
6. Requirements Specification

Requirements Engineering Process

135

Requirements

• Range from a high-level abstract statement of service or system constraint
to detailed mathematical functional specification

• Types of requirements
– User requirements

• Statements in natural language, diagrams of the services the system provides and its
operational constraints

• Written for(from) customers
• Defined

– System requirements
• Structured document setting out detailed descriptions of the system’s functions,

services and operational constraints.
• Define what should be implemented to support user requirements
• May be part of a contract between clients and contractors
• Specified

136

Requirements Definitions and Specifications

137

User Requirement Definition

1. The software must provide a means of representing and accessing external files created by
other tools.

System Requirement Specification

1. The user should be provided with facilities to define the type of external files.
2. Each external file type may have an associated tool which may be applied to the file.
3. Each external file type may be represented as a specific icon on the user’s display.
4. Facilities should be provided for the icon representing an external file type to be defined by

the user.
5. When a user selects an icon representing an external file, the effect of that selection is to

apply the tool associated with the type of the external file to the file represented by the
selected icon.

Functional vs. Non-Functional Requirements

• Functional requirements
– Statements of services which the system should provide
– How the system should react to particular inputs
– How the system should behave in particular situations

• Non-functional requirements
– Constraints on the services or functions offered by the system

• Timing constraints
• Constraints on the development process
• Standards

• Domain requirements
– Requirements that come from the application domain of the system
– Reflect characteristics of the target domain
– May be functional or non-functional or the both

138

Non-Functional Requirements

• Define system properties and constraints
– Reliability, Response time, Storage requirements
– Constraints on I/O device capability
– System representations, Etc.

• The challenge of NFRs
– Hard to model
– Usually stated informally

• Often contradictory, difficult to enforce during development
• Difficult to evaluate for the customer prior to delivery

– Hard to make them measurable requirements
• We’d like to state them in a way that we can measure how well they’ve been met

• Often called Quality Attributes or Quality Requirements
– Often called just the “-ilities”
– Non-functional requirements may be more critical than functional requirements.
– If these are not met, the system is totally useless.

• Critical systems often include non-functional requirements into mandatory (i.e.,
functional) requirements.

139

Classification of Non-Functional Requirements

• Three types of non-functional requirements

– Product requirements
• Specify that the delivered product must behave in a particular way
• e.g., execution speed, reliability, etc.

– Organizational requirements
• Requirements which are a consequence of organizational policies and procedures
• e.g., process standards, implementation requirements, etc.

– External requirements
• Requirements which arise from the factors external to the development process
• e.g. interoperability requirements, legislative requirements, etc.

140

3 Types of Non-Functional Requirements

141

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementa tion
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

Examples of Non-Functional Requirements

• Product requirement
– 8.1 The user interface for LIBSYS shall be implemented as simple HTML without frames

or Java applets.

• Organizational requirement
– 9.3.2 The system development process and deliverable documents shall conform to the

process and deliverables defined in XYZCo-SP-STAN-95.

• External requirement
– 7.6.5 The system shall not disclose any personal information about customers apart from

their name and reference number to the operators of the system.

142

Goals and Requirements

• Non-functional requirements may be very difficult to state precisely.
– Imprecise requirements may be also difficult to verify.
– Write a “goal” first → transform into “verifiable non-functional requirements”

• Goal
– A general intention of the user
– Example : “ease of use” → “The system should be easy to use by experienced

controllers and should be organized in such a way that user errors are minimized.”

• Verifiable non-functional requirement
– A statement using some measure that can be tested objectively
– “Experienced controllers shall be able to use all the system functions after a total of two

hours training. After this training, the average number of errors made by experienced
users shall not exceed two per day.”

143

Domain Requirements

• Describe system characteristics and features of the target domain
– Derived from the application domain

• Domain requirements may be
– New functional requirements
– Constraints on existing requirements
– Definition of specific computations

• If domain requirements are not satisfied, the system may be unworkable.

144

Domain Requirements Example : LIBSYS

145

Domain Requirements

1. There shall be a standard user interface to all databases which shall be based on the Z39.50
standard.

2. Because of copyright restrictions, some documents must be deleted immediately on arrival.
Depending on the user’s requirements, these documents will either be printed locally on the
system server for manually forwarding to the user or routed to a network printer.

Requirements Completeness and Consistency

• Problems arise when requirements are not precisely stated.
– Ambiguous requirements may be interpreted in different ways.

• In principle, requirements should be both complete and consistent.
– Complete : Should include descriptions of all facilities required
– Consistent : Should be no conflicts or contradictions in the descriptions of the

system facilities

• In practice, it is impossible to produce a complete and consistent
requirements document with natural languages.

– Need for (formal/informal/semi-formal) requirements models

146

Software Requirements Document

• SRS (Software Requirements Specification) or SRD (Software Requirements Document)

• The software requirements document is the official statement of what is
required of the system developers.

– Should include both a definition of user requirements and a specification of the
system requirements

– NOT a design document.
– As far as possible, it should set of WHAT the system should do rather than HOW

it should do it.

• The goal of requirements engineering:
– “Not to write the perfect requirements specification, but create the best possible

product at the right time”

147

Purposes of SRS

• How do we communicate the Requirements to others?
– It is common practice to capture them in an SRS

• But, an SRS doesn’t need to be a single paper document

• Purpose
– Communication

• Explains the application domain and the system to be developed
– Contractual

• May be legally binding!
• Expresses agreement and a commitment

– Baseline for evaluating the software
• Supporting testing, V&V
• “Enough information to verify whether delivered system meets requirements”

– Baseline for change control

148

Features for Good Specifications

Features Considerations

Valid (Correct) - Expresses the real needs of the stakeholders (customers, users,…)
- Does not contain anything that is not “required”

Unambiguous - Every statement can be read in exactly one way

Complete

- All the things the system must do and all the things it must not do!
- Conceptual Completeness

• E.g., responses to all classes of input
- Structural Completeness

• E.g., no TBDs!!!

Understandable (Clear) - E.g. by non-computer specialists

Consistent - Doesn’t contradict itself
- Uses all terms consistently

Ranked - Indicates relative importance / stability of each requirement

Verifiable - A process exists to test satisfaction of each requirement

Modifiable - Can be changed without difficulty
• Good structure and cross-referencing

Traceable - Origin of each requirement is clear
- Labels each requirement for future referencing

149

SRS Contents

• Software Requirements Specification should address:
– Functionality

• What is the software supposed to do?
– External interfaces

• How does the software interact with people, the system's hardware, other hardware,
and other software?

• What assumptions can be made about these external entities?
– Required performance

• What is the speed, availability, response time, recovery time of various software
functions, and so on?

– Quality attributes
• What are the portability, correctness, maintainability, security, and other considerations?

– Design constraints imposed on an implementation
• Are there any required standards in effect, implementation language, policies for

database integrity, resource limits, operating environment(s) and so on?

150

SRS Should Not Include

• Project development plans
– E.g. cost, staffing, schedules, methods, tools, etc

• Lifetime of SRS is until the software is made obsolete
• Lifetime of development plans is much shorter

• Product assurance plans
– Configuration Management, Verification & Validation, test plans, Quality

Assurance, etc.
• Different audiences
• Different lifetimes

• Designs
– Requirements and designs have different audiences
– Analysis and design are different areas of expertise
– Except where application domain constrains the design

• E.g., limited communication between different subsystems for security reasons

151

Typical Mistakes in SRS

Mistakes Description
Noise text that carries no relevant information to any feature of the problem

Silence a feature that is not covered by any text

Over-Specification text that describes a detailed design decision, rather than the problem

Contradiction text that defines a single feature in a number of incompatible ways

Ambiguity text that can be interpreted in at least two different ways

Forward Reference text that refers to a terms or features yet to be defined

Wishful Thinking text that defines a feature that cannot possibly be verified

Requirements on Users Cannot require users to do certain things, can only assume that they will

Jigsaw Puzzles Distributing key information across a document and then cross-referencing

Duck Speak Requirements Requirements that are only there to conform to standards

Unnecessary Invention of
Terminology e.g. ‘user input presentation function’

Inconsistent Terminology Inventing and then changing terminology

Putting the onus on the
developers i.e. making the reader work hard to decipher the intent

Writing for the hostile reader There are fewer of these than friendly readers

152

Requirements and Design are Inseparable

• In principle,
– Requirements should state what the system should do.
– Design should describe how it does this.

• In practice, requirements and design are inseparable.
– A system architecture may be designed to structure the requirements.
– The system may inter-operate with other systems that generate design

requirements.
– The use of a specific architecture to satisfy non-functional requirements may be

a domain requirement.
– This may be the consequence of a regulatory requirement.

153

What vs. How Dilemma

• Question : “How can you tell a requirement from design?”
• Answer : “It depends on your point of view.”

154

“One man’s ceiling is another man’s floor.”

Requirements Document Variability

• Information in requirements document depends on the type of system and
the approach to development used.

– If systems are developed incrementally, it will typically have less detail in the
requirements document.

• Requirements documents standards have been designed.
– E.g., IEEE standards
– Mostly applicable to the requirements for large systems engineering projects

155

156

SRS Standard: IEEE STD 830-1998

157

SRS Templates: IEEE STS 830.1998

158

SRS Templates: IEEE STS 830.1998

159

SRS Templates: IEEE STS 830.1998

160

SRS Templates: IEEE STS 830.1998

161

SRS Templates: IEEE STS 830.1998

IEEE STD 830-1998 – Incorrect Translation

162

Problems of SRS in Natural Languages

• Lack of clarity
– Precision is difficult without making the document difficult to read.

• Requirements confusion
– Functional and non-functional requirements tend to be mixed-up.

• Requirements amalgamation
– Several different requirements may be expressed together.

• Example : insulin pump software system

163

Structured Specifications

• An approach to writing requirements where
– The freedom of the requirements writer is limited and
– Requirements are written in a standard way.

• This works well for some types of requirements such as embedded control
system.

– But, sometimes too rigid for writing business system requirements

– Form-based specification
– Tabular specification

164

Form-based Specifications

• Specification includes information in a form format :
– Definition of the function or entity
– Description of inputs, source, outputs, and destination
– Description of the action to be taken
– Pre and post conditions (if appropriate)

– The side effects (if any) of the function

• Requirements for the insulin pump software system

165

Tabular Specification

• Particularly useful when you have to define a number of possible alternative
courses of action

– For example, the insulin pump systems bases its computations on the rate of
change of blood sugar level, and the tabular specification explains how to
calculate the insulin requirement for different scenarios.

• Requirements for the insulin pump software system

166

167

7. Use Case Analysis

168

What is Use Case Modeling?

• A means for capturing the desired behavior for the system under
development

– A way to communicate the system's behavior with various stakeholders
– A way to verify all requirements are captured

• Identifies
1. Who or what interacts with the system
2. What the system should do

• A planning instrument

169

Who Reads Use Cases?

• Client Team

• Developer Team

170

Client

Tester

Designer
Technical

Writer
Requirements

Specifier

Users

Project
Manager

Benefits of Use Cases

• Give context for requirements
• Easy to understand
• Facilitate agreement with customers
• Illustrate why the system is needed

– Use cases: why the system is used
– Actors: who/what wants to interact with the system

• The idea behind use cases is to decide what the system will be used for
before defining what the system is supposed to do.

171

Actors and Use Cases

• Actor
– Someone/something outside the system that interacts with the system

• Use case
– What an actor wants to use the system to do

172

Actor

Use Case

What is a Use Case?

• A use case defines a sequence of actions performed by a system that yields
an observable result of value to an actor.

173

Use Case Name

Use Cases Contain Software Requirements

• Each Use Case
– Describes actions the system takes to deliver something of value to the actor
– Shows the system functionality an actor uses
– Models a dialog between the system and actors
– Shows a complete and meaningful flow of events from the perspective of a

particular actor

174

Instances of Actors

175

Register
for Courses

Sam
acts as a Student

Jody
acts as a Student

Student

A User Can Act as Several Actors

176

Charlie

acts as a Student

acts as a Professor

Student

Professor

• A channel of communication
between an actor and a use case

– A line (arrow) is used.

• An arrow indicates who initiates
the communication.

177

Communicates-Association

Each Communicates-Association is a Whole Dialog

178

Student logs on to system

System approves log on

Student requests course info

System transmits request
Course Catalog returns course info

System displays course list

Student select courses

System confirms course availability

System displays approved schedule

Student Course
Catalog
System

Register for
Courses

A Scenario is a Use Case Instance

179

Scenario 1
• Log on to system
• Approve log on
• Enter subject in search
• Get course list
• Display course list
• Select courses
• Confirm availability
• Display final schedule

Scenario 2
• Log on to system
• Approve log on
• Enter subject in search
• Invalid subject
• Re-enter subject
• Get course list
• Display course list
• Select courses
• Confirm availability
• Display final schedule

Student Course
Catalog
System

Register for
Courses

Use Case Diagram

180

News System

Trading
Customer

Market Trading
System

Broker

Review Account

Execute Trade

Apply for
Trading Account

Distribute
News

Manage Portfolio

Get Quote

Quote
System

Clock

Financial
Network

A Use Case Model Contains Diagrams and Text

181

Use-Case-Model Survey
- survey description
- list of all actors
- list of all use cases

Use-Case 2 Spec.
- brief description
- flow of events

Use-Case 3 Spec.
- brief description
- flow of events

Actor 1

Use Case 2

Use Case 3

Use Case 1

Actor 2

Actor 3

Use-Case 1 Spec.
- brief description
- flow of events

The System

Example: Online Course Registration System

182

Course
Catalog System

Student Register for Courses

Course Registration System

Another Use CaseActor X

Use Case 3

Actor Y

How Should I Name a Use Case?

• A use case name indicates the value or goal.

• Use the active form: begin with a verb
– Imagine a to-do list

• Examples of variations
– Register for Courses
– Registering for Courses
– Acknowledge Registration
– Course Registration
– Use Registration System

• Which variations show the value to the actor? Which do not?
• Which would you choose as the use-case name? Why?

183

Use Case Tips

• Describe only the events visible to the actor:
– What the actor does
– What the system does in response

→ “Actor-activated Use Case”

• Make use cases provide value to an actor
– Detail until everyone has a common understanding of the requirements, then

stop

• Make all use cases of the same level

• Sketch the user interface, but don’t detail it.

184

Steps for Creating a Use Case Model

1. Find actors and use cases
– Identify and describe actors
– Identify and describe use cases

2. Write the use cases
– Outline all use cases
– Prioritize and detail the use cases

185

Find Actors

• Who is pressing the keys (interacting with the system)?

186

Student Registrar Registration System

The student never touches this system; the registrar operates it.
Or perhaps you are building an Internet application?

Online Registration SystemStudent

Identify Actors

• Who/what uses the system?
• Who/what gets information from this system?
• Who/what provides information to the system?
• Where in the company is the system used?
• Who/what supports and maintains the system?
• What other systems use this system?

187

Description of an Actor

• Text
– Name
– Brief description
– Relationship with use cases

• Example
– Student : “A person who signs up for a course”

188

Student Register for Courses

Find Use Cases

189

Identify Use Cases

• What are the goals of each actor?
– Why does the actor want to use the system?
– Will the actor create, store, change, remove, or read data in the system? If so,

why?
– Will the actor need to inform the system about external events or changes?
– Will the actor need to be informed about certain occurrences in the system?

• Does the system supply the business with all of the correct behavior?

190

Description of a Use Case

• Text description of a use case
– Name
– Brief description
– Relationship with actors

• Example
– Register for Courses : “The student registers for courses. The student obtains course

information prior to registering.”

191

Student Register for Courses

Functional Decomposition

• Functional Decomposition
– Breakdown of a problem into small isolated parts
– The parts:

• Works together to provide the functionality of the system
• Often do not make sense in isolation

• Use Cases:
– Are NOT functional decomposition
– Keep the functionality together to describe a complete use of the system
– Provide context

192

• Symptoms
– Very small use cases
– Too many use cases
– Uses cases with no result of value
– Names with low-level operations

• “Operation” + “object”
• “Function” + “data”
• Example: “Insert Card”

– Difficulty on understanding the
overall model

• Corrective Actions
– Search for larger context

• “Why are you building this system?”
– Put yourself in user’s role

• “What does the user want to achieve?”
• “Whose goal does this use case satisfy?”
• “What value does this use case add?”
• “What is the story behind this use case?”

193

Avoid Functional Decomposition

Checkpoint for Use Cases

• The use-case model clearly presents the behavior of the system; it is easy to
understand what the system does by reviewing the model.

• All use cases have been identified; the use cases collectively account for all required
behavior.

• All functional requirements are mapped to at least one use case.
• The use-case model contains no superfluous behavior; all use cases can be justified

by tracing them back to a functional requirement.
• Do the use cases have unique, intuitive and explanatory names so that they cannot

be mixed up at a later stage? If not, change their names.
• Do customers and users alike understand the names and descriptions of the use

cases?
• Does the brief description give a true picture of the use case?
• Is each use case involved with at least one actor?
• Do any use cases have very similar behaviors or flows of events?

194

Checkpoint for Actors

• Have you found all the actors? That is, have you accounted for and modeled all roles
in the system's environment?

• Is each actor involved with at least one use case?
• Can you name at least two people who would be able to perform as a particular actor?
• Do any actors play similar roles in relation to the system? If so, you should merge

them into a single actor.

195

Diagram → Outline → Detail

196

Student Register
for Courses

Course Catalog
System

Register for Courses :
Use-Case Specification
- Brief description
- Flow of events
- Special Requirements
- Pre/Post Conditions

Register for Courses : Outline
- Brief description
- Flow of events
- Step-by-Step

Use-Case Diagrams : Examples

197

198

(Planning)

(Analysis)

199

(Analysis)

(Design)

200

Exercise 4: Identify Actors and Use Cases

• Identify actors and use cases for the new OOO advanced digital watch
– Sketch a use-case diagram and descriptions for each use case, as detail as

possible (casual format).
– Use a UML tool
– Each use case should link to user requirements defined at the Exercise 2.

201

UC01: Setting current time

수준 사용자 목적

주요 액터 User

사전 조건 시스템이 동작 중이며, 현재 시간을 표시하고 있다. 알람이 울리고 있지 않은 상태이다.

사후 조건 시스템에 현재 시간에 대한 정보(연, 월, 일, 시, 분, 초, 요일)가 갱신된다.

주요 시나리오

1. User는 시스템의 시간 정보를 설정하기 위해 A버튼을 입력한다.

3. User는 설정하려는 시간 정보의 항목을 선택하기 위해 C버튼을

입력한다.

User는 설정하려는 시간 정보 항목이 선택될 때까지 3-4를 반복

한다.

5. User는 선택한 항목의 값을 변경하기 위해 B버튼을 입력한다.

 User는 선택한 항목의 값이 변경하려는 값에 도달할 때까지 5-6

을 반복한다.

7. User는 원하는 시간 정보를 설정하였음을 확인하고 A버튼을 입력

한다.

2. 시스템은 시간 정보 항목 중 ‘초’ 항목이 변경 가능하도록 선택하

고, 해당 항목을 깜빡이게 출력한다.

4. 시스템은 다른 시간 정보 항목을 선택하고, 선택된 항목을 깜빡

이게 출력한다.

6. 시스템은 선택된 항목의 값을 증가시키고, 이를 화면에 출력한다.

8. 시스템은 현재 시간 설정을 종료하고, 현재 시간을 출력한다.

확장 시나리오

1-6a. 언제든지, User가 현재 시간 설정을 종료하기를 원하는 경우

 1. User는 A버튼을 입력한다.

2. 시스템은 현재 시간 설정을 종료하고, 현재 시간을 출력한다.

5-6a. User가 선택한 항목의 값이 변경하려는 값을 초과한 경우

1. User는 선택한 항목의 값을 변경하기 위해 B버튼을 입력한다.

User는 선택한 항목의 값이 최대값에 도달할 때까지 1-2를 반

복한다.

 3. User는 선택한 항목의 값이 최대값에 도달했음을 확인하고, B버

튼을 입력한다.

5. User는 선택한 항목의 값이 변경하려는 값에 도달할 때까지 1-

2를 반복한다.

2. 시스템은 선택된 항목의 값을 증가시키고, 이를 화면에 출력한다.

4. 시스템은 선택된 항목의 값을 최소값으로 변경한다.

202

