
이동아

Software Requirements

※ This lecture note is based on materials from Ian Sommerville 2006.

Objectives

• To introduce the concepts of user and system requirements

• To describe functional and non-functional requirements

• To explain how software requirements may be organised in a requirements document

1

Topics covered

• Functional and non-functional requirements

• User requirements

• System requirements

• Interface specification

• The software requirements document

2

Requirements engineering

• The process of establishing the services that the customer requires from a system and the

constraints under which it operates and is developed.

• The requirements themselves are the descriptions of the system services and constraints

that are generated during the requirements engineering process.

3

What is a requirement?

• It may range from a high-level abstract statement of a service or of a system constraint

to a detailed mathematical functional specification.

• Types of requirement

– User requirements

• Statements in natural language plus diagrams of the services the system provides and its operational

constraints. Written for customers.

– System requirements

• A structured document setting out detailed descriptions of the system’s functions, services and operational

constraints. Defines what should be implemented so may be part of a contract between client and

contractor.

4

Definitions and specifications

User Requirement Definition

1. The software must provide a means of representing and accessing external files created by

other tools.

System Requirement Specification

1. The user should be provided with facilities to define the type of external files.
2. Each external file type may have an associated tool which may be applied to the file.
3. Each external file type may be represented as a specific icon on the user’s display.
4. Facilities should be provided for the icon representing an external file type to be defined by

the user.
5. When a user selects an icon representing an external file, the effect of that selection is to

apply the tool associated with the type of the external file to the file represented by the
selected icon.

5

Functional and non-functional requirements

• Functional requirements

– Statements of services the system should provide, how the system should react to particular

inputs and how the system should behave in particular situations.

• Non-functional requirements

– constraints on the services or functions offered by the system such as timing constraints,

constraints on the development process, standards, etc.

• Domain requirements

– Requirements that come from the application domain of the system and that reflect

characteristics of that domain.

6

Functional requirements

• Describe functionality or system services.

• Depend on the type of software, expected users and the type of system where the

software is used.

• Functional user requirements may be high-level statements of what the system should do

but functional system requirements should describe the system services in detail.

7

Functional requirements

Example: The LIBSYS system

• A library system that provides a single interface to a number of databases of articles in

different libraries.

• Users can search for, download and print these articles for personal study.

• The user shall be able to search either all of the initial set of databases or select a subset
from it.

• The system shall provide appropriate viewers for the user to read documents in the
document store.

• Every order shall be allocated a unique identifier (ORDER_ID) which the user shall be
able to copy to the account’s permanent storage area.

8

Requirements imprecision

• Problems arise when requirements are not precisely stated.

• Ambiguous requirements may be interpreted in different ways by developers and users.

• Consider the term ‘appropriate viewers’

– User intention - special purpose viewer for each different document type;

– Developer interpretation - Provide a text viewer that shows the contents of the document.

• In principle, requirements should be both complete and consistent.

– Complete

• They should include descriptions of all facilities required.

– Consistent

• There should be no conflicts or contradictions in the descriptions of the system facilities.

• In practice, it is impossible to produce a complete and consistent requirements document.

9

Non-functional requirements

• These define system properties and constraints e.g. reliability, response time and storage

requirements. Constraints are I/O device capability, system representations, etc.

• Process requirements may also be specified mandating a particular CASE system,

programming language or development method.

• Non-functional requirements may be more critical than functional requirements. If these

are not met, the system is useless.

10

Non-functional classifications

• Product requirements

– Requirements which specify that the delivered product must behave in a particular way e.g.

execution speed, reliability, etc.

• Organisational requirements

– Requirements which are a consequence of organisational policies and procedures e.g. process

standards used, implementation requirements, etc.

• External requirements

– Requirements which arise from factors which are external to the system and its development

process e.g. interoperability requirements, legislative requirements, etc.

11

Non-functional requirement types

P er f or mance
r equir ements

Space
r equir ements

Usa bility
r equir ements

Ef ficiency
r equir ements

R elia bility
r equir ements

P or ta bility
r equir ements

Inter oper a bility
r equir ements

Ethical
r equir ements

Leg isla ti v e
r equir ements

Implementa tion
r equir ements

Standar ds
r equir ements

Deli v ery
r equir ements

Safety
r equir ements

Pri v acy
r equir ements

Pr oduct
r equir ements

Organisational
r equir ements

External
r equir ements

Non-functional
r equir ements

12

Non-functional requirements examples

Non-functional requirements

• Product requirement
• 8.1 The user interface for LIBSYS shall be implemented as simple HTML without frames or

Java applets.
• Organisational requirement

• 9.3.2 The system development process and deliverable documents shall conform to the
process and deliverables defined in XYZCo-SP-STAN-95.

• External requirement
• 7.6.5 The system shall not disclose any personal information about customers apart from

their name and reference number to the operators of the system.

13

Goals and requirements

• Non-functional requirements may be very difficult to state precisely and imprecise

requirements may be difficult to verify.

• Goal

– A general intention of the user such as ease of use.

• Verifiable non-functional requirement

– A statement using some measure that can be objectively tested.

• Goals are helpful to developers as they convey the intentions of the system users.

Example: The system should be easy to use by experienced controllers and should be organised
in such a way that user errors are minimised.

Example: Experienced controllers shall be able to use all the system functions after a total of
two hours training. After this training, the average number of errors made by experienced users
shall not exceed two per day.

14

Non-functional requirements measures

Property Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size M Bytes
Number of ROM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

15

Domain requirements

• Derived from the application domain and describe system characteristics and features

that reflect the domain.

• Domain requirements be new functional requirements, constraints on existing

requirements or define specific computations.

• If domain requirements are not satisfied, the system may be unworkable.

Domain requirements (LIBSYS)

• There shall be a standard user interface to all databases which shall be based on the Z39.50
standard.

• Because of copyright restrictions, some documents must be deleted immediately on arrival.
Depending on the user’s requirements, these documents will either be printed locally on the
system server for manually forwarding to the user or routed to a network printer.

16

Domain requirements problems

• Understandability

– Requirements are expressed in the language of the application domain;

– This is often not understood by software engineers developing the system.

• Implicitness

– Domain specialists understand the area so well that they do not think of making the domain

requirements explicit.

17

User requirements

• Should describe functional and non-functional requirements in such a way that they are

understandable by system users who don’t have detailed technical knowledge.

• User requirements are defined using natural language, tables and diagrams as these can

be understood by all users.

• Problems with natural language

– Lack of clarity

• Precision is difficult without making the document difficult to read.

– Requirements confusion

• Functional and non-functional requirements tend to be mixed-up.

– Requirements amalgamation

• Several different requirements may be expressed together.

18

Problems with natural language specification

• Ambiguity

– The readers and writers of the requirement must interpret the same words in the same way. NL is

naturally ambiguous so this is very difficult.

• Over-flexibility

– The same thing may be said in a number of different ways in the specification.

• Lack of modularisation

– NL structures are inadequate to structure system requirements.

• Alternatives to natural language specifications

– Structural language specification

– Graphical notations

– Design description language

– Mathematical specifications

19

Structured language specifications

• The freedom of the requirements writer is limited by a predefined template for

requirements.

• All requirements are written in a standard way.

• The terminology used in the description may be limited.

• The advantage is that the most of the expressiveness of natural language is maintained

but a degree of uniformity is imposed on the specification.

20

Structured language specifications

• Form-based specifications

21

Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: Safe sugar level

Description Computes the dose of insulin to be delivered when the current measured sugar level is in
the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2), the previous two readings (r0 and r1)

Source Current sugar reading from sensor. Other readings from memory.

Outputs CompDose – the dose in insulin to be delivered

Destination Main control loop

Action: CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of
increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is
computed by dividing the difference between the current sugar level and the previous level by 4 and
rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can
be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed single dose of insulin..

Post-condition r0 is replaced by r1 then r1 is replaced by r2

Side-effects None

Tabular specification

• Used to supplement natural language.

• Particularly useful when you have to define a number of possible alternative courses of

action.

22

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of
increase decreasing ((r2-r1)<(r1-r0))

CompDose = 0

Sugar level increasing and rate of
increase stable or increasing. ((r2-r1) ≥
(r1-r0))

CompDose = round ((r2-r1)/4)
If rounded result = 0 then
CompDose = MinimumDose

Graphical models

• Graphical models are most useful when you need to show how state changes or where

you need to describe a sequence of actions.

• Sequence diagrams

23

ATM Database

Card
Card number

Card OK
PIN request

PIN
Option menu

<<exception>>
invalid card

Withdraw request

Amount request

Amount

Balance request

Balance

<<exception>>
insufficient cash

Debit (amount)

Debit response

Card

Card removed

Cash

Cash removed
Receipt

Validate card

Handle request

Complete
transaction

Interface specification

• Most systems must operate with other systems and the operating interfaces must be

specified as part of the requirements.

• Three types of interface may have to be defined

– Procedural interfaces; Data structures that are exchanged; Data representations.

• Formal notations are an effective technique for interface specification.

24

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

 void initialize (Printer p) ;
 void print (Printer p, PrintDoc d) ;
 void displayPrintQueue (Printer p) ;
 void cancelPrintJob (Printer p, PrintDoc d) ;
 void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;
} //PrintServer

The requirements document

• The requirements document is the official statement of what is required of the system

developers.

• Should include both a definition of user requirements and a specification of the system

requirements.

• It is NOT a design document. As far as possible, it should set of WHAT the system should

do rather than HOW it should do it

25

IEEE requirements standard

• Defines a generic structure for a requirements document that must be instantiated for

each specific system.

– Introduction.

– General description.

– Specific requirements.

– Appendices.

– Index.

26

Structure

1. Preface
2. Introduction
3. Glossary
4. User requirements definition
5. System architecture
6. System requirements specification
7. System models
8. System evolution
9. Appendices
10. Index

Key points

• Requirements set out what the system should do and define constraints on its operation

and implementation.

• Functional requirements set out services the system should provide.

• Non-functional requirements constrain the system being developed or the development

process.

• User requirements are high-level statements of what the system should do. User

requirements should be written using natural language, tables and diagrams.

• System requirements are intended to communicate the functions that the system should

provide.

• A software requirements document is an agreed statement of the system requirements.

27

	Software Requirements
	Objectives
	Topics covered
	Requirements engineering
	What is a requirement?
	Definitions and specifications
	Functional and non-functional requirements
	Functional requirements
	Example: The LIBSYS system
	Requirements imprecision
	Non-functional requirements
	Non-functional classifications
	Non-functional requirement types
	Non-functional requirements examples
	Goals and requirements
	Non-functional requirements measures
	Domain requirements
	Domain requirements problems
	User requirements
	Problems with natural language specification
	Structured language specifications
	Structured language specifications
	Tabular specification
	Graphical models
	Interface specification
	The requirements document
	IEEE requirements standard
	Key points

