
8. Quality Attributes

Requirements Engineering Process

204

Non-Functional Requirements

• IEEE 9126 / 25010
– “A Software requirement that described not what the software will do, but how the

software will do it, for example, software performance requirements, software external
interface requirements, design constraints, and software quality attributes.”

• Sommerville
– “Constraints on the services or functions offered by the system such as timing constraints,

constraints on the development process, standards, etc.”

• Wikipedia
– “An requirement that specifies criteria that can be used to judge the operation of a system,

rather than specific behaviors. They are contrasted with functional requirements that
define specific behavior or functions. The plan for implementing functional requirements
is detailed in the system design. The plan for implementing non-functional requirements
is detailed in the system architecture, because they are usually architecturally significant
requirements.”

205

3 Types of Non-Functional Requirements

206

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementa tion
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

Boehm’s NFR

207

McCall’s NFR

208

Quality Attributes

• Measurable or testable properties of a system
– Used to indicate how well the system satisfies the needs of its stakeholders

• Availability, configurability, modifiability, performance, reliability,
reusability, security, portability, maintainability, efficiency, usability

– Emergent properties : not a measure of software in isolation
• Measures the relationship between software and its application domain
• Cannot measure this until you place the software into its environment

– Quality will be different in different environments

• Software quality is all about fitness to purpose of stakeholders.
– “Does it do what is needed?”
– “Does it do it in the way that its users need it to?”
– “Does it do it reliably enough? fast enough? safely enough? securely enough?”
– “Will it be affordable? will it be ready when its users need it?”
– “Can it be changed as the needs change?”

209

Quality Attributes : Taxonomies

210

• -ilities
– understandability, usability, modifiability, interoperability, reliability, portability,

maintainability, scalability, configurability, customizability, adaptability, variability,
volatility, traceability, …

• -ities
– security, simplicity, clarity, ubiquity, integrity, modularity, …

• -ness
– user-friendliness, robustness, timeliness, responsiveness, correctness,

completeness, conciseness, cohesiveness, …

• others
– performance, efficiency, accuracy, precision, cost, development time, low

coupling, …

Stakeholders and Quality Attributes

211

Quality Attributes and Architecture

• The degree to which a system satisfies quality attribute requirements is
directly dependent on architectural structure.

• Architects need to have a solid understanding of the quality attribute
requirements for a system, when they are designing the system’s software
architecture.

212

Problematic Features of Quality Attribute

• Non-Operational requirements
– “The system must be easy to use.”
– “The system must have high performance.”
– “The system must be portable.”

• Debating the quality attribute to which a system behavior belongs
– “The system must process 10,000 messages per second.”

• Vocabulary variations
– Everyone knows what “high performance” means, but different each others.

• Various inter-dependency among quality attributes
– Trade-off
– No 100% satisfied

213

Quality Requirements: Examples

• 응용 프로그램을 위한 프로세서 용량과 RAM 중에서 20%는 최대 부하시점에서도 사
용되지 않아야 한다

• 감사접속 권한을 가진 자만이 고객 거래자료를 볼 수 있다

• 사용자가 파일을 저장하기 전 편집기에 에러가 발생하면 편집 중이던 모든 변경내용을
에러발생 5분 전 까지로 복구한다

• 메뉴 파일의 모든 기능은Ctrl+다른 키를 사용하는 단축키가 정의되어야 한다

• 함수 호출은 3 단계 이상 중첩되지 않는다

• 모듈의 Cyclomatic Complexity는 20을 넘지 않는다

• 온도관리 주기는 0.8초 이내에서 수행한다

• 모든 웹 페이지는 10Mbps LAN 접속에서 5초 이내로 다운로드 한다

214

Quality Requirements: Example

• MHC-PMS (Mental Health Care Patient Management System)

– Product requirements
• The MHC-PMS shall be available to all clinics during normal working hours (Mon–Fri,

0830–17.30). Downtime within normal working hours shall not exceed five seconds in
any one day. → Availability

• The system should be easy to use by medical staff and should be organized in such a
way that user errors are minimized. → Usability

– Organizational requirements
• Users of the MHC-PMS system shall authenticate themselves using their health

authority identity card. → Security

– External requirements
• The system shall implement patient privacy provisions as set out in HStan-03-2006-priv.

→ Standard compliance

215

Two Categories of Quality Attributes

• Bredemeyer Consulting 2001

216

ISO/IEC 9126

217

ISO 9126-1 : Information Technology
- Software Product Quality - Part 1: Quality Model

218

Microsoft Application Architecture Guide

• Quality attributes are the overall factors that affect run- time behavior,
system design, and user experience.

– They represent areas of concern that have the potential for application wide
impact across layers and tiers

– When designing applications to meet any of the quality attributes requirements, it
is necessary to consider the potential impact on other

• 4 Categories of Quality Attributes
– Design Qualities : Conceptual Integrity ,Maintainability ,Reusability
– Run-time Qualities : Availability, Interoperability, Manageability, Performance,

Reliability, Scalability, Security
– System Qualities : Supportability, Testability
– User Qualities : Usability

219

Microsoft Quality Attributes – Design Qualities

• Conceptual Integrity
– defines the consistency and coherence of the overall design.
– includes the way that components or modules are designed, as well as factors

such as coding style and variable naming.

• Maintainability
– the ability of the system to undergo changes with a degree of ease.
– these changes could impact components, services, features, and interfaces

when adding or changing the functionality, fixing errors, and meeting new
business requirements.

• Reusability
– defines the capability for components and subsystems to be suitable for use in

other applications and in other scenarios.
– Reusability minimizes the duplication of components and also the implementation

time.

220

Microsoft Quality Attributes – Runtime Qualities

• Availability
– defines the proportion of time that the system is functional and working.
– It can be measured as a percentage of the total system downtime over a

predefined period.
– Availability will be affected by system errors, infrastructure problems, malicious

attacks, and system load.

• Interoperability
– the ability of a system or different systems to operate successfully by

communicating and exchanging information with other external systems written
and run by external parties.

– An interoperable system makes it easier to exchange and reuse information
internally as well as externally.

• Manageability
– defines how easy it is for system administrators to manage the application,

usually through sufficient and useful instrumentation exposed for use in
monitoring systems and for debugging and performance tuning.

221

Microsoft Quality Attributes – Runtime Qualities

• Performance
– an indication of the responsiveness of a system to execute any action within a

given time interval.
– It can be measured in terms of latency or throughput.

• Reliability
– the ability of a system to remain operational over time.
– measured as the probability that a system will not fail to perform its intended

functions over a specified time interval.

• Scalability
– ability of a system to either handle increases in load without impact on the

performance of the system, or the ability to be readily enlarged.

• Security
– the capability of a system to prevent malicious or accidental actions outside of

the designed usage, and to prevent disclosure or loss of information.

222

Microsoft Quality Attributes – User Qualities

• Usability
– defines how well the application meets the requirements of the user and

consumer by being intuitive, easy to localize and globalize, providing good
access for disabled users, and resulting in a good overall user experience.

223

CMU SEI Quality Attributes

• Dependability
• Security
• Modifiability
• Interoperability
• Performance

224

A Process Defining Quality Requirements

225

Making All Requirements Measurable

• Turn vague ideas about quality into measurables or verifiable

226

Quality Metric & Measure

Quality Factor Metric & Measures

Speed
- Processed transactions/second
- User/event response time
- Screen refresh time

Size - Mbytes
- Number of ROM chips

Ease of Use - Training time
- Number of help frames

Reliability

- Mean time to failure
- Probability of unavailability
- Rate of failure occurrence
- Availability

Robustness
- Time to restart after failure
- Percentage of events causing failure
- Probability of data corruption on failure

Portability - Percentage of target dependent statements
- Number of target systems

Maintainability
- Volume of data recorded in operation
- Number of failures estimated
- Correction time / software size

227

Quality Attribute Scenarios

• QAS (Quality Attribute Scenario) is an effective way of identifying and
specifying quality-attribute-specific requirements.

– Specific to the particular system under considerations
– Instantiated from the attribute characterizations of general scenarios

228

A QAS Example for Availability

• “An unanticipated external message is received by a process during
normal operation. The process informs the operator of the receipt of
the message and continues to operated with no downtime.”

229

Quality Attribute Tree : Example

230

The QAS Template

231

QAS – Availability (Reliability)

• Source of Stimulus
– Internal or External

• Stimulus: a fault one of the following classes
– Omission: a component fails to response to an input
– Crash: the component repeatedly suffers omission faults
– Timing: a component responds but the response is early or late
– Response: a component responds with an incorrect value

• Artifact
– Processor, communication channel, process, or storage

• Environment
– Normal operation, degraded mode

• Response
– Logging the failure,
– notifying selected users or other systems,
– switching to a degraded mode,
– shutting down external systems,
– becoming unavailability during repair.

• Response Measure
– An availability percentage
– A time to repair
– Time interval in which the system must be available
– Time interval in which system can be in degraded mode

232

QAS Example – Availability (Reliability)

• “An unanticipated external message is received by a process during
normal operation. The process informs the operator of the receipt of
the message and continues to operated with no downtime.”

233

QAS – Modifiability (Adaptability)

• Source of Stimulus: who makes the changes
– Developer, end user, system administrator

• Stimulus: the changes to be made
– Addition/deletion/modification of a function, quality attribute, capacity

• Artifact: what is to be changed
– The functionality of a system
– its platform
– its user interface
– its environment
– systems with which it interoperates

• Environment: when the change can be made
– Design time, compile time, build time, initiation time, or run time

• Response
– Locates places in architecture to be modified; Makes modification without affecting

other functionality; tests modification; deploys modification
• Response Measure

– Cost in terms of number of elements affects, effort, money; extent to which this affects
other functions or quality attributes

234

QAS Example – Modifiability (Adaptability)

• “A developer wishes to change the user interface to make a screen’s
background color blue. This change will be made to the code at design
time. It will take less than three hours to make and test the change and
no side effect changes will occur in the behavior.”

235

QAS – Performance

• Source
– One of a number of independent sources, possible from within system

• Stimulus
– Periodic events arrive, sporadic events arrive, stochastic events arrive

• Artifact
– system’s service

• Environment
– Normal mode
– Overloaded mode

• Response
– Processes stimuli
– Changes level of service

• Response Measure
– Latency (Response Time)
– Throughput

236

QAS Example – Performance

• “Users initiate 1,000 transactions per minute stochastically under
normal operations, and these transactions are processed with an
average latency of two seconds.”

237

QAS - Usability

• Source
– End user

• Stimulus
– want to

• learn system features; use system efficiently; minimize impact of errors; adapt system; feel
comfortable

• Artifact
– system

• Environment
– At runtime or configure time

• Response
– System provides one or more of the following responses
– To support “learn system features”

• Help system is sensitive to context; interface is familiar to user; interface is usable in an unfamiliar
context

– To support “use system efficiently”
• Aggregation of data and/or commands; re-use of already entered data and/or commands; support for

efficient navigation within a screen
– To minimize impact of errors

• Undo, cancel, recover from failure; recognize and correct user error; retrieve forgotten password;
verify system resources

• Response Measure
– Task time, number of errors, number of problems solved, user satisfaction, gain of user

knowledge, ratio of successful operations to total operations, amount of time/data lost

238

QAS Example – Usability

• “A user wanting to minimize the impact of an error, wishes to cancel a
system operation at runtime; cancellation takes place in less than one
second.”

239

Quality Requirements and Architecture Evaluation

• Quality requirements gives important information such as
– “Is the architecture suitable for the system for which it was devised?”
– “Which of two competing architectures is most suitable for the system at hand?”

• An architecture is suitable if,
– The system that results from it will meet its quality goals.

• A system is modifiable or not wrt. a specific kind of change.
• A system is secure or not wrt. a specific kind of threat.
• A system is reliable or not wrt. a specific kind of fault occurrence.
• A system performs well or not wrt. specific performance criteria.
• An architecture is buildable or not wrt. specific time and budget constraints.

• Questioning techniques for architecture evaluation
– Rely on thought experiments to check architecture suitability
– Scenario-based style: ATAM (Architecture Tradeoff Analysis Method)

– Checklist-based style

240

Quality Attribute Workshop (QAW)

• Quality Attribute Workshop (QAW)
– Facilitated method

• System-centric
• Used before the software architecture has been created

– Engages system stakeholders early in the life-cycle
– Reveals the driving quality attribute requirements of a software-intensive system

• Scenario-based

• Outputs of a QAW
– Quality attribute requirements for the system, documented as refined and

prioritized QAS.
– The quality attribute scenarios can then be used as the basis for designing the

software architecture for the system.

241

Motivations of QAW

• Design with Assurance
– The SEI Quality Attribute Workshop (QAW) provides the means to identify

important quality attributes, derived from business and mission goals, before
there is a software architecture.

– Clarifying quality attribute concerns early provides architects with more insight
into what is important and why, in turn improving their ability to create
architectures that better meet organization needs.

• Scenario-Based QAW
– In the QAW, an external team (such as SEI facilitators) holds meetings among

stakeholders during which scenarios representing the quality attribute
requirements are generated, prioritized, and refined.

– From these discussions, system designers gain insight concerning stakeholder
assumptions that may not have been expressed during elicitation of goals which
quality attributes are pulling the architecture in different directions, informing
subsequent tradeoff decisions.

242

The QAW Steps

1. QAW Introduction

2. Business/Mission Presentation

3. Architectural Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement

243

The QAW Steps in Detail

1. QAW Presentation and Introduction
– QAW facilitators describe the motivation for the QAW and explain each step of the method.

2. Business/Mission Presentation
– A stakeholder presents the business and/or programmatic drivers for the system.

3. Architectural Plan Presentation
– A technical stakeholder presents the system architectural plans as they stand with respect to early

documents, such as high-level system descriptions, context drawings, or other artifacts that describe the
system’s technical details.

4. Identification of Architectural Drivers
– Architectural drivers often include high-level requirements, business/mission concerns, and various quality

attributes.
– During this step, the facilitators and stakeholders reach a consensus about which drivers are key to the

system.
5. Scenario Brainstorming

– Stakeholders generate real-world scenarios for the system. Scenarios comprise a related stimulus, an
environmental condition, and a response.

– Facilitators ensure that at least one scenario addresses each of the architectural drivers identified in Step 4.
6. Scenario Consolidation

– Scenarios that are similar in content are consolidated.
7. Scenario Prioritization

– Stakeholders prioritize the scenarios through a voting process.
8. Scenario Refinement

– For the top four or five scenarios, the following are described: the business/mission goals that are affected
by those scenarios, the relevant quality attributes associated with those scenarios

244

Mini-QAW

245

1. Mini-QAW Introduction

2. Introduction to Quality Attributes, Quality Attributes Taxonomy

3. Scenario Brainstorming
– “Walk the System Properties Web” activity

4. Raw Scenario Prioritization
– Dot voting

5. Scenario Refinement
– While time remains

6. Review Results with Stakeholders

1. Mini-QAW Introduction

• Take into account specific roles of stakeholders.
– For example, “Smart Home System” has 10 different stakeholders and goals.

246

Stakeholders 주요 역할 희망사항 - Goal
CEO

개발자

입주민1 (싱글)

입주민2 (4인 가족)

관리사무소

AS센터 (출장방문수리)

119 / 112

정보통신부 / 시청

한국전력공사

인터넷 Provider

2. Introduction to Quality Attributes, Quality
Attributes Taxonomy
• Same properties for different systems

247

System Properties Web

248

• Define your own system properties web
– Select appropriate quality factors for your system under consideration.

3. Scenario Brainstorming

• Objective: Identify raw quality attribute scenarios

• Timing: 30 minutes to 2-3 hours

• Steps:
1. Start with a Scenario on the web, ask “Is this Quality attribute relevant to your

system?”
2. If Yes, spend 5 minutes brainstorming scenarios / concerns on that scenario.
3. Write raw scenarios on stickies and put on web
4. After 5 minutes, move to next scenario

249

Raw Quality Attribute Scenario

• Informally describes a stakeholder’s concern and concrete instances of
quality attributes

250

251

252

“Walk the System Properties Web” Activity

253

4. Raw Scenario Prioritization

• Objective : Identify Highest Priority Scenarios usingdot voting

• Timing : 5 minutes

• Steps:
– Dot Voting:

• Each stakeholder gets n / 3 + 1 dots for scenarios where n = # scenarios
• 2 votes to choose “top quality attribute”

254

255

5. Scenario Refinement

• Objective : Generate Quality Attribute Scenarios based on raw notes

• Timing : 30 - 60 minutes

• Steps :
1. Start with high priority scenario
2. Fill out the worksheet, identifying the components of a quality attribute scenario
3. Complete and present to stakeholders

256

257

Refined Scenario: In the event of hardware failure, search service is expected to
return results within 5 sec, in 12 average QPA (Queries Per Sec)

Mini-QA

• Routine or well understood
systems/problems

• Required to minimize upfront
costs

• Limited experience with traditional
QAW

• Relatively short overall schedule

Traditional QAW

• Higher risk projects
• System or problem is new to team
• Stakeholders prefers traditional

methods
• Experienced facilitators available

258

Mini-QAW vs. Traditional QAW

259

Exercise 5: Mini-QAW

• Perform the Mini-QAW for your “인증과제”
– Follow the steps of Mini-QAW
– Refine 5 QASs

• The Mini-QAW steps :
1. Mini-QAW Introduction

• Assign 10 different roles of stakeholders to all team members
• Define/share the overall context/boundary of the system under consideration (SUC)

2. Introduction to Quality Attributes, Quality Attributes Taxonomy
• Select about 10 quality factors relevant to the SUC

3. Scenario Brainstorming
• Identifying raw quality attribute scenarios
• “Walk the System Properties Web” activity

4. Raw Scenario Prioritization
• Dot voting to select 5 scenarios

5. Scenario Refinement
• Generate 5 well-refined QASs

6. Review Results with Stakeholders

260

261

