
1

2

01 CTIP
Environment

02 Testing
03 Static
Analysis

04 Summary

3

그림

4

5

6

7

8

9

1. Integrating was very difficult.

2. But CTIP environment is convenient if those

tools were established well.

3. Though some tools have same functions, each

tool has distinctive characteristics and

strengths.

4. By using popular and common tools, we got to

know that there’s a reason why people use

those.

10

11

Combinatorial testing

Brute-force testing

1. Category partitioning

2. 3 Constraints

 (error, property, single)

3. Pairwise testing

53 Test

Cases!!!

12

13

14

15

1. The most difficult thing

was that we don’t know

whether categories are

partitioned well or not.

2. Requirements were

very ambiguous.

3. We realized the difficulties and importance of

the communications between developers and QA

team.

16

17

- unused import, naming style…

 => coding style

- We found 975 warnings!

Checkstyle

- unused code, unnecessary varibles…

- CPD

- Cyclomatic reports

- We found 41 warnings, 2 parts

of copy-and-paste code, and 5 bad

classes on cyclomatic complexity.

 PMD

18

- malicious code, performance…

- We found 13 warnings!

 Findbugs

- cyclomatic complexity in method,

class, file…

- package tangle index

- various coverage such as unit tests,

line, branch…

 Sonarqube

19

1. Tools make automation easier.

2. Though using sonarqube is difficult, it’s a very

powerful tool as it has various functions of

other 3 tools.

3. If you don’t want to integrate, you can use

those tools supported by eclipse plugins which

would be easier to use.

4. Tools are too strict like a nag of my mom.

20

21

1. Software verification was new for us because we

haven’t experienced ever.

2. We got to know the difference between verification

and debuggings that we’ve done.

3. There are good tools and systematic principles in

verification, but finding all errors is impossible!

4. Choosing static analysis tools depending on each

project is very important.

5. We can detect invisible mistakes through static

analysis.

6. Combinatorial testing and brute-force testing are

complementary to each other.

22

1. Software verification was new for us cause we

haven’t experienced ever.

2. We get to know the difference between verification

and debugging that we’ve done.

3. There are good tools and systematic principles in

verification, but to find all errors is impossible!

4. Choosing static analysis tools depending on each

project is very important.

5. We can detect invisible mistakes through static

analysis.

6. Combinatorial testing and brute-force testing are

complementary each other.

