models

11 - OOA
• Sequence diagram의 목적을 이해하고 활용할

수 있다.
• Operation contract의 목적을 이해할 수 있다.

• Chapter 10. System Sequence Diagram
• Chapter 11. Operation Contracts

12 - OOD
• Design 단계의 활동을 이해할 수 있다.
• Package diagram의 목적을 이해하고 활용할 수

있다.

• Chapter 12. Requirements to Design Iteratively
• Chapter 13. Logical Architecture and UML

Package Diagrams

13
14 - OOD • Sequence diagram의 목적을 이해하고 활용할

수 있다.
• Chapter 14. On to Object Design
• Chapter 15. UML Interaction Diagram

15
16 - OOD • Class diagram의 목적을 이해하고 활용할 수

있다. • Chapter 16. UML Class Diagram

17 - OOD • GRASP 디자인 패턴의 목적과 효과적인 적용
방법을 이해할 수 있다.

• Chapter 17. GRASP: Designing Objects with
Responsibilities

18
19 - OOI

• OO Design에서 Implementation으로의
전환과정을 정확하게 이해할 수 있다.

• 개발방법론의 장점을 확인할 수 있다.

• Chapter 19. Designing for Visibility
• Chapter 20. Mapping Designs to Code

Contents in Detail

6

대주제 차시 소주제 학습 목표 상세 내용

3.
Advanced

Topics in UML

20
21 Statechart Diagram • Statechart의 문법을 정확하게 이해하고, 이를

활용하여 모델링을 수행할 수 있다. • Statechart Diagram

22 Component Diagram • Component Diagram을 이해하고 활용할 수
있다. • Component Diagram

23 Extension Mechanism
of UML

• UML을 적절하게 확장하는 방법을 이해할 수
있다.

• MOF의 개념을 이해할 수 있다.
• Extension Mechanism of UML

대주제 차시 소주제 학습 목표 상세 내용

4.
Summary 24 OOAD Summary • UML을 적절하게 사용하여, UP 기반의 OOAD

를 수행할 수 있는 이론적인 배경을 갖춘다. • OOAD Summary

Text and References

7

8

An Introduction to
Object-Oriented Development

(OOD)

• Object-Oriented Development
• Object-Oriented
• Object-Oriented Principles
• UML

1 2

Object-Oriented Development

10

Software Development
• Software Development ≈ Solving Problem with Software in Computer

11

Problems
in real world

Natural Language
→ Descriptions of Problems

(through Identifying Requirements)

Business Process

+

Solutions
in computer

Programming Language
→ Descriptions of Solutions

(through Designing Programs)
+

Program Execution
with Computer System

A Big Gap between Languages

Software Development
• Software Development ≈ Solving Problem with Software in Computer

12

Problems
in real world

Natural Language
→ Descriptions of Problems

(through Identifying Requirements)

Solutions
in computer

Programming Language
→ Descriptions of Solutions

(through Designing Programs)
+

Program Execution
with Computer System

Software Development ≈ ①②③

Computational Thinking ≈ ①②/2

③

①

②

Procedural Programming

Object-Oriented Programming

SASD

OOAD

Procedural Programming
• A program is organized with procedures.

– Procedure/Function
• building-block of procedural programs
• statements changing values of variables

– Focusing on data structures, algorithms, and sequencing of steps
• Algorithm : a set of instructions for solving a problem
• Data structure : a construct used to organize data in a specific way

– Most computer languages (from FORTRAN to C) are procedural ones.

13

Procedure 1: Deposit() {...}

Procedure 2: Withdraw() {...}

Procedure 3: Transfer() {...}

struct account {
char name;
int accountId;
float balance;
float interestYTD;
char accountType;

};
<<Use>>

Data StructureProcedures (with Algorithms)

Procedural Programming - SASD
• SASD (Structured Analysis and Structured Design)

– A traditional software development methodology for procedural programs
– Top-Down Divide and Conquer

• Divide large, complex problems into smaller, more easily handled ones.
– Functional view of the problem using DFD (Data Flow Diagram)

14

A level 3 DFD for RVC Control

An SASD Example - RVC Control

15

DFD Level 0

DFD Level 3
…

Structured Chart

Structured Analysis

Structured Design

(…)

Object-Oriented Programming
• A program is organized with objects.

– Focusing on objects and their communications.
• Object : consisting of data and operations (functions)
• Object communication : an object calls an operation of other objects with its data

– Providing system functionalities through object communications
• No explicit data flow
• Only communication sequences among objects

16

Class BankAccount {
private:

float balance;
float interestYTD;
char * owner;
int account_number;

public:
void Deposit (float amount) {…}
float WithDraw (float amount) {…}
bool Transfer (BankAccount to, float amount) {…}

};

data

operation

Object-Oriented Programming - OOAD
• OOAD (Object-Oriented Analysis and Design)

– A software development methodology for Object-Oriented programs
– OOA + OOD

• Object-Oriented Analysis (OOA)
– Discover the domain concepts/objects (the objects of the problem domain)

• Object-Oriented Design (OOD)
– Define software objects (static)

– Define how they collaborate to fulfill the requirements (dynamic)

17

An OOAD Example - Dice Game

18

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.
- If the dice’s face value totals seven,

player wins; otherwise, player loses.

Domain Model

Interaction Diagram

Design Class Diagram

OOA OOD

Software Process Model
• Software (Development) Process models

– Defining a distinct set of activities, actions, tasks, milestones, and work products
that are required to engineer high-quality software, systematically.

– Defining Who is doing What, When to do it, How to reach a certain goal.

19

Waterfall Model

Incremental Model

Evolutionary Model

Component-Based Development

Iterative Model (Agile)

Rational Unified Process

< 1960s ~ 2000s >

Waterfall Model

Iterative Model

< 2000s ~ Now > < in practice >

Application Domains

Application Domains

…

Application Domains

Application Domains

…

tailored for

tailored for

Waterfall Model
• A classic software development life-cycle (SDLC) model

– Suggests a systematic and sequential approach to software development
– Useful in situations where,

• Requirements are fixed early.
• Work can/shoudl proceed to completion in a linear manner.

20

Iterative Model - Agile
• Agile development is an umbrella term a group of methodologies

weighting rapid prototyping and rapid development experiences.
– Lightweight in terms of documentation and process specification
– Example: XP(eXtreme Programming) , TDD(Test Driven Development)

• Agile methods attributes
– Iterative (several cycles)

– Incremental (not delivering the product at once)

– Actively involve users to establish requirements

• Agile Manifesto
– Individual over processes and tools
– Working software over documentation
– Customer collaboration over contract negotiation
– Responding to change over following a plan

21

Iterative Model - UP
• Rational Unified Process (RUP) or UP

– A Software development approach that is
• Iterative (Incremental, Evolutionary)

– Each iteration includes a small waterfall cycle.
• Risk-driven / Client-driven / Architecture-centric
• Use-case-driven

– A Well-defined and well-structured software engineering process
• 4 Phases and 9 Disciplines

– A de-facto industry standard for developing OO software

22

23

An Introduction to Object-Oriented

24

3

Object
• An object represents an entity.

– physical, conceptual or software, informally.

– Physical entity

– Conceptual entity

– Software entity

Truck

Chemical Process

25

A More Formal Definition of Object
• An object is an entity with a well-defined boundary and identity that

encapsulates state and behavior.
– State : represented by attributes and relationships
– Behavior : represented by operations, methods, and state machines

26

The Object States
• The state of an object

– One of the possible conditions in which an object may exist.
– Normally changes over time.

Professor Yoo

Name: Junbeom Yoo
Employee ID: 1234567
Date Hired: 2008.03.01
Status: Tenured
Discipline: CS
Min. Course Load: 5 classes

27

Professor Yoo

The Object Behavior
• Behavior determines how an object acts and reacts.

– Modeled by the set of messages it can respond to (= operations the object can perform).

28

Professor Yoo

Name: Junbeom Yoo
Employee ID: 1234567
Date Hired: 2008.03.01
Status: Tenured
Discipline: CS
Min. Course Load: 5 classes

Professor Yoo

An Object has Identity
• Each object has a unique identity.

– Even if the state is identical to that of another object.

Professor “J Yoo” teaches Biology

Professor “J Yoo” teaches Biology

≠

29

Objects Need to Collaborate
• Objects are useful only when they can collaborate together to solve a

problem.
– Each object is responsible for its own behavior and status.
– No one object can carry out every responsibility on its own.

• How do objects interact with each other?
– They interact through messages.

30

Class
• A class is a description of a set of objects that share the same properties

and behavior.
– An object is an instance of a class.

Professor A Professor B

Professor C Professor D

Objects Class

Attributes
(States)

Operations
(Messages)

31

Relationship between Classes and Objects
• A class is an abstract definition of an object.

– It defines the structure and behavior of each object in the class.
– It serves as a template for creating objects.

• Objects are grouped into classes.
• An object is an instance of a class.

Professor A Professor B

Objects
in Real World

Abstraction

Class

Instantiation

Objects
to Computer World

32

J Yoo :
Professor

Attribute
• An attribute is a named property of a class that describes a range of

values which instances of the property may hold.

Attributes

Class

ObjectsInstantiation

Student

-name
-address
-studentID
-dateofBirth

33

Operation
• An operation is the implementation of a service which can be requested

from any object of the class to affect behavior.

Student

+ get tuition()
+ add schedule()
+ get schedule()
+ delete schedule()
+ has pre-requisites()

Operations

34

Example : class Professor

class Professor {
private String name;
private int age;
private String specialty;

public Professor (String sm, int ia, String ss) {
name = sm;
age = ia;
speciality = sst;

}

public String getName () { return name;}
public int getAge () { return age;}
public String getSpeciality () { return specialty;}

}

Professor

-name: String
-age: Integer
-speciality: String

+getName(): String
+getAge(): Integer
+getSpeciality(): String

yoo : Professor

name = Yoo
age = 43
speciality = Software Engineering

Professor yoo = new Professor (“yoo”, 43, “Software Engineering”);

class

instance

35

Message
• A specification of a communication between objects

– Conveying information with the expectation that activity will ensue.
– One object asks another object to perform an operation.

What’s your name?

Professor Yoo
yoo.getName()

client yoo : Professor

1 : getName()

client

36

yoo:Professor

name

37

An Introduction to Object-Oriented
Principles

38

4

Basic Principles of Object-Oriented
1. Abstraction
2. Encapsulation
3. Inheritance
4. Polymorphism
5. Composition
6. Abstract / Interface Class

39

1. Abstraction
• Abstraction :

– “Any model that includes the most important, essential or distinguishing aspects of
something while suppressing or ignoring less important, immaterial, or diversionary
details. The result of removing distinctions so as to emphasize commonalties.”

(Dictionary of Object Technology, Firesmith, Eykholt, 1995)

– Emphasizes relevant characteristics, but suppresses other characteristics

BriefCase

-capacity
-weight

+open()
+close()

Abstraction

40

Example : Abstraction

Lecturer

Course Offering

Dormitory

Course (Chemistry)

41

2. Encapsulation
• Encapsulation :

– Design, produce and describe software so that it can be easily used without
knowing the details of how it works.

– Also known as information hiding

• Example:
– When you drive a car, you don’t have know the details of how many cylinders the

engine has or how the gasoline and air are mixed and ignited.
– Instead you only have to know how to use the controls.

42

Example : Encapsulation
• Professor Yoo needs to be able to teach 4 classes in the next semester.

Professor Yoo

SetMinLoad(4)

Professor Yoo

43

Encapsulation as Information Hiding

Deposit()
Withdraw()
Transfer()

Client

Interfaces
available

- Balance
- insterestYTD
- Owner
- Account_number

+ Deposit() {…}
+ Withdraw() {…}
+ Transfer() {…}

Implementation details
invisible for clients

Information
can’t be accessed by clients

44

3. Inheritance
• Inheritance :

– “is a kind of” , “is-a” relationship
– A way of organizing classes
– Classes with properties in common can be grouped so that their common

properties are only defined once.

45

Example : Single Inheritance
• One class inherits from another.

Superclass
(parent)

Subclasses
(children)

Inheritance Relationship

Ancestor

Descendents

Account

-balance
-name
-number

+withDraw()
+createStatement()

Savings Checking

46

4. Polymorphism
• Polymorphism :

– The ability to hide many different implementation behind a single interface.
– The same word or phrase can mean different things in different contexts.

• Example:
– In English, a bank can mean side of a river or a place to put money

• In Java,
– Two or more classes could each have a method called output.
– Each output method would do the right thing for the class that it was in.

• One output might display a number, whereas a different one might display a name.

47

Example : Polymorphism

음력 1월生 양력 1월生 외국인

Get Age ?

48

5. Composition
• Object composition :

– “has_a” relationship between objects
– Defined dynamically at runtime by acquiring references to other objects.
– Does not break encapsulation, because objects are accessed solely through

interfaces.
– Any compatible object can be replaced with another at runtime.

49

Example : Composition

Encapsulating quack behavior

Encapsulating fly behavior

Duck

performQuack(){}
swim() {//swimming impl}
display() //abstract
performFly(){}
setFlyBehavior()
setQuackBehavior()
//Other duck-like methods

FlyBehavior flyBehavior
QuackBehavior quackBehavior

MallardDuck

display(){
//looks like a mallard }

RedheadDuck

display(){
//looks like a redhead }

<<interface>>
FlyBehavior

fly()

FlyWithWing
fly(){
 //implements Duck flying
}

FlyNoWay
fly(){
 //do nothing -- can’t fly
}

<<interface>>
QuackBehavior

quack()

Quack
Quack(){
 //implements duck quacking
}

MuteQuack
Quack(){
 //do nothing --can’t quack
}

Squeak
Quack(){
 //implements squeaking
}

Client
composition

composition

public abstract class Duck {
FlyBehavior flyBehavior;
public void performFly() {

flyBehavior.fly();
}

} 50

6. Interface
• Interface

– A collection of operations specifying a service of a class or component
– Interfaces formalize polymorphism.
– Interfaces support “plug-and-play” architectures.

Shape
<<interface>>

+draw()
+move()
+scale()
+rotate()

Tube

Pyramid

Cube

Realization relationship

What

How

51

7. Abstract Class
• Abstract class

– A class that may not has any direct instances.

• Abstract operation
– An incomplete operation requiring a child to supply an implementation of the

operation

Shape

+draw()

Circle

+draw()

Rectangle

+draw()

Abstract Class

Abstract Operation

Concrete Class

Concrete Operation

Inheritance Relationship

52

An Overview of Object-Oriented Development

Object-Oriented Programming

Object-Oriented Concepts and Principles

Object-Oriented Analysis and Design

Object-Oriented Design Patterns

Software Architecture Style

Software
Development

Sequence
Origination
Sequence

UML

+

OOD
Methods

53

UP

54

An Introduction to UML

55

5 6

UML
• Unified Modeling Language for

– Visualizing , Specifying , Constructing and
– Documenting the artifacts of software-intensive systems.

• Offer vocabulary and rules for communication
– http://www.uml.org/

• Combine the best of the best from
– Data Modeling (Entity Relationship Diagrams)

– Business Modeling (work flow)

– Object Modeling
– Component Modeling (development and reuse - middleware, COTS)

de facto industry standard

56

The UML Semantics
• 4-layer metamodel architecture

– instance → model → meta model → meta-meta model

• MOF (Meta Object Facility) defines a four-layer meta model hierarchy.
– Layer M3: Meta-meta model layer (The MOF model)

– Layer M2: Meta model layer (The UML meta model)

– Layer M1: Model layer (The UML model)

– Layer M0: Information layer (the Application)

• MOF and UML are aligned.
– The UML infrastructure contains all the concepts needed for the specification of

UML and MOF.

57

The Meta Model Hierarchy of the MOF (for UML)

58

UML 2.0 Diagrams
• 13 UML diagrams

59

UML 2.2

1. Use Case Diagram
• Use case diagram illustrates the name of use cases and actors, and the

relationships between them.
– Use case : a collection of related success and failure scenarios, that describe

how an actor uses the system to achieve a goal
– Actor : something with behavior, such as a person, computer or organization

60

Use case: Handle Returns

Main Success Scenario:
- A customer arrives at a checkout with items to return.
- The cashier uses the POS system to record each

returned item …

Alternate Scenarios:
- If the customer paid by credit, and the reimbursement

transaction to their credit account is rejected, inform the
customer and pay them with cash …

2. Class Diagram
• Class diagrams show the classes of the system, their inter-relationships,

and the operations and attributes of the classes.
– Domain model
– Design class diagram (DCD)

61

3. Object Diagram
• Object diagrams are useful for exploring real world examples of objects

and the relationships between them.
– Shows instances of classes at a specific point of time. (i.e., snapshot)

62

4. Package Diagram
• Package diagrams group classes into packages and simplify complex

class diagrams.
– A package is a collection of logically related UML elements.

63

5. Component Diagram
• Component diagrams depicts how components are wired together to form

larger components or software systems.
– Illustrate the structure and inter-dependency of arbitrarily complex systems

64

6. Composite Structure Diagram
• Composite structure diagrams are used to explore run-time instances of

interconnected instances collaborating over communications links.
– Show the internal structure (including parts and connectors) of components.

65

7. Deployment Diagram
• Deployment diagrams depict a static view of the run-time configuration of

hardware nodes and the software components running on those nodes.

66

8. Sequence Diagram
• Sequence diagrams model the collaboration of objects based on a time

sequence.
– Show how the objects interact with others in a particular scenario of a use case.

67

9. Communication Diagram
• Communication diagrams are used to model the dynamic behavior of the

use case. (called collaboration diagram)
– ≈ Sequence diagram
– More focused on showing the collaboration of objects rather than the time

sequence.

68

10. State (Statechart) Diagram
• State diagrams can show different states of an entity and how an entity

responds to various events by changing from one state to another.
– Originated from the Statechart formalism
– The history of an entity is modeled by a finite state diagram.

69

11. Timing Diagram
• Timing diagrams show the behavior of the objects in a given period of time.

– A special form of a sequence diagram
– The time increases from left to right and the lifelines are shown in separate

compartments arranged vertically.

70

12. Interaction Overview Diagram
• Interaction overview diagrams focus on the overview of the flow of control

of the interactions.
– A variant of the Activity Diagram, where the nodes are the interactions or

interaction occurrences.

71

13. Activity Diagram
• Activity diagrams help to describe the flow of control of the target system.

– Exploring complex business rules and operations, describing the use case and
the business process.

– It is an object-oriented equivalent of flow-charts and DFDs (data flow diagrams).

72

13 UML Diagrams

73

UML 2.2

74

Object-Oriented Analysis and Design

• Part 1: Introduction
• Part 2: Inception
• Part 3: Elaboration Iteration 1 - Basics

7

Text and Contents

Design Patterns

Architecture Style

Architecture Description

76

OOAD

Part 1: Introduction
• Chapter 1. Object-Oriented Analysis and Design
• Chapter 2. Iterative, Evolutionary, and Agile
• Chapter 3. Case Studies

77

Chapter 1.
Object-Oriented Analysis and Design

78

Object-Oriented Analysis and Design
• Object-Oriented Analysis (OOA)

– Discover the domain concepts/objects (the objects of the problem domain)

• Object-Oriented Design (OOD)
– Define software objects (static)

– Define how they collaborate to fulfill the requirements (dynamic)

79

An OOAD Example - Dice Game

80

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.
- If the dice’s face value totals seven,

player wins; otherwise, player loses.

Domain Model

Interaction Diagram

Design Class Diagram

OOA OOD

UML
• “The Unified Modeling Language (UML) is a visual language for specifying,

constructing and documenting the artifacts of systems.”

• 3 ways to apply (use) UML
– Sketch

• Conceptual perspective
• Informal and incomplete diagrams are created to explore difficult parts of the problem or

solution space. → Intercommunication medium
– Blueprint

• Specification perspective
• Relatively detailed design diagrams are used for code generation.

– Programming language
• Implementation perspective
• Complete executable specification of a software system in UML

– Executable code will be automatically generated.
– Still under development in terms of theory, tool robustness and usability.

81

What the UML is Not?
• UML is not an Object-Oriented analysis and design process.

– UML is not a systematic way to develop software systems.

• UML will not teach you an Object-Oriented way of thinking.
– It will not tell you how to design object structures or behaviors.
– It will not tell you whether your design is good or bad.

82

83

Chapter 2.
Iterative, Evolutionary, and Agile

84

Software Development Process and the UP
• Software development process

– A systematic approach to building, deploying and possibly maintaining software

• Unified Process (UP): a popular iterative software development process for
building object-oriented systems

– Iterative with fixed-length iterations (mini waterfalls of about 3 weeks)

– Inspired from Agile (i.e., opposite from waterfall)

– Flexible (can be combined with practices from other OO processes)

– A de-facto industry standard for developing OO software

85

Risk-Driven and Client-Driven Iterative Planning

• The UP encourages a combination of risk-driven and client-driven
iterative planning.

– To identify and drive down the high risks, and
– To build visible features that clients care most about.

• Risk-driven iterative development includes more specifically the practice of
architecture-centric iterative development.

– Early iterations focus on building, testing, and stabilizing the core architecture.

86

The UP Practices
• The central idea to UP practices :

– A short timeboxed iterative, evolutionary and adaptive development

• Additional best practices and key concepts:
– Tackle high-risk and high-value issues in early iterations (→ Risk-driven, Client-driven)

– Continuously engage users for evaluation and feedback (→ Client-driven)

– Build a cohesive, core architecture in early iterations (→ Architecture-centric)

– Continuously verify quality; test early, often, and realistically
– Apply use cases where appropriate
– Do some visual modeling (with the UML)

– Carefully manage requirements (configuration management)

87

The UP Phases
• A UP project organizes the work and iterations across 4 major phases:

1. Inception : approximate vision, business case, scope, vague cost estimates
2. Elaboration : refined vision, iterative implementation of the core architecture,

resolution of high risks, identification of most requirements and scope, more
realistic estimates

3. Construction : iterative implementation of the remaining lower risk and easier
elements, and preparation for deployment

4. Transition : beta tests, deployment

88

The UP Disciplines

89

Relationship Between the Disciplines and
Phases
• The relative effort in disciplines shifts to across the phases.

– Artifact : A general term for any work product
• Example: code, web graphics, database schema, text documents, diagrams, models

and so on

– Discipline : A set of activities and related artifacts in one subject area
• Example: the activities within requirements analysis

90

The UP Development Case
• Development Case:

– An artifact in the Environment discipline
– Documenting the choice of practices and UP artifacts for a project

– For example, the development case for the NextGen POS case study :

91

You Know You Didn’t Understand Iterative
Development or the UP When …
• Some signs that you have not understood what it means to adopt iterative

development and the UP in a healthy agile spirit.

92

93

Chapter 3.
Case Studies

94

What is Covered in the Case Studies?
• Generally, applications include

– UI elements,
– Core application logic,
– OS, database access and collaboration with external SW/HW components.

95

Layered Architecture

Our concern !!!

Case One: The NextGen POS System

96

97

Part 2: Inception
• Chapter 4. Inception is Not the Requirements Phase
• Chapter 5. Evolutionary Requirements
• Chapter 6. Use Cases
• Chapter 7. Other Requirements

98

8 9

Chapter 4.
Inception is Not the Requirements

Phase

99

What is Inception?
• Most projects require a short initial step to question about:

– What is the vision and business case for this project?
– Feasible?
– Buy and/or build?
– Rough unreliable range of cost: Is it $10K-100K or in the millions?
– Should we proceed or stop?

• Inception should be short.
– One week for most projects
– Most requirements analysis occurs during the elaboration phase, not inception.

100

Artifacts Start in Inception

[] – These artifacts are partially completed in this phase. They will be iteratively refined in subsequent iterations.
Name capitalization implies an officially named UP artifact.

101

How Much UML During Inception?
• The purpose of inception is to collect just enough information to

– establish a common vision,
– decide if moving forward is feasible, and
– decide if the project is worth serious investigation in the elaboration phase.

• Much UML diagramming is not required.
– Inception has more focus on understanding the basic scope and 10% of the

requirements, expressed mostly in text forms.
– In practice, most UML diagramming will occur in the next phase elaboration.

102

103

Chapter 5.
Evolutionary Requirements

104

Requirements
• Requirements

– Capabilities and conditions to which the system must conform

• Requirement analysis is
– to find, communicate and organize what is really needed, in a form that is clear

both to clients and team members.

• In the UP, requirements are analyzed iteratively and skillfully.

• The UP encourages skillful elicitation (finding) via techniques such as
– writing use cases with customers,
– requirements workshops that include both developers and customers,
– a demo of the results of each iteration to the customers, to solicit feedback.

105

Types and Categories of Requirements
• In the UP, requirements are categorized according to the FURPS+ model

[R. Grady: “Practical Software Metrics for Project Management and Process Improvement”, Prentice-Hall Inc, 1992.]

– Functional : features, capabilities, security
– Usability : human factors, help, documentation
– Reliability : frequency of failure, recoverability, predictability
– Performance : response times, throughput, accuracy, availability, resource usage
– Supportability : adaptability, maintainability, internationalization, configurability

– The “+” in FURPS+ indicates ancillary and sub-factors such as:
• Implementation : resource limitations, languages and tools, hardware, …
• Interface : constraints imposed by interfacing with external systems
• Operations : system management in its operational setting
• Packaging : for example a physical box
• Legal : Licensing and so forth

• It is helpful to use FURPS+ categories as a checklist for requirements
coverage.

106

Quality Attributes/Requirements
• Quality attributes/requirements:

– Usability + Reliability + Performance + Supportability
– Also called “Non-functional requirements”

• The quality attributes often have a strong influence on the architecture of a
system.

107

How Requirements are Organized
• The UP offers several requirements artifacts. (But, they are all optional.)

– Use-Case Model
• A set of typical scenarios of using a system
• These are primarily for functional (behavioral) requirements.

– Supplementary Specification
• Basically, everything is not in the use cases.
• This artifact is primarily for all non-functional requirements, such as performance or

licensing.
• It is also the place to record functional features not expressed (or expressible) as use

cases; for example, a report generation.

– Glossary
• It defines noteworthy terms.

– Vision
• A short executive overview document for quickly learning the project's big ideas.

– Business Rules
• It typically describe requirements or policies that transcend one software project.

108

109

Chapter 6.
Use Cases

110

Use Cases
• Use cases are text stories of some actors using a system to meet goals.

– A mechanism to capture (analyzes) requirements
– An example (Brief format):

• Process Sale: A customer arrives at a checkout with items to purchase. The cashier
uses the POS system to record each purchased item. The system presents a running
total and line-item details. The customer enters payment information, which the system
validates and records. The system updates inventory. The customer receives a receipt
from the system and then leaves with the items.

– Use case is not a diagram, but a text.

111

Use Case Diagram
• Use case diagram illustrates the name of use cases and actors, and the

relationships between them.
– System context diagram
– A summary of all use cases

112

Actor

Use case

Something with behavior, such as a person,
computer system, or organization

- Primary Actor : has user goals fulfilled
through using services of the SuD (System
Under Discussion) , e.g., cashier

- Supporting Actor : provides a service to the
SuD, e.g., payment authorization service

- Offstage Actor : has an interest in the behavior
of the use case, but is not primary or
supporting, e.g., tax agency

Are Use Cases Functional Requirements?
• Yes, Use Cases are requirements, primarily functional (behavioral)

requirements.
– “F” (functional or behavioral) in terms of FURPS+ requirements types
– Can also be used for other types.

113

Three Common Use Case Formats
• Brief :

– Terse one paragraph summary, usually the main success scenario or a happy
path

• Casual :
– Informal paragraph format.
– Multiple paragraphs that cover various scenarios.

114

• Fully Dressed :
– Includes all steps, variations and supporting sections (e.g., preconditions)

115

Example: Process Sale, Fully Dressed Style

116

117

118

Guideline: Write in an Essential UI-Free Style

• Essential writing style is to express user intentions and system
responsibilities, rather than concrete actions.

– Concrete use cases are better avoided during early requirements analysis.

– For example: Manage Users use case

Essential Style

1. Administrator identities self.
2. System authenticates identity.
3. …

Concrete Style

1. Administrator enters ID and PW in dialog box.
2. System authenticates Administrator.
3. System displays the “edit user” window.
4. …

119

Guideline: Write Black-Box Use Cases
• Don’t describe the internal working of the system, its components or

design.
– Define what the system does (analysis), rather than how it does it (design).

120

Process: Evolutionary Requirements in Iterative
Methods

121

Case Study: Use Cases in the NextGen POS
• Use cases are developed and refined iteratively.

• Use Cases of the NextGen POS at the inception phase

Fully Dressed Casual Brief
Process Sale
Handle Returns

Process Rental
Analyze Sales Activity
Manage Security
…

Cash In
Cash Out
Manage Users
Start Up
Shut Down
Manage System Tables
…

122

123

Chapter 7.
Other Requirements

124

Other Requirements Artifacts
• Supplementary Specification

– Captures and identifies other kinds of requirements, such as
• reports, documentation, packaging, supportability, licensing, and so forth

• Glossary
– Captures terms and definitions; a data dictionary

• Vision
– Summarizes the “vision” of the project; an executive summary

• Business Rules
– Capture long-living and spanning rules or policies (such as tax laws), that

transcend one particular application

125

Supplementary Specification
• Other requirements, information and constraints not easily captured in the

use cases or Glossary, including system-wide “URPS+” quality attributes.

• Elements of the Supplementary Specification include:

126

Process: Evolutionary Requirements in Iterative
Methods

127

128

Part 3: Elaboration - Iteration 1 Basics
• Chapter 8. Iteration 1 Basics
• Chapter 9. Domain Models
• Chapter 10. System Sequence Diagram
• Chapter 11. Operation Contracts

• Chapter 12. Requirements to Design Iteratively
• Chapter 13. Logical Architecture and UML Package Diagrams
• Chapter 14. On to Object Design
• Chapter 15. UML Interaction Diagram
• Chapter 16. UML Class Diagram

• Chapter 17. GRASP: Designing Objects with Responsibilities
• Chapter 18. Object Design Examples with GRASP

• Chapter 19. Designing for Visibility
• Chapter 20. Mapping Designs to Code
• Chapter 21. Test-Driven Development and Refactoring

129

Chapter 8.
Iteration 1 Basics

130

10

What Happened in Inception?
• Inception is a short (only one week) step to elaboration including:

– A short requirements workshop
– Most actors, goals, and use cases named
– Most use cases written in brief format (10~20% are written in fully dressed detail)

– Most influential and risky requirements identified
– Version one of the Vision and Supplementary Specification written
– Risk list
– Technical proof-of-concept prototypes and other investigations to explore the

technical feasibility of special requirements
– User interface-oriented prototypes to clarify the vision of functional requirements
– Recommendations on what components to buy/build/reuse, to be refined in

elaboration
– High-level candidate architecture and components proposed
– Plan for the first iteration
– Candidate tools list

131

On to Elaboration
• Elaboration is the initial series of iterations during which:

– The core, risky software architecture is programmed and tested.
– The majority of requirements are discovered and stabilized.
– The major risks are mitigated or retired.

132

Iteration 1 Requirements and Emphasis

• The NextGen POS example
– The requirements for the 1st iteration follow:

• Implement a basic, key scenario of the Process Sale use case: entering items and
receiving a cash payment.

• Implement a Start Up use case as necessary to support the initialization needs of the
iteration.

• Nothing fancy or complex is handled, just a simple happy path scenario, and the design
and implementation to support it.

• There is no collaboration with external services, such as a tax calculator or database.
• No complex pricing rules are applied.

133

Implement Requirements Incrementally
• Incremental development for the same use case across iterations

– The requirements for the iteration-1 are subsets of the complete requirements or
use cases.

134

UP Artifacts Start in Elaboration
• These will not be completed in one iteration; rather will be refined over a

series of iterations.

135

136

Chapter 9.
Domain Models

137

Domain Model
• Domain model is a visual representation of conceptual classes or real-

situation objects in a domain.
– The most important classic model in OO analysis
– Can act as a source of inspiration for designing software objects and classes.

– Visual dictionary of the noteworthy abstractions, domain vocabulary, and
information contents of the domain

– Not represents software objects

• Domain model is illustrated with class diagrams
– no operations
– domain objects (or conceptual classes)
– associations between conceptual classes
– attributes of conceptual classes

• Domain model is a kind of a preliminary version of class diagram, if we are
well used to the application domain.

138

Partial Domain Model for NextGen POS

139

Domain Model is Not Software Objects
• A UP domain model is not of software objects such as:

– Software classes (i.e., C++ or Java classes)

– Elements representing artifacts related to the implementation of the system
(e.g., a database or a window)

– Methods (operations)

Domain Model

140

Why Create a Domain Model?
• Two reasons to create a domain model:

1. Getting to know the domain during early elaboration iterations, understanding
the concepts involved and their relationships

2. Inspiring the software classes of the domain layer in the design model.
• This prevents software from being far away from the reality of the domain.
• lower representation gap : Use software class names in the domain layer inspired

from names in the domain model, with objects having domain-familiar information and
responsibilities.

141

Lower Representation Gap

142

How to Create a Domain Model
• Same as the way of creating class diagrams.

1. Find conceptual classes and draw them in a UML class diagram
2. Add associations and attributes to conceptual classes

• Identification of Noun Phrases
– Identify the nouns and noun phrases in a textual description of the domain, and

consider them as candidate conceptual classes and attributes.

143

Process Sale use case

Is the Domain Model Correct?
• There is no such thing as a single correct domain model.

– All models are approximations of the domain we are attempting to understand.

• The domain model is a primary tool of understanding and communication
among a particular group.

– Correct << Useful

144

Process: Iterative and Evolutionary Domain
Modeling
• The UP Domain Model is usually both started and completed in the

elaboration phase.

145

146

147

Chapter 10.
System Sequence Diagram

148

11

149

System Sequence Diagram
• System sequence diagram (SSD)

– A picture that shows the events that external actors generate, their order, and
inter-system events, for one particular scenario of a use case.

• the external actors that interact directly with the system,
• the system (as a black box), and
• the system events that the actors generate

– In the sequence diagram notation
– Depict system behavior in terms of what the system does, not how it does it
– Used as input to object design → System operations

• Use cases describe how external actors interact with the software system
we are interested in creating.

– During this interaction, an actor generates system events to a system, usually
requesting some system operation to handle the event.

150

Applying UML: Sequence Diagrams
• The UML does not define something called ‘System Sequence Diagrams’.

– We use the general UML sequence diagram notation.
– The term ‘system’ in SSDs is used to emphasize the application of the UML

sequence diagram to systems viewed as black boxes.
– An SSD shows system events for one scenario of a use case.

151

System Operation
• System operations

– Operations that the system as a black box component offers in its public
interface

– Show system events, which the SUD should have system operations to handle
the system events.

– System Interfaces: the entire set of system operations across all use cases

152

Guideline: How to Name System Events and
Operations?
• System events should be expressed at the abstract level of intention rather

than in terms of the physical input device.

• Example : scan(itemID) vs. enterItem(itemID)
– The enterItem name is better, since it communicates intention rather than the

input device.

153

Process: Iterative and Evolutionary SSDs
• The UP doesn’t mention explicitly SSDs, but we can use them.

– Since the UP is very flexible, allowing any useful technique to be applied in its
context.

• Most SSDs are created during elaboration, when it is useful to
– identify the details of the system events to clarify what major operations which

the system must be designed to handle,
– write system operation contracts, and possibly to support estimation.

154

Domain Model

155

Chapter 11.
Operation Contracts

156

157

Operation Contracts
• Operation contracts

– Use a pre- and post- condition form to describe detailed changes to objects in a
domain model, as the result of a system operation.

– Operation contracts are usually used in a Design Model for object methods,
– But, can also be used in a domain model as contracts of high-level system

operations.

158

Example
• An operation contract for the enterItem system operation.

159

Postconditions
• Postconditions describe changes in the state of objects in the domain model.

– Not actions to be performed during the operation
– Rather, Observations about the domain model objects that are true when the

operation has finished. (→ past tense)
• Instance Creation and Deletion
• Associations Formed and Broken
• Attribute Modification

– Only necessary when the outcome of a system operation is not clear from the
use case description.

• It will be helpful when there are situations where the details and complexity of required
state changes are awkward or too detailed to capture in use cases.

160

Example: EnterItem Postconditions

161

A SalesLineItem instance sli was created (instance creation).sli.quantity became quantity (attribute modification).

sli was associated with the current Sale
(association formed).

sli was associated with a ProductDescription,
based on itemID match (association formed).

1

2

3

4

Applying UML: Operations, Contracts, and OCL

• In the UML,
– Operation : a specification of a transformation or query that an object may be

called to execute
– Method : the implementation of an operation

• Specifies the algorithm or procedure associated with an operation

• In the UML metamodel,
– Operations have a signature (name and parameters) and are associated with

constraints (preconditions and postconditions).
– OCL (Object Constraint Language) is the formal language for expressing constraints in

UML.

162

163

Chapter 12.
Requirements to Design Iteratively

164

12

Iteratively Analysis and Design
• Analysis : Do the right thing

– The requirements and OOA have focused on learning to do the right thing.
– Understanding some outstanding goals, related rules and constraints.

• Design : Do the thing right
– Design work will stress do the thing right.
– Skillful designing a solution to satisfy the requirements for its iteration.

• In iterative development, a transition from requirements/OOA to
design/implementation occur in each iteration.

165

166

Chapter 13.
Logical Architecture and
UML Package Diagrams

167

168

Logical Architecture
• The logical architecture is the large-scale organization of the software

classes into packages, subsystems, and layers.
– But, no decision about how these elements are deployed across different

operating system processes or across physical computers in a network.
→ the deployment architecture (→ UML Deployment Diagram)

• UML Package Diagrams illustrate the logical architecture.
– Can also be summarized as Views in a Software Architecture Document (AD)

• Layer
– A very coarse-grained grouping of classes, packages, or subsystems that has

cohesive responsibility for a major aspect of the system
– Organized such that "higher" layers call upon services of "lower" layers
– Can be depicted easily with UML package diagrams

169

Layered Architecture

Our focus

170

• Typical layers in object-oriented systems:
– User Interface layer
– Application Logic and Domain Objects layer

• Software objects representing domain concepts that fulfill application requirements
– Technical Services layer

• General purpose objects and subsystems that provide supporting technical services,
such as interfacing with a database or error logging.

• Usually application-independent and reusable across several systems

Software Architecture
• “A software architecture is the set of significant decisions about the

organization of a software system,
– the selection of the structural elements and their interfaces by which the

system is composed, together with their behavior as specified in the
collaborations among those elements,

– the composition of these structural and behavioral elements into progressively
larger subsystems,

– and the architectural style that guides this organization - these elements and
their interfaces, their collaborations, and their composition.”

Booch, G., Rumbaugh, J, and Jacobson, I. 1999. The Unified Modeling Language User Guide.

171

Applying UML: Package Diagrams
• UML package diagrams are often used to illustrate the logical architecture

of a system.

172

A partial LA of NextGen POS

Design with Layers
• Example: Common Layers in an Information Systems Logical Architecture

173

Mapping Code Organization to Layers and UML
Packages
• Most popular OO languages provide support for packages.

// --- UI Layer
com.mycompany.nextgen.ui.swing
com.mycompany.nextgen.ui.web

// --- DOMAIN Layer
// packages specific to the NextGen project

com.mycompany.nextgen.domain.sales
com.mycompany.nextgen.domain.payments

// --- TECHNICAL SERVICES Layer
// our home-grown persistence (database) access layer

com.mycompany.service.persistence
// third party

org.apache.log4j
org.apache.soap.rpc

// --- FOUNDATION Layer
// foundation packages that our team creates

com.mycompany.util

174

Connections Between SSDs, System Operations
and Layers
• In a well-designed layered architecture,

– The UI layer objects will forward or delegate the requests from the UI layer (system

operations) onto the domain layer for handling.
– The messages sent from the UI layer to the domain layer will be the messages

illustrated on the SSDs.

175

176

Chapter 14.
On to Object Design

177

13 14

Designing Objects: Static vs. Dynamic
• Two kinds of object models:

– Static models help design the definition of packages, class names, attributes,
and method signatures (but not method bodies).

• Example: UML class diagram
• Looks like the most important model.

– Dynamic models help design the logic, the code, or the method bodies.
• Example: UML interaction diagrams (sequence diagram, communication diagram)

• Tend to be the more interesting, difficult, and important diagrams to create.

• Relationship between static and dynamic modeling:
– Spend a short period of time on interaction diagrams, then switch to a wall of

related class diagrams.

178

Static Object Modeling
• People new to UML tend to think that the important diagram is the static-

view class diagram.
– But, static and dynamic modelling are all important equivalently.
– The most common static object modeling is with UML class diagrams.

• Static UML Tools:
– Class diagram
– Package diagram
– Deployment diagram

179

Dynamic Object Modeling
• Most useful design work happens while drawing the UML dynamic-view

interaction diagrams.
– During dynamic object modeling (such as drawing sequence diagrams), we really think the

exact details of what objects need to exist and how they collaborate via
messages and methods.

• Dynamic UML Tools:
– Interaction diagrams (Sequence diagram)
– Statechart diagram
– Activity diagram

180

Object Design Skill over UML Notation Skill
• The object design skills are matter, not knowing how to draw UML.

– Since, Drawing UML is a reflection of making decisions about the design.

• Fundamental object design requires knowledge of:
– Principles of responsibility assignment (GRASP)
– Design patterns

181

GRASP Design Pattern of GoF

182

Chapter 15.
UML Interaction Diagrams

183

Interaction Diagrams
• Interaction diagrams illustrate how objects interact via messages.

– Dynamic object modeling

– Sequence diagram
– (+) Communication diagram
– (+) Interaction overview diagram
– (+) Timing diagram

184

4 Interaction Diagrams

185

Sequence diagram

Communication diagram Interaction Overview diagram

Timing diagram

Sequence and Communication Diagram
• Sequence diagrams

– model the collaboration of objects based on a time sequence

• Communication diagrams
– focus on showing the collaboration of objects rather than the time sequence

public class A
{

private B myB = new B();

public void doOne()
{

myB.doTwo();
myB.doThree();

}
// …

}

186

Example : Sequence/Communication Diagrams

• An example scenario:
1. The message makePayment is sent to an instance of a Register.
2. The Register instance sends the makePayment message to a Sale instance.
3. The Sale instance creates an instance of a Payment.

public class Sale
{

private Payment payment;

public void makePayment(Money cashTendered)
{

payment = new Payment(cashTendered);
//…

}
// …

}

187

Basic Sequence Diagram Notations
• Lifeline boxes and lifelines
• Messages

188

• Lifeline box
– Represent the participants in the interaction, informally and practically

• object(s), class, subsystem, component, etc.

189

Order of Messages

190

… on different lifelines which exchange messages

… on different lifelines… on one lifeline

<< Happens before >>

3 Types of Messages
• Synchronous message

– Sender waits until it has received a response message
before continuing.

– An execution specification is inserted at target.

• Asynchronous message
– Sender continues without waiting for a response message.

• Response message
– May be omitted if content and location are obvious

191

Message Syntax
return = message (parameter: parameterType) : returnType

- For example:
initialize(code)
initialize
d = getProductDescription(id)
d = getProductDescription(id:ItemID)
d = getProductDescription(id:ItemID) : ProductDescription

192

Send event

Recieve event

Execution specification

Other Types of Messages
• Found message

– Sender of a message is unknown or not relevant.

• Lost message
– Receiver of a message is unknown or not relevant.

• Time-consuming message
– Message with duration : Express that time elapses

between the sending and the receipt of a message
– Usually messages are assumed to be transmitted

without any loss of time.

193

Singleton Objects
• There is only one instance of a class instantiated : a singleton object

– Implying to the Singleton design pattern

194

Instance Creation
• To create an instance of a class

– The UML mandates dashed line.
– The message name create is not required ; anything is legal.

• But, it's a UML idiom.

195

Object Destruction
• To show explicit destruction of an object

– The <<destroy>> stereotyped message, with the large X and short lifeline
indicates explicit object destruction

196

Combined Fragments and Operators
• 12 predefined types of operators

– Model various control structures with frames
• Frames : regions or fragments of the diagrams, which has an operator and a guard

– Frames are nested.

197

• To model alternative sequences

• Similar to switch statement in Java
– Guards are used to select the one

path to be executed.
– Multiple operands

• Guards
– Modeled in square brackets
– default: true
– predefined: [else]

• Guards have to be disjoint to
avoid non-deterministic behavior.

198

alt Fragment

• To model an optional sequence

• Similar to if statement without else
branch

– Exactly one operand
– Actual execution at runtime is

dependent on the guard.

199

opt Fragment

loop Fragment

• To model repeatedly-executed sequences
– Exactly one operand

• Keyword loop followed by the minimal/maximal number of iterations
– (min..max) or (min,max)
– default: (*) .. no upper limit

• Guard
– Evaluated as soon as the minimum number of iterations has taken place
– Checked for each iteration within the (min,max)limits
– If the guard evaluates to false, the execution of the loop is terminated.

200

Notation alternatives:
loop(3,8) = loop(3..8)
loop(8,8) = loop (8)
loop = loop(*) = loop(0,*)

loop is executed at
least once, as long as
a<1 is true.

Min
Guard

Max

• Similar to exception handling
– Exactly one operand with a guard

• If the guard is true:
– Interactions within this operand are

executed.
– Remaining operations of the

surrounding fragment are omitted.
– Interaction continues in the next higher

level fragment.

201

break Fragment

Not executed if break is executed

loop and break Fragment - Example

202

seq Fragment

• Default order of events
• Weak sequencing:

1. Events on different lifelines from different operands may come in any order.
2. Events on the same lifeline from different operands are ordered such that an

event of the first operand comes before that of the second operand.

203

strict Fragment

• Sequential interaction with order
– Messages in an operand that is higher up on the vertical axis are always

exchanged (executed) before the messages in an operand that is lower down on
the vertical axis.

204

strict Fragment - Example

205

par Fragment

• To set aside chronological order between messages in different operands
– Execution paths of different operands can be interleaved.
– Restrictions of each operand are respected, but the order of the different

operands is irrelevant
• Concurrency, no true parallelism

206

critical Fragment

• Atomic area in the interaction
– To make sure that certain parts of an interaction are not interrupted by

unexpected events
– Order within critical is the default order seq.

207

Interaction Reference
• Integrates one sequence diagram in another sequence diagram

208

Iteration Over a Collection
• Sending the same message to each object to iterate over all members of a

collection (such as a list or map).
– The selector expression (as lineItems[i] in the lifeline) selects one object from a

group.
– Lifeline participants should represent one object, not a collection.

209

Messages to Classes to Invoke Static (or Class)
Methods
• You can show class or static method calls by

– using a lifeline box label that indicates the receiving object is a class, or
– more precisely, an instance of a metaclass

public class Foo
{

public void doX()
{

// static method call on class Calendar
Locale[] locales = Calendar.getAvailableLocales();
// …

}
// …
}

210

Basic Communication Diagram Notations
• Link and Message

– A connection path between two objects indicating some form of possible
navigation and visibility between the objects

– All messages flow on the same line, and many messages may flow along a link.
• Each message between objects is represented with a message expression and small

arrow indicating the direction of the message.
• A sequence number is added to show the sequential order of messages in the current

thread of control.

211

Timing Diagram
• Timing diagram

– Shows state changes of the interaction partners that result from the occurrence
of events

• Vertical axis: interaction partners
• Horizontal axis: chronological order

212

213

Interaction Overview Diagram
• Interaction overview diagram

– Visualizes order of different interactions
– Allows to place various interaction diagrams in a logical order
– Basic notation concepts of activity diagram

214

215

Chapter 16.
UML Class Diagram

216

15 16

Applying UML: Common Class Diagram Notation

217

Design Class Diagram
• The same UML class diagrams can be used in multiple perspectives.

– In a conceptual perspective, Domain model
– In a design perspective, Design Class Diagram (DCD)

218

Object
• Individuals of a system

• Alternative notations:

219

Object name Class

Attribute Current value
Anonymous objects
= No object name

Object Diagram
• Depicts objects and their relationships at a specific moment in time

220

Link

From Object to Class
• A class is a construction plan for a set of similar objects of a system.

– Objects are instances of classes.

• Attributes: structural characteristics of a class
– Different value for each instance (object)

• Operations: behavior of a class
– Identical for all objects of a class

→ not depicted in object diagram

221

Class Object of the Person class

Attribute Syntax - Visibility

222

• Who is permitted to access the attribute.
– + ... public: everybody
– - ... private: only the object itself
– # ... protected: class itself and subclasses
– ~ ... package: classes that are in the same package

Attribute Syntax - Derived Attribute

223

• Attribute value is derived from other attributes or
associations.

– age: calculated from the date of birth

Attribute Syntax - Name

224

• Name of the attribute

Attribute Syntax - Type

225

• Types of attributes
– Data types

• Primitive data type
– Pre-defined: Boolean, Integer, Unlimited Natural, String
– User-defined: «primitive»
– Composite data type: «datatype»

• Enumerations: «enumeration»

– User-defined classes

Attribute Syntax - Multiplicity

226

• Number of values which an attribute may contain
– Default value: 1

• Notation: [min..max]
– no upper limit: [*] or [0..*]

Attribute Syntax - Default Value

227

• Default value
– Used if the attribute value is not set explicitly by the user

Attribute Syntax - Properties

228

 Pre-defined properties
 {readOnly} … value cannot be changed
 {unique} … no duplicates permitted
 {non-unique} … duplicates permitted
 {ordered} … fixed order of the values
 {unordered} … no fixed order of the values

 Attribute specification
 Set: {unordered, unique}
 Multi-set (Bag): {unordered, non-unique}
 Ordered set: {ordered, unique}
 List: {ordered, non-unique}

Operation Syntax - Parameters

229

 Notation similar to attributes

 Direction of the parameter
 in … input parameter

 When the operation is used, a value is expected
from this parameter

 out … output parameter
 After the execution of the operation, the parameter

has adopted a new value
 inout : combined input/output parameter

Operation Syntax - Type

230

 Types of the return value

Operations and Methods
• Operations

– The full official format of the operation syntax :
• visibility name (parameter-list) {property-string}
• visibility name (parameter-list) : return-type {property-string} ← UML1.X

– Guidelines
• Assume that the new version includes a return type.
• Operations are usually assumed public if no visibility is shown.

• An operation is not a method.
– A UML operation is a declaration, with a name, parameters, return type,

exceptions list, and possibly a set of constraints of pre-and post-conditions.
– Not an implementation - rather, methods are implementations.

231

Note Symbols
• A UML note symbol may represent several things, such as:

– UML note or comment, which by definition have no semantic impact
– UML constraint, in which case it must be encased in braces '{…}’
– Method body : the implementation of a UML operation

232

Class Variable and Operation
• Instance variable (= instance attribute) : attributes defined on instance level

• Class variable (= class attribute, static attribute)

– Defined only once per class, i.e., shared by all instances of the class
– Example: counters for the number of instances of a class

• Class operation (= static operation)

– Can be used, if no instance of the corresponding class was created
– Example: constructors, counting operations, etc.

233

Class
variable

Class
operation

class Person {

public String firstName;
public String lastName;
private Date dob;
protected String[] address;
private static int pNumber;

public static int getPNumber() {…}
public Date getDob() {…}

}

Operations to Access Attributes in DCDs
• Accessing operations to retrieve or set all (private) attributes

– Example: getPNumber() and setPNumber()

– Often excluded (or filtered) from the class diagram, since they are too many.
• For n attributes, there may be 2n uninteresting getter and setter operations.

– Most UML tools support filtering their display.

234

Different Levels of Class Detail

235

Coarse-grained Fine-grained

Types of Class Relationship

236

Dependency
• Models weakest possible relationships between classes

– A class needs to know about another class to use objects of that class briefly.
– Not used often in class diagram, but does in component diagram.

237

Dependency - Example
• Example:

– The updatePriceFor method receives a ProductDescription parameter object and
then sends it a getPrice message.

– Therefore, the Sale object has parameter visibility to the ProductDescription, and
message-sending coupling, and thus a dependency on the ProductDescription.

– If the latter class changed, the Sale class could be affected.

238

public class Sale
{

public void updatePriceFor(ProductDescription description)
{

Money basePrice = description.getPrice();
//…

}
// …
}

Association
• Models possible relationships between instances of classes

– When objects of one class work with objects of another class for some prolonged
amount of time.

239

Binary Association
• Connects instances of two classes with one another

240

Association name Reading direction

Non-navigability

Multiplicity

RoleVisibility

Navigability

Binary Association - Navigability
• Navigability

– An object knows its partner objects and can therefore access their visible
attributes and operations.

– Indicated by open arrow head or cross

• Example:
– “A can access the visible attributes and operations of B”
– “B cannot access any attributes and operations of A”

• Navigability undefined
– Bidirectional navigability is assumed.

241

Navigability - UML Standard vs. Best Practice

242

UML Standard Best Practice

Binary Association as Attribute

 Java-like notation:

243

Preferable

class Professor {…}

class Student {
public Professor[] lecturer;
…

}

=

Ways to Show UML Attributes
• Attributes can be shown in three ways:

1. attribute text
• visibility name : type multiplicity = default {property-string}

2. association line
• a navigability arrow
• multiplicity
• a role name

3. both together

244

Attribute Text vs. Association Lines for Attributes

• Use the attribute text notation for data type objects, while the association
line notation for others.

– Both are semantically equal.
– But, showing an association line to another class box in the diagram gives visual

emphasis.

public class Register
{

private int id;
private Sale currentSale;
private Store location;
// …

}

245

n-ary Association
• More than two partner objects are involved in the relationship.

– No navigation directions

246

Ternary
association

Association Class
• Association class

– Assign attributes to the relationship between classes rather than to a class itself.
– Treat an association itself as a class, and model it with attributes, operations,

and other features.
• Illustrated with a dashed line from the association to the association class.
• Necessary when modeling n:m Associations

– Example : If a Company employs many Persons, modeled with an Employs
association, you can model the association itself as the Employment class, with
attributes such as salary and startDate.

247

Singleton Classes
• Singleton class has only one instance of the class.

– "singleton" instance
– In a UML diagram, it is marked with a '1' in the upper right corner of the name

compartment.
– The Singleton design pattern

248

Active Class
• An active object runs and controls on its own thread of execution.

– The class of an active object is an active class.
– In the UML, it may be shown with double vertical lines on the left and right sides

of the class box.

249

Interfaces
• The UML provides several ways to show interface implementation.

– Formally called interface realization
– 3 Notations:

• Socket + lollipop notation
• Dependency line notation
• Interface implementation

250

Aggregation
• Special form of association

– Used to express that a class is part of another class.

• Properties of the aggregation association:
– Transitive: if B is part of A and C is part of B, C is also part of A
– Asymmetric: it is not possible for A to be part of B and B to be part of A

simultaneously.

• Two types:
– Shared aggregation
– Composition

251

Shared Aggregation
• Expresses a weak belonging of the parts to a whole

– Parts also exist independently of the whole.

• Multiplicity at the aggregating end may be >1.
– One element can be part of multiple other elements simultaneously.
– Spans a directed acyclic graph.
– Syntax: Hollow diamond at the aggregating end

• Example:
– Student is part of LabClass.
– Course is part of StudyProgram.

252

Composition
• Existence dependency between the composite object and its parts

– One part can only be contained in at most one composite object at one specific
point in time.

– If the composite object is deleted, its parts are also deleted.
– Multiplicity at the aggregating end is max. 1

→ The composite objects form a tree.
– Syntax: Solid diamond at the aggregating end

• Example:
– Beamer is part of LectureHall which is part of Building.

253

If the Building is deleted,
the LectureHall is also deleted.

The Beamer can exist without the
LectureHall, but if it is contained in the
LectureHall, while it is deleted,
the Beamer is also deleted.

Shared Aggregation and Composition
• Which model applies?

254

Shared Aggregation and Composition
• Which model applies?

255

A Tire can exist without a Car. A
Tire belongs to one Car at most.

A Tire cannot exist without a Car.

A Tire can belong to multiple Cars

----Yes--- ---------N
o--------

A Car has one or two types of
Tires. Several Cars may have
the same Type of Tires.

----Yes---

• Everything of a general class are passed
on to its subclasses.

– Every instance of a subclass is
simultaneously an indirect instance of the
superclass.

– Subclass inherits all characteristics (attributes

and operations), associations, and aggregations
of the superclass except private ones.

– Subclass may have further characteristics,
associations, and aggregations.

• Generalizations are transitive.

256

Generalization

Superclass

Subclasses
inherit
characteristics,
associations,
and aggregations

A Secretary is
an Employee and a Person

Generalization - Abstract Class
• Used to highlight common characteristics of their subclasses
• Used to ensure that there are no direct instances of the superclass

– Only its non-abstract subclasses can be instantiated.

• Notation: keyword {abstract} or class name in italic font.

257

Two types of Person: Man and Woman

No Person-object possible

Generalization - Multiple Inheritance
• UML allows multiple inheritance.

– A class may have multiple superclasses.
– Not allowed for JAVA programming language.

• Example:

258

A Tutor is both an Employee and a Student

With and Without Generalization

259

vs.

Creating a Class Diagram
• Not possible to completely extract classes, attributes and associations from

a natural language text automatically.

• Guidelines
– Nouns often indicate classes
– Adjectives indicate attribute values
– Verbs indicate operations

• Example: “The library management system stores users with their unique ID,
name and address as well as books with their title, author and ISBN number. Ann
Foster wants to use the library.”

260

Example - University Information System
• A university consists of multiple faculties which are composed of

various institutes. Each faculty and each institute has a name. An
address is known for each institute.

• Each faculty is led by a dean, who is an employee of the university.

• The total number of employees is known. Employees have a social
security number, a name, and an email address. There is a distinction
between research and administrative personnel.

• Research associates are assigned to at least one institute. The field of
study of each research associate is known. Furthermore, research
associates can be involved in projects for a certain number of hours,
and the name, starting date, and end date of the projects are known.
Some research associates hold courses. Then they are called lecturers.

• Courses have a unique number (ID), a name, and a weekly duration in
hours.

261

• A university consists of multiple faculties
which are composed of various institutes.
Each faculty and each institute has a
name. An address is known for each
institute.

• Each faculty is led by a dean, who is an
employee of the university.

• The total number of employees is known.
Employees have a social security number,
a name, and an email address. There is
a distinction between research and
administrative personnel.

• Research associates are assigned to at
least one institute. The field of study of
each research associate is known.
Furthermore, research associates can be
involved in projects for a certain number
of hours, and the name, starting date,
and end date of the projects are known.
Some research associates hold courses.
Then they are called lecturers.

• Courses have a unique number (ID), a
name, and a weekly duration in hours.

262

Example - Step 1: Identifying Classes
We model the system “University“

Dean has no further attributes than
any other employee

• A university consists of multiple faculties
which are composed of various institutes.
Each faculty and each institute has a
name. An address is known for each
institute.

• Each faculty is led by a dean, who is an
employee of the university.

• The total number of employees is known.
Employees have a social security number,
a name, and an email address. There is
a distinction between research and
administrative personnel.

• Research associates are assigned to at
least one institute. The field of study of
each research associate is known.
Furthermore, research associates can be
involved in projects for a certain number
of hours, and the name, starting date,
and end date of the projects are known.
Some research associates hold courses.
Then they are called lecturers.

• Courses have a unique number (ID), a
name, and a weekly duration in hours.

263

Example - Step 2: Identifying the Attributes

• Three kinds of relationships:
– Association
– Generalization
– Aggregation

• Indication of a generalization
– “There is a distinction between research

and administrative personnel.”
– “Some research associates hold courses.

Then they are called lecturers.”

264

Example - Step 3: Identifying Relationships (1/6)

Example - Step 3: Identifying Relationships (2/6)

• “A university consists of multiple faculties which are composed of various
institutes.”

265

Composition to show existence dependency

Example - Step 3: Identifying Relationships (3/6)

• “Each faculty is led by a dean, who is an employee of the university”

266

In the leads-relationship, the
Employee takes the role of a dean.

Example - Step 3: Identifying Relationships (4/6)

• “Research associates are assigned to at least one institute.”

267

Shared aggregation to show that ResearchAssociates
are part of an Institute,

but there is no existence dependency

Example - Step 3: Identifying Relationships (5/6)

• “Furthermore, research associates can be involved in projects for a certain
number of hours.”

268

Association class enables to store
the number of hours for every
single Project of every single
ResearchAssociate

Example - Step 3: Identifying Relationships (6/6)

• “Some research associates hold courses. Then they are called lecturers.”

269

Lecturer inherits all characteristics,
associations, and aggregations from
ResearchAssociate.

In addition, a Lecturer has an association
teaches to Course.

Example - A Complete Class Diagram

270

What’s the Relationship between Interaction
and Class Diagrams?
• From interaction diagrams, class diagrams can be generated iteratively.

– When we draw interaction diagrams, a set of classes and their methods emerge.
– Two complementary dynamic and static views are drawn concurrently and

iteratively.

– Example:
• If we started with the makePayment sequence diagram, we see that a Register and

Sale class definition in a class diagram can be obviously derived.

271

272

Chapter 17.
GRASP: Designing Objects with

Responsibilities

273

17

OOD : Object-Oriented Design
• OOD is sometimes taught as some variation of the following:

– “After identifying your requirements and creating a domain model, then add methods
to the appropriate classes, and define the messaging between the objects to fulfill the
requirements.”

• But, it is not enough, because OOD involves deep principles.
– Deciding what methods belong to where and how objects should interact carries

consequences should be undertaken seriously.

• Mastering OOD is hard.
– Involving a large set of soft principles, with many degrees of freedom.
– A mind well educated in design principles is important.
– Patterns can be applied.

274

• During the UML drawing activity,
we can apply various OO design
principles, such as

– GRASP (General Responsibility Assignment

Software Patterns)

– Gang-of-Four (GoF) design
patterns.

• Design outputs:
– UML interaction diagrams
– Class diagram
– Package diagrams

275

Object Design with Patterns

GRASP: A Methodical Approach to Basic OO
Design
• GRASP : A Learning Aid for OO Design with Responsibilities

– General Responsibility Assignment Software Patterns

• The GRASP principles or patterns are a learning aid to help you
– Understand essential object design,
– Apply design reasoning in a methodical, rational, and explainable way,
– based on patterns of assigning responsibilities.

• We can apply the GRASP principles while drawing UML interaction
diagrams.

– Aid for naming, presenting, and remembering basic/classic design ideas

276

GRASP
• 9 basic OO design principles or basic building blocks in design.

– Creator
– Controller
– Pure Fabrication
– Information Expert
– High Cohesion
– Indirection
– Low Coupling
– Polymorphism
– Protected Variations

277

278

Information Expert

Name Information Expert

Problem What is a basic principle by which to assign responsibilities to objects?

Solution Assign a responsibility to the class that has the information needed to fulfill it.

Applying Information Expert

A software Board will aggregate all the Square objects. Therefore, Board has
the information necessary to fulfill this responsibility.

279

Creator

Name Creator

Problem Who creates an A?

Solution

Assign class B the responsibility to create an instance of class A, if one of these is
true (the more the better):
• B "contains" or compositely aggregates A.
• B records A.
• B closely uses A.
• B has the initializing data for A.

280

Example: Creator

Monopoly iteration-1 domain model

Applying the Creator pattern in a dynamic model

In a DCD of the Design Model, Board has a composite
aggregation association with Squares.
We are applying Creator in a static model.

281

Controller

Name Controller

Problem What first object beyond the UI layer receives and coordinates ("controls") a system
operation?

Solution

Assign the responsibility to an object representing one of these choices:
• Represents the overall "system," a "root object," a device that the software is

running within, or a major subsystem (all variations of a facade controller).
• Represents a use case scenario within which the system operation occurs.

(a use case or session controller)

Applying the Controller pattern using MonopolyGame.
Connecting the UI layer to the domain layer of software objects.

282

23 Design Patterns of GoF

283

284

Chapter 19.
Designing for Visibility

285

18

Visibility Between Objects
• In message passing between objects,

– For a sender object to send a message to a receiver object, the receiver must be
visible to the sender.

• The sender must have some kind of reference or pointer to the receiver object.

– Example,
• The getProductDesc message sent

from a Register to a ProductCatalog
implies that the ProductCatalog instance
should be visible to the Register instance.

286

Visibility
• Visibility is the ability of an object to “see” or “have a reference to”

another object.
– When an object A sends a message to an object B, B must be visible to A.

– The issue of scope: “Is one resource (such as an instance) within the scope of another?”

– 4 common ways that visibility can be achieved from object A to object B:
1. Attribute visibility : B is an attribute of A.
2. Parameter visibility : B is a parameter of a method of A.
3. Local visibility : B is a (non-parameter) local object in a method of A.
4. Global visibility : B is in some way globally visible.

287

A B

Attribute Visibility
• Attribute visibility from A to B exists, when B is an attribute of A.

– Relatively permanent visibility, because it persists as long as A and B exist.
– Very common form of visibility in object-oriented systems

– For example,
• For the class Register, a Register instance may have attribute visibility to a

ProductCatalog, since it is an attribute of the Register.

288

Parameter Visibility
• Parameter visibility from A to B exists, when B is passed as a parameter to

a method of A.
– Relatively temporary visibility, because it persists only within the scope of the

method.
– The second most common form of visibility in object-oriented systems.

– For example,
• When the makeLineItem message is sent to a Sale instance, a ProductDescription

instance is passed as a parameter. Within the scope of the makeLineItem method, the
Sale has parameter visibility to a ProductDescription.

289

Parameter to Attribute Visibility
• It is common to transform parameter visibility into attribute visibility.

– For example,
• When the Sale creates a new SalesLineItem, it passes the ProductDescription in to its

initializing method (in C++ or Java, this would be its constructor). Within the initializing
method, the parameter is assigned to an attribute, thus establishing attribute visibility.

290

Local Visibility
• Local visibility from A to B exists, when B is declared as a local object

within a method of A.
– Relatively temporary visibility, because it persists only within the scope of the

method.
– As with parameter visibility, it is common to transform local visibility into attribute

visibility.

• Two common ways for local visibility:
1. Create a new local instance and assign it to a local variable.
2. Assign the returning object from a method invocation to a local variable.

291

Global Visibility
• Global visibility from A to B exists, when B is global to A.

– Relatively permanent visibility, because it persists as long as A and B exist.
– The least common form of visibility in object-oriented systems

• One way to achieve global visibility is
– Assign an instance to a global variable, which is possible in some languages,

such as C++, but not others, such as Java.

• The preferred method to achieve global visibility is to use the Singleton
pattern.

292

293

Chapter 20.
Mapping Designs to Code

294

19

Mapping Designs to Code
• The UML artifacts created during the design work (Interaction diagrams and DCDs)

will be used as input to the code generation process.

• Implementation in an OO language requires writing source code for:
– class and interface definitions
– method definitions

• A translation from UML designs to code is required.
– from class diagrams to class definitions,
– from interaction diagrams to method bodies.

295

Creating Class Definitions from DCDs
• DCDs are sufficient to create a basic class definition in an OO language.

– For example,
• From the DCD, a mapping to the attribute definitions(Java fields) and method signatures

for the Java definition (SalesLineItem) is straightforward.

296

Creating Methods from Interaction Diagrams
• The sequence of the messages in an interaction diagram translates to a

series of statements in the method definitions.

– For example,
• The enterItem interaction diagram illustrates the Java definition of the enterItem method.

(Method) The enterItem message is sent to a Register instance;
therefore, the enterItem method is defined in class Register.

public void enterItem(ItemID itemID, int qty)

Message 1: A getProductDescription message is sent to
the ProductCatalog to retrieve a ProductDescription.

ProductDescription desc = catalog.getProductDescription(itemID);

Message 2: The makeLineItem message is sent to the Sale.

currentSale.makeLineItem(desc, qty);

297

enterItem()

298

Collection Classes in Code
• One-to-many relationships are common.

– For example, a Sale must maintain (attribute) visibility to a group of many
SalesLineItem instances.

• In OO programming languages, they are usually implemented with the
introduction of a collection object of collection classes.

– List (ArrayList – List interface) : a growing ordered list
– Map (HashMap – Map interface) : a key-based lookup
– Simple array

299

Example : Defining the Sale.makeLineItem
Method
• The makeLineItem method of class Sale can be written by inspecting the

enterItem communication diagram.

300

Order of Implementation
• Classes need to be implemented from least-coupled to most-coupled.

– For example,
• Possible first classes to implement are either Payment or ProductDescription.
• Next are classes only dependent on the prior implementations; ProductCatalog or

SalesLineItem.

A possible order of class implementation and testing
301

Example: the NextGen POS Program Solution

• Translation from design artifacts to a foundation of code.
– This code defines a simple case; it is not meant to illustrate a robust, fully

developed Java program with synchronization, exception handling, and so on.

// all classes are probably in a package named something like:
// package com.foo.nextgen.domain;

public class Payment
{

private Money amount;

public Payment(Money cashTendered){ amount = cashTendered; }
public Money getAmount() { return amount; }

}

302

public class Register
{

private ProductCatalog catalog;
private Sale currentSale;

public Register (ProductCatalog catalog)
{

this.catalog = catalog;
}

public void endSale()
{

currentSale.becomeComplete();
}

public voud enterItem (ItemID id, int quantity)
{

ProductDescription desc = catalog.getProductDescription (id);
currentSale.makeLineItem (desc, quantity);

}

public void makeNewSale()
{

currentSale = new Sale();
}

public void makePayment (Money cashTendered)
{

currentSale.makePayment (cashTendered);
}

}

303

Example: POS Domain Model Packages
• After Elaboration - Iteration 3.

304

305

Partial Layers of POS

306

Deployment View of POS

307

308

Advanced Topics in UML

• Statechart Diagram
• Component Diagram
• Extension Mechanism of UML

Statechart Diagram

310

2120

Introduction
• Every object takes a finite number of different states during its life.

• State machine (=Statechart) diagram is used as follows:
– to model the possible states of a system or object
– to show how state transitions occur as a consequence of events
– to show what behavior the system or object exhibits in each state

311

Example: Lecture Hall

312

class LectureHall {
private boolean free;

public void occupy() {
free=false;

}
public void release() {

free=true;
}

}

Transition State

Example: Digital Clock

313

State
• States : nodes of the state machine

• When a state is active,
– The object (or system) is in that state.
– All internal activities specified in this state can be executed.

• An activity can consist of multiple actions.

• State operations
– entry / Activity(...)

• Executed when the object enters the state
– exit / Activity(...)

• Executed when the object exits the state
– do / Activity(...)

• Executed while the object remains in this state

: Initial state - Pseudostate

: Final state - Real state

: Terminate node - Pseudostate

314

Transition
• Change from one state to another

315

Source state Target stateTransition

Event Guard Sequence of actions

Transition : Examples

316

If event1 occurs
 Object leaves state1 and Activity2 is executed
 Activity3 is executed
 Object enters state1 and Activity1 is executed

If e1 occurs and g1 evaluates to true, A1 is
aborted and the object changes to S2

As soon as the execution of A1 is finished, a
completion event is generated; if g1 evaluates to true,
the transition takes place; If not, this transition can
never happen.

Transition - Sequence of Activity Executions
• Assume S1 is active … what is the value of x after e occurred?

317

S1 becomes active, x is set to the value 4

S1 is left, x is set to 5

e occurs, the guard is checked and evaluates to true

The transition takes place, x is set to 10

S2 is entered, x is set to 11

Composite State
• Synonyms: complex state, nested state (→OR state)
• Contains other states → “substates”

– Only one of its substates is active at any point in time.
– Arbitrary nesting depth of substates

318

Composite state

Substates

Entering a Composite State (1/2)
• Transition to the boundary

– Initial node of composite state is
activated.

319

Event State Executed
Activities

Beginning S3

e2 S1/S1.1 a0-a2-a3-a4

Entering a Composite State (2/2)
• Transition to a substate

– Substate is activated.

320

Event State Executed
Activities

Beginning S3

e1 S1/S1.2 a0-a1-a3-a7

22

Exiting from a Composite State (1/3)
• Transition from a substate

321

Event State Executed
Activities

Beginning S1/S1.1 a3-a4

e3 S2 a6-a5-a2-a1

Event State Executed
Activities

Beginning S1/S1.1 a3-a4

e5 S2 a6-a5-a3-a1

Exiting from a Composite State (2/3)
• Transition from the composite state

322

No matter which substate of S1
is active, as soon as e5 occurs,
the system changes to S2

Event State Executed
Activities

Beginning S1/S1.1 a3-a4

e4 S1/S1.2 a6-a7

e4 S2 a8-a5-a1

Exiting from a Composite State (3/3)
• Completion transition from the

composite state

323

Orthogonal State
• Composite state is divided into two or more regions separated by a dashed

line. (→ AND State)
– One state of each region is always active at any point in time,
– concurrent substates

• Entry: Transition to the boundary of the orthogonal state activates the initial
states of all regions.

• Exit: Final state must be reached in all regions to trigger completion event.

324

parallelization node synchronization node

Submachine State (SMS)
• To reuse parts of state machine diagrams in other state machine diagrams

– Notation: state:submachineState

• As soon as the submachine state is activated, the behavior of the
submachine is executed.

– Corresponds to calling a subroutine in programming languages

325

Refinement symbol
(optional)

History State
• To remembers which substate of a composite state was the last active one

– Activates the “old” substate and all entry activities are conducted sequentially
from the outside to the inside of the composite state

• Shallow history state restores the state that is on the same level of the
composite state.

• Deep history state restores the last active substate over the entire nesting
depth.

326

Example: History State (1/4)

327

Event State

Beginning S5

e1 S4/S1/S1.1

e2 S1.2

e10 S5

e9 (H→) S1/S1.1

Example: History State (2/4)

328

Event State

Beginning S5

e1 S4/S1/S1.1

e2 S1.2

e10 S5

e8 (H*→) S1.2

Example: History State (3/4)

329

Event State

Beginning S5

e9 (H→) S1/S1.1

Example: History State (4/4)

330

Event State

Beginning S5

e8 (H*→) S3/S3.1

More Examples : Vending Machine

331

More Examples : Keyboard

332

=

More Examples : Cruise Control System

333

334

Component Diagram

335

22

UML Components
• UML components organize a system into manageable, reusable, and

swappable pieces of software.

• Development view in Kruchten’s 4+1 view model
– Describes how your system's parts are organized into modules and components.
– Help you manage layers within your system's architecture.

336

4+1 View Model (Kruchten)

UML Components

• The UML component can do:
– The same things a class can do
– Components can have ports and show internal structure
– Components are accessed through interfaces

• The UML Notation for Components
– A component is drawn as a rectangle with the <<component>> stereotype.
– An optional tabbed rectangle icon in the upper righthand corner

• Components interact with each other through interfaces.
• Provided interface : Interface that the component realizes (provided services)

• Required interface : Interface that the component needs to function (expected services)

337

UML Notations for Interfaces
• 3 standard ways to show provided and required interfaces in UML

– Ball and socket symbols
– Stereotype notation
– Text listings

338

Ball and Socket Notation for Interfaces

339

Stereotype Notation for Interfaces

340

Listing Component Interfaces

341

Showing Components Working Together

• If a component has a required interface, then it needs another class or
component in the system that provides it.

• At a higher level view, this is a dependency relation between the
components

342

Classes to Realize a Component

• Component realization
– A component often contains and uses other classes to implement its functionality.

• There are 3 ways to show component realization:

343

Parts of a Class

• When showing the internal structure of a class, you draw its parts or items
contained by composition, inside the containing class.

- Parts are specified by the role they play in the containing class.

• A part is a set of instances that may exist in an instance of the containing
class at runtime.

344

Ports and Internal Structure of Components

345

Delegation and Assembly Connectors

• Delegation connectors show how interfaces correspond to internal parts.
• Assembly connectors show that a component requires an interface that

another component provides.

346

Black-Box and White-Box Views

347

Example : A Component Diagram for System
Architecture

348

349

Extension Mechanism of UML

350

23

UML as a “Family of Languages”
• UML can be extended (specialized) for specific domains.

– Extensions cannot violate the standard UML semantics.
– But enforces a consistent core of concepts and semantics for every variation.

UML Standard 2.0

UML for Real TimeUML for Real Time … etc.UML for CORBAUML for CORBA

Using
extensibility
mechanisms

351

Meta-Models
• Meta-models are simply models of models.

352

Class Association

Objects

Model

Meta-Model

(M0)

(M1)

(M2)

<sawdust>
<2 tons>

<Ben&Jerry’s> <lard>
<5 tons>

CustomerOrder
item
quantity

Customer

id

Extensibility Method of UML
• Refinements are specified at the Model (M1) level but apply to the Meta-

Model level (M2).
– Avoiding need for “meta-modeling” CASE tools
– Can be exchanged with models

353

«Capsule»
(M1)

(M2)Class Association

CustomerOrder
item
quantity

Customer

id

«capsule»
aCapsuleClass

The UML Meta-Model (M2)
• The UML Meta-Model is also a UML Model of UML.

– UML uses (a part of) itself as a Meta-language to define itself.
– This small subset of UML is used to describe all of UML.

354

GeneralizableElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Class

isActive : Boolean

Classifier

Feature

visibility : {public, private,
protected}

*

not self.isAbstract implies
self.allOperations->forAll(op |

self.allMethods->exists(m |
m.specification includes (op)))

Well-formedness constraint (OCL)

Meta-Class

UML Profile
• A package of related extensibility elements that capture domain-specific

variations and usage patterns
– A domain-specific interpretation of UML, consisting of

• stereotypes, tagged values and constraints
• a subset of the UML meta-model
• well-formedness rules beyond those that already exist
• semantics expressed in natural language

355

3 Elements of Profile
1. Stereotypes

– used to refine meta-classes (or other stereotypes)
• e.g. <<include>> <<extend>> in use case diagrams

– extends vocabulary
• allowing you to create new kinds of building blocks

2. Constraints
– predicates (e.g., OCL expressions)
– extend the semantics of UML building blocks

3. Tagged Values
– individual modifiers with user-defined semantics
– extends properties of UML building blocks

356

UML Profile Example : Capsule
• Capsule

– A special type of concurrent object used in modeling certain real-time systems
– By definition, all classes of this type:

• are active (concurrent)

• have only features (attributes and operations) with protected visibility
• have a special characteristic “language” used for code generation purposes

357

An Example Profile : GUI
• A UML profile for representing basic GUI components

• Components
– Forms (which can also be dialog boxes)
– Buttons

• Constraints
– A form can invoke a dialog box
– A form as well as a dialog box can contain buttons

358

The GUI Profile Package

359

GUI Profile

Class

<<stereotype>>
Form

<<stereotype>>
Button

Association

<<stereotype>>
Contains

<<stereotype>>
DialogBox

Class and Association are
part of UML metamodel

<<stereotype>>
Invokes

Class Diagram of the GUI Profile

360

<<Form>>
MainView

1 1

<<Button>>
OkButton

<<Button>>
CancelButton

<<Invokes>>

<<Contains>> <<Contains>>

<<DialogBox>>
OpenDialogBox

1 1

1 1

Extending Metaclasses
• Components can also be extended.

361

«profile» EJB

«metaclass»
Component

«stereotype»
Bean

{required}

«stereotype»
Session

«stereotype»
Entity

state: StateKind

«enumeration»
StateKind

stateless
stateful

UserModel

«apply»

«session»
Customer

name: String

state=stateless

Other Examples of Stereotypes

362

Meta Object Facility (MOF)

• In UML 2, the OMG introduced the MOF to create a common approach to
meta modeling.

– A meta model which is defined using MOF is called MOF compliant.
– MOF compliant can easily be compared and exchanged.

• MOF defines a 4-layer meta model hierarchy.
– Layer M3: Meta-meta model layer (The MOF model)

– Layer M2: Meta model layer (The UML meta model)

– Layer M1: Model layer (The UML model)

– Layer M0: Information layer (the Application)

• Modeling sequence
– instance  model  meta model  meta-meta model

363

Meta Model Hierarchy of the MOF (UML-Specific)

364

The Use Case Diagram Meta Model (simplified)

365

*

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<Extend>>
<<instanceOf>>

<<Include>>

<<instanceOf>>

*

*

1

*

11 1
* *

1*

*

1..*

0..10..1

The Class Diagram Meta Model (simplified)

<<instanceOf>>
<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

0..1

*

0..1 *

0..1

*

0..12..*

366

The UML Meta Model
(class, package, component and deployment diagrams)

367

368

Object-Oriented Analysis and Design -
Summary

24

An Short Example of OOAD - Dice Game

370

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.
- If the dice’s face value totals seven,

player wins; otherwise, player loses.

Domain Model

Interaction Diagram

Design Class Diagram

OOA OOD

Software Development Process and the UP
• Software development process

– A systematic approach to building, deploying and possibly maintaining software

• Unified Process (UP): a popular iterative software development process for
building object-oriented systems

– Inspired from Agile
– Iterative
– Provides an example structure for how to do OOA/D
– Flexible (can be combined with practices from other OO processes)

– A de-facto industry standard for developing OO software

371

Risk-Driven and Client-Driven Iterative Planning

• The UP encourages a combination of risk-driven and client-driven
iterative planning.

– To identify and drive down the high risks, and
– To build visible features that clients care most about.

• Risk-driven iterative development includes more specifically the practice of
architecture-centric iterative development.

– Early iterations focus on building, testing, and stabilizing the core architecture.

372

The UP Phases
• A UP project organizes the work and iterations across 4 major phases:

1. Inception : approximate vision, business case, scope, vague cost estimates
2. Elaboration : refined vision, iterative implementation of the core architecture,

resolution of high risks, identification of most requirements and scope, more
realistic estimates

3. Construction : iterative implementation of the remaining lower risk and easier
elements, and preparation for deployment

4. Transition : beta tests, deployment

373

The UP Disciplines

374

Relationship Between the Disciplines and
Phases
• The relative effort in disciplines shifts to across the phases.

375

The UP Artifacts and Timing

+ System Sequence Diagram
+ Operation Contract

Design Model
+ Class Diagram
+ Interaction Diagram
+ Package Diagram

+ Statechart Diagram
+ Activity Diagram
+ Deployment Diagram

376

The UP Artifact Relationships

377

Connections Between SSDs, System Operations,
and Layers
• In a well-designed layered architecture,

– The UI layer objects will forward or delegate the requests from the UI layer (system

operations) onto the domain layer for handling.
– The messages sent from the UI layer to the domain layer will be the messages

illustrated on the SSDs.

378

What’s the Relationship between Interaction
and Class Diagrams?
• From interaction diagrams, class diagrams can be generated iteratively.

– When we draw interaction diagrams, a set of classes and their methods emerge.
– Suggests a linear ordering of drawing interaction diagrams before class diagrams.
– But in practice, these complementary dynamic and static views are drawn

concurrently or iteratively.

– Example:
• if we started with the makePayment sequence diagram, we see that a Register and

Sale class definition in a class diagram can be obviously derived.

379

OOD : Object-Oriented Design
• OOD is sometimes taught as some variation of the following:

– “After identifying your requirements and creating a domain model, then add methods
to the appropriate classes, and define the messaging between the objects to fulfill the
requirements.”

• But, it is not enough, because OOD involves deep principles.
– Deciding what methods belong to where and how objects should interact carries

consequences should be undertaken seriously.

• Mastering OOD is hard.
– Involving a large set of soft principles, with many degrees of freedom.
– A mind well educated in design principles is important.
– Patterns can be applied.

380

GRASP
• 9 basic OO design principles or basic building blocks in design.

– Focusing on using the pattern style as an excellent learning aid for naming,
presenting and remembering basic/classic design ideas

– Creator
– Controller
– Pure Fabrication
– Information Expert
– High Cohesion
– Indirection
– Low Coupling
– Polymorphism
– Protected Variations

381

23 Design Patterns of GoF

382

enterItem()

Mapping Designs to Code

383

An Overview of Object-Oriented Development
- What We Covered?

Object-Oriented Programming

Object-Oriented Concepts and Principles

Object-Oriented Analysis and Design

Object-Oriented Design Patterns

Software Architecture Style

Software
Development

Sequence
Origination
Sequence

UML

+

OOD
Methods

384

UP

385

감사합니다!

