1. Requirements Engineering -
Overview

K‘[J' KONKUK

a UP AND FiND ovr
HAT THAY Need Anp THe

W

REST 9F YoU S1ART coving !

B

explained it

How the project was
documented

EPENDABLE SOFTWARE
LABORATORY

How the customer How the project leader

understood it

What operations
installed

How the engineer
designed it

How the programmer
wrote it

How the customer
was billed

How the helpdesk
supported it

How the sales
executive described it

What the customer
really needed

K

KONKUK
UNIVERSITY

KU vavsmy
Requirements Engineering

Quality means fitness-for-purpose.
Cannot say anything about quality
unless you understand the purpose.

Communication is as important as Not a phase or stage

the analysis. /

 Requirements Engineering (RE) is a set of activities concerned with
identifying and communicating the purpose of a software-intensive system,
and the contexts in which it will be used. Hence, RE acts as the bridge
between the real world needs of users, customers, and other constituencies
affected by a software system, and the capabilities and opportunities
afforded by software-intensive technologies

and partly about what is possible

Designers need to know
how and where the system
will be used.
Requirements are partly about what

is needed. Need to identify all the stakeholders -

not just the customer and user

EPENDABLE SOFTWARE 4
LABORATORY

RE (Requirements Engineering)
* Requirements engineering is the process of establishing

— System services that the customer requires from a system and
— Constraints under which it operates and is developed.

 Requirements are

— Descriptions of the system services and constraints, generated from the RE
processes.
» User-level facility descriptions
» Detailed specifications of expected system behavior
* A general system properties
» Specific constraints on the system
* Information on how to carry out some computation
» Constraints on the development of the system

— System services — Functional requirements
— Constraints — Non-functional requirements

) h

() DEPENDABLE SOFTWARE 5
AT LABORATORY

]}EPENDABLE

SDLC and RE Process

» Requirements engineering process should be adapted to a specific SDLC.
— RE process + Development process

« Software development lifecycle (SDLC) models
— Waterfall
— Incremental, Evolutionary
— Spiral, lterative, Agile, RUP

SOFTWARE
LABORATORY

Waterfall Model

EPENDABLE SO ARE
LABORATO!

perceived
need

s
"

i

"'|requir~emen1's)

| design

5 '4

)

code
..‘

test
+ “

| integrate

l{ l] KONKUK
UNIVERSITY

Phased Lifecycle Models

I Incremental development
design code test im‘egf'a're O&M (each peleaSe adds more
.".5".- release 2 fUﬂCTiOHOIH’Y)
®
€ [design | code | fest [integrate] O&M
=
'g release 3
% P design | code | test |[integrate] O&M
.......... pr—
P design | code | test |integrate| O&M
version 1
reqts design code test |integrate | O&M
lessons Ielzrnr
version 2 _
reqts desién co?:le ;*.'es'r integrate O&M
Evolutionary development . .sig 3 ‘ | [essors ’et’"’ |
(each NErSIon Incorporates reqts design code test |integrate
new requirements)

EPENDABLE SOFTWARE 8
LABORATORY

B

The Spiral Model

Determine goals,
alternatives,
constraints

Evaluate
alternatives
and risks

Develop
and
test

EPENDABLE SOFTWARE
LABORATORY

K

KONKUK
UNIVERSITY

Agile Models and RUP

« Basic Philosophy of Agile

— Individual over processes and tools

— Working software over documentation

KU KONKUK
UNIVERSITY

Requirements Analysis & Design

Implementation

L N Planning

— Customer collaboration over contract negotiation Piaming
— Responding to change over following a plan

 Evolved into RUP (Rational Unified Process)
developmentcycle
A
iteration phase
A
fk \ Sample
UP Disciplines
inc. elaporatjon construction transition Bt Business Modaling |
of this - Requirements |
book
T T T Design |
. i Implementation |
milestone release increment final production
I . release Test
An iteration end-point A stable executable subset The difference (delta)
when some significant of the final product. The between the releases At this point, the system
decisionor evaluation end of each iteration is a of 2 subsequent is released for Deployment |

occurs.

EPENDABLE SOFTWARE
LABORATORY

minorrelease.

iterations.

production use.
Configuration & Change

Management |-

Project Management

Environment | ==

g N
Iy i Deployment
Initial
Evaluation .
Testing
A four-week iteration (for example).

A mini-project that includes work in most Note that

disciplines, ending in a stable executable. although an
iteration includes
work in most

Iterations

disciplines, the

| relative effort and

emphasis change
over time.

This example is
suggestive, not
literal.

KU vavsmy
Requirements Engineering Processes

 Requirement engineering processes vary depending on
— Application(targety domain
— People involved
— Organization developing the requirements
— Software development processes used

» Generic activities common to all RE processes :

Re uirements
Fe;zw. Ell!?ltﬂtlﬂl‘l and)*
N Il\ Analysis
| Requirements
. Specification)‘—‘

Feasibility rﬂequimmenhﬁ\
Report ! ™ Validation)

System
Models ¥

User and System
Requirements

Y

Requirements
Document

EPENDABLE SOFTWARE 1 1
LABORATORY

1. Feasibility Study

EPENDABLE SOFTWARE

Decides whether or not the proposed system is worth to develop

A short focused study to check

“If the system contributes to organizational objectives”
“If the system can be engineered using current technology and within budget”
“If the system can be integrated with other systems that are used”

Questions

What if the system was not implemented?

What are the problems in the current process?

How will the proposed system help to satisfy customer’s requirements?
What will be the integration problems?

Is new technology needed? What skills?

What facilities must be supported by the proposed system?

12

2. Requirements Elicitation and Analysis

« (Called also Requirements Discovery to find out
— Application domain, services that the system should provide
— System’s operational constraints

 Should involve various stakeholders
— End-users, managers, engineers, domain experts, trade unions, etc.

» 4 activities performed iteratively _ _
Requirements Requirements
i i Classification and Prioritization and
- ReqUIrementS dlscovery aOrganizﬂe:ion Netg]::itation
— Requirements classification and organization
— Prioritization and negotiation
— Requirements documentation

Requirements Requirements
Discovery Documentation

L Tgf EPENDABLE SOFTWARE 1 3

LABORATORY

KU tvansme
3. Requirements Specification

« Write elicited, analyzed, negotiated, prioritized and selected requirements
into documents according to the IEEE 830-1998 Standard

IEEE Std 830-1998
(Revision of Table of Contents

IEEE Std 830-1993)
1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
IEEE Recommended Practice for 1.4 References
Software Requirements 1.5 Overview
Specifications 2. Overall description
2.1 Product perspective
2.2 Product functions

IEEE Std 830-1998

IEEE Computer Society 2.3 User characteristics
Sporactsd by the 2.4 Constraints
Software Engineering Standards Committee 25 Assumptions and dependencies

3. Specific requirements (See 5.3.1 through 5.3.8 for explanations of possible
specific requirements. See also Annex A for several different ways of organizing
this section of the SRS.)

Appendixes

20 October 1996 SHI4654

Index

Figure 1—Prototype SRS outline

EPEND '] 4
La Authorized icensed use bmited to: Korluk Univ, Downloaded on Apeil 16,2019 f 07 16:13 UTC from IEEE Xplore. Resiricions. apply

KU wovessmy

4. Requirements Validation

 Demonstrate whether the requirements we defined are what the customer
really wants

 Requirements validation checks:
— Validity : Does the system provide the functions which support the customer’s needs well?
— Consistency : Are there any requirements conflicts?
— Completeness : Are all functions required by the customer included?
— Realism : Can the requirements be implemented with available budget and technology?
— Verifiability : Can the requirements be checked?

 Requirements validation tools:
— Requirements reviews
— Prototyping
— Test case generation

() DEPENDABLE SOFTWARE ']5
oh LABORATORY

5. Requirements Change Management

« The process of managing requirements change during the RE process
and the overall system development
— Requirements are inevitably incomplete and inconsistent.

— New requirements emerge during the process, as business needs change and a
better understanding of the system is developed.

Identified Revised
Problems [5 oblem Analysis and] [Change Analysis J [Change A

Change Specification and Costing Implementation

« Traceability is the heart of requirements management.
— Source «+ Requirements <« Design < Code

EPENDABLE SOFTWARE 1 6
LABORATORY

| K Eonkuk
UNIVERSITY

Requirements Engineering Process

(Feasd:lllmr) IIE'lI U"Er:'z:_lﬁd
SHcY Analysis -
(R&quirements
X Specification]

Feasibility | Requirements
Report Validation

System
Models ¥

User and System
Requirements

L

L

Requirements
Document

Requirements Change Management

PENDABLE SOFTWARE 1 7

LABORATORY

K KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 1 8
LABORATORY

Exercise 1: Requirements Practices at Workplace

 Let’s read the paper below and discuss on the requirements practice
at your workplace.

Requirements Eng (2006) 11: 1-3

DOI 10.1007/500766-004-0206-4

VIEWPOINTS

Alan M. Davis - Didar Zowghi

Good requirements practices are neither necessary nor sufficient

Use of Good Requirements Practices

Fig. 1 Relationship of good requirements practices to success

Yes

No

Product Success

Yes No
.. L]
cAe" * B
e * ° .

*

A L] ..

L
Cc D

Requirements Requirements
Practices Practices
that Are Being
“Good” Used on
for this This
Project Project
Fig. 2 Relationship of good requirements practices to success

19

