Structured Analysis and Structured Design

- Introduction to SASD
- Structured Analysis
- Structured Design

JUNBEOM YOO
jobyoo@konkuk.ac.kr
Ver. 2.0 http://dslab.konkuk.ac.kr

References

« Modern Structured Analysis, Edward Yourdon, 1989.

* Introduction to System Analysis and Design: a Structured Approach,
Penny A. Kendall, 1996.

Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002).
Structured Analysis and Structured Design (SASD) - Class Presentation

Structured Analysis

« Structured analysis iS [kendall 1996]
— a set of techniques and graphical tools
— that allow the analysts to develop a new kind of system specification
— that are easily understandable to the users.
— Analysts work primarily with their wits, pencil and paper.

« SASD
— Structured Analysis and Structured Design

History of SASD

Developed in the late 1970s by DeMarco, Yourdon and Constantine
after the emergence of structured programming.

« |BM incorporated SASD into their development cycle in the late
1970s and early 1980s.

* Yourdon published the book “Modern Structured Analysis™ in 1989.

« The availability of CASE tools in 1990s enabled analysts to develop
and modify the graphical SASD models.

Philosophy of SASD

* Analysts attempt to divide large, complex problems into smaller,
more easily handled ones.
- Divide and Conquer

 Top-Down approach
* Functional view of the problem
* Analysts use graphics to illustrate their ideas whenever possible.

* Analysts must keep a written record.

Konkuk University

Philosophy of SASD

“The purpose of SASD is to develop a useful, high quality
information system that will meet the needs of the end user.”

[Yourdon 1989]

s all world BY TOM BRISCOE
PP You SEE TS GoT A
THIS, JAKE? CALENDAR, DATE-
[T6 THE PALMOPEX BOOK, E-MAIL
2000 POLKET PL! CLIENT, WEB
BROWSER, VOICE
woo! RECORDER A2 A
CooL. goDY ODOR ALARM!

]

I'I5@ 100 BRISCOE Www/. bvi5C0E. 0D

WU Hrigee.ong

Konkuk University

Goals of SASD

* Improve quality and reduce the risk of system failure.

« [Establish concrete requirements specifications and complete
requirements documentations.

« Focus on reliability, flexibility and maintainability of system.

Elements of SASD

.

/Essential Model

Environmental
Model

] [Behavioral

Model

|

J

&

Implementation Model

Konkuk University

Essential Model

« Model of what the system must do
— Not define how the system will accomplish its purpose.

— Environmental model
— Behavioral model

/Essential Model

Environmental Behavioral
Model Model

Konkuk University

Environmental Model

« Defines the scope of the proposed system.

« Defines the boundary and interaction between the system and the
outside world.

« Composed of
— Statement of Purpose
— System Context diagram [Envi{nogdn;fnta'] [Behavioral J
— Event list

Essential Model

-

{ Implementation Model J

Konkuk University 10

Behavioral Model

Model of the internal behavior and data entities of the system.

Models functional requirements.

Composed of

Data Dictionary

Data Flow Diagram (DFD)
Entity Relationship Diagram (ERD)

Process Specification
State Transition Diagram

Konkuk University

Essential Model

Environmental
Model

Behavioral
Model

|

-

[Implementation Model

11

Implementation Model

Map functional requirements to hardware and software.
— Minimizes the cost of the development and maintenance

— Determines which functions should be manual vs. automated.
Can be used to discuss the cost-benefits of functionality with user/stakeholders.

— Defines the Human-Computer interface
— Defines non-functional requirements

Composed of Essential Model
— Structure Charts [Environmental} [Behavioral
Model Model

|

&

Implementation Model

Konkuk University

12

SASD Process

Activity

Environmental Model

Statement of
Purpose

Behavioral Model

State Transition

Diagram

Implementation
Model

Konkuk University

Time

13

STRUCTURED ANALYSIS (SA)

Statement of Purpose

« Aclear and concise textual description of the purpose for the system
to develop
— Should be deliberately vague.

— Intended for top level management, user management and others who are not
directly involved in the system.

Statement of Purpose — RVC Example

* PFR (Preliminary Functional Requirements)

Robot Vacuum Cleaner (RVC) Controller

« An RVC automatically cleans and mops household surface.

» It goes straight forward while cleaning.

» If its sensors found an obstacle, it stops cleaning, turns aside left or right, and
goes forward with cleaning.

» If it detects dust, power up the cleaning for a while.

» We do not consider the detail design and implementation on HW controls.

« We only focus on the automatic cleaning function.

System Context Diagram

« A special case of DFD (Data Flow Diagram)
— DFD Level 0

— Highlights the boundary between the system and outside world.

— Highlights the people, organizations and outside systems that interact with the
system under development.

System Context Diagram - Notation

Process : represents the proposed system

Flow : represents the in/out data flows

- Terminator : represents the external entities

Konkuk University

18

System Context Diagram — RVC Example

Sensor

RVC
Control

Cleaner

Konkuk University

19

Event List

A list of the event/stimuli outside of the system to which it must
respond.
— Used to describe the context diagram in detail.

Types of events
— Flow-oriented event : triggered by incoming data
— Temporal event : triggered by internal clock
— Control event : triggered by an external unpredictable event

Konkuk University

20

Event List — RVC Example

Front Sensor Input
Left Sensor Input
Right Sensor Input

Dust Sensor Input
Direction

Clean

RVC

Control

Detects obstacles in front of the RVC
Detects obstacles in the left side of the RVC periodically
Detects obstacles in the right side of the RVC periodically

Detects dust on the floor periodically

Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle)

Turn off / Turn on / Power-Up

Direction
Front Sensor Input

Left Sensor Input
Right Sensor Input
Dust Sensor Input

RVC
Control

Sensor

—>

Context Diagram for RVC

Cleaner

Konkuk University 21

System Context Diagram — RVC Example

Direction
Front Sensor Input

Left Sensor Input
Right Sensor Input
Dust Sensor Input

S i Control

Cleaner

Konkuk University

22

Data Flow Diagram (DFD)

Provides a means for functional decomposition.
— Composed of hierarchies(levels) of DFDs.

Notation (akind of cOFD)

Data Process

/7 Data Flow

Control Process

> Control Flow

-
-
-
-
-
-
-
-
-

Terminator

Data Store

Konkuk University

23

DFD Level 0 — RVC Example

Front Sensor Front Sensor Input

Left Sensor
A RVC
- Control
Right Sensor gt Senso 0

Dust Sensor Dust Sensor Input

Direction

Cleaner

Tick

Digital Clock

Konkuk University

24

DFD Level 0 — RVC Example

(A kind of) Data Dictionary

Front Sensor Input
Left Sensor Input
Right Sensor Input

Dust Sensor Input
Direction

Clean

Detects obstacles in front of the RVC
Detects obstacles in the left side of the RVC periodically
Detects obstacles in the right side of the RVC periodically

Detects dust on the floor periodically

Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle)

Turn off / Turn on / Power-Up

Konkuk University

True / False , Interrupt
True / False , Periodic
True / False , Periodic

True / False , Periodic
Forward / Left / Right / Stop

On/ Off / Up

25

DFD Level 1 — RVC Example

Front Sensor Input

Left Sensor

\Iﬁpm\ Obstacle &

Dust Obstacle & Dust

Right Sensor Detection Location
Input - 1

Dust Sensor Input

Tick

Konkuk University

Cleaner &
Motor

Control
2

Direction

26

DFD Level 2 - RVC Example

Front
Sensor
Interface Front Obstacle

1.1

Front Sensor Input

Left Sensor Input Left Determine
Sensor Left Obstacle Obstacle

. Obstacle
Interface Location Location
______ 1.2 1.5
Right
Right Sensor Input Sensor Right Obstacle
Interface
1.3 Determine
Dust Dust
Existence Existence

Dust 1.6

Dust Sensor Input Sensor Dust Existence
Interface
1.4

Konkuk University 27

DFD Level 2 - RVC Example

Direction
Motor
Motor Command Interface

2.2
Obstacle
Location
Main
Control
2.1
Dust
Existence Cleaner

Cleaner Command Interface
2.3

Tick

Konkuk University

28

DFD Level 3 — RVC Example

Move Motor Command
Forward >
2.1.2
Obstacle
Location
Controller Motor Command
211 N
rd
Dust
Existence

Motor Command

N
7

Cleaner Command

Konkuk University

DFD Level 4 — RVC Example

State Transition Diagram for Controller 2.1.1

/ Enable “Move Forward”, Cleaner Command (On)

Move
Forward
Tick [F && IL]
/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Left”

Tick [F && 'R]

/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Right”

able “Move Forward”, / Enable “Move ko
eaner Command (On) Cleaner Command

Turn Left Turn Right

Tick [F && L && R]
/ Disable “Move Forward”,
Cleaner Command (Off),

Problems in this model:

1. “Stop” state (deadlock)

2. Not consider “Dust”

3. No Priority for left/right turn
Konkuk University 30

DFD — RVC Example

Front
Sensor
Interface Front Obstacle

11

Front SensorInput

Left Sensorinput Left Determine v — = Motor Command

\ -
Left Obstacle _— ¥
Sensor Obsta.cie p=ca——
Interface Location icoation
1.2 1.5 -

T e

e -
--~" Disable
.

-

Controller - Trigger
211 N Turn Left

Motor Command Motor Direction

Interface

Right 55

Right Sensorinput Sensor Right Obstacle
Interface
1.3 Determine
Dust Dust
Existence Existence
Dust 1.6
Dust Sensor Input Sensor Dust Existence
Interface
14

-

Motor Command

KONKUK University 30

Cleaner Command Cleaner

Interface
23

Konkuk University 31

Process Specification

« Shows process details which are implied but not shown in a DFD.
— Specifies the input, output, and algorithm of a module in a DFD.
— Normally written in pseudo-code or table format.

« Example — Left Sensor Interface

Frant Sensor Input Front
- : Sensor
i Interface -~ Front Obstacle

Reference No. | 1.2

G Name Left Sensor Interface

Obstacle S

Lo?tsion T e Input Left Sensor Input (+Data structure if possible) , Tick

Output Left Obstacle (+Data structure)
. “Left Sensor Input’ process reads a analog value of the

Determine . . s .

Dust . Process left sensor periodically, converts it into a digital value
e — Description such as True/False, and assigns it into output variable

“Left Obstacle.”

Konkuk University 32

Data Dictionary

« Defines data elements to avoid different interpretations.

— Not used widely in recent years
— Often used in a simple form like the example below

 Example:

Front Sensor Input Detects obstacles in front of the RVC

Left Sensor Input Detects obstacles in the left side of the RVC periodically
Right Sensor Input Detects obstacles in the right side of the RVC periodically
Dust Sensor Input Detects dust on the floor periodically

Direction commands to the motor

Rlcecl (go forward / turn left with an angle / turn right with an angle)

Clean Turn off / Turn on / Power-Up

Konkuk University

True / False , Interrupt
True / False , Periodic
True / False , Periodic

True / False , Periodic
Forward / Left / Right / Stop

On/ Off / Up

33

Entity Relationship Diagram (ERD)

« A graphical representation of the data layout of a system at a high

level of abstraction

— Defines data elements and their inter-relationships in the system.
— Similar with the class diagram in UML.

* Notation (Original)

]
>

Data Element

Relationship

P -1

D 1
N AN

Konkuk University

Associated Object

Cardinality — Exactly one
Cardinality — Zero or one
Cardinality — Mandatory Many

Cardinality — Optional Many

34

Entity Relationship Diagram — Example

Accounts

AN
Cards

N
<7 Payments
0-< Bills
/N

N
v

Transactions
Ray o> <peude>

e

Transaction_
products

Konkuk University

35

Entity Relationship Diagram — Example

_— FoHs ME F2o H
Entity -+ 3HS e-mail
M
STHS DY B
H Fa
1
Relationship M 1 sle 1 M
HY & (B 2| ME
1
HEHS 25 B 7
— #
ID PW FalHS M | =g u }
: qy Fa omy T= ()
Relation e-mail
Type FEWS HEUS 5Y 72
PRIETE S

O

Attribute KONKUK University

State Transition Diagram

« Shows the time ordering between processes.
— More primitive than the Statechart diagram in UML.

— Different from the State transition diagram used in DFD.

— Not widely used now.

 Notation

/

Objects Transitions

Konkuk University

37

State Transition Diagram - Example

Customer
Customer Active pays bills
makes purchase
Customer

makes purchase

Account.
Account Balance
application
Customer

Create request to
ew Accountl. close account Customer
No Balancs pays balan does r_wot
ay bills

Bad Debt
Account.
Balance

Closed
Account.
No Balancg

KONKUK University

39

Practice #1 : Structured Analysis

« Complete the RVC analysis in more details.

— Resolve the problems identified
+ “Stop” state (deadlock)
* Not consider “Dust”
* No Periority for left/right turn
* Not design about Cleaner Interface

— Complete full versions of process specifications and data dictionary
+ System Context Diagram
* Ahierarchy of DFDs
* Process Specifications
+ Data Dictionary

Konkuk University 40

KONKUK University

41

Practice #2 : Software Requirements Specification

(SRS)

 Write an SRS (Software Requirements Specification) for the RVC Controller.
— In accordance with IEEE 830-1998 standards

IEEE Std 830-1998
(Revice o
IEEE Sid 830- |'.:’:'J\

IEEE Std 830-1998

IEEE Recommended Practice for
Software Requirements
Specifications

|IEEE Computer Society

Sponsored by the
Software Engineering Standards Committee

Table of Contents

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview
2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing
this section of the SRS.)

Appendixes
Index

Figure 1—Prototype SRS outline

Konkuk University

42

SRS Templates: IEEE STS 830-1998

A.1 Template of SRS Section 3 organized by mode: Version 1 A.2 Template of SRS Section 3 organized by mode: Version 2
3. Specific requirements 3. Specific requirements
3.1 External interface requirements 3.1. Functional requirements
3.1.1 User interfaces 3.1.1 Mode |
3.12 Hardware interfaces 3.1.1.1 External interfaces
3.1.3 Software interfaces 3.1.1.1.1 User interfaces
3.1.4 Communications interfaces 3.1.1.1.2 Hardware interfaces
3.2 Functional requirements 3.1.1.1.3 Software interfaces
321 Mode 1 3.1.1.1.4 Communications interfaces
3.2.1.1 Functional requirement 1.1 3.1.1.2 Functional requirements
3.1.1.2.1 Functional requirement |
3.2.1.n Functional requirement 1.n
322 Mode 2 3.1.1.2.n Functional requirement n
3.1.1.3 Performance
3.1.2 Mode 2
3.2.m Mode m
3.2.m.1 Functional requirement m. | .
3.Lm Mode m
3.2 Design constraints
: 3.3 Software system attributes
3.2.m.n Functional requirement m.n 3.4 Other requirements
3.3 Performance requirements
34 Design constraints
3.5 Software system attributes
3.6 Other requirements

SRS Templates: IEEE STS 830-1998

A.5 Template of SRS Section 3 organized by feature A.6 Template of SRS Section 3 organized by stimulus
3. Specific requirements 3. Specific requirements
31 External interface requirements 3.1 External interface requirements
3.L1 - User interfaces 3.1.1 User interfaces
302 Hedwss s 3.1.2 Hardware interfaces
3:1.3 Software interfaces 313 QsPeiae rbleas
3.1.4 Communications interfaces

. 3.14 Communications interfaces
32 System features =

= i 3.9 -tional requirements
3.2.1 System Feature | e ftf"“i“o”‘:;l _‘“Illl'“']m nts
3.2. Stimulus

3.2.1.1 Introduction/Purpose of feature
3.2.1.2 Stimulus/Response sequence 3.2.1.1 Functional requirement 1.1
3.2.1.3 Associated functional requirements
3.2.1.3.1 Functional requirement |

3.2.1.n Functional requirement I.n
3.2.2 Stimulus 2
3.2.1.3.n Functional requirement n
3.2.2 System feature 2

"
(%]

o Stimulus m
3.2.m.1 Functional requirement m. 1

3.2.m System feature m
3.3 i’crl'nrmuncc requirements 3.2.m.n Functional requirement m.n
3.4 Design constraints 3.3 Performance requirements
3.5 Software system attributes 34 Design constraints
3.6 Other requirements 35 Software system attributes
3.6 Other requirements

44

SRS Templates: IEEE STS 830-1998

A.7 Template of SRS Section 3 organized by functional hierarchy

3. Specific requirements

34

3.3
34
35
3.6

External interface requirements
3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces
Functional requirements
3.2.1 Information flows
3.2.1.1 Data flow diagram 1|
3.2.1.1.1 Data entities
3.2.1.1.2 Pertinent processes
3.2.1.1.3 Topology
3.2.1.2 Data flow diagram 2
3.2.1.2.1 Data entities

3.2.1.2.2 Pertinent processes
3.2.1.2.3 Topology

3.2.1.n Data flow diagram n

Performance requirements
Design constraints
Software system attributes
Other requirements

n.1 Data entities

3.2.1
32.1n2 inent processes
3.2.1.n.3 Topology

Process descriptions

3.2.2.1 Process |
3.2.2.1.1 Input data entities
3.2.2.1.2 Algorithm or formula of process
3.2.2.1.3 Affected data entities

3222

3.2.2.2.1 Input data entities
3.2.2.2.2 Algorithm or formula of process
32223

Affected data entities

3.2.2.m Process m
3.2.2.m.1 Input data entities

.2 Algorithm or formula of process
3.2.2.m.3 Affected data entities
Data construct specifications
3.2.3.1 Construct |
3.2.3.1.1 Record type
3.2.3.1.2 Constituent fields
3.2.3.2 Construct 2
3.2.3.2.1 Record type
2.2 Constituent ficlds

3.23p Construct p
3.2.3.p.1 Record type
3.2.3.p.2 Constituent ficlds
Data dictionary
3.24.1 Dataelement |
3.2.4.1.1 Name
3.2.4.1.2 Representation
3.2.4.1.3 Units/Format
3.2.4.1.4 Precision/Accuracy
3.2.4.1.5 Range
3.24.2 Data clement 2
3.242.1 Name
3.2.4.2.2 Representation
3.2.4.2.3 Units/Format

3.2.44 Dataclement ¢

24.4.1 Name

3.2.4.4.2 Representation
3.2.4.4.3 Units/Format
3.2.4.44 Precision/Accuracy
3.24.4.5 Range

3

45

KONKUK University

46

Practice #3 : Specification Review

Review SRSs of other team members.

Compare all three SRSs with respect to followings:

Correctness (Validity)

PFR2| L &0 £&5t=7t?

g8 g F7rdqt
Understandability =AMe| Ljgo| & o|slkl=7}?
Conciseness = "'P‘II S K| ALt?
Completeness T2hE 2 =712

p FEE 82 2=t S2(A/BIC)
Consistency Rek= &2 s + 2EFcHLE

" —= + 7| HE &

Accuracy Heslx| 2 o= L2 Q=712
Traceability 2 AFe| Source(Origin)0| H&tst7}?

Rank the SRSs:

— st
— 2nd
- 3d

Practice #3 : Specification Review Checklist

Questions SRS #1 SRS #2 SRS #3 SRS #4
understanda | = xjo| Ljgo| & ofsHE|=7t? A/BIC
Concise HE2SA| E/dE|ALE?
C
20| M= 00 ZET}
Complete FEEHE2 =717 37HEtn P, S of
= 2710 ot 4 5f
of gict. N\
Consistent DaEl= W82 8712
Accurate H25lX| 42 o2 S ot L2 Q=712 /)‘F_F’E;.E_' S=(A/B/C)0
\\ CHet 22 S XEMISHA
Traceable | 2TAFEC| Source(Origin)Ol H&t3t7}? o TR
Correct (Valid) | PFR2| L0 £&t5t=7}2
Total Score (1007) 957
AN
Total Ranking 25
KONKUK University 48

KONKUK University

49

STRUCTURED DESIGN (SD)

Structure Charts

« Structured Design (SD)

« Functional decomposition (Divide and Conquer)
— Information hiding
— Modularity
— Low coupling
— High internal cohesion

* Needs a transform analysis.

Structured Charts — Transform Analysis

Motor Command
Determine .
DhstE!cIe _— | N\
Location oation

1.5

Motor Command

Determine
Dust Dust
Existence __ Existence

1.6

Motor Command

Cleaner Command

Efferent Flow
(Output)

Central Transformation
(Control)

Afferent Flow
(Input)

Konkuk University 52

Structured Charts — Transform Analysis

Input Process Output
(Afferent Flow) (Central Transformation) (Efferent Flow)

Control

Process

Konkuk University

53

Structured Charts — Notation

/ Basic Notation [yourdon 1989] \
l-l Library modules

Module call

Data Flow

o/
\ / Control Flow /

Konkuk University

/— Variations 4\
- Data module

v Asynchronous
module call

-
-
-
-
-
-
-
-

Iteration

D
/x Decision /

54

Structured Charts - Example

J) Payment Process Payment Control

& Pameny. Payment®

Payment? Process - !
Today [Write Payment

Process Payment

Get Payment

Payment ?
Raw J) Payment Payment?
Payment Error - -
by o [& s Update Insert
Payment v yment
: Account Payment
Read Edit Event
Record Record

Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002)

Structured Charts — RVC Example (Basic)

Controller

Obstacle Location Dust Existence

Oo— Oo—

Enable Trigger Trigger

Determine Determine Disable

Obstacle Location Dust Existence

Front Sensor Left Sensor Right Sensor Dust Sensor
Interface Interface Interface Interface

Move Forward |

Konkuk University 56

Structured Charts — RVC Example (Advanced)

Controller

%
Dust Existence
: Tri
Deterrnlne Enable rieger
Dust Existence Disable ‘\A

Trigger

Obstacle Location

O/'

Determine

Obstacle Location

| Front Sensor | Left Sensor | Right Sensor | Dust Sensor | Move Forward | Turn Left Turn Right |

Interface Interface Interface Interface

Konkuk University 57

KONKUK University

58

Practice #4 : Structured Design

« Complete the RVC Design in more details.

— Complete a full version of Structure Charts on your own.
« Use the 1stranked SRS in Practice #3

The 15t ranked
SRS
for
RVC Control
SW

Structured Chart

Konkuk University 59

KONKUK University

60

Pros of SASD

« Has distinct milestones, allowing easier project management
tracking.

« Very visual — easier for users/programmers to understand
« Makes good use of graphical tools

* Well known in industry

« A mature technique

« Process-oriented way is a natural way of thinking

» Flexible

* Provides a means of requirements validation

« Relatively simple and easy to read

Cons of SASD

« Ignores non-functional requirements.

* Minimal management involvement

« Non-iterative — waterfall approach

* Not enough use-analysts interaction

* Does not provide a communication process with users.

« Hard to decide when to stop decomposing.

« Does not address stakeholders’ needs.

« Does not work well with Object-Oriented programming languages.

When to use SASD?

* Well-known problem domains

« Contract projects where SRS should be specified in detail
* Real-time systems

« Transaction processing systems

* Not appropriate when time to market is short.

* Inrecent years,
SASD is widely used in developing real-time embedded systems.

SASD vs. OOAD

« Similarities
— The both have started off from programming techniques.
— The both use graphical design and tools to analyze and model requirements.
— The both provide a systematic step-by-step process for developers.
— The both focus on the documentation of requirements.

« Differences
— SASD is process-oriented.
— OOAD is data(object)-oriented.
— OOAD encapsulates as much of the system’s data and processes into objects,
— While SASD separates them as possible as it can.

Summary

« SASD is a process-driven software analysis technique.

« SASD has a long history in the industry and it is very mature.
— Provides a good documentation for requirements.

* Inrecent years, it is widely used for developing real-time embedded
system’s software with C programming language.

Activity

Environmental Model

Statement of
Purpose

_ Behavioral Model

Data Dictionary

SASD

Konkuk University 65

