
OOAD/UML 기본

건국대학교
유준범

Contents

1. An Introduction to Object-Oriented Development
– Object-Oriented Development
– Object-Oriented
– Object-Oriented Principles
– UML

2. Object-Oriented Analysis and Design
– Part I. Introduction
– Part II. Inception
– Part III. Elaboration Iteration 1 - Basics

• OO Analysis
• OO Design
• OO Implementation

3. Advanced Topics in UML
– Statechart Diagram
– Component Diagram
– Extension Mechanism of UML

4. Object-Oriented Analysis and Design - Summary

2

Contents at a Glance

3

Contents in Detail

4

대주제 차시 소주제 학습 목표 상세 내용

1.
An Introduction

to Object-
Oriented

Development

1 2
Object-Oriented
Development

• ‘소프트웨어 개발’을 정의할 수 있다.
• OOAD 와 SASD의 차이점을 구분할 수 있다.
• 다양한 소프트웨어 개발 방법론/프로세스를

구분하고 정리할 수 있다.

• OOAD vs. SASD
• Software Development Process

3 Object-Oriented • 객체지향 (Object-Oriented)을 정의할 수 있다. • Object-Oriented

4
Object-Oriented
Principles

• 객체지향 Principles을 이해하고 적용할 수 있다. • Object-Oriented Principles

5 6 UML • UML 2.0을 구성하는 13개 다이어그램들의
목적을 이해할 수 있다.

• 13 UML Diagrams

Contents in Detail

5

대주제 차시 소주제 학습 목표 상세 내용

2.
Object-

Oriented
Analysis and

Design

7 Part I. Introduction • OOAD 및 UP 기본개념을 정리할 수 있다.
• 교재의 Case Study 내용을 확인할 수 있다.

• Chapter 1. Object-Oriented Analysis and
Design

• Chapter 2. Iterative, Evolutionary, and Agile
• Chapter 3. Case Studies

8 9 Part II. Inception

• UP 기반 OOAD의 첫 단계인 Inception 단계를
이해할 수 있다.

• Inception 단계의 활동을 수행할 수 있다.
• 기능/비기능 요구사항을 구별할 수 있다.
• Use Case를 활용할 수 있다.

• Chapter 4. Inception is Not the Requirements
Phase

• Chapter 5. Evolutionary Requirements
• Chapter 6. Use Cases
• Chapter 7. Other Requirements

10
Part III. Elaboration
Iteration 1 – Basics

- OOA

• Analysis 단계의 활동을 이해할 수 있다.
• Domain model의 목적을 이해하고 활용할 수 있

다.

• Chapter 8. Iteration 1 Basics
• Chapter 9. Domain Models

11 - OOA
• Sequence diagram의 목적을 이해하고 활용할

수 있다.
• Operation contract의 목적을 이해할 수 있다.

• Chapter 10. System Sequence Diagram
• Chapter 11. Operation Contracts

12 - OOD
• Design 단계의 활동을 이해할 수 있다.
• Package diagram의 목적을 이해하고 활용할 수

있다.

• Chapter 12. Requirements to Design Iteratively
• Chapter 13. Logical Architecture and UML

Package Diagrams

13
14

- OOD • Sequence diagram의 목적을 이해하고 활용할
수 있다.

• Chapter 14. On to Object Design
• Chapter 15. UML Interaction Diagram

15
16

- OOD • Class diagram의 목적을 이해하고 활용할 수
있다.

• Chapter 16. UML Class Diagram

17 - OOD • GRASP 디자인 패턴의 목적과 효과적인 적용
방법을 이해할 수 있다.

• Chapter 17. GRASP: Designing Objects with
Responsibilities

18
19

- OOI
• OO Design에서 Implementation으로의

전환과정을 정확하게 이해할 수 있다.
• 개발방법론의 장점을 확인할 수 있다.

• Chapter 19. Designing for Visibility
• Chapter 20. Mapping Designs to Code

Contents in Detail

6

대주제 차시 소주제 학습 목표 상세 내용

3.
Advanced

Topics in UML

20
21

Statechart Diagram • Statechart의 문법을 정확하게 이해하고, 이를
활용하여 모델링을 수행할 수 있다.

• Statechart Diagram

22 Component Diagram • Component Diagram을 이해하고 활용할 수
있다.

• Component Diagram

23
Extension Mechanism
of UML

• UML을 적절하게 확장하는 방법을 이해할 수
있다.

• MOF의 개념을 이해할 수 있다.
• Extension Mechanism of UML

대주제 차시 소주제 학습 목표 상세 내용

4.
Summary

24 OOAD Summary • UML을 적절하게 사용하여, UP 기반의 OOAD
를 수행할 수 있는 이론적인 배경을 갖춘다.

• OOAD Summary

Text and References

7

8

An Introduction to
Object-Oriented Development

(OOD)

• Object-Oriented Development
• Object-Oriented
• Object-Oriented Principles
• UML

1 2

Object-Oriented Development

10

Software Development

• Software Development ≈ Solving Problem with Software in Computer

11

Problems
in real world

Natural Language
→ Descriptions of Problems

(through Identifying Requirements)

Business Process

+

Solutions
in computer

Programming Language
→ Descriptions of Solutions

(through Designing Programs)

+

Program Execution
with Computer System

A Big Gap between Languages

Software Development

• Software Development ≈ Solving Problem with Software in Computer

12

Problems
in real world

Natural Language
→ Descriptions of Problems

(through Identifying Requirements)

Solutions
in computer

Programming Language
→ Descriptions of Solutions

(through Designing Programs)

+

Program Execution
with Computer System

Software Development ≈ ①②③

Computational Thinking ≈ ①②/2

③

①

②

Procedural Programming

Object-Oriented Programming

SASD

OOAD

Procedural Programming

• A program is organized with procedures.
– Procedure/Function

• building-block of procedural programs

• statements changing values of variables

– Focusing on data structures, algorithms, and sequencing of steps
• Algorithm : a set of instructions for solving a problem

• Data structure : a construct used to organize data in a specific way

– Most computer languages (from FORTRAN to C) are procedural ones.

13

Procedure 1: Deposit() {...}

Procedure 2: Withdraw() {...}

Procedure 3: Transfer() {...}

struct account {
char name;
int accountId;
float balance;
float interestYTD;
char accountType;

};
<<Use>>

Data StructureProcedures (with Algorithms)

Procedural Programming - SASD

• SASD (Structured Analysis and Structured Design)

– A traditional software development methodology for procedural programs

– Top-Down Divide and Conquer
• Divide large, complex problems into smaller, more easily handled ones.

– Functional view of the problem using DFD (Data Flow Diagram)

14

A level 3 DFD for RVC Control

An SASD Example - RVC Control

15

DFD Level 0

DFD Level 3

…

Structured Chart

Structured Analysis

Structured Design

(…)

Object-Oriented Programming

• A program is organized with objects.
– Focusing on objects and their communications.

• Object : consisting of data and operations (functions)

• Object communication : an object calls an operation of other objects with its data

– Providing system functionalities through object communications
• No explicit data flow

• Only communication sequences among objects

16

Class BankAccount {
private:

float balance;
float interestYTD;
char * owner;
int account_number;

public:
void Deposit (float amount) {…}
float WithDraw (float amount) {…}
bool Transfer (BankAccount to, float amount) {…}

};

data

operation

Object-Oriented Programming - OOAD

• OOAD (Object-Oriented Analysis and Design)
– A software development methodology for Object-Oriented programs

– OOA + OOD

• Object-Oriented Analysis (OOA)
– Discover the domain concepts/objects (the objects of the problem domain)

• Object-Oriented Design (OOD)
– Define software objects (static)

– Define how they collaborate to fulfill the requirements (dynamic)

17

An OOAD Example - Dice Game

18

Use Case : Play a Dice Game
- Player requests to roll the dice.
- System presents results.
- If the dice’s face value totals seven,

player wins; otherwise, player loses.

Domain Model

Interaction Diagram

Design Class Diagram

OOA OOD

Software Process Model

• Software (Development) Process models
– Defining a distinct set of activities, actions, tasks, milestones, and work products

that are required to engineer high-quality software, systematically.

– Defining Who is doing What, When to do it, How to reach a certain goal.

19

Waterfall Model

Incremental Model

Evolutionary Model

Component-Based Development

Iterative Model (Agile)

Rational Unified Process

< 1960s ~ 2000s >

Waterfall Model

Iterative Model

< 2000s ~ Now > < in practice >

Application Domains

Application Domains

…

Application Domains

Application Domains

…

tailored for

tailored for

Waterfall Model

• A classic software development life-cycle (SDLC) model
– Suggests a systematic and sequential approach to software development

– Useful in situations where,
• Requirements are fixed early.

• Work can/shoudl proceed to completion in a linear manner.

20

Iterative Model - Agile

• Agile development is an umbrella term a group of methodologies
weighting rapid prototyping and rapid development experiences.

– Lightweight in terms of documentation and process specification

– Example: XP(eXtreme Programming) , TDD(Test Driven Development)

• Agile methods attributes
– Iterative (several cycles)

– Incremental (not delivering the product at once)

– Actively involve users to establish requirements

• Agile Manifesto
– Individual over processes and tools

– Working software over documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

21

Iterative Model - UP

• Rational Unified Process (RUP) or UP
– A Software development approach that is

• Iterative (Incremental, Evolutionary)

– Each iteration includes a small waterfall cycle.

• Risk-driven / Client-driven / Architecture-centric

• Use-case-driven

– A Well-defined and well-structured software engineering process
• 4 Phases and 9 Disciplines

– A de-facto industry standard for developing OO software

22

23

An Introduction to Object-Oriented

24

3

Object

• An object represents an entity.
– physical, conceptual or software, informally.

– Physical entity

– Conceptual entity

– Software entity

Truck

Chemical Process

25

A More Formal Definition of Object

• An object is an entity with a well-defined boundary and identity that
encapsulates state and behavior.

– State : represented by attributes and relationships

– Behavior : represented by operations, methods, and state machines

26

The Object States

• The state of an object
– One of the possible conditions in which an object may exist.

– Normally changes over time.

Professor Yoo

Name: Junbeom Yoo
Employee ID: 1234567
Date Hired: 2008.03.01
Status: Tenured
Discipline: CS
Min. Course Load: 5 classes

27

Professor Yoo

The Object Behavior

• Behavior determines how an object acts and reacts.
– Modeled by the set of messages it can respond to (= operations the object can perform).

28

Professor Yoo

Name: Junbeom Yoo
Employee ID: 1234567
Date Hired: 2008.03.01
Status: Tenured
Discipline: CS
Min. Course Load: 5 classes

Professor Yoo

An Object has Identity

• Each object has a unique identity.
– Even if the state is identical to that of another object.

Professor “J Yoo” teaches Biology

Professor “J Yoo” teaches Biology

≠

29

Objects Need to Collaborate

• Objects are useful only when they can collaborate together to solve a
problem.

– Each object is responsible for its own behavior and status.

– No one object can carry out every responsibility on its own.

• How do objects interact with each other?
– They interact through messages.

30

Class

• A class is a description of a set of objects that share the same properties
and behavior.

– An object is an instance of a class.

Professor A Professor B

Professor C Professor D

Objects Class

Attributes
(States)

Operations
(Messages)

31

Relationship between Classes and Objects

• A class is an abstract definition of an object.
– It defines the structure and behavior of each object in the class.

– It serves as a template for creating objects.
• Objects are grouped into classes.

• An object is an instance of a class.

Professor A Professor B

Objects
in Real World

Abstraction

Class

Instantiation

Objects
to Computer World

32

J Yoo :
Professor

Attribute

• An attribute is a named property of a class that describes a range of
values which instances of the property may hold.

Attributes

Class

ObjectsInstantiation

Student

-name
-address
-studentID
-dateofBirth

33

Operation

• An operation is the implementation of a service which can be requested
from any object of the class to affect behavior.

Student

+ get tuition()
+ add schedule()
+ get schedule()
+ delete schedule()
+ has pre-requisites()

Operations

34

Example : class Professor

class Professor {
private String name;
private int age;
private String specialty;

public Professor (String sm, int ia, String ss) {
name = sm;
age = ia;
speciality = sst;

}

public String getName () { return name;}
public int getAge () { return age;}
public String getSpeciality () { return specialty;}

}

Professor

-name: String
-age: Integer
-speciality: String

+getName(): String
+getAge(): Integer
+getSpeciality(): String

yoo : Professor

name = Yoo
age = 43
speciality = Software Engineering

Professor yoo = new Professor (“yoo”, 43, “Software Engineering”);

class

instance

35

Message

• A specification of a communication between objects
– Conveying information with the expectation that activity will ensue.

– One object asks another object to perform an operation.

What’s your name?

Professor Yoo

yoo.getName()

client yoo : Professor

1 : getName()

client

36

yoo:Professor

name

37

An Introduction to Object-Oriented
Principles

38

4

Basic Principles of Object-Oriented

1. Abstraction

2. Encapsulation

3. Inheritance

4. Polymorphism

5. Composition

6. Abstract / Interface Class

39

1. Abstraction

• Abstraction :
– “Any model that includes the most important, essential or distinguishing aspects of

something while suppressing or ignoring less important, immaterial, or diversionary
details. The result of removing distinctions so as to emphasize commonalties.”

(Dictionary of Object Technology, Firesmith, Eykholt, 1995)

– Emphasizes relevant characteristics, but suppresses other characteristics

BriefCase

-capacity
-weight

+open()
+close()

Abstraction

40

Example : Abstraction

Lecturer

Course Offering

Dormitory

Course (Chemistry)

41

2. Encapsulation

• Encapsulation :
– Design, produce and describe software so that it can be easily used without

knowing the details of how it works.

– Also known as information hiding

• Example:
– When you drive a car, you don’t have know the details of how many cylinders the

engine has or how the gasoline and air are mixed and ignited.

– Instead you only have to know how to use the controls.

42

Example : Encapsulation

• Professor Yoo needs to be able to teach 4 classes in the next semester.

Professor Yoo

SetMinLoad(4)

Professor Yoo

43

Encapsulation as Information Hiding

Deposit()
Withdraw()
Transfer()

Client

Interfaces
available

- Balance
- insterestYTD
- Owner
- Account_number

+ Deposit() {…}
+ Withdraw() {…}
+ Transfer() {…}

Implementation details
invisible for clients

Information
can’t be accessed by clients

44

3. Inheritance

• Inheritance :
– “is a kind of” , “is-a” relationship

– A way of organizing classes

– Classes with properties in common can be grouped so that their common
properties are only defined once.

45

Example : Single Inheritance

• One class inherits from another.

Superclass
(parent)

Subclasses
(children)

Inheritance Relationship

Ancestor

Descendents

Account

-balance
-name
-number

+withDraw()
+createStatement()

Savings Checking

46

4. Polymorphism

• Polymorphism :

– The ability to hide many different implementation behind a single interface.

– The same word or phrase can mean different things in different contexts.

• Example:
– In English, a bank can mean side of a river or a place to put money

• In Java,
– Two or more classes could each have a method called output.

– Each output method would do the right thing for the class that it was in.
• One output might display a number, whereas a different one might display a name.

47

Example : Polymorphism

음력 1월生 양력 1월生 외국인

Get Age ?

48

5. Composition

• Object composition :
– “has_a” relationship between objects

– Defined dynamically at runtime by acquiring references to other objects.

– Does not break encapsulation, because objects are accessed solely through
interfaces.

– Any compatible object can be replaced with another at runtime.

49

Example : Composition

Encapsulating quack behavior

Encapsulating fly behavior

Duck

performQuack(){}
swim() {//swimming impl}
display() //abstract
performFly(){}
setFlyBehavior()
setQuackBehavior()
//Other duck-like methods

FlyBehavior flyBehavior
QuackBehavior quackBehavior

MallardDuck

display(){
//looks like a mallard }

RedheadDuck

display(){
//looks like a redhead }

<<interface>>
FlyBehavior

fly()

FlyWithWing
fly(){
 //implements Duck flying
}

FlyNoWay
fly(){
 //do nothing -- can’t fly
}

<<interface>>
QuackBehavior

quack()

Quack

Quack(){
 //implements duck quacking
}

MuteQuack
Quack(){
 //do nothing --can’t quack
}

Squeak

Quack(){
 //implements squeaking
}

Client

composition

com
position

public abstract class Duck {
FlyBehavior flyBehavior;
public void performFly() {

flyBehavior.fly();
}

} 50

6. Interface

• Interface
– A collection of operations specifying a service of a class or component

– Interfaces formalize polymorphism.

– Interfaces support “plug-and-play” architectures.

Shape
<<interface>>

+draw()
+move()
+scale()
+rotate()

Tube

Pyramid

Cube

Realization relationship

What

How

51

7. Abstract Class

• Abstract class
– A class that may not has any direct instances.

• Abstract operation
– An incomplete operation requiring a child to supply an implementation of the

operation

Shape

+draw()

Circle

+draw()

Rectangle

+draw()

Abstract Class

Abstract Operation

Concrete Class

Concrete Operation

Inheritance Relationship

52

An Overview of Object-Oriented Development

Object-Oriented Programming

Object-Oriented Concepts and Principles

Object-Oriented Analysis and Design

Object-Oriented Design Patterns

Software Architecture Style

Software
Development

Sequence

Origination
Sequence

UML

+

OOD
Methods

53

UP

54

An Introduction to UML

55

5 6

UML

• Unified Modeling Language for
– Visualizing , Specifying , Constructing and

– Documenting the artifacts of software-intensive systems.

• Offer vocabulary and rules for communication
– http://www.uml.org/

• Combine the best of the best from
– Data Modeling (Entity Relationship Diagrams)

– Business Modeling (work flow)

– Object Modeling

– Component Modeling (development and reuse - middleware, COTS)

de facto industry standard

56

The UML Semantics

• 4-layer metamodel architecture
– instance → model → meta model → meta-meta model

• MOF (Meta Object Facility) defines a four-layer meta model hierarchy.
– Layer M3: Meta-meta model layer (The MOF model)

– Layer M2: Meta model layer (The UML meta model)

– Layer M1: Model layer (The UML model)

– Layer M0: Information layer (the Application)

• MOF and UML are aligned.
– The UML infrastructure contains all the concepts needed for the specification of

UML and MOF.

57

The Meta Model Hierarchy of the MOF (for UML)

58

UML 2.0 Diagrams

• 13 UML diagrams

59

UML 2.2

1. Use Case Diagram

• Use case diagram illustrates the name of use cases and actors, and the
relationships between them.

– Use case : a collection of related success and failure scenarios, that describe
how an actor uses the system to achieve a goal

– Actor : something with behavior, such as a person, computer or organization

60

Use case: Handle Returns

Main Success Scenario:
- A customer arrives at a checkout with items to return.
- The cashier uses the POS system to record each

returned item …

Alternate Scenarios:
- If the customer paid by credit, and the reimbursement

transaction to their credit account is rejected, inform the
customer and pay them with cash …

2. Class Diagram

• Class diagrams show the classes of the system, their inter-relationships,
and the operations and attributes of the classes.

– Domain model

– Design class diagram (DCD)

61

3. Object Diagram

• Object diagrams are useful for exploring real world examples of objects
and the relationships between them.

– Shows instances of classes at a specific point of time. (i.e., snapshot)

62

4. Package Diagram

• Package diagrams group classes into packages and simplify complex
class diagrams.

– A package is a collection of logically related UML elements.

63

5. Component Diagram

• Component diagrams depicts how components are wired together to form
larger components or software systems.

– Illustrate the structure and inter-dependency of arbitrarily complex systems

64

6. Composite Structure Diagram

• Composite structure diagrams are used to explore run-time instances of
interconnected instances collaborating over communications links.

– Show the internal structure (including parts and connectors) of components.

65

7. Deployment Diagram

• Deployment diagrams depict a static view of the run-time configuration of
hardware nodes and the software components running on those nodes.

66

8. Sequence Diagram

• Sequence diagrams model the collaboration of objects based on a time
sequence.

– Show how the objects interact with others in a particular scenario of a use case.

67

9. Communication Diagram

• Communication diagrams are used to model the dynamic behavior of the
use case. (called collaboration diagram)

– ≈ Sequence diagram

– More focused on showing the collaboration of objects rather than the time
sequence.

68

10. State (Statechart) Diagram

• State diagrams can show different states of an entity and how an entity
responds to various events by changing from one state to another.

– Originated from the Statechart formalism

– The history of an entity is modeled by a finite state diagram.

69

11. Timing Diagram

• Timing diagrams show the behavior of the objects in a given period of time.
– A special form of a sequence diagram

– The time increases from left to right and the lifelines are shown in separate
compartments arranged vertically.

70

12. Interaction Overview Diagram

• Interaction overview diagrams focus on the overview of the flow of control
of the interactions.

– A variant of the Activity Diagram, where the nodes are the interactions or
interaction occurrences.

71

13. Activity Diagram

• Activity diagrams help to describe the flow of control of the target system.
– Exploring complex business rules and operations, describing the use case and

the business process.

– It is an object-oriented equivalent of flow-charts and DFDs (data flow diagrams).

72

13 UML Diagrams

73

UML 2.2

74

