
Software Engineering

JUNBEOM YOO

Dependable Software Laboratory
KONKUK University

1

Chapter 10 – Dependable Systems

2

Topics Covered

• Dependability properties

• Sociotechnical systems

• Redundancy and diversity

• Dependable processes

• Formal methods and dependability

3

System Dependability

• For many computer-based systems, the most important system property is
the dependability of the system.

• The dependability of a system reflects the user’s degree of trust in that
system.

– It reflects the extent of the user’s confidence that it will operate as users expect
and that it will not ‘fail’ in normal use.

• Dependability covers the related systems attributes such as reliability,
availability and security.

– These are all inter-dependent.

4

Importance of Dependability

• System failures may have widespread effects with large numbers of people
affected by the failure.

• Systems that are not dependable and are unreliable, unsafe or insecure
may be rejected by their users.

• The costs of system failure may be very high if the failure leads to economic
losses or physical damage.

• Undependable systems may cause information loss with a high consequent
recovery cost.

5

Causes of Failure

• Hardware failure
– Hardware fails because of design and manufacturing errors or because

components have reached the end of their natural life.

• Software failure
– Software fails due to errors in its specification, design or implementation.

• Operational failure
– Human operators make mistakes.
– Now perhaps the largest single cause of system failures in socio-technical

systems.

6

Dependability Properties

7

The Principal Dependability Properties

8

Principal Properties

• Availability
– The probability that the system will be up and running and able to deliver useful

services to users.
• Reliability

– The probability that the system will correctly deliver services as expected by
users.

• Safety
– A judgment of how likely it is that the system will cause damage to people or its

environment.
• Security

– A judgment of how likely it is that the system can resist accidental or deliberate
intrusions.

• Resilience
– A judgment of how well a system can maintain the continuity of its critical

services in the presence of disruptive events such as equipment failure and
cyberattacks.

9

Other Dependability Properties

• Repairability
– Reflects the extent to which the system can be repaired in the event of a failure.

• Maintainability
– Reflects the extent to which the system can be adapted to new requirements.

• Error tolerance
– Reflects the extent to which user input errors can be avoided and tolerated.

10

Dependencies Among Dependability Attribute

• There are many kinds of dependencies among dependability properties.
– Safe system operation depends on the system being available and operating

reliably. (safety ↔ availability, reliability)
– A system may be unreliable because its data has been corrupted by an external

attack. (reliability ↔ security)
– Denial of service attacks on a system are intended to make it unavailable.

(security ↔ availability)
– If a system is infected with a virus, you cannot be confident in its reliability or

safety. (security ↔ reliability, safety)

11

Dependability Achievement

• Avoid the introduction of accidental errors when developing the system.
• Design V & V processes that are effective in discovering residual errors in

the system.
• Design systems to be fault tolerant so that they can continue in operation

when faults occur.
• Design protection mechanisms that guard against external attacks.
• Configure the system correctly for its operating environment.
• Include system capabilities to recognize and resist cyberattacks.
• Include recovery mechanisms to help restore normal system service after a

failure.

12

Dependability Costs

• Dependability costs tend to increase exponentially as increasing levels of
dependability are required.

• There are two reasons for this
– The use of more expensive development techniques and hardware that are

required to achieve the higher levels of dependability.
– The increased testing and system validation that is required to convince the

system client and regulators that the required levels of dependability have been
achieved.

13

Cost/Dependability Curve

14

Dependability Economics

• It may be more cost effective to accept untrustworthy systems and pay for
failure costs

– However, this depends on social and political factors. A reputation for products
that can’t be trusted may lose future business

– Depends on system type - for business systems in particular, modest levels of
dependability may be adequate

15

Sociotechnical Systems

16

Systems and Software

• Software engineering is not an isolated activity but is part of a broader
systems engineering process.

• Software systems are therefore not isolated systems but are essential
components of broader systems that have a human, social or organizational
purpose.

• Example
– The wilderness weather system is part of broader weather recording and

forecasting systems
– These include hardware and software, forecasting processes, system users, the

organizations that depend on weather forecasts, etc.

17

The Sociotechnical Systems Stack

18

Layers in the STS Stack

• Equipment
– Hardware devices, some of which may be computers. Most devices will include

an embedded system of some kind.
• Operating system

– Provides a set of common facilities for higher levels in the system.
• Communications and data management

– Middleware that provides access to remote systems and databases.
• Application systems

– Specific functionality to meet some organization requirements.
• Business processes

– A set of processes involving people and computer systems that support the
activities of the business.

• Organizations
– Higher level strategic business activities that affect the operation of the system.

• Society
– Laws, regulation and culture that affect the operation of the system.

19

Holistic System Design

• There are interactions and dependencies between the layers in a system
and changes at one level ripple through the other levels

– Example: Change in regulations (society) leads to changes in business
processes and application software.

• For dependability, a systems perspective is essential.
– Contain software failures within the enclosing layers of the STS stack.
– Understand how faults and failures in adjacent layers may affect the software in

a system.

20

Regulated Systems

• Many critical systems are regulated systems, which means that their use
must be approved by an external regulator before the systems go into
service.

– Nuclear systems
– Air traffic control systems
– Medical devices

• A safety and dependability case must be approved by the regulator.
– Critical systems development has to create the evidence to convince a regulator

that the system is dependable, safe and secure.

21

Safety Regulation

• Regulation and compliance (following the rules) applies to the
sociotechnical system as a whole and not simply the software element of
that system.

• Safety-related systems may have to be certified as safe by the regulator.
• To achieve certification, companies that are developing safety-critical

systems have to produce an extensive safety case that shows that rules
and regulations have been followed.

• It can be as expensive develop the documentation for certification as it is to
develop the system itself.

22

Redundancy and Diversity

23

Redundancy and Diversity

• Redundancy
– Keep more than a single version of critical components so that if one fails then a

backup is available.

• Diversity
– Provide the same functionality in different ways in different components so that

they will not fail in the same way.

• Redundant and diverse components should be independent so that they will
not suffer from ‘common-mode’ failures (CCF).

– For example, components implemented in different programming languages
means that a compiler fault will not affect all of them.

24

Diversity and Redundancy examples

• Redundancy
– Where availability is critical (e.g. in e-commerce systems), companies normally

keep backup servers and switch to these automatically if failure occurs.

• Diversity
– To provide resilience against external attacks, different servers may be

implemented using different operating systems (e.g. Windows and Linux)

25

Process Diversity and Redundancy

• V&V activities should not depend on a single approach such as testing.
– Redundant and diverse process activities are important.

• Multiple different (V&V) process activities complement each other.
– Allow for cross-checking help to avoid process errors, which may lead to errors in

the software.

26

Problems with Redundancy and Diversity

• Adding diversity and redundancy to a system increases the system
complexity.

– This can increase the chances of error because of unanticipated interactions and
dependencies between the redundant system components.

• Some engineers therefore advocate simplicity and extensive V&V as a more
effective route to software dependability.

– Airbus FCS architecture is redundant/diverse.
– Boeing 777 FCS architecture has no software diversity.

27

Formal Methods and Dependability

28

Formal Specification

• Formal methods are approaches to software development that are based
on mathematical representation and analysis of software.

– Significantly reduce some types of programming errors
– Can be cost-effective for dependable systems engineering

• Formal methods include
– Formal specification
– Specification analysis and proof
– Transformational development
– Program verification

29

Formal Approaches

• Verification-based approaches
– Different representations of a software system (specifications) and a program

implementing the specification are proved to be equivalent.
– This demonstrates the absence of implementation errors.

• Refinement-based approaches
– A representation of a system is systematically transformed into another, lower-

level representation.
• E.g., a specification is transformed automatically into an implementation.

– If the transformation is correct, the representations are equivalent.

30

Use of Formal Methods

• The principal benefits of formal methods are in reducing the number of
faults in systems. (fining defects)

• Formal method’s main application area are dependable systems
engineering.

– Several successful projects where formal methods have been used
– The use of formal methods is most likely to be cost-effective because high

system failure costs must be avoided.

31

Classes of Errors

• Errors and omissions in specification and design
– Developing and analysing a formal model of the software may reveal errors and

omissions in the software requirements.
– If the model is generated automatically or systematically from source code,

analysis using model checking can find undesirable states that may occur, such
as deadlock in a concurrent system.

• Inconsistences between specifications and programs
– If a refinement method is used, mistakes made by developers that make the

software inconsistent with the specification are avoided.
– Program proving discovers inconsistencies between a program and its

specification.

32

Benefits of Formal Specification

• Developing a formal specification requires the system requirements to be
analyzed in detail.

– This helps to detect problems, inconsistencies and incompleteness in the
requirements.

• As the specification is expressed in a formal language, it can be
automatically analyzed to discover inconsistencies and incompleteness.

• If you use a formal method such as the B method, you can transform the
formal specification into a ‘correct’ program.

• Program testing costs may be reduced if the program is formally verified
against its specification.

33

Acceptance of Formal Methods

• Formal methods have had limited impact on practical software
development.

– Problem owners cannot understand a formal specification and so cannot assess
if it is an accurate representation of their requirements.

– It is easy to assess the costs of developing a formal specification but harder to
assess the benefits. Managers may therefore be unwilling to invest in formal
methods.

– Software engineers are unfamiliar with this approach and are therefore reluctant
to use formal methods.

– Formal methods are still hard to scale up to large systems.
– Formal specification is not really compatible with agile development methods.

34

Key Points

• System dependability is important because failure of critical systems can
lead to economic losses, information loss, physical damage or threats to
human life.

• The dependability of a computer system is a system property that reflects
the user’s degree of trust in the system. The most important dimensions of
dependability are availability, reliability, safety, security and resilience.

• Sociotechnical systems include computer hardware, software and people,
and are situated within an organization. They are designed to support
organizational or business goals and objectives.

• The use of a dependable, repeatable process is essential if faults in a
system are to be minimized. The process should include verification and
validation activities at all stages, from requirements definition through to
system implementation.

• The use of redundancy and diversity in hardware, software processes and
software systems is essential to the development of dependable systems.

• Formal methods, where a formal model of a system is used as a basis for
development help reduce the number of specification and implementation
errors in a system.

35

36

