
Structured Analysis and Structured Design

- Introduction to SASD
- Structured Analysis
- Structured Design

JUNBEOM YOO
jbyoo@konkuk.ac.kr

http://dslab.konkuk.ac.krVer. 2.0

References

• Modern Structured Analysis, Edward Yourdon, 1989.
• Introduction to System Analysis and Design: a Structured Approach,

Penny A. Kendall, 1996.

• Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002).
Structured Analysis and Structured Design (SASD) - Class Presentation

Konkuk University 2

Structured Analysis

• Structured analysis is [Kendall 1996]

– a set of techniques and graphical tools
– that allow the analysts to develop a new kind of system specification
– that are easily understandable to the users.
– Analysts work primarily with their wits, pencil and paper.

• SASD
– Structured Analysis and Structured Design

Konkuk University 3

History of SASD

• Developed in the late 1970s by DeMarco, Yourdon and Constantine
after the emergence of structured programming.

• IBM incorporated SASD into their development cycle in the late
1970s and early 1980s.

• Yourdon published the book “Modern Structured Analysis” in 1989.

• The availability of CASE tools in 1990s enabled analysts to develop
and modify the graphical SASD models.

Konkuk University 4

Philosophy of SASD

• Analysts attempt to divide large, complex problems into smaller,
more easily handled ones.
 Divide and Conquer

• Top-Down approach

• Functional view of the problem

• Analysts use graphics to illustrate their ideas whenever possible.

• Analysts must keep a written record.

Konkuk University 5

Philosophy of SASD

• “The purpose of SASD is to develop a useful, high quality
information system that will meet the needs of the end user.”
[Yourdon 1989]

Konkuk University 6

Goals of SASD

• Improve quality and reduce the risk of system failure.

• Establish concrete requirements specifications and complete
requirements documentations.

• Focus on reliability, flexibility and maintainability of system.

Konkuk University 7

Elements of SASD

Konkuk University 8

Essential Model

Environmental
Model

Behavioral
Model

Implementation Model

Essential Model

• Model of what the system must do
– Not define how the system will accomplish its purpose.

– Environmental model
– Behavioral model

Konkuk University 9

Essential Model

Environmental
Model

Behavioral
Model

Environmental Model

• Defines the scope of the proposed system.

• Defines the boundary and interaction between the system and the
outside world.

• Composed of
– Statement of Purpose
– System Context diagram
– Event list

Konkuk University 10

Behavioral Model

• Model of the internal behavior and data entities of the system.

• Models functional requirements.

• Composed of
– Data Dictionary
– Data Flow Diagram (DFD)
– Entity Relationship Diagram (ERD)
– Process Specification
– State Transition Diagram

Konkuk University 11

Implementation Model

• Map functional requirements to hardware and software.
– Minimizes the cost of the development and maintenance
– Determines which functions should be manual vs. automated.

• Can be used to discuss the cost-benefits of functionality with user/stakeholders.

– Defines the Human-Computer interface
– Defines non-functional requirements

• Composed of
– Structure Charts

Konkuk University 12

SASD Process

Konkuk University 13

Activity

Time

Statement of
Purpose

System Context
Diagram

Event List

Data Dictionary

ERD

DFD Process
Specification

State Transition
Diagram

Structured Chart

Environmental Model

Behavioral Model

Implementation
Model

STRUCTURED ANALYSIS (SA)

KONKUK University 14

Statement of Purpose

• A clear and concise textual description of the purpose for the system
to develop

– Should be deliberately vague.
– Intended for top level management, user management and others who are not

directly involved in the system.

Konkuk University 15

Statement of Purpose – RVC Example

• PFR (Preliminary Functional Requirements)

Konkuk University 16

Robot Vacuum Cleaner (RVC) Controller

• An RVC automatically cleans and mops household surface.
• It goes straight forward while cleaning.
• If its sensors found an obstacle, it stops cleaning, turns aside left or right, and

goes forward with cleaning.
• If it detects dust, power up the cleaning for a while.
• We do not consider the detail design and implementation on HW controls.
• We only focus on the automatic cleaning function.

System Context Diagram

• A special case of DFD (Data Flow Diagram)

– DFD Level 0

– Highlights the boundary between the system and outside world.
– Highlights the people, organizations and outside systems that interact with the

system under development.

Konkuk University 17

System Context Diagram - Notation

Konkuk University 18

Process : represents the proposed system

Terminator : represents the external entities

Flow : represents the in/out data flows

System Context Diagram – RVC Example

Konkuk University 19

RVC
ControlSensor

Motor

Cleaner

Event List

• A list of the event/stimuli outside of the system to which it must
respond.

– Used to describe the context diagram in detail.

• Types of events
– Flow-oriented event : triggered by incoming data
– Temporal event : triggered by internal clock
– Control event : triggered by an external unpredictable event

Konkuk University 20

Event List – RVC Example

Konkuk University 21

Input/ Output Event Description

Front Sensor Input Detects obstacles in front of the RVC

Left Sensor Input Detects obstacles in the left side of the RVC periodically

Right Sensor Input Detects obstacles in the right side of the RVC periodically

Dust Sensor Input Detects dust on the floor periodically

Direction Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle)

Clean Turn off / Turn on / Power-Up

Context Diagram for RVC

System Context Diagram – RVC Example

Konkuk University 22

RVC
ControlSensor

Motor

Cleaner

Front Sensor Input
Left Sensor Input
Right Sensor Input
Dust Sensor Input

Direction

Clean

Data Flow Diagram (DFD)

• Provides a means for functional decomposition.
– Composed of hierarchies(levels) of DFDs.

• Notation (A kind of CDFD)

Konkuk University 23

Data Process

Control Process

Terminator

Data Store

Data Flow

Control Flow

DFD Level 0 – RVC Example

Konkuk University 24

RVC
Control

0

Front Sensor Motor

Cleaner

Direction

Clean

Left Sensor

Right Sensor

Dust Sensor

Front Sensor Input

Left Sensor
Input

Right Sensor
Input

Dust Sensor Input

Digital Clock

Tick

DFD Level 0 – RVC Example

Konkuk University 25

Input/ Output Event Description Format / Type

Front Sensor Input Detects obstacles in front of the RVC True / False , Interrupt

Left Sensor Input Detects obstacles in the left side of the RVC periodically True / False , Periodic

Right Sensor Input Detects obstacles in the right side of the RVC periodically True / False , Periodic

Dust Sensor Input Detects dust on the floor periodically True / False , Periodic

Direction Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle) Forward / Left / Right / Stop

Clean Turn off / Turn on / Power-Up On / Off / Up

(A kind of) Data Dictionary

DFD Level 1 – RVC Example

Konkuk University 26

Obstacle &
Dust

Detection
1

Front Sensor Input

Left Sensor
Input

Right Sensor
Input

Dust Sensor Input

Tick

Obstacle & Dust
Location

Cleaner &
Motor

Control
2

Direction

Clean

DFD Level 2 – RVC Example

Konkuk University 27

Determine
Obstacle
Location

1.5

Front Sensor Input

Left Sensor Input

Right Sensor Input

Dust Sensor Input

Tick

Obstacle
Location

Front
Sensor

Interface
1.1

Left
Sensor

Interface
1.2

Right
Sensor

Interface
1.3

Dust
Sensor

Interface
1.4

Tick

Tick

Front Obstacle

Left Obstacle

Right Obstacle

Determine
Dust

Existence
1.6

Dust Existence

Dust
Existence

DFD Level 2 – RVC Example

Konkuk University 28

Obstacle
Location

Dust
Existence

Main
Control

2.1

Motor Command

Cleaner Command

Motor
Interface

2.2

Cleaner
Interface

2.3

Tick

Direction

Clean

DFD Level 3 – RVC Example

Konkuk University 29

Obstacle
Location

Dust
Existence

Controller
2.1.1

Motor Command

Cleaner Command

Tick Move
Forward

2.1.2

Turn Left
2.1.3

Turn
Right
2.1.4

Motor Command

Motor Command

Enable

Disable

Trigger

Trigger
Tic
k

Tic
k

DFD Level 4 – RVC Example

Konkuk University 30

Move
Forward

Turn RightTurn Left

/ Enable “Move Forward”, Cleaner Command (On)

Tick [F && !R]
/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Right”

Tick
/ Enable “Move Forward”,
Cleaner Command (On)

Tick [F && !L]
/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Left”

Tick
/ Enable “Move Forward”,
Cleaner Command (On)

Stop

Tick [F && L && R]
/ Disable “Move Forward”,
Cleaner Command (Off),

Problems in this model:
1. “Stop” state (deadlock)
2. Not consider “Dust”
3. No Priority for left/right turn

State Transition Diagram for Controller 2.1.1

DFD – RVC Example

Konkuk University 31

Process Specification

• Shows process details which are implied but not shown in a DFD.
– Specifies the input, output, and algorithm of a module in a DFD.
– Normally written in pseudo-code or table format.

• Example – Left Sensor Interface

Konkuk University 32

Reference No. 1.2

Name Left Sensor Interface

Input Left Sensor Input (+Data structure if possible) , Tick

Output Left Obstacle (+Data structure)

Process
Description

“Left Sensor Input” process reads a analog value of the
left sensor periodically, converts it into a digital value
such as True/False, and assigns it into output variable
“Left Obstacle.”

Data Dictionary

• Defines data elements to avoid different interpretations.
– Not used widely in recent years
– Often used in a simple form like the example below

• Example :

Konkuk University 33

Input/ Output Event Description Format / Type

Front Sensor Input Detects obstacles in front of the RVC True / False , Interrupt

Left Sensor Input Detects obstacles in the left side of the RVC periodically True / False , Periodic

Right Sensor Input Detects obstacles in the right side of the RVC periodically True / False , Periodic

Dust Sensor Input Detects dust on the floor periodically True / False , Periodic

Direction Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle) Forward / Left / Right / Stop

Clean Turn off / Turn on / Power-Up On / Off / Up

Entity Relationship Diagram (ERD)

• A graphical representation of the data layout of a system at a high
level of abstraction

– Defines data elements and their inter-relationships in the system.
– Similar with the class diagram in UML.

• Notation (Original)

Konkuk University 34

Data Element

Relationship

Associated Object

Cardinality – Exactly one

Cardinality – Zero or one

Cardinality – Mandatory Many

Cardinality – Optional Many

Entity Relationship Diagram – Example

Konkuk University 35

Entity Relationship Diagram – Example

KONKUK University 36

Entity

Attribute

Relationship

Relation
Type

State Transition Diagram

• Shows the time ordering between processes.
– More primitive than the Statechart diagram in UML.
– Different from the State transition diagram used in DFD.
– Not widely used now.

• Notation

Konkuk University 37

TransitionsObjects

State Transition Diagram - Example

Konkuk University 38

KONKUK University 39

Practice #1 : Structured Analysis

• Complete the RVC analysis in more details.
– Resolve the problems identified

• “Stop” state (deadlock)
• Not consider “Dust”
• No Priority for left/right turn
• Not design about Cleaner Interface

– Complete full versions of process specifications and data dictionary
• System Context Diagram
• A hierarchy of DFDs
• Process Specifications
• Data Dictionary

Konkuk University 40

KONKUK University 41

Practice #2 : Software Requirements Specification
(SRS)

• Write an SRS (Software Requirements Specification) for the RVC Controller.
– In accordance with IEEE 830-1998 standards

Konkuk University 42

43

SRS Templates: IEEE STS 830-1998

44

SRS Templates: IEEE STS 830-1998

45

SRS Templates: IEEE STS 830-1998

KONKUK University 46

Practice #3 : Specification Review

• Review SRSs of other team members.

• Compare all three SRSs with respect to followings:

• Rank the SRSs:
– 1st :
– 2nd :
– 3rd :

KONKUK University 47

항목 질문 평가결과

Understandability 문서의 내용이 잘 이해되는가?

등급(A/B/C)
+ 부족한 내용
+ 개선된 내용

Conciseness 명료하게 작성되었나?

Completeness 누락된 내용은 없는가?

Consistency 모순되는 내용은 없는가?

Accuracy 정확하지 않은 애매모호한 내용은 없는가?

Traceability 요구사항의 Source(Origin)이 명확한가?

Correctness (Validity) PFR의 내용에 부합하는가?

Practice #3 : Specification Review Checklist

Questions SRS #1 SRS #2 SRS #3 SRS #4
Understanda
ble 문서의 내용이 잘 이해되는가? A/B/C

Concise 명료하게 작성되었나?

Complete 누락된 내용은 없는가?

C
앞에서는 OO 모드가
3개라고 했는데,뒤에
는 2개에 대한 설명 밖
에 없다.

Consistent 모순되는 내용은 없는가?

Accurate 정확하지 않은 애매모호한 내용은 없는가?

Traceable 요구사항의 Source(Origin)이 명확한가?

Correct (Valid) PFR의 내용에 부합하는가?

Total Score (100점) 95점

Total Ranking 2등

KONKUK University 48

항목별로 적절한 점수,
가중치를 만들어서
총합을 계산합니다.

판정된 등급(A/B/C)에
대한 근거를 자세하게

설명합니다.

KONKUK University 49

STRUCTURED DESIGN (SD)

KONKUK University 50

Structure Charts

• Structured Design (SD)

• Functional decomposition (Divide and Conquer)
– Information hiding
– Modularity
– Low coupling
– High internal cohesion

• Needs a transform analysis.

Konkuk University 51

Structured Charts – Transform Analysis

Konkuk University 52

Afferent Flow
(Input)

Efferent Flow
(Output)

Central Transformation
(Control)

Structured Charts – Transform Analysis

Konkuk University 53

Input
(Afferent Flow)

Process
(Central Transformation)

Output
(Efferent Flow)

Control

ProcessInput Output

Structured Charts – Notation

Konkuk University 54

Modules

Library modules

Module call

Data Flow

Control Flow

Basic Notation [Yourdon 1989]

Asynchronous
module call

Data module

Iteration

Decision

Variations

Structured Charts - Example

Konkuk University 55

Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002)

Structured Charts – RVC Example (Basic)

Konkuk University 56

Determine
Obstacle Location

Determine
Dust Existence

Controller

Front Sensor
Interface

Left Sensor
Interface

Right Sensor
Interface

Dust Sensor
Interface Move Forward Turn Left Turn Right

Main

Obstacle Location Dust Existence

Enable
Disable

Trigger Trigger

Structured Charts – RVC Example (Advanced)

Konkuk University 57

Determine
Obstacle Location

Determine
Dust Existence

Controller

Front Sensor
Interface

Left Sensor
Interface

Right Sensor
Interface

Dust Sensor
Interface Move Forward Turn Left Turn Right

Main

Obstacle Location

Dust Existence

Enable
Disable

Trigger

Trigger

KONKUK University 58

Practice #4 : Structured Design

• Complete the RVC Design in more details.
– Complete a full version of Structure Charts on your own.

• Use the 1st ranked SRS in Practice #3

Konkuk University 59

The 1st ranked
SRS
for

RVC Control
SW

Structured Chart

KONKUK University 60

Pros of SASD

• Has distinct milestones, allowing easier project management
tracking.

• Very visual – easier for users/programmers to understand
• Makes good use of graphical tools
• Well known in industry
• A mature technique
• Process-oriented way is a natural way of thinking
• Flexible
• Provides a means of requirements validation
• Relatively simple and easy to read

Konkuk University 61

Cons of SASD

• Ignores non-functional requirements.
• Minimal management involvement
• Non-iterative – waterfall approach
• Not enough use-analysts interaction
• Does not provide a communication process with users.
• Hard to decide when to stop decomposing.
• Does not address stakeholders’ needs.
• Does not work well with Object-Oriented programming languages.

Konkuk University 62

When to use SASD?

• Well-known problem domains
• Contract projects where SRS should be specified in detail
• Real-time systems
• Transaction processing systems
• Not appropriate when time to market is short.

• In recent years,
SASD is widely used in developing real-time embedded systems.

Konkuk University 63

SASD vs. OOAD

• Similarities
– The both have started off from programming techniques.
– The both use graphical design and tools to analyze and model requirements.
– The both provide a systematic step-by-step process for developers.
– The both focus on the documentation of requirements.

• Differences
– SASD is process-oriented.
– OOAD is data(object)-oriented.
– OOAD encapsulates as much of the system’s data and processes into objects,
– While SASD separates them as possible as it can.

Konkuk University 64

Summary

• SASD is a process-driven software analysis technique.
• SASD has a long history in the industry and it is very mature.

– Provides a good documentation for requirements.

• In recent years, it is widely used for developing real-time embedded
system’s software with C programming language.

Konkuk University 65

SASD

