
이동아

Rapid software development

※ This lecture note is based on materials from Ian Sommerville 2006.

Objectives

• To explain how an iterative, incremental development process leads to faster

delivery of more useful software

• To discuss the essence of agile development methods

• To explain the principles and practices of extreme programming

• To explain the roles of prototyping in the software process

1

Topics covered

• Agile methods

• Extreme programming

• Rapid application development

• Software prototyping

2

Rapid software development

• Because of rapidly changing business environments, businesses have to respond

to new opportunities and competition.

• This requires software and rapid development and delivery is not often the most

critical requirement for software systems.

• Businesses may be willing to accept lower quality software if rapid delivery of

essential functionality is possible.

• Because of the changing environment, requirement is often impossible to arrive at

a stable, consistent set of system requirements.

– A waterfall model of development is impractical and an approach to development based

on iterative specification and delivery is the only way to deliver software quickly.

3

Characteristics of rapid software
development processes
• The processes of specification, design and implementation are concurrent. There is

no detailed specification and design documentation is minimised.

• The system is developed in a series of increments. End users evaluate each

increment and make proposals for later increments.

• System user interfaces are usually developed using an interactive development

system.

4

An iterative development process

V alida te
incr ement

Build system
incr ement

Specify system
incr ement

Design system
ar chitectur e

Define system
deli v er a b les

S ystem
complete?

Integ r a te
incr ement

V alida te
system

Deli v er final
system

YES

NO

5

Characteristics of incremental development

• Advantages

– Accelerated delivery of customer services. Each increment delivers the highest priority

functionality to the customer.

– User engagement with the system. Users have to be involved in the development which

means the system is more likely to meet their requirements and the users are more

committed to the system.

• Problems

– Management problems: Progress can be hard to judge and problems hard to find

because there is no documentation to demonstrate what has been done.

– Contractual problems: The normal contract may include a specification; without a

specification, different forms of contract have to be used.

– Validation problems: Without a specification, what is the system being tested against?

– Maintenance problems: Continual change tends to corrupt software structure making it

more expensive to change and evolve to meet new requirements.

6

Prototyping

• For some large systems, incremental iterative development and delivery may be

impractical; this is especially true when multiple teams are working on different

sites.

• Prototyping, where an experimental system is developed as a basis for formulating

the requirements may be used. This system is thrown away when the system

specification has been agreed.

7

Incremental
development

T hr o w-a w a y
pr ototyping

Deli v er ed system

Ex ecuta b le pr ototype +
S ystem specifica tion

Outline
requir ements

Conflicting objectives

• Incremental development

– The objective of incremental development is to deliver a working system to end-users.

The development starts with those requirements which are best understood.

• Throw-away prototyping

– The objective of throw-away prototyping is to validate or derive the system requirements.

The prototyping process starts with those requirements which are poorly understood.

8

Agile methods

• Dissatisfaction with the overheads involved in design methods led to the creation

of agile methods. These methods:

– Focus on the code rather than the design;

– Are based on an iterative approach to software development;

– Are intended to deliver working software quickly and evolve this quickly to meet

changing requirements.

• Agile methods are probably best suited to small/medium-sized business systems

or PC products.

9

Principles of agile methods

Principle Description

Customer involvement The customer should be closely involved throughout the
development process. Their role is provide and prioritise new
system requirements and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer
specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognised and
exploited. The team should be left to develop their own ways of
working without prescriptive processes.

Embrace change Expect the system requirements to change and design the system
so that it can accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in
the development process used. Wherever possible, actively work
to eliminate complexity from the system.

10

Problems with agile methods

• It can be difficult to keep the interest of customers who are involved in the

process.

• Team members may be unsuited to the intense involvement that characterises

agile methods.

• Prioritising changes can be difficult where there are multiple stakeholders.

• Maintaining simplicity requires extra work.

• Contracts may be a problem as with other approaches to iterative development.

11

Extreme programming

• Perhaps the best-known and most widely used agile method.

• Extreme Programming (XP) takes an ‘extreme’ approach to iterative development.

– New versions may be built several times per day;

– Increments are delivered to customers every 2 weeks;

– All tests must be run for every build and the build is only accepted if tests run

successfully.

12

Break down
stories to tasks

Select user
stories for this

release
Plan release

Release
software

Evaluate
system

Develop/integ rate/
test software

Testing in XP

• Test-first development.

– Writing tests before code clarifies the requirements to be implemented.

– Tests are written as programs rather than data so that they can be executed

automatically. The test includes a check that it has executed correctly.

– All previous and new tests are automatically run when new functionality is added. Thus

checking that the new functionality has not introduced errors.

• Incremental test development from scenarios.

• User involvement in test development and validation.

• Automated test harnesses are used to run all component tests each time that a

new release is built.

13

Pair programming

• In XP, programmers work in pairs, sitting together to develop code.

• This helps develop common ownership of code and spreads knowledge across the

team.

• It serves as an informal review process as each line of code is looked at by more

than 1 person.

• It encourages refactoring as the whole team can benefit from this.

• Measurements suggest that development productivity with pair programming is

similar to that of two people working independently.

14

Rapid application development (RAD)

• Agile methods have received a lot of attention but other approaches to rapid

application development have been used for many years.

• These are designed to develop data-intensive business applications and rely on

programming and presenting information from a database.

• RAD environment tools

– Database programming language

– Interface generator

– Links to office applications

– Report generators

15

A RAD environment

DB
prog ramming

langua ge

Inter face
gener a tor

Office
systems

R epor t
gener a tor

Da ta base mana gement system

Rapid application
development environment

16

Interface generation

• Many applications are based around complex forms and developing these forms

manually is a time-consuming activity.

• RAD environments include support for screen generation including:

– Interactive form definition using drag and drop techniques;

– Form linking where the sequence of forms to be presented is specified;

– Form verification where allowed ranges in form fields is defined.

17

Visual programming

• Scripting languages such as Visual Basic support visual programming where the

prototype is developed by creating a user interface from standard items and

associating components with these items

• A large library of components exists to support this type of development

• These may be tailored to suit the specific application requirements

• Problems

– Difficult to coordinate team-based

development.

– No explicit system architecture.

– Complex dependencies between

parts of the program can cause

maintainability problems.

18

File Edit Views Layout Options Help

General
Index

Menu component
Date component

Range checking
script

Tree display
component

Draw canvas
component

User prompt
component +

script

12th January 2 000

3.876

COTS reuse

• Commercial Off-the-shelf

• An effective approach to rapid development is to configure and link existing off

the shelf systems.

• For example, a requirements management system could be built by using:

– A database

to store requirements;

– A word processor

to capture requirements

and format reports;

– A spreadsheet

for traceability management;

19

Word processor Spreadsheet Audio player

Text 1 Text 2 Text 3

Text 5

Table 1 Sound 1

Text 4Table 2 Sound 2

Compound document

Software prototyping

• A prototype is an initial version of a system used to demonstrate concepts and try

out design options.

• A prototype can be used in:

– The requirements engineering process to help with requirements elicitation and

validation;

– In design processes to explore options and develop a UI design;

– In the testing process to run back-to-back tests.

• Benefits of prototyping

– Improved system usability.

– A closer match to users’ real needs.

– Improved design quality.

– Improved maintainability.

– Reduced development effort.

20

Test data

Results
comparator

System
prototype

Application
system

Dif ference
repor t

Throw-away prototypes

• Prototypes should be discarded after development as they are not a good basis

for a production system:

– It may be impossible to tune the system to meet non-functional requirements;

– Prototypes are normally undocumented;

– The prototype structure is usually degraded through rapid change;

– The prototype probably will not meet normal organizational quality standards.

21

Esta b lish
pr ototype
objecti v es

Define
prototype

functionality

De v elop
pr ototype

Ev alua te
pr ototype

Pr ototyping
plan

Outline
definition

Ex ecuta b le
pr ototype

Ev alua tion
r epor t

Key points

• An iterative approach to software development leads to faster delivery of software.

• Agile methods are iterative development methods that aim to reduce development overhead

and so produce software faster.

• Extreme programming includes practices such as systematic testing, continuous improvement

and customer involvement.

• The approach to testing in XP is a particular strength where executable tests are developed

before the code is written.

• Rapid application development environments include database programming languages, form

generation tools and links to office applications.

• A throw-away prototype is used to explore requirements and design options.

• When implementing a throw-away prototype, start with the requirements you least

understand; in incremental development, start with the best-understood requirements.

22

	Rapid software development
	Objectives
	Topics covered
	Rapid software development
	Characteristics of rapid software development processes
	An iterative development process
	Characteristics of incremental development
	Prototyping
	Conflicting objectives
	Agile methods
	Principles of agile methods
	Problems with agile methods
	Extreme programming
	Testing in XP
	Pair programming
	Rapid application development (RAD)
	A RAD environment
	Interface generation
	Visual programming
	COTS reuse
	Software prototyping
	Throw-away prototypes
	Key points

