6. Requirements Specification

Requirements Engineering Process

Feasibility Requirements "\
Study >—° Elicitation and == R

Analysis _/! !
| Requirements
I (Specification i

Feasibility | Requirements
Report Validation
System
Models ¥
User and System
Requirements
L

1

Requirements
Document

EPENDABLE SOFTWARE 1 3 5
LABORATORY

KU tvansme
Requirements

» Range from a high-level abstract statement of service or system constraint
to detailed mathematical functional specification

* Types of requirements

— User requirements

« Statements in natural language, diagrams of the services the system provides and its
operational constraints

* Written for(from) customers
* Defined

— System requirements

« Structured document setting out detailed descriptions of the system’s functions,
services and operational constraints.

» Define what should be implemented to support user requirements
« May be part of a contract between clients and contractors

» Specified

t E:?:l EPENDABLE SOFTWARE 1 3 6
o LABORATORY

Requirements Definitions and Specifications

User Requirement Definition

1. The software must provide a means of representing and accessing external files created by
other tools.

System Requirement Specification

The user should be provided with facilities to define the type of external files.

Each external file type may have an associated tool which may be applied to the file.

Each external file type may be represented as a specific icon on the user’s display.
Facilities should be provided for the icon representing an external file type to be defined by
the user.

5. When a user selects an icon representing an external file, the effect of that selection is to
apply the tool associated with the type of the external file to the file represented by the
selected icon.

5= 22) =

DEPENDABLE SOFTWARE
LABORATORY

Functional vs. Non-Functional Requirements

* Functional requirements
— Statements of services which the system should provide
— How the system should react to particular inputs
— How the system should behave in particular situations

* Non-functional requirements

— Constraints on the services or functions offered by the system
* Timing constraints
» Constraints on the development process
« Standards

« Domain requirements
— Requirements that come from the application domain of the system
— Reflect characteristics of the target domain
— May be functional or non-functional or the both

EPENDABLE SOFTWARE

Rl

138

Non-Functional Requirements

« Define system properties and constraints
— Reliability, Response time, Storage requirements
— Constraints on I/O device capability
— System representations, Etc.

 The challenge of NFRs
— Hard to model

— Usually stated informally
+ Often contradictory, difficult to enforce during development
+ Difficult to evaluate for the customer prior to delivery

— Hard to make them measurable requirements
+ We'd like to state them in a way that we can measure how well they’ve been met

« Often called Quality Attributes or Quality Requirements
— Often called just the “-ilities”

— Non-functional requirements may be more critical than functional requirements.

— If these are not met, the system is totally useless.

KU wovessmy

« Critical systems often include non-functional requirements into mandatory (i.e.,

functional) requirements.

PENDABLE SOFTWARE
LABORATORY

139

Classification of Non-Functional Requirements

« Three types of non-functional requirements

— Product requirements
« Specify that the delivered product must behave in a particular way
* e.g., execution speed, reliability, etc.

— Organizational requirements
* Requirements which are a consequence of organizational policies and procedures
* e.g., process standards, implementation requirements, etc.

— External requirements
* Requirements which arise from the factors external to the development process
» e.g. interoperability requirements, legislative requirements, etc.

DEPENDABLE SOFTWARE
LABORATORY

KU vavsmy
3 Types of Non-Functional Requirements

Non-functional
requirements

Product Organizational External
requirements requirements requirrments

Efficiency Reliability Portability Interoperability Ethical
requirements requirements requirements requirements requirements
Usability Delivery Implementa tion Standards Legislative
requirements requirements requirements requirements requirements

Performance I Space ‘ Privacy I Safety I

requirements requirements requirements requirements

EPENDABLE SOFTWARE 1 4 1
LABORATORY

Examples of Non-Functional Requirements

* Product requirement

— 8.1 The user interface for LIBSYS shall be implemented as simple HTML without frames
or Java applets.

* Organizational requirement

— 9.3.2 The system development process and deliverable documents shall conform to the
process and deliverables defined in XYZCo-SP-STAN-95.

« External requirement

— 7.6.5 The system shall not disclose any personal information about customers apart from
their name and reference number to the operators of the system.

Goals and Requirements

Non-functional requirements may be very difficult to state precisely.
— Imprecise requirements may be also difficult to verify.
— Write a “goal’ first — transform into “verifiable non-functional requirements”

Goal
— Ageneral intention of the user

— Example : “ease of use” — “The system should be easy to use by experienced
controllers and should be organized in such a way that user errors are minimized.”

Verifiable non-functional requirement
— A statement using some measure that can be tested objectively

— “Experienced controllers shall be able to use all the system functions after a total of two
hours training. After this training, the average number of errors made by experienced
users shall not exceed two per day.”

PENDABLE SOFTWARE 1 4 3

LABORATORY

Domain Requirements

Describe system characteristics and features of the target domain
— Derived from the application domain

Domain requirements may be
— New functional requirements
— Constraints on existing requirements
— Definition of specific computations

If domain requirements are not satisfied, the system may be unworkable.

EPENDABLE SOFTWARE 1 44

LABORATORY

Domain Requirements Example : LIBSYS

Domain Requirements

EPENDABLE SOFTWARE 1 4 5
TOl

Rl

Requirements Completeness and Consistency

* Problems arise when requirements are not precisely stated.
— Ambiguous requirements may be interpreted in different ways.

* In principle, requirements should be both complete and consistent.
— Complete : Should include descriptions of all facilities required

— Consistent : Should be no conflicts or contradictions in the descriptions of the
system facilities

 |n practice, it is impossible to produce a complete and consistent
requirements document with natural lanquages.
— Need for (formaliinformal/semi-formal) requirements models

EPENDABLE SOFTWARE

146

KU tvansme
Software Requirements Document

« SRS (Software Requirements Specification) O SRD (Software Requirements Document)

» The software requirements document is the official statement of what is
required of the system developers.

— Should include both a definition of user requirements and a specification of the
system requirements

— NOT a design document.

— As far as possible, it should set of WHAT the system should do rather than HOW
it should do it.

« The goal of requirements engineering:

— “Not to write the perfect requirements specification, but create the best possible
product at the right time”

147

KU wovessmy

Purposes of SRS

« How do we communicate the Requirements to others?

— It is common practice to capture them in an SRS
« But, an SRS doesn’t need to be a single paper document

» Purpose
— Communication
+ Explains the application domain and the system to be developed
— Contractual
* May be legally binding!
* Expresses agreement and a commitment
— Baseline for evaluating the software
» Supporting testing, V&V
* “Enough information to verify whether delivered system meets requirements”
— Baseline for change control

S {DEPENDABLE SOFTWARE 1 48

LABORATORY

KU tvansme
Features for Good Specifications

Valid (Correct) - Expresses the real needs of the stakeholders (customers, users,...)
- Does not contain anything that is not “required”

Unambiguous - Every statement can be read in exactly one way

- All the things the system must do and all the things it must not do!
- Conceptual Completeness

Complete » E.g., responses to all classes of input
- Structural Completeness
 E.g., no TBDs!!!
Understandable (Clear) - E.g. by non-computer specialists
: - Doesn’t contradict itself
Consistent)
- Uses all terms consistently
Ranked - Indicates relative importance / stability of each requirement
Verifiable - A process exists to test satisfaction of each requirement
Modifiable - Can be changed without difficulty .
» Good structure and cross-referencing
Traceable - Origin of each requirement is clear

- Labels each requirement for future referencing

EPENDABLE SOFTWARE 1 49
LABORATORY

SRS Contents

- Software Requirements Specification should address:
— Functionality
* What is the software supposed to do?

— External interfaces

* How does the software interact with people, the system's hardware, other hardware,
and other software?

+ What assumptions can be made about these external entities?
— Required performance

* What is the speed, availability, response time, recovery time of various software
functions, and so on?

— Quality attributes
» What are the portability, correctness, maintainability, security, and other considerations?
— Design constraints imposed on an implementation

» Are there any required standards in effect, implementation language, policies for
database integrity, resource limits, operating environment(s) and so on?

S DEPENDABLE SOFTWARE 1 50

LABORATORY

SRS Should Not Include

* Project development plans

— E.g. cost, staffing, schedules, methods, tools, etc
» Lifetime of SRS is until the software is made obsolete
» Lifetime of development plans is much shorter

 Product assurance plans

— Configuration Management, Verification & Validation, test plans, Quality
Assurance, etc.
» Different audiences
» Different lifetimes

* Designs
— Requirements and designs have different audiences
— Analysis and design are different areas of expertise

— Except where application domain constrains the design
+ E.g., limited communication between different subsystems for security reasons

DEPENDABLE SOFTWARE
LABORATORY

l{ l] KONKUK
UNIVERSITY

Typical Mistakes in SRS

| Mistakes ___|Descripton

Noise
Silence
Over-Specification
Contradiction
Ambiguity
Forward Reference
Wishful Thinking
Requirements on Users
Jigsaw Puzzles
Duck Speak Requirements

Unnecessary Invention of
Terminology

Inconsistent Terminology

Putting the onus on the
developers

Writing for the hostile reader

EPENDABLE SOFTWARE
LABORATORY

text that carries no relevant information to any feature of the problem

a feature that is not covered by any text

text that describes a detailed design decision, rather than the problem

text that defines a single feature in a number of incompatible ways

text that can be interpreted in at least two different ways

text that refers to a terms or features yet to be defined

text that defines a feature that cannot possibly be verified

Cannot require users to do certain things, can only assume that they will
Distributing key information across a document and then cross-referencing

Requirements that are only there to conform to standards
e.g. ‘user input presentation function’

Inventing and then changing terminology

i.e. making the reader work hard to decipher the intent

There are fewer of these than friendly readers

152

KU wovessmy

Requirements and Design are Inseparable

* In principle,

Requirements should state what the system should do.
Design should describe how it does this.

 |n practice, requirements and design are inseparable.

EPENDABLE SOFTWARE

A system architecture may be designed to structure the requirements.

The system may inter-operate with other systems that generate design
requirements.

The use of a specific architecture to satisfy non-functional requirements may be
a domain requirement.

This may be the consequence of a regulatory requirement.

153

-ES DEPEN
o
N 4

What vs. How Dilemma

* Question : “How can you tell a requirement from design?”
* Answer : “It depends on your point of view.”

“One man’s ceiling is another man’s floor.”

Stakeholder Needs
@ What—

How ™—— Product or System Features

YUy What—
J!L, HOW> SRS (Use Cases)
1o, What
How Design Spec.
\: Test Procedures

Documentation Plans

DABLE SOFTWARE
LABORATORY

KU

KONKUK
UNIVERSITY

154

KU oo
Requirements Document Variability

» Information in requirements document depends on the type of system and
the approach to development used.

— If systems are developed incrementally, it will typically have less detail in the
requirements document.

Requirements documents standards have been designed.
— E.g., IEEE standards
— Mostly applicable to the requirements for large systems engineering projects

' DEPENDABLE SOFTWARE 1 5 5
| LABORATORY

KU KONKUK
UNIVERSITY

SRS Standard: IEEE STD 830-1998

IEEE Std 830-1998
(Rewision of
IEEE Std 830-1993)

IEEE Std 830-1998

Table of Contents

1. Introduction
IEEE Recommended Practice for 1.1 Purpose
Software Requirements 1.2 Scope
SpeCiﬁcations 1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview

2. Overall description
2.1 Product perspective
Sponsored by the 2.2 Product functions
Software Engineering Standards Committee L
2.3 User characteristics
20 October 1998 SHO4654 2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing
this section of the SRS.)

Appendixes
Index

IEEE Computer Society

Figure 1—Prototype SRS outline

Auhorzed licensed use kmited lo: Konkuk Urev. Downloaded on Apel 16.2019 a1 07.16.13 UTC from IEEE Xplore. Restrictions apply

EPENDABLE SOFTWARE 1 5 6
LABORATORY

KU KONKUK
UNIVERSITY

SRS Templates: IEEE STS 830.1998

A.1Template of SRS Section 3 organized by mode: Version 1 A.2 Template of SRS Section 3 organized by mode: Version 2
3. Specific requirements 3. Specific requirements
3.1 External interface requirements 3.1. Functional requirements
3.1.1 User interfaces 3.1.1 Mode |
3.1.2 Hardware interfaces 3.1.1.1 External interfaces
3.1.3 Software interfaces 3.1.1.1.1 User interfaces
3.1.4 Communications interfaces 3.1.1.1.2 Hardware interfaces
3.2 Functional requirements 3.1.1.1.3 Software interfaces
3.2:1 Mode 1 3.1.1.1.4 Communications interfaces
3.2.1.1 Functional requirement I.1 3.1.1.2 Functional requirements

3.1.1.2.1 Functional requirement |

3.2.1.n Functional requirement l.n

5.9 s H 1
322 Mode2 3.1.1.2.n Functional requirement n

3.1.1.3 Performance
312 Mode 2

3.2.m Mode m
3.2.m.1 Functional requirement . 1 .
3.l.m Mode m

3.2 Design constraints
. 3 Software system attributes
3.2.m.n Functional requirement m.n 34 Other requirements
33 Performance requirements
34 Design constraints
3.5 Software system attributes
3.6 Other requirements
EPENDABLE SOFTWARE ’] 5 7

LABORATORY

SRS Templates: IEEE STS 830.1998

A.3 Template of SRS Section 3 organized by user class

3. Specific requirements

3.1

EPENDABLE SOFTWARE
LABORATORY

External interface requirements
K30 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces
Functional requirements
3.2.1 Userclass 1
3.2.1.1 Functional requirement 1.1

3.2.1.n Functional requirement 1.n
3.2.2 Userclass2

3.2.m Userclassm
3.2.m.1 Functional requirement m. |

3.2.m.n Functional requirement m.n
Performance requirements
Design constraints
Software system attributes
Other requirements

A.4 Template of SRS Section 3 organized by object

3. Specific requirements

S

N/

)

External interface requirements
3:1.1 User interfaces

3.1.2 Hardware interfaces

3.1.3 Software interfaces

3.1.4 Communications interfaces
Classes/Objects

3.2.1 Class/Object 1

3.2.1.1 Auributes (direct or inherited)
3.2.1.1.1 Auribute |

3.2.1.1.n Attribute n
3.2.1.2 Functions (services, methods, direct or inherited)
3.2.1.2.1 Functional requirement 1.1

3.2.1.2.m Functional requirement 1.m
3.2.1.3 Messages (communications received or sent)
3.2.2 Class/Object 2

3.2.p Class/Object p
Performance requirements
Design constraints
Software system attributes
Other requirements

158

SRS Templates: IEEE STS 830.1998

A.5 Template of SRS Section 3 organized by feature A.6 Template of SRS Section 3 organized by stimulus
3. Specific rcquirC_mcnlis _ 3. Specific requirements
3.1 External ll_llCI'lflCC requirements 3.1 External interface requirements
3.1.1 User interfaces 3.1.1 User interfaces

3.1.2 Hardware interfaces 3.1.2
3.3 Software interfaces

Hardware interfaces
. s . A 3.1.3 Software interfaces
3.1.4 Communications interfaces 3.1.4 R
. 3.1 C cations interfaces
32 System features = =

Y . 39 “tional reauireme
2.1 System Feature 1 3.2 I;u’miuont;l _uqlllnu]mnts
3.2, Stimulus

3.2.1.1 Introduction/Purpose of feature
o o) s et o s
3.2.1.2 Stimulus/Response sequence 3.2.1.1 Functional requirement 1.1

-
3

3.2.1.3 Associated functional requirements
3.2.1.3.1 Functional requirement |

3.2.1.n Functional requirement I.n

3.2.2 Stimulus 2
3.2.1.3.n Functional requirement n
3.2.2 System feature 2

3.2.m Stimulus m
3.2.m.1 Functional requirement m. 1

3.2.m System feature m
3.3 i’crl'nrmuncc requirements 3.2.m.n Functional requirement m.n
3.4 Design constraints 3.3 Performance requirements
3.5 Software system attributes 34 Design constraints
3.6 Other requirements 35 Software system attributes
3.6 Other requirements

EPENDABLE SOFTWARE 1 5 9
LABORATORY

SRS Templates: IEEE STS 830.1998

A.7 Template of SRS Section 3 organized by functional hierarchy

152
3. Specific requirements
3.1 External interface requirements
3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces
3.2 Functional requirements
3.2.1 Information flows
3.2.1.1 Data flow diagram 1
3.2.1.1.1 Data entities
3.2.1.1.2 Pertinent processes 323
3.2.1.1.3 Topology
3.2.1.2 Data flow diagram 2
3.2.1.2.1 Data entities
3.2.1.2.2 Pertinent processes
3.2.1.2.3 Topology
3.2.4

3.2.1.n Data flow diagram n

3:3 Performance requirements
34 Design constraints
3:5 Software system attributes
3.6 Other requirements

EPENDABLE SOFTWARE
LABORATORY

3.2.1.n.1 Data entities
32.1n2 P

3.2.1.n.3 Topology

Inent processes

Process descriptions

3221

Process |
3.2.2.1.1 Input data entitics
2 Algorithm or formula of process

3.2.2.1.3 Affected data entities

Input data entities
Algorithm or formula of process
3 Affected data entities

3.2.2.m Process m
3.2.2.m.1 Input data entities
rithm or formula of process
3.2.2m.3 Affected data entities
Data construct specifications
3.2.3.1 Construct |
3.2.3.1.1 Record type
3.2.3.1.2 Constituent fields
3.2.3.2 Construct 2
3.2.3.2.1 Record type
3.2.3.2.2 Constituent fields

3.2.3.,p Construct p
3.2.3.p.1 Record type
3.2.3.p.2 Constituent ficlds
Data dictionary
3241 Dataclement |
3.2.4.1.1 Name
3.2.4.1.2 Representation
3.2.4.1.3 Units/Format
3.2.4.1.4 Precision/Accuracy
3.2.4.1.5 Range
3.24.2 Dataclement 2
3.242.1 Name
3.2.4.2.2 Representation
3.2.42.3 Units/Format
3.2.4.2.4 Precision/Accuracy
3.24.2.5 Range

3.2.44 Dataclement ¢
3.24.4.1 Name

3.2.4.4.2 Representation

3.2.4.4.3 Units/Format

3.2.4.94 Precision/Accuracy

3.24.4.5 Range

KU KONKUK
UNIVERSITY

160

KU KONKUK
UNIVERSITY

SRS Templates: IEEE STS 830.1998

A.8 Template of SRS Section 3 showing multiple organizations

3. Specific requirements
3.1 External interface requirements

311 User interfaces

3.1.2 Hardware interfaces

3.1.3 Software interfaces

3.1.4 Communications interfaces
3.2 Functional requirements

3.2.1 User class |

3.2.1.1 Feature 1.1

3.2.1.1.1 Introduction/Purpose of feature
3.2.1.1.2 Stimulus/Response sequence
3.2.1.1.3 Associated functional requirements
Feature 1.2
3.2.1.2.1 Introduction/Purpose of feature
3.2.1.2.2 Stimulus/Response sequence
3.2.1.2.3 Associated functional requirements

=
[
(3]

3.2.1.m Feature 1.m
3.2.1L.m.1 Introduction/Purpose of feature
3.2.1.m.2 Stimulus/Response sequence

3.2.1.m.3 Associated functional requirements
3.2.2 Userclass 2
3.2.n Userclassn

Performance requirements
Design constraints
Software system attributes
Other requirements

EPENDABLE SOFTWARE 1 6 1
LABORATORY

(SR PRI R
L7, I SN

N

IEEE STD 830-1998 — Incorrect Translation

1. 291
11 25
12 &9
1.3 &2, 2fof
14 &=

15712

-

2. T Mz

2.1 Mz 2

+ AAE QIE{H|O|A + AIBAQIEEOlA - BHERI0] QIEH0]A
« ATEQ0] QIEfmHO[A « SA QIE{E[O|A - o222 =g
22 NE7Is

23 MERH £
24 JekAkgt
T SR SS90 At AR, ChE S8 mEa2kalo| QIRHoIA, HE 43, Ut 7k, Hof 7k,
Al2LY 271 Atg) 911 B 9t 27 AR
25 71IF " o=y
26 @7 AR EY

ool

3. I 27 ArE
3.1 2IF QlEfmH[o|A
* AZX}2IE{H|0|2, SI=S0] QIE{T0]A, AZEL0] QIEH|0|A, S QIEHO0|A J|S
32 4527 M
3.3 EZDB 27 ARt
3.4 2A| Mt ARt
35 AZER 0] AAR &4
- A2, 712 HoM, RAIES E01d, 014

e
J
[>

i

LABORATORY

S ' DEPENDABLE SOFTWARE 1 62

Problems of SRS in Natural Languages

« Lack of clarity
— Precision is difficult without making the document difficult to read.

 Requirements confusion
— Functional and non-functional requirements tend to be mixed-up.

* Requirements amalgamation
— Several different requirements may be expressed together.

« Example : insulin pump software system

3.2 The system shall measure the blood sugar and deliver insuli

n, if required, every 10 minutes. (Changes in blood sugar are rel
atively slow so more frequent measurement is unnecessary; less
frequent measurement could lead to unnecessarily high sugar |

evels.)

3.6 The system shall run a self-test routine every minute with t
he conditions to be tested and the associated actions defined i
n Table 1. (A self-test routine can discover hardware and softwa
re problems and alert the user to the fact the normal operation
may be impossible.)

S -:’;DEPENDABLE SOFTWARE 1 6 3

LABORATORY

KU wovessmy

Structured Specifications

An approach to writing requirements where
— The freedom of the requirements writer is limited and
— Requirements are written in a standard way.

This works well for some types of requirements such as embedded control
system.

— But, sometimes too rigid for writing business system requirements

— Form-based specification
— Tabular specification

EPENDABLE SOFTWARE 1 64

LABORATORY

KU KONKUK
UNIVERSITY

Form-based Specifications

« Specification includes information in a form format :

— Definition of the function or entity

— Description of inputs, source, outputs, and destination
— Description of the action to be taken

— Pre and post conditions (if appropriate)

— The side effects (ifany) of the function

* Requirements for the insulin pump software system

Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: safe sugar level.
Description

Computes the dose of insulin to be delivered when the current
measured sugar level is in the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2); the previous two readings (r0
and r1).

Source Current sugar reading from sensor. Other readings
from memory.

Outputs CompDose—the dose in insulin to be delivered.
Destination Main control loop.

EPENDABLE SOFTWARE
LABORATORY

Action

CompDose is zero if the sugar level is stable or falling or if the
level is increasing but the rate of increase is decreasing. If the
level is increasing and the rate of increase is increasing, then
CompDose is computed by dividing the difference between the
current sugar level and the previous level by 4 and rounding the
result. If the result, is rounded to zero then CompDose is set to
the minimum dose that can be delivered.

Requirements

Two previous readings so that the rate of change of sugar level
can be computed.

Pre-condition

The insulin reservoir contains at least the maximum allowed
single dose of insulin.

r0 is replaced by r1 then r1 is replaced by r2.
None.

Post-condition
Side effects

| KU Sovem

Tabular Specification

* Particularly useful when you have to define a number of possible alternative
courses of action

— For example, the insulin pump systems bases its computations on the rate of
change of blood sugar level, and the tabular specification explains how to
calculate the insulin requirement for different scenarios.

* Requirements for the insulin pump software system

Sugar level falling (r2 < r1) CompDose =0
Sugar level stable (r2 =r1) CompDose =0

Sugar level increasing and rate of
increase decreasing CompDose =0
((r2—r1) <(r1 -r0))

Sugar level increasing and rate of ~ CompDose = round ((r2 —r1)/4)
increase stable or increasing If rounded result = 0 then
(r2=r1) = (r1 -r0)) CompDose = MinimumDose

EPENDABLE SOFTWARE 1 6 6
LABORATORY

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 1 6 7
LABORATORY

7. Use Case Analysis

What is Use Case Modeling?

l{ l] KONKUK
UNIVERSITY

« A means for capturing the desired behavior for the system under

development

— Away to communicate the system's behavior with various stakeholders

— A way to verify all requirements are captured

* Identifies
1. Who or what interacts with the system
2. What the system should do

O

Use Case 1

* A planning instrument O &

- Use Case 2

Use Case 3

X

Actor 2

EPENDABLE SOFTWARE
LABORATORY

169

]}EPENDABLE

Who Reads Use Cases?

 Client Team g

Client Users

* Developer Team

P -

Tester

Project
Manager

Requirements Technical
Designer Specifier Writer

SOFTWARE
LABORATORY

170

Benefits of Use Cases

» Give context for requirements
« Easy to understand
« Facilitate agreement with customers

» lllustrate why the system is needed
— Use cases: why the system is used
— Actors: who/what wants to interact with the system

 The idea behind use cases is to decide what the system will be used for
before defining what the system is supposed to do.

BLE SOFTWARE 1 7 1
TORY

Actors and Use Cases

* Actor
— Someone/something outside the system that interacts with the system

« Use case ©
— What an actor wants to use the system to do

Use Case

EPENDABLE SOFTWARE

KU wovessmy

Actor

172

What is a Use Case?

* Ause case defines a sequence of actions performed by a system that yields
an observable result of value to an actor.

_‘ ' DEPENDABLE SOFTWARE 1 7 3
LABORATORY

Use Cases Contain Software Requirements

 Each Use Case
— Describes actions the system takes to deliver something of value to the actor
— Shows the system functionality an actor uses
— Models a dialog between the system and actors

— Shows a complete and meaningful flow of events from the perspective of a
particular actor

Instances of Actors

Sam
acts as a Student

X

Student

Jody
acts as a Student

D

Register
for Courses

175

A User Can Act as Several Actors

CL acts as a Student
] - X
% Student
Charlie acts as a Professor —— .

Professor

90
2
!

KU KONKUK

176

Communicates-Association

* A channel of communication O
between an actor and a use case
— Aline (arrow) is used.
Actor 1
 An arrow indicates who initiates
the communication. l

Actor 2

DEPENDABLE SOFTWARE 1 7 7
LABORATORY

Each Communicates-Association is a Whole Dialog

Student logs on to system

—_—
System approves log on

<
Student requests course info % O %
— —_— —

Course
Student Register for Catalog
Courses System

System displays course list \
<7

Student select courses Systemtra>nsm|ts request

- I Course Catalog returns course info
System confirms course availability -
<

System displays approved schedule
<7

: DEPENDABLE SOFTWARE 1 78
LABORATORY

A Scenario is a Use Case Instance

2 %

Course
Student Register for Catalog
Courses System

Scenario 1

* Log on to system

* Approve log on

» Enter subject in search
» Get course list

* Display course list

» Select courses

» Confirm availability

* Display final schedule

Scenario 2
* Log on to system
* Approve log on
» Enter subject in search
* Invalid subject
* Re-enter subject
* Get course list
* Display course list
 Select courses
» Confirm availability
* Display final schedule

l{ l] KONKUK
UNIVERSITY

Use Case Diagram

o "
Apply for - Financial
Trading Account Manage Portfolio Network /l\

e Quote
System
Get Quote
/Market Trading

Tradlng System
Execute Trade

Customer\ i
o < /News System
Distribute

/ .
i Review Account News
Broker \ i

]}EPET_?\;ZI;:AESRF:\NARE C | O C k 1 8 O

A Use Case Model Contains Diagrams and Text

The System
= % N
Use-Case-Model Survey Actor 1 = - UseCase \\
- survey description - g
- list of all actors e _O — Actor 2
- list of all use cases /
/ Use Case 2
/ /
O
I / \
II : Use Case 3 T %
/ 1
y, ,’ N Actor 3
/s \
7 /
U - s I / l
— - ’ — | 7
— - — - — |~
= = =
Use-Case 1 Spec. Use-Case 2 Spec. Use-Case 3 Spec.
- brief description - brief description - brief description
- flow of events - flow of events

- flow of events

DEPENDABLE SOFTWARE
LABORATORY

Example: Online Course Registration System

Course Registration System

X > 2

Student Register for Courses Course
Catalog System

X OO —

Actor X Another Use Case %

/
/ Actor Y
Use Case 3

How Should | Name a Use Case?

A use case name indicates the value or goal.

» Use the active form: begin with a verb
— Imagine a to-do list

« Examples of variations
— Register for Courses
— Registering for Courses
— Acknowledge Registration
— Course Registration
— Use Registration System

» Which variations show the value to the actor? Which do not?
» Which would you choose as the use-case name? Why?

S‘ ' DEPENDABLE SOFTWARE 1 83
LA

BORATORY

I}EPEN

KU KONKUK
UNIVERSITY

Use Case Tips

Describe only the events visible to the actor:
— What the actor does

— What the system does in response
— “Actor-activated Use Case”

Make use cases provide value to an actor

— Detail until everyone has a common understanding of the requirements, then
stop

Make all use cases of the same level

Sketch the user interface, but don’t detail it.

DABLE SOFTWARE 1 84

LABORATORY

Steps for Creating a Use Case Model

1. Find actors and use cases
— ldentify and describe actors
— ldentify and describe use cases

2. Write the use cases
— Outline all use cases
— Perioritize and detail the use cases

EPENDABLE SOFTWARE

Find Actors

« Who is pressing the keys (interacting with the system)?

pP—F—

Student Registrar Registration System

The student never touches this system; the registrar operates it.
Or perhaps you are building an Internet application?

P —

Student Online Registration System

EPENDABLE SOFTWARE 1 8 6
BOR.

Identify Actors

Who/what uses the system?

Who/what gets information from this system?
Who/what provides information to the system?
Where in the company is the system used?
Who/what supports and maintains the system?
What other systems use this system?

90
2
!

187

Description of an Actor

« Text
— Name
— Brief description
— Relationship with use cases

« Example
— Student : “A person who signs up for a course”

— D

Student Register for Courses

EPENDABLE SOFTWARE

188

| s
Find Use Cases

What goal am 1
trying to achieve

by using the
system?

Actor
Goal 2

t l EPENDABLE SOFTWARE 1 89

LABORATORY

Identify Use Cases

« What are the goals of each actor?
— Why does the actor want to use the system?

— Will the actor create, store, change, remove, or read data in the system? If so,
why?

— Will the actor need to inform the system about external events or changes?

— Wil the actor need to be informed about certain occurrences in the system?

* Does the system supply the business with all of the correct behavior?

_‘ ' DEPENDABLE SOFTWARE 1 90
LABORATORY

Description of a Use Case

» Text description of a use case
— Name
— Brief description
— Relationship with actors

« Example

— Register for Courses : “The student registers for courses. The student obtains course
information prior to registering.”

— D

Student Register for Courses

BORATORY

S DEPENDABLE SOFTWARE 1 91
LA

Functional Decomposition

* Functional Decomposition
— Breakdown of a problem into small isolated parts

— The parts:
» Works together to provide the functionality of the system
+ Often do not make sense in isolation

« Use Cases:
— Are NOT functional decomposition
— Keep the functionality together to describe a complete use of the system
— Provide context

PENDABLE SOFTWARE

192

KU wovessmy

Avoid Functional Decomposition

« Symptoms « Corrective Actions

— Very small use cases — Search for larger context

— Too many use cases * “Why are you building this system?”

— Uses cases with no result of value — Put yourself in user’s role

— Names with low-level operations * “What does the user want to achieve?”
- “Operation” + “object’ * “Whose goal does this use case satisfy?”
« “Function” + “data” » “What value does this use case add?”
. Example: “Insert Card” * “What is the story behind this use case?”

— Difficulty on understanding the
overall model

S -:’;DEPENDABLE SOFTWARE 1 9 3

LABORATORY

Checkpoint for Use Cases

« The use-case model clearly presents the behavior of the system; it is easy to
understand what the system does by reviewing the model.

« All use cases have been identified; the use cases collectively account for all required
behavior.

« All functional requirements are mapped to at least one use case.

« The use-case model contains no superfluous behavior; all use cases can be justified
by tracing them back to a functional requirement.

* Do the use cases have unique, intuitive and explanatory names so that they cannot
be mixed up at a later stage? If not, change their names.

Do customers and users alike understand the names and descriptions of the use
cases?

* Does the brief description give a true picture of the use case?
» Is each use case involved with at least one actor?
* Do any use cases have very similar behaviors or flows of events?

PENDABLE SOFTWARE 1 94

LABORATORY

Checkpoint for Actors

« Have you found all the actors? That is, have you accounted for and modeled all roles
in the system's environment?

» Is each actor involved with at least one use case?
« Can you name at least two people who would be able to perform as a particular actor?

* Do any actors play similar roles in relation to the system? If so, you should merge
them into a single actor.

DEPENDABLE SOFTWARE 1 9 5
LABORATORY

Diagram — Outline — Detail

s —@»—

Student Register
for Courses

Register for Courses : Outline
- Brief description

- Flow of events

- Step-by-Step

S DEPENDABLE SOFTWARE

LABORATORY

Course Catalog
System

Ep

e

Register for Courses :
Use-Case Specification
- Brief description
- Flow of events
- Special Requirements
- Pre/Post Conditions

196

B

Use-Case Diagrams : Examples

Biz Watch OjL| %]

A R EEOY 5 37
—
NF]

CSE Uiz 2

o faw

o

HiE 2 =H

EPENDABLE SOFTWARE
LABORATORY

-_-_-_-_-_-_-_-_-_‘—-—-_-_
WiFi == GPS 7|5 24 ¥ B2 5t

% P2 2 OY 55 B

9| WHE U QAT 2T

‘ KU KONKUK
UNIVERSITY

FRED DeoisTiR

£y

71 BEHS

NFC

———

i 2T uE oy

an

£ S sz

-_-_-_-_-_-_-_‘_‘—-—_

=
=

oo

e M

GPS 2|4

A

7|¢ BE My

EH5 M

197

Use Case 1. Make Reservation

Actors Librarian

- This use case begins when a borrower arrives at the counter and
then requests reservation.

Description - For a registered borrower, it makes a reservation slip (software-wise).
- For an unregistered borrower, the librarian registers the person and
makes a reservation for the person. (Planning)

(Analysis) Use Case 1. Make Reservation

Actor Librarian

Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

Cross Reference

Pre-Requisites
Typical Courses of Events

Alternative Courses of Events

Exceptional Courses of Events

EPENDABLE SOFTWARE
LABORATORY

System Functions: R1.1, R3.1
Use Case: "Add Borrower"

Borrower should have an id_card.

(A) : Actor, (S): System

1. (A) A librarian requests the reservation of title

2. (S) Check if a corresponding title exists

3. (S) Check if a corresponding borrower exists

4. (S) If the borrower does not exist, invoke "Add Borrower”
5. (S) Create reservation information

N/A

Line 1: If invalid reservation information is entered, indicate an error.

KU KONKUK
UNIVERSITY

198

Use Case 1. Make Reservation

Actor Librarian KU tr{\'or\';'}éq[;;}'\(
Purpose (As in the business use case)

Overview (As in the business use case)

Type Primary and Essential

System Functions: R1.1, R3.1

Cross Reference Use Case: "Add Borrower”

Pre-Requisites Borrower should have an id_card.

(&) : Actor, (S) : System
1. (A) A librarian requests the reservation of title
. 2. (S) Check if a corresponding title exists
Typical Courses of Events 3. (5) Check if a corresponding borrower exists
4, (S) If the borrower does not exist, invoke "Add Borrower"
5. (S) Create reservation information

Alternative Courses of Events N/A
Exceptional Courses of Events Line 1: If invalid reservation information is entered, indicate an error. (AnaIySiS)
(DESign) Use Case 1. Make Reservation
Actor Librarian
Purpose Create a new reservation
Overview (As in the business use case)
Type Primary and Real

System Functions: R1.1, R3.1

Cross Reference Use Case: "Add Borrower”

Pre-Requisites A borrower should be registered.

(A) Actor, (S) : System

(A) A librarian inputs an /sbn and ssn of the title
(S) Find a corresponding title

(S) Find a corresponding borrower

(S) Create a new reservation

(S) Store the new reservation

(S) Increase reservationCount in the borrower
(S) Increase resenvationCount in the title

Typical Courses of Events

Moo unh o

Alternative Courses of Events N/A

N DABLE SorrwAne T A N Line 2: If the title does not exist, display an error message.
LABORATORY pt Line 3: If the borrower does not exist, display an error message.

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 2 0 O
LABORATORY

Exercise 4: Identify Actors and Use Cases

» Identify actors and use cases for the new OOO advanced digital watch

— Sketch a use-case diagram and descriptions for each use case, as detail as
possible (casual format).

— Use a UML tool
— Each use case should link to user requirements defined at the Exercise 2.

UCO01: Setting current time

*E AF8A S8
DWS —
=2 A%E User
A = AAR0| S5 F0|H, HA AIZhe BAIStD QIC ¥Eo| 22|10 X §#2 HEjo|ct
SEtlir‘lg current time ME =H AILEIO] HA AIZHO| CHEH FE(Q, @, Y AL & X 287 B
F8 ALE|

1. User= AIZEIO] AIZH YEE HFSL7| Qs AHES LHBICL

. User:

St
j2ieict, AAES CHE AZH HE ¥82 MU, dMHE 9828 Zw
o7l Eefict,
Usert A7eteis AlZt FE 880 Mg Gtn 348 w

OnOff alarm et

5. Usert Mgt 820l 28 #Fsty| 9is) BHES Yieich

Setting alarm time

w

i
%
0z
Qj
o
rr
>
Y
[
H
lo
0%
Jn
1o
x
1
(3}
N
40
2
(e}
T
i
njo

Iy
~
>
1>

o

Usert =3t 920l Zto] #

S Hhsotch

[
Qj
i
rr
=
=2
n
o
ot
|
Rl
T
o

User

o
>
>
iz
lo
X
iz
in
o
o
lo
=
o
o
X
>
X
1]
9
njn
o
e
=2
it
A
ot
il

Stop alarm 7. Users Yot ARZE HEE HYSASS =03t AHES 2
otk

8 AlZE2 ¥7) A7t ME2 FEekn, WA Azt T
2 AlLtE|L

1-6a. BRIEX|, Usert 8K} A2t HEE BV Usts 2
Use StopWatch

1. User= AHES g23fsict

|CHZtOl EEE m7EX| 1-28 gt

Turn on backlight

s
oo
o g
rir
=
i
o
0%
do
1o
e
o
bt
N
>
1>
i
rlo
rx
12
il
o
do
lo
EY
o
ol
N
=
N
B
o
[
ot
2
=2
it
1
3
n

@
o]
i
rx

3.U Sgh 22| 30| Arizo] SIS S HelstD, B
E2 Yt
4 Nage MeE g2o| gg Aagtoz MBI 201
5. Users HEi3h #20| 20| #Fstale 2o E2E GtX| 1-
25 gheoict

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 2 0 2
LABORATORY

