Regression Test Selection
Techniques

Sanghyun Yoon
2012. 10. 12

http://cse.konkuk.ac.kr/
http://cse.konkuk.ac.kr/

Contents

What is regression test?

« Classification of regression test
« Concepts related to regression testing
« Graph walk-based technique

« DFA model-based approach

‘ : ,:DEPENDAE!LE SOFTWARE
| | LABORATORY

http://cse.konkuk.ac.kr/

KU EKONKEUK
UNIVERSITY

What is regression test?

« Purpose of regression test

— To ensure that the modifications do not introduce new bugs into
previously validated code.

« Regression test mainly carried out unmodified parts of the program.

Unresolved
issues

Code
modifications

B Software User Change Regression MNew software o
* . release feedback = | requirements testing version release | 7
~ \==-___Regression___---

~ . Iteratiofyors .-

Resolution
testing

Figure 1: Activities that take place during software maintenance and regression testing.

EPENDABLE SOFTWARE
LABORATORY

http://cse.konkuk.ac.kr/

Blue: program changes
Red: test boundary

« Regression test is a necessary but expensive maintenance activity.

« To optimize regression test, many techniques are proposed.

EPENDABLE SOFTWARE
LABORATORY

http://cse.konkuk.ac.kr/

Classification of regression test — by approach

« Regression test selection (RTS) techniques

— Select a sub-set of valid test cases from an initial test suite (T) to test
that the affected but unmodified parts.

— Identification of the affected parts
— Test case selection

« Regression test suite minimization (TSM) techniques

— Eliminate redundant test cases such that the coverage achieved by
initial test case suite.

« Regression test case prioritization (TCP) techniques

— Higher priority (fault-detection capability) test case execution should
taken earlier.

http://cse.konkuk.ac.kr/

Classification of regression test

« By program paradigms
— Procedural, object-oriented, component-based, database, aspect, and
web applications.

« By model, graph
— Procedural: data flow-based, module level firewall-based,
differencing-based, control flow analysis-based

— Object-oriented: firewall-based, program model-based, design model-
based, specification-based

« By develop level
— System, unit, integration

http://cse.konkuk.ac.kr/

Class of RTS Tech-
nigues

References

Key Features

Merits

Demerits

Dataflow analysis-basad
techniques

[37. 43, 44, 92]

Based on dataflow and structural
coverage criteria

Can analyze both intra- and inter-
procedural modifications provided the
maodifications alter some def-use rela-

Low on safety, imprecise

Lions
Slicing-basad techniguas [7. 10, 2] Based on slicing of programs or Can analyze both intra- and inter- Low on safety, imprecise, com-
dzpendznce graph modals procedural modifications putationally mom expensive
than dataflow technigues
Module level firewall- [536, 58] Based on analyzing dependen- Comparatively more efficient as anal- Low on safety. and highly im-
based techniques cigs among modules yais of source code is limied to only precise
maodified modules
Modified code entity- [17] Level of granularity can be Safe, and most efficient procedural Highly imprcisa
based technique adaptad ETS technique
Tax tual differencing- [97. 98, 30] Based on textual differencing of 5afe, and comparatively easy toimple- Imprecise, and difficult to adapt
based technique C programs ment a prototype to other languages, maybe inef-
ficient for largs programs
Graph walk-based tech- [80] Based on analysis of conirol Safe and most precise procedural BTS Less efficient than [17, 56, 58]

nigue

flow models

technigque

B

EPENDABLE SOFTWARE
LABORATORY

Table 1: A comparison of RTS techniques for procedural programs.

http://cse.konkuk.ac.kr/

Concepts related to regression testing

« Pls a program.
« P’is a modified P

e Gis aCFG for P
e G’is a CFG for P

« tis a test case.

« ET(P(t)) is the execution trace of a test case fon a program P.
— Sequence of a statements in Pwhen tis executed.

« nis a node of ET(P(t)).
n'is a node of ET(P(t).

http://cse.konkuk.ac.kr/

Graph walk-based technique

'fer'tr.\ ’g tJ?H“‘ .
twovisits (x) WERETYY \entry) twovisits’ (x)

{ l {
251 if (x=0) P1° if (%=0)

52 goto L1 T \; T F 82 goto L1

else - — “—, else
C = 51\" 52 53¢
N Go—(» & & s print(n1n)
g3 print{"1"] | endif
. ,r"'-_ P — ¥ ' 2
endif (54 | (_5_4:} S4 exit
s4 exit || | \L L1:
} P i - S5° print("2")
(exiv) (85— (exit] }
Figure 5: Procedures twovisits and twovisits', and their CFGs.

 Find states from G and G
e Check successor n and n’the states.

 If they are not identical, the edges that lead to the nodes are
dangerous edges.

() DEPENDABLE SOFTWARE
1 LABORATORY
PAN Y 2

http://cse.konkuk.ac.kr/

I§ EKONKEUK
UN v

e

UF R AT A e ye e

ulporithm SelectInterlests|
input PP base amd m

output pet sin b - o in regression keting 2
it T # thains felds mome and status

1. begin
1. =g

i. II.I'!:!'I'I-'.IIE' &
i SelectTestsd| /%, '))
5. rebuwrn 47

fi. end

wlgorithm Jolectlostsd| I, 00)
input

versions al a par

g ils siofus Lo “visil
L CFLE far B oamd) with

pry weiles Foand B

11 Compareld| F, F
11. i Lhe exil T dar sme pode ¥ ojn 05
12, el 1 e
15, eodilf
14, end
procedore Jompared| N, &'

= .ili. 05 and £

input Noand &'

bregin
mark ¥ 4N

For sach 5w

Ain 7 do
PN, Tar e il
™ Pheat | W',)
PiF 00wt markesd 07 wisited”
if -+ LEquivalent| [’ []
(a 1" TestsOnEdge(|[&, ('])
else
for sach pra
if e
Selectlests2| (2, ()]
eodil
ol For
if any pme
lomparel| [,
codilf
evodil
eodil
condfor
el

+ s wnlaly
g laalee] L

bwre L0 ealled in O do
alle ar stofes lar 0 i wal “viited” ar “saelect=all”

chiwress called in O do nat heve stofes Hag “ael

Figares U Algorithm for terprocedoral test selection,

EPENDABLE SOFTWARE
LABORATORY

http://cse.konkuk.ac.kr/

DFA model-based approach

P S ®» 9 . ®, MG
itA { e < L N
ifB{U} (B) (B (C2) OB GO
vV t f g = g : /
,-./ ~ t, \f £ | f
! ot oI ot |t [u,U WW ;
ifC (W) Y) X ’ |
X \ . K‘“ :_\1""1‘5- | \
V) V) T ViV
\'. F) '-\.‘ __.-' 1
A i | ‘ |
P ‘ ('C;\\ P | II C.C i i'
;/\. .- 61; f | | ! \ ;
iTA | FVlE: ;/\ o r/ R
: W P N \ :|accept|
f8(U) =Y ORIy, =1
ifC,{Y}else{Z} L - T/ reject]
}else | X SO |
fC,{W) R
(x
x L

Figure 1: Example programs F and F, their corresponding control flow graphs & and &, and the intersection graph &' of G and &.

« Modeling CFG G for a program P as a deterministic finite state
automaton (DFA) M.

R h
;';‘DEPENDABLE SOFTWARE
N LABORATORY

L ¥

http://cse.konkuk.ac.kr/

