
Chapter 2.

Software Processes

Topics Covered

• Software process models

• Process activities

• Coping with change

• Process improvement

43

The Software Process

• A structured set of activities required to develop a software system

• Many different software processes, but all involve:
– Specification : defining what the system should do

– Design and implementation : defining the organization of the system and
implementing the system

– Validation : checking that it does what the customer wants

– Evolution : changing the system in response to changing customer needs

• A software process model is an abstract representation of a process.
– Describes a process from some particular perspective.

• Activities in the process

• The ordering of these activities

44

Plan-Driven and Agile Processes

• Plan-driven process
– All process activities are planned in advance.

– Progress is measured against this plan.

• Agile process
– Planning is incremental.

– It is easier to change the process to reflect changing customer requirements.

• In practice, most practical processes include elements of both plan-driven
and agile approaches.

– There are no right or wrong software processes.

45

Software Process Model

46

Software Process Models

• The waterfall model
– Plan-driven model

– Separate and distinct phases of specification and development

• Incremental development
– Specification, development and validation are interleaved.

– May be plan-driven or agile.

• Integration and configuration (Component-based Development)

– The system is assembled from existing configurable components.

– May be plan-driven or agile.

• In practice, most large systems are developed using a process that
incorporates elements from all of these models.

47

The Waterfall Model

48

Waterfall Model Phases

• Separate identified phases
– Requirements analysis and definition

– System and software design

– Implementation and unit testing

– Integration and system testing

– Operation and maintenance

• The main drawback of the waterfall model
– The difficulty of accommodating change after the process is underway

• In principle, a phase has to be complete before moving onto the next phase.

• In practical, it is often impossible.

49

Waterfall Model Problems

• Inflexible partitioning of the project into distinct stages makes it difficult to
respond to changing customer requirements.

– Therefore, this model is only appropriate when the requirements are well-
understood and changes will be fairly limited during the design process.

– Few business systems have stable requirements.

• The waterfall model is mostly used for large systems engineering projects
where a system is developed at several sites.

– In those circumstances, the plan-driven nature of the waterfall model helps
coordinate the work.

50

Incremental Development

51

Incremental Development Benefits

• The cost of accommodating changing customer requirements is reduced.
– The amount of analysis and documentation that has to be redone is much less

than is required with the waterfall model.

• It is easier to get customer feedback on the development work that has
been done.

– Customers can comment on demonstrations of the software and see how much
has been implemented.

• More rapid delivery and deployment of useful software to the customer is
possible.

– Customers are able to use and gain value from the software earlier than is
possible with a waterfall process.

52

Incremental Development Problems

• The process is not visible.
– Managers need regular deliverables to measure progress.

– If systems are developed quickly, it is not cost-effective to produce documents
that reflect every version of the system.

• System structure tends to degrade as new increments are added.
– Unless time and money is spent on refactoring to improve the software, regular

change tends to corrupt its structure.

– Incorporating further software changes becomes increasingly difficult and costly.

53

Integration and Configuration

• Based on software reuse where systems are integrated from existing
components or application systems.

– Sometimes called COTS (Commercial-off-the-shelf) systems.

– Often called CBD (Component-Based Development).

• Reused elements may/must be configured to adapt their behaviour and
functionality to a user’s requirements.

• Reuse is now the standard approach for building many types of business
system. (Covered in Chapter 15.)

54

Types of Reusable software

• Stand-alone application systems (sometimes called COTS) that are configured for
use in a particular environment

• Collections of objects that are developed as a package to be integrated with
a component framework such as .NET or J2EE

• Web services that are developed according to service standards and which
are available for remote invocation

55

Reuse-Oriented Software Engineering

• Key Process Stages
– Requirements specification

– Software discovery and evaluation

– Requirements refinement

– Application system configuration

– Component adaptation and integration

56

Advantages and Disadvantages

• Advantages
– Reduced costs and risks as less software is developed from scratch.

– Faster delivery and deployment of system

• Disadvantages
– Requirements compromises are inevitable so system may not meet real needs of

users.

– Loss of control over evolution of reused system elements

57

Process Activities

58

Process Activities

• Real software processes are inter-leaved sequences of technical,
collaborative and managerial activities with the overall goal of specifying,
designing, implementing and testing a software system.

• The 4 basic process activities of specification, development, validation
and evolution are organized differently in different development processes.

– For example, in the waterfall model, they are organized in sequence, whereas in
incremental development they are interleaved.

59

1. Software Specification

• The process of establishing what services are required and the constraints
on the system’s operation and development.

• Requirements engineering process
– Requirements elicitation and analysis

• What do the system stakeholders require or expect from the system?

– Requirements specification
• Defining the requirements in detail

– Requirements validation
• Checking the validity of the requirements

60

2. Software Design and Implementation

• The process of converting the system specification into an executable
system.

• Software design
– Design a software structure that realizes the specification

• Implementation
– Translate this structure into an executable program

• The activities of design and implementation are closely related and may be
inter-leaved.

61

A General Model of the Design Process

62

Design Activities

• Architectural design
– Identify the overall structure of the system, the principal components (subsystems or

modules), their relationships and how they are distributed.

• Database design
– Design the system data structures and how these are to be represented in a

database.

• Interface design
– Define the interfaces between system components.

• Component selection and design
– Search for reusable components. If unavailable, you design how it will operate.

63

System Implementation

• The software is implemented either by developing a program/programs or
by configuring an application system.

• Design and implementation are interleaved activities for most types of
software system.

• Programming is an individual activity with no standard process.

• Debugging is the activity of finding program faults and correcting these
faults.

64

3. Software Validation

• Verification and validation (V & V) is intended to show that a system
conforms to its specification and meets the requirements of the system
customer.

– Involves checking and review processes and system testing.

• System testing involves executing the system with test cases that are
derived from the specification of the real data to be processed by the
system.

– Testing is the most commonly used V & V activity.

65

Testing Stages

• Component testing
– Individual components are tested independently.

– Components may be functions or objects or coherent groupings of these entities.

• System testing
– Testing of the system as a whole.

– Testing of emergent properties is particularly important.

• Customer testing
– Testing with customer data to check that the system meets the customer’s

needs. (= Acceptance Testing)

66

Testing Phases in a Plan-Driven Software Process

67

4. Software Evolution

• Software is inherently flexible and can change.
– As requirements change through changing business circumstances, the software

that supports the business must also evolve and change.

• Although there has been a demarcation between development and
evolution(maintenance), this is increasingly irrelevant as fewer and fewer
systems are completely new.

68

Coping with Change

69

Coping with change

• Change is inevitable in all large software projects.
– Business changes lead to new and changed system requirements.

– New technologies open up new possibilities for improving implementations.

– Changing platforms require application changes.

• Change leads to rework so the costs of change include both rework (e.g., re-

analyzing requirements) as well as the costs of implementing new functionality.

70

Coping with Changing Requirements

• System prototyping
– Aversion of the system or part of the system is developed quickly to check the

customer’s requirements and the feasibility of design decisions.

– Supports change anticipation.
• The software process includes activities that can anticipate possible changes before

significant rework is required.

• Incremental delivery
– System increments are delivered to the customer for comment and

experimentation.

– Supports both change avoidance and change tolerance.
• Change tolerance: The process is designed so that changes can be accommodated at

relatively low cost.

71

Software prototyping

• A prototype is an initial version of a system used to demonstrate concepts
and try out design options.

• A prototype can be used:
– In requirements engineering process, to help with requirements elicitation and

validation,

– In design processes, to explore options and develop a UI design,

– In the testing process, to run back-to-back tests.

• Benefits of prototyping
– Improved system usability

– A closer match to users’ real needs

– Improved design quality

– Improved maintainability

– Reduced development effort

72

Prototype Development

• May be based on rapid prototyping languages or tools

• May involve leaving out functionality
– Prototype should focus on areas of the product that are not well-understood.

– Error checking and recovery may not be included in the prototype.

– Focus on functional rather than non-functional requirements such as reliability
and security

73

Throw-Away Prototypes

• Prototypes should be discarded after development as they are not a good
basis for a production system:

– It may be impossible to tune the system to meet non-functional requirements;

– Prototypes are normally undocumented;

– The prototype structure is usually degraded through rapid change;

– The prototype probably will not meet normal organisational quality standards.

74

Incremental Delivery

• Rather than deliver the system as a single delivery, the development and
delivery is broken down into increments with each increment delivering part
of the required functionality.

• User requirements are prioritized and the highest priority requirements are
included in early increments.

• Once the development of an increment is started, the requirements are
frozen though requirements for later increments can continue to evolve.

75

Incremental Development and Delivery

• Incremental development
– Develop the system in increments and evaluate each increment before

proceeding to the development of the next increment

– Normal approach used in agile methods

– Evaluation done by user/customer proxy.

• Incremental delivery
– Deploy an increment for use by end-users

– More realistic evaluation about practical use of software

– Difficult to implement for replacement systems as increments have less
functionality than the system being replaced.

76

Incremental Delivery

77

Incremental Delivery Advantages

• Customer value can be delivered with each increment so system
functionality is available earlier.

• Early increments act as a prototype to help elicit requirements for later
increments.

• Lower risk of overall project failure.

• The highest priority system services tend to receive the most testing.

78

Incremental Delivery Problems

• Most systems require a set of basic facilities that are used by different parts
of the system.

– As requirements are not defined in detail until an increment is to be implemented,
it can be hard to identify common facilities that are needed by all increments.

• The essence of iterative processes is that the specification is developed in
conjunction with the software.

– However, this conflicts with the procurement model of many organizations, where
the complete system specification is part of the system development contract.

79

Process Improvement

80

Process Improvement

• Many software companies have turned to software process improvement as
a way of enhancing the quality of their software, reducing costs or
accelerating their development processes.

• Process improvement means understanding existing processes and
changing these processes to increase product quality and/or reduce costs
and development time.

81

Process Improvement Activities

• Process measurement
– You measure one or more attributes of the software process or product.

– These measurements forms a baseline that helps you decide if process
improvements have been effective.

• Process analysis
– The current process is assessed, and process weaknesses and bottlenecks are

identified.

– Process models (sometimes called process maps) that describe the process may be
developed.

• Process change
– Process changes are proposed to address some of the identified process

weaknesses.

– These are introduced and the cycle resumes to collect data about the
effectiveness of the changes.

82

Process Measurement

• Quantitative process data should be collected, whenever possible.
– However, where organizations do not have clearly defined process standards,

this is very difficult as you don’t know what to measure.

– A process may have to be defined before any measurement is possible.

• Process measurements should be used to assess process improvements.
– But, this does not mean that measurements should drive the improvements.

– The improvement driver should be the organizational objectives.

83

Process Metrics

• Time taken for process activities to be completed
– E.g. Calendar time or effort to complete an activity or process.

• Resources required for processes or activities
– E.g. Total effort in person-days.

• Number of occurrences of a particular event
– E.g. Number of defects discovered.

84

The SEI Capability Maturity Levels

85

• Initial
– Essentially uncontrolled

• Repeatable
– Product management procedures defined and used

• Defined
– Process management procedures and strategies defined and used

• Managed
– Quality management strategies defined and used

• Optimizing
– Process improvement strategies defined and used

Key Points

• Software processes are the activities involved in producing a software system.
– Software process models are abstract representations of these processes.

• General process models describe the organization of software processes.
– Examples of these general models include the ‘waterfall’ model, incremental development, and reuse-

oriented development.

• Requirements engineering is the process of developing a software specification.

• Design and implementation processes are concerned with transforming a requirements
specification into an executable software system.

• Software validation is the process of checking that the system conforms to its specification and
that it meets the real needs of the users of the system.

• Software evolution takes place when you change existing software systems to meet new
requirements. The software must evolve to remain useful.

• Processes should include activities such as prototyping and incremental delivery to cope with
change.

• Processes may be structured for iterative development and delivery so that changes may be
made without disrupting the system as a whole.

• The principal approaches to process improvement are agile approaches, geared to reducing
process overheads, and maturity-based approaches based on better process management and
the use of good software engineering practice.

• The SEI process maturity framework identifies maturity levels that essentially correspond to the
use of good software engineering practice.

86

Konkuk University 87

