
DO-178B

201372235 김영승

201372237 이선아

Contents

• Introduction

• Standard
 SECTION 1 INTRODUCTION

 SECTION 2 SYSTEM ASPECTS RELATING TO SOFTWARE DEVELOPMENT

 SECTION 3 SOFTWARE LIFE CYCLE

 SECTION 4 SOFTWARE PLANNING PROCESS

 SECTION 5 SOFTWARE DEVELOPMENT PROCESSES

 SECTION 6 SOFTWARE VERIFICATION PROCESS

 SECTION 7 SOFTWARE CONFIGURATION MANAGEMENT PROCESS

 SECTION 8 SOFTWARE QUALITY ASSURANCE PROCESS

 SECTION 9 CERTIFICATION LIAISON PROCESS

 SECTION 10 OVERVIEW OF AIRCRAFT AND ENGINE CERTIFICATION

 SECTION 11 SOFTWARE LIFE CYCLE DATA

 SECTION 12 ADDITIONAL CONSIDERATIONS

Introduction

• DO-178B?

– Software Considerations in Airborne System and Equipment

Certification

– 항공기 소프트웨어 오작동으로 인한 항공기 사고 위험을

최소화하기 위해 항공기 소프트웨어 안정성에 대한 국제적인 인증 표준

Overview

DO-178B

5

3 Key-Process

5 Key Plans

SYSTEM ASPECTS RELATING
TO SOFTWARE DEVELOPMENT

SECTION 2

SECTION 2

• Software Life Cycle Process를 이해하기 위해 필요한 System Life

Cycle Process의 ㅇㅇ을 살펴본다.

• 2.1 Information flow between system and software life cycle

processes

• 2.2 Failure condition and software level

• 2.3 System architectural considerations

• 2.4 System considerations for user-modifiable software, option-

selectable software and commercial off-the-shelf software

• 2.5 System design considerations for field-loadable software

• 2.6 System requirements considerations for software verification

• 2.7 Software considerations in system verification

2.1 (Information flow between system and software life cycle processes)

– an overview of the safety aspects of the information flow between
system life cycle processes and the software life cycle processes.

• Figure 2-1 is an overview of the safety aspects of the information

flow between system life cycle processes and the software life

cycle processes. Due to interdependence of the system safety

assessment process and the system design process, the flow of

information described in these sections is iterative.

11

2.1 (Information flow between system and software life cycle processes)

2.1 (Information flow between system and software life cycle processes)

• 2.1.1 Information flow from System Processes to Software

Processes

– System Safety Assessment Process

• System의 failure conditions을 결정하고 분류함.

• Safety-related requirements 정의함.

• Safety-related requirements를 만족하는지 확인하기 위해 system design의

결과를 분석함.

– Safety-related requirement

• The system description and hardware definition

• Certification requirements

• System requirements allocated to software

• Software level, failure conditions, related functions

• Safety strategies, design constraints

2.1 (Information flow between system and software life cycle processes)

• 2.1.2 Information Flow from Software Processes to System
Processes

– System Safety Assessment Process

• system safety에 대한 software design과 implementation의 영향을 결정함.

• system requirement와 software design data사이의 traceability

• 미완성…

SECTION 2

• SYSTEM SAFETY-RELATED INFORMATION FLOW BETWEEN
SYSTEM AND SOFTWARE LIFE CYCLE PROCESSES

14

• Guidance follows concerning system failure condition categories,

the definition of software levels, the relationship between

software levels and failure condition categories, and how software

level is determined. The failure condition category of a system is

established by determining the severity of failure conditions on

the aircraft and its occupants. An error in software may cause a

fault that contributes to a failure condition. Thus, the level of

software integrity necessary for safe operation is related to the

system failure conditions.

15

2.2 (Failure condition and software level)

• 2.2.1 Failure Condition Categorization
– a. Catastrophic: Failure conditions which would prevent continued safe flight and landing.

– b. Hazardous/Severe-Major: Failure conditions which would reduce the capability of the
aircraft or the ability of the crew to cope with adverse operating conditions to the extent
that there would be:

• (1) a large reduction in safety margins or functional capabilities,

• (2) physical distress or higher workload such that the flight crew could not be relied on to
perform their tasks accurately or completely, or

• (3) adverse effects on occupants including serious or potentially fatal injuries to a small number of
those occupants.

– c. Major: Failure conditions which would reduce the capability of the aircraft or the
ability of the crew to cope with adverse operating conditions to the extent that there
would be, for example, a significant reduction in safety margins or functional capabilities,
a significant increase in crew workload or in conditions impairing crew efficiency, or
discomfort to occupants, possibly including injuries.

– d. Minor: Failure conditions which would not significantly reduce aircraft safety, and
which would involve crew actions that are well within their capabilities. Minor failure
conditions may include, for example, a slight reduction in safety margins or functional
capabilities, a slight increase in crew workload, such as, routine flight plan changes, or
some inconvenience to occupants.

– e. No Effect: Failure conditions which do not affect the operational capability of the
aircraft or increase crew workload.

16

2.2 (Failure condition and software level)

2.2 (Failure condition and software level)

• 2.2.1 Failure Condition Categorization

• 2.2.2 Software Level Definitions

• 2.2.3 Software Level Determination

• 2.3 SYSTEM ARCHITECTURAL CONSIDERATIONS

– 2.3.1 Partitioning

• Partitioning is a technique for providing isolation between functionally

independent software components to contain and/or isolate faults and

potentially reduce the effort of the software verification process. If

protection by partitioning is provided, the software level for each

partitioned component may be determined using the most severe failure

condition category associated with that component.

• 2.3.2 Multiple-Version Dissimilar Software

• 2.3.3 Safety Monitoring

18

2.3 (System architectural considerations)

• 2.4 SYSTEM CONSIDERATIONS FOR USER-MODIFIABLE
SOFTWARE, OPTIONSELECTABLE SOFTWARE AND COMMERCIAL
OFF-THE-SHELF SOFTWARE

19

2.4 (System considerations for user-modifiable software,

optionselectable software and commercial off-the-shelf software)

• Detection of corrupted or partially loaded software.

• Determination of the effects of loading the inappropriate

software.

• Hardware/software compatibility.

• Software/software compatibility.

• Aircraft/software compatibility.

• Inadvertent enabling of the field loading function.

• Loss or corruption of the software configuration identification

display.

20

2.5 (System design considerations for field-loadable software)

• The system requirements are developed from the system

operational requirements and the safety-related requirements

that result from the system safety assessment process.

– a. The system requirements for airborne software establish two

characteristics of the software:

• (1) The software performs specified functions as defined by the system

requirements.

• (2) The software does not exhibit specific anomalous behavior(s) as

determined by the system safety assessment process. Additional system

requirements are generated to eliminate the anomalous behavior.

– b. These system requirements should then be developed into

software high-level requirements that are verified by the software

verification process activities.

21

2.6 (System requirements considerations for software verification)

22

2.7 (Software considerations in system verification)

SOFTWARE LIFE CYCLE

Section 3

SECTION 3

• This section discusses the software life cycle processes, software life cycle
definition, and transition criteria between software life cycle processes.
The guidelines of this document do not prescribe a preferred software
life cycle, but describe the separate processes that comprise most life
cycles and the interactions between them. The separation of the
processes is not intended to imply a structure for the organization(s) that
perform them. For each software product, the software life cycle(s) is
constructed that includes these processes.

24

SECTION 3

• 3.1 SOFTWARE LIFE CYCLE PROCESSES

• 3.2 SOFTWARE LIFE CYCLE DEFINITION

• 3.3 TRANSITION CRITERIA BETWEEN PROCESSES

25

SECTION 3

26

SOFTWARE
PLANNING PROCESS

Section 4

3 Key-Process

SECTION 4

• This section discusses the objectives and activities of the software

planning process. This process produces the software plans and

standards that direct the software development processes and

the integral processes.

29

• a. The activities of the software development processes and integral
processes of the software life cycle that will address the system
requirements and software level(s) are defined (subsection 4.2).

• b. The software life cycle(s), including the inter-relationships between the
processes, their sequencing, feedback mechanisms, and transition criteria
are determined (section 3).

• c. The software life cycle environment, including the methods and tools to
be used for the activities of each software life cycle process have been
selected (subsection 4.4).

• d. Additional considerations, such as those discussed in section 12, have
been addressed, if necessary.

• e. Software development standards consistent with the system safety
objectives for the software to be produced are defined (subsection 4.5).

• f. Software plans that comply with subsection 4.3 and section 11 have been
produced.

• g. Development and revision of the software plans are coordinated
(subsection 4.3).

30

4.1 (Software planning process objectives)

• The Plan for Software Aspects of Certification (subsection 11.1) serves as

the primary means for communicating the proposed development

methods to the certification authority for agreement, and defines the

means of compliance with this document.

• The Software Development Plan (subsection 11.2) defines the software

life cycle(s) and software development environment.

• The Software Verification Plan (subsection 11.3) defines the means by

which the software verification process objectives will be satisfied.

• The Software Configuration Management Plan (subsection 11.4) defines

the means by which the software configuration management process

objectives will be satisfied.

• The Software Quality Assurance Plan (subsection 11.5) defines the means

by which the software quality assurance process objectives will be

satisfied.

31

4.3 (Software plans)

• a. The software plans should comply with this document.

• b. The software plans should define the criteria for transition

between software life cycle processes by specifying:

 (1) The inputs to the process, including feedback from other

processes.

 (2) Any integral process activities that may be required to act on

these inputs.

 (3) Availability of tools, methods, plans and procedures.

• c. The software plans should state the procedures to be used to

implement software changes prior to use on a certified aircraft or

engine. Such changes may be as a result of feedback from other

processes and may cause a change to the software plans.

32

4.3 (Software plans)

SECTION 4

• 4.4 SOFTWARE LIFE CYCLE ENVIRONMENT PLANNING

 4.4.1 Software Development Environment

 4.4.2 Language and Compiler Considerations

 4.4.3 Software Test Environment

• 4.5 SOFTWARE DEVELOPMENT STANDARDS

• 4.6 REVIEW AND ASSURANCE OF THE SOFTWARE PLANNING PROCESS

33

SOFTWARE
DEVELOPMENT PROCESSES

Section 5

3 Key-Process

Section 5

• Software planning process (Section 4) &

Software Development Plan (Section 11)에 의해 정의되고, 수행함.

• Software Development Process

5.1 SW
Requirements

Process

Objectives

Activities

5.3 SW
Coding
Process

Objectives

Activities

5.2. SW
Design
Process

Objectives

Activities

Designing for
User-Modifiable

SW

5.4 Integration
Process

Objectives

Activities

Integration
Considerations

5.1 (Software Requirements Process)

• 5.1.1 Software Requirements Process Objectives

– a. High-level requirements are developed.

– b. Derived high-level requirements are indicated to the system safety

assessment process.

• 5.1.2 Software Requirements Process Activities

– a. The system functional and interface requirements that are allocated to

software should be analyzed for ambiguities, inconsistencies and undefined

conditions.

– b. Inputs to the software requirements process detected as inadequate or

incorrect should be reported as feedback to the input source processes for

clarification or correction.

– c. Each system requirement that is allocated to software should be specified in

the high-level requirements.

– d. High-level requirements that address system requirements allocated to

software to preclude system hazards should be defined.

5.1 (Software Requirements Process)

• 5.1.2 Software Requirements Process Activities (이 프로세스가 완료되기 위해서)

– e. The high-level requirements should conform to the Software Requirements

Standards, and be verifiable and consistent.

– f. The high-level requirements should be stated in quantitative terms with

tolerances where applicable.

– g. The high-level requirements should not describe design or verification

detail except for specified and justified design constraints.

– h. Each system requirement allocated to software should be traceable to one

or more software high-level requirements.

– i. Each high-level requirement should be traceable to one or more system

requirements, except for derived requirements.

– j. Derived high-level requirements should be provided to the system safety

assessment process.

• 5.2.1 Software Design Process Objectives

– a. The software architecture and low-level requirements are developed from

the high-level requirements.

– b. Derived low-level requirements are provided to the system safety

assessment process.

• 5.2.2 Software Design Process Activities

– a. Low-level requirements and software architecture developed during the

software design process should conform to the Software Design Standards

and be traceable, verifiable and consistent. (5.1.e 와 유사)

– b. Derived requirements should be defined and analyzed to ensure that the

higher level requirements are not compromised.

39

5.2 (Software Design Process)

• 5.2.2 Software Design Process Activities

– c. Software design process activities could introduce possible modes of failure

into the software or, conversely, preclude others. The use of partitioning or

other architectural means in the software design may alter the software level

assignment for some components of the software. In such cases, additional

data should be defined as derived requirements and provided to the system

safety assessment process.

– d. Control flow and data flow should be monitored when safety-related

requirements dictate, for example, watchdog timers, reasonableness-checks

and cross-channel comparisons.

– e. Responses to failure conditions should be consistent with the safety-related

requirements.

– f. Inadequate or incorrect inputs detected during the software design process

should be provided to either the system life cycle process, the software

requirements process, or the software planning process as feedback for

clarification or correction. (5.1.B와 유사)

40

5.2 (Software Design Process)

• 5.2.3 Designing for User-Modifiable Software

– designed and certified to allow for limited modifications by an airline or other

user without recertification efforts.

– Software of any Level can include a modifiable component.

• a. The non-modifiable component should be protected from the modifiable

component to prevent interference in the safe operation of the non-modifiable

component. This protection can be enforced by hardware, by software, by the

tools used to make the change, or by a combination of the three.

• b. The applicant-provided means should be shown to be the only means by

which the modifiable component can be changed.

41

5.2 (Software Design Process)

• In the software coding process, the Source Code is implemented from

the software architecture and the low-level requirements.

• 5.3.1 Software Coding Process Objectives

– Source code is developed that is traceable, verifiable, consistent, and correctly

implements low-level requirements.

• 5.3.2 Software Coding Process Activities

– a. The Source Code should implement the low-level requirements and conform

to the software architecture.

– b. The Source Code should conform to the Software Code Standards.

– c. The Source Code should be traceable to the Design Description.

– d. Inadequate or incorrect inputs detected during the software coding process

should be provided to the software requirements process, software design

process or software planning process as feedback for clarification or correction.

42

5.3 (Software Coding Process)

• The target computer, and the Source Code and object code

from the software coding process are used with the linking and

loading data (subsection 11.16) in the integration process to

develop the integrated airborne system or equipment.

• 5.4.1 Integration Process Objectives

• 5.4.2 Integration Process Activities

• 5.4.3 Integration Considerations

43

5.4 (Integration Process)

Objectives

Activities

Integration
Considerations

• 5.4.1 Integration Process Objectives

– a. The Executable Object Code is loaded into the target hardware for

hardware/software integration.

• 5.4.2 Integration Process Activities

– a. The Executable Object Code should be generated from the Source

Code and linking and loading data.

– b. The software should be loaded into the target computer for

hardware/software integration.

– c. Inadequate or incorrect inputs detected during the integration

process should be provided to the software requirements process,

the software design process, the software coding process or the

software planning process as feedback for clarification or correction.

44

5.4 (Integration Process)

• 5.4.3 Integration Considerations

– Deactivated Code and Software Patches.

– This can lead to deactivated code that cannot be executed or data that is

not used.

– Patches may be used on a limited, case- by-case basis, for example, to

resolve known deficiencies in the software development environment,

such as a known compiler problem.

– When a patch is used, these should be available:

• Confirmation that the software configuration management process can

effectively track the patch.

• Regression analysis to provide evidence that the patch satisfies all objectives

of the software developed by normal methods.

• Justification in the Software Accomplishment Summary for the use of a patch.

45

5.4 (Integration Process)

• a. Traceability between system requirements and software requirements

should be provided to enable verification of the complete

implementation of the system requirements and give visibility to the

derived requirements.

• b. Traceability between the low-level requirements and high-level

requirements should be provided to give visibility to the derived

requirements and the architectural design decisions made during the

software design process, and allow verification of the complete

implementation of the high-level requirements.

• c. Traceability between source code and low-level requirements should

be provided to enable verification of the absence of undocumented

source code and verification of the complete implementation of the

low-level requirements.

46

5.5 (Traceability)

Traceability Verification

3 Key-Process

SOFTWARE
VERIFICATION PROCESS

Section 6

SECTION 6

• This section discusses the objectives and activities of the software

verification process. Verification is a technical assessment of the results

of both the software development processes and the software

verification process. The software verification process is applied as

defined by the software planning process (section 4) and the Software

Verification Plan (subsection 11.3).

49

• The purpose of the software verification process is to detect and report
errors that may have been introduced during the software development
processes. Removal of the errors is an activity of the software development
processes. The general objectives of the software verification process are to
verify that:

 a. The system requirements allocated to software have been developed into
software high-level requirements that satisfy those system requirements.

 b. The high-level requirements have been developed into software architecture and
low-level requirements that satisfy the high-level requirements. If one or more
levels of software requirements are developed between high-level requirements
and low-level requirements, the successive levels of requirements are developed
such that each successively lower level satisfies its higher level requirements. If
code is generated directly from high-level requirements, this objective does not
apply.

 c. The software architecture and low-level requirements have been developed into
Source Code that satisfies the low-level requirements and software architecture.

 d. The Executable Object Code satisfies the software requirements.

 e. The means used to satisfy these objectives are technically correct and complete
for the software level.

50

6.1 (Software verification process objectives)

• The verification process provides traceability between the implementation of
the software requirements and verification of those software requirements:
 The traceability between the software requirements and the test cases is

accomplished by the requirements-based coverage analysis.
 The traceability between the code structure and the test cases is accomplished by

the structural coverage analysis.

• a. High-level requirements and traceability to those high-level requirements
should be verified.

• b. The results of the traceability analyses and requirements-based and
structural coverage analyses should show that each software requirement is
traceable to the code that implements it and to the review, analysis, or test
case that verifies it.

• c. If the code tested is not identical to the airborne software, those
differences should be specified and justified.

• d. When it is not possible to verify specific software requirements by
exercising the software in a realistic test environment, other means should be
provided and their justification for satisfying the software verification process
objectives defined in the Software Verification Plan or Software Verification
Results.

• e. Deficiencies and errors discovered during the software verification process
should be reported to the software development processes for clarification
and correction.

51

6.2 (Software verification process activities)

• 6.3.1 Reviews and Analyses of the High-Level Requirements

• 6.3.2 Reviews and Analyses of the Low-Level Requirements

• 6.3.3 Reviews and Analyses of the Software Architecture

• 6.3.4 Reviews and Analyses of the Source Code

• 6.3.5 Reviews and Analyses of the Outputs of the Integration Process

• 6.3.6 Reviews and Analyses of the Test Cases, Procedures and Results

52

6.3 (Software reviews and analyses)

53

6.4 (Software Testing)

54

6.4 (Software Testing)

• 6.4.2 Requirements-Based Test Case Selection

 6.4.2.1 Normal Range Test Cases

 6.4.2.2 Robustness Test Cases

• 6.4.3 Requirements-Based Testing Methods

 a. Requirements-Based Hardware/Software Integration Testing

 b. Requirements-Based Software Integration Testing

 c. Requirements-Based Low-Level Testing

55

6.4 (Software Testing)

56

• 6.4.4 Test Coverage Analysis

 6.4.4.1 Requirements-Based Test Coverage Analysis

 6.4.4.2 Structural Coverage Analysis

 6.4.4.3 Structural Coverage Analysis Resolution

6.4 (Software Testing)

SOFTWARE CONFIGURATION
MANAGEMENT PROCESS

Section 7

SECTION 7

• This section discusses the objectives and activities of the software

configuration management (SCM) process. The SCM process is applied as

defined by the software planning process (section 4) and the Software

Configuration Management Plan (subsection 11.4). Outputs of the SCM

process are recorded in Software Configuration Management Records

(subsection 11.18) or in other software life cycle data.

58

59

• 7.2.1 Configuration Identification

• 7.2.2 Baselines and Traceability

• 7.2.3 Problem Reporting, Tracking and Corrective Action

• 7.2.4 Change Control

• 7.2.5 Change Review

• 7.2.6 Configuration Status Accounting

• 7.2.7 Archive, Retrieval and Release

• 7.2.8 Software Load Control

• 7.2.9 Software Life Cycle Environment Control

7.2 (Software configuration management process activities)

60

• Software life cycle data can be assigned to one of two categories:

 Control Category 1 (CC1)

 Control Category 2 (CC2)

• These categories are related to the configuration management controls

placed on the data. Table 7-1 defines the set of SCM process objectives

associated with each control category, where ø indicates that the

objectives apply for software life cycle data of that category.

7.3 (Data control categories)

61

7.3 (Data control categories)

SOFTWARE CONFIGURATION
MANAGEMENT PROCESS

Section 8

• Software planning process (Section 4) &

Software Quality Assurance Plan(Section 11.5)에 의해 정의되고 수행함.

• 8.1 Software Quality Assurance (SQA) Process Object.

• 8.2 Software Quality Assurance (SQA) Process Activity.

• Outputs of the SQA process activities are recorded in Software Quality

Assurance Records (subsection 11.19) or other software life cycle data.

SECTION 8

• The SQA process objectives provide confidence that the software life

cycle processes produce software that conforms to its requirements by

assuring that these processes are performed in compliance with the

approved software plans and standards.

 a. Software development processes and integral processes comply with

approved software plans and standards.

 b. The transition criteria for the software life cycle processes are satisfied.

 c. A conformity review of the software product is conducted.

64

8.1 (Software quality assurance process objectives)

• a. The SQA process should take an active role in the activities of the

software life cycle processes, and have those performing the SQA

process enabled with the authority, responsibility and independence to

ensure that the SQA process objectives are satisfied.

• b. The SQA process should provide assurance that software plans and

standards are developed and reviewed for consistency.

• c. The SQA process should provide assurance that the software life cycle

processes comply with the approved software plans and standards.

8.2 (Software Quality Assurance Process Activities)

• d. The SQA process should include audits of the software development

and integral processes during the software life cycle to obtain assurance

that:

 (1) Software plans are available as specified in subsection 4.2.

 (2) Deviations from the software plans and standards are detected,recorded,

evaluated, tracked and resolved.

 (3) Approved deviations are recorded.

 (4) The software development environment has been provided as specified in

the software plans.

 (5) The problem reporting, tracking and corrective action process complies

with the Software Configuration Management Plan.

 (6) Inputs provided to the software life cycle processes by the on-going

system safety assessment process have been addressed.

8.2 (Software Quality Assurance Process Activities)

• e. The SQA process should provide assurance that the transition criteria

for the software life cycle processes have been satisfied in compliance

with the approved software plans.

• f. The SQA process should provide assurance that software life cycle data

is controlled in accordance with the control categories as defined in

subsection 7.3 and the tables of Annex A..

• g. Prior to the delivery of software products submitted as part of a

certification application, a software conformity review should be

conducted.

• h. The SQA process should produce records of the SQA process activities

(subsection 11.19), including audit results and evidence of completion of

the software conformity review for each software product submitted as

part of certification application.

8.2 (Software Quality Assurance Process Activities)

• a. Planned software life cycle process activities for certification credit,

including the generation of software life cycle data, have been

completed and records of their completion are retained.

• b. Software life cycle data developed from specific system requirements,

safetyrelated requirements, or software requirements are traceable to

those requirements.

• c. Software life cycle data complies with software plans and standards,

and is controlled in accordance with the SCM Plan.

• d. Problem reports comply with the SCM Plan, have been evaluated and

have their status recorded.

8.3 (Software Conformity Review)

• e. Software requirement deviations are recorded and approved.

• f. The Executable Object Code can be regenerated from the archived

Source Code.

• g. The approved software can be loaded successfully through the use of

released instructions.

• h. Problem reports deferred from a previous software conformity review

are reevaluated to determine their status.

• i. If certification credit is sought for the use of previously developed

software, the current software product baseline is traceable to the

previous baseline and the approved changes to that baseline.

8.3 (Software Conformity Review)

CERTIFICATION LIAISON
PROCESS

Section 9

SECTION 9

• The objective of the certification liaison process is to establish

communication and understanding between the applicant and the

certification authority throughout the software life cycle to assist the

certification process.

• Software Planning Process (section 4) & Plan For Software Aspects Of

Certification (Section 11.1)에 의해 정의되고 수행됨.

• 9.1 Means Of Complaince And Planning

• 9.2 Complaince Substantiation

• 9.3 Minimum Software Life Cycle Data That Is Sibmitted To Certification

Authority

• 9.4 Software Life Cycle Data Related To Type Design

71

OVERVIEW OF AIRCRAFT AND
ENGINE CERTIFICATION

Section 10

SECTION 10

• This section is an overview of the certification process for aircraft and

engines with respect to software aspects of airborne systems and

equipment, and is provided for information purposes only. The

certification authority considers the software as part of the airborne

system or equipment installed on the aircraft or engine; that is, the

certification authority does not approve the software as a unique, stand-

alone product.

• 10.1 Certifiacation Basis

• 10.2 Software Aspects Of Certification

• 10.3 Compliance Determination

73

SOFTWARE LIFE CYCLE DATA

Section 11

SECTION 11

• Data is produced during the software life cycle to plan, direct, explain,

define, record, or provide evidence of activities. This data enables the

software life cycle processes, system or equipment certification, and

post-certification modification of the software product. This section

discusses the characteristics, form, configuration management controls,

and content of the software life cycle data.

75

SECTION 11
• 11.1 Plan for Software Aspects of

• 11.2 Software Development

• 11.3 Software Verification

• 11.4 Software Configuration Management

• 11.5 Software Quality Assurance

• 11.6 Software Requirements

• 11.7 Software Design

• 11.8 Software Code

• 11.9 Software Requirements

• 11.10 Design

• 11.11 Source

• 11.12 Executable Object

• 11.13 Software Verification Cases and

• 11.14 Software Verification

• 11.15 Software Life Cycle Environment Configuration

• 11.16 Software Configuration

• 11.17 Problem

• 11.18 Software Configuration Management

• 11.19 Software Quality Assurance

• 11.20 Software Accomplishment

ADDITIONAL
CONSIDERATIONS

Section 12

SECTION 12

78

• USE OF PREVIOUSLY DEVELOPED SOFTWARE (12.1)

• TOOL QUALIFICATION (12.2)

• ALTERNATIVE METHODS (12.3)

12.1 (USE OF PREVIOUSLY DEVELOPED SOFTWARE)

79

• Modiications to Previously Developed Software (12.1.1)

• Change of Aircraft Installation (12.1.2)

• Change of Application or Development Environment (12.1.3)

• Upgrading A Development Baseline (12.1.4)

• Software Configuration Management Considerations (12.1.5)

• Software Quality Assurance Considerations (12.1.6)

12.1 (USE OF PREVIOUSLY DEVELOPED SOFTWARE)

80

• Modiications to Previously Developed Software (12.1.1)
 a. The revised outputs of the system safety assessment process should be reviewed

considering the proposed modifications.

 b. If the software level is revised, the guidelines of paragraph 12.1.4(Upgrading A
Development Baseline) should be considered.

 c. Both the impact of the software requirements changes and the impact of
software architecture changes should be analyzed, including the consequences of
software requirement changes upon other requirements and coupling between
several software components that may result in reverification effort involving more
than the modified area.

 d. The area affected by a change should be determined. This may be done by
data flow analysis, control flow analysis, timing analysis and traceability analysis.

 e. Areas affected by the change should be reverified considering the guidelines of
section 6(Software Verifications).

12.1 (USE OF PREVIOUSLY DEVELOPED SOFTWARE)

81

• Change of Aircraft Installation(12.1.2)

 a. The system safety assessment process assesses the new aircraft installation and

determines the software level and the certification basis. No additional effort

will be required if these are the same for the new installation as they were in the

previous installation.

 b. If functional modifications are required for the new installation, the guidelines

of paragraph 12.1.1, Modifications to Previously Developed Software, should be

satisfied.

 c. If the previous development activity did not produce outputs required to

substantiate the safety objectives of the new installation, the guidelines of

paragraph 12.1.4, Upgrading A Development Baseline, should be satisfied.

12.1 (USE OF PREVIOUSLY DEVELOPED SOFTWARE)

82

• Change of Application or Development Environment (12.1.3)

 a. If a new development environment uses software development tools, the

guidelines of subsection 12.2, Tool Qualification, may be.

 b. The rigor of the evaluation of an application change should consider the

complexity and sophistication of the programming language. For example, the

rigor of the evaluation for Ada generics will be greater if the generic parameters

are different in the new application. For object oriented languages, the rigor will

be greater if the objects that are inherited are different in the new application.

 c. If a different compiler or different set of compiler options are used, resulting in

different object code, the results from a previous software verification process

activity using the object code may not be valid and should not be used for the

new application. In this case, previous test results may no longer be valid for the

structural coverage criteria of the new application. Similarly, compiler assumptions

about optimization may not be valid.

12.1 (USE OF PREVIOUSLY DEVELOPED SOFTWARE)

83

• Change of Application or Development Environment (12.1.3)

 d. If a different processor is used then:

(1) The results from a previous software verification process activity directed

at the hardware/software interface should not be used for the new application.

(2) The previous hardware/software integration tests should be executed for

the new application.

(3) Reviews of hardware/software compatibility should be repeated.

(4) Additional hardware/software integration tests and reviews may be necessary.

 a. Verification of software interfaces should be conducted where previously

developed software is used with different interfacing software.

12.1 (USE OF PREVIOUSLY DEVELOPED SOFTWARE)

84

• Upgrading A Development Baseline (12.1.4)
 a. The objectives of this document should be satisfied while taking advantage of

software life cycle data of the previous development that satisfy the objectives for
the new application.

 b. Software aspects of certification should be based on the failure conditions and
software level(s) as determined by the system safety assessment process.
Comparison to failure conditions of the previous application will determine areas
which may need to be upgraded.

 c. Software life cycle data from a previous development should be evaluated to
ensure that the software verification process objectives of the software level are
satisfied for the new application.

 d. Reverse engineering may be used to regenerate software life cycle data that is
inadequate or missing in satisfying the objectives of this document. In addition to
producing the software product, additional activities may need to be performed
to satisfy the software verification process objectives.

 e. If use of product service history is planned to satisfy the objectives of this
document in upgrading a development baseline, the guidelines of paragraph
12.3.5 should be considered.

 f. The applicant should specify the strategy for accomplishing compliance with this
document in the Plan for Software Aspects of Certification.

12.1 (USE OF PREVIOUSLY DEVELOPED SOFTWARE)

85

• Software Configuration Management Considerations (12.1.5)

 a. Traceability from the software product and software life cycle data of the

previous application to the new application.

 b. Change control that enables problem reporting, problem resolution, and

tracking of changes to software components used in more than one application.

• Software Quality Assurance Considerations (12.1.6)

 a. Assurance that the software components satisfy or exceed the software life

cycle criteria of the software level for the new application.

 b. Assurance that changes to the software life cycle processes are stated on the

software plans.

12.2 (TOOL QUALIFICATION)

86

• The objective of the tool qualification process is to ensure that

the tool provides confidence at least equivalent to that of the

process(es) eliminated, reduced or automated.

• Software tools can be classified as one of two types:

- Software development tools: Tools whose output is part of airborne

software and thus can introduce errors.

- Software verification tools: Tools that cannot introduce errors, but

may fail to detect them.

12.2 (TOOL QUALIFICATION)

87

• Tool qualification guidance includes:

 a. Tools should be qualified according to the type specified above.

 b. Combined software development tools and software verification tools

should be qualified to comply with the guidelines in paragraph 12.2.1, unless

partitioning between the two functions can be demonstrated.

 c. The software configuration management process and software quality

assurance process objectives for airborne software should apply to software

tools to be qualified.

12.2 (TOOL QUALIFICATION)

88

• Qualification Criteria for Software Development Tools(12.2.1)

• Qualification Criteria for Software Verification Tools(12.2.2)

• Tool Qualification Data(12.2.3)

 Tool Qualification Plan(12.2.3.1)

 Tool Operational Requirements(12.2.3.2)

• Tool Qualification Agreement(12.2.4)

12.2 (TOOL QUALIFICATION)

89

• Qualification Criteria for Software Development Tools(12.2.1)

 a. If a software development tool is to be qualified, the software development

processes for the tool should satisfy the same objectives as the software

development processes of airborne software.

 b. The software level assigned to the tool should be the same as that for the

airborne software it produces, unless the applicant can justify a reduction in

software level of the tool to the certification authority.

 c. The applicant should demonstrate that the tool complies with its Tool

Operational Requirements (subparagraph 12.2.3.2). This demonstration may

involve a trial period during which a verification of the tool output is performed

and tool-related problems are analyzed, recorded and corrected.

12.2 (TOOL QUALIFICATION)

90

• Qualification Criteria for Software Development Tools(12.2.1)
 d. Software development tools should be verified to check the correctness, consistency,

and completeness of the Tool Operational Requirements and to verify the tool against
those requirements. The objectives of the tool's software verification process are
different from those of the airborne software since the tool's high-level requirements
correspond to its Tool Operational Requirements instead of system requirements.
Verification of software development tools may be achieved by:

(1) Review of the Tool Operational Requirements as described in paragraph 6.3.1, items a and b.

(2) Demonstration that the tool complies with its Tool Operational Requirements under normal

operating conditions.

(3) Demonstration that the tool complies with its Tool Operational Requirements while executing

in abnormal operating conditions, including external disturbances and selected failures

applied to the tool and its environment.

(4) Requirements-based coverage analysis and additional tests to complete the coverage of the

requirements.

(5) Structural coverage analysis appropriate for the tool's software level.

(6) Robustness testing for tools with a complex data flow or control flow, as specified in

subparagraph 6.4.2.2, appropriate to the tool's software level.

(7) Analysis of potential errors produced by the tool, to confirm the validity of the Tool

Qualification Plan.

12.2 (TOOL QUALIFICATION)

91

• Qualification Criteria for Software Verification Tools(12.2.2)

• Tool Qualification Data(12.2.3)
 a. When qualifying a tool, the Plan for Software Aspects of Certification of

the related airborne software should specify the tool to be qualified and

reference the tool qualification data

 b. The tool qualification data should be controlled as Control Category 1

(CC1) for software development tools and CC2 for software verification tools.

 c. For software development tools, the tool qualification data should be

consistent with the data in section 11 and have the same characteristics

and content as data for airborne software, with these considerations:

(1) A Tool Qualification Plan satisfies the same objectives as the Plan for Software

Aspects of Certification of the airborne software.

(2) Tool Operational Requirements satisfies the same objectives as the Software

Requirements Data of the airborne software.

(3) A Tool Accomplishment Summary satisfies the same objectives as the Software

Accomplishment Summary of the airborne software.

12.2 (TOOL QUALIFICATION)

92

• Tool Qualification Data(12.2.3) _Tool Qualification Plan(12.2.3.1)

 a. Configuration identification of the tool

 b. Details of the certification credit sought, that is, the software verification
process activities to be eliminated, reduced or automated.

 c. The software level proposed for the tool.

 d. A description of the tool's architecture.

 e. The tool qualification activities to be performed.

 f. The tool qualification data to be produced.

• Tool Qualification Data(12.2.3) _ Tool Operational Requirements(12.2.3.2)

 a. A description of the tool's functions and technical features. For software
development tools, it includes the software development process activities
performed by the tool.

 b. User information, such as installation guides and user manuals.

 c. A description of the tool's operational environment.

 d. For software development tools, the expected responses of the tool under
abnormal operating conditions.

12.2 (TOOL QUALIFICATION)

93

• Tool Qualification Agreement(12.2.4)

 The certification authority gives its agreement to the use of a tool in

two steps:

- For software development tools, agreement with the Tool Qualification

Plan. For software verification tools, agreement with the Plan for Software

Aspects of Certification of the airborne software.

- For software development tools, agreement with the Tool Accomplishment

Summary. For software verification tools, agreement with the Software

Accomplishment Summary of the airborne software.

12.3 (ALTERNATIVE METHODS)

94

• Guidance for using an alternative method includes:

 a. An alternative method should be shown to satisfy the objectives of

this document.

 b. The applicant should specify in the Plan for Software Aspects of

Certification, and obtain agreement from the certification authority for:

(1) The impact of the proposed method on the software development

processes.

(2) The impact of the proposed method on the software life cycle data.

(3) The rationale for use of the alternative method which shows that the

system safety objectives are satisfied.

 c. The rationale should be substantiated by software plans, processes,

expected results, and evidence of the use of the method.

12.3 (ALTERNATIVE METHODS)

95

• Formal Methods(12.3.1)

• Exhaustive Input Testing(12.3.2)

• Considerations for Multiple-Version Dissimilar Software

Verification(12.3.3)

 Independence of Multiple-Version Dissimilar Software(12.3.3.1)

 Multiple Processor-Related Verification(12.3.3.2)

 Multiple-Version Source Code Verification(12.3.3.3)

 Tool Qualification for Multiple-Version Dissimilar Software(12.3.3.4)

 Multiple Simulators and Verification(12.3.3.5)

• Software Reliability Models(12.3.4)

• Product Service History(12.3.5)

12.3 (ALTERNATIVE METHODS)

96

• Formal Methods(12.3.1)

 Formal methods involve the use of formal logic, discrete mathematics, and

computerreadable languages to improve the specification and verification of

software.

 The goal of applying formal methods is to prevent and eliminate requirements,

design and code errors throughout the software development processes.

 Thus, formal methods are complementary to testing. Testing shows that

functional requirements are satisfied and detects errors, and formal methods

could be used to increase confidence that anomalous behavior will not occur (for

inputs that are out of range) or unlikely to occur.

 Formal methods may be applied to software development processes with

consideration of these factors:

 Levels of the design refinement

 Coverage of software requirements and software architecture

 Degree of rigor

12.3 (ALTERNATIVE METHODS)

97

• Exhaustive Input Testing(12.3.2)

 There are situations where the software component of an airborne system or

equipment is simple and isolated such that the set of inputs and outputs can

be bounded. If so, it may be possible to demonstrate that exhaustive testing

of this input space can be substituted for a software verification process

activity. For this alternative method, the applicant should include:

 a. A complete definition of the set of valid inputs and outputs of the software.

 b. An analysis which confirms the isolation of the inputs to the software.

 c. Rationale for the exhaustive input test cases and procedures.

 d. The test cases, test procedures and test results.

12.3 (ALTERNATIVE METHODS)

98

• Considerations for Multiple-Version Dissimilar Software

Verification(12.3.3)

 The Source Code is implemented in two or more different programming
languages.

 The object code is generated using two or more different compilers.

 Each software version of Executable Object Code executes on a separate,
dissimilar processor, or on a single processor with the means to provide
partitioning between the software versions.

 The software requirements, software design, and/or Source Code are
developed by two or more development teams whose interactions are
managed.

 The software requirements, software design, and/or Source Code are
developed on two or more software development environments, and/or
each version is verified using separate test environments.

 The Executable Object Code is linked and loaded using two or more different
linkage editors and two or more different loaders.

12.3 (ALTERNATIVE METHODS)

99

• Considerations for Multiple-Version Dissimilar Software

Verification(12.3.3)

 Additional software verification process objectives to be satisfied are:

 a. To demonstrate that the inter-version compatibility requirements are

satisfied, including compatibility during normal and abnormal operations

and state transitions.

 b. To demonstrate that equivalent error detection is achieved.

12.3 (ALTERNATIVE METHODS)

100

• Considerations for Multiple-Version Dissimilar Software

Verification(12.3.3)

 Independence of Multiple-Version Dissimilar Software(12.3.3.1)

 Multiple Processor-Related Verification(12.3.3.2)

 Multiple-Version Source Code Verification(12.3.3.3)

 Tool Qualification for Multiple-Version Dissimilar Software(12.3.3.4)

 Multiple Simulators and Verification(12.3.3.5)

12.3 (ALTERNATIVE METHODS)

101

• Considerations for Multiple-Version Dissimilar Software Verification(12.3.3)

_Independence of Multiple-Version Dissimilar Software(12.3.3.1)

 a. The applicant should demonstrate that different teams with limited
interaction developed each software version's software requirements, software
design and Source Code.

 b. Independent test coverage analyses should still be performed as with a
single version.

• Considerations for Multiple-Version Dissimilar Software Verification(12.3.3)

_Multiple Processor-Related Verification(12.3.3.2)

 a. Equivalent error detection is achieved.

 b. Each processor was designed by a different developer.

 c. The outputs of the multiple versions are equivalent.

12.3 (ALTERNATIVE METHODS)

102

• Considerations for Multiple-Version Dissimilar Software Verification(12.3.3)

_Multiple-Version Source Code Verification(12.3.3.3)

 a. Each version of software is coded using a different programming language.

 b. Each compiler used is from a different developer.

• Considerations for Multiple-Version Dissimilar Software Verification(12.3.3)

_Tool Qualification for Multiple-Version Dissimilar Software(12.3.3.4)

 a. Each tool was obtained from a different developer.

 b. Each tool has a dissimilar design.

• Considerations for Multiple-Version Dissimilar Software Verification(12.3.3)

_Multiple Simulators and Verification(12.3.3.5)

 a. Each simulator was developed by a different team.

 b. Each simulator has different requirements, a different design and a different

programming language.

 c. Each simulator executes on a different processor.

12.3 (ALTERNATIVE METHODS)

103

• Software Reliability Models(12.3.4)

 During the preparation of this document, methods for estimating the post-

verification probabilities of software errors were examined.

The goal was to develop numerical requirements for such probabilities for

software in computer-based airborne systems or equipment.

The conclusion reached, however, was that currently available methods do

not provide results in which confidence can be placed to the level required

for this purpose.

 Hence, this document does not provide guidance for software error rates. If

the applicant proposes to use software reliability models for certification credit,

rationale for the model should be included in the Plan for Software Aspects

of Certification, and agreed with by the certification authority.

12.3 (ALTERNATIVE METHODS)

104

• Product Service History(12.3.5)
 a. The applicant should show that the software and associated evidence

used to comply with system safety objectives have been under configuration
management throughout the product service history.

 b. The applicant should show that the problem reporting during the product
service history provides assurance that representative data is available and
that in-service problems were reported and recorded, and are retrievable.

 c. Configuration changes during the product service history should be
identified and the effect analyzed to confirm the stability and maturity of the
software. Uncontrolled changes to the Executable Object Code during the
product service history may invalidate the use of product service history.

 d. The intended software usage should be analyzed to show the relevance of
the product service history.

 e. If the operating environments of the existing and proposed applications
differ, additional software verification should confirm compliance with the
system safety objectives

 f. The analysis of configuration changes and product service history
environment may require the use of software requirements and design data
to confirm the applicability of the product service history environment.

12.3 (ALTERNATIVE METHODS)

105

 g. If the software is a subset of the software that was active during the service period,
then analysis should confirm the equivalency of the new environment with the
previous environment, and determine those software components that were not
executed during normal operation.

 h. The problem report history should be analyzed to determine how safety-related
problems occurred and which problems were corrected.

 i. Those problems that are indicative of an inadequate process, such as design or
code errors, should be indicated separately from those whose cause are outside
the scope of this document, such as hardware or system requirements errors.

 j. The data described above and these items should be specified in the Plan for
Software Aspects of Certification:

(1) Analysis of the relevance of the product service history environment.

(2) Length of service period and rationale for calculating the number of hours in service,
including factors such as operational modes, the number of independently operating copies in
the installation and in service, and the definition of "normal operation" and "normal operation
time."

(3) Definition of what was counted as an error and rationale for that definition.

(4) Proposed acceptable error rates and rationale for the product service history period in
relation to the system safety and proposed error rates.

 k. If the error rate is greater than that identified in the plan, these errors should be
analyzed and the analyses reviewed with the certification authority.

ANNEX A

• PROCESS OBJECTIVES AND OUTPUTS BY SOFTWARE LEVEL

This annex provides guidelines for the software life cycle process objectives and
outputs described in this document by software level. These tables reference the
objectives and outputs of the software life cycle processes previously described
in this document. The tables include guidelines for:

a. The process objectives applicable for each software level. For level E software,
see paragraph 2.2.2.

b. The independence by software level of the software life cycle process
activities applicable to satisfy that process's objectives.

c. The control category by software level for the software life cycle data
produced by the software life cycle process activities (subsection 7.3).

LEGEND

DATA CONTROL CATEGORIES

TABLE A-1
SOFTWARE PLANNING PROCESS

TABLE A-2
SOFTWARE DEVELOPMENT PROCESS

• Software Requirements Data
 A definition of the high-level requirements

a. Description of the allocation of system requirements to software.

b. Functional and operational requirements under each mode of operation.

c. Performance criteria, for example, precision and accuracy.

d. Timing requirements and constraints.

e. Memory size constraints.

f. Hardware and software interfaces.

g. Failure detection and safety monitoring requirements.

h. Partitioning requirements allocated to software.

TABLE A-2
SOFTWARE DEVELOPMENT PROCESS

TABLE A-2
SOFTWARE DEVELOPMENT PROCESS

• DESIGN DESCRIPTION
 a definition of the software architecture and the low-level requirements that will satisfy

the software high-level requirements.

a. A detailed description of how the software satisfies the specified software high-level
requirements.

b. The description of the software architecture defining the software structure to
implement the requirements.

c. The input/output description.

d. The data flow and control flow of the design.

e. Resource limitations.

f. Scheduling procedures and inter-processor/inter-task communication mechanisms.

g. Design methods and details for their implementation.

h. Partitioning methods and means of preventing partition

i. Descriptions of the software components.

j. Derived requirements resulting from the software design process.

k. If the system contains deactivated code, a description of the means to ensure that the
code cannot be enabled in the target computer.

l. Rationale for those design decisions that are traceable to safety-related system
requirements.

TABLE A-3
VERIFICATION OF OUTPUTS OF SOFTWARE
REQUIREMENTS PROCESS

• SOFTWARE VERIFICATION RESULTS
 produced by the software verification process activities.

a. For each review, analysis and test, indicate each procedure
that passed or failed during the activities and the final
pass/fail results

b. Identify the configuration item or software version reviewed,
analyzed or tested.

c. Include the results of tests, reviews and analyses, including
coverage analyses and traceability analyses.

TABLE A-4
VERIFICATION OF OUTPUTS OF SOFTWARE
DESIGN PROCESS

TABLE A-5
VERIFICATION OF OUTPUT SOFTWARE CODING
AND INTEGRATION PROCESSES

TABLE A-6
TESTING OF OUTPUTS OF INTEGRATION
PROCESS

• SOFTWARE VERIFICATION CASES AND PROCEDURES
 detail how the software verification process activities are

implemented.

a. Review and analysis procedures: Details, supplementary to
the description in the Software Verification Plan, which
describes the scope and depth of the review or analysis
methods to be used.

b. Test cases: The purpose of each test case, set of inputs,
conditions, expected results to achieve the required
coverage criteria, and the pass/fail criteria.

c. Test procedures: The step-by-step instructions for how
each test case is to be set up and executed, how the test
results are evaluated, and the test environment to be used.

TABLE A-7
VERIFICATION OF VERIFICATION PROCESS
RESULTS

TABLE A-8
SOFTWARE CONFIGURATION MANAGEMENT
PROCESS

• SOFTWARE CONFIGURATION MANAGEMENT
RECORDS
 The results of the SCM process activities are recorded in SCM

Records.

 Examples include configuration identification lists, baseline or
software library records, change history reports, archive
records, and release records.

NOTE: Due to the integral nature of the SCM process, its outputs
will often be included as parts of other software life cycle data.

• SOFTWARE CONFIGURATION INDEX

 The Software Configuration Index (SCI) identifies the configuration of
the software product.

 The SCI should identify:

a. The software product.

b. Executable Object Code.

c. Each Source Code component.

d. Previously developed software in the software product, if used.

e. Software life cycle data.

f. Archive and release media.

g. Instructions for building the Executable Object Code.

h. Reference to the Software Life Cycle Environment Configuration
Index (subsection 11.15), if it is packaged separately.

i. Data integrity checks for the Executable Object Code, if used.

• PROBLEM REPORTS

 a means to identify and record the resolution to software product
anomalous behavior, process non-compliance with software plans
and standards, and deficiencies in software life cycle data.

a. Identification of the configuration item and/or the software life
cycle process activity in which the problem was observed

b. Identification of the configuration item(s) to be modified or a
description of the process to be changed.

c. A problem description that enables the problem to be understood
and resolved.

d. A description of the corrective action taken to resolve the reported
problem.

• SOFTWARE LIFE CYCLE ENVIRONMENT CONFIGURATION INDEX

 The Software Life Cycle Environment Configuration Index (SECI)
identifies the configuration of the software life cycle environment.
This index is written to aid reproduction of the hardware and
software life cycle environment, for software regeneration,
reverification, or software modification, and should:

a. Identify the software life cycle environment hardware and its
operating system software.

b. Identify the software development tools, such as compilers, linkage
editors and loaders, and data integrity tools (such as tools that
calculate and embed checksums or cyclical redundancy checks).

c. Identify the test environment used to verify the software product,
for example, the software verification tools.

d. Identify qualified tools and their associated tool qualification data.

NOTE: This data may be included in the Software Configuration Index.

TABLE A-9
SOFTWARE QUALITY ASSURANCE PROCESS

• SOFTWARE QUALITY ASSURANCE RECORDS

 The results of the SQA process activities are recorded in SQA Records. These
may include SQA review or audit reports, meeting minutes, records of
authorized process deviations, or software conformity review records.

TABLE A-10
CERTIFICATION LIAISON PROCESS

• PLAN FOR SOFTWARE ASPECTS OF CERTIFICATION
 the primary means used by the certification authority for

determining whether an applicant is proposing a software life
cycle that is commensurate with the rigor required for the
level of software being developed.

a. System overview

b. Software overview

c. Certification considerations

d. Software life cycle

e. Software life cycle data

f. Schedule

g. Additional considerations

• SOFTWARE ACCOMPLISHMENT SUMMARY

 the primary data item for showing compliance with the Plan for
Software Aspects of Certification.

a. System overview

b. Software overview

c. Certification considerations

d. Software characteristics

e. Software life cycle

f. Software life cycle data

g. Additional considerations

h. Software identification

i. Change history

j. Software status

k. Compliance statement

