Introduction of RUP -The Rational Unified Process

Jong-Hoon Lee

Dependable Software Laboratory Konkuk University

References

Textbook:

The Rational Unified Process Made Easy

A Practitioner's Guide to the RUP

- Per Kroll, Philippe Kruchten, Grady Booch

Rational Unified Process Best Practices for Software Development Teams

White Paper:

Rational Unified Process

Best Practices for Software Development Teams

TP026B 11/01, IBM

Contents

What is the RUP (Rational Unified Process)?

The Inception Phase

The Elaboration Phase

The Construction Phase

The Transition Phase

Introduction of the Rational Unified Process

What is the RUP?

The RUP is

- A **software development approach** that is iterative, architecture-centric, and use-case driven
- A well-defined and well-structured software engineering process
- A process product that provides you with a customizable process framework for software engineering

The RUP uses iterative approach

- The RUP uses an iterative approach that is a sequence of incremental steps or iterations
 - It accommodates changing requirements
 - Integration is not one "big bang" at the end of a project
 - Risks are usually discovered or addressed during early integrations
 - Management has a means of making tactical changes to the product
 - Defects can be found and corrected over several iterations
 - It is a better use of project personnel
 - Team members learn along the way
 - The development process itself is improved and refined along the way

KONKUK EPENDABLE SOFTWARE

LABORATORY

The RUP is a well-defined software engineering process

- Modeling
 - It creates and maintain models, and effectively use the UML (Unified Modeling Language)
 - It comprised of two structures or dimensions: Dynamic and Static
- Dynamic Structure
 - It deals with the lifecycle or time dimension of a project
 - It comprised of Inception, Elaboration Construction and Transition phases
 - Dynamic aspects: cycles, phases, iterations, and milestones
- Static Structure
 - It describes how process elements are logically grouped into workflows
 - Static aspects: activities, disciplines, artifacts, and roles

RUP		
The Iterative Development	The Well-Defined Software Engineering Process	A Customizable Process Product

Organization

along content

Dynamic Structure

- Phases
 - Inception
 - Elaboration
 - Construction
 - Transition
- Iterations
- Etc.

Static Structure

- Disciplines
 - Business modeling
 - Requirements
 - Analysis & Design
 - Etc.

Dynamic Structure: The lifecycle of a RUP project going through:

- The Inception Phase
 - Establish a good understanding of what system to build
- The Elaboration Phase
 - Take care of many of the most technically difficult tasks, and address major technical risks
- The Construction Phase
 - Do most of the implementation as you move from an executable architecture to the first operational version of your system
- The Transition Phase

EPENDABLE SOFTWARE LABORATORY

- Ensure that software addresses the needs of its users

Static Structure: The process describes who is doing what, how, and when

- Roles The *who*
 - It is like a 'hat' that an individual (or group) wears during a project
- Activities The *how*
 - It is a unit of work that an individual in that role may be asked to perform
- Artifacts The what
 - It is a piece of information that is produced, modified, or used by a process
- Workflows The *when*

EPENDABLE SOFTWARE LABORATORY

- It is a process to describe meaningful sequence of activities that produce some valuable result and show interactions between roles

The RUP is a customizable process product

- You can configure the RUP product to support small or large teams and disciplined or less formal approaches to development
 - Best practices
 - Process delivery tools
 - Configuration tools
 - Process authoring tools
 - Community/Marketplace

DEPENDABLE SOFTWARE

LABORATORY

Essential principles of the RUP:

- Attack major risks early and continuously... or they will attack you
- Ensure that you deliver value to your customer
- Stay focused on executable software
- Accommodate change early in the project
- Baseline an executable architecture early on
- Build your system with components
- Work together as one team
- Make quality a way of life, not an afterthought

Introduction of the Rational Unified Process

The Inception Phase

Objectives of the inception phase:

• Understand what to build*

KONKUR

LABORATORY

- Identify key system functionality*
- Determine at least one possible solution*
- Understand the costs, schedule, and risks associated with the project
- Decide what process to follow and what tools to use

Objective 1: Understand what to build

- Produce a vision document
- Generate a "Mile-wide, inch-deep" description
 - Identify and briefly describes actors
 - Identify and briefly describe use cases
 - Identify and describe how each actor will interact with the system
- Hold a workshop or brainstorming session
- Detail key actors and use cases

Objective 2: Identify key system functionality

- The functionality is the core of the application, or it exercises key interfaces of the system
- The functionality **must** be delivered
- The functionality covers an area of the architecture that is not covered by any other critical use cases

Objective 3: Determine at least one possible solution

• Make sure that there is at least one potential architecture that will allow you to build the system with a sensible amount of risk and at reasonable cost

The outcome of the inception phase:

- A vision document
- A initial use-case model (10 20%) complete
- An initial project glossary
- An initial business case, which includes business context, success criteria, and financial forecast
- An initial risk assessment
- A project plan, showing phases and iterations
- A business model, if necessary
- One or several prototypes

Lifecycle objective milestone

- Stakeholder concurrence on scope definition and cost/schedule estimates
- Requirements understanding as evidenced by the fidelity of the primary use cases
- Credibility of the cost/schedule estimates, priorities, risks, and development process
- Depth and breadth of any architectural prototype that was developed
- Actual expenditures versus planned expenditures

The project may be cancelled or considerably re-thought

Introduction of the Rational Unified Process

The Elaboration Phase

Objectives of the elaboration phase

- Get a more detailed understanding of the requirements
- Design, implement, validate, and baseline the architecture*
- Mitigate essential risks, and produce more accurate schedule and cost estimates
- Refine the development case and put the development environment in place

Objective 2: Design, implement, validate, and baseline the architecture

- Architecture: Defining subsystems, key components, and their interfaces
- Use architecturally significant use cases to drive the architecture

Objective 2: Design, implement, validate, and baseline the architecture(Cont'd)

- Design critical use cases
- Consolidate and package identified classes
- Ensure architectural coverage

KONKUK UNIVERSITY

Objective 2: Design, implement, validate, and baseline the architecture (Still cont'd..)

- Design databases
- Outline concurrency, processes, threads, and physical distribution
- Identify architectural mechanisms
- Implement critical scenarios
- Integrate components
- Test critical scenarios

The outcome of the elaboration phase:

- A use-case model (at least 80%), all use cases and actors have been identified, and most use-case descriptions have been developed
- Supplementary requirements capturing the non functional requirements and any requirements that are not associated with a specific use case
- A software architecture description
- An executable architectural prototype
- A revised risk list and a revised business case
- A development plan for the overall project, including the coarse-grained project plan, showing iteration and evaluation criteria for each iteration
- An updated development case specifying the process to be used
- A preliminary user manual

Lifecycle architecture milestone

- Is the vision of the product stable?
- Is the architecture stable?
- Does the executable demonstration show the major risk elements have been addressed and credibly resolved?
- Is the plan for the construction phase sufficiently detailed and accurate? And it is backed up with a credible basis of estimates?
- Do all stakeholders agree that the current vision can be achieved if the current plan is executed to develop the complete system, in the context of the current architecture?
- Is the actual resource expenditure versus planned expenditure acceptable?

The project may be aborted or considerably re-thought

Introduction of the Rational Unified Process

The Construction Phase

Objectives of the construction phase

- Minimize development costs and achieve some degree of parallelism in the work of the development teams
- Iteratively develop a complete product that is ready to transition to its user community

Objective 1: Minimize development costs and achieve some degree of parallelism

- Organize around architecture
- Configuration management
 - Integration planning for frequent build
- Enforce the architecture
- Ensure continual progress

Objective 2: Iteratively development a complete product that is ready to transition to its user community

- Describe the remaining use cases and other requirements
- Fill in the design
- Design the database
- Implement and unit-test code
- Do integration and system testing
- Prepare deployment
 - Early deployments and feedback loops
 - Prepare for beta deployment
 - Prepare for final deployment

The outcome of the Construction phase:

- The software product integrated on the adequate platforms
- The user manuals
- A description of the current release

Initial operational capability milestone

- Is this product release stable and mature enough to be deployed in the user community?
- Are all stakeholders ready for the transition into the user community?
- Are the actual resource expenditures versus planned expenditures still acceptable?

Transition may have to be postponed by one release

Introduction of the Rational Unified Process

The Transition Phase

Objectives of the transition phase:

KONKUR

- Beta test to validate that user expectation are met*
- Train users and maintainers to achieve user self-reliability
- Prepare deployment site and covert operational databases
- Prepare for launch-packaging, production and marketing roll-out; release to distribution and sales forces; field personnel training
- Achieve stakeholder concurrence that deployment baselines are complete and consistent with the evaluation criteria of the vision
- Improve future project performance through lessons learned*

Objective 1: Beta test to validate that user expectation are met

- Capturing, analyzing, and implementing change requests
- Transition testing
 - Continued test design and implementation
 - Regression testing
 - Acceptance testing (may not require additional test development)
 - Validate build stability
 - Test and evaluate
 - Achieve your test objectives, or in RUP parlance, achieve an acceptable mission
 - Improve test assets
- Patch releases and additional beta releases

Objective 5: Achieve stakeholder concurrence that deployment is complete

- Product acceptance Test
 - Formal acceptance testing
 - Informal acceptance testing
 - Beta testing

Product release milestone

- Is the user satisfied?
- Are the actual resources expenditures versus planned expenditures still acceptable?

Evolution cycles

- If the objectives were not met, you should start another development cycle
- There is an often overlap between two development cycles, transition phase and Inception phase

