8. Quality Attributes

Requirements Engineering Process

Feasibility Requirements) -
Study >—° Elicitation and = A

Analysis _/! :
| Requirements
v (Specification i

Feasibility | Requirements
Report Validation
System
Models ¥
User and System
Requirements
L

|

Requirements
Document

EPENDABLE SOFTWARE 2 04

LABORATORY

KU wovessmy

Non-Functional Requirements

« |EEE 9126 /25010

— “A Software requirement that described not what the software will do, but how the
software will do it, for example, software performance requirements, software external
interface requirements, design constraints, and software quality attributes.”

« Sommerville

— “Constraints on the services or functions offered by the system such as timing constraints,
constraints on the development process, standards, etc.”

« Wikipedia

— “An requirement that specifies criteria that can be used to judge the operation of a system,
rather than specific behaviors. They are contrasted with functional requirements that
define specific behavior or functions. The plan for implementing functional requirements
Is detailed in the system design. The plan for implementing non-functional requirements
Is detailed in the system architecture, because they are usually architecturally significant
requirements.”

PENDABLE SOFTWARE 2 O 5

LABORATORY

KU vavsmy
3 Types of Non-Functional Requirements

Non-functional
requirements

Product Organizational External
requirements requirements requirrments

Efficiency Reliability Portability Interoperability Ethical
requirements requirements requirements requirements requirements
Usability Delivery Implementa tion Standards Legislative
requirements requirements requirements requirements requirements

Performance Space Privacy Safety
requirements requirements requirements requirements

EPENDABLE SOFTWARE 2 O 6
LABORATORY

)

Boehm’s NFR

Boehm's-NFR list--

~
~

SourceyS€e Blum, 1992, p176 .
4 ~
rd
// portability
/
/
/ o
/ reliability
/
!
General efficiency x
utility |\ | As-is utility
: usability
1
\
‘\ testability §
\
K>
\%./_ Maintainability > understandability
7
o2
A
\OC‘): e i
No, modifiability
N Qs —
S o P g

DEPENDABLE SOFTWARE
LABORATORY

,7__Design criferia — ~

device-independence

self-containedness

daccuracy

completeness

robustness/integrity

consistency

=

A accountability

device efficiency

accessibility

communicativeness

h self-descriptiveness

structuredness

conciseness

legibility

augmentability

-_— —

-
— o S O e O EEm e EEe EEm S EEm EEE S EEE e R e R S mEe e e e

-
]

McCall’s NFR

McCall's-NFRlizt--~_

Source:Hee van Viiet 2000, ppl11-3 o
pr- usability

/ : .
K integrity WI |
: : efficiency s |

; Product operation W Storage efficiency |
} \ execution efficiency |

4 correctness \ traceability
\

completeness |

|
' I accuracy
\ error tolerance |

I
|
| maintainability
|
\

! reliability

simplicity
testability | conciseness
instrumentation |

\ flexibility |< —>| expandability |
S shof generay |
r\ F ‘__..‘:-%::\% gzlr:fdrae:::yriptiveness |
\ reusability RN _
——
» machine independence |
siw system independence |

~ QU . - — comms. commonality |
~aliy interoperability
SR,

Product revision

Design criteria
o e EE EE EE S O O T S S S S B GED GEE GEN N EN BN BN NN I SN EEN M

| Product transition

S
~

portability

- <> data commonality | ”

’_f L —-—— e —
.—f
L S ——

DEPENDABLE SOFTWARE
LABORATORY

KU wovessmy

Quality Attributes

 Measurable or testable properties of a system

— Used to indicate how well the system satisfies the needs of its stakeholders

» Availability, configurability, modifiability, performance, reliability,
reusability, security, portability, maintainability, efficiency, usability

— Emergent properties : not a measure of software in isolation

* Measures the relationship between software and its application domain

« Cannot measure this until you place the software into its environment
— Quality will be different in different environments

« Software quality is all about fithess to purpose of stakeholders.
— ““Does it do what is needed?”
— “Does it do it in the way that its users need it to?”’
— “Does it do it reliably enough? fast enough? safely enough? securely enough?”’
— “Will it be affordable? will it be ready when its users need it?”’
— ““Can it be changed as the needs change?”’

S ' DEPENDABLE SOFTWARE 2 O 9

LABORATORY

Quality Attributes : Taxonomies

- -ilities
— understandability, usability, modifiability, interoperability, reliability, portability,
maintainability, scalability, configurability, customizability, adaptability, variability,
volatility, traceability, ...

e -ities
— security, simplicity, clarity, ubiquity, integrity, modularity, ...

* -Nness

— user-friendliness, robustness, timeliness, responsiveness, correctness,
completeness, conciseness, cohesiveness, ...

 others

— performance, efficiency, accuracy, precision, cost, development time, low
coupling, ...

EPENDABLE SOFTWARE 2 1 O
BOR.

KU KONKUK
UNIVERSITY

Stakeholders and Quality Attributes

<
v
Stakeholder Quality Attribute
Needs Requirements
‘Increase market share” ------ccceceeeeeo--------> Modifiability, Usability
“Maintain a quality reputation” =======ccecmccce=-- > Performance, Usability, Availability
“Introduce new capabilities seamlessly” -------------- > Performance, Availability, Modifiability
“Provide a programmer-friendly framework” --=-----==----ccceuo--- > Modifiability
“Integrate with other systems easily” - -------- - - -~ > |Interoperability, Portability, Modifiability

EPENDABLE SOFTWARE 2 1 1
LABORATORY

Quality Attributes and Architecture

» The degree to which a system satisfies quality attribute requirements is
directly dependent on architectural structure.

'ﬂw
‘\

Quality Attribute Software Architecture
Requirements Design

» Architects need to have a solid understanding of the quality attribute
requirements for a system, when they are designing the system’s software
architecture.

EPENDABLE SOFTWARE 2 1 2
LABORATORY

Problematic Features of Quality Attribute

* Non-Operational requirements
— “The system must be easy to use.”
— “The system must have high performance.”
— “The system must be portable.”

 Debating the quality attribute to which a system behavior belongs
— “The system must process 10,000 messages per second.”

 Vocabulary variations
— Everyone knows what “high performance” means, but different each others.

« Various inter-dependency among quality attributes
— Trade-off
— No 100% satisfied

213

EPENDABLE SOFTWARE

Quality Requirements: Examples

- SEIZEZIOHUE Tt ZTEZMA 0 RAM SO0 A 20% = Z|CH ESHA|HO| M = At
& &|X| QfOLOF oLt

- ZAES HoEE ZHE XGRHO| DM AHEXI2 E 2 = QUCH

« AEXIIYEZ NS M HET|0 of 2/t HlstH HEY SO0|H 2 HELHES
O 52 ™ K| 2 S-S0k

- O DS B & 7|S2Ctri+LHE 7| & At&5t= th=7(7F F 2| &[0 OfF oL}

- SYUrE2 I THA Ol SHEIX| R=Ct

- B E9| Cyclomatic Complexity= 202 HX| &=L}

e 2C3E| F7|=0.8% O|LHO| A BT

o
rn

2l I 0| X| = 10Mbps LAN &0 A 5= O|L{ £ CIRZE otC}

EPENDABLE SOFTWARE

Quality Requirements: Example

® MHC-PMS (Mental Health Care Patient Management System)

— Product requirements

+ The MHC-PMS shall be available to all clinics during normal working hours (Mon—Fri,
0830-17.30). Downtime within normal working hours shall not exceed five seconds in
any one day. — Availability

» The system should be easy to use by medical staff and should be organized in such a
way that user errors are minimized. — Usability

— Organizational requirements

* Users of the MHC-PMS system shall authenticate themselves using their health
authority identity card. — Security

— External requirements

» The system shall implement patient privacy provisions as set out in HStan-03-2006-priv.
— Standard compliance

S DEPENDABLE SOFTWARE 21 5

LABORATORY

e —
‘ K KONKUK
UNIVERSITY

Two Categories of Quality Attributes

« Bredemeyer Consulting 2001

A= AL 2 A H&Es 28
CH A |« AHIXH/D2H A o MATH 0| A
=z Run-time =2 Development-time =&
sS4 SN UEE A 43, 45 PO ZEO MES B BEF

o ANAE RN CHSE AFE A B Ot T2 HA MESS0 S HE Bt
=z Usability, Correctness, Safety, Reliability, | Localizability, Modifiability, Extensibility,
STl Availability, Performance, Evolvability, Composability, Reusability
=z - User Objectives, Values, Concerns 2 = X2 Objectives, Values,
Source | - Competitive Analysis of Features concerns, i <Al S

CHBAY Y MY S

Trade-off T2

]}EPENDABLE SOFTWARE 2 1 6
LABORATORY

ISO/IEC 9126

FINAL INTERNATIONAL ISO/IEC
DRAFT STANDARD FDIS
9126-1

IS0 9126-2:
Gluality e External Metrics
Characteristics Subcharacteristics 150 9126-%
Suitabiliby Internal Metrics
- - AreUraty —
Functionalty g;izor?h?raaliw P ———
Functionality Compiance — Secretariat ANSI Information technology — Software

Voting begins on prOdUCt quallty -

Eﬂatftr:lx;— 2000-01-20 Part 1:
kil g aultfolzrance —————— it
Reliability Recoverabiliy Vofing teminates on Quality model
Reliability Compliance

Technologies de I'information — Qualité des produits logiciels —
Partie 1: Modéle de qualité

Understandatility

. Learmability ———
Irternal and Heabiltty Operaniity
£ P Atractiveness——— 9
wternal Qualty Usabiity Compliance =
4]
1 ———Time behavior =
Efficiency —————Resource utilization
[———Effieiency Compliance
Analyzability
. ﬂohangeabiliw
Maintainsbility Stability
[™
“——-____‘_‘—Testablllty—
Wiz intainability Corpliance —
fﬁdapmbniw
B T —— Installability
otabiht — Co-ex PE—
I E————— Co=ssstence Please see the administrative notes on page ii-1
— Replaceabilty ————————
Portabilly Complance TR e e N
[WhacH TLEY ARE AWARE AND TO. PROVOE
SUPPORTING | NTATH
|E~E . N?Dg’)g;‘T'ZLDE ‘Y;wfm ;:;\.yrg u-w?; Reference number
LEGO‘:L ‘:‘ow:ncn A.‘NI: U‘E‘EFIF:UFFC‘:E: ISONEC FDIS $126-1:2000(E)
DRAFT INTERNATIONAL STANDARDS MAY ON
DC_CAG\C& HAVE TO SE cG:{';DEFE Ih_‘HE I EC
DiRs To WG, RLFERENCE NAY S8 WADE .
NATIONAL REGULATIONS. © ISO/IEC 2000

EPENDABLE SOFTWARE 2 1 7
LABORATORY

ISO 9126-1 : Information Technology

- Software Product Quality - Part 1: Quality Model

external and
internal
quality

I | I | | |

functionality reliability usability efficiency maintainability portability

zl::iitr)ggy maturity understandability time behaviour analysability adaptability
y fault tolerance learnability changeability installability
interoperability recoverability operability resource stability co-existence
security attractiveness utilisation testability replaceability
functionality reliability usability efficiency maintainability portability
compliance compliance compliance compliance compliance compliance

Figure 4 — Quality model for external and internal quality

218

: DEPENDABLE SOFTWARE
LABORATORY

KU wovessmy

Microsoft Application Architecture Guide

* Quality attributes are the overall factors that affect run- time behavior,
system design, and user experience.

— They represent areas of concern that have the potential for application wide
impact across layers and tiers

— When designing applications to meet any of the quality attributes requirements, it
is necessary to consider the potential impact on other

« 4 Categories of Quality Attributes
— Design Qualities : Conceptual Integrity ,Maintainability ,Reusability

— Run-time Qualities : Availability, Interoperability, Manageability, Performance,
Reliability, Scalability, Security

— System Qualities : Supportability, Testability
— User Qualities : Usability

EPENDABLE SOFTWARE 2 1 9
BORA

Microsoft Quality Attributes — Design Qualities

« Conceptual Integrity
— defines the consistency and coherence of the overall design.

— includes the way that components or modules are designed, as well as factors
such as coding style and variable naming.

* Maintainability
— the ability of the system to undergo changes with a degree of ease.

— these changes could impact components, services, features, and interfaces
when adding or changing the functionality, fixing errors, and meeting new
business requirements.

 Reusability

— defines the capability for components and subsystems to be suitable for use in
other applications and in other scenarios.

— Reusability minimizes the duplication of components and also the implementation
time.

EPENDABLE SOFTWARE 2 2 O
BOR.

Microsoft Quality Attributes — Runtime Qualities

« Availability
— defines the proportion of time that the system is functional and working.

— It can be measured as a percentage of the total system downtime over a
predefined period.

— Availability will be affected by system errors, infrastructure problems, malicious
attacks, and system load.

* Interoperability

— the ability of a system or different systems to operate successfully by
communicating and exchanging information with other external systems written
and run by external parties.

— An interoperable system makes it easier to exchange and reuse information
internally as well as externally.

 Manageability
— defines how easy it is for system administrators to manage the application,

usually through sufficient and useful instrumentation exposed for use in
monitoring systems and for debugging and performance tuning.

EPENDABLE SOFTWARE 2 2 1
BORA

Microsoft Quality Attributes — Runtime Qualities

Performance

— an indication of the responsiveness of a system to execute any action within a
given time interval.

— It can be measured in terms of latency or throughput.

Reliability
— the ability of a system to remain operational over time.

— measured as the probability that a system will not fail to perform its intended
functions over a specified time interval.

Scalability

— ability of a system to either handle increases in load without impact on the
performance of the system, or the ability to be readily enlarged.

Security

— the capability of a system to prevent malicious or accidental actions outside of
the designed usage, and to prevent disclosure or loss of information.

: DEPENDABLE SOFTWARE 2 2 2
LABORATORY

Microsoft Quality Attributes — User Qualities

« Usability
— defines how well the application meets the requirements of the user and

consumer by being intuitive, easy to localize and globalize, providing good
access for disabled users, and resulting in a good overall user experience.

DEPENDABLE SOFTWARE 2 2 3
LABORATORY

CMU SEI Quality Attributes

« Dependability =
« Security B
* Modifiability

* Interoperability

« Performance

|

Carnegie Mellon
Software Engineering Institute
Pittsburgh, PA 15213-3390

Quality Attribute
Workshop
Participants
Handbook

CMU/SEI-2000-SR-001
ECS-SR-2000-01

Mario R. Barbacci
Robert J. Ellison
Charles B. Weinstock
William G. Wood

224

KU vavemsmy

A Process Defining Quality Requirements

H=E EA Business =EH

Measurable Requirements

r

A2 f8 — A2 =&
A LA — =g AN

o
= ANBUeF

2t Q7S AWHQ

LFANZOZ diE

EPENDABLE SOFTWARE 2 2 5
LABORATORY

Making All Requirements Measurable

KONKUK

UNIVERSITY

« Turn vague ideas about quality into measurables or verifiable

The Quality Factors
(abstract notions of
quality properties)

Measurable Criteria
(define some metrics)

¥

Counts taken from
Design Representations
(realization of the metrics)

EPENDABLE SOFTWARE
LABORATORY

examples...
reliability complexity usability
mean time information time taken
to failure? flow between to learn
modules? how to use?
run it and count minutes
count crashes procedure taken for
per hour??? calls??? some user
task???

226

KU KONKUK
UNIVERSITY

Quality Metric & Measure

- Processed transactions/second

Speed - User/event response time
- Screen refresh time
Size - Mbytes

- Number of ROM chips

- Training time

SR L - Number of help frames
- Mean time to failure
Reliability - Probability of unavailability

- Rate of failure occurrence
- Availability

- Time to restart after failure
Robustness - Percentage of events causing failure
- Probability of data corruption on failure

- Percentage of target dependent statements

Portability - Number of target systems

- Volume of data recorded in operation
Maintainability - Number of failures estimated
- Correction time / software size

EPENDABLE SOFTWARE 2 2 7
LABORATORY

Quality Attribute Scenarios

* QAS (Quality Attribute Scenario) is an effective way of identifying and
specifying quality-attribute-specific requirements.
— Specific to the particular system under considerations
— Instantiated from the attribute characterizations of general scenarios

—
> . > C—3
Environment i if i
Source of Stimulus Response
Measure

EPENDABLE SOFTWARE 2 2 8
BOR.

l{ l I KONKUK
UNIVERSITY

A QAS Example for Availability

“An unanticipated message is received by a process during
normal operation. The process informs the operator of the receipt of
the message and continues to operated with no downtime.”

Artifact: W —
Process, Storage, '?

b
Processor,
Stimulus: | communication Response:
(Fault) Record, Notify,
Omission, Disable, Continue

Environment:

B

Crash, Normal, (Normal/Degraded), Response
Internal Timing, Degraded Be Unavailable Measure:
External Response Operation Repair Time,
Availability,
Available/
Degraded

Time Interval

DEPENDABLE SOFTWARE 2 2 9

LABORATORY

Quality Attribute Tree : Example

KU wovessmy

No. | Category Response Measure EF=E QFAE
1 MAEH EXFHz & 1 Core SystemO|A{ 4 Core SystemE X| ¥ o}= system2 2 HZAE AL, H4EQ Operationg $HII=
— = e Ll ol oA 22 &[E= H20| 1 Core System2| Z 2} |30 35%2| Hz+=5 E2{}0{0F $hct,
2 Communication 2=, | HA=QI Operationg $+83t= O] 21014 Core ZF Communication 22 Q18] ME|= Overhead 7+
Communication G|O|E{ | & 10% OIL{O[O{OF ZtCt.
3 A2 E Memory 2% YAl Operation2 THSIE O AHA memory AHEZ 7 W= £ 70 % O[Lj0]0{OF Stc},
ry y
4 Performance =¥ T Z CoreE?l BUEQ OperationZ TH8t= O UM HH| systeme| 2F AlZH F Zt Core=0| Idle 2EHO| HFEEE
Idle Time A|ZH2 15% O|L O]O{OF BHCL,
H4H QI Operationd0f|A| Video Data Decoding 452 7| & 1 Core System2| 3t HEQl 2.5 Data
5 Data Frames/Second Fr:m:s75e:ond§ “.Jt—fll;OF BtC}, B i : AR
6 S| 7I2 M2 HEEQl Operationdt0f|A| Video Decoder?t X| & 7}s8 &3 SHHS| 37|+= 7|E 1 Core System?2| A2
TIA & 9} DFEFZEX| 2 1280X720 HAUMEX|O|C} |
5 HEEQ Operationdl0f| A Video Decoder?t E23t= 2tH2| 312 S FE3l= Bit rate= 7|E 1 Core
7 Bit rate
System2| Z S0} OpEH7HX| 2 20MbpsE X 7HS 80 OF Shch.
4 Core SystemO|M &% 11 0| 2| 5= Core X7t E01'2 B2, 4 Core System 7|8F2| Architecture
8 Modifiability = HEHE H|E HOo|M HAL|= Component?t Connector2| H| &2 Parallel Node2| =X}0f| 8§ FE|= Instance 7 57}
E H|2l3t1 50% 0]2H0|0fOf FC},
AM2H 7S 78 E . "
. = gy A 1 Core SystemO|A] 4 Core SystemZ X| 5} = system2 2 HAE AL, HAHXQl OperationdtH| A
9 MY 7|5 7i= CHY| - ot eor= & P
e e = Video Decoder?} M| S3IH 7|5 & 7188 7|52 100% S LFA|7{0f Tt
Functionality 7t& 7ls HIE
“nChiIlat S Video Decoder?| input data stream S0f error7} U= input frame0| YHE AL, Video Decoder= i
10 sHErAbE 81 : 55 P ~
efle s g frame?2| decodingS THSIX| ¥ 1 passtt £ CHS frames‘- 210 EC{OF Tt
AM2" 715 718 E .
11 Portabilit Y 7|5 W2 e Cache memory size 7} 32K¢! DeviceOlA 16KQ! DeviceZ HZAE Z L, F&HQ Operationsl0f|A] Video
Y .|-7f-9- ;’|h ;lrls'g Decoder?t H|E3tH 7|5 T 7188 7|52 100%E WHA[70f Tt
o o

" DEPENDABLE SOFTWARE
LABORATORY

230

KU wovessmy

The QAS Template

Response

Requirement-ID | QA ###
bed & 1 1 [==RecNe]| St
Category 2t A =] Qialtty Attribute)t 22121 X| J|=& (Gl: Performance, Reliability,
Security)
Source StimulusE £ M A2|= FHIt Al J|=&
Stimulus AAEN LEC = W8 X=30| RACIX =8
Artifacts Stimulus2| J &2 2= AAES LS 2F, FXZUHE, E2 A28 &
. off & g ABO BHERIZEY =2 YD QF St
ERT U iﬁ; St:m)ulus Al AIAE S (232 =C YD, 1 2 C
J|=< Environmentt| A ArtifactO| StimulusE £ 0t=°2! £ #|5t= Action

Ol 2eXl 238 &

F12] Response2| E =2 S&ot= ©2I0t A J=F (01| x%! Cil O

DEPENDABLE SOFTWARE
LABORATORY

REE PO L GG Ef HEl, Bt2 A2, A2t B2 hour, minute, second 3 £
Priority Quality Attribute Tree 20| A 2| R4 =
. £ 0l J|=<E! Sources & Response Measurel)t X|2] LIEE &tLtS S2&2
Description = QoA |22t
231

)

QAS - Availability (Reliability)

« Source of Stimulus
— Internal or External
« Stimulus: a fault one of the following classes
— Omission: a component fails to response to an input
— Crash: the component repeatedly suffers omission faults
— Timing: a component responds but the response is early or late
— Response: a component responds with an incorrect value
« Artifact
— Processor, communication channel, process, or storage
 Environment
— Normal operation, degraded mode
* Response
— Logging the failure,
— notifying selected users or other systems,
— switching to a degraded mode,
— shutting down external systems,
— becoming unavailability during repair.
« Response Measure
— An availability percentage
— Atime to repair
— Time interval in which the system must be available
— Time interval in which system can be in degraded mode

DEPENDABLE SOFTWARE
LABORATORY

QAS Example — Availability (Reliability)

“An unanticipated message is received by a process during
normal operation. The process informs the operator of the receipt of
the message and continues to operated with no downtime.”

Artifact: —
—/3
Process, Storage, > = =5
Processor,
Stimulus: Communication) Response:
(Fault) Record, Notify,
Omission, Environment: Disable, Continue
Crash, Normal, (Normal/Degraded), Response
Internal Timing, Degraded Be Unavailable Measure:
Estarnal Response Operation Repair Time,
Availability,
Available/
Degraded

Time Interval

PENDABLE SOFTWARE 2 3 3

LABORATORY

QAS - Modifiability (Adaptability)

« Source of Stimulus: who makes the changes

— Developer, end user, system administrator
« Stimulus: the changes to be made

— Addition/deletion/modification of a function, quality attribute, capacity
« Artifact: what is to be changed

— The functionality of a system

— its platform

— its user interface

— its environment

— systems with which it interoperates
 Environment: when the change can be made

— Design time, compile time, build time, initiation time, or run time
« Response

— Locates places in architecture to be modified; Makes modification without affecting
other functionality; tests modification; deploys modification

* Response Measure

— Cost in terms of number of elements affects, effort, money; extent to which this affects
other functions or quality attributes

QAS Example — Modifiability (Adaptability)

« A wishes to change the user interface to make a screen’s
background color blue. This change will be made to the code at design
time. It will take less than three hours to make and test the change and
no side effect changes will occur in the behavior.”

4 N\
_ —
»| Artifact: , | -

User Interface
Stimulus: Response:
Wishes to e Modification is
changes Environment: made with no side

At design time effects Response

Measure:

Developer

In three hours

S {DEPENDABLE SOFTWARE 2 3 5

LABORATORY

QAS - Performance

 Source

— One of a number of independent sources, possible from within system
« Stimulus

— Periodic events arrive, sporadic events arrive, stochastic events arrive
» Artifact

— system’s service
 Environment

— Normal mode

— Overloaded mode
« Response

— Processes stimuli

— Changes level of service
« Response Measure

— Latency (Response Time)

— Throughput

DEPENDABLE SOFTWARE
LABORATORY

KU wevary
QAS Example — Performance

e - initiate 1,000 transactions per minute stochastically under
normal operations, and these transactions are processed with an
average latency of two seconds.”

7 m—
Artifact: y —
System L

Stimulus: Response:
Initiate Transactions are
transactions Epvironment: processed

stochastically ynder normal Response
Users operations yviisaunre:
average

latency of two
seconds

DEPENDABLE SOFTWARE 2 3 7

LABORATORY

QAS - Usability

e Source
— End user
e« Stimulus

— wantto
» learn system features; use system efficiently; minimize impact of errors; adapt system; feel

comfortable
« Atrtifact
— system
 Environment
— At runtime or configure time
* Response
— System provides one or more of the following responses

— To support “learn system features”

» Help system is sensitive to context; interface is familiar to user; interface is usable in an unfamiliar
context

— To support “use system efficiently”

» Aggregation of data and/or commands; re-use of already entered data and/or commands; support for
efficient navigation within a screen

— To minimize impact of errors

« Undo, cancel, recover from failure; recognize and correct user error; retrieve forgotten password;
verify system resources

« Response Measure

— Task time, number of errors, number of problems solved, user satisfaction, gain of user
knowledge, ratio of successful operations to total operations, amount of time/data lost

LABORATORY

S DEPENDABLE SOFTWARE 2 3 8

l{ l I KONKUK
UNIVERSITY

QAS Example — Usability

e ° wanting to minimize the impact of an error, wishes to cancel a
system operation at runtime; cancellation takes place in less than one

second.”

=3

Artifact: » T
Stimulus

\1]
System
Z Response:
_ Wishes to cancel
impact of Environment: current operations

Minimize
Response
Measure:
Users .
Cancellation
takes less
than one
second

errors at runtime

239

DEPENDABLE SOFTWARE
LABORATORY

Quality Requirements and Architecture Evaluation

* Quality requirements gives important information such as
— “Is the architecture suitable for the system for which it was devised?”
— “Which of two competing architectures is most suitable for the system at hand?”

« An architecture is suitable if,

— The system that results from it will meet its quality goals.
* A system is modifiable or not wrt. a specific kind of change.
* Asystem is secure or not wrt. a specific kind of threat.
* Asystem is reliable or not wrt. a specific kind of fault occurrence.
» A system performs well or not wrt. specific performance criteria.
* An architecture is buildable or not wrt. specific time and budget constraints.

* Questioning techniques for architecture evaluation
— Rely on thought experiments to check architecture suitability
— Scenario-based style: ATAM (Architecture Tradeoff Analysis Method)
— Checklist-based style

PENDABLE SOFTWARE 240

LABORATORY

Quality Attribute Workshop (QAW)

* Quality Attribute Workshop (QAW)

— Facilitated method
« System-centric
» Used before the software architecture has been created

— Engages system stakeholders early in the life-cycle

— Reveals the driving quality attribute requirements of a software-intensive system
» Scenario-based

* Qutputs of a QAW

— Quality attribute requirements for the system, documented as refined and
prioritized QAS.

— The quality attribute scenarios can then be used as the basis for designing the
software architecture for the system.

EPENDABLE SOFTWARE 24 1

LABORATORY

Motivations of QAW

* Design with Assurance

— The SEI Quality Attribute Workshop (QAW) provides the means to identify
important quality attributes, derived from business and mission goals, before
there is a software architecture.

— Clarifying quality attribute concerns early provides architects with more insight
into what is important and why, in turn improving their ability to create
architectures that better meet organization needs.

« Scenario-Based QAW

— In the QAW, an external team (such as SEI facilitators) holds meetings among
stakeholders during which scenarios representing the quality attribute
requirements are generated, prioritized, and refined.

— From these discussions, system designers gain insight concerning stakeholder
assumptions that may not have been expressed during elicitation of goals which
quality attributes are pulling the architecture in different directions, informing
subsequent tradeoff decisions.

The QAW Steps

1. QAW Introduction

Business/Mission Presentation
Architectural Plan Presentation
Identification of Architectural Drivers
Scenario Brainstorming

Scenario Consolidation

Scenario Prioritization

© N o o 2 W DN

Scenario Refinement

The QAW Steps in Detail

1. QAW Presentation and Introduction

— QAW facilitators describe the motivation for the QAW and explain each step of the method.
2. Business/Mission Presentation

— Astakeholder presents the business and/or programmatic drivers for the system.
3. Architectural Plan Presentation

— Atechnical stakeholder presents the system architectural plans as they stand with respect to early
documents, such as high-level system descriptions, context drawings, or other artifacts that describe the
system’s technical details.

4. Identification of Architectural Drivers

— Architectural drivers often include high-level requirements, business/mission concerns, and various quality
attributes.

— During this step, the facilitators and stakeholders reach a consensus about which drivers are key to the
system.

5. Scenario Brainstorming

— Stakeholders generate real-world scenarios for the system. Scenarios comprise a related stimulus, an
environmental condition, and a response.

— Facilitators ensure that at least one scenario addresses each of the architectural drivers identified in Step 4.
6. Scenario Consolidation

— Scenarios that are similar in content are consolidated.
7. Scenario Prioritization

— Stakeholders prioritize the scenarios through a voting process.
8. Scenario Refinement

— For the top four or five scenarios, the following are described: the business/mission goals that are affected
by those scenarios, the relevant quality attributes associated with those scenarios

DEPENDABLE SOFTWARE
LABORATORY

Mini-QAW

1. Mini-QAW Introduction
2. Introduction to Quality Attributes, Quality Attributes Taxonomy
3. Scenario Brainstorming

— “Walk the System Properties Web” activity

4. Raw Scenario Prioritization

— Dot voting

5. Scenario Refinement

— While time remains

6. Review Results with Stakeholders

l{ l] KONKUK
UNIVERSITY

1. Mini-QAW Introduction

« Take into account specific roles of stakeholders.
— For example, “Smart Home System” has 10 different stakeholders and goals.

Stakeholders = Hst S|aALS - Goal
CEO
7H|:|I-x|.

EPENDABLE SOFTWARE 2 4 6
LABORATORY

EPENDABLE SO RE
LABORATO!

KU KONKUK
UNIVERSITY

2. Introduction to Quality Attributes, Quality
Attributes Taxonomy

« Same properties for different systems

Availability

Maintainability 4 Modifiability
==System A ==System B

247

o

System Properties Web

» Define your own system properties web
— Select appropriate quality factors for your system under consideration.

Upgrade-ability

Reusability Availability
Manageability Reliability
Security | , | , | \ . Crawl-ahility
Build-ability - ' " Query-ability
Maintainability _ _ Deploy-ahility
Modifiability Scalability

S -:’;DEPENDABLE SOFTWARE 248

LABORATORY

3. Scenario Brainstorming

Objective: Identify raw quality attribute scenarios

Timing: 30 minutes to 2-3 hours

Steps:

1.

W

EPENDABLE SOFTWARE
LABORATORY

Start with a Scenario on the web, ask “Is this Quality attribute relevant to your
system?”

If Yes, spend 5 minutes brainstorming scenarios / concerns on that scenario.
Write raw scenarios on stickies and put on web

After 5 minutes, move to next scenario

Raw Quality Attribute Scenario

» Informally describes a stakeholder’s concern and concrete instances of
quality attributes

Peak load is
We need uptime 150 requests
during peak System per second

business hours responds even
when parts of
the system fail

_‘ ' DEPENDABLE SOFTWARE 2 5 O
LABORATORY

EPENDABLE SOFTWARE 2 5 1
LABORATORY

K KONKUK
UNIVERSITY

“Walk the System Properties Web” Activity

EPENDABLE SOFTWARE 2 5 2
LABORATORY

253

4. Raw Scenario Prioritization

» Objective : Identify Highest Priority Scenarios usingdot voting
* Timing : 5 minutes

« Steps:
— Dot Voting:
» Each stakeholder gets n/ 3 + 1 dots for scenarios where n = # scenarios
« 2 votes to choose “top quality attribute”

EPENDABLE SOFTWARE

254

e

EPENDABLE SOFTWARE 2 5 5

LABORATORY

KU wovessmy

5. Scenario Refinement

» Objective : Generate Quality Attribute Scenarios based on raw notes
« Timing : 30 - 60 minutes

« Steps:
1. Start with high priority scenario
2. Fill out the worksheet, identifying the components of a quality attribute scenario
3. Complete and present to stakeholders

- Environment

Source Artifact Response

Stimulus

Response Measure:

EPENDABLE SOFTWARE 2 5 6

LABORATORY

KU KONKUK
UNIVERSITY

Availability

Raw Scenario: In the event of hardware failure, search
service is expected to return results during normal working
hours for US services representatives.

Response Measure:
5 sec response, 12
average QPS

. =" Failed search server ~~~~"-"~--=================°=°=1°
| I
! Source Artifact Response :
I I
! User Executes a Sea r.ch Returns results !
: search service 1
. > —> :
. Stimulus :
|]
I]
I]
I I
I]
|]
| I
I I

Refined Scenario: In the event of hardware failure, search service is expected to
return results within 5 sec, in 12 average QPA (Queries Per Sec)

ABLE SOFTWARE ZD

N
LABORATORY

Mini-QAW vs. Traditional QAW

Mini-QA Traditional QAW
* Routine or well understood « Higher risk projects
systems/problems « System or problem is new to team
* Required to minimize upfront « Stakeholders prefers traditional
costs methods

* Limited experience with traditional . Experienced facilitators available
QAW

* Relatively short overall schedule

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 2 5 9
LABORATORY

Exercise 5: Mini-QAW

« Perform the Mini-QAW for your “Q1&5 1} A|”
— Follow the steps of Mini-QAW
— Refine 5 QASs

« The Mini-QAW steps :

1. Mini-QAW Introduction
« Assign 10 different roles of stakeholders to all team members
« Define/share the overall context/boundary of the system under consideration (SUC)
2. Introduction to Quality Attributes, Quality Attributes Taxonomy
« Select about 10 quality factors relevant to the SUC
3. Scenario Brainstorming
« |dentifying raw quality attribute scenarios
« “Walk the System Properties Web” activity
4. Raw Scenario Prioritization
« Dot voting to select 5 scenarios
5. Scenario Refinement
« Generate 5 well-refined QASs

6. Review Results with Stakeholders '

260

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 2 6 1
LABORATORY

