Structured Analysis and Structured Design

- Introduction to SASD
- Structured Analysis
- Structured Design

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr
Ver. 1.5 http://dslab.konkuk.ac.kr

sV &Y &

DI\'FA 7\ 'aVfaYe
MNCICICIILCCOS

* Modern Structured Analysis, Edward Yourdon, 1989.

» Introduction to System Analysis and Design: a Structured
Approach, Penny A. Kendall, 1996.

e Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002).
Structured Analysis and Structured Design (SASD) - Class Presentaion
http://pages.cpsc.ucalgary.ca/~jadalow/seng613/Group/

+If'l 1
L

C +1rivad An
DL L U

"\I\I
ANAdi

cture VSis

o Structured analysis is [kendall 1996]
— a set of techniques and graphical tools
— that allow the analysts to develop a new kind of system specification
— that are easily understandable to the users.
— Analysts work primarily with their wits, pencil and paper.

« SASD
— Structured Analysis and Structured Design

Ll
Hi

| "2l W 4

t'“l'f\ 7\
Wiy U

£ CA
S I

N
SDMAOoLU/

Developed in the late 1970s by DeMarco, Yourdon and

Constantine after the emergence of structured programming.

IBM incorporated SASD into their development cycle in the late
1970s and early 1980s.

Yourdon published the book “Modern Structured Analysis” in
1989.

The availability of CASE tools in 1990s enabled analysts to
develop and modify the graphical SASD models.

=

If'\ \7 f

UM

CACD
DAoL/

Analysts attempt to divide large, complex problems into smaller,
more easily handled ones.
- "Divide and Conquer”

Top-Down approach
Functional view of the problem
Analysts use graphics to illustrate their ideas whenever possible.

Analysts must keep a written record.

~n s -FC'AC'
UM Ul OMAO

=

M
LJ

" The purpose of SASD is to develop a useful, high quality
information system that will meet the needs of the end user.
[Yourdon 1989] !

small world BY TOM BRISCOE

PIp You SEE \T'6 GOT A FIGUREP OUT

THIS, JAKE? CALENDAR, DATE- HoWTo TURN |§

16 THE PALMDPEX BOOK, E-MAIL \TON YET? @

2000 POCKET P! CLIENT, WE® 3

BROWSER, VOICE a2

woo! RECORDER D A B

CooL. BoDY ODOR ALARM! é

-] -~) f/ E‘

j _‘_-"' I E

&

@

W friScoe. o

Konkuk University

CACD
DAoL/

Improve quality and reduce the risk of system failure.

Establish concrete requirements specifications and complete
requirements documentations.

Focus on reliability, flexibility and maintainability of system.

Essential Model

Environmental Behavioral
Model Model

Implementation Model

Konkuk University

L
N
N
D
>
ct,
Q
Q.
@

Model of what the system must do

* Not define how the system will accomplish its purpose.

e A combination of environmental and behavioral models

Essential Model

Environmental Behavioral

Model Model

Konkuk University

C
LI

\l m vy If'\'l'

Vironmentai

NAaAAal
IVUU I

S

Defines the scope of the proposed system.

Defines the boundary and interaction between the system and
the outside world.

Composed of
— Statement of purpose
— System Context diagram

Essential Model

- Event ||St Envimnm_anhl Behavloral_
Model Model

-

Implementation Model

Konkuk University 10

Co
M
-
Q)
<
O

=5

Q)
>
~

<
O
Q.

®

* Model of the internal behavior and data entities of the system

* Models functional requirements.

« Composed of

— Data Dictionary
— Data Flow Diagram (DFD)

_ Entitv Dalatinnchin
L1 ILILy INTIALIVIIDI ||P

— Process Specification
— State Transition Diagram

NDianram (FRN)
vidayiraiil (CRL)

Essential Model

Implementation Model

Konkuk University

m

Arvvnvnnt
L

|p eimen

ation Moael
Maps the functional requirements to hardware and software.
Minimizes the cost of the development and maintenance.
Determines which functions should be manual vs. automated.

Can be used to discuss the cost-benefits of functionality with
user/stakeholders.

Defines the Human-Computer interface.
Defines non-functional requirements.

Essential Model

Composed of
— Structure Charts

-

Implementation Model

Konkuk University 12

nlﬁf\ﬁf\t‘f‘
SASD rTULCOS

Activity

Environmental Model
Statement of
Purpose

Behavioral Model

Data Dictionary

Process Specification
State Transition
Diagram

Implementation
Model

Konkuk University

Time

13

+atAr
Ld L

~ At -Fn.
CIIICIIL

Sta of Purpose

» A clear and concise textual description of the purpose for the
system to develop

» [t should be deliberately vague.

« Itis intended for top level management, user management and
others who are not directly involved in the system.

Robot Vacuum Cleaner (RVQ)

- An RVC automatically cleans and mops household surface.

- It goes straight forward while cleaning.

- If its sensors found an obstacle, it stops cleaning, turns aside, and
goes forward with cleaning.

- If it detects dust, power up the cleaning for a while

- We do not consider the detail design and implementation on HW
controls.

- We only focus on the automatic cleaning function.

Konkuk University

15

C
®

\7 'Y e If'\'l'
L

t'"l' F’\ \I'l' n:"\”v" v
y-Llllh LUl L/

ext |ay|a|||

Highlights the boundary between the system and outside world.

Highlights the people, organizations and outside systems that
interact with the system under development.

A special case of DFD

Process : represents the proposed system

Terminator : represents the external entities

Flow : represents the in/out data flows

Konkuk University

17

Sensor

18

Konkuk University

E\I If'\+
L L

A NP
VCIlli L

| 1
Y

A list of the event/stimuli outside of the system to which it must
respond.

» Used to describe the context diagram in details.

« Types of events

— Flow-oriented event : triggered by incoming data
— Temporal event : triggered by internal clock

— Control event : triggered by an external unpredictable event

\/ v\

alllp

)]
—
—

C A
L 1C

Il
<
D
r.
n

Front Sensor Input Detects obstacles in front of the RVC

Left Sensor Input Detects obstacles in the left side of the RVC periodically
Right Sensor Input Detects obstacles in the right side of the RVC periodically
Dust Sensor Input Detects dust on the floor periodically

Direction Direction commands to the motor

(go forward / turn left with an angle / turn right with an angle)

Clean Turn off / Turn on / Power-Up

Direction
Front Sensor Input

Left Sensor Input
Right Sensor Input
Dust Sensor Input

RVC
Control

Sensor

Sensor U
Control

Cleaner

Cleaner

Context Diagram for RVC
Konkuk University 20

Direction
Front Sensor Input

Left Sensor Input
Right Sensor Input
Dust Sensor Input

Control

Cleaner

Konkuk University

21

M
LJ

'I"\ EIA\AI n a2Vea Il el a'a /nl:h\
d 'iovw vldyidlll \Uihy)

d

Provides a means for functional decomposition.
Composed of hierarchies(levels) of DFDs.

Notation (kind of CDFD)

Data Process

/7 Data Flow

Control Process

> Control Flow

-
-
-
-
-
-
-
-
-

Terminator

Data Store

Konkuk University

22

9,
T
W,
—
M
<
M

-)

Front Sensor Front Sensor Input

Left Sensor
: RVC
. i Control
Right Sensor E,'g:: 2ensoy, 0

Dust Sensor Dust Sensor Input

Direction

Cleaner
Tick

Digital Clock

Konkuk University

23

),
T
W,
—
M
<

M

-)

(A kind of) Data Dictionary

Input/ Output -

Front Sensor Input
Left Sensor Input
Right Sensor Input
Dust Sensor Input
Direction

Clean

Detects obstacles in front of the RVC
Detects obstacles in the left side of the RVC periodically
Detects obstacles in the right side of the RVC periodically

Detects dust on the floor periodically

Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle)

Turn off / Turn on / Power-Up

Konkuk University

True / False , Interrupt
True / False , Periodic
True / False , Periodic
True / False , Periodic
Forward / Left / Right / Stop

On / Off / Up

24

v,
T
U

Left Sensor
n

Right Sensor_
Input -

Dust Sensor Input

—
¢
<

Front Sensor Input

Cl L IN\NV_ L dIIIIJIC
Direction
Obstacle Cleaner &
& Dust Obstacle & Dust Motor
Detection Location Control

1

p

Tick

Konkuk University

25

NCN | Avial D _ D\/ Cuarnynla
Ury Level 2 RVUL £EXampie
Front Sensor Input Front

Sensor

Interface Front Obstacle

11

Left Sensor Input Left Determine
Sencor Left Obstacle Obstacle
Interface Location
______ 1.2 1.5

Right
Right Sensor Input Sensor Right Obstacle
Interface
1.3

Determine

-
-
-

Tick ---~ Dust
Existence
Dust 1.6
Dust Sensor Input Sensor Dust Existence

Interface

Konkuk University

Obstacle
Location

Dust
Existence

26

NCN | Avial D D\/C CvuarmmnlAa
LI LJ LCVCI £ — I\NVUC LAdII IlJIC
Direction
Motor
Motor Command Interface
2.2
Obstacle
Location
Main
Control
2.1
Dust
Existence Cleaner

Cleaner Command Interface
2.3

Tick

Konkuk University

27

v,
T
U

Obstacle
Location

Dust
Existence

—
M
<
M

Move
Forward
2.1.2

Controller
211

~

Cleaner Command

Konkuk University

Motor Command
N

7

Motor Command

~

7

Motor Command

N

7

28

NCN | Aaval A
LI LCVC]

D\/C Cvar
T — INVUC L

Xan .ple

State Transition Diagram for Controller 2.1.1

/ Enable "Move Forward”, Cleaner Command (On)

Move

Forward

Tick [F && 'R]
/ Disable "Move Forward”,
Cleaner Command (Off),
Trigger "Turn Right”

Tick [F && L]
/ Disable "Move Forward”,
Cleaner Command (Off)
Trigger “Turn Left”

Turn Left Turn Right

Tick [F && L && R]
/ Disable "Move Forward”,
Cleaner Command (Off),

Many problems in this model:
1. "Stop” state

2. Do not consider “"Dust”

3.

Konkuk University 29

Front
Sensor
Interface
11

Determine
Obstacle
Location

1.5

Determine
Dust
Existence
1.6

Dust
Existena

Konkuk University

Cleaner Command

Motor Command

Motor Command

Motor Command

30

'U

:i?
'_'!‘

on

Frocess p

Shows process details which are implied but not shown in a DFD.
Specifies the input, output, and algorithm of a module in a DFD.
Normally written in pseudo-code or table format.

Example — "Apply Payment”

For all payments
If payment is to be applied today or earlier and has not yet been applied
Read account
Read amount
Add amount to account’s open to buy
Add amount to account’s balance
Update payment as applied
Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002)

D
>

Front Sensor Input

r

O

Left Sensor Input

Right Sensor Input

Sensor
Interface
11

Left
Sensor
Interface
12

Right
Sensor
Interface
13

Dust
Sensor
Interface
14

Name

Output

Determine
Obstacle
Location

15

Determine
Dust
Existence

16

o
|
JJ

<

Dust
Existence

Left Sensor Interface

Left Obstacle (+Data structure)

Konkuk University

UL

Q)

§

©

)

32

n"\'l"'\ h:f“l‘:f\v‘\"\lﬁ\l
Udld UILLIVUTIdl Yy

» Defines data elements to avoid different interpretations.
* Not used widely in recent years.

e Example (vourdon 1989
A: What's a name?
B: Well, you know, it's just a name. It's what we call each other.

A: Does that mean you can call them something different when you are angry or
happy?

B: No, of course not. A name is the same all the time.

A: Now [understand. My name is 3.141592653.

B: Oh your name is PL..But that's a number, not a name. But what about your
first and last name. Or, is your first name 3 and your last name 1415926537

n"\'l"'\ n:f"l':f\lf'\"\lf'\l
L/dld LJILLIUIICII_y
* Notation
— = :is composed of
— + :and

— () : optional element
— {}: iteration
[]: selects one of the elements list
| : separation of elements choice
— ** . comments

— @ : identifier for a store (unique ID)

Data Dictionary
« Example
— Element Name = Card Number
— Definition = *Uniquely identifies a card*
— Alias = None
— Format = LD+LD+LD+LD+SP+LD+LD+LD+LD+SP+
LD+LD+LD+LD+SP+LD+LD+LD+LD
— SP = " " *Space*
— LD = {0-9} *Legal Digits*

— Range = 5191 0000 0000 0000 ~ 5191 9999 9999 9999

C
LI

+1+v/s DAlA+:
LILy CI LIO

§

~~
i
~—r

| atl

NS |p gra

A graphical representation of the data layout of a system at a
high level of abstraction

Defines data elements and their inter-relationships in the system.
Similar with the class diagram in UML.

Notation (Original)

Associated Object

- Data Element I Cardinality — Exactly one
O Cardinality — Zero or one
’ Relationship =< Cardinality — Mandatory Many
0 < Cardinality — Optional Many

Konkuk University 36

L ILIL_y I\CIdLlLIV IDIII}J LJICIHICIIII L CIIII|JIC'
@ 0 Bills
Accounts — $
AN
@ v, Transactions
AN
Cards = ,
Transaction_
products

Konkuk University

37

C+
DL

.
N 1 [v\

L Hdtisiutuvull Uidyidalll

d

Shows the time ordering between processes.

More primitive than the Statechart diagram in UML.
Different from the State transition diagram used in DFD.
Not widely used.

Notation

/

Objects Transitions

Konkuk University

38

SLdLlCT IT1dlisItivull Vidyidlill LAdITIPICT
Customer
Customer Active pays bills
makes purchase Account.
Acr;ou[wt Balance Customer
gpplication makes purchase
Customer
request to
close account Customer
pays balan does not

ay bills

Closed
Account.
No Balancg

Bad Debt
Account.
Balance

rdlCLICC

 Complete the RVC analysis in more detalls.
— Consider the "Dust”.
— You may have several controller.

N

~—
PR

(@

M
M
-
Q)
-5
—
N

Structured Design (SD)

Functional decomposition (Divide and Conquer)
— Information hiding

— Modularity

— Low coupling

— High internal cohesion

Needs a transform analysis.

C+If'l If‘+l IIF’\IJ rlf'\"\lf"l't‘ TIF’\V'\!‘;AIFM A If'\ﬁl\ lﬁ:f‘
SQLIEUCLUICU Clidl Lo — [IdlioliVvllll M ICII)/DID
S etermine ’ Motor Command
Obstacle R — -
Location Lomtion

1.5

Motor Command

-

Determine
Dust T D=t
Existence _ Existence

1.6

Motor Command

Cleaner Command

Efferent Flow
(Output)

Central Transformation
(Control)

Afferent Flow
(Input)

Konkuk University 42

(Afferent Flow)

Process
(Central Transformation)

Control

Process

Konkuk University

43

Basic Notation [Yourdon 1989]

||
/

o/
./

N

Library modules

Module call

Data Flow

Control FIow/

Konkuk University

ﬁ Variations ﬂ

Data module

Asynchronous
module call

-
-
-
-
-
-
-
-

Iteration

Decision

/

44

5

C'I'If'l Iﬁ'l'l IIF/'\INI F ﬁlf"l'f‘ — E\I"\MV‘\IA
DLIUCLUITCU Clidl L LAAITIPIC
J) Payment Process Payment Control
3 Error Payment?
Paymeni]
Payment? Process -
Get Payment Today Write Payment
Process Payment
Payment ?
Raw J) Payment Payment?
Payment Error - -
‘ Raw ? - Update Insert
Payment v yment
: Account Payment
Read Edit Event
Record Record

Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002)

§

9)
T

M
~~
Co
Q)
L,
(@)
~—

C
L

Controller

Obstacle Location Dust Existence

Oo— Oo—

Enable Trigger Trigger

Determine Determine Disable

Obstacle Location Dust Existence

Front Sensor Left Sensor Right Sensor Dust Sensor
Interface Interface Interface Interface

4 A
Move Forward I

Konkuk University 46

§

9)
T

@M

C
L

Controller

< %

Obstacle Location

O/'

Determine

Dust Existence

Determine

Obstacle Location

Trigger

Interface Interface Interface Interface

Front Sensor I Left Sensor I I Right Sensor I Dust Sensor |

Konkuk University

(Advanced)

T
' Enable ol
Dust Existence Disable .\A

Move Forward I I Turn Left | I Turn Right I

47

DA

rrovs VUl

A C
DAoL/

« Has distinct milestones, allowing easier project management
tracking.

« Very visual — easier for users/programmers to understand
* Makes good use of graphical tools

* Well known in industry

* A mature technique

* Process-oriented way is a natural way of thinking

» Flexible

* Provides a means of requirements validation

» Relatively simple and easy to read

DA

rrovs VUl

A C
DAoL/

« System Context Diagram
— Provides a black box overview of the system and the environment

» Event List
— Provides a guidance for functionality
— Provides a list of system inputs and outputs
— A means of requirements summarization
— Can be used to define test cases (as we will see soon.)

« Data Flow Diagram (DFD)

— Ability to represent data flows
— Functional decomposition (divide and conquer)

DA

rrovs VUl

A C
DAoL/

« Data Dictionary
— Simplifies data requirements
— Used at high or low level analysis

» Entity Relationship Diagram (ERD)
— Commonly used and well understood
— A graphical tool, so easy to read by analysts
— Data objects and relationships are portrayed independently from the process
— (Can be used to design database architecture
— Effective tool to communicate with DBAs

* Process Specification
— Expresses the process specifications in a form that can be verified

DA

rrovs VUl

A C
DAoL/

« State Transition Diagrams
— Models real-time behavior of the processes in the DFD

o Structure Charts
— Modularity improves the system maintainability
— Provides a means for transition from analysis to design
— Provides a synchronous hierarchy of modules

CAnc Af TACDH
VUINS VUl oAOoUD

Ignores non-functional requirements.

Minimal management involvement

Non-iterative — waterfall approach

* Not enough use-analysts interaction

* Does not provide a communication process with users.

* Hard to decide when to stop decomposing.

* Does not address stakeholders’ needs.

* Does not work well with Object-Oriented programming languages.

Ff\ mo MmN
Ul VU

-IFC

N
DAoL/

System Context Diagram
— Does not provide a specific means to determine the scope of the system.

Event List

Does not define all functionalities.
Does not define specific mechanism for event interactions.

Data Flow Diagram (DFD)

Weak display of input/output details

Confused for users to understand.

Does not represent time.

No implied sequencing

Assigns data stores in the early analysis phase without much deliberation.

-IFC

N
DAoL/

Ff\ mo MmN
Ul VU

« Data Dictionary
— No functional details
— Formal language is confusing to users.

» Entity Relationship Diagram (ERD)
— May be confused for users due to its formal notation.
— Become complex in large systems.

e Structure Chart

— Does not work well for asynchronous processes such as networks.
— Could be too large to be effectively understood with larger programs.

-IFC

N
DAoL/

Ff\ mo MmN
Ul VU

* Process Specification
— They may be too technical for users to understand.
— Difficult to stay away from the current “How to implement.”

« State Transition Diagram
— Explains what action causes a state change, but not when or how often.

\ AVl +
VVIICII] L

o use SASD?

« Well-known problem domains

« Contract projects where SRS should be specified in detalls
* Real-time systems

« Transaction processing systems

» Not appropriate when time to market is short.

e In recent years,
SASD is widely used in developing real-time embedded systems.

h \ W 4
L/

c (YOOAD
Vo. UUALU

CAC
MO

Similarities

— The both have started off from programming techniques.

— The both use graphical design and tools to analyze and model requirements.
— The both provide a systematic step-by-step process for developers.

— The both focus on the documentation of requirements.

» Differences
— SASD is process-oriented.
— OOAD is data(object)-oriented.
— OOAD encapsulates as much of the system’s data and processes into objects,
— While SASD separates them as possible as it can.

f‘ I

(7)

Y
> KU

« What is your opinion on ?
— Does it reduce maintainability costs?
— Is it useful?
— Is it efficient?
— Is it appropriate for E-commerce(business) development?

 What is SASD’s target domain?

C
®

Na'2Y 2NN oW

Hrrial'y

SASD is a process-driven software analysis technique.

SASD has a long history in the industry and it is very mature.
It provides a good documentation for requirements.

In recent years, it is widely used for developing real-time

embedded system'’s software.

Activity

Environmental Model
Statement of
Purpose

SASD

Behavioral Model

Data Dictionary

Process Specification
n:

Implementation
Model

Konkuk University

Time

59

« English presentation

» Compare OOAD with SASD using your elevator controller team
project.

— Pros and Cons of SASD and OOAD for developing elevator controllers
respectively

— Your opinion and suggestion!!!

