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What is regression test?

« Purpose of regression test

— To ensure that the modifications do not introduce new bugs into
previously validated code.

« Regression test mainly carried out unmodified parts of the program.
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Figure 1: Activities that take place during software maintenance and regression testing.
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Blue: program changes
Red: test boundary

« Regression test is a necessary but expensive maintenance activity.

« To optimize regression test, many techniques are proposed.
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Classification of regression test — by approach

« Regression test selection (RTS) techniques

— Select a sub-set of valid test cases from an initial test suite (T) to test
that the affected but unmodified parts.

— Identification of the affected parts
— Test case selection

« Regression test suite minimization (TSM) techniques

— Eliminate redundant test cases such that the coverage achieved by
initial test case suite.

« Regression test case prioritization (TCP) techniques

— Higher priority (fault-detection capability) test case execution should
taken earlier.
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Classification of regression test

« By program paradigms
— Procedural, object-oriented, component-based, database, aspect, and
web applications.

« By model, graph
— Procedural: data flow-based, module level firewall-based,
differencing-based, control flow analysis-based

— Object-oriented: firewall-based, program model-based, design model-
based, specification-based

« By develop level
— System, unit, integration
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Class of RTS Tech-
nigues

References

Key Features

Merits

Demerits

Dataflow  analysis-basad
techniques

[37. 43, 44, 92]

Based on dataflow and structural
coverage criteria

Can analyze both intra- and inter-
procedural modifications provided the
maodifications alter some def-use rela-

Low on safety, imprecise

Lions
Slicing-basad techniguas [7. 10, 2] Based on slicing of programs or  Can analyze both intra- and inter-  Low on safety, imprecise, com-
dzpendznce graph modals procedural modifications putationally mom  expensive
than dataflow technigues
Module level firewall- [536, 58] Based on analyzing dependen- Comparatively more efficient as anal- Low on safety. and highly im-
based techniques cigs among modules yais of source code is limied to only  precise
maodified modules
Modified code entity- [17] Level of granularity can be  Safe, and most efficient procedural Highly imprcisa
based technique adaptad ETS technique
Tax tual differencing-  [97. 98, 30] Based on textual differencing of  5afe, and comparatively easy toimple-  Imprecise, and difficult to adapt
based technique C programs ment a prototype to other languages, maybe inef-
ficient for largs programs
Graph walk-based tech-  [80] Based on analysis of conirol Safe and most precise procedural BTS Less efficient than [17, 56, 58]

nigue

flow models

technigque

B
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Table 1: A comparison of RTS techniques for procedural programs.
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Concepts related to regression testing

« Pls a program.
« P’is a modified P

e Gis aCFG for P
e G’is a CFG for P

« tis a test case.

« ET(P(t)) is the execution trace of a test case fon a program P.
— Sequence of a statements in Pwhen tis executed.

« nis a node of ET(P(t)).
n'is a node of ET(P(t).
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Graph walk-based technique
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Figure 5: Procedures twovisits and twovisits', and their CFGs.

 Find states from G and G
e Check successor n and n’the states.

 If they are not identical, the edges that lead to the nodes are
dangerous edges.
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DFA model-based approach
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Figure 1: Example programs F and F, their corresponding control flow graphs & and &, and the intersection graph &' of G and &.

« Modeling CFG G for a program P as a deterministic finite state
automaton (DFA) M.
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