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Text

— System and Software Verification : Model-Checking Techniques and Tools

In this book, you will find enough theory
— to be able to assess the relevance of the various tools,
— to understand the reasons behind their limitations and strengths, and
— to choose the approach currently best suited for your verification task.

Part [ : Principles and Techniques
Part II : Specifying with Temporal Logic
Part IIl : Some Tools
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Model checking consists in verifying some properties of the model of a
system.

Modeling of a system is difficult
— No universal method exists to model a system
— Best performed by qualified engineers

This chapter describes a general model which serves as a basis.

Organization of Chapter 1
— Introductory Examples
— A Few Definitions
— A Printer Manager
— A Few More Variables
— Synchronized Product
— Synchronization with Messaging Passing
— Synchronization by Shared Variables
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* (Finite) Automata
— Best suited for verification by model checking techniques
— A machine evolving from one state to another under the action of transitions
— Graphical representation

An automate model of a digital watch (24x60=1440 states)

Dependable Software Laboratory
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« A digicode door lock example
— Controls the opening of office doors

— The door opens upon the keying in of the correct character sequence, irrespective of any
possible incorrect initial attempts.

— Assumes
* 3keys A B and C
» Correct key sequence : ABA

B,C A
‘ C

B,C
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Two fundamental notations w

— execution °eC

» A sequence of states describing one possible evolution of the system
o Ex. 1121, 12234, 112312234 <« 3 different executions

— execution tree

» A set of all possible executions of the system in the form of a tree

e Ex. 1
11, 12
111, 112, 121, 122, 123
1111, 1112, 1121, 1122, 1123, 1211, 1212, 1221, 1222, 1223, 1231, 1234

ANVANANANEA
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We associate with each automaton state a number of elementary

properties which we know are satisfies, since our goal is to verify system
model properties.

Properties

— Elementary property

» (atomic) Proposition
» Associated with each state
* True or False in a given state

— Complicated property

» Expressed using elementary properties
* Depends on the logic we use

Q
"

B,C
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For example,

P, : an A has just been keyed in
Py : an B has just been keyed in
P.: an C has just been keyed in
pred, : the proceeding state in an execution is 2
pred, : the proceeding state in an execution is 3

Properties of the system to verify
1. If the door opens, then A, B, A were the last three letters keyed in, in that order.
2. Keying in any sequence of letters ending in ABA opens the door.

Let's prove the properties with the propositions

B,C
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 An automatonis atuple A=<Q,E, T,q, > in which
— Q: a finite set of states
— E: the finite set of transition labels
— TS QxE xQ:the set of transitions
— q, : the initial state of the automaton
— [: the mapping each state with associated sets of properties which hold in it

— Prop ={P, P, ..} :a set of elementary propositions



A=<Q)E)T':q0)l>
Q=A{1 2 3, 4}
E ={A, B, (}

T ={(1A42), (1,B1), (1,C1),
(24,2), (2,B,3), (2,C1),
3.44), (3,B1), (3.C1)}

do =

[ = _

1

(159
2 — {PA}
3 — {Py pred,}

4 — {P, pred,}

' The digicode with its atomic propositions
A

DeBe,ngable Software Laboratory
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Formal definitions of automaton’s behavior

a path of automaton A :
— A sequence ¢ finite or infinite, of transitions which follows each other
- Ex.3%14 242
a /ength of a path o
- | o]
— 0's potentially infinite number of transitions: | o| € N U {w}
a partial execution of A :
— A path starting from the initial state g,
- Ex 1424253
a complete execution of A :
— An execution which is maximal.
— Infinite or deadlock

a reachable state :
— A state is said to be reachable,
— if a state appears in the execution tree of the automaton, in other words,
— if there exists at least one execution in which it appears.

Py

k '
Dependable Softwarew 12
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Propositions

A printer shared by two users W = Waiting
P = Printing now
end, endy R = Rest for now

Dependable Software Laboratory 13



A=<Q)E:T)qo)l>
- Q:{Ol 11213141 51617}
— E = {req,, reqy beg,, begg end, endg}

— T ={(0reqyl), (Oreqg2), (Lreqs3), (1,beg,6), (2,req,3).
(2,begg7), (3,beg,5), (3,begs4), (4,endgl), (5endy,,2),
(6,end,,0), (6,reqp,5), (7,endg,0), (7,req,4) }

- q,=0
[0 Ry Rgl, 1= {W, Ry

_ l - - 2 — {RA, WB} ! 3 - {WA’ WB} A printer shared by two users Plap:os\;\};ioﬁ';z
4 = (W, Pgh, 5 — {Py Wy ] oo, |
i redp
15,; begy 4
W

Dependable Software Laboratory 14



Properties of the printer manager to verify

We would undoubtedly wish to prove that any printing operation is
preceded by a print request.

« In any execution, any state in which P, holds is preceded by a state in which the
proposition W, holds.

Similarly, we would like to check that any print request is ultimately
satisfied. (= fairness property)

« In any execution, any state in which W, holds is followed by a state in which the
proposition P, holds.

Model checking techniques allow us to prove automatically that
e Property 1 is TRUE, and
* Property 2 is FALSE, for example 01 341341341341 .. (counterexample)
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« It is often convenient to let automata manipulate state variables.

— Control : states + transitions
— Data : variables (assumes finite number of values)

* An automaton interacts with variables in two ways:

— Assignments
— Guards



if ctr < 3 if ctr < 3

B, C A

ctro=ctr +1 ctri=ctr+1 if ctr < 3 (guard)

B, C (transition label)
ctr:=ctr + 1 (assignment)

()
- NN

/_N B
ctr.=0

if ctr < 3

C _ if ctr = 3

ctr:=ctr+ 1 A, C if ctr = 3

ctr:=ctr+1 B, C

if ctr = 3 ctre=ctr+1
B, C

ctr:=ctr+1

The digicode with guarded transitions

No more than 3 mls!aEes 1"

Dependable Software Laboratory 17



o It is often necessary, in order to apply model checking methods,
e to unfold the behaviors of an automaton with variables
* into a state graph

* in which the possible transitions appear and the configurations are clear marked.

« Unfolded automaton = Transition system
« has global states
« transitions are no longer guarded
e no assignments on the transitions



ifctr=3
B, C
ctri=ctr+ 1

ifctr <3
A
ctr:=ctr+1

ifctr < 3 (guard)
B,C (transition label)
ctr:= ctr + 1 (assignment)

ifctr =13
B, C
ctri=ctr+ 1

Unfolding

The digicode with error counting
(Unfolded automaton)

Dependable Software Laboratory
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» Real-life programs or systems are often composed of modules or

subsystems.
— Modules/Components > (composition) - Overall system
— Component automata -> (synchronization) - Global automaton

« Automata for an overall system

— Often has so many global states
— Impossible to construct it directly (State explosion problem)

TiaiA ~ArAI~AciFIiAIN VATAY o
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* With synchronization
* Without synchronization



* An example without synchronization
— A system made up of three counters (modulo 2, 3, 4)
— They do not interact with each other
—  Global automaton = Cartesian product of three independent automata

2*3*4 = 24 states
3*3*3 - 1 = 26 transitions per a state
(Inc, Dec, -)

> 24 * 26 = 624 transitions

Dependable Software Laboratory 21



* An example with synchronization
— A number of ways depending on the nature of the problem
— Ex. Allowing only “inc, inc, inc” and “dec, dec, dec” (24*2=48 transitions)
— Ex. Allowing updates in only one counter at a time (24*3*2=144 transitions)

» Synchronized product
— A way to formally express synchronizing options
—  Synchronized product = Component automata + Synchronized set

- A XA, x .. X A : Component automata

n

- A=<Q,ET,q,l>

- Q=0Q, x0Q,x ... x Q,
- E= [I(EULY)

1<i<n

1@y s @) (e s @), (@, @) | for alld,
(e;="-and ¢;=q) or (e;# - and (g, ¢, q)) € T))

- q0 = (qo,1 PIST QO,n)
- l((q1 9 see s qn)) =1§-1J.Sn ll (ql)

- Sync < [ (E; U {-}) :Synchronized set

1<i<n



« An example with synchronization

— Ex. Allowing only “inc, inc, inc” and “dec, dec, dec” (24*2=48 transitions)
— Strongly coupled version of modular counters

—  Sync = { (in¢, inc, inc), (dec, dec, dec) }

721 (@ q), (g€, (s @D | (e -5 €) € Syme
(e;=‘-"and q’;=q) or (¢;# -’ and (q;, e;, ) € T;)

12 states

24 transitions
(inc, inc, inc) (dec, dec, dec)

23




Reachable states
— Reachability depends on the synchronization constraints

coupl
Rearranged automaton A,,. — modulo 12 counter

Reachability graph E Fm : I ——
— Obtained by deleting non-reachable states @‘L@ "L@ **—e&@ ﬁ—-@
— Many tools to construct R.G. of synchronized product of automata

— Reachability is a difficult problem
—  State explosion problem

Dependable Software Laboratory
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Message passing framework
A special case of synchronized product

'm :
m:

Only the transition in which !m and ?m pairs are executed simultaneously is permitted.

Emitting a message
Reception of the message

Synchronous communication

Control/command system

Asynchronous communication

Communication protocol (using channel/buffer)
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« Smallish elevator
Synchronous communication (message passing)

?down

One c

abin

Three doors (one per floor)
One controller
No request from the three floors

up

?down

?close 1

The cabin

‘open_i

?close 1

The ith door

up

Dependable Software Laboratory

The controller
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* An automaton for the smallish elevator example
— Obtained as the synchronized product of the five automata

— (door 0, door 1, door 2, cabin, controller)

—  Sync = { (Popen_0, -, -, -, lopen_0), (?close_0, -, -, -, Iclose_0),
(-, ?open_l, -, -, lopen_l), (-, ?close_1, -, -, Iclose_1),
(-, -, Popen_2, -, lopen_2), (-, -, ?close_2, -, Iclsoe_2),
(-, -, -, ?down, Idown), (-, -, -, ?up, 'up) }

* Properties to check
 (P1) The door on a given floor cannot open while the cabin is on a different floor.
e (P2) The cabin cannot move while one of the door is open.

« Model checker
e Can build the synchronized product of the 5 automata.
» Can check automatically whether properties hold or not.
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Another way to have components communicate with each other
Share a certain number of variables
Allow variables to be shared by several automata

Ex. The printer manager in Chapter 1.3

— Problem: fairness property is not satisfied

) Propositions
A printer shared by two users W = Waiting
P = Printing now
R = Rest for now

28



The printer manager synchronized with a shared variable
— Shared variable: turn

Fairness property: "Any print request is ultimately satisfied.”
> No state of the form (y, t, -) is reachable.

- TRUE in the model.

- But, this model forbids either user from printing twice in a row.

ﬁ print,
A

turn:=A turn:=3B
The user B . .
if turn=B, printy

v
@— -0 o ©6
turn:=A

Dependable Software Laboratory 29

The user A
if turn=A, print,

turn:=B




« Printer manager : A complete version with 3 variables by peterson]
— 1, : arequest from user A
— rg: arequest from user B
— turn : to settle conflicts
— Satisfies all our properties

The user A The user B

r, .= false turn:=B rg .= false turn:=A

if turn = A, print, if turn = B, printy

if ry = false, print, if r, = false, printg

A,.=<QETq,l>

- Q=AXBXxryxrgXx turn
4 x 4 x 2 x 2 x 2 =128 states
(only 128 reachable states)

Dependable Software Laboratory 30
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e Motivation:

— The elevator example includes two properties
* "Any elevator request must ultimately be satisfied”
» "The elevator never traverses a floor for which a request is pending without satisfying this request”

— = Dynamic behavior of the system

— In a first order logic,

e Vt,Vn(app(n,t) = dt’>t:serv(n,t))
(app(n,t) N HE)+#n N dt,,

« Vit Vt'>t, Vn, t<t,m<t <H(,,) =n)
:>(3 serv * ctst v—t A Serv(n’ serv))

ser
— But, the above notation(mathematics) is quite cumbersome.

« Temporal Logic is a different formalism, better suited for our situation.
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« Temporal Logic

A form of logic specifically tailored for
« statements and reasoning
» involving the notion of order in time
Compared with the mathematical formulas
e clearer and simpler
» immediately ready for use (linguistic similarity of operators)
« formal semantics (specification language tools)

« Organization of Chapter 2

The Language of Temporal Logic
The Formal Syntax of Temporal Logic
The Semantics of Temporal Logic
PLTL and CTL: Two Temporal Logics
The Expressivity of CTL*
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1. Atomic Propositions
- warm, ok, error

2. Proposition Formula

- using boolean combinators
- true, false, —, v, A, = (if then), < (if and only if)

- error = — warm
(if error then not warm)

serves to formally state the properties concerned with the execution of a system

variants (CTL, PLTL, LTL)
6 characteristics

07 : (go: warm, ok) = (g;: ok) = (q,: warm, ok) = (qg;: ok) = ...

0, : (go: warm, ok) = (g;: ok) = (q,: error) = (g, warm, ok) >
(gy: ok) = ...

Dependable s%ﬁ:m?gpé warm, oK )ré (g1: ok) = (qg,: error) = (q,: error) 93;
(q,: error) > ...



3. Temporal combinators
« about the sequencing of states along an execution

X : next state
F : a future state
G : all the future states

e X P: the next state satisfies P

« F P: a future state satisfies P without specifying which state
- P will hold some day (at least once)

« G P: all future states will satisfy P
- P will always be

o alert = F halt : if we are currently in a state of alert, then we will later be in
a halt state.

G (alert = F halt) : at any time, a state of alert will necessarily be followed
by a halt state later.

e G (warm = F —warm ) : true
e G (warm = X —warm ) : true

e G is the dual of F
. Gop= -F=¢



4. Arbitrary nesting of temporal combinators
« giving temporal logic its power and strength

« GF ¢: always there will some day be a state such that ¢,
@ is satisfied infinitely often along the execution considered

« FG ¢@: all the time from a certain time onward, at each time instant,
possibly excluding a finite number of instants

e GF warm v FG error

5. U combinator
for until
e @, U @,: ¢, is verified until ¢, is verified
@, will be verified some day, and ¢; will hold in the meantime

G (alert = (alarm U halt)) : starting from a state of alert the alarm remains activated
until the halt state is eventually and inexorably reached.

 Fo=trueU ¢
« P,W ¢p,=(p;U @) v G ¢, :weak until



6. Path quantifier

EF P :

A ¢ : all the executions out of the current state satisfy property @
E ¢ : from the current state, there exists an execution satisfying @

EF P : it is possible (by following a suitable execution) to have P some day
EG P : there exists an execution along which P always holds

AF P : we will necessarily have P some day (regardless of the chosen execution)
AG P: always true

Dependable Software Laboratory
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e Abstract grammar
— needs parentheses, operator priority, specific set of atomic propositions, etc.
— Most model checkers use a fragment of CTL* - CTL or LTL.

o, ¥Y..=P|P|.. (atomic proposition)
| | AW | g=%¥|.. (boolean combinators)
| X¢ | F¢| Gg| oUW | .. (temporal combinators)
|E@ | Ag (path quantifiers)
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« Kripke structure
— Name of the models of temporal logic

— Propositions labeling the states are important in CTL*
— Transition labels (E) are neglected. A=<Q,T,q,,l>, T <QxQ

« Satisfaction
- Aol @
« "at time i of the execution g, ¢ is true
» where o is an execution of A, which not required to start at the initial state
s A is often omitted.
— o, F@ : @is satisfied at time 7 of o
— o, V¢ : ¢is not satisfied at time 7 of ¢

— A F¢@ iff 0,0 | @for every execution of o of A
* “the automaton A satisfies ¢"
® O)i le¢ = O)i |: _'¢



o i P iff P €l(o(3)),
o,i |=—¢ iff it is not true that 0,1 |~ ¢,
o,il=¢NYiff o,i = ¢ and 0,1 Y,

o,i=Xe iffi<|o|and o,i+ 1 ¢, _
o,i=F¢ iff there exists j such that i < j <|o| and 0, = ¢,
0,1 = G¢ iff for all j such that 2 <7 < |o|, we have o,j = ¢,

o,i |= pUy iff there exists j, i < j < |o]| such that o, |= ¢, and
for all k such that i < k < j, we have 0,k = ¢,

o,i = E¢  iff there exists a o’ such that ¢(0)...0(i) = o'(0)...0'(i) and
o',i = ¢, | .

o,i = A¢ iff for all o’ such that 0(0)...0(2) = 0'(0)...0' (i), we have
o i [ b

Semantics of CTL*

CTL*

- Time is discrete.
- Nothing exists between i and i + 1.
- The instants are the points along the executions

Dependable Software Laboratory
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Two most commonly used temporal logics in model checking tools
— PLTL (Propositional Linear Temporal Logic)

— CTL (Computational Tree Logic)
— fragments of CTL*

PLTL
— No path quantifiers (A and E)
— Linear time logic = Path formula
— For example, PLTL cannot distinguish A, from A,

Execution 1 : {P Q}. {P}. {-}
Execution 2 : {P. Q} . {P} . {Q}

Dependable $oftware Labogatory

42



« (ITL

— Temporal combinators (X, F, U) should be under the immediate scope of path quantifier (A, E)
- EX,AX,EU, AU, EF, EG, AG, AF, ...
— State formulas

Truth only depends on the current state and the automaton regions made reachable by it
not depending on a current execution
q F@ : @is satisfied in state g

CTL can distinguish automata A1 and A2

A,q, F AX(EXQ N EX-Q)
A,q’, ¥ AX(EXQ N EX-Q)

— Potential reachability : AG EF P
— Do not allow to express very rich properties along the paths.

Dependable Software Laboratory 43



e Which to choose CTL or PLTL ?

— To state some properties
- PLTL

— To perform exhaustive verification of a system
- CTL

— For both purposes
-> CTL*
* Less popular
*  More complicated than PLTL

— CTL + Fairness properties > FCTL

— If we use model checking tools, then we have no choice
— SMV: CTL (CTL)
— SPIN : PLTL
— VIS: CTL/ PLTL

Dependable Software Laboratory
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No logic can express anything not taken into account by the modeling
decision made

o (CTL* is rather expressive enough, when
Properties concern the execution tree of our automata

— CTL* combinators are sufficiently expressive
— CTL* is almost always sufficient
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« Motivation:
— Describe the principles underlying the algorithms used for model checking

— The algorithm
* Can find out whether a given automaton satisfies a given temporal formula
» Different algorithms for CTL and PLTL

e Organization of Chapter 3

Madeal Chackina CTI

- IvivucTi \—IIC\_I\IIIH I

— Model Checking PLTL
— The State Explosion Problem
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Model checking algorithm for CTL
— Developed in 1980s
— Runs in time linear in each of its components (automaton and CTL formula)
— Relies on the fact that CTL can only express state formulas

Aal ChkhAa
UCIT LCITIC
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Basic principles

— procedure marking
« Starting from a CTL formula ¢

« Mark for each state g of the automaton and for each sub-formula ¢ of @,
* Whether  is satisfied in state g

Correctness of the algorithm

— Hence, the marking of g is correct.

Complexity of the algorithm
— Model checking “ does A,q, f @? " for a CTL formula ¢

— can be solved in time O( |A| x |@)])
* 0O(lA)) : for marking the automaton
s O(¢|) : for each sub-formula in ¢

— Linear!!!



procedure marking(phi)

case 1: phi =P
for all q in Q, if P in 1(q) then do q.phi := true,
else do q.phi := false.

case 2: phi = not psi
do marking(psi);
for all q in Q, do q.phi := not(q.psi).

case 3: phi = psil /\ psi2
do marking(psil); marking(psi2);
for all q in Q, do q.phi := and(q.psil, q.psi2).

case 4: phi = EX psi
do marking(psi); case 6: phi = A psil U psi2
for all q in Q, do q.phi := false; /* initialisation */ do marking(psil); marking(psi2);
for all (q,q’) in T, if q’.psi = true then do q.phi := true. L 3= LF
for all q in Q,
q.nb := degree(q); q.phi := false; /* initialisation */
for all q in Q, if q.psi2 = true then do L := L + { q };
while L nonempty {

/* L: states to be processed */

case 5: phi = E psil U psi2
do marking(psil); marking(psi2);

for al} q in Q, S ) draw q from L; /* must mark q */
q.phi := false; q.seenbefore := false;/* initialisation */ L:=L-{q};
L := {}; /* L: states to be processed */ q.phi := true;
for all q in Q, if q.psi2 = true then do L := L + { q }; for all (q’,q) in T { /* q’ is a predecessor of q */
while L nonempty { q’.nb := q’.nb - 1; /* decrement */
draw q from L; /* must mark q */ if (g’.nb = 0) and (q’.psil = true) and (q’.phi = false)
L:=L~=4qgl; then do L :=L +{q’ };
gq.phi := true; }
for all (q’,q) in T { /* q’ is a predecessor of q */ }
if q’.seenbefore = false then do {
q’.seenbefore := true;

if q’.psil = true then do L :=L + { q’ };

Dependable Software Laboratory 50
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* Model checking algorithm for PLTL

— Developed in 1980s, but too technical to cover in this course

— PLTL uses path formulas
— No longer possible to rely on marking the automaton states

— A finite automaton will generally give rise to infinitely many different executions,
themselves often infinite in length

— Hence, PLTL uses a language theory : w-regular expression
* An extension of a regular expression
e "* :an arbitrary but finite number of repetitions
— (@ab*+ o*
e "w" an infinite number of repetitions




Basic principle
— Modei checking “ does A t ¢ 7 * for a PLTL formuia ¢
— Reduces to a “ Are all the execution of A described by ¢, ?

— A PLTL model checker construct an automaton B_, (recognizing executions which do not
satisfy @)
— Strongly synchronize Aand B, > A ©®B_,

— Finally reduces to “ Is the language recognized by A ®B._, empty ?"

A simple example
— @:GP = XFQ) - any occurrence of P must be followed (later) by an occurrence of Q
- B., > there exists an occurrence of P after which we will never again encounter Q

P, -Q
P, Q
U P, -Q If it infinitely often stays in g, then is B_; satisfied.
0" <P, Q

-P, -Q

Dependable Software Laboratory 52



@GP = XF Q)

B_,:

J
N

¢

J
~
J
Q

P’ _'Q
U, -P, -Q

If it infinitely often stays in qy, then is B_, satisfied.

"doesAf@?”

Dependable Software Laboratory
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There are behaviors of A accepted byA ® B_,

~ The language recognized by A ® B_;is nonempty
>Af¢Q

Dependable Software Laboratory
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» Construction of B_,
— Very difficult technically

— Automaton B_, must in general be able to recognize infinite words
> Bulchi automata

o Complexity of the algorithm
— B_, has size O(214)) in the worst case
— A® B_j has size O(|A| x |B_4|)
- fA® B_, fits in computer memory, we can determine it in time O(|A| x |Bj¢ )

— Model checking "does A, q, | ¢ ?" for a PLTL formula ¢ can be done in time O(|A| x 2!4)

« Reachability analysis
— We can say that B_, observes the behavior of A when the two automata are synchronized.
— Observable automata = formal specification of the desired property
« UPPAAL
« SPIN
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« State explosion problem

The main obstacle encountered by model checking algorithms

Indeed, the algorithms rely on explicit construction of the automaton A
» Traversal and marking (in case of CTL)
+ Synchronization with B_, and seeking of reachable states and loops (in case of PLTL)

In practice, the number of states of A is quickly very large

If we use values that are not priori bounded (integers, a waiting queue, etc.), we cannot
even apply it

Explicit model checking - Symbolic model checking (Chapter 4)
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« Symbolic model checking
— Any model checking method attempting to represent symbolically states and transitions

— A particular symbolic method in which BDDs are used to represent the state variables
» BDD : Binary Decision Diagram

« Motivation:
— State explosion is the main problem for CTL or PLTL model checking
— State explosion occurs whenever we represent explicitly all states of automaton we use

— Represent very large sets of states concisely, as if they were in bulk.

* Organization of chapter 4
— Symbolic Computation of State Sets
— Binary Decision Diagrams (BDD)
— Representing Automata by BDDs
— BDD-based Model Checking
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» Iterative computation of Sat(¢)

A=<QT,..>

Pre(S) : immediate predecessors of the states belonging to S in Q
Sat(¢) : set of states of A which satisfy ¢
y is the sub-formulas of ¢

Sat(-y) = Q | Sat(y)

Sat(y Nyp’) = Sat(yp) N Sat(y’)
Sat(EX y) = Pre(Sat(y))
Sat(AX y) = Q | Pre(Q | Sat(y))
Sat(EF y) = Pre*(Sat(y)) }

.. (others are defined in a similar way) return X;

S~
*

=== Computation of Pre*(S) =

X
Y
W

< < 2

The algorithms in Section 3.1 is an particular implementation of Sat(¢)

Hence, Sat(¢) is an explicit representation of the state sets
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« Which symbolic representations to use ?
— We have to access the following primitives:
1. A symbolic representation of Sat(P) for each proposition P & Prop,

2. An algorithm to compute a symbolic representation of Pre(S) from a symbolic
representation of S,

3. Algorithms to compute the complement, the union, and the intersection of the
symbolic representations of the sets,

4. An algorithm to tell whether two symbolic representations represent the same set.

« Which logic for symbolic model checking?
— Logics based on state formulas
— CTL is the best.
— Mu-calculus on tree is possible.

« Systems with infinitely many states
— Symbolic approach naturally extends to infinite systems.
— New difficulties:
1.  Much trickier to come up with symbolic representations
2. Iterative computation Sat(¢) is no longer guaranteed to terminate.
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« BDD

— A particular data structure very commonly used for representing states sets symbolically
— Proposed in 1980s ~ early in 1990s

— Make possible the verification of the system which cannot represent explicitly.

— Advantages:
1. Efficiency
2. Simplicity
3. Easy Adaptation
4. Generality



BDD structure

— Example

« Consider n boolean variables x,, x,, ..., x,, associated with a tuple < b,, b,, ...

 Supposen = 4,

« The set S of our interest is the set such that (b, V b)) N (b, = b,) is true.

* We have several ways to represent the set:

S = {<FEETF>, <FETT>, ... >
S=(0b,vVb)N(b;=Db)
S=(b,N-b)V (b,ANb)V (b, N=b,)V (b, Nb,) €« DNF

Decision Tree € Our choice.

n;

63



Decision tree reduction
— A BDD is a reduced decision tree.
— Reduction rules:

1. Identical sub-trees are identified and shared. (ng and n,,)
- leads to a directed acyclic graph (dag)

2. Superfluous internal nodes are deleted. (n))

— Advantages:
1. Space saving
2. Canonicity

Reduced

Decision tr%%pendable Software Laboratory
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« Canonicity of BDDs
— BDDs canonically represent sets of boolean tuples. (fundamental property of BDDs)
— If the order of the variable x; is fixed, then there exists a unique BDD for each set S.

— Properties of BDDs
1. We can test the equivalence of two BDDs in constant time.

2. We can tell whether a BDD represents the empty set simply by verifying whether it
is reduced to a unique leaf F.

e QOperations on BDDs

— All boolean operations

Emptiness test

Comparison

Compiementation

Intersection

Union and other binary boolean operations
6. Projection and abstractions

—  Complexity : linear or quadratic (for each operation)
- the same state explosion problems still exist.

v b wnN o
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« Before applying BDDs to symbolic model checking, we need to restate
— Representing the states by BDDs
— Representing transitions by BDDs

» Representing the states by BDDs
— Consider an automaton A with
* Q={q, -,qs >b',b0%, b3
e vardigit:0..9 > bl b2, b3,, b4,
 varready:bool -> b',
<bi,b2, b3, bl b2, b, bi,, b >
<F,T,T,T,F,F,F,F>=<q,8,F>

— Let's represent Sat(ready = (digit > 2))
e States <q, k,b> such thatif b=Tand k > 2
e ready = (digit > 2) = -ready V (digit > 2)
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« Representing transitions by BDDs

The same idea is applied.
<q, 8,F>—<q,0,F> :<F,T,T,T,FFFF TFTFFFF

For example,

Q if digit # 0, ready := T ﬁ

(<q, k, b>, <q’, k', b*>)
9q=q1>k¢O,q’=q2,k’=k,b’=T

> (=b', A =b?, N b3))
A (b,Vb2,Vb3,Vbi,)
AN (=D, NAD2 N =ab’3)
AN (bL,eb, N b'2,ob2, AN b’3,ob3, N b’4,< b4,)
A b’l3

Dependable Software Laboratory
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« BDDs can serve as an instance of symbolic model checking scheme
— Provide compact representations for the sets of states in an automaton
— Support the basic sets of operations
— Computation of Pre(S) in section 4.1 is very simple

« Implementation
—  SMV (chapter 12)

— Efficiency of BDDs depends on
» By representing the transition relation T (as containing pairs of states)
» Choice of ordering for the boolean variables

— Very easy to explode exponentially

» Perspective
— Widely used from early 1990s

— Current work on model checking
» Aiming at applying BDD technology to solve more verification problems (ex. program equivalence)
* Aiming at extending the limits inherent to BDD-based model checking

— Widely used throughout the VLSI design industry
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« "Temporal”
— "Trigger the alarm action upon detecting a problem”

e "Real-Time"
— "Trigger the alarm less than 5 seconds after detecting a problem”

e Timed Automata
— Proposed by Alur and Dill in 1994.
— An answer to this “real-time” needs

« Organization of chapter 5
— Description of a Timed Automata
— Networks of Timed Automata and Synchronization
— Variants and Extensions of the Basic Model
— Timed Temporal Logic
— Timed Model Checking
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Two fundamental elements of timed automata

1. A finite automaton (assumed instantaneous between states)
2. Clocks

An example

c2>5 ?msg, c:=0

-,?msg, c:=0 c<5,7?msgqg, -

Dependable Software Laboratory
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Clocks and transitions
— Clocks

» \Variables having non-negative real values in R
» All clocks are null in the initial system states
» All clocks evolve at the same speed, synchronously with time

— Transitions
e Three items
* A guard

e An action (label)
* Reset of some clocks

— The system operates as if equipped with

» A global clock
« Many individual clocks (each is synchronized with the global clock)

cz257msg c:=0

-

7N

\ )
N
o -,?mgg,c:—oe c<5,?m§g,-/®
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Configurations and executions

— Configuration of the system

* (q V)

e @ :a current control state of the automaton
v : the value of each clock

We also refer to v as a valuation of the automaton clocks.
Timed automata does not fix the time unit under consideration

— Execution of the system
» (usually infinite) sequence of configurations
* A mapping p from R to the set of configuration > 5 7msg, ¢ = 0

» Configurations change in two ways
— Delay transition
— Discrete transition (or action transition)

c<5,7’msg -

Discrete transition

(init, 0) — (init, 10.2)?@ (verify, 0) — (verify, 5.8)?@3 (verify, 0) — (verify, 3.1)?m2 (alarm, 3.1) — ...

Delay transition

» Trajectory
— p(0) : the initial state
— p(12.3) = (verify, 2.1)
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5.2 Networks of Timed Automata and Synchronization

« It is useful to build a timed model in a composite fashion,

— by combining several parallel automata synchronized with one another
- a timed automata network

« Executions of a timed automata network
— All automata components run in parallel at the same speed
— Their clocks are all synchronized to the same global clock

— (g, v) : a network configuration
* q:a control state vector
« v : a function associating each network clock with its value at the current time

« Synchronization
— Timed automata synchronize on transitions (as usually) by resetting the clocks
— The clocks which were not reset are unchanged
— No concurrent write conflicts on clocks, since reset writes a zero value and nothing else



App

far 5 near

Exit App

Train

Example : modeling a railroad crossing
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5.3 Variants and Extensions of the Basic Models

« Many variants, and three extensions

1. Invariants
— Liveness hypothesis in the untimed model
— Invariant: a state’s condition on the clock values, which must always hold in the state
— Example: near (invariant: H, < 5), on (invariant: H, < 2), lower/raise (invariant: H, < 2)

o O

2. Urgency
. X <2 y < 2
— Used when cannot tolerate a time delay 1
nnnnnnn | +h A ~Anfintirati~ane At n HhAa FranncitiAane
- I'\C}JICDCIILCU III LIIC DYDL C IIIIHUIGLIU 15, TTOU 111 LI Ltrarisitivris
— Allowing urgent/synchronlze behaviors in a more natural way

3. Hybrid linear system
— Models dynamic variables (in a form of differential equations)
— HyTech
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* Given a system described as a network of timed automata,
 We wish to be able to state/verify properties of this system

— Temporal properties
*  "When the train is inside the crossing, the gate is always closed.”

— Real-time properties
“The train always triggers an Exit signal within 7 minutes of having emitted an App signal”

« Three ways to formally state real-time properties
1. Express it in terms of the reachability of some sets of configurations

2. Use observer automata in PLTL model checking

. Given a property ¢, a network R
+  Testing reachability of some states in the product R || A,

. UPPAAL , HYTECH

3. Use a timed logic
. TCTL (Timed CTL)
. Etc.



TCTL (Timed CTL)

D, ¥W..=P| P .. (atomic proposition)
| =@ | oA¥Y | @@= Y| .. (boolean combinators)
| EF @ | EGy® | E@ U ¥ (temporal combinators)
| AFLy@ | AG @ | AD U ¥ (path quantifiers)

e~ :any comparison symbol from {<, <, =, >, >}
k : any rational number from Q. (real number)
Operator X does not exist in TCTL

« Example:
* AG (pb = AGs alarm)
« "If a problem occurs, then the alarm will sound immediately and it will sound for at least
5 time units.”
* AG (—far = AF_, far)
. “When the train is located in the railway section between the two sensors App and Exit, it

will leave this section before 7 time units.”
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With timed automata and TCTL logic
We wish to obtain a model checking algorithm for them.

Difficulties : Automaton has an infinite number of configurations, since

1. Clock values are unbounded
2. The set of real numbers used in clocks is dense

- Overcome it with the equivalence classes, called “regions"
— Example: x,, x, ~ k with k=0, 1, 2 X2
» 28 regions

1e

r0
Dependable Software Labr@ratory
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Complexity

* Model checking algorithms are complicated.
e The number of regions grows exponentially.

e  OMm'Mn)
*  n: number of clocks
. M: upper bounds of every constant

* No general and efficient method is likely to exist. ( vs. linear complexity in CTL)
»  PSPACE-complete problem

» Existing tools focus on defining adequate data structures for handing sets of regions
- "zones"

« Existing tools have been successfully used
- HyTech
- KRONOS
- UPPAAL

Dependable Software Laboratory
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Model checking is a verification technique

It consists of three steps:
1. Representation of a program or a system by an automaton
2. Representation of a property by a logical formula
3. Model checking algorithm

Model checking is a powerful but restricted tool:
— Powerfulness: exhaustive and automatic verification
— Limitation: due to complexity barriers
— In practice, the size of system is indeed the main obstacle yet to overcome.

Model checker users are forced to simplify the model under analysis,
until it is manageable. (Abstraction)
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« Writing the temporal logic formulas expressing desired system properties

» 4 classification of verification goals

1. Reachability property
- Some particular situation can be reached.

2. Safety property
- Under certain condition, something never occurs.

3. Liveness property
- Under certain condition, something will ultimately occur.

4. Fairness property
- Under certain condition, something will (or not) occur infinitely often.

Deadlock freeness
Abstraction methods



Chapter 6. Reachability Properties
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« Reachability property

— Some particular situation can be reached.

— Examples:
« (R1) " We can obtain n<0 “
 (R2) " We can enter a critical section '
 (R3) " We cannot have n<0 “
» (R4) " We cannot reach the crash state © < negation of the simple
* (R5) " We can enter the critical section without traversing n=0 “ < with conditional restricts
* (R6) " We can always return to the initial state * € stronger / nested
« (R7) " We can return to the initial state ”

!

< simple

« Organization of Chapter 6
— Reachability in Temporal Logic
— Model Checkers and Reachability
— Computation of the Reachability Graph
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— " There exists a path from the current state along which some state satisfying @ "

— (R1) “ We can obtain n<0 "
e EF (n<0)
— (R2) * We can enter a critical section ”
e EF crit_sec
— (R3) * We cannot have n<0 “
e -EF (n<0)
— (R4) " We cannot reach the crash state ”
e =EF crash
 AG =crash
e “Along every path, at any time, ~crash ”
— (R5) " We can enter the critical section without traversing n=0 “
e E (n#20) U crit_sec
» “ There exists a path along which n # 0 holds until crit_sec becomes true. “
— (R6) " We can always return to the initial state ”
e AG ( EF init)
— (R7) " We can return to the initial state ”
e EF init
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« Reachability properties are typically the easiest to verify.

« All model checkers can answer it in principle by simply examining their
reachability graph.

« But they do vary in richness.
— conditional reachability
— nested reachability
— etc

« Design/CPN is specifically designed for reachability property verification.



6.3 Computation of the Reachability Graph

The effective construction of set of reachable states are non-trivial.
— Several automata are synchronized.

Algorithms dealing with reachability problems
1. Forward chaining
2. Backward chaining
3. "On-the-fly” exploration

Forward chaining
— A natural approach
— from initial states > add their successors = until saturation
— Difficulty: potential explosion of the set constructed

Backward chaining

— from target states & add immediate predecessors = until saturation
— then, test whether some initial states are in there (like pre*(S) in Section 4.1)
— Drawback
1. Target states need to be fixed before.
2. Computing immediate predecessors is generally more complicated than that of successors.



"On-the-fly” exploration

Explore the reachability graph without actually building it

Construction is performed partially, as the exploration proceeds, without remembering
everything already visited.

Background assumption
*  Present-day computers are more limited in memory resources than in processing speed

It is efficient mostly when
1. Target set is indeed reachable. (“Yes" requires no exhaustive explorations)
2. Can operate in forward or backward manners (The forward is the traditional)
3. May apply to some systems with infinitely many states
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Chapter 7. Safety Properties
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« Safety property

— Under certain conditions, an (undesirable) event never occur.

— Examples:

* (S1) " Both processes will never be in their critical sections simultaneously (mutual exclusion) ”
(S2) " Memory overflow will never occur ”

e (S3) " The situation ... is impossible ”
(S4) " As long as the key is not in the ignition position, the car won't start “* < with conditions

» - safety property = reachability property
- reachability property = safety property

* Organization of Chapter 7
— Safety Properties in Temporal Logic
— A Formal Definition
— Safety Properties in Practice
— The history Variables Method
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— " @ never occurs. “

— (S1) " Both processes will never be in their critical sections simultaneously ”
* AG —(crit_sec, A crit_sec,)

— (S2) " Memory overflow will never occur ”
e AG -overflow

— (S3) " The situation ... is impossible ”
* AG -situation

— (S4) " As long as the key is not in the ignition position, the car won't start ”
o A (—start W key) (using weak until)
e A (-start U key) €< Not a safety property !
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« Syntactic characterization

— Safety properties can be written in the form AG @~
e @ is a past temporal formula

— When a safety property is violated, it should be possible to instantly notice it.
— We can only notice it, in the current state, relying on events which occurred earlier.

» Temporal logic with past
— CTL* does not provide past combinators
— But, we can use a mirror image of future combinators ( F1, X1)



AG @ in practice
— (S1) AG —(crit_sec, A crit_sec,)
e ~(crit_sec, A crit_sec,) isa ¢

— (S4) A -start W key
e Can be rewritten in the form: AG (start = F! key)
o "Itis always true (AG) that if the car starts, then (=) the key was inserted beforehand (F1). “

— If ¥, and y, are safety properties, then ¥, A ¢, again a safety property.
e But, ¥, v ¢, is in general not

Safety properties and diagnostic
— If AG @ is not satisfied, then there necessarily exists a finite path leading from init to it.

— Since @ s a past formula.
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/.3 Safety Properties in Practice

Safety properties are verified simply by submitting it to a model checker.
But, in real life, hurdles spring up.

A simple case: non-reachability
— The most safety properties
— -FEF (crit_in, A crit_in,) = AG @
e ~(crit_in, A crit_in,) is a present formula

Safety without past
— A (-start W key) is used more often than AG (start = F1key)
— But, no model checker is able to deal with past formulas. So, mixed logics are used.

— The problem is their identification.
- If they are identified, then it can be dealt with similarly
> Otherwise, we have to use the method of history variables (in section 7.4)

Safety with explicit past
— No model checker is able to handle temporal formula with past.

— Two approaches:

1. Eliminate the past (in principle, it is possible to translate mixed formulas to pure-future ones)
- AG(¢p=Fly)=A(-¢pW ) , but not easy.
2. History variable method (section 7.4)



Skipped !!!
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Chapter 8. Liveness Properties



3. Liveness Properties

« Liveness property
— Under certain conditions, some event will ultimately occur.
— Some happy event will occur in the end.

— Examples:
e (L1) " Any request will ultimately be satisfied "
* (L2) " By keeping on trying, one will eventually succeed ”
o (L3) " If we call on the elevator, it will bound to arrive eventually “
* (L4) " The light will turn green (some day regardless of the system behavior)”
« (L5) " After the rain, the sunshine “
* (L6) " The program will terminate “

— Two broad family of liveness properties
1. Simple liveness : progress (Chapter 8)
2. Repeated liveness : fairness (Chapter 10)

« Organization of Chapter 8
— Simple Liveness in Temporal Logic
— Are Liveness Properties Useful?
— Liveness in the Model, Liveness in the Properties
— Verification under Liveness Hypotheses
— Bounded Liveness
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— " @ will ultimately occur. ”

— (L1) " Any request will ultimately be satisfied “
* AG (req = AF sat)

— (L7) " The system can always return to its initial state ”
e AG EF init

- PUQ
« " Along the execution, we will find a state satisfying Q and P will hold for all the states
encountered in the meantime ”
» Regarded as a liveness property
e« PUQ = FQ A~ (PWQ
(liveness) (safety)
* A(PUQ) and E(PUQ) are all liveness properties.
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Abstract liveness properties

— " If we call on the elevator, it is bound to arrive eventually ”
+ It yields no information, from a utilitarian viewpoint.
» "Abstract” liveness property

— " An event will occur within at most x time unit “
» It is useful, but became a safety property.
* "Bounded” liveness property

— But, it is still useful
» "Abstract” more general than “concrete”
» "Abstract” more efficient than “concrete”
* "Abstract” and “concrete” are not contradictory

3
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« Two different roles in the verification process
1. Liveness properties : we wish to verify
2. Liveness hypotheses : we make on the system model

 When we use a mathematical modelutomata) to represent a real system,

— The semantics of the model in face define implicit safety and liveness hypotheses.
— Safety hypothesis :

e Clear

« It can flip from g to g’ only if it includes a transition going from q to q’.
— Liveness hypothesis :

 Not clear
e The C\/cham will chain transitions as |nng as pncsllb!e (to a block state or accepting States)
e " The system does not terminate without reason, or remain inactive indefinitely without reason. ”

Can be subtle and cause errors :

The user A
if turn=A, print,
In state x, will always end up wishing printing.
- Different from the real world’s behavior !!!
turn:=B

One must be aware of the premises of the models used and check their adequacy !
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« \Verify that specific model behaviors satisfy a given property :
— @, : only the model which the liveness hypotheses hold
— ¥ :a property

— Verify ¢, = ¢ is sufficient!!!

— If ¢is a CTL property
« AF(EPUQ) > A(¢,=FE(¢, APUQ))
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« Bounded liveness property

— A liveness property that comes with a maximal delay which the desired situation must
occur.

— Safety properties from a theoretical viewpoint.
— Can be rewritten in a form AG (¢, = F1 ¢,
— Not as important as safety properties

« Bounded liveness in timed systems

— Often used in the specification of timed systems (in Chapter 5)
— Explicit constraints on delays - TCTL !!!

— (BL1) “ The program terminates in less than ten seconds ”
AF 1o, end < bounded liveness property
e AG (mend = F1_ start) < safety property

— (BL2) " Any request is satisfied in less than five minutes “
* AG (req = AF_, sat) < bounded liveness property
o AG (~(Fl,req A Gl ,msat) € safety property
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Chapter 9. Deadlock-freeness
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» Deadlock-freeness
— A special property
— " The system can never be in a situation on which no progress is possible. “

— Correct property relevant for systems that are supposed to run indefinitely.
— A set of properly identified final states will be required to be deadlock-free.

¢ Organization of Chapter 9
— Safety? Liveness?
— Deadlock-freeness for a Given Automaton
— Beware of Abstractions!”
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e AG EX true

— " Whatever the state reached may be (AG), there will exist an immediate successor state
(EX true) “

— Not the form of AGg!
— Deadlock-free is not a safety property.

— Can be verified if the model checker at our disposal can handle AG EX true.
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« We sometimes think of deadlock-freeness as a safety property

— For a given automaton, we can describe the deadlock states explicitly.
— But, it is up to the automaton we obtain.

— For example,

if x>0
X:=x+1
A x=x+1
%<0, y:=0 AG EX true = hold! (liveness property)
aﬁa AG —(s3 A x<0) = hold! (safety property)
~_ x=y

y=y+1

XxX=x+1

AG EX true - not hold! (liveness property)
AG —(s3 A x<0) = hold! (safety property)

x:=0, y:=0
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if x>0 Q
X:=x+1

x=x+1

y=y+1

Abstraction ‘

x=x+1

Abstraction

Deadlock-free

if x>0
X:=x+1

e Deadlock

Deadlock-free
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Chapter 10. Fairness Properties
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» Fairness Property
— Under certain conditions, an event will occur (or will fail to occur) infinitely often

— Examples:
» (F1) " The gate will be raised infinitely often”

» (F2) " If access to a critical section is infinitely often requested, then access will be granted
infinitely often ”

— repeated liveness or repeated reachability

« Organization of Chapter 10
— Fairness in Temporal Logic
— Fairness and Nondeterminism
— Fairness Properties and Fairness Hypothesis
— Strong Fairness and Weak Fairness
— Fairness in the Model or in the Property?
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— " We meet a state in which P holds infinitely often ”
— There is no last state in which P holds.

— Fairness properties cannot be expressed in pure CTL

» (F1) " The gate will be raised infinitely often”
-> A ( GF gate_raised )

» (F2) " If access to a critical section is infinitely often requested, then access will be granted
infinitely often ”
-> A ( GF crit_req = FG crit_in )

— FCTL or ECTL*

e CTL + fairness

« O(lA] x |@?)
* Many tools (like SMV) considers the fairness hypotheses as part of model than choosing FCTL
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» In practice,
— Fairness properties are used to describe the form of some nondeterministic sequences

— " When a nondeterministic choice occurs at some point, it is often assumed to be fair “

— For example,
» A die with six faces
» Its behavior is fair, if it fulfills the property: A (GF 1 A GF 2 A GF 3 A GF 4 A GF 5 A GF 6)
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« Fairness properties are very often used as hypotheses.
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 An example:

— Classical alternating bit protocol
e A a transmitter
» B: areceiver
« AB: aline for messages
« BA: aline for message acknowledgements
» Messages can be lost & non-deterministic behavior of AB and BA

— Liveness property : “ Any emitted message is eventually received “
e G ( emitted = F received )
« Fail !l
* The model allows to systematically lose all messages.
e Our original intension : “unreliable” line, not the whole lose - Fairness hypothesis !!!
e A (GF -loss = G ( emitted = F received ) )

fairness hypothesis liveness property

— Repeated liveness property : “ If infinitely many messages are emitted, then infinitely
many messages will be transmitted “

repeated liveness property

e A (GF -loss = ( GF emitted = GF received ) )

fairness hypothesis repeated liveness hypothesis

([)
n
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Fairness property

" If P is continually requested, then P will be granted (infinitely often) “

Weak fairness

— Assume that P is requested without interruption
— (FGrequest P) = FP
— (FG request P) = GF P

Strong fairness

Acciime that D ic raniiact
—  ASSUITIC Ulidt 7 15 1€GuisSti

FP
GF P

— ( GF request_P)
— ( GF request_P)

No difference when using them for model checking of finite systems




10.5 Fairness in the Model or in the Property?

 The best way is
— Model = automaton + fairness hypotheses

— Since the second can change independently from the first
— like SMV model checker
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Chapter 11. Abstraction Methods
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e Abstraction Methods

— A family of techniques used to simplify automata
— Simplification aiming at verifying a system (faster) using a model checking approach

— Examples:
e (Pbl)"DoesAt@?" <« acomplex problem
 (Pb2) "Does A’F @¢’? " €« a much simpler problem

— " tricks of the trade “

e Organization of Chapter 11
— When Is Model Abstraction Required?
— Abstraction by State Merging
— What Can Be Proved in the Abstract Automaton?
— Abstraction on the Variables
— Abstraction by Restriction
— Observer Automata
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Two main types of situations for model abstraction

1.

2.

Size of the automaton

 Too large :

e Too many variables

*  Too many automata in parallel

*  Too many clocks in the timed automata
Type of the automaton

*  Other types of automata

Three classical abstraction methods

1.
2.
3.

Abstraction by State Merging
Abstraction on the Variables
Abstraction by Restriction

Using integer variables, communication channels, clocks, priorities, etc.

L)

CL
*~J
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Folding

Viewing some states of an automaton as identical
The most important question : Correctness!

For example,
* The digicode door lock with error counters (in Chapter 1)
» Focusing on the error counter.

» Correctness problem:
— All states in A’ can be reached through the letter A, but not in A
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* We can use state merging to verify safety properties

« Observation (Merging states from A to A)
1. A’ has more behaviors than A.
2. Now the more behaviors an automaton has, the fewer safety properties it fulfills.
3. Thus, if A’ satisfies a safety property ¢ then a fortiori A satisfies ¢.
4. However, if A’ does not satisfy @, no conclusions can be drawn about A.

« More behaviors
— A’ has more behaviors than A
— All executions of A remain present (in folded form) in A’

— Some new behaviors may be introduced in A’
» For example, many infinite loops are possible in A’

Dependable Software Labora



Preserving safety properties
— Necessary to ensure that the property @ is indeed a safety property.

One-way preservation
— If A’ does not satisfies ¢, then A’satisfies —¢ .
— But, in general the negation of a safety property is not a safety property.

— Abstraction methods are often one-way:
« If the answer is positive, then is positive too.
« If the answer is negative, then we learned nothing about A.

Some necessary precautions
— Skipped.
— about the propositions’ merging and marking in model checking algorithms

Modularity

— State merging is preserved by product.
— A’|| B can be obtained from A || B by a merging operation

State merging in practice
— Question : “ How will we guess and then specify the sets of states to be merged ? “

— Answer : “ The user is the one who defines and applies his own abstraction. “
" No tool assistance is offered. ”

- Abstraction on variables are often easy to define and implement.
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» Abstraction on the variables
— Concerns the “data” part of automata with variables
— Directly applies to the description of the automata with variables

« Example

var ctr: int;

ctre=ctr+ 1

if ctr < 3 (guard)
B,C (transition label)
ctr:= ctr + 1 (assignment)

stpisat 1. ichér =3 Abstraction
ifctr = 3 cri=ctr+ 1
B C
ctri=ctr+ 1

- Deleting variables

- Simple
- But, too coarse to verify
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« Abstraction differs from deletion
— Abstract Interpretation

« Mathematical theory aiming at defining, analyzing, justifying methods based on abstration

e Bounded variables
— Narrow down the domain of variables

— For example,
» Integer > 0 ~ 10 value
« The digicode with a modulo 2 counter

var ctr: 0.1

B.iC A
ctroe=ctr+1mod?2 cri=ctr+1mod?2

Bi:E
ctr:=ctr + 1 mod 2

cr:=ctr+ 1mod2 |ifer =1
A C
ctr:= ctr + 1 mod

ifetr=1
B, C
ctr:=ctr + 1 mod 2

itcti=1
B.:C
ctr:= ctr + 1 mod

The digicode with a modulo 2 counter

var ctr : 0.2

B, & A
ctr:= min(ctr + 1, 2)  ctr:= min{ctr + 1, 2)
B, €
ctr:= min(ctr + 1, 2)

ctr:=0
cre=min(ctr + 1, 2) {5 qp = 1
ANG if ctr = 2
ctr := min{ctr + 1, B C ,
T ctr .= min(ctr + 1, 2)
B,C

ctr:= min{ctr + 1, 2

The digicode with a counter bounded by 2

Dependable Software Laboratory 131



» Restriction
— A particular form of simplification

— Operates by forbidding some behaviors of the system or by making some impossible
* Removing states or transitions
» Strengthening the guard, etc.

— For example
Remove all the transitions labeled A

var ctr : int

cr=cr+ 1 if ctr < 3 B.C B,C B.C B.C

B .C
ctrii= 0 4’° °
ifctr < 3

cri=cr+1
C

ctri=ctr+ 1

The unfolding of the digicode with no A transition

if ctr = 3

C if ctr = 3
ctri=ctr+ 1 BiG
if ctr = 3 ctri=ctr+ 1
B, C
ctri=ctr+ 1
vepeluauie sullwdal e Laboratory 132

The digicode with no A transition



What the restrictions preserve

— If A’is obtained from A by restriction, then literally all the behaviors of A’ are behaviors
of A.

— Thus if A’ does not satisfy a safety property, then a fortiori neither does A.
— Conditional reachability property “ EF err “ = negation of safety property

— For example, var ctr - int

e A’satisfies EF err '; cr < 3

ctri=ctr+ 1 ifctr < 3

» So we conclude that A also satisfies this property

— Inverse preservation

» A safety property does not hold.
(To find errors)

+ But, not to prove the correctness of A

ifctr =3

ctri=ctr+ 1

— Advantage of restriction
* Simplicity in conceptual and implementational
» It is a modular operation
« It naturally applies to an automaton with variables
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e Observer automata

— Aiming at simplifying a system by restricting its legitimate behaviors to those accepted
by an automata outside the system, called observer automata.

— Reduce the size of automata by restricting its behavior rather than its structure (states
and transitions in restriction methods)

— PLTL model checking algorithm (in Chapter 3) use the concept.

— An example
» Supposed that a single A may occur to prove the property.

B,C B,C

Q Q)
@0

An observer automaton O
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B,C B.C

if ctr < 3

An observer automaton O B, C

ctri=ctr+1
Synchronization » ctr:=0

var ctr : int; if ctr < 3
B, C
ctro=ctr+1
if ctr < 3
B,C
ctro=ctr+1

v

if ctr <

ctro=ctr+ 1 ifctr =3 if ctr = 3
C
ctro=ctr+1 B C
’ ctre=ctr+ 1
if ctr =3
var ctr: int; B, C ,
ctre=ctr+ 1 ctro=ctr + 1

if ctr < 3 ifctr <3
B C A i
ctr=ctr + 1 ctr = ctr + ifctr < 3 (guard) . o . . .

B, C frandidon labe) The synchronized digicode with its observer

ctr:= ctr + 1 (assignment)

ifcir=3
A C
ctri=ctr+ 1

ifctr =3
B, C
ctri=ctr+ 1

An automaton A for the digicode
9 Dependable Software Laboratory 135
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e 6 tools, concerned with a particular application domain
— SMV
— SPIN
— DESIGN/CPN
— UPPAAL
— KRONOS
— HYTECH



Chapter 12. SMV - Symbolic Model Checking



Chapter 13. SPIN — Communicating Automata



Chapter 14. DESIGN/CPN — Colored Petri Nets



Chapter 15. UPPAAL — Timed Automata



Chapter 16. KRONOS — Model Checking of
Real-time Systems



Chapter 17. HYTECH — Linear Hybrid Systems



Dependable Software Laboratory 145



“Formal Modeling and Verification of Safety-Critical Software implemented in PLC”
- IEEE Software, May/June, 2009.
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SMVE 0|23
NuSCR HEH M0 et HEHS

Dependable Software Laboratory
Konkuk University
http://dslab.konkuk.ac.kr
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SMYV Verification for NuSCR
- Demo -

Dependable Software Laboratory
Konkuk University
http://dslab.konkuk.ac.kr

20100525
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SPINE o|&35t X}=2F2 MOST Network Service

TZES A HFAS

Formal Verification of Protocol Stack
for MOST Network Service using SPIN

{ o = | = < O =
0|0} 244, 0|24, Fled=, g4
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