
Software Testing and Analysis
Process, Principles, and Techniques

Summary

JUNBEOM YOO

Dependable Software Laboratory
KONKUK University

http://dslab.konkuk.ac.kr

Ver. 1.0 (2012.11)

※ This lecture note is based on materials from Mauro Pezzè and Michal Young, 2007.
※ Anyone can use this material freely without any notification.

Part I. Fundamentals of Test and Analysis

Verification and Validation

• Validation: “Does the software system meets the user's real needs?”
– Are we building the right software?

• Verification: “Does the software system meets the requirements specifications?”
– Are we building the software right?

Actual
Requirements

SW
Specs

System

Validation Verification

3

V&V Depends on the Specification

• Unverifiable (but validatable) specification: “If a user presses a request
button at floor i, an available elevator must arrive at floor i soon.“

• Verifiable specification: “If a user presses a request button at floor i, an
available elevator must arrive at floor i within 30 seconds“

• Unverifiable (but validatable) specification: “If a user presses a request
button at floor i, an available elevator must arrive at floor i soon.“

• Verifiable specification: “If a user presses a request button at floor i, an
available elevator must arrive at floor i within 30 seconds“

4

1 2 3 4 5 6 7 8

V-Model of V&V Activities

5

Undeciability of Correctness Properties

• Correctness properties are not decidable.
– Halting problem can be embedded in almost every property of interest.

6

Decision Procedure

Property

Program

Pass/Fail

Verification Trade-off Dimensions

• Optimistic inaccuracy
– We may accept some programs

that do not possess the property.
– It may not detect all violations.
– Example: Testing

• Pessimistic inaccuracy
– It is not guaranteed to accept a

program even if the program
does possess the property being
analyzed, because of false alarms.

– Example: Automated program analysis

• Simplified properties
– It reduces the degree of freedom

by simplifying the property to
check.

– Example: Model Checking

Perfect verification of
arbitrary properties by
logical proof or exhaustive
testing (Infinite effort)

Model checking:
Decidable but possibly
intractable checking of

simple temporal
properties.

Theorem proving:
Unbounded effort to

verify general
properties.

Data flow

• Optimistic inaccuracy
– We may accept some programs

that do not possess the property.
– It may not detect all violations.
– Example: Testing

• Pessimistic inaccuracy
– It is not guaranteed to accept a

program even if the program
does possess the property being
analyzed, because of false alarms.

– Example: Automated program analysis

• Simplified properties
– It reduces the degree of freedom

by simplifying the property to
check.

– Example: Model Checking

7

Precise analysis of
simple syntactic
properties.

Typical testing
techniques

analysis

Optimistic
inaccuracy

Pessimistic
inaccuracy

Simplified
properties

Software Quality and Process

• Qualities cannot be added after development
– Quality results from a set of inter-dependent activities.
– Analysis and testing are crucial but far from sufficient.

• Testing is not a phase, but a lifestyle
– Testing and analysis activities occur from early in requirements engineering

through delivery and subsequent evolution.
– Quality depends on every part of the software process.

• An essential feature of software processes is that software test and
analysis is thoroughly integrated and not an afterthought

• Qualities cannot be added after development
– Quality results from a set of inter-dependent activities.
– Analysis and testing are crucial but far from sufficient.

• Testing is not a phase, but a lifestyle
– Testing and analysis activities occur from early in requirements engineering

through delivery and subsequent evolution.
– Quality depends on every part of the software process.

• An essential feature of software processes is that software test and
analysis is thoroughly integrated and not an afterthought

8

Quality Process

• Quality process
– A set of activities and responsibilities

• Focused on ensuring adequate dependability
• Concerned with project schedule or with product usability

• Quality process provides a framework for
– Selecting and arranging A&T activities
– Considering interactions and trade-offs with other important goals

• Quality process
– A set of activities and responsibilities

• Focused on ensuring adequate dependability
• Concerned with project schedule or with product usability

• Quality process provides a framework for
– Selecting and arranging A&T activities
– Considering interactions and trade-offs with other important goals

9

Planning and Monitoring

• Quality process
– A&T planning
– Balances several activities across the whole development process
– Selects and arranges them to be as cost-effective as possible
– Improves early visibility

• A&T planning is integral to the quality process.
– Quality goals can be achieved only through careful planning.

• Quality process
– A&T planning
– Balances several activities across the whole development process
– Selects and arranges them to be as cost-effective as possible
– Improves early visibility

• A&T planning is integral to the quality process.
– Quality goals can be achieved only through careful planning.

10

Quality Goals

• Goal must be further refined into a clear and reasonable set of objectives.

• Product quality: goals of software quality engineering
• Process quality: means to achieve the goals

• Product qualities
– Internal qualities: invisible to clients

• maintainability, flexibility, reparability, changeability
– External qualities: directly visible to clients

• Usefulness:
– usability, performance, security, portability, interoperability

• Dependability:
– correctness, reliability, safety, robustness

• Goal must be further refined into a clear and reasonable set of objectives.

• Product quality: goals of software quality engineering
• Process quality: means to achieve the goals

• Product qualities
– Internal qualities: invisible to clients

• maintainability, flexibility, reparability, changeability
– External qualities: directly visible to clients

• Usefulness:
– usability, performance, security, portability, interoperability

• Dependability:
– correctness, reliability, safety, robustness

11

Dependability Properties

• Correctness
– A program is correct if it is consistent with its specification.
– Seldom practical for non-trivial systems

• Reliability
– Likelihood of correct function for some ”unit” of behavior
– Statistical approximation to correctness (100% reliable = correct)

• Safety
– Concerned with preventing certain undesirable behavior, called hazards

• Robustness
– Providing acceptable (degraded) behavior under extreme conditions
– Fail softly

for
Normal

Operation

• Correctness
– A program is correct if it is consistent with its specification.
– Seldom practical for non-trivial systems

• Reliability
– Likelihood of correct function for some ”unit” of behavior
– Statistical approximation to correctness (100% reliable = correct)

• Safety
– Concerned with preventing certain undesirable behavior, called hazards

• Robustness
– Providing acceptable (degraded) behavior under extreme conditions
– Fail softly

12

for
Abnormal
Operation

&
Situation

An Example of Dependability Property

• Correctness, Reliability:
– Let traffic pass according to

correct pattern and central
scheduling

• Robustness, Safety:
– Provide degraded function when

it fails
– Never signal conflicting greens

• Blinking red / blinking
yellow is better than no
lights.

• No lights is better than
conflicting greens.

• Correctness, Reliability:
– Let traffic pass according to

correct pattern and central
scheduling

• Robustness, Safety:
– Provide degraded function when

it fails
– Never signal conflicting greens

• Blinking red / blinking
yellow is better than no
lights.

• No lights is better than
conflicting greens.

13

14

Part II. Basic Techniques

Model

• A model is
– A representation that is simpler than the artifact it represents,
– But preserves some important attributes of the actual artifact

• Our concern is with models of program execution.

16

Intraprocedural Control Flow Graph

• Called “Control Flow Graph” or “CGF”
– A directed graph (N, E)

• Nodes
– Regions of source code (basic blocks)
– Basic block = maximal program region with a single entry and single exit

point
– Statements are often grouped in single regions to get a compact model.
– Sometime single statements are broken into more than one node to model

control flow within the statement.

• Directed edges
– Possibility that program execution proceeds from the end of one region

directly to the beginning of another

• Called “Control Flow Graph” or “CGF”
– A directed graph (N, E)

• Nodes
– Regions of source code (basic blocks)
– Basic block = maximal program region with a single entry and single exit

point
– Statements are often grouped in single regions to get a compact model.
– Sometime single statements are broken into more than one node to model

control flow within the statement.

• Directed edges
– Possibility that program execution proceeds from the end of one region

directly to the beginning of another

17

An Example of CFG

public static String collapseNewlines(String argStr)
{

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}

{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ;

{
char ch = argStr.charAt(cIdx);

cIdx < argStr.length();

True

public static String collapseNewlines(String argStr)

False

b2

b4

b3

public static String collapseNewlines(String argStr)
{

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}

18

if (ch != '\n'

True

{
argBuf.append(ch);
last = ch;

}

True

}
cIdx++)

return argBuf.toString();
}

False

False

|| last != '\n') b5

b6

b7

b8

Call Graphs

• “Interprocedural Control Flow Graph”
– A directed graph (N, E)

• Nodes
– Represent procedures, methods, functions, etc.

• Edges
– Represent ‘call’ relation

• Call graph presents many more design issues and trade-off than CFG.
– Overestimation of call relation
– Context sensitive/insensitive

• “Interprocedural Control Flow Graph”
– A directed graph (N, E)

• Nodes
– Represent procedures, methods, functions, etc.

• Edges
– Represent ‘call’ relation

• Call graph presents many more design issues and trade-off than CFG.
– Overestimation of call relation
– Context sensitive/insensitive

19

Overestimation in a Call Graph

• The static call graph includes calls through dynamic bindings that never
occur in execution.

public class C {
public static C cFactory(String kind) {

if (kind == "C") return new C();
if (kind == "S") return new S();
return null;

}
void foo() {

System.out.println("You called the parent's method");
}
public static void main(String args[]) {

(new A()).check();
}

}
class S extends C {

void foo() {
System.out.println("You called the child's method");

}
}
class A {

void check() {
C myC = C.cFactory("S");
myC.foo();

}
}

• The static call graph includes calls through dynamic bindings that never
occur in execution.

20

public class C {
public static C cFactory(String kind) {

if (kind == "C") return new C();
if (kind == "S") return new S();
return null;

}
void foo() {

System.out.println("You called the parent's method");
}
public static void main(String args[]) {

(new A()).check();
}

}
class S extends C {

void foo() {
System.out.println("You called the child's method");

}
}
class A {

void check() {
C myC = C.cFactory("S");
myC.foo();

}
}

A.check()

C.foo() S.foo() CcFactory(string)

never occur in execution

Context Sensitive/Insensitive Call Graphs

public class Context {
public static void main(String args[]) {

Context c = new Context();
c.foo(3);
c.bar(17);

}

void foo(int n) {
int[] myArray = new int[n];
depends(myArray, 2) ;

}

void bar(int n) {
int[] myArray = new int[n];
depends(myArray, 16) ;

}

void depends(int[] a, int n) {
a[n] = 42;

}
}

main main

21

public class Context {
public static void main(String args[]) {

Context c = new Context();
c.foo(3);
c.bar(17);

}

void foo(int n) {
int[] myArray = new int[n];
depends(myArray, 2) ;

}

void bar(int n) {
int[] myArray = new int[n];
depends(myArray, 16) ;

}

void depends(int[] a, int n) {
a[n] = 42;

}
}

C.foo C.bar

C.depends

C.foo(3) C.bar(17)

C.depends(int(3) a,2) C.depends (int(17) a,16)

< Context Insensitive > < Context Sensitive >

Finite State Machines

• CFGs can be extracted from programs.
• FSMs are constructed prior to source code, and serve as specifications.

– A directed graph (N, E)
– CFG and FSM are duals.

• Nodes
– A finite set of states

• Edges
– A set of transitions among states

• CFGs can be extracted from programs.
• FSMs are constructed prior to source code, and serve as specifications.

– A directed graph (N, E)
– CFG and FSM are duals.

• Nodes
– A finite set of states

• Edges
– A set of transitions among states

22

LF CR EOF other char

e e / emit l / emit d / - w / append

w e / emit l / emit d / emit w / append

l e / - d / - w / append

Correctness Relations for FSM Models

23

Abstract Function for Modeling FSMs

24

Modeling with
abstraction

Why Data Flow Models Need?

• Models from Chapter 5 emphasized control flow only.
– Control flow graph, call graph, finite state machine

• We also need to reason about data dependence.
– To reason about transmission of information through program variables
– “Where does this value of x come from?”
– “What would be affected by changing this? “
– ...

• Many program analyses and test design techniques use data flow
information and dependences

– Often in combination with control flow

• Models from Chapter 5 emphasized control flow only.
– Control flow graph, call graph, finite state machine

• We also need to reason about data dependence.
– To reason about transmission of information through program variables
– “Where does this value of x come from?”
– “What would be affected by changing this? “
– ...

• Many program analyses and test design techniques use data flow
information and dependences

– Often in combination with control flow

25

Definition-Use Pairs

• A def-use (du) pair associates a point in a program where a value is
produced with a point where it is used

• Definition: where a variable gets a value
– Variable declaration
– Variable initialization
– Assignment
– Values received by a parameter

• Use: extraction of a value from a variable
– Expressions
– Conditional statements
– Parameter passing
– Returns

• A def-use (du) pair associates a point in a program where a value is
produced with a point where it is used

• Definition: where a variable gets a value
– Variable declaration
– Variable initialization
– Assignment
– Values received by a parameter

• Use: extraction of a value from a variable
– Expressions
– Conditional statements
– Parameter passing
– Returns

26

Def-Use Pairs

...
if (...) {

x = ... ;
...
}
y = ... + x + ... ;
…

x = ...

if (...) {

...

Definition: x
gets a value

27

...
if (...) {

x = ... ;
...
}
y = ... + x + ... ;
…

x = ...

...

y = ... + x + ...

...

Use: the value of
x is extractedDef-Use

path

Definition-Clear & Killing

• A definition-clear path is a path along the CFG from a definition to a use
of the same variable without another definition of the variable between.

• If, instead, another definition is present on the path, then the latter
definition kills the former

• A def-use pair is formed if and only if there is a definition-clear path
between the definition and the use

• A definition-clear path is a path along the CFG from a definition to a use
of the same variable without another definition of the variable between.

• If, instead, another definition is present on the path, then the latter
definition kills the former

• A def-use pair is formed if and only if there is a definition-clear path
between the definition and the use

28

Definition-Clear & Killing

x = ... // A: def x
q = ...
x = y; // B: kill x, def x
z = ...
y = f(x); // C: use x x = ...

...

Definition: x
gets a valueA

29

...

Use: the value of
x is extracted

x = y

Definition: x gets
a new value, old
value is killed

...

y = f(x)

B

C

Path B..C is
definition-clear

Path A..C is
not definition-clear

(Direct) Data Dependence Graph

• Direct data dependence graph
– A direct graph (N, E)

• Nodes: as in the control flow graph (CFG)
• Edges: def-use (du) pairs, labelled with the variable name

30

x

/** Euclid's algorithm */

public int gcd(int x, int y) {
int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x

}

Control Dependence

• Data dependence
– “Where did these values come from?”

• Control dependence
– “Which statement controls whether this statement executes?”
– A directed graph

• Nodes: as in the CFG
• Edges: unlabelled, from entry/branching points to controlled blocks

• Data dependence
– “Where did these values come from?”

• Control dependence
– “Which statement controls whether this statement executes?”
– A directed graph

• Nodes: as in the CFG
• Edges: unlabelled, from entry/branching points to controlled blocks

31

/** Euclid's algorithm */

public int gcd(int x, int y) {
int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x

}

Dominator

• Pre-dominators in a rooted, directed graph can be used to make this
intuitive notion of “controlling decision” precise.

• Node M dominates node N, if every path from the root to N passes
through M.

– A node will typically have many dominators, but except for the root, there is a
unique immediate dominator of node N which is closest to N on any path
from the root, and which is in turn dominated by all the other dominators of
N.

– Because each node (except the root) has a unique immediate dominator, the
immediate dominator relation forms a tree.

• Post-dominators are calculated in the reverse of the control flow graph,
using a special “exit” node as the root.

• Pre-dominators in a rooted, directed graph can be used to make this
intuitive notion of “controlling decision” precise.

• Node M dominates node N, if every path from the root to N passes
through M.

– A node will typically have many dominators, but except for the root, there is a
unique immediate dominator of node N which is closest to N on any path
from the root, and which is in turn dominated by all the other dominators of
N.

– Because each node (except the root) has a unique immediate dominator, the
immediate dominator relation forms a tree.

• Post-dominators are calculated in the reverse of the control flow graph,
using a special “exit” node as the root.

32

An Example of Dominators

• A pre-dominates all nodes.
• G post-dominates all nodes.

• F and G post-dominate E.
• G is the immediate post-

dominator of B.

• C does not post-dominate B.

• B is the immediate pre-
dominator of G.

• F does not pre-dominate G.

A

B

• A pre-dominates all nodes.
• G post-dominates all nodes.

• F and G post-dominate E.
• G is the immediate post-

dominator of B.

• C does not post-dominate B.

• B is the immediate pre-
dominator of G.

• F does not pre-dominate G.

33

C

D

E

F

G

More Precise Definition of Control Dependence

• We can use post-dominators to give a more precise definition of control
dependence

– Consider again a node N that is reached on some but not all execution paths.
– There must be some node C with the following property:

• C has at least two successors in the control flow graph (i.e., it represents a control
flow decision).

• C is not post-dominated by N.
• There is a successor of C in the control flow graph that is post-dominated by N.

– When these conditions are true, we say node N is control-dependent on
node C.

• Intuitively, C is the last decision that controls whether N executes.

• We can use post-dominators to give a more precise definition of control
dependence

– Consider again a node N that is reached on some but not all execution paths.
– There must be some node C with the following property:

• C has at least two successors in the control flow graph (i.e., it represents a control
flow decision).

• C is not post-dominated by N.
• There is a successor of C in the control flow graph that is post-dominated by N.

– When these conditions are true, we say node N is control-dependent on
node C.

• Intuitively, C is the last decision that controls whether N executes.

34

An Example of Control Dependence

A

B

C E

Execution of F is
not inevitable at B

Execution of F is
inevitable at E

35

C

D

E

F

G
F is control-dependent on B,

the last point at which its
execution was not inevitable

Execution of F is
inevitable at E

Symbolic Execution

• Builds predicates that characterize
– Conditions for executing paths
– Effects of the execution on program state

• Bridges program behavior to logic

• Finds important applications in
– Program analysis
– Test data generation
– Formal verification (proofs) of program correctness

• Rigorous proofs of properties of critical subsystems
– Example: safety kernel of a medical device

• Formal verification of critical properties particularly resistant to dynamic testing
– Example: security properties

• Formal verification of algorithm descriptions and logical designs
– less complex than implementations

• Builds predicates that characterize
– Conditions for executing paths
– Effects of the execution on program state

• Bridges program behavior to logic

• Finds important applications in
– Program analysis
– Test data generation
– Formal verification (proofs) of program correctness

• Rigorous proofs of properties of critical subsystems
– Example: safety kernel of a medical device

• Formal verification of critical properties particularly resistant to dynamic testing
– Example: security properties

• Formal verification of algorithm descriptions and logical designs
– less complex than implementations

36

Symbolic State and Interpretation

• Tracing execution with symbolic values and expressions is the basis of
symbolic execution.

– Values are expressions over symbols.
– Executing statements computes new expressions with the symbols.

Execution with concrete values

(before)
low 12
high 15
mid -

mid = (high + low) / 2

(after)
low 12
high 15
mid 13

Execution with symbolic values

(before)
low L
high H
mid -

mid = (high + low) / 2

(after)
Low L
high H
mid (L+H) / 2

37

Execution with concrete values

(before)
low 12
high 15
mid -

mid = (high + low) / 2

(after)
low 12
high 15
mid 13

Execution with symbolic values

(before)
low L
high H
mid -

mid = (high + low) / 2

(after)
Low L
high H
mid (L+H) / 2

Tracing Execution with Symbolic Executions

char *binarySearch(char *key, char *dictKeys[],
char *dictValues[], int dictSize) {

int low = 0;
int high = dictSize - 1;
int mid;
int comparison;

while (high >= low) {
mid = (high + low) / 2;
comparison = strcmp(dictKeys[mid], key);
if (comparison < 0) {
low = mid + 1;

} else if (comparison > 0) {
high = mid - 1;

} else {
return dictValues[mid];

}
}
return 0;

}

Execution with symbolic values

(before)
low = 0

∧ high = (H-1)/2 -1
∧ mid = (H-1)/2

while (high >= low) {

(after)
low = 0

∧ high = (H-1)/2 -1
∧ mid = (H-1)/2
∧ (H-1)/2 - 1 >= 0
...
∧ not((H-1)/2 - 1 >= 0)

∧∀k, 0 ≤ k < size : dictKeys[k] = key → L
≤ k ≤ H
∧ H ≥ M ≥ L

38

char *binarySearch(char *key, char *dictKeys[],
char *dictValues[], int dictSize) {

int low = 0;
int high = dictSize - 1;
int mid;
int comparison;

while (high >= low) {
mid = (high + low) / 2;
comparison = strcmp(dictKeys[mid], key);
if (comparison < 0) {
low = mid + 1;

} else if (comparison > 0) {
high = mid - 1;

} else {
return dictValues[mid];

}
}
return 0;

}

Execution with symbolic values

(before)
low = 0

∧ high = (H-1)/2 -1
∧ mid = (H-1)/2

while (high >= low) {

(after)
low = 0

∧ high = (H-1)/2 -1
∧ mid = (H-1)/2
∧ (H-1)/2 - 1 >= 0
...
∧ not((H-1)/2 - 1 >= 0)

when true

when false

Summary Information

• Symbolic representation of paths may become extremely complex.

• We can simplify the representation by replacing a complex condition P
with a weaker condition W such that

P => W
– W describes the path with less precision
– W is a summary of P

• Symbolic representation of paths may become extremely complex.

• We can simplify the representation by replacing a complex condition P
with a weaker condition W such that

P => W
– W describes the path with less precision
– W is a summary of P

39

An Example of Summary Information

• If we are reasoning about the correctness of the binary search algorithm,
– In “ mid = (high+low)/2 “

• The weaker condition contains less information, but still enough to
reason about correctness.

Weaker condition:

low = L
∧ high = H
∧ mid = M
∧ L <= M <= H

Complete condition:

low = L
∧ high = H
∧ mid = M
∧ M = (L+H) / 2

• If we are reasoning about the correctness of the binary search algorithm,
– In “ mid = (high+low)/2 “

• The weaker condition contains less information, but still enough to
reason about correctness.

40

Weaker condition:

low = L
∧ high = H
∧ mid = M
∧ L <= M <= H

Complete condition:

low = L
∧ high = H
∧ mid = M
∧ M = (L+H) / 2

Compositional Reasoning

• Follow the hierarchical structure of a program
– at a small scale (within a single procedure)
– at larger scales (across multiple procedures)

• Hoare triple: [pre] block [post]

• If the program is in a state satisfying the precondition pre at entry to the
block, then after execution of the block, it will be in a state satisfying the
postcondition post

• Follow the hierarchical structure of a program
– at a small scale (within a single procedure)
– at larger scales (across multiple procedures)

• Hoare triple: [pre] block [post]

• If the program is in a state satisfying the precondition pre at entry to the
block, then after execution of the block, it will be in a state satisfying the
postcondition post

41

Reasoning about Hoare Triples: Inference

[I ∧C] S [I]

[I] while(C) { S } [I ∧ ¬C]

premise

While loops:
I : invariant
C : loop condition
S : body of the loop

42

[I ∧C] S [I]

[I] while(C) { S } [I ∧ ¬C]

Inference rule says:
if we can verify the premise (top),
then we can infer the conclusion (bottom)

conclusion

Other Inference Rule

if statement:

[P ∧ C] thenpart [Q] [P ∧ ¬C] elsepart [Q]
[P] if (C) {thenpart} else {elsepart} [Q]

43

[P ∧ C] thenpart [Q] [P ∧ ¬C] elsepart [Q]
[P] if (C) {thenpart} else {elsepart} [Q]

Resources and Results

Properties to
be proved

complex
symbolic execution

and formal reasoning
symbolic execution

and formal reasoning

finite state
verification
finite state
verification

applies techniques from
symbolic execution
and formal verification
to models that abstract
the potentially infinite state space
of program behavior
into finite representations

44

Computational
costhighlow

simple

control
and data flow

models

control
and data flow

models

applies techniques from
symbolic execution
and formal verification
to models that abstract
the potentially infinite state space
of program behavior
into finite representations

Finite State Verification Framework

45

The State Space Explosion Problem

• Dining philosophers - looking for deadlock with SPIN

5 phils+forks 145 states
deadlock found

10 phils+forks 18,313 states
error trace too long to be useful

15 phils+forks 148,897 states
error trace too long to be useful

• Team Practice and Homework.

• Dining philosophers - looking for deadlock with SPIN

5 phils+forks 145 states
deadlock found

10 phils+forks 18,313 states
error trace too long to be useful

15 phils+forks 148,897 states
error trace too long to be useful

• Team Practice and Homework.

46

The Model Correspondence Problem

• Verifying correspondence between model and program
– Extract the model from the source code with verified procedures

• Blindly mirroring all details à state space explosion
• Omitting crucial detail à “false alarm” reports

– Produce the source code automatically from the model
• Most applicable within well-understood domains

– Conformance testing
• Combination of FSV and testing is a good tradeoff

• Verifying correspondence between model and program
– Extract the model from the source code with verified procedures

• Blindly mirroring all details à state space explosion
• Omitting crucial detail à “false alarm” reports

– Produce the source code automatically from the model
• Most applicable within well-understood domains

– Conformance testing
• Combination of FSV and testing is a good tradeoff

47

Granularity of Modeling

(a) (a)

(b)

t=i;

(w)

(x)

u=i;

(w)

48

(d)

i = i+1

E E

(c)

t=t+1;

(d)

i=t;

E

(y)

u=u+1;

(z)

i=u;

(z)

i = i+1

E

Analysis of Different Models

• We can find the race only with
fine-grain models.

RacerP RacerQ

t = i;
(a)

t = t+1;
(b)

u = i;
(w)

49

i = t;
(c)

(d)

u = i;

u = u+1;
(x)

i = u;
(y)

(z)

Intentional Models

• Enumerating all reachable states is a limiting factor of finite state
verification.

• We can reduce the space by using intentional (symbolic) representations.
– describe sets of reachable states without enumerating each one individually

• Example (set of Integers)
– Enumeration {2, 4, 6, 8, 10, 12, 14, 16, 18}
– Intentional representation: {x∈N | x mod 2 =0 and 0<x<20}
← “characteristic function”

• Intentional models do not necessarily grow with the size of the set they
represent

• Enumerating all reachable states is a limiting factor of finite state
verification.

• We can reduce the space by using intentional (symbolic) representations.
– describe sets of reachable states without enumerating each one individually

• Example (set of Integers)
– Enumeration {2, 4, 6, 8, 10, 12, 14, 16, 18}
– Intentional representation: {x∈N | x mod 2 =0 and 0<x<20}
← “characteristic function”

• Intentional models do not necessarily grow with the size of the set they
represent

50

OBDD: A Useful Intentional Model

• OBDD (Ordered Binary Decision Diagram)
– A compact representation of Boolean functions

• Characteristic function for transition relations
– Transitions = pairs of states
– Function from pairs of states to Booleans is true, if there is a transition

between the pair.
– Built iteratively by breadth-first expansion of the state space:

• Create a representation of the whole set of states reachable in k+1 steps from the
set of states reachable in k steps

• OBDD stabilizes when all the transitions that can occur in the next step are already
represented in the OBDD.

• OBDD (Ordered Binary Decision Diagram)
– A compact representation of Boolean functions

• Characteristic function for transition relations
– Transitions = pairs of states
– Function from pairs of states to Booleans is true, if there is a transition

between the pair.
– Built iteratively by breadth-first expansion of the state space:

• Create a representation of the whole set of states reachable in k+1 steps from the
set of states reachable in k steps

• OBDD stabilizes when all the transitions that can occur in the next step are already
represented in the OBDD.

51

From OBDD to Symbolic Checking

• Intentional representation itself is not enough.
• We must have an algorithm for determining whether it satisfies the

property we are checking.

• Example: A set of communicating state machines using OBDD
– To represent the transition relation of a set of communicating state machines
– To model a class of temporal logic specification formulas

• Combine OBDD representations of model and specification to produce a
representation of just the set of transitions leading to a violation of the
specification

– If the set is empty, the property has been verified.

• Intentional representation itself is not enough.
• We must have an algorithm for determining whether it satisfies the

property we are checking.

• Example: A set of communicating state machines using OBDD
– To represent the transition relation of a set of communicating state machines
– To model a class of temporal logic specification formulas

• Combine OBDD representations of model and specification to produce a
representation of just the set of transitions leading to a violation of the
specification

– If the set is empty, the property has been verified.

52

Representing Transition Relations as
Boolean Functions

• a Þ b and c
not(a) or (b and c)

• BDD is a decision tree that has
been transformed into an acyclic
graph by merging nodes leading
to identical sub-trees.

a
F T

F T

b
F T

c
F T

• a Þ b and c
not(a) or (b and c)

• BDD is a decision tree that has
been transformed into an acyclic
graph by merging nodes leading
to identical sub-trees.

53

a
F T

F T

b
F T

c
F T

Representing Transition Relations as
Boolean Functions : Steps

A. Assign a label to each state
B. Encode transitions
C. The transition tuples correspond

to paths leading to true, and all
other paths lead to false.

s0 (00)

s1 (01)

b (x0=1)

a (x0=0)

0 0 0 0 0

0 0 0 1 1

x1 x2 x3 x4 x0

x0
0 1

x1
0 1

F T

x1
0 1

x2
0 1

x3
0 1

x4
0 1

x2
0 1

x3
0 1

x4
0 1

sym from state to state

(A)

(B)

(C)

s2 (10)

b (x0=1)

0 1 1 0 1

x3
0 1

A. Assign a label to each state
B. Encode transitions
C. The transition tuples correspond

to paths leading to true, and all
other paths lead to false.

54

s0 (00)

s1 (01)

b (x0=1)

a (x0=0)

0 0 0 0 0

0 0 0 1 1

x1 x2 x3 x4 x0

x0
0 1

x1
0 1

F T

x1
0 1

x2
0 1

x3
0 1

x4
0 1

x2
0 1

x3
0 1

x4
0 1

sym from state to state

(A)

(B)

(C)

s2 (10)

b (x0=1)

0 1 1 0 1

x3
0 1

Intentional vs. Explicit Representations

• Worst case:
– Given a large set S of states,
– a representation capable of distinguishing each subset of S cannot be more

compact on average than the representation that simply lists elements of the
chosen subset.

• Intentional representations work well when they exploit structure and
regularity of the state space.

• Worst case:
– Given a large set S of states,
– a representation capable of distinguishing each subset of S cannot be more

compact on average than the representation that simply lists elements of the
chosen subset.

• Intentional representations work well when they exploit structure and
regularity of the state space.

55

Model Refinement

• Construction of finite state models
– Should balance precision and efficiency

• Often the first model is unsatisfactory
– Report potential failures that are obviously impossible
– Exhaust resources before producing any result

• Minor differences in the model can have large effects on tractability of
the verification procedure.

• Finite state verification as iterative process is required.

• Construction of finite state models
– Should balance precision and efficiency

• Often the first model is unsatisfactory
– Report potential failures that are obviously impossible
– Exhaust resources before producing any result

• Minor differences in the model can have large effects on tractability of
the verification procedure.

• Finite state verification as iterative process is required.

56

Iteration Process

construct an
initial model

attempt verification

57

abstract the model
further

exhausts
computational

resources

make the model
more precise

spurious
results

Refinement 1: Adding Details to the Model

M1 |= P Initial (coarse grain) model
(The counter example that violates P is possible in M1,
but does not correspond to an execution of the real program.)

M2 |= P Refined (more detailed) model
(the counterexample above is not possible in M2 , but a new
counterexamples violates M2 , and does not correspond to an
execution of the real program too.)

....

Mk |= P Refined (final) model
(the counter example that violates P in Mk corresponds to an
execution in the real program.)

M1 |= P Initial (coarse grain) model
(The counter example that violates P is possible in M1,
but does not correspond to an execution of the real program.)

M2 |= P Refined (more detailed) model
(the counterexample above is not possible in M2 , but a new
counterexamples violates M2 , and does not correspond to an
execution of the real program too.)

....

Mk |= P Refined (final) model
(the counter example that violates P in Mk corresponds to an
execution in the real program.)

58

Refinement 2: Add Premises to the Property

Initial (coarse grain) model

M |= P

Add a constraint C1 that eliminates the bogus behavior

M |= C1 Þ P

M |= (C1 and C2) Þ P
....

Until the verification succeeds or produces a valid counter example

Initial (coarse grain) model

M |= P

Add a constraint C1 that eliminates the bogus behavior

M |= C1 Þ P

M |= (C1 and C2) Þ P
....

Until the verification succeeds or produces a valid counter example

59

60

Part III. Problems and Methods

Terminology in Testing

Terms Descriptions

Test case a set of inputs, execution conditions, and a pass/fail criterion

Test case specification
(Test specification) a requirement to be satisfied by one or more test cases

Test obligation a partial test case specification, requiring some property deemed
important to thorough testing

62

Test obligation a partial test case specification, requiring some property deemed
important to thorough testing

Test suite a set of test cases

Test
(Test execution) the activity of executing test cases and evaluating their results

Adequacy criterion a predicate that is true (satisfied) or false of a áprogram, test suiteñ pair

Source of Test Specification

Testing Other names
Source of test specification

Example

Functional
Testing

Black box testing
Specification-based testing

Software specification

If specification requires robust recovery from power
failure, test obligations should include simulated
power failure.

Structural
Testing White box testing

Source codeStructural
Testing White box testing

Source code

Traverse each program loop one or more times

Model-based
Testing

Models of system
• Models used in specification or design
• Models derived from source code

Exercise all transitions in communication protocol
model

Fault-based
Testing

Hypothesized faults, common bugs

Check for buffer overflow handling (common
vulnerability) by testing on very large inputs

63

Adequacy Criteria

• Adequacy criterion = Set of test obligations

• A test suite satisfies an adequacy criterion, iff
– All the tests succeed (pass), and
– Every test obligation in the criterion is satisfied by at least one of the test

cases in the test suite.

– Example:
• “The statement coverage adequacy criterion is satisfied by test suite S for

program P, if each executable statement in P is executed by at least one
test case in S, and the outcome of each test execution was pass.”

• Adequacy criterion = Set of test obligations

• A test suite satisfies an adequacy criterion, iff
– All the tests succeed (pass), and
– Every test obligation in the criterion is satisfied by at least one of the test

cases in the test suite.

– Example:
• “The statement coverage adequacy criterion is satisfied by test suite S for

program P, if each executable statement in P is executed by at least one
test case in S, and the outcome of each test execution was pass.”

64

Coverage

• Measuring coverage (% of satisfied test obligations) can be a useful indicator of
– Progress toward a thorough test suite (thoroughness of test suite)

– Trouble spots requiring more attention in testing

• But, coverage is only a proxy for thoroughness or adequacy.
– It’s easy to improve coverage without improving a test suite (much easier

than designing good test cases)
– The only measure that really matters is (cost-) effectiveness.

• Measuring coverage (% of satisfied test obligations) can be a useful indicator of
– Progress toward a thorough test suite (thoroughness of test suite)

– Trouble spots requiring more attention in testing

• But, coverage is only a proxy for thoroughness or adequacy.
– It’s easy to improve coverage without improving a test suite (much easier

than designing good test cases)
– The only measure that really matters is (cost-) effectiveness.

65

Comparing Criteria

• Can we distinguish stronger from weaker adequacy criteria?

• Analytical approach
– Describe conditions under which one adequacy criterion is provably stronger

than another
– Just a piece of the overall “effectiveness” question
– Stronger = gives stronger guarantees

→ Subsumes relation

• Can we distinguish stronger from weaker adequacy criteria?

• Analytical approach
– Describe conditions under which one adequacy criterion is provably stronger

than another
– Just a piece of the overall “effectiveness” question
– Stronger = gives stronger guarantees

→ Subsumes relation

66

Subsumes Relation

• Test adequacy criterion A subsumes test adequacy criterion B iff, for
every program P, every test suite satisfying A with respect to P also
satisfies B with respect to P.

– E.g. Exercising all program branches (branch coverage) subsumes exercising
all program statements.

• A common analytical comparison of closely related criteria
– Useful for working from easier to harder levels of coverage, but not a direct

indication of quality

• Test adequacy criterion A subsumes test adequacy criterion B iff, for
every program P, every test suite satisfying A with respect to P also
satisfies B with respect to P.

– E.g. Exercising all program branches (branch coverage) subsumes exercising
all program statements.

• A common analytical comparison of closely related criteria
– Useful for working from easier to harder levels of coverage, but not a direct

indication of quality

67

68

Functional Testing

• Functional testing
– Deriving test cases from program specifications
– ‘Functional’ refers to the source of information used in test case design, not

to what is tested.

• Also known as:
– Specification-based testing (from specifications)
– Black-box testing (no view of source code)

• Functional specification = description of intended program behavior
– Formal or informal

• Functional testing
– Deriving test cases from program specifications
– ‘Functional’ refers to the source of information used in test case design, not

to what is tested.

• Also known as:
– Specification-based testing (from specifications)
– Black-box testing (no view of source code)

• Functional specification = description of intended program behavior
– Formal or informal

69

Systematic testing vs. Random testing

• Random (uniform) testing
– Pick possible inputs uniformly
– Avoids designer’s bias
– But, treats all inputs as equally valuable

• Systematic (non-uniform) testing
– Try to select inputs that are especially valuable
– Usually by choosing representatives of classes that are apt to fail often or not

at all

• Functional testing is a systematic (partition-based) testing strategy.

• Random (uniform) testing
– Pick possible inputs uniformly
– Avoids designer’s bias
– But, treats all inputs as equally valuable

• Systematic (non-uniform) testing
– Try to select inputs that are especially valuable
– Usually by choosing representatives of classes that are apt to fail often or not

at all

• Functional testing is a systematic (partition-based) testing strategy.

70

Purpose of Testing

• Our goal is to find needles and remove them from hay.
→ Look systematically (non-uniformly) for needles !!!
– We need to use everything we know about needles.

• E.g. Are they heavier than hay? Do they sift to the bottom?

• To estimate the proportion of needles to hay
→ Sample randomly !!!
– Reliability estimation requires unbiased samples for valid statistics.
– But that’s not our goal.

• Our goal is to find needles and remove them from hay.
→ Look systematically (non-uniformly) for needles !!!
– We need to use everything we know about needles.

• E.g. Are they heavier than hay? Do they sift to the bottom?

• To estimate the proportion of needles to hay
→ Sample randomly !!!
– Reliability estimation requires unbiased samples for valid statistics.
– But that’s not our goal.

71

Systematic Partition Testing

Failure (valuable test case)

No failure

Failures are sparse in
the space of possible
inputs.

But, dense in some parts
of the space

Th
e
sp
ac
e
of
 p
os
si
bl
e
in
pu
t v
al
ue
s

(th
e
ha
ys
ta
ck
)

72

If we systematically test some cases
from each part, we will include the
dense parts.

Functional testing is one way of
drawing pink lines to isolate regions
with likely failures

Th
e
sp
ac
e
of
 p
os
si
bl
e
in
pu
t v
al
ue
s

(th
e
ha
ys
ta
ck
)

Main Steps of Functional Program Testing

Functional specifications

Independently Testable Feature

Representative Values Model

Identify independently testable features

Derive a modelIdentify representative values

Finite State Machine,
Grammar,

Algebraic Specification,
Logic Specification,

CFG / DFG

Brute force testing

73

Representative Values Model

Test Case Specification

Test Cases

Scaffolding

Generate test case specifications

Generate test cases

Instantiate tests

Test selection
criteria

Manual Mapping,
Symbolic Execution,

A-posteriori Satisfaction

Semantic Constraint,
Combinational Selection,
Exhaustive Enumeration,

Random Selection

Key Ideas in Combinatorial Approaches

1. Category-partition testing
– Separate (manual) identification of values that characterize the input space

from (automatic) generation of combinations for test cases

2. Pairwise testing
– Systematically test interactions among attributes of the program input space

with a relatively small number of test cases

3. Catalog-based testing
– Aggregate and synthesize the experience of test designers in a particular

organization or application domain, to aid in identifying attribute values

1. Category-partition testing
– Separate (manual) identification of values that characterize the input space

from (automatic) generation of combinations for test cases

2. Pairwise testing
– Systematically test interactions among attributes of the program input space

with a relatively small number of test cases

3. Catalog-based testing
– Aggregate and synthesize the experience of test designers in a particular

organization or application domain, to aid in identifying attribute values

74

1. Category-Partition Testing

1. Decompose the specification into independently testable features
– for each feature, identify parameters and environment elements
– for each parameter and environment element, identify elementary

characteristics (→ categories)

2. Identify representative values
– for each characteristic(category), identify classes of values

• normal values
• boundary values
• special values
• error values

3. Generate test case specifications

1. Decompose the specification into independently testable features
– for each feature, identify parameters and environment elements
– for each parameter and environment element, identify elementary

characteristics (→ categories)

2. Identify representative values
– for each characteristic(category), identify classes of values

• normal values
• boundary values
• special values
• error values

3. Generate test case specifications

75

Identify Independently Testable Units

Model

Model number

Number of required slots for selected model (#SMRS)

Number of optional slots for selected model (#SMOS)

Correspondence of selection with model slots

Number of required components with selection ¹ empty

76

Components

Number of required components with selection ¹ empty

Required component selection

Number of optional components with selection ¹ empty

Optional component selection

Product
Database

Number of models in database (#DBM)

Number of components in database (#DBC)

Step 2: Identify Representative Values

• Identify representative classes of values for each of the categories

• Representative values may be identified by applying
– Boundary value testing

• Select extreme values within a class
• Select values outside but as close as possible to the class
• Select interior (non-extreme) values of the class

– Erroneous condition testing
• Select values outside the normal domain of the program

• Identify representative classes of values for each of the categories

• Representative values may be identified by applying
– Boundary value testing

• Select extreme values within a class
• Select values outside but as close as possible to the class
• Select interior (non-extreme) values of the class

– Erroneous condition testing
• Select values outside the normal domain of the program

77

Representative Values: Model

• Model number
Malformed
Not in database
Valid

• Number of required slots for selected model (#SMRS)
0
1
Many

• Number of optional slots for selected model (#SMOS)
0
1
Many

• Model number
Malformed
Not in database
Valid

• Number of required slots for selected model (#SMRS)
0
1
Many

• Number of optional slots for selected model (#SMOS)
0
1
Many

78

Step 3: Generate Test Case Specifications

• A combination of values for each category corresponds to a test case
specification.

– In the example, we have 314,928 test cases.
– Most of which are impossible.
– Example: zero slots and at least one incompatible slot

• Need to introduce constraints in order to
– Rule out impossible combinations, and
– Reduce the size of the test suite, if too large

– Example:
• Error constraints
• Property constraints
• Single constraints

• A combination of values for each category corresponds to a test case
specification.

– In the example, we have 314,928 test cases.
– Most of which are impossible.
– Example: zero slots and at least one incompatible slot

• Need to introduce constraints in order to
– Rule out impossible combinations, and
– Reduce the size of the test suite, if too large

– Example:
• Error constraints
• Property constraints
• Single constraints

79

Error Constraints

• [error] indicates a value class that
corresponds to an erroneous
values.

– Need to be tried only once

• Error value class
– No need to test all possible

combinations of errors, and one
test is enough.

Model number
Malformed [error]
Not in database [error]
Valid

Correspondence of selection with model
slots
Omitted slots [error]
Extra slots [error]
Mismatched slots [error]
Complete correspondence

Number of required comp. with non empty
selection
0 [error]
< number of required slots [error]

Required comp. selection
³ 1 not in database [error]

Number of models in database (#DBM)
0 [error]

Number of components in database (#DBC)
0 [error]

• [error] indicates a value class that
corresponds to an erroneous
values.

– Need to be tried only once

• Error value class
– No need to test all possible

combinations of errors, and one
test is enough.

Model number
Malformed [error]
Not in database [error]
Valid

Correspondence of selection with model
slots
Omitted slots [error]
Extra slots [error]
Mismatched slots [error]
Complete correspondence

Number of required comp. with non empty
selection
0 [error]
< number of required slots [error]

Required comp. selection
³ 1 not in database [error]

Number of models in database (#DBM)
0 [error]

Number of components in database (#DBC)
0 [error]

80

Error constraints reduce test suite
from 314,928 to 2,711 test cases

Property Constraints

Number of required slots for selected model (#SMRS)
1 [property RSNE]
Many [property RSNE] [property RSMANY]

Number of optional slots for selected model (#SMOS)
1 [property OSNE]
Many [property OSNE] [property OSMANY]

Number of required comp. with non empty selection
0 [if RSNE] [error]
< number required slots [if RSNE] [error]
= number required slots [if RSMANY]

Number of optional comp. with non empty selection
< number required slots [if OSNE]
= number required slots [if OSMANY]

Number of required slots for selected model (#SMRS)
1 [property RSNE]
Many [property RSNE] [property RSMANY]

Number of optional slots for selected model (#SMOS)
1 [property OSNE]
Many [property OSNE] [property OSMANY]

Number of required comp. with non empty selection
0 [if RSNE] [error]
< number required slots [if RSNE] [error]
= number required slots [if RSMANY]

Number of optional comp. with non empty selection
< number required slots [if OSNE]
= number required slots [if OSMANY]

81

from 2,711 to 908 test cases

Single Constraints

Number of required slots for selected model (#SMRS)
0 [single]
1 [property RSNE] [single]

Number of optional slots for selected model (#SMOS)
0 [single]
1 [single] [property OSNE]

Required component selection
Some default [single]

Optional component selection
Some default [single]

Number of models in database (#DBM)
1 [single]

Number of components in database (#DBC)
1 [single]

Number of required slots for selected model (#SMRS)
0 [single]
1 [property RSNE] [single]

Number of optional slots for selected model (#SMOS)
0 [single]
1 [single] [property OSNE]

Required component selection
Some default [single]

Optional component selection
Some default [single]

Number of models in database (#DBM)
1 [single]

Number of components in database (#DBC)
1 [single]

82

from 908 to 69 test cases

Check Configuration – Summary of Categories

Parameter Model
• Model number

– Malformed [error]
– Not in database [error]
– Valid

• Number of required slots for selected model (#SMRS)
– 0 [single]
– 1 [property RSNE] [single]
– Many [property RSNE] [property RSMANY]

• Number of optional slots for selected model (#SMOS)
– 0 [single]
– 1 [property OSNE] [single]
– Many [property OSNE] [property OSMANY]

Environment Product data base
• Number of models in database (#DBM)

– 0 [error]
– 1 [single]
– Many

• Number of components in database (#DBC)
– 0 [error]
– 1 [single]
– Many

Parameter Component
• Correspondence of selection with model slots

– Omitted slots [error]
– Extra slots [error]
– Mismatched slots [error]
– Complete correspondence

• # of required components (selection ¹ empty)
– 0 [if RSNE] [error]
– < number required slots [if RSNE] [error]
– = number required slots [if RSMANY]

• Required component selection
– Some defaults [single]
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database [error]

• # of optional components (selection ¹ empty)
– 0
– < #SMOS [if OSNE]
– = #SMOS [if OSMANY]

• Optional component selection
– Some defaults [single]
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database [error]

Parameter Model
• Model number

– Malformed [error]
– Not in database [error]
– Valid

• Number of required slots for selected model (#SMRS)
– 0 [single]
– 1 [property RSNE] [single]
– Many [property RSNE] [property RSMANY]

• Number of optional slots for selected model (#SMOS)
– 0 [single]
– 1 [property OSNE] [single]
– Many [property OSNE] [property OSMANY]

Environment Product data base
• Number of models in database (#DBM)

– 0 [error]
– 1 [single]
– Many

• Number of components in database (#DBC)
– 0 [error]
– 1 [single]
– Many

Parameter Component
• Correspondence of selection with model slots

– Omitted slots [error]
– Extra slots [error]
– Mismatched slots [error]
– Complete correspondence

• # of required components (selection ¹ empty)
– 0 [if RSNE] [error]
– < number required slots [if RSNE] [error]
– = number required slots [if RSMANY]

• Required component selection
– Some defaults [single]
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database [error]

• # of optional components (selection ¹ empty)
– 0
– < #SMOS [if OSNE]
– = #SMOS [if OSMANY]

• Optional component selection
– Some defaults [single]
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database [error]

83

2. Pairwise Combination Testing

• Category partition works well when intuitive constraints reduce the
number of combinations to a small amount of test cases.

– Without many constraints, the number of combinations may be
unmanageable.

• Pairwise combination
– Instead of exhaustive combinations
– Generate combinations that efficiently cover all pairs (triples,…) of classes
– Rationale:

• Most failures are triggered by single values or combinations of a few values.
• Covering pairs (triples,…) reduces the number of test cases, but reveals most faults.

• Category partition works well when intuitive constraints reduce the
number of combinations to a small amount of test cases.

– Without many constraints, the number of combinations may be
unmanageable.

• Pairwise combination
– Instead of exhaustive combinations
– Generate combinations that efficiently cover all pairs (triples,…) of classes
– Rationale:

• Most failures are triggered by single values or combinations of a few values.
• Covering pairs (triples,…) reduces the number of test cases, but reveals most faults.

84

An Example: Display Control

• No constraints reduce the total number of combinations 432 (3x4x3x4x3)
test cases, if we consider all combinations.

Display Mode Language Fonts Color Screen size

full-graphics English Minimal Monochrome Hand-held

text-only French Standard Color-map Laptop

85

text-only French Standard Color-map Laptop

limited-bandwidth Spanish Document-loaded 16-bit Full-size

Portuguese True-color

Pairwise Combination: 17 Test Cases
Language Color Display Mode Fonts Screen Size

English Monochrome Full-graphics Minimal Hand-held

English Color-map Text-only Standard Full-size

English 16-bit Limited-bandwidth - Full-size

English True-color Text-only Document-loaded Laptop

French Monochrome Limited-bandwidth Standard Laptop

French Color-map Full-graphics Document-loaded Full-size

French 16-bit Text-only Minimal -

86

French 16-bit Text-only Minimal -

French True-color - - Hand-held

Spanish Monochrome - Document-loaded Full-size

Spanish Color-map Limited-bandwidth Minimal Hand-held

Spanish 16-bit Full-graphics Standard Laptop

Spanish True-color Text-only - Hand-held

Portuguese - - Monochrome Text-only

Portuguese Color-map - Minimal Laptop

Portuguese 16-bit Limited-bandwidth Document-loaded Hand-held

Portuguese True-color Full-graphics Minimal Full-size

Portuguese True-color Limited-bandwidth Standard Hand-held

Adding Constraints

• Simple constraints
– Example: “Color monochrome not compatible with screen laptop and full size”

can be handled by considering the case in separate tables.

Display Mode Language Fonts Color Screen size

full-graphics English Minimal Monochrome Hand-held

87

text-only French Standard Color-map

limited-bandwidth Spanish Document-loaded 16-bit

Portuguese True-color

Display Mode Language Fonts Color Screen size

full-graphics English Minimal

text-only French Standard Color-map Laptop

limited-bandwidth Spanish Document-loaded 16-bit Full-size

Portuguese True-color

Structural Testing

• Judging test suite thoroughness based on the structure of the program
itself

– Also known as
• White-box testing
• Glass-box testing
• Code-based testing

– Distinguish from functional (requirements-based, “black-box”) testing

• Structural testing is still testing product functionality against its
specification.

– Only the measure of thoroughness has changed.

• Judging test suite thoroughness based on the structure of the program
itself

– Also known as
• White-box testing
• Glass-box testing
• Code-based testing

– Distinguish from functional (requirements-based, “black-box”) testing

• Structural testing is still testing product functionality against its
specification.

– Only the measure of thoroughness has changed.

88

Rationale of Structural Testing

• One way of answering the question “What is missing in our test suite?”
– If a part of a program is not executed by any test case in the suite, faults in

that part cannot be exposed.
– But what’s the ‘part’?

• Typically, a control flow element or combination
• Statements (or CFG nodes), Branches (or CFG edges)
• Fragments and combinations: Conditions, paths

• Structural testing complements functional testing.
– Another way to recognize cases that are treated differently

• Recalling fundamental rationale
– Prefer test cases that are treated differently over cases treated the same

• One way of answering the question “What is missing in our test suite?”
– If a part of a program is not executed by any test case in the suite, faults in

that part cannot be exposed.
– But what’s the ‘part’?

• Typically, a control flow element or combination
• Statements (or CFG nodes), Branches (or CFG edges)
• Fragments and combinations: Conditions, paths

• Structural testing complements functional testing.
– Another way to recognize cases that are treated differently

• Recalling fundamental rationale
– Prefer test cases that are treated differently over cases treated the same

89

No Guarantee

• Executing all control flow elements does not guarantee finding all faults.
– Execution of a faulty statement may not always result in a failure.

• The state may not be corrupted when the statement is executed with some data
values.

• Corrupt state may not propagate through execution to eventually lead to failure.

• What is the value of structural coverage?
– Increases confidence in thoroughness of testing

• Executing all control flow elements does not guarantee finding all faults.
– Execution of a faulty statement may not always result in a failure.

• The state may not be corrupted when the statement is executed with some data
values.

• Corrupt state may not propagate through execution to eventually lead to failure.

• What is the value of structural coverage?
– Increases confidence in thoroughness of testing

90

Structural Testing Complements Functional
Testing

• Control flow-based testing includes cases that may not be identified
from specifications alone.

– Typical case: Implementation of a single item of the specification by multiple
parts of the program

– E.g. Hash table collision (invisible in interface specification)

• Test suites that satisfy control flow adequacy criteria could fail in
revealing faults that can be caught with functional criteria.

– Typical case: Missing path faults

• Control flow-based testing includes cases that may not be identified
from specifications alone.

– Typical case: Implementation of a single item of the specification by multiple
parts of the program

– E.g. Hash table collision (invisible in interface specification)

• Test suites that satisfy control flow adequacy criteria could fail in
revealing faults that can be caught with functional criteria.

– Typical case: Missing path faults

91

Structural Testing, in Practice

• Create functional test suite first, then measure structural coverage to
identify and see what is missing.

• Interpret unexecuted elements
– May be due to natural differences between specification and implementation
– May reveal flaws of the software or its development process

• Inadequacy of specifications that do not include cases present in the
implementation

• Coding practice that radically diverges from the specification
• Inadequate functional test suites

• Attractive because structural testing is automated
– Coverage measurements are convenient progress indicators.
– Sometimes used as a criterion of completion of testing

• Use with caution: does not ensure effective test suites

• Create functional test suite first, then measure structural coverage to
identify and see what is missing.

• Interpret unexecuted elements
– May be due to natural differences between specification and implementation
– May reveal flaws of the software or its development process

• Inadequacy of specifications that do not include cases present in the
implementation

• Coding practice that radically diverges from the specification
• Inadequate functional test suites

• Attractive because structural testing is automated
– Coverage measurements are convenient progress indicators.
– Sometimes used as a criterion of completion of testing

• Use with caution: does not ensure effective test suites

92

An Example Program: ‘cgi_decode’ and CFG

1. #include “hex_values.h”

2. int cgi_decode(char* encoded, char* *decoded) {
3. char *eptr = encoded;
4. char *dptr = decoded;
5. int ok = 0;

6. while (*eptr) {
7. char c;
8. c = *eptr;

9. if (c == ‘+’) {
10. *dptr = ‘ ‘;
11. } else if (c = ‘%’) {
12. int digit_high = Hex_Values[*(++eptr)];
13. int digit_low = Hex_Values[*(++eptr)];

14. if (digit_high == -1 || digit_low == -1) {
15. ok = 1;
16. } else {
17. *dptr = 16 * digit_high + digit_low;
18. }
19. } else {
20. *dptr = *eptr;
21. }
22. ++dptr;
23. ++eptr;
24. }

25. *dptr = ‘\0’;
26. return ok;
27. }

 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {

while (*eptr) {
TrueFalse

int cgi_decode(char *encoded, char *decoded)

A

C

B

1. #include “hex_values.h”

2. int cgi_decode(char* encoded, char* *decoded) {
3. char *eptr = encoded;
4. char *dptr = decoded;
5. int ok = 0;

6. while (*eptr) {
7. char c;
8. c = *eptr;

9. if (c == ‘+’) {
10. *dptr = ‘ ‘;
11. } else if (c = ‘%’) {
12. int digit_high = Hex_Values[*(++eptr)];
13. int digit_low = Hex_Values[*(++eptr)];

14. if (digit_high == -1 || digit_low == -1) {
15. ok = 1;
16. } else {
17. *dptr = 16 * digit_high + digit_low;
18. }
19. } else {
20. *dptr = *eptr;
21. }
22. ++dptr;
23. ++eptr;
24. }

25. *dptr = ‘\0’;
26. return ok;
27. }

93

*dptr = ' ';
}

*dptr = '\0';
return ok;
}

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high +
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else
*dptr = *eptr;
}

D E

F G

H I

LM

Structural Testing Techniques

1. Statement Testing

2. Branch Testing

3. Condition Testing
– Basic
– Compounded
– MC/DC

4. Path Testing
– Bounded interior
– Loop boundary
– LCSAJ
– Cyclomatic

1. Statement Testing

2. Branch Testing

3. Condition Testing
– Basic
– Compounded
– MC/DC

4. Path Testing
– Bounded interior
– Loop boundary
– LCSAJ
– Cyclomatic

94

1. Statement Testing

• Adequacy criterion:
– Each statement (or node in the CFG) must be executed at least once.

• Coverage:
number of executed statements

number of statements

• Rationale:
– A fault in a statement can only be revealed by executing the faulty statement.

• Nodes in a CFG often represent basic blocks of multiple statements.
– Some standards refer to ‘basic block coverage’ or ‘node coverage’.
– Difference in granularity, but not in concept

• Adequacy criterion:
– Each statement (or node in the CFG) must be executed at least once.

• Coverage:
number of executed statements

number of statements

• Rationale:
– A fault in a statement can only be revealed by executing the faulty statement.

• Nodes in a CFG often represent basic blocks of multiple statements.
– Some standards refer to ‘basic block coverage’ or ‘node coverage’.
– Difference in granularity, but not in concept

95

An Example: for Function “cgi_decode”

< Test cases >
T0 =
{“”, “test”, “test+case%1Dadequacy”}
17/18 = 94% Statement coverage

T1 =
{“adequate+test%0Dexecution%7U”}
18/18 = 100% Statement coverage

T2 = {“%3D”, “%A”, “a+b”, “test”}
18/18 = 100% Statement coverage

T3 = {“ ”, “+%0D+%4J”}
…

T4 = {“first+test%9Ktest%K9”}
…

96

< Test cases >
T0 =
{“”, “test”, “test+case%1Dadequacy”}
17/18 = 94% Statement coverage

T1 =
{“adequate+test%0Dexecution%7U”}
18/18 = 100% Statement coverage

T2 = {“%3D”, “%A”, “a+b”, “test”}
18/18 = 100% Statement coverage

T3 = {“ ”, “+%0D+%4J”}
…

T4 = {“first+test%9Ktest%K9”}
…

Coverage is not a Matter of Size

• Coverage does not depend on the number of test cases.
– T0 , T1 : T1 >coverage T0 T1 <cardinality T0

– T1 , T2 : T2 =coverage T1 T2 >cardinality T1

• Minimizing test suite size is not the goal.
– Small test cases make failure diagnosis easier.
– But, a failing test case in T2 gives more information for fault localization than

a failing test case in T1

• Coverage does not depend on the number of test cases.
– T0 , T1 : T1 >coverage T0 T1 <cardinality T0

– T1 , T2 : T2 =coverage T1 T2 >cardinality T1

• Minimizing test suite size is not the goal.
– Small test cases make failure diagnosis easier.
– But, a failing test case in T2 gives more information for fault localization than

a failing test case in T1

97

Complete Statement Coverage

• Complete statement coverage
may not imply executing all
branches in a program.

• Example:
– Suppose block F were missing
– But, statement adequacy would

not require false branch from D
to L

• T3 = {“ ”, “+%0D+%4J”}
– 100% statement coverage
– No false branch from D

 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {

*dptr = ' ';

while (*eptr) {

TrueFalse

TrueFalse
 elseif (c == '%') {

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

• Complete statement coverage
may not imply executing all
branches in a program.

• Example:
– Suppose block F were missing
– But, statement adequacy would

not require false branch from D
to L

• T3 = {“ ”, “+%0D+%4J”}
– 100% statement coverage
– No false branch from D

98

dptr = ' ';
}

*dptr = '\0';
return ok;
}

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high +
digit_low;
}

False

++dptr;
++eptr;
}

False

 elseif (c == %) {

else {
*dptr = *eptr;
}

D E

F G

H I

LM

2. Branch Testing

• Adequacy criterion:
– Each branch (edge in the CFG) must be executed at least once.

• Coverage:
number of executed branches

number of branches

• Example:
– T3 = {“”, “+%0D+%4J”}

• 100% Stmt Cov.
• 88% Branch Cov. (7/8 branches)

– T2 = {“%3D”, “%A”, “a+b”, “test”}
• 100% Stmt Cov.
• 100% Branch Cov. (8/8 branches)

• Adequacy criterion:
– Each branch (edge in the CFG) must be executed at least once.

• Coverage:
number of executed branches

number of branches

• Example:
– T3 = {“”, “+%0D+%4J”}

• 100% Stmt Cov.
• 88% Branch Cov. (7/8 branches)

– T2 = {“%3D”, “%A”, “a+b”, “test”}
• 100% Stmt Cov.
• 100% Branch Cov. (8/8 branches)

99

Statements vs. Branches

• Traversing all edges causes all nodes to be visited.
– Therefore, test suites that satisfy the branch adequacy also satisfy the

statement adequacy criterion for the same program.
– Branch adequacy subsumes statement adequacy.

• The converse is not true (see T3)
– A statement-adequate test suite may not be branch-adequate.

• Traversing all edges causes all nodes to be visited.
– Therefore, test suites that satisfy the branch adequacy also satisfy the

statement adequacy criterion for the same program.
– Branch adequacy subsumes statement adequacy.

• The converse is not true (see T3)
– A statement-adequate test suite may not be branch-adequate.

100

All Branches Coverage

• “All branches coverage” can still miss conditions.

• Example:
– Supposed that we missed the negation operator of “digit_high == -1”

digit_high == 1 || digit_low == -1

• Branch adequacy criterion can be satisfied by varying only ‘digit_low’.
– The faulty sub-expression might never determine the result.
– We might never really test the faulty condition, even though we tested both

outcomes of the branch.

• “All branches coverage” can still miss conditions.

• Example:
– Supposed that we missed the negation operator of “digit_high == -1”

digit_high == 1 || digit_low == -1

• Branch adequacy criterion can be satisfied by varying only ‘digit_low’.
– The faulty sub-expression might never determine the result.
– We might never really test the faulty condition, even though we tested both

outcomes of the branch.

101

3. Condition Testing

• Branch coverage exposes faults in how a computation has been
decomposed into cases.

– Intuitively attractive: checking the programmer’s case analysis
– But, only roughly: grouping cases with the same outcome

• Condition coverage considers case analysis in more detail.
– Consider ‘individual conditions’ in a compound Boolean expression

• E.g. both parts of ‘”igit_high == 1 || digit_low == -1”

• Adequacy criterion:
– Each basic condition must be executed at least once.

• Basic condition testing coverage:
number of truth values taken by all basic conditions

2 * number of basic conditions

• Branch coverage exposes faults in how a computation has been
decomposed into cases.

– Intuitively attractive: checking the programmer’s case analysis
– But, only roughly: grouping cases with the same outcome

• Condition coverage considers case analysis in more detail.
– Consider ‘individual conditions’ in a compound Boolean expression

• E.g. both parts of ‘”igit_high == 1 || digit_low == -1”

• Adequacy criterion:
– Each basic condition must be executed at least once.

• Basic condition testing coverage:
number of truth values taken by all basic conditions

2 * number of basic conditions

102

Basic Conditions vs. Branches

• Basic condition adequacy criterion can be satisfied without satisfying
branch coverage.

• T4 = {“first+test%9Ktest%K9”}
– Satisfies basic condition adequacy
– But, does not satisfy branch condition adequacy

• Branch and basic condition are not comparable.
– Neither implies the other.

• Basic condition adequacy criterion can be satisfied without satisfying
branch coverage.

• T4 = {“first+test%9Ktest%K9”}
– Satisfies basic condition adequacy
– But, does not satisfy branch condition adequacy

• Branch and basic condition are not comparable.
– Neither implies the other.

103

Covering Branches and Conditions

• Branch and condition adequacy:
– Cover all conditions and all decisions

• Compound condition adequacy:
– Cover all possible evaluations of compound conditions.
– Cover all branches of a decision tree.

• Branch and condition adequacy:
– Cover all conditions and all decisions

• Compound condition adequacy:
– Cover all possible evaluations of compound conditions.
– Cover all branches of a decision tree.

104

truefalse

Compounded Conditions

• Compound conditions often have exponential complexity.

• Example: (((a || b) && c) || d) && e

105

Modified Condition/Decision (MC/DC)

• Motivation
– Effectively test important combinations of conditions, without exponential

blowup in test suite size
– “Important” combinations means:

• Each basic condition shown to independently affect the outcome of each decision

• Requires
– For each basic condition C, two test cases,
– Values of all ‘evaluated’ conditions except C are the same.
– Compound condition as a whole evaluates to ‘true’ for one and ‘false’ for the

other.

• Motivation
– Effectively test important combinations of conditions, without exponential

blowup in test suite size
– “Important” combinations means:

• Each basic condition shown to independently affect the outcome of each decision

• Requires
– For each basic condition C, two test cases,
– Values of all ‘evaluated’ conditions except C are the same.
– Compound condition as a whole evaluates to ‘true’ for one and ‘false’ for the

other.

106

Complexity of MC/DC

• MC/DC has a linear complexity.

• Example: (((a || b) && c) || d) && e

Test a b c d e outcome
Case
(1) true -- true -- true true
(2) false true true -- true true
(3) true -- false true true true
(6) true -- true -- false false
(11) true -- false false -- false
(13) false false -- false -- false

• Underlined values independently affect the output of the decision.
– Required by the RTCA/DO-178B standard

• MC/DC has a linear complexity.

• Example: (((a || b) && c) || d) && e

Test a b c d e outcome
Case
(1) true -- true -- true true
(2) false true true -- true true
(3) true -- false true true true
(6) true -- true -- false false
(11) true -- false false -- false
(13) false false -- false -- false

• Underlined values independently affect the output of the decision.
– Required by the RTCA/DO-178B standard

107

Comments on MC/DC

• MC/DC is
– Basic condition coverage (C)
– Branch coverage (DC)
– Plus one additional condition (M)

• Every condition must independently affect the decision’s output.

• It is subsumed by compound conditions and subsumes all other criteria
discussed so far.

– Stronger than statement and branch coverage

• A good balance of thoroughness and test size
– Widely used

• MC/DC is
– Basic condition coverage (C)
– Branch coverage (DC)
– Plus one additional condition (M)

• Every condition must independently affect the decision’s output.

• It is subsumed by compound conditions and subsumes all other criteria
discussed so far.

– Stronger than statement and branch coverage

• A good balance of thoroughness and test size
– Widely used

108

4. Path Testing

• There are many more paths than branches.
– Decision and condition adequacy criteria consider individual decisions only.

• Path testing focuses combinations of decisions along paths.

• Adequacy criterion:
– Each path must be executed at least once.

• Coverage:
number of executed paths

number of paths

• There are many more paths than branches.
– Decision and condition adequacy criteria consider individual decisions only.

• Path testing focuses combinations of decisions along paths.

• Adequacy criterion:
– Each path must be executed at least once.

• Coverage:
number of executed paths

number of paths

109

Path Coverage Criteria in Practice

• The number of paths in a program with loops is unbounded.
– Usually impossible to satisfy

• For a feasible criterion,
– Should partition infinite set of paths into a finite number of classes

• Useful criteria can be obtained by limiting
– Number of traversals of loops
– Length of the paths to be traversed
– Dependencies among selected paths

• The number of paths in a program with loops is unbounded.
– Usually impossible to satisfy

• For a feasible criterion,
– Should partition infinite set of paths into a finite number of classes

• Useful criteria can be obtained by limiting
– Number of traversals of loops
– Length of the paths to be traversed
– Dependencies among selected paths

110

Comparing Structural Testing Criteria

111

Subsumption Relation among Structural Test Adequacy Criteria

Motivation

• Middle ground in structural testing
– Node and edge coverage don’t test interactions.
– Path-based criteria require impractical number of test cases.

• Only a few paths uncover additional faults, anyway.

– Need to distinguish “important” paths

• Intuition: Statements interact through data flow.
– Value computed in one statement, is used in another.
– Bad value computation can be revealed only when it is used.

• Middle ground in structural testing
– Node and edge coverage don’t test interactions.
– Path-based criteria require impractical number of test cases.

• Only a few paths uncover additional faults, anyway.

– Need to distinguish “important” paths

• Intuition: Statements interact through data flow.
– Value computed in one statement, is used in another.
– Bad value computation can be revealed only when it is used.

112

Def-Use Pairs

• Value of x at 6 could be
computed at 1 or at 4.

• Bad computation at 1 or 4 could
be revealed only if they are used
at 6.

• (1, 6) and (4, 6) are def-use (DU)
pairs.

– defs at 1, 4
– use at 6

x =

if

x = 4

1

2

3

• Value of x at 6 could be
computed at 1 or at 4.

• Bad computation at 1 or 4 could
be revealed only if they are used
at 6.

• (1, 6) and (4, 6) are def-use (DU)
pairs.

– defs at 1, 4
– use at 6

113

x =

...

....

y = x + ...

4

6

3

5

Terminology

• DU pair
– A pair of definition and use for some variable, such that at least one DU path

exists from the definition to the use.
– “x = ...” is a definition of x
– “= ... x ...” is a use of x

• DU path
– A definition-clear path on the CFG starting from a definition to a use of a

same variable
– Definition clear: Value is not replaced on path.
– Note: Loops could create infinite DU paths between a def and a use.

• DU pair
– A pair of definition and use for some variable, such that at least one DU path

exists from the definition to the use.
– “x = ...” is a definition of x
– “= ... x ...” is a use of x

• DU path
– A definition-clear path on the CFG starting from a definition to a use of a

same variable
– Definition clear: Value is not replaced on path.
– Note: Loops could create infinite DU paths between a def and a use.

114

Definition-Clear Path

• 1,2,3,5,6 is a definition-clear path
from 1 to 6.

– x is not re-assigned between 1
and 6.

• 1,2,4,5,6 is not a definition-clear
path from 1 to 6.

– the value of x is “killed”
(reassigned) at node 4.

• (1, 6) is a DU pair because
1,2,3,5,6 is a definition-clear path.

x =

if

4

1

2

3

• 1,2,3,5,6 is a definition-clear path
from 1 to 6.

– x is not re-assigned between 1
and 6.

• 1,2,4,5,6 is not a definition-clear
path from 1 to 6.

– the value of x is “killed”
(reassigned) at node 4.

• (1, 6) is a DU pair because
1,2,3,5,6 is a definition-clear path.

115

x =

...

....

y = x + ...

4

6

3

5

Adequacy Criteria

• All DU pairs
– Each DU pair is exercised by at least one test case.

• All DU paths
– Each simple (non looping) DU path is exercised by at least one test case.

• All definitions
– For each definition, there is at least one test case which exercises a DU pair

containing it.
– Because, every computed value is used somewhere.

• Corresponding coverage fractions can be defined similarly.

• All DU pairs
– Each DU pair is exercised by at least one test case.

• All DU paths
– Each simple (non looping) DU path is exercised by at least one test case.

• All definitions
– For each definition, there is at least one test case which exercises a DU pair

containing it.
– Because, every computed value is used somewhere.

• Corresponding coverage fractions can be defined similarly.

116

Difficult Cases

• x[i] = ... ; ... ; y = x[j]
– DU pair (only) if i==j

• p = &x ; ... ; *p = 99 ; ... ; q = x
– *p is an alias of x

• m.putFoo(...); ... ; y=n.getFoo(...);
– Are m and n the same object?
– Do m and n share a “foo” field?

• Problem of aliases:
– Which references are (always or sometimes) the same?

• x[i] = ... ; ... ; y = x[j]
– DU pair (only) if i==j

• p = &x ; ... ; *p = 99 ; ... ; q = x
– *p is an alias of x

• m.putFoo(...); ... ; y=n.getFoo(...);
– Are m and n the same object?
– Do m and n share a “foo” field?

• Problem of aliases:
– Which references are (always or sometimes) the same?

117

Data Flow Coverage in Practice

• The path-oriented nature of data flow analysis makes the infeasibility
problem especially relevant.

– Combinations of elements matter.
– Impossible to (infallibly) distinguish feasible from infeasible paths.
– More paths = More work to check manually

• In practice, reasonable coverage is (often, not always) achievable.
– Number of paths is exponential in worst case, but often linear.
– All DU paths is more often impractical.

• The path-oriented nature of data flow analysis makes the infeasibility
problem especially relevant.

– Combinations of elements matter.
– Impossible to (infallibly) distinguish feasible from infeasible paths.
– More paths = More work to check manually

• In practice, reasonable coverage is (often, not always) achievable.
– Number of paths is exponential in worst case, but often linear.
– All DU paths is more often impractical.

118

Overview

• Models used in specification or design have structure.
– Useful information for selecting representative classes of behavior
– Behaviors that are treated differently with respect to the model should be

tried by a thorough test suite.
– In combinatorial testing, it is difficult to capture that structure clearly and

correctly in constraints.

• We can devise test cases to check actual behavior against behavior
specified by the model.

– “Coverage” similar to structural testing, but applied to specification and
design models

• Models used in specification or design have structure.
– Useful information for selecting representative classes of behavior
– Behaviors that are treated differently with respect to the model should be

tried by a thorough test suite.
– In combinatorial testing, it is difficult to capture that structure clearly and

correctly in constraints.

• We can devise test cases to check actual behavior against behavior
specified by the model.

– “Coverage” similar to structural testing, but applied to specification and
design models

119

Deriving Test Cases from Finite State Machines

Informal
Specification

FSM Test Cases

120

Informal
Specification

FSM Test Cases

Informal Specification: Feature “Maintenance” of
the Chipmunk Web Site

Maintenance: The Maintenance function records the history of items undergoing maintenance.

If the product is covered by warranty or maintenance contract, maintenance can be requested either by
calling the maintenance toll free number, or through the web site, or by bringing the item to a
designated maintenance station.
If the maintenance is requested by phone or web site and the customer is a US or EU resident, the item
is picked up at the customer site, otherwise, the customer shall ship the item with an express courier.
If the maintenance contract number provided by the customer is not valid, the item follows the
procedure for items not covered by warranty.
If the product is not covered by warranty or maintenance contract, maintenance can be requested only by
bringing the item to a maintenance station. The maintenance station informs the customer of the
estimated costs for repair. Maintenance starts only when the customer accepts the estimate.
If the customer does not accept the estimate, the product is returned to the customer.
Small problems can be repaired directly at the maintenance station. If the maintenance station cannot
solve the problem, the product is sent to the maintenance regional headquarters (if in US or EU) or to
the maintenance main headquarters (otherwise).
If the maintenance regional headquarters cannot solve the problem, the product is sent to the
maintenance main headquarters.
Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.

Maintenance: The Maintenance function records the history of items undergoing maintenance.

If the product is covered by warranty or maintenance contract, maintenance can be requested either by
calling the maintenance toll free number, or through the web site, or by bringing the item to a
designated maintenance station.
If the maintenance is requested by phone or web site and the customer is a US or EU resident, the item
is picked up at the customer site, otherwise, the customer shall ship the item with an express courier.
If the maintenance contract number provided by the customer is not valid, the item follows the
procedure for items not covered by warranty.
If the product is not covered by warranty or maintenance contract, maintenance can be requested only by
bringing the item to a maintenance station. The maintenance station informs the customer of the
estimated costs for repair. Maintenance starts only when the customer accepts the estimate.
If the customer does not accept the estimate, the product is returned to the customer.
Small problems can be repaired directly at the maintenance station. If the maintenance station cannot
solve the problem, the product is sent to the maintenance regional headquarters (if in US or EU) or to
the maintenance main headquarters (otherwise).
If the maintenance regional headquarters cannot solve the problem, the product is sent to the
maintenance main headquarters.
Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.

121

Corresponding Finite State Machine

es
tim

at
e

co
st

s

request at

maintenance station

(no warranty)

request
by phone or web

[US or EU resident]

(contract number)

pick up

re
qu

es
t a

t
m

ai
nt

en
an

ce
 s

ta
tio

n
or

 b
y

ex
pr

es
s

co
ur

ie
r

(c
on

tra
ct

 n
um

be
r)

reject estimate

pick up

invalidcontract
number

122

es
tim

at
ereject estimate

succe
ssf

ul re
pair

unable to repair

(US or EU resident)

su
cc

es
sfu

l r
ep

air

unable to
repair

lack
co

mponent (a
)

lack component (c)

Test Cases Generated from the FSM

• FSM can be used both to
1. Guide test selection (checking each state transition)
2. Constructing an oracle that judge whether each observed behavior is correct

• Questions:
– Is this a thorough test suite?
– How can we judge?

à Coverage criteria require.

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 0

• FSM can be used both to
1. Guide test selection (checking each state transition)
2. Constructing an oracle that judge whether each observed behavior is correct

• Questions:
– Is this a thorough test suite?
– How can we judge?

à Coverage criteria require.

123

TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

Transition Coverage Criteria

• State coverage
– Every state in the model should be visited by at least one test case.

• Transition coverage
– Every transition between states should be traversed by at least one test case.
– Most commonly used criterion
– A transition can be thought of as a (precondition, postcondition) pair

• State coverage
– Every state in the model should be visited by at least one test case.

• Transition coverage
– Every transition between states should be traversed by at least one test case.
– Most commonly used criterion
– A transition can be thought of as a (precondition, postcondition) pair

124

Deriving Test Cases from Decision Structures

• Some specifications are structured as decision tables, decision trees, or
flow charts.

• We can exercise these as if they were program source code.

125

Informal
Specification

Decision
Structures

Test Cases

Corresponding Decision Table

Education Individual

EduAc T T F F F F F F

BusAc - - F F F F F F

CP > CT1 - - F F T T - -

YP > YT1 - - - - - - - -

CP > CT2 - - - - F F T T

YP > YT2 - - - - - - - -YP > YT2 - - - - - - - -

SP < Sc F T F T - - - -

SP < T1 - - - - F T - -

SP < T2 - - - - - - F T

Out Edu SP ND SP T1 SP T2 SP

126

…

Constraints
at-most-one (EduAc, BusAc) at-most-one (YP < YT1, YP > YT2)
YP > YT2 → YP > YT1 at-most-one (CP < CT1, CP > CT2)
CP > CT2 → CP > CT1 at-most-one (SP < T1, SP > T2
SP > T2 → SP > T1

Deriving Test Cases from Control and Data Flow
Graph

• If the specification or model has both decisions and sequential logic, we
can cover it like program source code.

• Flowgraph based testing

127

Informal
Specification

Flowgraph Test Cases

Corresponding Control Flow Graph

preferred shipping method = land freight,
OR expedited land freight OR overnight air

Process shipping order

CostOfGoods < MinOrder

shipping address

no

domestic

preferred shipping method = air
freight OR expedited air freight

international

calculate domestic shipping chargecalculate international shipping charge

total charge = goods + shipping

128

yes

individual customer no

yes

obtain credit card data: number, name
on card, expiration date

method of payement

credit card

invoice

billing address = shipping address

obtain billing address

no

yes

valid credit card
information

no

yes

payement status = valid
enter order

prepare receipt

invalid order

nono

abort order?
no

yes

Test Cases Generated from the CFG

• Node adequacy criteria

• Branch adequacy criteria

Case Too Small Ship Where Ship
Method Cust Type Pay

Method Same Address CC valid

TC-1 No Int Air Bus CC No Yes

TC-2 No Dom Air Ind CC - No (abort)

• Node adequacy criteria

• Branch adequacy criteria

129

Case Too Small Ship Where Ship
Method Cust Type Pay

Method Same Address CC valid

TC-1 No Int Air Bus CC No Yes

TC-2 No Dom Land - - - -

TC-3 Yes - - - - - -

TC-4 No Dom Air - - - -

TC-5 No Int Land - - - -

TC-6 No - - Edu Inv - -

TC-7 No - - - CC Yes -

TC-8 No - - - CC - No (abort)

TC-9 No - - - CC - No (no abort)

Estimating Test Suite Quality

• Supposed that I have a program with bugs.

• Add 100 new bugs
– Assume they are exactly like real bugs in every way
– I make 100 copies of my program, each with one of my 100 new bugs.

• Run my test suite on the programs with seeded bugs
– And the tests revealed 20 of the bugs.
– The other 80 program copies do not fail.

• What can I infer about my test suite’s quality?

• Supposed that I have a program with bugs.

• Add 100 new bugs
– Assume they are exactly like real bugs in every way
– I make 100 copies of my program, each with one of my 100 new bugs.

• Run my test suite on the programs with seeded bugs
– And the tests revealed 20 of the bugs.
– The other 80 program copies do not fail.

• What can I infer about my test suite’s quality?

130

Basic Assumptions

• We want to judge effectiveness of a test suite in finding real faults,
– by measuring how well it finds seeded fake faults.

• Valid to the extent that the seeded bugs are representative of real bugs
– Not necessarily identical
– But, the differences should not affect the selection

• We want to judge effectiveness of a test suite in finding real faults,
– by measuring how well it finds seeded fake faults.

• Valid to the extent that the seeded bugs are representative of real bugs
– Not necessarily identical
– But, the differences should not affect the selection

131

Mutation Testing

• A mutant is a copy of a program with a mutation.

• A mutation is a syntactic change (a seeded bug).
– Example: change (i < 0) to (i <= 0)

• Run test suite on all the mutant programs
• A mutant is killed, if it fails on at least one test case. (The bug is found.)

• If many mutants are killed, infer that the test suite is also effective at
finding real bugs.

• A mutant is a copy of a program with a mutation.

• A mutation is a syntactic change (a seeded bug).
– Example: change (i < 0) to (i <= 0)

• Run test suite on all the mutant programs
• A mutant is killed, if it fails on at least one test case. (The bug is found.)

• If many mutants are killed, infer that the test suite is also effective at
finding real bugs.

132

Assumptions on Mutation Testing

• Competent programmer hypothesis
– Programs are nearly correct.

• Real faults are small variations from the correct program.
• Therefore, mutants are reasonable models of real buggy programs.

• Coupling effect hypothesis
– Tests that find simple faults also find more complex faults.
– Even if mutants are not perfect representatives of real faults, a test suite that

kills mutants is good at finding real faults too.

• Competent programmer hypothesis
– Programs are nearly correct.

• Real faults are small variations from the correct program.
• Therefore, mutants are reasonable models of real buggy programs.

• Coupling effect hypothesis
– Tests that find simple faults also find more complex faults.
– Even if mutants are not perfect representatives of real faults, a test suite that

kills mutants is good at finding real faults too.

133

Mutant Operators

• Syntactic changes from legal program to illegal program
– Specific to each programming language

• Examples:
– crp: constant for constant replacement

• E.g. from (x < 5) to (x < 12)
• Select from constants found somewhere in program text

– ror: relational operator replacement
• E.g. from (x <= 5) to (x < 5)

– vie: variable initialization elimination
• E.g. change int x =5; to int x;

• Syntactic changes from legal program to illegal program
– Specific to each programming language

• Examples:
– crp: constant for constant replacement

• E.g. from (x < 5) to (x < 12)
• Select from constants found somewhere in program text

– ror: relational operator replacement
• E.g. from (x <= 5) to (x < 5)

– vie: variable initialization elimination
• E.g. change int x =5; to int x;

134

Fault-based Adequacy Criteria

• Mutation analysis consists of the following steps:
1. Select mutation operators
2. Generate mutants
3. Distinguish mutants

• Live mutants
– Mutants not killed by a test suite

• Given a set of mutants SM and a test suite T, the fraction of
nonequivalence mutants killed by T measures the adequacy of T with
respect to SM.

• Mutation analysis consists of the following steps:
1. Select mutation operators
2. Generate mutants
3. Distinguish mutants

• Live mutants
– Mutants not killed by a test suite

• Given a set of mutants SM and a test suite T, the fraction of
nonequivalence mutants killed by T measures the adequacy of T with
respect to SM.

135

Automating Test Execution

• Designing test cases and test suites is creative.
– Demanding intellectual activity
– Requiring human judgment

• Executing test cases should be automatic.
– Design once, execute many times

• Test automation separates the creative human process from the
mechanical process of test execution.

• Designing test cases and test suites is creative.
– Demanding intellectual activity
– Requiring human judgment

• Executing test cases should be automatic.
– Design once, execute many times

• Test automation separates the creative human process from the
mechanical process of test execution.

136

From Test Case Specifications to Test Cases

• Test design often yields test case specifications, rather than concrete data.
– E.g. “a large positive number”, not 420,023
– E.g. “a sorted sequence, length > 2”, not “Alpha, Beta, Chi, Omega”

• Other details for execution may be omitted.

• Test Generation creates concrete, executable test cases from test case
specifications.

• A Tool chain for test case generation & execution
– A combinatorial test case generation to create test data

• Optional: Constraint-based data generator to “concretize” individual values, e.g.,
from “positive integer” to 42

– ‘DDSteps’ to convert from spreadsheet data to ‘JUnit’ test cases
– ‘JUnit’ to execute concrete test cases

• Test design often yields test case specifications, rather than concrete data.
– E.g. “a large positive number”, not 420,023
– E.g. “a sorted sequence, length > 2”, not “Alpha, Beta, Chi, Omega”

• Other details for execution may be omitted.

• Test Generation creates concrete, executable test cases from test case
specifications.

• A Tool chain for test case generation & execution
– A combinatorial test case generation to create test data

• Optional: Constraint-based data generator to “concretize” individual values, e.g.,
from “positive integer” to 42

– ‘DDSteps’ to convert from spreadsheet data to ‘JUnit’ test cases
– ‘JUnit’ to execute concrete test cases

137

Scaffolding

• Code produced to support development activities
– Not part of the “product” as seen by the end user
– May be temporary (like scaffolding in construction of buildings)

• Scaffolding includes
– Test harnesses
– Drivers
– Stubs

• Code produced to support development activities
– Not part of the “product” as seen by the end user
– May be temporary (like scaffolding in construction of buildings)

• Scaffolding includes
– Test harnesses
– Drivers
– Stubs

138

Scaffolding

• Test driver
– A “main” program for running a test

• May be produced before a “real” main program
• Provide more control than the “real” main program

– To drive program under test through test cases

• Test stub
– Substitute for called functions/methods/objects

• Test harness
– Substitutes for other parts of the deployed environment
– E.g. Software simulation of a hardware device

• Test driver
– A “main” program for running a test

• May be produced before a “real” main program
• Provide more control than the “real” main program

– To drive program under test through test cases

• Test stub
– Substitute for called functions/methods/objects

• Test harness
– Substitutes for other parts of the deployed environment
– E.g. Software simulation of a hardware device

139

Controllability & Observability

• Example: We want to automate tests,
– But, interactive input provides limited control and
– Graphical output provides limited observability.

GUI input (MVC “Controller”)

140

GUI input (MVC “Controller”)

Program Functionality

Graphical output (MVC “View”)

Controllability & Observability

• Solution: A design for automated test provides interfaces for control (API)
and observation (wrapper on output)

GUI input (MVC “Controller”) Test driver

141

Program Functionality

Graphical output (MVC “View”)

API

Capture wrapper

Log behavior

Generic vs. Specific Scaffolding

• How general should scaffolding be?
– We could build a driver and stubs for each test case.
– Or at least factor out some common code of the driver and test management

(e.g. JUnit)
– Or further factor out some common support code, to drive a large number of

test cases from data (as in DDSteps)
– Or further generate the data automatically from a more abstract model (e.g.

network traffic model)

• It’s a question of costs and re-use, just as for other kinds of software.

• How general should scaffolding be?
– We could build a driver and stubs for each test case.
– Or at least factor out some common code of the driver and test management

(e.g. JUnit)
– Or further factor out some common support code, to drive a large number of

test cases from data (as in DDSteps)
– Or further generate the data automatically from a more abstract model (e.g.

network traffic model)

• It’s a question of costs and re-use, just as for other kinds of software.

142

Test Oracles

• No use running 10,000 test cases automatically, if the results must be
checked by hand.

• It’s a problem of ‘range of specific to general’, again
– E.g. JUnit: Specific oracle (“assert”) coded by hand in each test case

• Typical approach
– Comparison-based oracle with predicted output value
– But, not the only approach

• No use running 10,000 test cases automatically, if the results must be
checked by hand.

• It’s a problem of ‘range of specific to general’, again
– E.g. JUnit: Specific oracle (“assert”) coded by hand in each test case

• Typical approach
– Comparison-based oracle with predicted output value
– But, not the only approach

143

Comparison-based Oracle

• With a comparison-based oracle, we need predicted output for each
input.

– Oracle compares actual to predicted output, and reports failure if they differ.
– Fine for a small number of hand-generated test cases
– E.g. for hand-written JUnit test cases

• With a comparison-based oracle, we need predicted output for each
input.

– Oracle compares actual to predicted output, and reports failure if they differ.
– Fine for a small number of hand-generated test cases
– E.g. for hand-written JUnit test cases

144

Self-Checks as Oracles

• An oracle can also be written as self-checks.
– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically generated test
suites, but often only a partial check

– E.g. structural invariants of data structures
– Recognize many or most failures, but not all

• An oracle can also be written as self-checks.
– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically generated test
suites, but often only a partial check

– E.g. structural invariants of data structures
– Recognize many or most failures, but not all

145

Overview

• Automated program analysis techniques complement test and inspection
in two ways:

– Can exhaustively check some important properties
• Which conventional testing is particularly ill-suited

– Can extract and summarize information for test and inspection design
• Replacing or augmenting human efforts

• Automated analysis
– Replace human inspection for some class of faults
– Support inspection by

• Automating extracting and summarizing information
• Navigating through relevant information

• Automated program analysis techniques complement test and inspection
in two ways:

– Can exhaustively check some important properties
• Which conventional testing is particularly ill-suited

– Can extract and summarize information for test and inspection design
• Replacing or augmenting human efforts

• Automated analysis
– Replace human inspection for some class of faults
– Support inspection by

• Automating extracting and summarizing information
• Navigating through relevant information

146

Static vs. Dynamic Analysis

• Static analysis
– Examine program source code

• Examine the complete execution space
• But, may lead to false alarms

• Dynamic analysis
– Examine program execution traces

• No infeasible path problem
• But, cannot examine the execution space exhaustively

• Example:
– Concurrency faults
– Memory faults

• Static analysis
– Examine program source code

• Examine the complete execution space
• But, may lead to false alarms

• Dynamic analysis
– Examine program execution traces

• No infeasible path problem
• But, cannot examine the execution space exhaustively

• Example:
– Concurrency faults
– Memory faults

147

Extracting Behavior Model from Execution

• Behavior analysis can
– Gather information from executing several test cases
– And synthesize a model that characterizes those execution,
– To the extent that they are the representative of other executions as well.

• Using behavioral models for
– Testing : validate tests thoroughness

– Program analysis : understand program behavior

– Regression testing : compare versions or configurations

– Testing of component-based software : compare components in different contexts

– Debugging : Identify anomalous behaviors and understand causes

• Behavior analysis can
– Gather information from executing several test cases
– And synthesize a model that characterizes those execution,
– To the extent that they are the representative of other executions as well.

• Using behavioral models for
– Testing : validate tests thoroughness

– Program analysis : understand program behavior

– Regression testing : compare versions or configurations

– Testing of component-based software : compare components in different contexts

– Debugging : Identify anomalous behaviors and understand causes

148

