
Int J STTT (1997) 1: 134–152 1997 Springer-Verlag

UPPAAL in a nutshell

Kim G. Larsen1, Paul Pettersson2, Wang Yi2

1 Department of Computer Science and Mathematics, Aalborg University, Denmark; E-mail: kgl@cs.auc.dk
2 Department of Computer Systems, Uppsala University, Sweden; E-mail: {paupet,yi}@docs.uu.se

Abstract. This paper presents the overal structure, the
design criteria, and the main features of the tool box
Uppaal. It gives a detailed user guide which describes
how to use the various tools of Uppaal version 2.02 to
construct abstract models of a real-time system, to sim-
ulate its dynamical behavior, to specify and verify its
safety and bounded liveness properties in terms of its
model. In addition, the paper also provides a short review
on case-studies where Uppaal is applied, as well as refer-
ences to its theoretical foundation.

Key words: Modeling real-time systems – Dynamic
modeling – Modeling tools – Uppaal

1 Introduction

Uppaal is a tool box for modeling, simulation and veri-
fication of real-time systems, based on constraint-solving
and on-the-fly techniques, developed jointly by Uppsala
University and Aalborg University. It is appropriate for
systems that can be modeled as a collection of non-
deterministic processes with finite control structure and
real-valued clocks, communicating through channels and
(or) shared variables [26, 34]. Typical application areas
include real-time controllers and communication proto-
cols in particular, those where timing aspects are critical.
It is designed mainly to check invariant and reachability
properties by exploring the state-space of a system, i.e.,
reachability analysis in terms of symbolic states repre-
sented by constraints.

The two main design criteria for Uppaal have been ef-
ficiency and ease of usage. The restriction to reachability
analysis has been crucial to the efficiency of the Upp-

aal model-checker. Another important key to efficiency

is the application of on-the-fly searching techniques com-
bined with the symbolic technique that reduces verifica-
tion problems to that of manipulating and solving sim-
ple constraints [26, 34]. To facilitate modeling and de-
bugging, the Uppaal model-checker may automatically
generate a diagnostic trace that explains why a property
is (or is not) satisfied by a system description. The di-
agnostic traces generated by the model-checker may be
graphically visualized using the simulator.

Since its first release in 1995, Uppaal has been ap-
plied in a number of case studies (see Sect. 6 for a
summary). To meet requirements arising from the case
studies, It has been extended with various features. The
current version of Uppaal is implemented in C++,
XForms, and Motif. This paper is devoted to an infor-
mal presentation of Uppaal. We present the semantics
model implemented in Uppaal, its various features, and
review and provide references on the theoretical founda-
tion and applications to case-studies. We also provide a
detailed user guide. The paper is organized as follows:

Section 2 describes the overall structure and the main
components of Uppaal. Section 3 is an informal presen-
tation of the syntax and semantics of the Uppaal model.
Section 4 presents the logic and the kernel of the model-
checking algorithm of the Uppaal model-checker. Sec-
tion 5 serves as a user guide, describing in details how to
use the various tools of Uppaal. Section 7 concludes the
paper with a brief description on recent and possible fu-
ture development of Uppaal.

2 Overview of UPPAAL

An overview of Uppaal is shown in Fig. 1. In this section
we briefly describe the main features of Uppaal.

Uppaal consists of three main parts: a description
language, a simulator, and a model-checker. The descrip-

K.G. Larsen et al.: Uppaal in a nutshell 135

.ta

HyTech

animator

display

atg2ta

trace

graphic

simta

atg2hy

A
u
t
o
g
r
a
p
h

.atg

diagnostic
trace

.q

simulator
random

graphical

generator

checkta forward
analysis

solvers
constraint

hs2ta

verifyta

‘‘yes’’

‘‘no’’

trace
execution

Fig. 1. Overview of Uppaal

tion language is a non-deterministic guarded command
language with data types1. It serves as a modeling or de-
sign language to describe system behavior as networks of
timed automata extended with data variables. The sim-
ulator and the model-checker are designed for interactive
and automated analysis of system behavior by manipu-
lating and solving constraints that represent the state-
space of a system description. They have a common ba-
sis, i.e., constraint-solvers. The simulator enables examin-
ation of possible dynamic executions of a system during
early modeling (or design) stages and thus provides an in-
expensive mean of fault detection prior to verification by
the model-checker which covers the exhaustive dynamic
behavior of the system.

2.1 Modeling

To facilitate modeling, Uppaal provides both graphical
and textual formats for the description language. One can
use either the textual format or the Autograph-based
graphical user interface [10] to define system descriptions,
namely networks of timed automata. As an example, the
textual representation of the graphical system description
in Fig. 3 is shown in Fig. 2.

The textual format (i.e., .ta) provides a basic pro-
gramming language for timed automata. In certain cases,
the textual format can be more convenient (and faster)
to work with than the graphical interface. The compiler
atg2ta automatically transforms system description in
the graphical .atg–format into the textual .ta–format,
thus supporting the important principle WYSIWYV2.

The Uppaal description language also supports mod-
eling of simple linear hybrid automata, that is, timed

1 Currently, only integer and clock with restricted forms of op-
erations are implemented.

2 What You See Is What You Verify.

//
// Global declaration section
//

clock x, y;
int n;
chan a;

//
// Component description section
//

process A {
state A0 { y<=6 }, A1, A2, A3;
init A0;
trans A0 -> A1 {

guard y>=3;
sync a!;
assign y:=0;
},
A1 -> A2 {

guard y>=4;
},
A2 -> A3 {

guard n==5;
};

}
process B {
state B0 { x<=4 }, B1, B2, B3;
commit B1;
init B0;
trans B0 -> B1 {

guard x>=2;
sync a?;
assign n:=5,x:=0;
},
B1 -> B2 {

assign n:=n+1;
},
B2 -> B3 {
};

}
//
// System description section
//

system A, B;

Fig. 2. Textual description

136 K.G. Larsen et al.: Uppaal in a nutshell

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0
(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)(y<=6)

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1 A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2 A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0
(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)

c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1 B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2 B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3

y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0y>=3, a!, y:=0 y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4y>=4 n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5n==5

 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5 n:=5
x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0x>=2, a?, x:=0 n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1n:=n+1

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig

clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;
int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;
chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;
system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;

Fig. 3. An example Uppaal model

automata with clocks whose rates may vary in a certain
interval [31]. This extension of timed automata is use-
ful for modeling of hybrid systems where the behavior of
the system variables can be described or approximated
using lower and upper bounds on their rates. Using ab-
straction techniques, this class of linear hybrid system
can be transformed into timed automata and thus be ver-
ified using the techniques available for timed automata,
implemented in Uppaal. Uppaal allows linear hybrid
automata where the rates of clocks are given by an inter-
val. Philips Audio-Control Protocol of [9] is an example of
such a linear hybrid systems.

2.2 Analysis

Model-checking

The model-checker is designed to check for invariant
and reachability properties, in particular whether cer-
tain combinations of control-nodes and constraints on
clocks and integer variables are reachable from an initial
configuration. Other properties such as bounded liveness
properties can be checked by reasoning about the system
in the context of testing automata or simply decorating
the system description with debugging information and
then checking reachability properties. Model-checking is
performed by the module verifyta which takes as input
a network of automata in the textual-format (i.e., .ta)
and a formula. In checking a property, a diagnostic trace
can be automatically reported by verifyta [25], that ex-
plains why the property is satisfied or not. Such a trace
may be considered as diagnostic information of a system
error, useful during the subsequent debugging of the sys-
tem.

Simulation

The simulator allows the user to examine in an inter-
active and graphical fashion the dynamic behavior of a
system. In contrast to the model-checker which explores
the whole reachable state-space of a system - examining
all the behavior of the system, the simulator explores only

a particular execution trace i.e., a sequence of states of
the system. This will in early stages of modeling (or de-
sign) provide an inexpensive mean of fault detection. In
comparison the model-checker is obviously more expen-
sive as it amounts to an exhaustive simulation covering all
behavior of the system. Another useful application of the
simulator is to visualize a diagnostic trace generated by
the model-checker; thus the user can in an interactive and
graphical fashion examine the execution trace that may
result in a system error.

3 The bolts of UPPAAL – modeling

In this section, we present the basic ingredients of the
Uppaal model based on small examples. For a precise se-
mantical treatment we refer the reader to [4].

We assume that a typical real-time system is a net-
work of non-deterministic sequential processes commu-
nicating with each other over channels. In Uppaal we
use finite-state automata extended with clock and data
variables to describe processes and networks of such auto-
mata to describe real-time systems.

3.1 Syntax

The basis of the Uppaal model is the notion of timed
automata [2] developed by Alur and Dill as an extension
of classical finite-state automata with clock variables. To
provide a more expressive model and to ease the model-
ing task, we further extend timed automata with more
general types of data variables such as boolean and inte-
ger variables. Our final goal is to develop a modeling (or
design) language which is as close as possible to a high–
level real-time programming language with various data
types. Clearly, this will create problems for decidability
of model-checking. However, we can always require that
the value domains of the data variables should be finite in
order to guarantee the termination of a verification pro-
cedure (as in Murϕ [16]).

In the current implementation of Uppaal a system
description (or model) consists of a collection of timed
automata extended with integer variables in addition to

K.G. Larsen et al.: Uppaal in a nutshell 137

clock variables. Consider the Uppaal model in Fig. 3.
The model consists of two components A and B with con-
trol nodes {A0, A1, A2, A3} and {B0, B1, B2, B3} respec-
tively. In addition to these discrete control structures, the
model uses two clocks x and y, one integer variable n and
one channel a.

The edges of the automata are decorated with three
types of labels: a guard, expressing a condition on the
values of clocks and integer variables that must be satis-
fied in order for the edge to be taken; a synchronization
action which is performed when the edge is taken and fi-
nally a number of clock resets and assignments to integer
variables. All three types of labels are optional.

In addition, control nodes may be decorated with so-
called invariants, which are conditions expressing con-
straints on the clock values in order for control to remain
in a particular node.

3.1.1 Guards

Guards express conditions on the values of clocks and in-
teger variables that must be satisfied in order for the edge
to be taken. In Fig. 3 the edge between A0 and A1 can
only be taken, when the value of the clock y is greater
than or equal to 3. Similarly the edge between A2 and A3

can only be taken when the value of the integer variable
n equals 5. Formally, guards are conjunctions of timing
and data constraints; a timing constraint is of the form:
x ∼ n or x− y ∼ n, where n is a natural number and
∼∈ {≤,≥,=, >,<}; a data constraint is of a similar form
i∼ j or i− j ∼ k but with k being an arbitrary integer.
The default guard of an edge is true.

3.1.2 Reset-operations

When taking an edge clock and data variables may be
subject to simple manipulations in terms of resets be-
ing assignments of the form w := e, where w is a clock or
data variable and e is an expression. In the current ver-
sion of Uppaal reset–operations on clock variables must
be of the simple form x := n, where n is a natural number,
and reset–operations on integer variables should be in the
form i := c∗ i+ c′, where c, c′ are integer constants (note
that c, c′ may be zero or negative). As examples recon-
sider Fig. 3. Here the clock y is reset to 0 when the edge
betweenA0 andA1 is taken. Similarly the integer variable
n is incremented when the edge from B1 to B2 is taken.

3.1.3 Channels, synchronization, and urgency

A Uppaal model consists of a network of (extended)
timed automata. Automata may communicate either via
integer variables (which in Uppaal are global), or using
communication channels. As in CCS [30] communication
on channels occur as two-process synchronizations. In
Fig. 3 the two processes may communicate via the chan-
nel a.

To denote the actions that processes can perform
when synchronizing with each other we use the notation
a! and a? (denoting the complementary actions of send-
ing and receiving on channel a). Absence of synchroniza-
tion action indicates an internal (non-synchronizing) edge
similar to τ -transitions in CCS. In Fig. 3, the edge be-
tween A1 and A2 is an example of an internal edge of the
process A.

To prevent a network from delaying in a situation
where two components are already able to synchronize, a
channel may be declared as being urgent. For efficiency
reasons edges labeled with synchronization actions on ur-
gent channels may not have guards on clocks.

3.1.4 Committed locations

To introduce the notion of committed locations in timed
automata, consider the scenario shown in Fig. 4. A sender
S is to broadcast a message m to two receivers R1 and R2.
As this requires synchronization between three processes
this cannot directly be expressed in Uppaal where syn-
chronization, as in CCS, is between two processes based
on complementarity of actions. However, as an initial at-
tempt we may model the broadcast as a sequence of two
two-process synchronizations, where first S synchronizes
with R1 on m1 and then with R2 on m2. However, this
is not an accurate modeling as the intended atomicity
of the broadcast is not preserved (i.e., other processes
may interfere during the “broadcast” sequence). To en-
sure atomicity, we mark the intermediate location S2 of
the sender S as a so-called committed location (indicated
by the c:-prefix). The atomicity of the action sequence
m1!m2! is now achieved by insisting that a committed lo-
cation must be left immediately! This behavior is quite
similar to what has been called “urgent transitions” [6,
14, 19] which insists that the next transition taken must
be an action (and not a delay). The precise semantics of
committed locations will be formalized in the transition
rules for networks of timed automata with data variables
in the following.

m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!

m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!

m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1? m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?

S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1 R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11 R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21

c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2

S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3 R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12 R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22

R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1SSSSSSSSSSSSSSSSS

Fig. 4. Broadcasting communication and committed locations

138 K.G. Larsen et al.: Uppaal in a nutshell

3.1.5 Invariants

To enforce progress in a system, control nodes may be
decorated with so-called invariants, which express con-
straints on the clock values in order for control to remain
in a particular node. The default of a location invariant
is true. Thus, in Fig. 3, control can only remain in A0 as
long as the value of y is no more than 6.

3.2 Semantics

Formally, states of a Uppaal model are of the form (l, v),
where l is a control vector indicating the current con-
trol node for each component of the network and v is an
assignment given the current value for each clock and in-
teger variable. A Uppaal model determines the following
two types of transitions between states:

Delay transitions As long as none of the invariants of the
control nodes in the current state are violated time
may progress without affecting the control node vec-
tor and with all clock values incremented with the
elapsed duration of time. In Fig. 3, from the initial
state ((A0, B0), x= 0, y = 0, n= 0) time may elapse
3.5 time units leading to the state ((A0, B0), x =
3.5, y = 3.5, n = 0). However, time cannot elapse 5
time units as this would violate the invariant of B0.

Action transitions If two complementary labeled edges of
two different components are enabled in a state then
they can synchronize. Thus in state ((A0, B0), x =
3.5, y = 3.5, n= 0) the two components can synchro-
nize on a leading to the new state ((A1, B1), x =
0, y = 0, n= 5) (note that x, y, n have been appropri-
ately updated). If a component has an internal edge
enabled, the edge can be taken without any synchro-
nization. Thus in state ((A1, B1), x= 0, y= 0, n= 5),
the B–component can perform without synchroniz-
ing with A, leading to the state ((A1, B2), x= 0, y =
0, n= 6).

The above two types of transitions may be overruled
by the presence of urgent channels and committed loca-
tions in the following ways:

Urgent channels In a state where two components may
synchronize on an urgent channel no further delay
is allowed. Thus, in Fig. 3 if channel a is urgent3,
time may not elapse 3.5 units from the initial state
((A0, B0), x= 0, y = 0, n= 0) as synchronization on a
is already possible in the state ((A0, B0), x= 3, y =
3, n= 0).

Committed locations If in a state one of the components
is in a control node labeled as being committed, no
delay is allowed to occur and any action transition
(synchronization or not) must involve the particular

3 Note that, strictly speaking, this would violate the syntactic re-
striction that the guard of edges labeled with urgent actions must
be empty.

component (the component is, so to speak, commit-
ted to continue). In the state ((A1, B1), x = 0, y =
0, n= 5) B1 is committed; thus without any delay the
next transition must involve the B–component; i.e.,
the next state of the network is ((A1, B2), x= 0, y =
0, n= 6). Hence the two first transitions of B are guar-
anteed to be performed atomically.

4 The nuts of UPPAAL – specifying

The Uppaal model-checker is designed to check for sim-
ple invariant and reachability properties. A number of
other properties, including bounded reachability proper-
ties, may be checked by reasoning about the system in the
context of testing automata. We give an informal presen-
tation of the Uppaal logic and an example use of testing
automata in the next two sections. Hereafter, we give
a short review of the model-checking technique used in
Uppaal and point out some recent developed and imple-
mented space-saving improvements.

4.1 UPPAAL specifications

In the current version, Uppaal is able to check for reach-
ability properties, in particular whether certain combina-
tions of control-nodes and constraints on clock and data
variables are reachable from an initial configuration. The
properties that can be analyzed are of the forms:

ϕ ::= ∀2β | ∃3β β ::= a | β1∧β2 | ¬β

Where a is an atomic formula being either an atomic clock
(or data) constraint or a component location (Aiat l).
Atomic clock (data) constraints are either integer bounds
on individual clock (data) variables (e.g., 1≤ x≤ 5) or in-
teger bounds on differences of two clock (data) variables
(e.g., 3≤ x−y ≤ 7).

Intuitively, for ∀2β to be satisfied all reachable states
must satisfy β. Dually, for ∃3β to be satisfied some reach-
able state must satisfy β. Formally let; denote the tran-
sitive closure of the delay- and action-transition relations
between states. Then the satisfaction relation |= between
states and formulas are defined as follows:

〈l, v〉 |= ∃3β⇐⇒∃〈l′, v′〉.〈l, v〉; 〈l′, v′〉∧ 〈l′, v′〉 |= β

〈l, v〉 |= ∀2β⇐⇒∀〈l′, v′〉.〈l, v〉; 〈l′, v′〉 =⇒ 〈l′, v′〉 |= β

Satisfaction with respect to a boolean combination β of
atomic formulas is defined inductively on the structure
of β (behaving as usual with respect to the boolean con-
nectives). Satisfaction with respect to an atomic formula
is given by the following definitions:

〈l, v〉 |= c⇐⇒ v ∈ c

〈l, v〉 |= Aiat l⇐⇒ li = l

K.G. Larsen et al.: Uppaal in a nutshell 139

4.2 Test automata – beyond reachability

Our (simple and efficient) model-checking technique ex-
tends to the logic presented in [25], which also allows for
bounded liveness properties to be specified. Currently,
bounded liveness properties must be obtained by reacha-
bility analysis of the system in the context of testing (and
time-sensitive) automata.

Consider the following real-time property

ψ = φ Until<t a

stating that the (atomic) property a must hold before t
time units and that φ must hold until then. Here we as-
sume that a is of the form Aiat l. Now, to verify that a
system S satisfies the formulae we extend it with the test
automata T of Fig. 5 as a component.

Here T ′ is assumed to be an already constructed test
automata for the sub-property φ, and ’a’ is a (urgent)
probe action inserting into the component Ai at location
l. Now, it may be shown that our original system S will
satisfy φ Until<t a if and only if S |T satisfies the invari-
ance property ∀2¬(T at bad).

We conjecture that all bounded liveness properties of
the logic in [25] can be translated into reachability prob-
lems in this manner, and in a forthcoming version of Upp-

aal we intend to provide automatic support for gener-
ation of test automata from logical formulas (as has been
done in the tool SPIN, where “never-claims” are directly
generated from Linear Temporal Logic properties). For
an initial investigation we refer the reader to [20].

x:=0

bad
x<=t

T’

T

’a’

x=t

x<t

Fig. 5. Test Automata for φ untilta

4.3 Model-checking

The model-checking procedure implemented in Uppaal

is based on an interpretation using a finite-state symbolic
semantics of networks. More precisely, we interpret the
logic with respect to symbolic states of the form (l,D),
where D is a constraint system (i.e., a conjunction of
atomic clock and data constraints), and l a control-vector.
Thus, a symbolic state (l,D) represents all the states
(l, v) where v satisfies the constraint D. Based on this
notion of symbolic state, the heart of the Uppaal model-
checking procedure is the abstract reachability algorithm
shown in Fig. 6,4 which reduces the reachability problem
to that of solving simple constraint systems. The algo-
rithm is to check whether a timed automaton may reach
a state satisfying a given state formula β.

We observe that several operations of the algorithm
are critical for efficient implementations. Firstly, the algo-
rithm depends heavily on the test operations for checking
the inclusion D ⊆ D′ (i.e., the inclusion between con-
straints D and D′) and the emptiness of Ds in construct-
ing the successor set Succ of (l,D). Clearly, it is import-
ant to design efficient data structures and algorithms for
the representation and manipulation of clock constraints.
One such well-known data structure is that of Difference
Bounded Matrices [3, 15, 33], Dbm, which offers a canoni-
cal representation for constraint systems. It has been suc-
cessfully employed by several real-time verification tools,
e.g., Uppaal [7] and Kronos [14].

In the Uppaal-implementation the reachability algo-
rithm of Fig. 6 is extended so that a diagnostic trace is
automatically generated as a side-effect in case reachabil-
ity is established. If the symbolic state-space is examined
in a breadth-first manner (corresponding to organizing

Passed:= {}
Waiting:= {(l0, D0)}
repeat

begin

get (l,D) from Waiting

if (l,D) |= β then return “YES”

else if D 6⊆D′ for all (l,D′) ∈ Passed then
begin

add (l,D) to Passed

Succ:={(ls,Ds) : (l,D); (ls,Ds)∧ Ds 6= ∅}
for all (ls′ ,Ds′) in Succ do

put (ls′ ,Ds′) to Waiting

end

end
until Waiting={}
return “NO”

Fig. 6. An algorithm for symbolic reachability analysis

4 The relation ; has been extended to symbolic states in the
obvious fashion.

140 K.G. Larsen et al.: Uppaal in a nutshell

red
black

Controller

Piston

18 90

Red Boxes

Black Boxes

Belt

0

Boxes

remove

eject

Sensor

9 81 99

Fig. 7. The box-sorter unit

the waiting set as a queue), the trace is guaranteed to be
the shortest possible.

4.4 Optimizations

A Dbm representation is in fact a weighted directed graph
where the vertices correspond to clocks (including a zero-
clock) and the weights on the edges stand for the bounds
on the differences between pairs of clocks [3, 15, 33]. As
it gives an explicit bound for the difference between each
pair of clocks, its space-usage is in the order of O(n2)
where n is the number of clocks. However, in practice it
often turns out that most of these bounds are redundant.
In [27], we have presented a new compact data structure
for Dbm, which provides minimal and canonical repre-
sentations of clock constraints and also allows for effi-
cient inclusion checks. The representation is obtained by
a minimization of the weighted directed graph represent-
ing the constraint system, and our experimental results
demonstrate truly significant space-savings as well as bet-
ter time-performance.

In addition to the local reduction technique above,
which is to minimize the space-usage of each individ-
ual symbolic state, we have developed a global reduction
technique to reduce the total number of symbolic states to
save in the global data structure, i.e., the passed list. It is
completely orthogonal to the local technique and is based
on static analysis of the control structure of the system.
Again, our experimental results demonstrate significant
space-savings and improved time-performance.

Finally, it is possible to save the symbolic state-space
generated during checking of a property and re-use it in
the checking of other properties. In cases where several
correctness properties have to be examined this leads to
significant time-savings.

5 How to use UPPAAL – a user guide

This section describes how to model, simulate and ver-
ify real-time systems using Uppaal. We will focus on the
graphical interface and the graphical modeling language
of Uppaal. However, it should be noticed that the tool
also has a text-based interface and a textual representa-
tion of the modeling language.

As a running example throughout this section we will
use the box-sorting unit of [23].

Example 1 (The box-sorter unit). The box-sorter shown
in Fig. 7 is made in LEGO.5 It sorts red and black boxes.
The sorter is built around a belt that transports boxes
in the unit, which consists of four components: a color-
sensor, a piston, a controller, and an observer.

A box starts at the leftmost extreme of the belt, rep-
resented by position 0. At some position from 9 to 18 its
color is sensed by the color-sensor which is attached to the
controller. The controller reacts if the color is red by send-
ing an eject request to the piston, after a certain delay.
The piston ejects within one time unit after the arrival of
a request. When the piston is ejected it is guaranteed to
remove the box if it is positioned in the interval 81 to 90.
If the box is not removed (i.e.,if the box is black), it pro-
ceeds to position 99, representing the rightmost extreme
of the belt, where it falls off the belt.

The observer is not participating in the sorting of
boxes. Its only task is to observe that no red boxes ap-
pear on the rightmost extreme of the belt. As the observer
is not part of the sorting mechanism, we have not shown
him/her in Fig. 7 but he/she can be imagined to sit at the
far right end.

5 Information about LEGO can be found on World Wide Web at:
http://www.lego.com/.

K.G. Larsen et al.: Uppaal in a nutshell 141

For simplicity we regard the system as being correct if
the observer sees no red boxes (i.e., only black boxes) at
the rightmost extreme of the belt. 2

5.1 XUPPAAL

XUppaal is to provide a user-friendly graphical interface
to the tools in Uppaal. It offers support to the user by
managing the working file names, by providing an easy
way to give optional setting, and to execute the various
tools of the tool-box. The application is implemented in C
and the Forms Library for X.6

In the following we give a short overview of the tool.
The description continues in Sect. 5.4 which explains how
to verify and generate diagnostic traces with XUppaal.
A more detailed description of XUppaal can be found
in [4].

5.1.1 The files

During an XUppaal session the user works with three
different kind of files: a system description, a requirement
specification, and a trace file.

The system description file contains the system de-
scription. It is assumed to be given in the textual format
(called .ta) or on the graphical format (called .atg) used
by Autograph and the simulator. Section 5.2 provides a
guide for definition of system descriptions using Auto-
graph. Once the file has been created its syntax can be
checked by invoking Syntax Check in the Run menu of
XUppaal.

The requirement specification file holds a set of formu-
lae in a textual representation (called .q). The file can
be created using a simple editor invoked in the Run (item
Req. Spec. Editor) menu of XUppaal or using an exter-
nal text editor.

The trace file is used to store information about di-
agnostic traces generated by the verifier. A trace is a
sequence of (symbolic) states and transitions, that rep-
resents an (symbolic) execution of the system. It is often
useful for discovering why a property is (or is not) satis-
fied by a system description. The trace file can be input to
the simulator which is able to display traces graphically
(see Sect. 5.3).

5.1.2 Getting started

XUppaal is activated from the command line with the
command xuppaal. On startup, XUppaal shows the user
with its main window as shown in Fig. 8. The main win-
dow consists of four parts: the menu bar, the two input

6 Information about the Forms Library for X is available on
World Wide Web: http://www.uwm.edu/~zhao and on anonymous
ftp: ftp://bloch.phys.uwm.edu/pub/xforms.

Fig. 8. The graphical interface of XUppaal

fields that displays the name of the currently specified
system description file (labeled Model) and requirement
specification file (labeled Req. Spec.), and the output
browser (labeled Output).

5.1.3 The menu bar

The menu bar has four sub-menus: Files, Options,
Run, and Help. Each sub-menu is invoked by clicking the
menu label or using snap-keys. The snap-keys are given
below enclosed in parenthesis (where C denotes the Ctrl-
button).

The File menu (C-x) contains entries for selecting
the files to work with, and for exiting XUppaal. The
Help menu (C-h) provides online help on the six top-
ics: General (C-g), Files (C-f), Options (C-o), Run

(C-r), Problems (C-p), and Version (C-v). When an
entry is selected, the help text is displayed in the out-
put browser. The output generated by selecting the menu
item Version is shown on the first seven lines of text in
the browser in Fig. 8.

We proceed by giving a more detailed description of
the two sub-menus: Options and Run.

The Options Menu (C-o) provides a list of choices that
mainly affect the verification session. Each entry in the

142 K.G. Larsen et al.: Uppaal in a nutshell

menu can be toggled on or off (which is visualized in the
menu by a filled or empty check-box to the left of each
menu item):

Auto Check Syntax (C-a): automatically perform syn-
tax check before simulation and verification sessions.

Diagnostic Info (C-i): generate diagnostic traces in
textual format and present the result in the output
browser.

Diagnostic File (C-f): produce diagnostic traces on
the specified trace file.

Breadth-First (C-b): explore the state-space of the
system by breadth-first search7.

Depth-First (C-d): explore the state-space of the sys-
tem by depth-first search.

Local Reduction (C-l): use compact data-structures
to represent constraints (instead of Dbm, see Sect. 4.4).

Global Reduction (C-s): perform control structure an-
alysis (see Sect. 4.4).

Re-use State-Space (C-r): re-use the generated por-
tion of the state-space when verifying several reacha-
bility properties (see Sect. 4.4).

The Run Menu (C-c) contains commands that are as-
sociated with the various tool programs of Uppaal. The
outputs produced by the programs are always displayed
in the output browser.

Autograph (C-a): start the graphical editor Autograph.
Syntax Check (C-c): perform syntactical check on the

textual format of the system description.
Simulation (C-s): start the simulator with the speci-

fied system description file.
Req. Spec. Editor (C-e): open the requirement speci-

fication editor shown in Fig. 9.

Fig. 9. The Requirement Specification Editor

Verification (C-v): check if the system description
satisfies the requirement specification by model-check-
ing.

Show Model (C-f): display the system description in
textual representation.

7 This option generates a shortest diagnostic trace when used in
combination with one of the two trace options above.

Show Req. Spec. (C-r): show the contents of the re-
quirement specification file.

Clear Output (C-o): clear the output browser (i.e.,
erase the contents of the browser).

Example 2 (Specifying the file names). As a preliminary
step when working with the box-sorter example we define
the file names for XUppaal to work with. We do this by
typing in the system description file name “boxes.atg”
in the field labeled System and the requirement specifica-
tion file name “boxes.q” in the field labeled Req. Spec.
The trace file is specified by selecting Set Trace File

from the Files menu. We use the file name boxes.tr.
The resulting XUppaal input fields are shown in Fig. 8.
2

5.2 How to model

Uppaal allows for systems descriptions to be defined tex-
tually or by drawing using Autograph. In this section we
describe how to define a system using Autograph. For a
description of the textual representation of systems used
in Uppaal we refer the reader to [4].

5.2.1 Systems descriptions in autograph

Autograph is a graphical tool for drawing automata-
based system descriptions. It is very general though it was
developed for the Fc2tools set [10]. This section will ex-
plain the subset of features of Autograph, that are needed
to define Uppaal system descriptions.

To define network of timed automata in Autograph
it is necessary to define a mapping from the elements of
timed automata to graphical objects in Autograph. Here
we summarize the mapping of the components that a sys-
tem description should consist of.

A location is denoted by a vertex labeled with its name
(required) and its invariant (which is optional). By de-
fault, the invariant is true.

A transition is denoted by an edge connecting two ver-
tices. The transition may be labeled with a guard
which is true by default, a synchronization action
(which is τ by default), and a list of assignments.

A timed automaton is denoted by a box containing the
locations and transitions of the automaton with the
initial location being denoted by an initial vertex. The
box should be labeled with the name of the automa-
ton.

A declaration for the variables, clocks and channels, both
normal and urgent, used in the network of timed auto-
mata are placed in a box which must be labeled with
Config.

A network of timed automata is represented by a set of
set of automata boxes and the Config box.

If a graph is created according to these definitions and
to the small set of rules that will be introduced in the

K.G. Larsen et al.: Uppaal in a nutshell 143

Fig. 10. The menu bar with the ObjectEdit menu selected

remainder of this section, it can be used directly in the
Uppaal toolkit.

5.2.2 Getting started

Autograph can be activated from the Run menu of XUpp-

aal. On startup the program displays a menu bar which
is depicted in Fig. 10 with the ObjectsEdit menu se-
lected. All menus mentioned in the remainder of this sec-
tion are parts of this menu bar.

Note that all items inside a menu bar, can also be se-
lected by a snap-key given below in parenthesis, and a
selection will be active until another selection is made.

To get started it is necessary to open a window to
draw in. This is done by selecting Create from the Window
menu. It is possible to resize and reposition the window.

5.2.3 Creating locations

Locations of a timed automata are created by choosing
Create (v) from the Vertice sub-menu in the Objects-

Edit menu. To instantiate a location just find the wanted
position and click the left mouse button to place it.

If the vertex is supposed to model an initial location,
select Initial (i) from the Vertice sub-menu of the
ObjectsEditmenu and click at the chosen vertex.

To create the name and the invariant of the location, a
label must be attached to the vertex. The actual creation
of labels will be described in the next section. There is a
set of rules concerning location labels that must be fol-
lowed to avoid errors when using the drawing in Uppaal:

– Every location must have a name associated.
– All names are specified by the regular expression

[a–zA–Z][a–zA–Z0–9_]*. If the location is committed,
its name must be prefixed with C: or c:.

– Location names are local to a process and can be
reused in other processes.

– An invariant is a conjunction of inequalities. It is
written as a list of inequalities separated by com-
mas and surrounded by a pair of parentheses, e.g.,
(clock1<=42, clock2<=117).

– The invariant can be put either on the same line as the
location name or on a line for itself.

5.2.4 Creating labels

In Autograph there are four kinds of labels: Struct, Be-
hav, Logic, and Hook. The different kinds of labels may
have different meanings depending on the kind of com-
ponent they are attached to.

In Uppaal the notion of different labels has been
avoided as much as possible. Therefore, the default label
(automatically selected by Autograph) is always used for
components with only one label. To label a component
with its default label select Create/Edit Default (a)
from the Label menu, then click on the component to la-
bel. This opens an editor window for typing in text for the
label.

The only component type with more than one label is
the Config box described in Sect. 5.2.8.

Labels can be re-edited by selecting Reedit (R) from
the Labelmenu. After the label has been clicked an editor
for editing (the four kinds of) labels will appear.

5.2.5 Creating edges

The next step in defining a network of automata is to con-
nect locations with transitions, denoted by edges. Edges
can only be drawn between two vertices belonging to the
same automaton. The start and end vertices can be the
same.

To create an edge, first select Create (e) from the
Edges sub-menu under ObjectsEdit and then select the
start and end vertex. One can create curved edges. The
simplest way is to drag the mouse from the start of the
edge to a point and then continue to the end of the edge.

The optionals that can belong to a transition are put
in a label attached to the edge. An edge can have more
than one set of labels; whereas all other components can
only have one.

As for location labels, there is a set of rules for transi-
tion labels:

– If a transition is synchronizing, its label should have a
line containing the name of the channel it is synchro-
nizing on.

– Guards are written as lists of comma-separated con-
straints.

144 K.G. Larsen et al.: Uppaal in a nutshell

Fig. 11. Locations and transitions of the piston

– Assignments are written as lists of comma-separated
assignments on the form: <name> := <expression>,
where expressions follow the syntax defined in Sect. 3.

Example 3. To start modeling the box-sorter unit we
draw the locations and the transitions of the piston au-
tomaton. The piston waits for the controller to send an
eject-signal. It then ejects within one second, possibly
resulting in the removal of a box from the belt.

A model of the piston is shown in Fig. 11. The two
locations idle and wait are used to model the two opera-
tional modes of the piston. Initially the piston is idle. The
piston will enter location wait when the signal eject is
received. In location wait the piston is ready to remove
a box (by synchronizing on remove) for 1 time unit after
which the piston will return to the location idle. The clock
variable y is used to model the timing behavior of the pis-
ton. 2

5.2.6 Creating automata

An automaton is represented by a box containing its lo-
cations and transitions. Boxes are created by choosing
Create (b) from the Boxes sub-menu in the ObjectsEdit
menu. The box is drawn by picking the position of its up-
per left corner and dragging the mouse until the box has
the wanted size (i.e., the position of the lower right cor-
ner).

Every automaton must be labeled with a name that is
written according to the regular expression [a–zA–Z][a–z
A–Z0–9_]*.

Example 4. We now finish the piston automaton by
adding a bounding box around its locations and transi-
tions. We name the automaton Piston by adding a label
to the box. The resulting automaton is shown in Fig. 12.

To create an automaton, one can also start with draw-
ing the box and then the vertices, edges, etc. 2

Fig. 12. An automaton defining the piston of the box-sorter unit

5.2.7 Creating a network of automata

A network of automata is denoted by a collection of auto-
mata boxes representing the component automata and a
distinct box, labeled with Config, for declarations.

5.2.8 Creating declarations

Declarations of objects in the network, i.e., variables,
clocks, and channels are placed in the Config box. In add-
ition, comments for documentation can be put in this
box. Declarations should be created according to the fol-
lowing rules.

– Declarations are written as lists of comma-separated
object names preceded by the type of the entities de-
clared and ended with a semi-colon.

– The type of a variable declaration is int.
– The type of a clock declaration is clock.
– The type of a declaration of normal channels is chan

and for urgent channels it is urgent chan.
– There can be zero or more declarations of each type.
– Names of objects are specified by the regular expres-

sion [a-zA-Z][a-zA-Z0-9_]*.
– Comments are prepended with //. Except for this,

there are no rules concerning the syntax of comments.

In addition to the object declarations the Config box also
holds the definition of which automata the system con-
sists of. This definition is written using the same syntax
as above with the type of the declaration being system.
Only the automata mentioned in the system definition
are considered when the system is verified or simulated.
There must be exactly one system definition.

There are also some rules concerning the Config box
and other boxes with comments:

– There must be exactly one Config box.
– The Config box cannot contain any components. It is

only allowed to have a label attached.
– Boxes other than the components and Config box are

ignored by Uppaal.

K.G. Larsen et al.: Uppaal in a nutshell 145

Fig. 13. The complete system description of the box sorter unit

Example 5. The complete system description of the box-
sorter unit is shown in Fig. 13. It consists of four auto-
mata: Piston, Controller, Box, and Observer. In this ex-
ample we describe the two automata Box and Controller.
The Piston automaton was described in Example 0 and
the Observer will be described in Example 0.

The Box automaton models the behavior of a box.
It uses the integer variable color to represent the color
of the box (where 1 is black and 2 is red), and the
clock variable pos to represent its position on the belt.
In the initial location idle is the box not yet placed
on the belt (even if pos ≥ 0). On the outgoing tran-
sitions from idle to movea the box is put on the belt
and assigned a color. The two locations sayblack and
sayred model the behavior of a box when it passes the
color-sensor. It offers the signals black1! or red1! to
the sensor until position 18 is reached, where it en-
ters location moveb. The location atpiston models the
situation when the box passes the piston, therefore
the box offers synchronization on the channel remove

to model the possibility of getting removed. If not re-
moved, the box proceeds to location saycolor where it
returns to its initial location by synchronizing on chan-
nel black2 or red2, which are synchronized with the
observer.

The Controller automaton models the controller and
its integrated color-sensor. It stays in its initial loca-
tion idle as long as only black boxes appear, modeled
by a black1-synchronizing self-loop. When a red box
appears, it delays for 63 time units in location wait

and there after requests a reject from the piston by
synchronization on the eject-channel as soon as pos-
sible.

To model that the color-sensor and the piston react
immediately on input, the four channels black1, red1,
eject, and remove are declared as urgent. 2

5.2.9 Saving the system description file

To save a file, select either Save atg (s) or Save atg as

(S) from the Files menu and click on the drawing to be
saved. This leads to the opening of a file selector window,
where the path and name of the file can be entered. When
ready press the OK button.

The saved .atg files can then be used in Uppaal.

5.3 How to simulate

The symbolic simulator enables the user to simulate and
debug the dynamical executions of a network of timed
automata given its statical structure i.e., a system de-
scription. This section provides a guide for the interface of
the simulator and show how to use it.

5.3.1 Getting started

The simulator can be activated from the Run menu in
XUppaal. The system description file (an .atg-file)

146 K.G. Larsen et al.: Uppaal in a nutshell

specified in the Model field of XUppaal will be loaded
into the simulator on startup.

The graphical interface to the simulator consists of
two windows: the System window to show the system de-
scription to simulate, and the Main window to control the
simulator.

The interface uses the standard X notions for mouse
and keyboard control meaning that, for example, double-
clicking the mouse and using tab-key to switch between
groups in windows can be used.

5.3.2 The System window

The System window holds the Autograph drawing of the
system being simulated. Figure 14 shows an example of a
System window containing the definition of the box sorter
unit.

During a simulation, the current location vector and
one of the currently available transitions are depicted in
the window. For the location vector this is accomplished
by marking the current location of each of the automata,
e.g., in the figure, Box is in location idle. A possible tran-
sition is depicted as a highlighted arrow going from the
source location of the transition to its destination. If the
transition is a synchronization, an arrow will be shown for
each of the two synchronizing transitions, otherwise only
one. In the figure a transition from idle to movea in Box is
shown.

It is not possible to manipulate the contents of the Sys-
tem window directly as its only purpose is to display the

Fig. 14. A System window

structure of the current system and to show how simu-
lations progress. All changes to the System window are
performed indirectly through the Main window described
below.

5.3.3 The Main window

The simulator is controlled from the Main window which
is split up into two parts: one containing the basic simula-
tion control, and the other containing the more advanced
control mechanisms concerned with traces. Fig. 15 shows
the Main window with the trace so far and the possible
step for the system depicted in Fig. 14.

The upper part of the window has six buttons and a
field holding a list of steps possible in the current state of
the system. The lower part also has six buttons and a field
containing the trace of the current simulation. When the
simulator is activated only the upper half of this window
is opened.

The upper six buttons are used for controlling the
most basic functionality of the simulator. The semantics
of the buttons is as follows:

Take Step: take the step selected in the list of possible
steps. A step is selected if it is highlighted in the list.

Run: open the Run window which is used for controlling
the automatic mode, where the simulator itself ran-
domly selects transitions.

Reset: set the automata in the system to their initial lo-
cations and clears the trace.

K.G. Larsen et al.: Uppaal in a nutshell 147

Fig. 15. The Main window

Show Regions: open the Regions window showing the re-
gions valid for the current configuration of the simu-
lated system.

Exit: exit the simulator.
+ (plus): open the lower half of the Simulate Main win-

dow, which displays the trace generated so far.

In the list of possible steps, the elements are written in
one of the forms listed below. The first is used if the
transition of the step is a synchronization between two
processes and the second is used if the transition is non-
synchronizing. It is possible to take a step directly from
the list by double-clicking it.

– <channel> (<sender> -> <receiver>)

– tau (<process>)

A trace is a list whose elements alternate between loca-
tion vectors and transitions. Location vectors are simply
written as a list of location names where the names are or-
dered the same way as the list of automata given in the
header of the lower half of the Simulate Main window. The
order of the automata in the Simulate Main window shown
in Fig. 15 is: Controller, Piston, Box, and Observer.

Transitions are written in the same form as the pos-
sible steps. Selecting an element in the trace changes the
System window so that instead of reflecting the current
state of the system it will show the selected transition or
location.

The six buttons in the lower part of the Main window
are all used for controlling the trace functionality. Their
semantics is given in the following:

- (minus): close this half of the window.

Previous: highlight the element immediately preceding
the current selection in the trace. If no element is se-
lected, nothing happens.

Next: highlight the element immediately following the
current selection in the trace. If no element is selected,
nothing happens.

Restart: restart the simulation from the current selec-
tion in the trace.

Load: open a file selector window for loading a trace.
Save: open a file selector window for saving the current

trace.

5.3.4 The Run window

Instead of creating traces manually, by taking one step at
a time, it is possible to let the simulator proceed automat-
ically by randomly selecting enabled steps and show the
progress of the simulation in the System window. This can
be done from the Run window as shown in Fig. 16.

Fig. 16. The Run window

The window shows two text input fields, Number Of Steps
and Speed, plus three buttons. The field Number Of Steps

decides how many steps the simulator should take when
generating the random trace and the Speed field decides
how fast the screen should be updated during the run,
with 1 being the highest speed. The meaning of the three
buttons is as follows:

Close: stop the run if it is currently executing, and close
the Run window.

Stop: stop the run. If the simulator is not running, noth-
ing happens.

Go: start or restart the execution of a run.

5.3.5 The Regions window

While doing a simulation the user can watch the changes
of the regions in the Regions window. Fig. 17 shows the
Regions window corresponding to the system state and
transition selection of Figs. 14 and 15.

The window is split up into four parts each holding one
particular kind of region.

The regions are represented as sets of equations and
inequalities on the variables, clocks and differences be-
tween clocks in the system. Inequalities are written as
intervals that the clock or clock difference must be in (see
Fig. 17).

148 K.G. Larsen et al.: Uppaal in a nutshell

Fig. 17. The Regions window

The upper left quarter of the Regions window shows the
state entry region. It is the region valid immediately after
the last step, i.e., the step that took the system to the cur-
rent state. The lower left quarter holds the transition exit
region. For any of the possible steps that can take the sys-
tem out of the current state, the transition exit region is
the region where the system is able to take that particular
step.

The next state entry region will then be the same as
the transition exit region of the possible step which is
taken next, except that it has been updated by the assign-
ments of the transition.

The constraints of the latest step taken can put addi-
tional constraints on the regions for previous steps. This
is not taken into account in the calculations of the regions
in the left half of the window, but it is considered in the
right where the adjusted counterparts of the two above
mentioned types of regions are displayed.

5.4 How to verify

The verification of a system description with respect to its
requirement specification is conducted entirely from the
XUppaal window. It is often the case that the verifica-
tion will not succeed immediately even if the system has
been carefully validated in the simulator. More likely, a
number of problems, usually in the system description,
will have to be resolved before the verification finally suc-
ceeds.

In this section we describe how XUppaal supports the
work by allowing diagnostic traces, generated by the veri-
fication procedure, to be loaded and graphically displayed
in the simulator. We begin by describing how to verify in
Uppaal, using XUppaal.

5.4.1 Verification

To verify with XUppaal is very simple. When the file
names have been specified, the next step is to select the
optional settings that affect the verification method, and
then it is ready for the start of a verification session.
The menu of verification options has been described in
Sect. 5.1.3.

The verifier (called verifyta) is activated by click-
ing Verification in the Run menu. XUppaal then first
transforms the options, selected in the Options menu, to
a list of flags to be accepted by the verifier. It then pro-
ceeds by compiling the graphical system description to its
textual format.

Finally, it spawns a child process running the verifier
with the required parameters, i.e., the list of flags, the
system description file, the requirement specification, and
(optionally) the specified trace file.

All output8 produced in the child process is displayed
in the output browser of XUppaal. In particular, answers
to whether each property of the requirement specification

8 The output which normally appears on standard output and
standard error (i.e. stdout and stderr).

K.G. Larsen et al.: Uppaal in a nutshell 149

is satisfied or not are displayed. Each answer is numbered
in order of appearance in the requirement specification
file and with line numbers in parenthesis (see Fig. 8). If
an answer line is double-clicked in the output browser of
XUppaal, the requirement specification editor (if open)
will display the corresponding line of the requirement spe-
cification file in its output browser (labeled Req.Spec.

File). This is useful when working with large specifica-
tions.

Example 6 (Verifying the box-sorter). Now we show how
to verify the correctness of the box-sorter unit. Since the
sorter is considered correct if the observer sees no red
boxes, we formalize the correctness in terms of reachable
locations of the observer. We begin by describing the au-
tomaton Observer which models the observer.

The Observer automaton, which can be found in
Fig. 13, has two locations: happy and sad. It is initially in
location happy and stays there as long as it sees only black
boxes at the rightmost extreme of the belt. If a red box
appears, it enters the location sad where it stays forever.

To prove the box-sorter correct, it suffices to show that
it is impossible for the observer to reach location sad, i.e.,
∀2¬ Observer.sad. We phrase the property in the Upp-

aal syntax, A[]not Observer.sad, and put the result-
ing formula in the requirement specification file, named
boxes.q. This can be done using the requirement spe-
cification editor which is activated in the Run menu of
XUppaal.

Finally, we start the actual verification (Verification
in the Run menu). The verifier outputs the text lines 13
and 14 in the output browser of Fig. 8, indicating that the
property is not satisfied. 2

5.4.2 Visualizing diagnostic traces

The simulator generates traces and allows for traces to
be displayed, reexamined, replayed, and reset from any
intermediate point. Traces may also be reused using the
save and load facilities. In particular, diagnostic traces
generated by the verifier may be loaded for examination.

To use this facility, the first step is to specify the trace
file name (see Sect. 5.1.1), and then instruct the verifier
to generate traces on file. This is done by selecting item
Diagnostic File in the Options menu of XUppaal. As
a result, all succeeding verifications will output traces in
the specified file until the Diagnostic File option is tog-
gled off.

It should be noticed that it is possible to generate a
shortest diagnostic trace, simply by instructing the veri-
fier to explore the state space by breath-first search.

When the verification is finished, the trace file is
loaded in the simulator by clicking the Load button in the
Main window of the simulator (see Sect. 5.3.3).

Example 7 (Correcting the box-sorter). To find out why
the requirement specification is not satisfied by the sys-

tem description we generate a diagnostic trace. As an
exercise, we first produce a textual representation of a
shortest diagnostic trace. To do so, we first select the
options Diagnostic Info and Breadth-First in the
Options menu and then initiate a new verification. The
resulting trace is shown in Fig. 18.9

We can also try to debug graphically using the sim-
ulator. Recall that we have specified the trace file name
in Example 0. A trace will be produced in that file if we
select the option Diagnostic File and then verify the
system again. Next, we load the trace into the simulator
using button Load in the main window of the simulator.
The windows of the simulator now look exactly the same
as in Fig. 14, 15 and 17.

It can be deduced that there is an error in the Con-
troller automaton. After the controller has sensed a red
box, it will miss the box if it waits too short a time before
ejecting the piston. If it waits another 9 time units before
the eject signal is sent, the piston will hit the box.

The error can be corrected simply by modifying the
time bound from 63 to 72 in the invariant and the guard
on the edge outgoing from location wait in the Controller.
It can be verified that the modified system is correct. 2

6 Case studies

Uppaal has been applied in a number of (industrial) case
studies. In this section we briefly review some of them.

Audio/Video Protocol: this is an audio control protocol
highly dependent on real-time. The protocol was de-
veloped by Bang & Olufsen, to transmit messages
between audio/video components over a single bus,
and further studied in [18]. Though it was known to
be faulty, the error was not found using conventional
testing methods. Using Uppaal, an error-trace is au-
tomatically produced, which revealed the error. Fur-
thermore, a correction is suggested and automatically
proved using Uppaal.

Bounded Retransmission Protocol: the protocol was pro-
posed and studied at COST 247, International Work-
shop on Applied Formal Methods in System Design. It
is based on the alternating bit protocol over a lossy
communication channel, but allows for a bounded
number of retransmissions. In [12, 13], it is reported
that a number of properties of the protocol is auto-
matically checked with Uppaal. In particular, it is
shown that the correctness of the protocol is depen-
dent on correctly chosen time-out values.

Collision Avoidance Protocol: the protocol in [20] is im-
plemented on top of an Ethernet-like medium such
as the CSMA/CD protocol. It is to ensure an upper
bound on the communication delay between the net-
work nodes. It was designed and proved correct using

9 Normally, the trace would have been displayed in the output
browser of XUppaal.

150 K.G. Larsen et al.: Uppaal in a nutshell

(Controller.idle Piston.idle Box.idle Observer.happy) (Controller.idle Piston.wait Box.moveb Observer.happy)

{ x=0 y=0 pos=0 color=0 } { x=63 y=0 pos=72 color=2 }
(Controller.idle Piston.idle Box.movea Observer.happy) delay(1)

{ x=0 y=0 pos=0 color=2 }
(Controller.idle Piston.wait Box.moveb Observer.happy)

delay(9) {x=64 y=1 pos=73 color=2 }
(Controller.idle Piston.idle Box.movea Observer.happy) (Controller.idle Piston.idle Box.moveb Observer.happy)

{x=9 y=9 pos=9 color=2 } { x=64 y=1 pos=73 color=2 }
(Controller.idle Piston.idle Box.sayred Observer.happy) delay(8)

{ x=9 y=9 pos=9 color=2 }
(Controller.idle Piston.idle Box.moveb Observer.happy)

Urgent sync: red1 {x=72 y=9 pos=81 color=2 }
(Controller.wait Piston.idle Box.moveb Observer.happy) (Controller.idle Piston.idle Box.atpiston Observer.happy)

{ x=0 y=9 pos=9 color=2 } {x=72 y=9 pos=81 color=2 }
delay(63) delay(9)

(Controller.wait Piston.idle Box.moveb Observer.happy) (Controller.idle Piston.idle Box.atpiston Observer.happy)

{x=63 y=72 pos=72 color=2 } {x=81 y=18 pos=90 color=2 }
(Controller.go Piston.idle Box.moveb Observer.happy) (Controller.idle Piston.idle Box.saycolor Observer.happy)

{ x=63 y=72 pos=72 color=2 } { x=81 y=18 pos=90 color=2 }
Urgent sync: eject Sync: red2

(Controller.idle Piston.idle Box.idle Observer.sad)

{ x=81 y=18 pos=90 color=2 }
Fig. 18. A diagnostic trace

Uppaal. The two main properties established show
that the protocol is collision-free, and it does ensure an
upper bound on the user-to-user communication delay
(assuming a perfect medium).

Gear-Box Controller: in this industrial case-study, Up-

paal is applied to the design and analysis of a pro-
totype gear box controller for vehicles by Mecel AB10

[28]. The gear box controller is a component in the
real-time distributed system that controls a modern
car. The gear requests from the driver are delivered via
the man/machine interface over a communication net-
work to the gear box controller. The controller imple-
ments the actual gear change by actuating the lower
level components of the system (such as the clutch, the
engine, and the gear box).
In the design of the controller, the symbolic simulator
of Uppaal is applied to validate the system behavior.
The correctness of the gear box controller design is es-
tablished by automatic proofs of 46 properties derived
from requirements specified by Mecel AB.

Philips Audio Protocol: the protocol was developed and
implemented by Philips to exchange control informa-
tion between components in audio equipment using
Manchester encoding. The correctness of the encod-
ing relies on timing delays between signals. It was first
studied and manually verified in [9]. In [25] the proto-
col is modeled and verified using Uppaal.

Philips Audio Protocol with Bus Collision: this is an ex-
tended variant of Philips audio control protocol with
bus collision detection. It is significantly larger than

10 Mecel AB is a Swedish company developing control systems for
vehicle industries.

the version above since several new components (and
variables) are introduced, and existing components
are modified to deal with bus collisions. Its correctness
was originally proved by hand in [17], and by model-
checking for the first time using Uppaal in [5].

Mutual Exclusion Protocol: the so-called Fischer proto-
col has been studied previously in many experiments,
e.g., [1, 32]. The protocol is to ensure mutual exclu-
sion among several processes competing for a critical
section using timing constraints and a shared variable.
Different versions of the protocol have been verified
using Uppaal, cf. [22, 24, 34].

TDMA Protocol Start-Up Mechanism: in [29], a formal
verification of the start-up algorithm of a TDMA
(Time Division Multiple Access) protocol is reported.
It was proved using Uppaal that an ensemble of three
communicating stations becomes synchronized and
operational within a bounded time from an arbitrary
initial state, given a clock-drift corresponding to 10−3.
Furthermore, an upper time-bound for the start-up to
complete was derived.

7 Conclusions

In this paper, we have presented the overall structure,
the design criteria, and the main features of Uppaal. It
is intended to be an informal but reasonably “complete”
description of the syntax and semantics of the Uppaal

modeling and specification languages as well as the ker-
nel of its model-checking algorithm. It contains neither
definitions nor theorems, but mainly examples. The in-
tended readers are engineers working with development

K.G. Larsen et al.: Uppaal in a nutshell 151

and analysis of embedded systems in particular, real-time
protocols and controllers. A user guide is given, which de-
scribes in detail how to use the various tools of Uppaal

to construct abstract models of a system, to simulate its
dynamical behavior, to specify and verify its safety and
bounded liveness properties in terms of its model. In add-
ition, we also provide a short review on case-studies where
Uppaal is applied, as well as references to its theoretical
foundation.

However the document is by no means complete as
Uppaal is still under development. In fact, since this
paper was written, a new version of Uppaal has been
implemented, which is currently under internal test and
evaluation. Future versions of Uppaal will extend the
current description language with data types such as ar-
rays, records, lists, etc., as well as various primitive oper-
ations on data types. In the near future, a new graphical
interface will be available, which provides graphical sup-
port for not only system descriptions at process level as
does the current version, but also hierarchical design and
modularization. But that is all for now.

Acknowledgements. The authors wish to thank the people involved
in the development of Uppaal, including: Johan Bengtsson, Palle
Christensen, Jesper Jensen, Per Jensen, K̊are Kristoffersen, Fredrik
Larsson, and Thomas Sørensen.

References

1. Martin Abadi, Leslie Lamport. An old-fashioned recipe for
real time. In Proc. of REX Workshop Real-Time: Theory in
Practice, Lecture Notes in Computer Science 600. Berlin Hei-
delberg New York: Springer Verlag, 1993

2. R. Alur, D. Dill. Automata for modeling real-time systems.
Theoretical Computer Science 126(2): pp183–236, April 1994

3. Richard Bellman. Dynamic Programming. Princeton Univer-
sity Press, 1957

4. Johan Bengtsson, Palle Christensen, Per Jensen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, Thomas Sørensen,
Wang Yi. Uppaal: a tool suite for validation and verification
of real-time systems. http://www.docs.uu.se/rtmv/uppaal/
uppaal-guide.ps.gz, 1996

5. Johan Bengtsson, David Griffioen, K̊are Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, Wang Yi. Verifica-
tion of an audio protocol with bus collision using Uppaal.
In Rajeev Alur, Thomas A. Henzinger, eds., Proc. of 8th Int.
Conf. on Computer Aided Verification, in Lecture Notes in
Computer Science 1102, pp. 244–256. Berlin Heidelberg New
York: Springer-Verlag, July 1996

6. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pet-
tersson, Wang Yi. Uppaal – a tool suite for automatic verifi-
cation of real–Time Systems. In Proc. of Workshop on Veri-
fication and Control of Hybrid Systems III, Lecture Notes in
Computer Science 1066, pp. 232–243. Berlin Heidelberg New
York: Springer-Verlag, October 1995

7. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pet-
tersson, Wang Yi. Uppaal in 1995. In Proc. of the 2nd Work-
shop on Tools and Algorithms for the Construction and Analy-
sis of Systems, Lecture Notes in Computer Science 1055, pp.
431–434. Berlin Heidelberg New York: Springer-Verlag, March
1996

8. Johan Bengtsson, Fredrik Larsson. Uppaal a tool for auto-
matic verification of real-time systems. Master’s thesis, Upp-
sala University, 1996

9. D. Bosscher, I. Polak, F. Vaandrager. Verification of an audio-
control protocol. In Proc. of Formal Techniques in Real-Time

and Fault-Tolerant Systems, Lecture Notes in Computer Sci-
ence 863, 1994

10. Amar Bouali, Annie Ressouche, Valérie Roy, Robert de Si-
mone. The fc2tools set. In Rajeev Alur, Thomas A. Hen-
zinger, editors, Proc. of 8th Int. Conf. on Computer Aided
Verification, Lecture Notes in Computer Science 1102, pp.
441–445. Berlin Heidelberg New York: Springer-Verlag, 1996

11. Palle Christensen, Thomas Mark Sørensen. Master’s thesis,
Aalborg University, 1997

12. P.R. D’Argenio, J.-P. Katoen, T. Ruys, J. Tretmans. Modeling
and verifying a bounded retransmission protocol. In Proc. of
COST 247, International Workshop on Applied Formal Meth-
ods in System Design, 1996. Also available as Technical Report
CTIT 96-22, University of Twente, July 1996

13. P.R. D’Argenio, J.-P. Katoen, T.C. Ruys, J. Tretmans. The
bounded retransmission protocol must be on time! In Proc.
of the 3rd Workshop on Tools and Algorithms for the Con-
struction and Analysis of Systems, Lecture Notes in Com-
puter Science 1217, pp. 416–431. Berlin Heidelberg New York:
Springer-Verlag, 1997

14. C. Daws, S. Yovine. Two examples of verification of multirate
timed automata with Kronos. In Proc. of the 16th IEEE Real-
Time Systems Symposium, pp. 66–75, December 1995

15. David Dill. Timing assumptions and verification of finite-state
concurrent systems. In J. Sifakis, editor, Proc. of Automatic
Verification Methods for Finite State Systems, in Lecture
Notes in Computer Science 407, pp. 197–212. Berlin Heidel-
berg New York: Springer-Verlag, 1989

16. David Dill. The Murϕ Verification System. In Rajeev Alur
and Thomas A. Henzinger, eds., Proc. of 8th Int. Conf. on
Computer Aided Verification, in Lecture Notes in Computer
Science 1102, pp. 390–393. Berlin Heidelberg New York:
Springer-Verlag, 1996

17. W.O.D. Griffioen. Analysis of an Audio Control Protocol with
Bus Collision. Master’s thesis, University of Amsterdam, Pro-
gramming Research Group, 1994

18. Klaus Havelund, Arne Skou, Kim G. Larsen, Kristian Lund.
Formal modeling and analysis of an audio/video protocol: an
industrial case study using Uppaal. Accepted for presentation
at the 18th IEEE Real-Time Systems Symposium, 1997

19. Thomas A. Henzinger, Pei-Hsin Ho, Howard Wong-Toi.
HyTech: the next generation. In Proc. of the 16th IEEE Real-
Time Systems Symposium, pp. 56–65, December 1995

20. H.E. Jensen, K.G. Larsen, A. Skou. Modeling and Analysis of
a Collision Avoidance Protocol Using SPIN and Uppaal. In
Proc. of 2nd International Workshop on the SPIN Verification
System, pp. 1–20, August 1996

21. Jesper Gravgaard Jensen, Per Stoffer Jensen. Design and Im-
plementation of NewPaal – a modeling language for real-time
systems. Master’s thesis, Aalborg University, 1997

22. K̊are J. Kristoffersen, Francois Larroussinie, Kim G. Larsen,
Paul Pettersson, Wang Yi. A compositional proof of a real-
time mutual exclusion protocol. In Proc. of the 7th Interna-
tional Joint Conference on the Theory and Practice of Soft-
ware Development, April 1997

23. Kim G. Larsen, Hans Hüttel. Uppaal – an automatic tool for
verification of real time and hybrid systems. Seminar slides
from Livslang Uddannelse 96, 1996. Email: {kgl,hans}@cs.
auc.dk.

24. Kim G. Larsen, Paul Pettersson, Wang Yi. Compositional and
Symbolic Model-Checking of Real-Time Systems. In Proc. of
the 16th IEEE Real-Time Systems Symposium, p 76–87, De-
cember 1995

25. Kim G. Larsen, Paul Pettersson, Wang Yi. Diagnostic Model-
Checking for Real-Time Systems. In Proc. of Workshop on
Verification and Control of Hybrid Systems III, Lecture Notes
in Computer Science 1066, pp. 575–586. Berlin Heidelberg
New York: Springer-Verlag, October 1995

26. Kim G. Larsen, Paul Pettersson, Wang Yi. Model-Checking
for Real-Time Systems. In Proc. of Fundamentals of Compu-
tation Theory, Lecture Notes in Computer Science 965, pp.
62–88. Berlin Heidelberg New York: Springer-Verlag, 1995

27. Fredrik Larsson, Kim G. Larsen, Paul Pettersson, Wang Yi.
Efficient verification of real-time systems: compact data struc-
tures and state-space reduction. Accepted for presentation at

152 K.G. Larsen et al.: Uppaal in a nutshell

the 18th IEEE Real-Time Systems Symposium, 1997
28. Magnus Lindahl, Paul Pettersson, Wang Yi. Formal design

and analysis of a gear-box controller: an industrial case
study using Uppaal. Technical Report ASTEC 09/97, Dept.
of Computer Systems, Uppsala University, August 1997.
Available at http://www.docs.uu.se/docs/rtmv/papers/lpw-
astec-97.ps.gz

29. Henrik Lönn, Paul Pettersson. Formal Verification of a TDMA
Protocol Startup Mechanism. Accepted for presentation at the
Pacific Rim International Symposium on Fault-Tolerant Sys-
tems, December 1997

30. R. Milner. Communication and Concurrency. Englewood
Cliffs, NJ: Prentice Hall, 1989

31. A. Olivero, J. Sifakis, S. Yovine. Using abstractions for the ver-
ification of linear hybrids systems. In Proc. of 7th Int. Conf. on

Appendix A: BNF for ta-format

Ita → VarList ProcList Globals
VarList → ε | Channel VarList | Var VarList
ProcList → Proc | Proc ProcList
Globals → system IdList ;
Channel → urgent chan IdList ;

| chan IdList ;
Var → Type IdList ;
Proc → process Id { ProcBody }
IdList → Id | Id , IdList
ProcBody → StateDecls TransDecls
StateDecls → state IdList ; commit IdList ; init Id ;

| state IdList ; init Id ;

Transdecls → trans TransList ;
TransList → Trans | Trans , TransList
Trans → Id SInv -> Id { OpG OpS OpA }

| -> Id { OpG OpS OpA }
SInv → ε | { InvList }
InvList → Inv | Inv , InvList
Inv → Id <= Nat | Id < Nat
OpG → ε | guard GuardList ;
OpS → ε | Id! | Id?
OpA → ε | assign AssignList ;
GuardList → Guard | Guard , GuardList
AssignList → Assign | Assign , AssignList
Type → clock | int
Assign → ClockAssign | IntAssign
Guard → Id RelOp Nat | Id RelOp Id Op Nat
ClockAssign → Id := Nat
IntAssign → Id := IntExpr
IntExpr → Int * Id Op Nat | Id Op Nat | Id | Int
RelOp → < | <= | >= | > | ==
Op → + | -
Id → Alpha | IdAlphaNum
Nat → Num | Num Nat
Int → Nat | -Nat
Alpha → A | . . . | Z | a | . . . | z
Num → 0 | . . . | 9
AlphaNum → Alpha | Num | _

Computer Aided Verification, Lecture Notes in Computer Sci-
ence 818, Berlin Heidelberg New York: Springer-Verlag 1994

32. N. Shankar. Verification of real-time systems using PVS. In
Proc. of 5th Int. Conf. on Computer Aided Verification, Lec-
ture Notes in Computer Science 697. Berlin Heidelberg New
York: Springer-Verlag, 1993

33. Mihalis Yannakakis, David Lee. An efficient algorithm for
minimizing real-time transition systems. In Proc. of 5th Int.
Conf. on Computer Aided Verification, Lecture Notes in Com-
puter Science 697, pp. 210–224, Berlin Heidelberg New York:
Springer-Verlag, 1993

34. Wang Yi, Paul Pettersson, Mats Daniels. Automatic veri-
fication of real-time communicating systems by constraint-
solving. In Proc. of the 7th International Conference on For-
mal Description Techniques, 1994

Appendix B: BNF for q-format

Prop → E<> StateProp | A[] StateProp
StateProp → AtomicProp | (StateProp)

| not StateProp
| StateProp or StateProp
| StateProp and StateProp
| StateProp imply StateProp

AtomicProp → Id.Id | Id RelOp Nat
| Id RelOp Id Op Nat

RelOp → < | <= | >= | > | ==
Op → + | -
Id → Alpha | Id AlphaNum
Nat → Num | Num Nat
Alpha → A | . . . | Z | a | . . . | z
Num → 0 | . . . | 9
AlphaNum → Alpha | Num | _

