24

Object-Oriented Analysis and Design -
Summary

———

KU KONKUK
UNIVERSITY

An Short Example of OOAD - Dice Game

Define use cases
model

Define domain

Define interaction

Define design class

diagrams diagrams

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.
- If the dice’s face value totals seven,

player wins; otherwise, player loses.

Player 1 Rolls 2 oe
name faceValue
1 | 2
Plays
1
DiceGame 11 Includes

Domain Model

PENDABLE SOFTWARE
LABORATORY

Interaction Diagram

'-'D;u.GmLi

i& L) 1 \)
O—M—‘—’ \
ST VO S :
1
M&‘_‘M)—b: ‘1
\)
— ca\) ; 5
|
'l_ﬂau@;“\@'-‘*“ , -
\ ; {
\

DiceGame Die
die1 : Die . 1 2 faceValue : int
die2 : Die i

: getFaceValue() : int
play()

roll()

Design Class Diagram

Software Development Process and the UF

« Software development process
— A systematic approach to building, deploying and possibly maintaining software

« Unified Process (UP): a popular iterative software development process for
building object-oriented systems
— Inspired from Agile
— lterative
— Provides an example structure for how to do OOA/D
— Flexible (can be combined with practices from other OO processes)
— A de-facto industry standard for developing OO software

N B
I'S ;?EPEI;I_?ABLE SOFTWARE 37 1

KU vy
Risk-Driven and Client-Driven Iterative Planning

 The UP encourages a combination of risk-driven and client-driven
iterative planning.
— To identify and drive down the high risks, and
— To build visible features that clients care most about.

» Risk-driven iterative development includes more specifically the practice of
architecture-centric iterative development.

— Early iterations focus on building, testing, and stabilizing the core architecture.

(1r213fa47s[..T T T T T T [T T T T T T T20]
XN TS
\ ~———
N T -
\\ requirements workshops ——--——_____ T T=—_ __
\ ;o s T T T e ——
Imagine this will \ LTS T .
ultimately be a 20- e ‘e °)
iteration project. i) o i) o
3 o & @
v g ’ = = £ 2
In evolutionary iterative 3 5 @ 5
development, the S @ =] L
requirements evolve g 5
over a set of the early
iterations, through a
series of requirements 90% 90%
workshops (for ° °
example). Perhaps
after four iterations and 50%
workshops, 90% of the °
requirements are 30%
defined and refined. 20% o 20%
Nevertheless, only 2% 5% 8% <
o .
X 10./“ aF e SoTwarsls Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
() DEPENDABLE SOFTWARE built. 372

LABORATORY »7 a3-weekiteraton T~~~ _
s e~

I { U {’(N?VRHSH"'

The UP Phases

« A UP project organizes the work and iterations across 4 major phases:
1. Inception : approximate vision, business case, scope, vague cost estimates

2. Elaboration : refined vision, iterative implementation of the core architecture,
resolution of high risks, identification of most requirements and scope, more
realistic estimates

3. Construction : iterative implementation of the remaining lower risk and easier
elements, and preparation for deployment

4. Transition : beta tests, deployment

developmentcycle
A
4 . | N
iteration phase
/\ A
4 A
inc. elalboratjion construcition transition
milestone release increment final production
N : ; release
An iteration end-point A stable executable subset The difference(delta) . .
when some significant of the final product. The between the releases At this point, the system
decisionor evaluation end of each iteration is a of 2 subsequent is released for
occurs. minor release. iterations. production use.

g,
| ¥

.g%]EPENDABLE SOFTWARE 373

o

'IL

0 LABORATORY
EUS S

T

KU KONKUK
UNIVERSITY

The UP Disciplines

A four-week iteration (for example).

A mini-project that includes work in most Note that
disciplines, ending in a stable executable. although an
,/_\ iteration includes
. i \ work in most
Up D"f'm{’ ;-f disciplines, the
Isciplines | relative effort and
T _ emphasis change
4 Business Modeling : : oveﬁ time i
Focus ‘ 7/;/-*-*""’_ f"‘~ . O : .
of this Requirements | ——— — R e This example is
book ‘ Design e ol | D e e S suggestive, not
. "1 _ﬁ_*_f"""’-ﬁ - literal.
Implementation | ——=—r—""">"
Test
Deployment ——*j— -+ @@
Configuration & Change 7 — 1 i e
Management | ——"""
Project Management |——"" e
- \—__1—\——.
Environment
lterations

g,

Th
;‘IiﬁbEPENDABLE SOFTWARE 374
0

LABORATORY

Relationship Between the Disciplines and
Phases

» The relative effort in disciplines shifts to across the phases.

Sample incep- . : transi-
o : elaboration construction :
UP Disciplines tion . ‘ - e tion A

_ _ The relative effort in
Business Modeling e ——— 0 — — disciplines shifts

_ PRI UL N S A T T R R R R across the phases.
Requirements | —— I T T S S A

: '/ o R e e I _ This example is
Design |—— : T T P e o I N B suggestive, not literal.

Implementation | ————smmm e

Phases
Disciplines || Inception|| Etaboration | Construction | ransition |

Business Modeling
Requirements

Analysis & Design

Implementation
Test
Deployment

Configuration
& Change Mamt

Project Management
Environment

0 i

:
it Elab #1 | | Elab #2|| Const " Cnnstl:nnst ||Trar|
T) Pl el el

||1?Br|

1 #2

Iterations

EPENDABLE SOFTWARE 375
LABORATORY

KONKUK

UNIVERSITY

The UP Artifacts and Timing

Sample Unified Process Artifacts and Timing (s-start; r-refine)

Discipline Artifact Incep. Elab. | Const. | Trans.
Iteration=» 11 El.En Cl.Cn 1 bl B
Business Modeling |Domain Model s
Requirements Use-Case Model S r
Vision s r + System Sequence Diagram
Supplementary Specification s r + Operation Contract
Glossary s r
Design Design Model S r Design Model
SW Architecture Document s + Class Diagram
Data Model s r + Interaction Diagram
Implementation Implementation Model (code, html, ...) s r r + Package Diagram
+ Statechart Diagram
+ Activity Diagram

+ Deployment Diagram

]}EPENDAHLE SOFTWARE 3 7 6
LABORATORY

The UP Artifact Relationships

Sample Unified Process Artifact Relationships

Domain Model

[] Moo o]]
| Sale Captured-on Register ProductCatalog ses |
% dateTime } 1 1 | o | i ¥3g i
1 — e} L — J
‘\\»07 o . 77”7///
domain concepts »
Use-Case Model N
[o .
,“ ’/L : System |
S [O— PO / l——r—:
| [—“ Process Sale | Cashier [‘
[| 1 0O Process™ | | | make :
| | T (‘\Si'e,// use 1. Customer | i NewSale i ‘
| e ™ case | arrives ... ‘ 4 ! I
| | B | names ; ‘ events I enterltem I
| [= ¢ 7 | | 2. Cashier =y | . § |
| | Q <~* I makesnew | F(MMH
conceptual (| A Y sale. [: |
; () e
classesin | ‘ ~— 3. .. I 0
the ‘ T I ' ,
domain \ Use Case Diagrams Use Case Text System Sequence Diagrams
inspire the N S - R -
names of \
some ‘ N .
software \ /" use-case \ Design Model N
classes in | [realization Wlfh\ —— o |
the design | interaction [: Register | | : ProductCatalog | ‘
diagrams — — |
\ - |
makeNewSale ol : i
‘ g L__‘———--Aff——___Er—eél—e———~4| —————————— hﬁi Sale‘ i
\ | = | |
_ | _enterltem(id, quantity) ‘L . :
Q| T desc = getDescription(id) o !

addLineltem(desc, quantity) ——

f IS

the design

| :) S = 7 / classes
Register ProductCatalog & discovered |
. | while designing
o s | UCRSs can be

"mak talog el
| makeNewSale() | catlog getDescription(...) : ProductDescription | summarized in

enterltem(...) class diagrams |

I}EPENDABLE SOFTWARE _ N / 3 77
LABORATORY

Connections Between SSDs, System Operatiofs=1
and Layers

* In a well-designed layered architecture,

— The Ul layer objects will forward or delegate the requests from the Ul layer (system
operations) ONto the domain layer for handling.

— The messages sent from the Ul layer to the domain layer will be the messages
illustrated on the SSDs.

System enterltem()
: Cashier ProcessSale endSale()

ul | -
Swing makeNewSale() %

| Frame

makeNewSale()
enterltem()

[
[

L makeNewSale() :

: >. : Cashier

|_enterltem(id, quantitv)>I

: | makeNewSale()

>R _description, total _ _ _ enterltem()

: : Daimain endSale() O-..A_‘_

| | ‘
[

|

i end=ale(> Register

! I

! I

: I

| [

the system operations handled by the system in an SSD represent the
operation calls on the Application or Domain layer from the Ul layer

':ll 1 %DEPENDABLE SOFTWARE 378
! i LABORATORY

What’s the Relationship between Interactio ===
and Class Diagrams?

« From interaction diagrams, class diagrams can be generated iteratively.
— When we draw interaction diagrams, a set of classes and their methods emerge.
— Suggests a linear ordering of drawing interaction diagrams before class diagrams.

— But in practice, these complementary dynamic and static views are drawn
concurrently or iteratively.

— Example:

 if we started with the makePayment sequence diagram, we see that a Register and
Sale class definition in a class diagram can be obviously derived.

\
" \

I A
o makePayment{cashTendered) ! : !
1

-

)—L‘ makePayment{cashTendered) =! [

J
messages in interaction L J
diagrams indicate operations ! ! '_

]
1

in the class diagrams ! | classes
identified in the

A
A

interaction

T < diagrams are
Register Sale ~ declared in the
o 11 class diagrams

syl currentSale |
| makePayment(...) makePayment(...)

| },I:DEPENDABLE SOFTWARE 379
u J LABORATORY

KU v

OOD : Object-Oriented Design

- 0OOD is sometimes taught as some variation of the following:

— “After identifying your requirements and creating a domain model, then add methods
to the appropriate classes, and define the messaging between the objects to fulfill the
requirements.”

« But, it is not enough, because OOD involves deep principles.

— Deciding what methods belong to where and how objects should interact carries
consequences should be undertaken seriously.

* Mastering OOD is hard.
— Involving a large set of soft principles, with many degrees of freedom.
— A mind well educated in design principles is important.
— Patterns can be applied.

y b
g ;:I)EPEI;I_ZABLE SOFTWARE 380
)

GRASP

» 9 basic OO design principles or basic building blocks in design.

— Focusing on using the pattern style as an excellent learning aid for naming,
presenting and remembering basic/classic design ideas

— Creator

— Controller

— Pure Fabrication

— Information Expert
— High Cohesion

— Indirection

— Low Coupling

— Polymorphism

— Protected Variations

EPENDABLE SOFTWARE
LABORATORY

Pattern/ D ol
St escription
Principle
Information A general principle of object design and responsibility assignment?
Expert
Assign a responsibility to the information expert—the class that has the information neces-
sary to fulfill the responsibility.
Creator Who creates? (Note that Factory is a common alternate solution.)
Assign class B the responsibility to create an instance of class A if one of these is true:
1. B contains A 4. B records A
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A
Controller What first object beyond the UI layer receives and coordinates (“controls”) a system opera-

tion?

Assign the responsibility to an object representing one of these choices:

1. Represents the overall “system,” a “root object,” a device that the software is running
within, or a major subsystem (these are all variations of a facade controller).

2. Represents a use case scenario within which the system operation occurs (a use-case or
session controller)

Low Coupling
(evaluative)

How to reduce the impact of change?

Assign responsibilities so that (unnecessary) coupling remains low. Use this principle to
evaluate alternatives.

381

23 Design Patterns of

Abstract Factory

E Adapter

Bridge

=] euider

Chain of Responsi
Command
El Composite
[5] pecorator

ibility

[E] Facase [E] Poxy

[[E] Foctory Methoa Observer

El Flyw=ight EI Singleton
Interpreter State

Herator Strategy
Medistor Tempiate Method
Memento Visitor

[E] protoree

susesser (Chain of Responsibility
Type: Behavioral

Whatit is

Avoid coupling the sander of 3 request to
its receiver by giving more than one object
2 chance to handle the request. Chain the
receiving objects and pass the request
along the chain until an object handles it

Command

Type: Behavioral

Whatitis

Encapsulate & request s an object.
thereby letiing you parameterize dlients
with different requests, queus or log
requests, and support undoabls operatians.

Interpreter
Type: Behavioral

What it is:

Giuan a language, define & reprasentation
for its grammar along with an interpreter
that usas the reprasentation to interpret
sentences in the language.

‘-*mrpmﬂ): Context i ‘-Hnmrptel() ~ Context

lterator

interiaces e e Type: Behavioral
| fearegus ‘ | Serator ‘ Whatit is:
| ey ‘ [0 | Provide 3 way to aooess the tements of
an <squentially without

T

exposing s underlying representation.

T

“\!Ealznzzmn;), Context |

|mmﬁ Context ‘

informs

‘ Mediator

Mediator

cint=rfaces
Colleague

updates

Type: Behaviorsl

What it is:

Defing an chject that encapsuiates how
set of objects interact. Promotes loose
caupling by keeping objects from refeming
to 2ach other explicitly and it lets you vary

= 5

Memento
Memento
== o]
Type: Bshavioral
‘What it is: = ‘
Without violating encapsulation. capture H
and externalize an object's interal state i
i
:a:galégf object can be restored to this e I
- — ! ~
[state o [-adaptee.
+aday jon{;
e) ey [Eenma]
+createMemento)
sinterfaces
Observer Subjest notifies e
anachiin o Observer) ver
Type: Behavioral +detachin o - Observer) [+update()
What it is- k. ik
Define a one-to-many dependency between
objects 5o that when one object changes
state, all its dependents are notified and
updated automatically.
observes
]
{
+updsta(} |

State
Type: Behavioral

Whatitis:
Allow an chjectio alterits behavicr when
its intemal state changes. The object will
appear to change its dlass.

sinterfaces

children

4

Adapter
Type: Structural

Whatitis:
Convert the interface of a dlass into
another interface dients expect Lets
classes work tagether that couldn't
ctherwiss because of incompatible
interfaces.

Bridge

Type: Structural

Whatitis:

Decouple an abstraction from its

implementation 50 that the two can vary
independently.

Composite
Type: Structural

Whatitis:
Compose chjects into tres structures to
represent part-whole hisrarchies Lets
clients treat individusl objeets and

Composite
| ConcretaStated ConcreteState2 | | Leaf e
+handle() [+handief) [Foperation)) +add(in o - Compasite]
| | | | e o)
+getChild(in i - int)

Strategy

Type: Behaviorsl

What it is
Define a family of algarithms,
encapsulate each ane, and make them
intsrchangesble, Lets the aigorithm vary
independendy from

lients that use it

Template Method

Type: Behaviors!

Wht it is:
Define the skeleton of an algorithm in an
operation, defeming some sieps to subdasses.
Lets subsiasses redefine certain steps

of an aigorithm without changing the
algarithm's siructure.

ainterfaces

Visitor Visitor

of objects uniformiy.

Decorator

Type: Structural

Type: Behaviorsl v :
+visitElementi(in b : ConcreteElementS)

What it

Whatiit is:

Attach additional responsibiliies to an
object dynamically. Provide a flexible
aftemative to sub-classing for extending
functionality.

Facade

Type: Structural

Whatit is:
Provide 3 unified interface to a set of
interfaces in a subsystem. Defines a high-
level interface that makes the subsystem
easier to use.

Flyweight

Type: Structural

Use sharing to support large numbers of
fine grained bjects efficiently

Represent. tobe .
performad on the slements of an = Element Whatitis:
object structure. Lets you define af ‘-tauxprﬁn - Visitar] ‘ i
new aperation wi i : -
the classes of b : ConcreteEiem S
which it operates. 5 =

st Unsharsdc:

-allState

[+acoept(in v - Visitor)

Proxy

Type: Structural

‘What it is:

Provide a surrogate or placeholder for
another object to control acoess o it.

Abstract Factory

| RealSubject | Tepresents |

Proxy

[Freuests

|]

Type: Creational

What it is:

Provides an interface for creating
families of related or depandant
objects without spacifying their
concrete diass

Builder

Type: Creational

What it is:

Separate the construction of &

complex object from its represanting

50 that the same construction
rocess can oreate different

reprasentations.

Factory Method
Type: Craational

Whatif
Dafine an intarface for crasting sn
object, but let subclasses decide which
class to instantiste. Lets & class defer
instantiation to subclasses.

Prototype
Type: Creational

What it is:

Specify the kinds of objects 1o create
using a prototypical instance, and
create naw chjscts by copying this
prowiype

Singleton

Type: Creational

What it is-

Ensure a class ony has cne instance and
provide a global point of acoess to it

ConcreteBuilder
builaPar)
[getResut)
interfaces Em—
Product
[+anCperation()
Pl
ConcreteProduct ¢ — —— — —

[Siatic uniqueinstance
-singletonData.

[+static instance()
|#SingletonOperation()

382

b

Mapping Designs to Code

The Register.enterltem Method

public class Register h‘

{

private ProductCatalog catalog;

private Sale currentSale ;

public Register(ProductCatalog pe) ... }

public void endSale () ()

public void enterltemiitemiD id, int gqty) [|

public void makeNewSale () [... }

public void makePaymentiMoney cashTendered 1.

H

enterltem() Register

endSalel)
enteritemiid; iteml 0, gty : Integer)
makeMNewSalel]

makePayment {cashTendered : Money)

: E k
PraductDescription desc = catalog. ProductDescription (id);
currentSale makelineltem{dese, qty) :

enterltem(id, qty] —= T Z:makelineltem(desc, qty) —*= [
‘Register | 1 sk

1:desc = getProductDescription (id)

T
Product

Catalog

EPENDABLE SOFTWARE
LABORATORY

KU KONKUK
UNIVERSITY |

PreductCatalog

catalog

1| getProduciDesc (..

Sale

sComplete : Boolean
tirne : DateTime

currentsale |

1

" becomeComplate ()
makeLineltem(...)
makePayment..)
getTotal)

383

An Overview of Object-Oriented Developm
- What We Covered?

O
Software Architecture Style
Object-Oriented Design Patterns
I lumL
Software I i e
Development i uP i OSrlglnatlon
i + i
Sequence i Object-Oriented Analysis and Design i Faenee
| 00D | !
i Methods i
Object-Oriented Concepts and Principles
Object-Oriented Programming
NV |

ugEPENDABLE SOFTWARE 3 84
LABORATORY

