KU KONKUK
UNIVERSITY

OOAD/UML 7| &

X
30 H!

My =2
oE Jot
El

% | b
A DEPENDABLE SOFTWARE
!‘.I. y LABORATORY

e

Contents

An Introduction to Object-Oriented Development

— Obiject-Oriented Development
— Object-Oriented

— Obiject-Oriented Principles

- UML

Object-Oriented Analysis and Design
— Part I. Introduction
— Part ll. Inception

— Part lll. Elaboration lteration 1 - Basics
* OO Analysis
+ OO Design
* OO Implementation

Advanced Topics in UML
— Statechart Diagram
— Component Diagram
— Extension Mechanism of UML

Object-Oriented Analysis and Design - Summary

KU

KONKUK
UNIVERSITY

Contents at a Glance

An Introduction to
Object-Oriented Development
(OOD)

* Object-Oriented Development
* Object-Oriented

+ Object-Oriented Principles

* UML

Advanced Topics in UML

« Statechart Diagram
» Component Diagram
+ Extension Mechanism of UML

(! DEPENDABLE SOFTWARE
R LABORATORY

Object-Oriented Analysis and Design

+ Part 1: Introduction
« Part 2: Inception
+ Part 3: Elaboration Iteration 1 - Basics

Object-Oriented Analysis and Design -
Summary

An Introduction

Development

B

Contents in Detail

CHx|

1.

to Object-
Oriented

EPENDABLE SOFTWARE
LABORATORY

12
3

4

56

A7

Object-Oriented
Development

Object-Oriented

Object-Oriented
Principles

UML

o
o>
o
f

ATEQO] HEt
« OOAD 2} SASD°| At
o CHASE AT EQOf 7Y

=13

TEekn Falg + Utk

ZH K| X| 2k (Object-Oriented)S |2

—

‘ KU KONKUK
UNIVERSITY

SM e

* OOAD vs. SASD
+ Software Development Process

* Object-Oriented

» Object-Oriented Principles

* 13 UML Diagrams

Contents in Detail

7 Part I. Introduction

2 89 Partll. Inception c
Object- .
Oriented Part IIl. Elaboration .
Analysis and) ,
Design 10 Iteration 1 — Basics .
- O0A
APPLYING UML .
AP R i1 - 00A
12 - O0D .
13 .
14 - O0D
15 .
16 - O0D
17 - 00D)
18)
19 - 00l

EPENDABLE SOFTWARE
LABORATORY

sg 25

UP 7|8t OOADS| A EtA 2l Inception EHAHIE
olshgt £= ULH.

Inception THA o] E&
75|75 fTA
Use CaseS Z8%

Ct.

Sequence diagram?| =&
2 oIC}
T M .

Operation contract®| 542 O|s}j&

Design tHAH Q| 252 O[3 Cf.
Package diagram2| SX & O|sfjsl1 &85t
oITt

AT

242

=52 oldlstn 28

Sequence diagram2|
= QUCt
A .

of
of
kI
e
0o

_(')l'

Class diagram?| 582 0
ALt

0O DesignOflA{ Implementation2 £ 2|
Mot S dest| olshe = ULk

Heee 2ol HEe golg + QUr.

KU KONKUK
UNIVERSITY

M UHE

» Chapter 1.
Design

» Chapter 2.

» Chapter 3.

Object-Oriented Analysis and

lterative, Evolutionary, and Agile
Case Studies

» Chapter 4.
Phase

» Chapter 5.

» Chapter 6.

» Chapter 7.

Inception is Not the Requirements

Evolutionary Requirements
Use Cases
Other Requirements

» Chapter 8.
» Chapter 9.

Iteration 1 Basics
Domain Models

» Chapter 10. System Sequence Diagram
» Chapter 11. Operation Contracts

» Chapter 12. Requirements to Design lteratively
» Chapter 13. Logical Architecture and UML
Package Diagrams

» Chapter 14. On to Object Design
» Chapter 15. UML Interaction Diagram

» Chapter 16. UML Class Diagram

» Chapter 17. GRASP: Designing Objects with
Responsibilities

» Chapter 19. Designing for Visibility
» Chapter 20. Mapping Designs to Code

20

Topics in UML

B

Contents in Detail

3.
Advanced

4.
Summary

EPENDABLE SOFTWARE
LABORATORY

21

22

23

24

Statechart Diagram

Component Diagram

Extension Mechanism
of UML

OOAD Summary

« Component Diagram= O|sfist 1 28t

« UMLS M HESHH &3 ot= LS ol

ALY

ULt

* MOF2| 7 & o8l 4= ULt

K

KONKUK
UNIVERSITY

SM e

« Statechart Diagram

» Component Diagram

» Extension Mechanism of UML

dM HE

* OOAD Summary

Text and References

APPLYING UML
AND PATTERNS

An Introduction to Object-Oriented Analysis and Design
and Hterative Development

Teogie e il me whach o S best book fo introduce them to Be warkd of 00 desgn.
B e T camer srtt W, Appfyong UK and! Pamterin hus beem my s choner *
Martin Fowles, authoe of (MI Distid anal Reficionng

C I’\H. l \I{\I\\

by Phulippe Kruchten

EPENDABLE SOFTWARE
LABORATORY

SOMMERVILLE

g
B -

SOFTWARE ENGINEERING

Your Brain on D

Head Flrst
Design Patterns

vold thoso
embarrassig |
cnuplng mistakes

you m Aawm Py

OREILLY?

Software Engineering
A PRACTITIONER'S APPROACH

RogerS. |
PRESSMAN
Bruce R.
MAXIM

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

ASystem of Patterns

THE RATIONAL
UNIFIED PROCESS
AN INTRODUCTION

Trirp Epirion

[Re=]

KONKUK
UNIVERSITY

Design Patterns

Elements of Reusable
Object-Oriented Software
Erich Gamma

Richard Helm

Ralph Johnson
John Vlissides

Foreword by Grady Booch

o

SIS ONILNIWOD TVNOISSHONd ATISIM-NOSIaaY »

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 8
LABORATORY

An Introduction to
Object-Oriented Development
(OOD)

* Object-Oriented Development
* Object-Oriented

* Object-Oriented Principles

« UML

Object-Oriented Development

I§ KONKUK
UNIVERSITY

Software Development

» Software Development = Solving Problem with Software in Computer

Business Process

Natural Language

— Descriptions of Problems
(through ldentifying Requirements)

Programmlng Language
— Descriptions of Solutions

(through Designing Programs)

Program Execution
with Computer System

EPENDABLE SOFTWARE 11
LABORATORY

Software Development

» Software Development = Solving Problem with Software in Computer

Problems Natural Language

— Descriptions of Problems
(through Identifying Requirements)

in real world

s

: Programming Langu;g D
Solutions ~ — Descriptions of Solutions + D

in computer

(through Designing Programs) .
B — Program Execution
e @ ‘ With Computer System
SASD

Software Development = ®®@<: Procedural Programming

Object-Oriented Programming \
OOAD

EPENDABLE SOFTWARE 1 2
LABORATORY

Computational Thinking = ©®®@,,

KU KONKUK
UNIVERSITY

Procedural Programming

« A program is organized with procedures.

— Procedure/Function
 building-block of procedural programs
« statements changing values of variables

— Focusing on data structures, algorithms, and sequencing of steps
« Algorithm : a set of instructions for solving a problem
« Data structure : a construct used to organize data in a specific way

— Most computer languages rom FORTRAN to ¢) @are procedural ones.

P TTTTTmmTmmsmmsmmsesssmssssssoesesoosooooosooooooo : struct account {
char name;

int accountid;

| 1 float balance;
float interestYTD;
"""""""""""""""""""""""""""""""""" char accountType;

Procedures (with Algorithms) Data Structure

I EPENDABLE SOFTWARE 1 3
LABORATORY

KONKUK

UNIVERSITY

Procedural Programming - SASD

« SASD (Structured Analysis and Structured Design)
— A traditional software development methodology for procedural programs
— Top-Down Divide and Conquer
* Divide large, complex problems into smaller, more easily handled ones.
— Functional view of the problem using DFD (Data Flow Diagram)

Front Sensor Input

; Motor Command
Determing
Dbstade
Location
1.5

Motor Command

Determine
Dust
Existence
1.6

Motor Command

Cleaner Command

A level 3 DFD for RVC Control

EPENDABLE SOFTWARE 1 4
LABORATORY

An SASD Example - RVC Control

DFD Level 0

Direction

Front Sensor Input
Left Sensor Input

Right Sensor Input
Dust Sensor Input

Sensor

Cleaner

Structured Analysis

DFD Level 3

Motor Command
Determine
Obstade
Location
1.5

Mator Command

Determine
Dust
Existence
16

Dust
Existen

—
e Mator Command

Cleaner Command

Controller

Structured Chart

Obstacle Location

Dust Existence

Structured Design

Determine Trigger

Dust Existence

Determine
Obstacle Location

Trigger

EPENDABLE SOFTWARE [} Interface Interface

1 Front Sensor Right Sensor | | Dust Sensor I
LABORATORY

I Move Forward | I Turn Left I Turn Right I

l{ l l KONKUK
UNIVERSITY

Object-Oriented Programming

* A program is organized with objects.
— Focusing on objects and their communications.
« Obiject : consisting of data and operations (functions)
« Object communication : an object calls an operation of other objects with its data
— Providing system functionalities through object communications
» No explicit data flow
* Only communication sequences among objects

Class BankAccount {
private:
float balance;
-balance: float float interestYTD;

-interestYTD: float i ?ha" * owner; |
data | _qwner: char i int account_number; |

BankAccount

-account_number: int public:
void Deposit (float amount) {...}

float WithDraw (float amount) {...}
bool Transfer (BankAccount to, float amount) {...}

+MakeDeposit(amount: float): void
operation | +WithDraw(amount: float): flaot
+Transfer(to: BankAccount, amount: float): bool

(DEPENDABLE SOFTWARE 1
\ LABORATORY

Object-Oriented Programming - OOAD

« OOAD (Object-Oriented Analysis and Design)
— A software development methodology for Object-Oriented programs
— OOA + 00D

« Object-Oriented Analysis (OOA)

— Discover the domain concepts/objects (the objects of the problem domain)

* Object-Oriented Design (OOD)
— Define software objects (static)
— Define how they collaborate to fulfill the requirements (dynamic)

e

17

KU KONKUK
UNIVERSITY

An OOAD Example - Dice Game

Define domain Define interaction Define design class
Define use cases A .
model diagrams diagrams
------------------------------------ 0 o Y R e T s o 1o 1 S

Interaction Diagram

."Diu-GWi m imﬂb-.; \
i

Use Case : Play a Dice Game
- Player requests to roll the dice.

bomain Model Design Class Diagram

i - System presents results. bk i \ ‘ i
- If the dice’s face value totals seven, =4, N ; |
§ player wins; otherwise, player loses. MM’I‘ \
:) |
e N
| - ',—ﬂ'—“%;“v““ = ! - i
i | \ \ i E
e b 1 Rolls 2 e |
i | name - faceValue i i i
| 1 | 2 . - - i
i Plays i i DiceGame Die E
i 1 i i die1 : Die . 1 2 faceValue : int i
! ; . die2 : Die : !
i DiceGame 1 incliidan i i - getFaceValue() : int i
i ! | i | play() _ roll() i

PENDABLE SOFTWARE
LABORATORY 1

KU v

Software Process Model

« Software (Development) Process models

— Defining a distinct set of activities, actions, tasks, milestones, and work products
that are required to engineer high-quality software, systematically.

— Defining Who is doing What, When to do it, How to reach a certain goal.

<1960s ~ 2000s > <2000s ~ Now > <in practice >
Waterfall Model Nl Application Domains
Incremental Model : * Waterfall Model tailored for
e N TS Application Domains
Evolutionary Model T
NN .-,’ --_—-_____-_—--:. Application Domains “...--..:"""‘-..:‘
Component-Based Development _____________) -— ..
I A lterative Model tailored for
Iteratlve MOdeI (Aglle) - \\\\‘“-‘.‘ App'ication Domains
Rational Unified Process
i JE’?DEPENDABLE SOFTWARE 19

A 4 LABORATORY
I

I < KONKUK
UNIVERSITY

Waterfall Model

» Aclassic software development life-cycle (SDLC) model
— Suggests a systematic and sequential approach to software development

— Useful in situations where,
* Requirements are fixed early.
* Work can/shoudl proceed to completion in a linear manner.

r Requirement Analysis
r System Design a
r Implementation 9._..“__
-
r System Testing
r System Deployment

System Maintenance

EPENDABLE SOFTWARE 20
LABORATORY

KU v

Iterative Model - Agile

« Agile development is an umbrella term a group of methodologies
weighting rapid prototyping and rapid development experiences.

— Lightweight in terms of documentation and process specification
— Example: XP(eXtreme Programming) , TDD(Test Driven Development)

* Agile methods attributes Requirements Analysis & Design
— lterative (several cycles) ga== Implementation

' anning
— Incremental (not delivering the product at once) - Deployment

Initial

— Actively involve users to establish requirements """ ‘ ’
Evaluation
Testing

» Agile Manifesto
— Individual over processes and tools
— Working software over documentation
— Customer collaboration over contract negotiation
— Responding to change over following a plan

b -
() DerenpasLE SOFTWARE 21
Ny LA

A

l{ l l KONKUK
UNIVERSITY

lterative Model - UP

THE RATIONAL
UNIFIED PROCESS
« Rational Unified Process (RUP) or UP AN INTRODUCTION

THirp Epirion

— A Software development approach that is
* lterative (Incremental, Evolutionary)
— Each iteration includes a small waterfall cycle.
» Risk-driven / Client-driven / Architecture-centric
 Use-case-driven

— A Well-defined and well-structured software engineering process
* 4 Phases and 9 Disciplines

— A de-facto industry standard for developing OO software

developmentcycle
AL

. . N

iteration phase

(/\ A

r R
inc. elaporatjon construcition transition
milestone release increment final production

An iteration end-point A stable executable subset The difference (delta) release
when some significant of the final product. The between the releases At this point, the system

decision or evaluation end of each iteration is a of 2 subsequent is released for
EPENDABLE SOFTWARE oceours. minor release. iterations. production use. 22
LABORATORY

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 2 3
LABORATORY

An Introduction to Object-Oriented

Object

* An object represents an entity.
— physical, conceptual or software, informally.

— Physical entity -B Truck

L .o.
®. ®
— Conceptual entity E x Chemical Process

— Software entity
Linked List

Rl

25

A More Formal Definition of Object

« An object is an entity with a well-defined boundary and identity that
encapsulates state and behavior.
— State : represented by attributes and relationships
— Behavior : represented by operations, methods, and state machines

DEPENDABLE SO FTWARE

Rl

26

KU KONKUK
UNIVERSITY

The Object States

» The state of an object
— One of the possible conditions in which an object may exist.
— Normally changes over time.

Name: Junbeom Yoo
Employee ID: 1234567
Date Hired: 2008.03.01
= Status: Tenured

Discipline: CS
Min. Course Load: 5

Professor Yoo

Name: Junbeom Yoo
Employee ID: 1234567
Date Hired: 2008.03.01
Status: Tenured

Discipline: CS

Min. Course Load: 5 classes

Professor Yoo

EPENDABLE SOFTWARE 2 7
LABORATORY

KU KONKUK
UNIVERSITY

The Object Behavior

« Behavior determines how an object acts and reacts.
— Modeled by the set of messages it can respond to (= operations the object can perform).

+ Name: Junbeom Yoo
+ Employee ID: 1234567
+ Date Hired: 2008.03.01
« Status: Tenured

+ Discipline: CS

Min. Course Load: 4

Professor Yoo

Name: Junbeom Yoo
Employee ID: 1234567
Date Hired: 2008.03.01
Status: Tenured

Discipline: CS

Min. Course Load: 5 classes

+ TakeSabbatical

Professor Yoo

EPENDABLE SOFTWARE 2 8
LABORATORY

An Object has Identity

« Each object has a unique identity.

— Even if the state is identical to that of another object.

@
ﬂ Professor “J Yoo” teaches Biology

+

@
w Professor “J Yoo” teaches Biology

KU KONKUK
UNIVERSITY

29

Objects Need to Collaborate

» Objects are useful only when they can collaborate together to solve a
problem.

— Each object is responsible for its own behavior and status.
— No one object can carry out every responsibility on its own.

 How do objects interact with each other?
— They interact through messages.

KU v

30

KU KONKUK
UNIVERSITY

Class

» Aclass is a description of a set of objects that share the same properties
and behavior.

— An object is an instance of a class.

Objects Class

Professor

[4 [4
Attributes
Sl) (States)
-employeelD : Uniqueld
- hireDate /

- status
- discipline
-maxLoad

Professor A Professor B

[) [4 + submitFinalGrade() Operations
+ acceptCourseOffering() (Messages)
+ setMaxLoad()

+ takeSabbatical()

Professor C Professor D

I EPENDABLE SOFTWARE 3 1
LABORATORY

Relationship between Classes and Objects

« Aclass is an abstract definition of an object.
— It defines the structure and behavior of each object in the class.

— It serves as a template for creating objects.
» Objects are grouped into classes.
* An object is an instance of a class.

Class

Objects Professor

-hame

in Real World -employeelD : Uniqueld

- hireDate

Abstraction - status Instantiation
- discipline ; J Yoo :

-maxLoad Professor

+ submitFinalGrade() _
+ acceptCourseOffering() ObjeCtS

+ setMaxLoad()
Professor A Professor B Ry to Computer World

LABORATORY

% q??.?\,‘
H ﬁ{g%]EPENDABLE SOFTWARE 32
)

KU KONKUK
UNIVERSITY

Attribute

» An attribute is a named property of a class that describes a range of
values which instances of the property may hold.

Class

+ Name: J. Son
+ Address : Seoul
+ StudentiD : 11112345

. « DateofBirth: 1992.01.01
Attributes

Student \
\ -name Instantiation Objects
-address

-studentID
-dateofBirth

» Name:S. Jung
» Address : Seoul

+ StudentiD : 10012354
» DateofBirth : 1990.03.01

EPENDABLE SOFTWARE 33
LABORATORY

KU KONKUK
UNIVERSITY

Operation

* An operation is the implementation of a service which can be requested
from any object of the class to affect behavior.

Student

Operations

+ get tuition()
\ + add schedule()
+ get schedule()

+ delete schedule()
+ has pre-requisites|()

 Address
+ StudentiD
» DateofBirth

+ getTuition()

{ *- EPENDABLE SOFTWARE 34
iy LABORATORY

Rl

Example : class Professor

class Professor {

. . class
private String name;
private int age; Professor
private String specialty; :
-name: String
public Professor (String sm, int ia, String ss) { -age:;nteger_
age = 1ia; e
speciality = sst; +getName(): String
} +getAge(): Integer
+getSpeciality (): String
public String getName () { return name;}
public int getAge () { return age;}
public String getSpeciality () { return specialty;}
}
Professor yoo = new Professor (“yoo” , 43, “Software Engineering”):
instance

yo0o : Professor

name = Yoo
age =43
speciality = Software Engineering

il ' DEPENDABLE SOFTWARE 3 5
A LABORATORY

Ny

Message

» A specification of a communication between objects
— Conveying information with the expectation that activity will ensue.
— One object asks another object to perform an operation.

client

=)
i f,I)EPENDABLE SOFTWARE
y LABORATORY

What'’s your name?

yoo.getName()

Professor Yoo

client y00 : Professor

yoo:Professor

+ Name: Junbeom Yoo
+ Employee ID: 1234567
+ Date Hired: 2008.03.01
+ Status: Tenured

- Discipline: CS

+ Min. Course Load: §

. * getName()

KU v

36

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 3 7
LABORATORY

An Introduction to Object-Oriented
Principles

KU v

Basic Principles of Object-Oriented

Abstraction
Encapsulation
Inheritance
Polymorphism
Composition

Abstract / Interface Class

o gk owbd-=

KU s

1. Abstraction

 Abstraction:

— “Any model that includes the most important, essential or distinguishing aspects of
something while suppressing or ignoring less important, immaterial, or diversionary
details. The result of removing distinctions so as to emphasize commonalties.”

(Dictionary of Object Technology, Firesmith, Eykholt, 1995)

— Emphasizes relevant characteristics, but suppresses other characteristics

BriefCase

Abstraction

-weight

+open()
+close()

() DeeenpaBLE SOFTWARE 40
LNy LABORATORY

Example : Abstraction

o
PN
' Lecturer

2]

Course Offering

oz <o
e |

Dormitory

o
®.
...
x Course (Chemistry)

KU v

41

KU v

2. Encapsulation

 Encapsulation :

— Design, produce and describe software so that it can be easily used without
knowing the details of how it works.

— Also known as information hiding

 Example:

— When you drive a car, you don’t have know the details of how many cylinders the
engine has or how the gasoline and air are mixed and ignited.

— Instead you only have to know how to use the controls.

b -
il },I:DEPENDABLE SOFTWARE 42
v LA

S

KU KONKUK
UNIVERSITY

Example : Encapsulation

* Professor Yoo needs to be able to teach 4 classes in the next semester.

ééh ‘kb
\Ca (%)
2° %,
o Y
ob“\ @%
L] 6 e’
o %
« Name: Junbeom Yoo \9'//

| - Employee ID: 1234567 |\ _—

« Date Hired: 2008.03.01

. « Status: Tenured
SetMinLoad(4) dé' - Discipline: CS _
Professor Yoo @,’) * Min. Course Load: 4)
(o
V7

* TakeSabbatical

Professor Yoo

T h
H !-Ii‘%bEPENDABLE SOFTWARE 43

!‘.I. y LABORATORY
SN

KU KONKUK
UNIVERSITY

Encapsulation as Information Hiding

Information
can’t be accessed by clients

Interfaces - Balance
available — insterestYTD
— Owner
o . — Account number
Deposit ()
w s Withdraw() o
: Transfer () ' + Deposit() {--}
Client + Withdraw () {--}
+ Transfer () {:-}
Implementation details
invisible for clients
s 44

Mgmm

3. Inheritance

* Inheritance :
— “Is akind of” |, “is-a” relationship
— Away of organizing classes

— Classes with properties in common can be grouped so that their common
properties are only defined once.

(" Vehicle)

C Automobile) C Motorcycle) (Bus

m C Sports Car) (School Bus) < Luxury Bus >

DABLE SOFTWARE
LABORATORY

45

KU KONKUK
UNIVERSITY

Example : Single Inheritance

* One class inherits from another.

Ancestor
Account
Superclass -balance
. -name
(parent) -number
+withDraw()
+createStatement()
Inheritance Relationship
Savings Checking
Subclasses
(children)

Descendents

EPENDABLE SOFTWARE 46
LABORATORY

KU v

4. Polymorphism

 Polymorphism :
— The ability to hide many different implementation behind a single interface.
— The same word or phrase can mean different things in different contexts.

 Example:
— In English, a bank can mean side of a river or a place to put money

e InJava,
— Two or more classes could each have a method called output.

— Each output method would do the right thing for the class that it was in.
One output might display a number, whereas a different one might display a name.

47

Example : Polymorphism

Get Age ?

02
I3
[l

=3 184&

KU KONKUK
UNIVERSITY

ol 2ol

48

KU v

5. Composition

 Object composition :
— “has_a” relationship between objects
— Defined dynamically at runtime by acquiring references to other objects.

— Does not break encapsulation, because objects are accessed solely through
interfaces.

— Any compatible object can be replaced with another at runtime.

T
Ly
(} DePenDABLE SOFTWARE 49
LYY La

< 4

Pl

|

Example : Composition

Client

Duck

FlyBehavior flyBehavior
QuackBehavior quackBehavior.

performQuack(){}
swim() {//swimming impl}
display() //abstract
performFly(){}
setFlyBehavior()
setQuackBehavior()
//Other duck-like methods

M

other types of
ducks
MallardDuck RedheadDuck
display(X display(){
INooks like a mallard } INooks like a redhead }

public abstract class Duck {
FlyBehavior flyBehavior;
public void performFly() {
flyBehavior. fl1y () ;

§ 7 EPENDABLE SOFTWARE
7
]

i
W
B

il

s

LABORATORY

Encapsulating fly behavior
<<interface>>
X / FlyBehavior
osition q ﬂ
" Other ways of
Vo flying
FlyWithWing FlyNoWay
fly({ fly({
[limplements Duck flying /ldo nothing -- can't fly
L]
O%‘
%
Encapsulating quack behavior
<<interface>>
QuackBehavior
quack() other wa ys of
- A\ A YV quacking
Qua;k) Mt Sk
Quack(){ : Quack(){u euae
}//implements duck quacking Jido nothing ~can't quack
5)
Squeak
Quack(){
/limplements squeaking
}

KU

KONKUK
UNIVERSITY

50

6. Interface

 Interface

— A collection of operations specifying a service of a class or component
— Interfaces formalize polymorphism.
— Interfaces support “plug-and-play” architectures.

What

Tube

<<interface>>
Shape

.4
-
Prd
-
-
Prd
-
-
-
-
-
Prd
-
-
-
-
Prd
-
-
Prd
-
-
-
-
-
-
-

+draw()
+move()
+scale()
+rotate()

Pyramid

| DEPENDABLE SOFTWARE

LABORATORY

~
S
~
~
~
S~
~
~
~
~
~
~
~
~
~
~
<
~
~
~
~
~
~
~
~
~
~
~
~~
~
-

Cube

Realization relationship

How

KU KONKUK
UNIVERSITY

Tube

Pyramid

Share _
| Cube

51

l{ l l KONKUK
UNIVERSITY

7. Abstract Class

* Abstract class
— Aclass that may not has any direct instances.

» Abstract operation

— An incomplete operation requiring a child to supply an implementation of the
operation

<h - Abstract Class
ape

/

Concrete Class
Circle Rectangle | <«

| _— Concrete Operation

+draw()

Abstract Operation Inheritance Relationship

+draw() +draw() <«

EPENDABLE SOFTWARE 52
LABORATORY

Software
Development
Sequence

EPENDABLE SOFTWARE
LABORATORY

Software Architecture Style

Object-Oriented Design Patterns

UML

UP

+

Object-Oriented Analysis and Design

Object-Oriented Concepts and Principles

Object-Oriented Programming

OooD
Methods

Origination
Sequence

53

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 54
LABORATORY

An Introduction to UML

KU KONKUK
UNIVERSITY

UML
UNIFIED o

« Unified Modeling Language for MODELING
. - - . LANGUAGE
— Visualizing , Specifying , Constructing and

— Documenting the artifacts of software-intensive systems.

» Offer vocabulary and rules for communication o
— http://www.uml.org/

Unified Modeling Language: Infrastructure

version 2.0
formal/05-07-05

« Combine the best of the best from
— Data Modeling (Entity Relationship Diagrams)
— Business Modeling (work flow)
— Object Modeling
— Component Modeling (development and reuse - middleware, COTS)

de facto industry standard

EPENDABLE SOFTWARE 56
LABORATORY

The UML Semantics

4-layer metamodel architecture

MOF (Meta Object Facility) defines a four-layer meta model hierarchy.

instance — model — meta model — meta-meta model

Layer M3: Meta-meta model layer (The MOF model)
Layer M2: Meta model layer (The UML meta model)
Layer M1: Model layer (The UML model)

Layer MO: Information layer (the Application)

MOF and UML are aligned.

— The UML infrastructure contains all the concepts needed for the specification of

DABLE SOFTWARE
LABORA’

TORY

UML and MOF.

57

KU KONKUK
UNIVERSITY

The Meta Model Hierarchy of the MOF (for UML

Meta-meta model layer MOF model
(Layer M3):
Meta-meta models Class
R e .
I
I
............ /\1\,
I <<instanceOf>> l <<instanceOf>> I <<instanceOf>>
1 [=eiEe = e 1 1
Meta model layer UML meta model | ! ! !
(Layer M2): | | |
Meta models Attribute Class classiier InstanceSpecification
/N
Pl I\] LN
/\ 77% 7N t 71N
........... I.............i...............I.................]...........l....................
! ! <<instance0f>>_: <<instanceOf>> : I <<instanceOf>>
Model-layer UML model : - | 1
(Layer M1): i | T |
1
I
Models <<instanceOf>> | Person <<snapshot>> : Albert:Person
| ——————————————
\
L - - 4 name : string name = “Albert Einstein”
/N

Information-layer
(Layer MO):

I

]] I
Run-time instances |
1

aPerson
Instances

EPENDABLE SOFTWARE 5 8
LABORATORY

K KONKUK
UNIVERSITY

UML 2.0 Diagrams

« 13 UML diagrams

Diagram
[|
Structure Behaviour
Diagram Diagram
JA JA
| | |
Class Component Obiject Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction State
Diagram Structure Diagram Diagram Diagram Machine
Diagram Diagram
JA
[|]
UML 2.2 Sequence Communication || Interaction Timing
Notation: UML | Diagram Diagram Overview Diagram
Diagram

EPENDABLE SOFTWARE 59
LABORATORY

KU KONKUK
UNIVERSITY

1. Use Case Diagram

- Use case diagram illustrates the name of use cases and actors, and the
relationships between them.

Use case : a collection of related success and failure scenarios, that describe
how an actor uses the system to achieve a goal

— Actor : something with behavior, such as a person, computer or organization

system boundary

Customer

L.
i
[}

aclor

,

Manager
agcton

Sales Activity
System

System
Administrator

m§ LABORATORY

Cashier / <

NextGen POS

" Process Sale

Handle Returmns

Cash In

1 Analyze Activity

1 Manage Security |

" Manage Users

_ - communication

alternate
notaton for
a computer
Paymeni systgm actor
Authorization o _.-r
Service g
aactors | 8 Use case: Handle Returns
Tax Calculator
ps Main Success Scenario:
- ﬂoscwntinu - A customer arrives at a checkout with items to return.
fem .
= - The cashier uses the POS system to record each
wsclors returned item ...
HR System
Alternate Scenarios:
.- - If the customer paid by credit, and the reimbursement
. transaction to their credit account is rejected, inform the
% customer and pay them with cash ...
use case

60

KU

2. Class Diagram

« Class diagrams show the classes of the system, their inter-relationships,
and the operations and attributes of the classes.

— Domain model
— Design class diagram (pcp)

Store Uses
1| address - Address 1 l 1
name : Text ProductSpecification
ProductCatalog
addSale(...) Contiing description : Text
. price : Money
1 _ Looks-in 1)_ — 1 1.*| itemID: ItemID
getSpecification(...)
Houses — //, /,
— o p
Describes
1 1 Sale - il .
Register date - Date — .
v isComplete : Boolean SalesLineltem
: Captures time : Time 1 Contains > quantity - Integer
endSale() s /1 1 1..
enteritem(...) . Bty getSubtotal()
makeNewSale() makeLineltem(...)
makePayment(...)
makePayment(...) . getTotal()
s A 1
Logs-completed® : * | Payment
. Paid-by
amount : Money
A dependency of Register knowing about 1
ProductSpecification.

Recommended when there is parameter,
global or locally declared visibility.

EPENDABLE SOFTWARE 6 1
LABORATORY

I { U {’(N?VRHSH"'

3. Object Diagram

- Object diagrams are useful for exploring real world examples of objects
and the relationships between them.

— Shows instances of classes at a specific point of time. (i.e., snapshot)

Author Computer
name : String Uses » name : String
age : Integer P - memory : Integer Class Diagram
Bob's Job PC:
| Computer
name = "Dell 466"
Bob: Author memory = 64
name = "Bob J."
age = 32 — Obiject Diagram
Bob's Home PC:
| Computer |
name = "Compaq

Pentium MMX"
memory = 32

B

T :
H ﬁ[g%]EPENDABLE SOFTWARE 62
)

LABORATORY

4. Package Diagram

- Package diagrams group classes into packages and simplify complex

class diagrams.
— A package is a collection of logically related UML elements.

'DEPENDABLE SOFTWARE
LABORATORY

Presentation

Swing 0-4,_

Text o]

not the Java B [v] .
ProcessSale +.| Swing libraries, but ProcessSale s i qu{ck
Frame our GUI classes Console experments
based on Swing
Domain |
Sales Pricing
‘ Register ‘ ‘ Sale ‘ PricingStrategy «interface»
Factory |SalePricingStrategy
ServiceAccess Payments
Servi «interface»
Ferv;ces CreditPayment | CreditAuthorization
aclory ServiceAdapter
Inventory POSRuleEngine Taxes
«interface» ; «interface»
IInventory Adapter FSRulsEramshacads ITaxCalculatorAdapter
Technical Services |
Persistence f— — A general —
LogdJ Jess "[reee pipicD Hhird SOAP
DBFacade party rules

engine.

63

5. Component Diagram

- Component diagrams depicts how components are wired together to form
larger components or software systems.
— lllustrate the structure and inter-dependency of arbitrarily complex systems

id Policy Admin Components Wiring /

IPolicyService |IProductSemice &
RuleExecytionAPI
\ ij\ RuleExecut|onAP|
8,
«delegates E «COTS» @

Application Components::Policy Admin
Infrastructure Components:

Rules Engine

<delegate»
delegater
RuleExecutionAP| «cdelegate»
= RuleExecutjonAPl
I : 7
g l
s
Aphlication Components:: W | D 2
Unlerwriting & Rating Appli:;l'hz;l Components:: L z b banices €|
Englna enerator =
g g Application Compon R
lRaun%em LUndemnméemce nghcyS}‘mce <L tAccessCon!tolSemce g Product Server 3
= E
/M \UIGenara\@é)'Semce [
y Y N g
IR "‘i I 0 ~ athick clients
WiGenerationSerice
€| 'F ProdéctS Application Components::
«web servicex> A ﬂ Toccasnice Product Admin Ul
Poli O —
fpplleation CS P N 1iPolicyService IPolicySemice ol Gl
SIV8Y, Application Components:: «delegate> Fo)
J\ IFurmsSlIa:rnSemu Policy Admin Ul
|AcceésControlSerice
DocumentAdcessAPI lAcwssCuimlSemw
IFnrmsSolec$nSemu
Application Components::
«delegates Forms Management «delegates
«delegates
D .i Pl IFormsDefinf vice
«delegate> \4’

O— «LDAP>

DocumentAdcessAP|
// JNDI Infrastructure Components::

Directory Server
Documgn*qccpswl lAccessControlSemce IAccessCdnirolService «COTS> € i
Infrastructure Components: <
<«COTS» Application Components: ildentity Management JNDI
Infrastiucture Components:: Access Control

Document Management
4 Authenticationap) Author L | API Lionast
o—=0
EPENDABLE SOFTWARE 64
LABORATORY

KU KONKUK
UNIVERSITY

6. Composite Structure Diagram

- Composite structure diagrams are used to explore run-time instances of
interconnected instances collaborating over communications links.

— Show the internal structure (including parts and connectors) of components.

<<(omponent>> Ejl

ConversionManagement

. feedProvider
OME 1—0— E] Parses E]l DataSource DataSource
< <gompanent>> <<component>>" (>
| :Controller I,O- : BlogParser

DisplayConverter

DisplayConverter

Assembly
tonnedbor

EPENDABLE SOFTWARE 65
LABORATORY

l{ l l KONKUK
UNIVERSITY

7. Deployment Diagram

- Deployment diagrams depict a static view of the run-time configuration of
hardware nodes and the software components running on those nodes.

:ApplicationServer
<<gevice>>

WebServer <<RMI>> {0S=Solaris} =< JDBC=>> DBServer
{OS=LinuX]}
L EIBContainer
Student El <<gxecution environment=>
-'“'lli:'s'i::;:*m University DB]
Student <=glatastore=>
Ivendor=0racle}
Seminar g
Schedule
<<message bus>> Mainframe
{OS8=MV5}
<<deployment spec==
Registration
execution: thread Course
nested Transaction: true Management
=<legacy system==>
Persistence D
=<infrastructure==
{vendor=Ambysoft}

Copyright 2005 Scott W. Ambler

| DEPENDABLE SOFTWARE 66
y LABORATORY

8. Sequence Diagram

KU KONKUK
UNIVERSITY

Sequence diagrams model the collaboration of objects based on a time

sequence.

— Show how the objects interact with others in a particular scenario of a use case.

:Student

:E-Learning
System

login(user, pw) |

:Database

check(user, pw)

Yy

check: "ok"

- ———— — —— ———p— o a— c— q—

67

9. Communication Diagram

KU v

Communication diagrams are used to model the dynamic behavior of the
use case. (called collaboration diagram)

— = Sequence diagram

More focused on showing the collaboration of objects rather than the time

sequence.

:Student

:E-Learning
System

1: login(user, pw)
2: getCourses()

>

1.1: check(user, pw)

:Database

68

KU v

10. State (Statechart) Diagram

- State diagrams can show different states of an entity and how an entity
responds to various events by changing from one state to another.
— Originated from the Statechart formalism
— The history of an entity is modeled by a finite state diagram.

(o)

onBtnClick offBtnClick

On

(Idle)

entry / speed := undefined
setBtnClick cancelBtnClick

4 Cruising)

setBtnClick [SetSpeed A3 o
/Qentry / speed := currentSpeed J\

resumeBtnRelease.

MaintainSpeed setBtnRelease

do / maintain(speed)

resumeBtnPress setBtnPress

Decelerate

Accelerate

do / accelerate do / decelerate

brake
resumeBtnClick clutch

(Suspended \

l entry / releaseControl l

() DerenpasLE SOFTWARE . J 69
y LABORATORY I\ J

KU v

11. Timing Diagram

- Timing diagrams show the behavior of the objects in a given period of time.
— A special form of a sequence diagram

— The time increases from left to right and the lifelines are shown in separate
compartments arranged vertically.

= logged in
3
= logged out / getCourses
n login(user, pw) :
I
|
2 ilogin: "ok"
c
== busy v ' A
5 2 i
3& idle |
w check(user, pw) i check: "ok"
I
:
|
:
active v i

:Database

T

I i)

i f;I)EPENDABLE SOFTWARE 70
Yy LABORATORY

U

KU v

12. Interaction Overview Diagram

* Interaction overview diagrams focus on the overview of the flow of control
of the interactions.

— Avariant of the Activity Diagram, where the nodes are the interactions or
interaction occurrences.

sd Log In /

i :E-Learning :

:Student System :Database
iogin(user,)| |
ilogin(user, pw) _ | i
: i i [else]

H i i check(user, pw) >i >@

I . | _ check: "ok" : .
! _ login: "ok" e S ' [authorized]
e] |
| getCourses() _| |
: 5 : sd Forum /

Al
() DEPENDABLE SOFTWARE 7 1
| y LABORATORY

KU v

13. Activity Diagram

- Activity diagrams help to describe the flow of control of the target system.

— Exploring complex business rules and operations, describing the use case and
the business process.

— It is an object-oriented equivalent of flow-charts and DFDs (data flow diagrams).

Show
MessageBox
"Disk full" on
screen

[disk full]

PrintFile()
-
' Show
[free disk space] MessageBox
"Printing" on
screen
\
/ \ APrinter.Print(file) / \
6\/ Remove | Create postscript

LABORATORY

“ 5\37-3,_\‘
‘ i f,'I)EPENDABLE SOFTWARE 72
)

l (KONKUK
UNIVERSITY

13 UML Diagrams

Diagram
[|
Structure Behaviour
Diagram Diagram
JA) JAY
| | |
Class Component Obiject Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction State
Diagram Structure Diagram Diagram Diagram Machine
Diagram Diagram
JA
[[|
UML 2.2 Sequence Communication || Interaction Timing
Notation: UML | Diagram Diagram Overview Diagram
Diagram

EPENDABLE SOFTWARE 7 3
LABORATORY

I (KONKUK
UNIVERSITY

EPENDABLE SOFTWARE 74
LABORATORY

