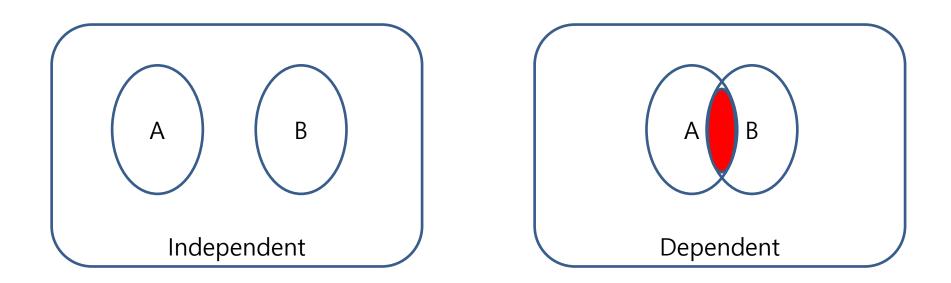


건국대학교 컴퓨터공학과 UC Lab. 정혁준 & 박경식

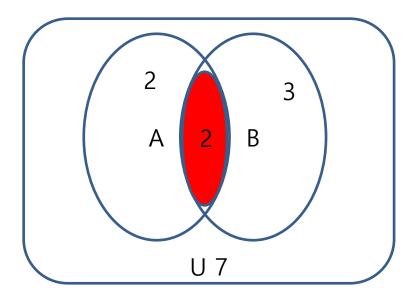
amitajung@naver.com, kyeongsik@konkuk.ac.kr


Contents

- Common Cause Failure (CCF)
- Types of CCF
- Examples
- Reducing CCF

Definition of CCF

• *Dependent Failures* in which two or more component fault states exist at the same time, or within a short time interval, as a result of a shared cause.



Conditional Probability

The probability of an event given that another event has occurred.

"The conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{2}{7} \div \frac{5}{7} = \frac{2}{5}$$

Independent and Dependent Failures

Consider the event that item Ei is in a failed state. The probability that both items are in a failed state is

 $Pr(E_1 \cap E_2) = P(E_1 | E_2) \cdot P(E_2) = P(E_2 | E_1) \cdot P(E_1)$

Independent

Dependent

 $\Pr(E_1 \mid E_2) \neq \Pr(E_1)$ and $\Pr(E_2 \mid E_1) \neq \Pr(E_2)$

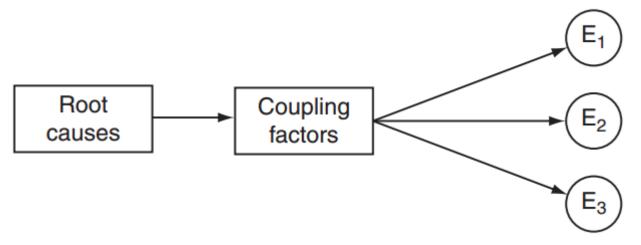
 $P(E_1|E_2) = P(E_1)$ $P(E_2|E_1) = P(E_2)$

Positive dependence

 $P(E_1|E_2) > \Pr(E_1) \cdot \Pr(E_2)$

Negative dependence

 $P(E_1|E_2) < \Pr(E_1) \cdot \Pr(E_2)$



Dependent Failures

The shared cause has two elements, a root cause and a coupling factor:

Root cause : Most basic cause of item failure that, if corrected, would prevent recurrence of this and similar failures.

Coupling factor : Property that makes multiple items susceptible to the same root cause.

Typical Root Causes

Pre-Operational Root Causes

Design, manufacturing, construction, installation errors.

Operational Root Causes

- **Operation and Maintenance-Related:** Inadequate maintenance and execution, competence and scheduling
- **Environmental Stresses:** Internal and external exposure outside the design envelope or energetic events such as earthquake, fire, flooding

Typical Coupling Factors

Same design Same hardware Same function Same software Same installation staff Same maintenance and operational staff Same procedures Same system/item interface Same environment Same (physical) location

NUREG/CR-6268 - Common-Cause Failure Database and Analysis System

Extrinsic dependency: A situation where the dependency or coupling is not internal of the system.

Physical or environment stresses. Human

Intrinsic dependency: A situation where the functional status of a component is affected by the functional status of other components.

Functional requirement dependency Functional input dependency Cascading failure

Cascading Failures

A **cascading failure** is a failure in a system of interconnected parts in which the failure of a part can trigger the failure of successive parts.

Such a failure may happen in many types of systems, including power transmission, computer networking, finance, human bodily systems, bridges even **Finance**!!

Attributes of a CCF definition

Smith and Watson (1980) suggest that a definition of CCF should encompass:

- 1 The items affected are unable to perform as required
- 2 Multiple failures exist within redundant configurations

<u>3 The failures are "first-in-line" type of failures and not the result of cascading failures</u>

4 The failures occur within a defined critical time period (e.g., the time a plane is in the air during a flight)

5 The failures are due to a single underlying defect or physical phenomenon (the "common cause")

Some different definitions

Nuclear industry (NEA, 2004)

A dependent failure in which two or more component fault states exist simultaneously or within a short time interval, and are a <u>direct result of a shared cause</u>

Space industry (NASA PRA guide, 2002)

The failure (or unavailable state) of more than one component due to a shared cause <u>during the system mission</u>.

Process industry (IEC 61511, 2003)

Failure, which is the result of one or more events, causing failures of two or more separate channels in a <u>multiple channel system</u>, <u>leading to system failure</u>.

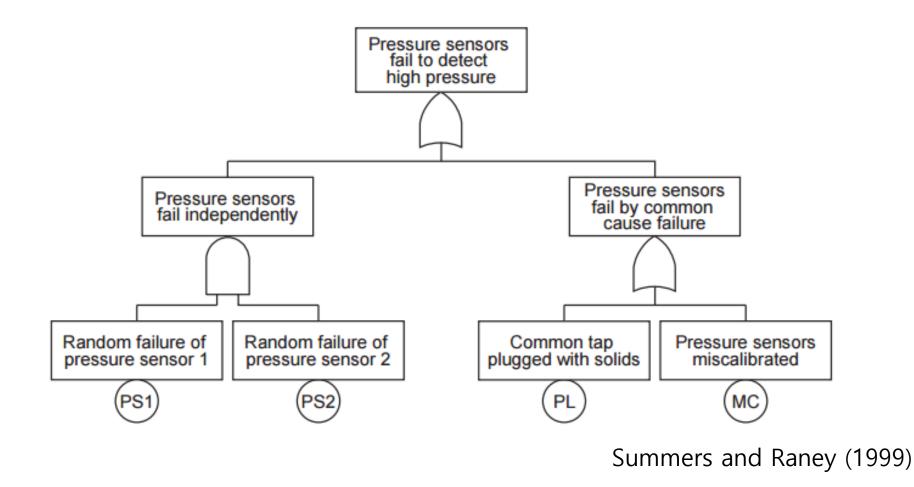
CCF Modeling

- 1 Develop a system logic model (e.g., a fault tree or a reliability block diagram)
- 2 Identify relevant common cause component groups (CCCG)
- 3 Identify relevant root causes and coupling factors/mechanisms
- 4 Assess the efficiency of CCF defenses
- 5 Establish explicit models
- 6 Include implicit models
- 7 Quantify the reliability and interpret the results

Common cause component group (CCCG): A set of system items that may have the same CCF

Explicit Modeling

The shared cause is identified as a separate basic event/element in the reliability model.


Explicit causes may be:

Human errors Utility failures (e.g., power failure, cooling/heating failure, loss of hydraulic power) Environmental events (e.g., lightning, flooding, storm)

Event tree and fault tree analysis Consideration of functional interdependencies

Explicit Modeling Example: Two pressure sensors

Fault Tree

Fault Tree

Symbol	Description	
	Event : Symbol indicates a case arises in the combination of the case through the logic gate	
\bigcirc	Basic Event : More symbols representing the basic error event does not require the development	
\diamond	Undeveloped Event : Not analyzed by the lack of information or analysis is required or not is a symbol representing the abbreviation phenomena	
Â-	Sign indicating the electric information between the other part is the same as in Fault Tree	
\square	Symbols indicating events that can be expected to occur normally	
\bigcirc	Symbol showing the state that must be considered in the production of the gate of the output	
A	AND Gate : A logic gate that is used to satisfy all of the lower case	
	OR Gate : A logic gate that is used to satisfy any one of the sub case	

Implicit Modeling

Where a set of items share a number of root causes and coupling factors, and where the explicit modeling would be unmanageable, the (residual) shared causes are modeled as a "combined" basic event/element.

The implicit modeling implies approach of the use of a CCF modeling.

Marshall-Olkin-Model "2-out-of-3-system", *b*-Factor-Model, MGL-Model (Multiple Greek Letter), BFR-Model (Binominal Failure Rate)

Multiplicity

Consider a system of three components 1, 2, and 3, and let Ei be the event that component i is in a failed state.

A failure event can have 3 different multiplicities:

A single failure, where only one component fails, can occur in 3 different ways as:

 $(E_1 \cap E_2^* \cap E_3^*)$, $(E_1^* \cap E_2 \cap E_3^*)$, or $(E_1^* \cap E_2^* \cap E_3)$

A double failure can also occur in three different ways as:

 $(E_1 \cap E_2 \cap E_3 *)$, $(E_1 \cap E_2 * \cap E_3)$, or $(E_1^* \cap E_2 \cap E_3)$

A triple failure occurs when

 $(E_1 \cap E_2 \cap E_3)$

Multiplicity

Probability of a specific combination for a system of 3 identical channels:

$$g_{1,3} = \Pr(E_1 \cap E_2^* \cap E_3^*) = \Pr(E_1^* \cap E_2 \cap E_3^*)$$

= $\Pr(E_1^* \cap E_2^* \cap E_3)$

$$g_{2,3} = \Pr(E_1 \cap E_2 \cap E_3 *) = \Pr(E_1 \cap E_2 * \cap E_3)$$

= $\Pr(E_1^* \cap E_2 \cap E_3)$

 $g_{3,3} = \Pr(E_1 \cap E_2 \cap E_3)$

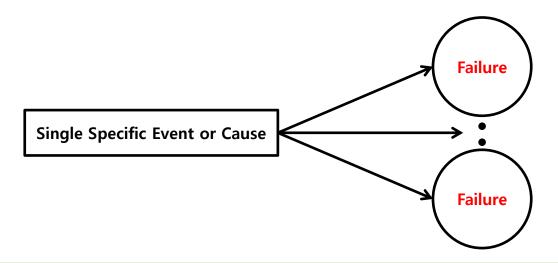
Multiplicity

Probability of a specific multiplicity

$$Q_{1:3} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \cdot g_{1,3} = 3 \cdot g_{1,3}$$
$$Q_{2:3} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot g_{2,3} = 3 \cdot g_{2,3}$$
$$Q_{3:3} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot g_{3,3} = g_{3,3}$$

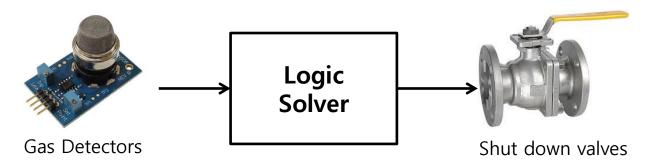
2-out-of-3 system

N-M 시스템에서 M개의 시스템 중 N개가 고장이 났을 경우 전체 시스템이 고 장날 확률

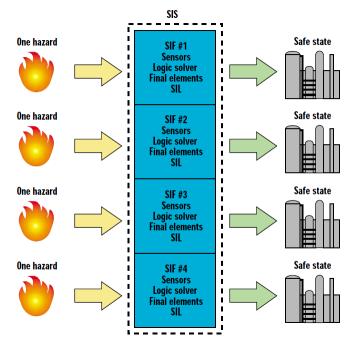

 $Pr(System failure) = Q_{2:3} + Q_{3:3}$

 $= 3 \cdot g_{2,3} + g_{3,3}$

Definition


- High technology industries with high failure costs commonly use redundancy as a means to reduce risk
- Redundant systems, whether similar or dissimilar, are susceptible to **Common Cause Failures (CCF)**
- **Common Cause Failure (CCF)** is "A failure of two or more components, system, or structures due to a single specific event or cause."

Safety Instrumented System (SIS)


- Common Cause Failures (CCFs) are an important part of reliability analysis, and engineers have been aware of these type of failures
- Safety Instrumented System (SIS) is a system which consists of sensors, logic solvers and actuating items
- A fire and gas detection system with an alarm or a sprinkler system is an example of a **SIS**
- A **SIS** is constructed to take the process into a **safe state** if a dangerous event occurs

Safety Instrumented System (SIS)

- Safety Instrumented Function (SIF) is a function that is implemented by a SIS, <u>SIS may consist of several SIFs</u>
- Each SIF has to fulfill a requirement which is called Safety Instrumented Level (SIL)

Safety Instrumented System (SIS)

• Safety integrity is defined as

The probability of a safety-related system satisfactorily performing the required Safety functions under all the stated conditions within a stated period of time

IEC 61508 (2000, Part 4)

• The measure is classified into four different discrete levels defined as **Safety Integrity Levels (SIL)**

SIL	Low Demand Mode	High Demand Mode
4	$\geq 10^{-5}$ to < 10^{-4}	$\geq 10^{-9}$ to $< 10^{-8}$
3	$\geq 10^{-4}$ to < 10^{-3}	$\geq 10^{-8}$ to < 10^{-7}
2	$\geq 10^{-3}$ to < 10^{-2}	$\geq 10^{-7}$ to < 10^{-6}
1	$\geq 10^{-2}$ to < 10^{-1}	$\geq 10^{-6}$ to $< 10^{-5}$

Safety Instrumented System (SIS)

• Low Demand Mode : The frequency of demands for operation made on a safety-related system is no greater than one per year and no greater than twice the proof-test frequency

Ex. Shut down valves, Heat detector

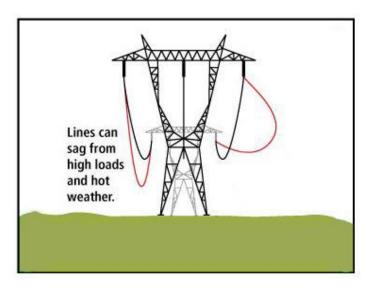
• High Demand Mode : The frequency of demands for operation made on a safety-related system is greater than one per year or twice the proof-test frequency

Ex. Braking system of a car

• Types of CCF

- There are several contributing **factors** or **causes** for a CCF
- The following is a brief list of **causes** which can take out **redundant components** or **systems**

System or Component Requirements		Loss of Power	
Wear Out		Software	
Contamination		Saturation of Signals	
Corrosion		Design Deficiency	
Environment	Weather	Transportation/Shipping	
	Lightning/Electromagnetic Interference	Human Error/System Complexity	
	Earthquake	Cascading	
	Thermal Conditions	Single Physical Point where Redundant Items Meet	
Lack of Process Control/Manufacturing Deficiency			
		-	



Examples

NASA Marshall Space Flight Center, Huntsville, Alabama, USA

Power Grid (Cascading)

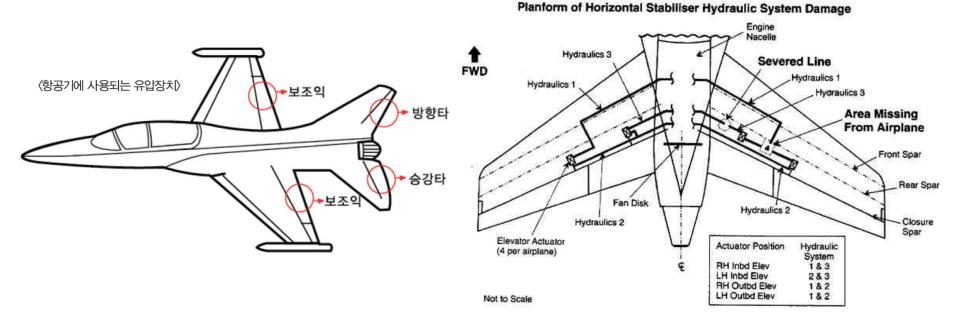
- Hot summer day
 - Led to increased power consumption
 - Led to power lines sagging
- One set of power lines were lost -> Increasing load on remaining lines
 - Those lines sagged

• Examples

NASA Marshall Space Flight Center, Huntsville, Alabama, USA

Apollo 13 Explosion (Single Physical Point)

- Oxygen Tank 1 and its redundant supply, Oxygen Tank 2, were located directly adjacent to each other
- Oxygen Tank 2 blast
 - The concussion from the blast also damaged Oxygen Tank 1
 - Causing it to leak, Emptying its entire supply to space



• Examples

NASA Marshall Space Flight Center, Huntsville, Alabama, USA

Airlines Flight 232 (Single Physical Point)

- All 3 redundant hydraulic systems were cut by single engine failure
- Non designed in redundancy
 - Using remaining two engines to control the plane, saved many lives

• Examples

NASA Marshall Space Flight Center, Huntsville, Alabama, USA

Japan's Fukushima Daiichi Power Plant (Environmental)

- Backup generators used to generate power if an earthquake interrupted power failed
 - Due to the water from a tsunami flooding the system
- The thought of the CCF of an earthquake both causing power loss and a tsunami of sufficient size to overcome the wall created to protect the plant was not envisioned

Examples

RAID System 1

- When two disks are purchased online and are installed in a computer
 There can be many Common Cause Failure
- The disks are likely from the same manufacturer and of the same model
 They share the same design flaws (Design Deficiency)
- The disks are likely to have similar serial numbers
 - They may share any manufacturing flaws affecting production of the same batch (Manufacturing Deficiency)
- The disks are likely to have been shipped at the same time
 - They are likely to have suffered from the same transportation damage (Transportation/Shipping)

Examples

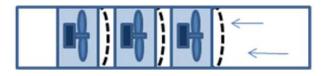
RAID System 2

- As installed, both disks are attached to the same power supply
 - Making them vulnerable to the same power supply issues (Loss of Power)
- As installed, both disks are in the same case
 - Making them vulnerable to the same overheating events (Thermal Conditions)
- They will be both attached to the same card or motherboard, and driven by the same software
 - May have the same bugs or viruses (Software)
- Both disks will be subjected to the same workload and to very repetitive similar access patterns, stressing them in the same way.
 - stressing them in the same way (Wear Out)

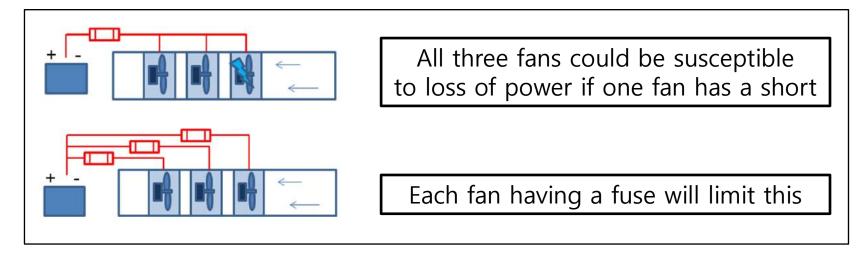
Examples of Reducing CCF

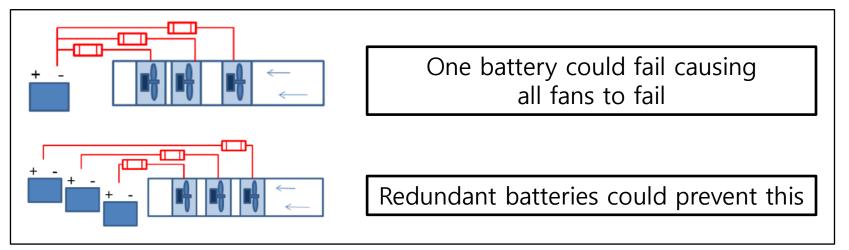
Environmental Control Fan (Cascading)

• On orbit, air flow is required to maintain life


All three fans could be susceptible to dirt/debris from cabin

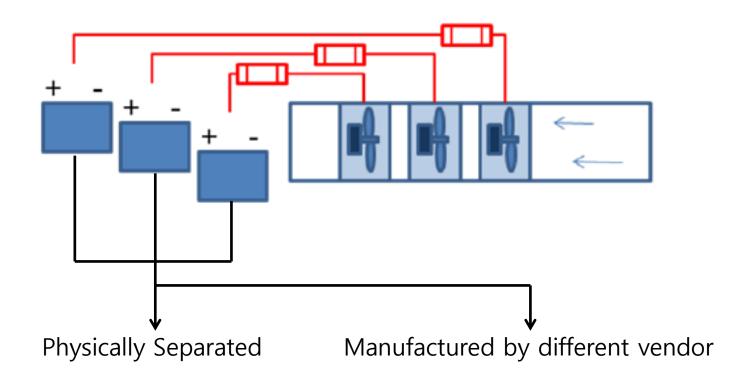
One fan can fail, sending debris into other fans, a cascading failure




Each fan having a screen will limit this

Examples of Reducing CCF

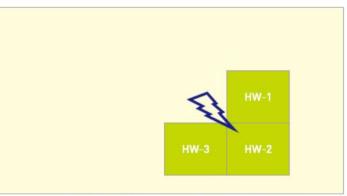
Environmental Control Fan (Loss of Power)

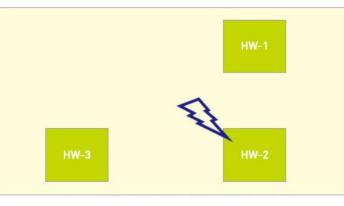


Examples of Reducing CCF

Environmental Control Fan

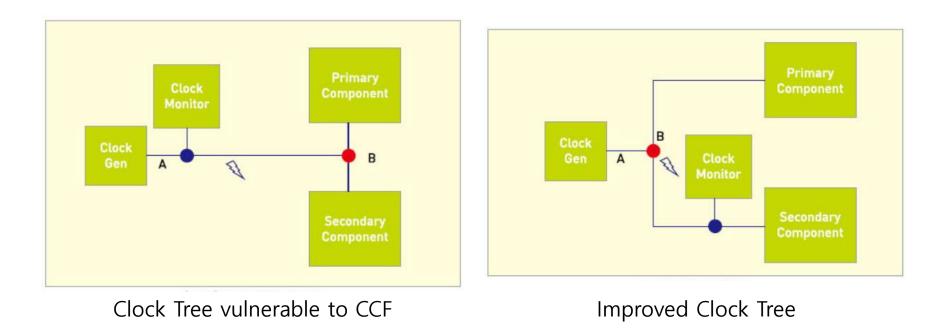
• Using Diverse(Unlike) Redundancy




Examples of Reducing CCF

Closely Located Hardware Device (Single Physical Point)

Closely located hardware device


Separately located hardware device

Examples of Reducing CCF

Clock Tree & Clock Monitoring (Design Deficiency)

- Split point(Red Dot) before the monitoring point(Blue Dot) is not found failures that occur in the Clock Tree path
- Failures in the path influence Spare parts

Use a Common Cause Failure list (Check List, IEC 61508)

Use diverse(unlike) redundancy when possible

Perform a Fault Tree Analysis (FTA)

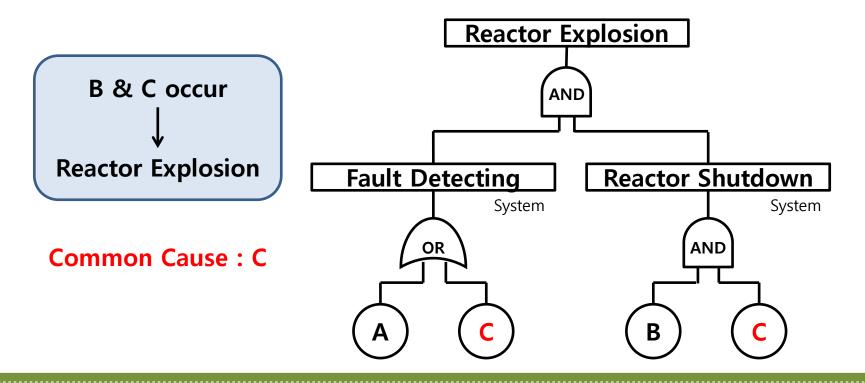
The β -Factor Model, The C-Factor Model, Others

Use a Common Cause Failure list (Check List, IEC 61508)

Hardware	Software	ASICs and FPGAs
During design and implementation	1. Functional safety assessment:	1. Structured description, VHDL
1. Robust project management and	checklists, truth tables, failure	design description and
documentation (throughout)	analysis, CCF analysis, reliability	simulation, Boolean design
2. Structured specification, design	block diagrams	description
3. Observance of guidelines and	2. Software requirements	2. Proven in use VHDL simulators
standards	specification – formal or semi-	and design environment
4. Functional testing, analysis	formal methods, traceability,	3. Functional testing on module and
5. Operation and maintenance	software tools	top levels, and embedded in
instructions, user- and	3. Fault detection, error detecting	system environment
maintenance-friendly	codes	4. Avoid asynchronous constructs,
6. Interference testing	4. Diverse monitoring techniques	synchronised primary inputs
7. Fault insertion testing	5. Recovery mechanisms or graceful	5. Design for testability;
	degradation	modularisation
During operation	6. Modular design	6. Code guidelines adherence, code
1. Program sequence	7. Trusted/verified software	checker, defensive programming
monitoring and on-line	elements	7. Documentation of simulation
monitoring or testing	8. Forwards/backwards traceability	results
2. Power supply monitoring and	at all stages	8. Code inspection, walk-through
protection	9. Structured or semi-formal or	9. Validation of soft-cores
3. Spatial separation	formal methods, auto-code	10. Internal consistency checks
4. Ambient temperature protection	generation	11. Simulation of gate netlist to check
5. Modification protection	10. Software tools	timing constraints; static timing
	11. Guaranteed maximum cycle time,	analysis of propagation delay

Use a Common Cause Failure list (Check List, IEC 61508)

time-triggered architecture,	12. Verification of gate netlist
maximum response time	13. Check ASIC vendor requirements
12. Static resource allocation,	and constraints
synchronisation	14. Documentation of synthesis
13. Language selection, suitable tools	constraints, results and tools; use
14. Defensive programming, modular	of proven in use tools and target
approach, coding standards,	libraries
structured programming	15. Script based procedures
15. Testing: dynamic, functional,	16. Test insertion and test pattern
black box, performance, model-	generation
based, interface, probabilistic	17. Placement, routing, layout
16. Process simulation, modelling	generation
17. Modification/change control:	18. Proven in use chip technology and
impact analysis, re-verification,	manufacturing, QA, QC
revalidation, regression testing,	19. Test coverage of manufacturing
configuration management, data	test; final verification and
recording and analysis	validation
17. Verification: Formal proof, static	20. Burn-in test
analysis, dynamic analysis,	
numerical analysis	


Use diverse(unlike) redundancy when possible

- For example, Nuclear Reactor Protection Systems
- The diverse system design should be developed by a different team, using independently derived safety functional requirements
- The diverse system should be electrically and physically separated
- It should use different input sensors measuring diverse operating parameters
- Its signals should pass via separate routes and be processed by diverse types of logic solver
- Its final actuating devices (usually electrical breakers) should be from a different manufacturer
- Its means of shutdown should use different physical principles

Perform a Fault Tree Analysis (FTA)

- Defines interactions and common failure paths
- Can be done on system level and can performed on subsystems or components that contain redundant items which are deemed susceptible

The β -Factor Model

- The β -factor model is the most commonly used CCF model
- This model assumes that a certain percentage of all failures are CCFs
- The total failure rate λ is split into an independent part λ_I and a dependent part λ_C, such that

$$\lambda = \lambda_I + \lambda_C$$

• A **β-factor** is defined as

$$\beta = \frac{\lambda_C}{\lambda}$$

• The value $\boldsymbol{\beta}$ can also be expressed as

 $\beta = P(CCF|Failure)$

The β -Factor Model

- Consider a system of *m* similar items
- Each item failure can have two distinct causes :
 - An independent cause (i.e., a cause that only affects the specific item)
 - A shared cause that will affect all the *m* items and cause all *m* to fail at the same time
- This means that the multiplicity of each CCF event must be either **1** or *m*
- It is not possible to have CCF events with intermediate multiplicities

The β -Factor Model

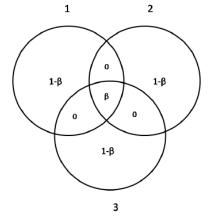
- Consider a system of *m* identical channels and assume that we have observed that a channel has failed
- The conditional probability that this is, in fact a CCF of multiplicity k is

$$f_{1,m} = 1 - \beta$$
$$f_{k,m} = 0$$
$$f_{m,m} = \beta$$

for k = 2, 3, ..., m - 1

The β -Factor Model

- The β -factor model is simple and easy to understand and use
 - Since it has only one extra parameter (β)
 - And it is easy to understand the meaning of this parameter
- The β -factor model is the most commonly used CCF model
- The β -factor model is preferred CCF model in IEC 61508



The β -Factor Model

- An effort to reduce an item's susceptibility to CCFs will reduce the parameter $\pmb{\beta}$
 - But will at the same time increase the rate of independent failures λ_I
 - Since λ_I is defined as

$$\lambda_I = (1 - \beta) \cdot \lambda$$

- If we have a system consisting of more than two components, the β -factor model doesn't allow for the possibility that more than one
 - But not all components fail due to a CCF

The C-Factor Model

- The **C-Factor** model is mainly the same model as the *β*-factor model
 - But the rate of dependent failures, λ_c is defined as a fraction (C) of the independent failure rate, λ_I
 - Instead of as a fraction of the total failure rate (as is done in the β -factor model), such that

$$\lambda = \lambda_I + C \cdot \lambda_I$$

- This means that an effort to reduce the item's susceptibility to CCFs will reduce the **total failure rate** λ
 - And not as in the β -factor model to increase the independent failure rate

Others

- Basic Parameter Model
- Alpha-Factor Model
- Shock Models
 - The Multinomial Failure Rate Model
 - The Random Probability Shock Model
 - The Random Probability Shock Model
- Markov Analysis
 - The Matrix Multiplication method
 - The differential equations method

• Q & A

Thank You