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Part I. Fundamentals of Test and Analysis



Verification and Validation

• Validation: “Does the software system meets the user's real needs?”
– Are we building the right software? 

• Verification: “Does the software system meets the requirements specifications?”
– Are we building the software right?

Actual
Requirements

SW
Specs

System

Validation Verification
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V&V Depends on the Specification

• Unverifiable (but validatable) specification:  “If a user presses a request 
button at floor i, an available elevator must arrive at floor i soon.“

• Verifiable specification: “If a user presses a request button at floor i, an 
available elevator must arrive at floor i within 30 seconds“

• Unverifiable (but validatable) specification:  “If a user presses a request 
button at floor i, an available elevator must arrive at floor i soon.“

• Verifiable specification: “If a user presses a request button at floor i, an 
available elevator must arrive at floor i within 30 seconds“
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V-Model of V&V Activities
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Undeciability of Correctness Properties

• Correctness properties are not decidable.
– Halting problem can be embedded in almost every property of interest.
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Verification Trade-off Dimensions

• Optimistic inaccuracy
– We may accept some programs 

that do not possess the property.
– It may not detect all violations. 
– Example: Testing

• Pessimistic inaccuracy
– It is not guaranteed to accept a 

program even if the program 
does possess the property being 
analyzed, because of false alarms.

– Example: Automated program analysis 

• Simplified properties
– It reduces the degree of freedom 

by simplifying the property to 
check.

– Example: Model Checking

Perfect verification of
arbitrary properties by
logical proof or exhaustive
testing (Infinite effort)

Model checking:
Decidable but possibly
intractable checking of

simple temporal
properties.

Theorem proving:
Unbounded effort to

verify general
properties.

Data flow

• Optimistic inaccuracy
– We may accept some programs 

that do not possess the property.
– It may not detect all violations. 
– Example: Testing

• Pessimistic inaccuracy
– It is not guaranteed to accept a 

program even if the program 
does possess the property being 
analyzed, because of false alarms.

– Example: Automated program analysis 

• Simplified properties
– It reduces the degree of freedom 

by simplifying the property to 
check.

– Example: Model Checking
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simple syntactic
properties.

Typical testing
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Software Quality and Process

• Qualities cannot be added after development
– Quality results from a set of inter-dependent activities.
– Analysis and testing are crucial but far from sufficient. 

• Testing is not a phase, but a lifestyle
– Testing and analysis activities occur from early in requirements engineering 

through delivery and subsequent evolution.  
– Quality depends on every part of the software process.

• An essential feature of software processes is that software test and 
analysis is thoroughly integrated and not an afterthought

• Qualities cannot be added after development
– Quality results from a set of inter-dependent activities.
– Analysis and testing are crucial but far from sufficient. 

• Testing is not a phase, but a lifestyle
– Testing and analysis activities occur from early in requirements engineering 

through delivery and subsequent evolution.  
– Quality depends on every part of the software process.

• An essential feature of software processes is that software test and 
analysis is thoroughly integrated and not an afterthought
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Quality Process

• Quality process
– A set of activities and responsibilities

• Focused on ensuring adequate dependability 
• Concerned with project schedule or with product usability

• Quality process provides a framework for 
– Selecting and arranging A&T activities 
– Considering interactions and trade-offs with other important goals

• Quality process
– A set of activities and responsibilities

• Focused on ensuring adequate dependability 
• Concerned with project schedule or with product usability

• Quality process provides a framework for 
– Selecting and arranging A&T activities 
– Considering interactions and trade-offs with other important goals
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Planning and Monitoring

• Quality process 
– A&T planning
– Balances several activities across the whole development process
– Selects and arranges them to be as cost-effective as possible
– Improves early visibility

• A&T planning is integral to the quality process.
– Quality goals can be achieved only through careful planning.

• Quality process 
– A&T planning
– Balances several activities across the whole development process
– Selects and arranges them to be as cost-effective as possible
– Improves early visibility

• A&T planning is integral to the quality process.
– Quality goals can be achieved only through careful planning.
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Quality Goals

• Goal must be further refined into a clear and reasonable set of objectives.

• Product quality: goals of software quality engineering
• Process quality: means to achieve the goals

• Product qualities
– Internal qualities: invisible to clients

• maintainability, flexibility, reparability, changeability
– External qualities: directly visible to clients

• Usefulness:
– usability, performance, security, portability, interoperability

• Dependability:
– correctness, reliability, safety, robustness

• Goal must be further refined into a clear and reasonable set of objectives.

• Product quality: goals of software quality engineering
• Process quality: means to achieve the goals

• Product qualities
– Internal qualities: invisible to clients

• maintainability, flexibility, reparability, changeability
– External qualities: directly visible to clients

• Usefulness:
– usability, performance, security, portability, interoperability

• Dependability:
– correctness, reliability, safety, robustness
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Dependability Properties

• Correctness
– A program is correct if it is consistent with its specification.
– Seldom practical for non-trivial systems

• Reliability
– Likelihood of correct function for some ”unit” of behavior
– Statistical approximation to correctness (100% reliable = correct)

• Safety
– Concerned with preventing certain undesirable behavior, called hazards

• Robustness
– Providing acceptable (degraded) behavior under extreme conditions
– Fail softly

for 
Normal 

Operation

• Correctness
– A program is correct if it is consistent with its specification.
– Seldom practical for non-trivial systems

• Reliability
– Likelihood of correct function for some ”unit” of behavior
– Statistical approximation to correctness (100% reliable = correct)

• Safety
– Concerned with preventing certain undesirable behavior, called hazards

• Robustness
– Providing acceptable (degraded) behavior under extreme conditions
– Fail softly
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An Example of Dependability Property

• Correctness, Reliability: 
– Let traffic pass according to 

correct pattern and central 
scheduling

• Robustness, Safety: 
– Provide degraded function when 

it fails
– Never signal conflicting greens

• Blinking red / blinking 
yellow is better than no 
lights.

• No lights is better than 
conflicting greens.

• Correctness, Reliability: 
– Let traffic pass according to 

correct pattern and central 
scheduling

• Robustness, Safety: 
– Provide degraded function when 

it fails
– Never signal conflicting greens

• Blinking red / blinking 
yellow is better than no 
lights.

• No lights is better than 
conflicting greens.
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Part II. Basic Techniques



Model

• A model is
– A representation that is simpler than the artifact it represents,
– But preserves some important attributes of the actual artifact

• Our concern is with models of program execution.
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Intraprocedural Control Flow Graph

• Called “Control Flow Graph” or “CGF”
– A directed graph (N, E)

• Nodes 
– Regions of source code (basic blocks)
– Basic block = maximal program region with a single entry and single exit 

point
– Statements are often grouped in single regions to get a compact model.
– Sometime single statements are broken into more than one node to model 

control flow within the statement.

• Directed edges 
– Possibility that program execution proceeds from the end of one region 

directly to the beginning of another

• Called “Control Flow Graph” or “CGF”
– A directed graph (N, E)

• Nodes 
– Regions of source code (basic blocks)
– Basic block = maximal program region with a single entry and single exit 

point
– Statements are often grouped in single regions to get a compact model.
– Sometime single statements are broken into more than one node to model 

control flow within the statement.

• Directed edges 
– Possibility that program execution proceeds from the end of one region 

directly to the beginning of another
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An Example of CFG

public static String collapseNewlines(String argStr)
{

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}

{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; 

{
char ch = argStr.charAt(cIdx);

cIdx < argStr.length();

True

public static String collapseNewlines(String argStr)

False

b2

b4

b3

public static String collapseNewlines(String argStr)
{

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}
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if (ch != '\n' 

True

{
argBuf.append(ch);
last = ch;

}

True

}
cIdx++)

return argBuf.toString();
}

False

False

|| last != '\n') b5

b6

b7

b8



Call Graphs

• “Interprocedural Control Flow Graph”
– A directed graph (N, E)

• Nodes
– Represent procedures, methods, functions, etc.

• Edges
– Represent ‘call’ relation 

• Call graph presents many more design issues and trade-off than CFG.
– Overestimation of call relation
– Context sensitive/insensitive

• “Interprocedural Control Flow Graph”
– A directed graph (N, E)

• Nodes
– Represent procedures, methods, functions, etc.

• Edges
– Represent ‘call’ relation 

• Call graph presents many more design issues and trade-off than CFG.
– Overestimation of call relation
– Context sensitive/insensitive
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Overestimation in a Call Graph

• The static call graph includes calls through dynamic bindings that never 
occur in execution.

public class C {
public static C cFactory(String kind) {

if (kind == "C") return new C(); 
if (kind == "S") return new S(); 
return null; 

}
void foo() { 

System.out.println("You called the parent's method"); 
}
public static void main(String args[]) { 

(new A()).check(); 
}

}
class S extends C { 

void foo() {
System.out.println("You called the child's method"); 

}
}
class A {

void check() {   
C myC = C.cFactory("S"); 
myC.foo();  

}
}

• The static call graph includes calls through dynamic bindings that never 
occur in execution.
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public class C {
public static C cFactory(String kind) {

if (kind == "C") return new C(); 
if (kind == "S") return new S(); 
return null; 

}
void foo() { 

System.out.println("You called the parent's method"); 
}
public static void main(String args[]) { 

(new A()).check(); 
}

}
class S extends C { 

void foo() {
System.out.println("You called the child's method"); 

}
}
class A {

void check() {   
C myC = C.cFactory("S"); 
myC.foo();  

}
}

A.check()

C.foo() S.foo() CcFactory(string)

never occur in execution



Context Sensitive/Insensitive Call Graphs

public class Context {
public static void main(String args[]) { 

Context c = new Context(); 
c.foo(3); 
c.bar(17); 

}

void foo(int n) {
int[]  myArray = new int[ n ]; 
depends( myArray, 2) ; 

}

void bar(int n) {
int[]  myArray = new int[ n ]; 
depends( myArray, 16) ; 

}

void depends( int[] a, int n ) {
a[n] = 42; 

}
}

main main
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public class Context {
public static void main(String args[]) { 

Context c = new Context(); 
c.foo(3); 
c.bar(17); 

}

void foo(int n) {
int[]  myArray = new int[ n ]; 
depends( myArray, 2) ; 

}

void bar(int n) {
int[]  myArray = new int[ n ]; 
depends( myArray, 16) ; 

}

void depends( int[] a, int n ) {
a[n] = 42; 

}
}

C.foo C.bar

C.depends

C.foo(3) C.bar(17)

C.depends(int(3) a,2) C.depends (int(17) a,16)

< Context Insensitive > < Context Sensitive >



Finite State Machines

• CFGs can be extracted from programs.
• FSMs are constructed prior to source code, and serve as specifications.

– A directed graph (N, E)
– CFG and FSM are duals.

• Nodes
– A finite set of states

• Edges
– A set of transitions among states

• CFGs can be extracted from programs.
• FSMs are constructed prior to source code, and serve as specifications.

– A directed graph (N, E)
– CFG and FSM are duals.

• Nodes
– A finite set of states

• Edges
– A set of transitions among states
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LF CR EOF other char

e e / emit l / emit d / - w / append

w e / emit l / emit d / emit w / append

l e / - d / - w / append



Correctness Relations for FSM Models
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Abstract Function for Modeling FSMs
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Modeling with 
abstraction



Why Data Flow Models Need?

• Models from Chapter 5 emphasized control flow only.
– Control flow graph, call graph, finite state machine

• We also need to reason about data dependence.
– To reason about transmission of information through program variables
– “Where does this value of x come from?”
– “What would be affected by changing this? “
– ... 

• Many program analyses and test design techniques use data flow 
information and dependences

– Often in combination with control flow

• Models from Chapter 5 emphasized control flow only.
– Control flow graph, call graph, finite state machine

• We also need to reason about data dependence.
– To reason about transmission of information through program variables
– “Where does this value of x come from?”
– “What would be affected by changing this? “
– ... 

• Many program analyses and test design techniques use data flow 
information and dependences

– Often in combination with control flow
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Definition-Use Pairs

• A def-use (du) pair associates a point in a program where a value is 
produced with a point where it is used

• Definition: where a variable gets a value
– Variable declaration
– Variable initialization
– Assignment
– Values received by a parameter 

• Use: extraction of a value from a variable
– Expressions
– Conditional statements
– Parameter passing
– Returns

• A def-use (du) pair associates a point in a program where a value is 
produced with a point where it is used

• Definition: where a variable gets a value
– Variable declaration
– Variable initialization
– Assignment
– Values received by a parameter 

• Use: extraction of a value from a variable
– Expressions
– Conditional statements
– Parameter passing
– Returns
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Def-Use Pairs

...
if (...) {

x = ... ; 
... 
}
y = ... + x + ... ;
… 

x = ... 

if (...) {

... 

Definition: x 
gets a value
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...
if (...) {

x = ... ; 
... 
}
y = ... + x + ... ;
… 

x = ... 

... 

y = ... + x + ...

... 

Use: the value of 
x is extractedDef-Use

path



Definition-Clear & Killing

• A definition-clear path is a path along the CFG from a definition to a use 
of the same variable without another definition of the variable between.

• If, instead, another definition is present on the path, then the latter 
definition kills the former

• A def-use pair is formed if and only if there is a definition-clear path 
between the definition and the use

• A definition-clear path is a path along the CFG from a definition to a use 
of the same variable without another definition of the variable between.

• If, instead, another definition is present on the path, then the latter 
definition kills the former

• A def-use pair is formed if and only if there is a definition-clear path 
between the definition and the use
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Definition-Clear & Killing

x = ...     // A: def x
q = ...  
x = y;     //  B: kill x, def x
z = ... 
y = f(x);  // C: use x x = ... 

... 

Definition: x 
gets a valueA
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... 

Use: the value of 
x is extracted

x = y 

Definition: x gets 
a new value, old 
value is killed

... 

y = f(x)

B

C

Path B..C is 
definition-clear

Path A..C is 
not definition-clear



(Direct) Data Dependence Graph

• Direct data dependence graph
– A direct graph (N, E)

• Nodes: as in the control flow graph (CFG)
• Edges: def-use (du) pairs, labelled with the variable name
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x

/**  Euclid's algorithm */

public int gcd(int x, int y) {
int tmp;                // A: def x, y, tmp              
while (y != 0) {     // B: use y

tmp = x % y;    // C: def tmp; use x, y
x = y;               // D: def x; use y
y = tmp;           // E: def y; use tmp

}
return x;               // F: use x

}



Control Dependence

• Data dependence
– “Where did these values come from?”

• Control dependence 
– “Which statement controls whether this statement executes?”
– A directed graph

• Nodes: as in the CFG
• Edges: unlabelled, from entry/branching points to controlled blocks

• Data dependence
– “Where did these values come from?”

• Control dependence 
– “Which statement controls whether this statement executes?”
– A directed graph

• Nodes: as in the CFG
• Edges: unlabelled, from entry/branching points to controlled blocks
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/**  Euclid's algorithm */

public int gcd(int x, int y) {
int tmp;                // A: def x, y, tmp              
while (y != 0) {     // B: use y

tmp = x % y;    // C: def tmp; use x, y
x = y;               // D: def x; use y
y = tmp;           // E: def y; use tmp

}
return x;               // F: use x

}



Dominator

• Pre-dominators in a rooted, directed graph can be used to make this 
intuitive notion of “controlling decision” precise.

• Node M dominates node N, if every path from the root to N passes 
through M. 

– A node will typically have many dominators, but except for the root, there is a 
unique immediate dominator of node N which is closest to N on any path 
from the root, and which is in turn dominated by all the other dominators of 
N. 

– Because each node (except the root) has a unique immediate dominator, the 
immediate dominator relation forms a tree.

• Post-dominators are calculated in the reverse of the control flow graph, 
using a special “exit” node as the root.

• Pre-dominators in a rooted, directed graph can be used to make this 
intuitive notion of “controlling decision” precise.

• Node M dominates node N, if every path from the root to N passes 
through M. 

– A node will typically have many dominators, but except for the root, there is a 
unique immediate dominator of node N which is closest to N on any path 
from the root, and which is in turn dominated by all the other dominators of 
N. 

– Because each node (except the root) has a unique immediate dominator, the 
immediate dominator relation forms a tree.

• Post-dominators are calculated in the reverse of the control flow graph, 
using a special “exit” node as the root.
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An Example of Dominators

• A pre-dominates all nodes.
• G post-dominates all nodes.

• F and G post-dominate E.
• G is the immediate post-

dominator of B.

• C does not post-dominate B.

• B is the immediate pre-
dominator of G.

• F does not pre-dominate G.

A

B

• A pre-dominates all nodes.
• G post-dominates all nodes.

• F and G post-dominate E.
• G is the immediate post-

dominator of B.

• C does not post-dominate B.

• B is the immediate pre-
dominator of G.

• F does not pre-dominate G.
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F
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More Precise Definition of Control Dependence

• We can use post-dominators to give a more precise definition of control 
dependence

– Consider again a node N that is reached on some but not all execution paths.
– There must be some node C with the following property: 

• C has at least two successors in the control flow graph (i.e., it represents a control 
flow decision).

• C is not post-dominated by N.
• There is a successor of C in the control flow graph that is post-dominated by N.  

– When these conditions are true, we say node N is control-dependent on 
node C.

• Intuitively, C is the last decision that controls whether N executes.

• We can use post-dominators to give a more precise definition of control 
dependence

– Consider again a node N that is reached on some but not all execution paths.
– There must be some node C with the following property: 

• C has at least two successors in the control flow graph (i.e., it represents a control 
flow decision).

• C is not post-dominated by N.
• There is a successor of C in the control flow graph that is post-dominated by N.  

– When these conditions are true, we say node N is control-dependent on 
node C.

• Intuitively, C is the last decision that controls whether N executes.

34



An Example of Control Dependence

A

B

C E

Execution of F is 
not inevitable at B

Execution of F is 
inevitable at E
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C

D

E

F

G
F is control-dependent on B,

the last point at which its
execution was not inevitable

Execution of F is 
inevitable at E



Symbolic Execution

• Builds predicates that characterize 
– Conditions for executing paths 
– Effects of the execution on program state

• Bridges program behavior to logic

• Finds important applications in 
– Program analysis
– Test data generation
– Formal verification (proofs) of program correctness

• Rigorous proofs of properties of critical subsystems
– Example: safety kernel of a medical device

• Formal verification of critical properties particularly resistant to dynamic testing 
– Example: security properties

• Formal verification of algorithm descriptions and logical designs
– less complex than implementations

• Builds predicates that characterize 
– Conditions for executing paths 
– Effects of the execution on program state

• Bridges program behavior to logic

• Finds important applications in 
– Program analysis
– Test data generation
– Formal verification (proofs) of program correctness

• Rigorous proofs of properties of critical subsystems
– Example: safety kernel of a medical device

• Formal verification of critical properties particularly resistant to dynamic testing 
– Example: security properties

• Formal verification of algorithm descriptions and logical designs
– less complex than implementations
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Symbolic State and Interpretation

• Tracing execution with symbolic values and expressions is the basis of 
symbolic execution.

– Values are expressions over symbols.
– Executing statements computes new expressions with the symbols.

Execution with concrete values

(before)
low 12
high 15
mid -

mid = (high + low) / 2

(after)
low 12
high 15
mid 13

Execution with symbolic values

(before)
low L
high H
mid -

mid = (high + low) / 2

(after)
Low L
high H
mid (L+H) / 2
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Execution with concrete values

(before)
low 12
high 15
mid -

mid = (high + low) / 2

(after)
low 12
high 15
mid 13

Execution with symbolic values

(before)
low L
high H
mid -

mid = (high + low) / 2

(after)
Low L
high H
mid (L+H) / 2



Tracing Execution with Symbolic Executions

char *binarySearch( char *key, char *dictKeys[ ], 
char *dictValues[ ],  int dictSize) {

int low = 0; 
int high = dictSize - 1; 
int mid; 
int comparison; 

while (high >= low) {
mid = (high + low) / 2; 
comparison = strcmp( dictKeys[mid], key );
if (comparison < 0) {
low = mid + 1;

} else if ( comparison > 0 ) {
high = mid - 1;

} else {
return dictValues[mid];

}
}
return 0;

}

Execution with symbolic values

(before)
low = 0

∧ high = (H-1)/2 -1
∧ mid = (H-1)/2

while (high >= low) {

(after)
low = 0

∧ high = (H-1)/2 -1
∧ mid = (H-1)/2
∧ (H-1)/2 - 1 >= 0
... 
∧ not((H-1)/2 - 1 >= 0)

∧∀k, 0 ≤ k < size : dictKeys[k] = key → L 
≤ k ≤ H
∧ H ≥ M ≥ L
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char *binarySearch( char *key, char *dictKeys[ ], 
char *dictValues[ ],  int dictSize) {

int low = 0; 
int high = dictSize - 1; 
int mid; 
int comparison; 

while (high >= low) {
mid = (high + low) / 2; 
comparison = strcmp( dictKeys[mid], key );
if (comparison < 0) {
low = mid + 1;

} else if ( comparison > 0 ) {
high = mid - 1;

} else {
return dictValues[mid];

}
}
return 0;

}

Execution with symbolic values

(before)
low = 0

∧ high = (H-1)/2 -1
∧ mid = (H-1)/2

while (high >= low) {

(after)
low = 0

∧ high = (H-1)/2 -1
∧ mid = (H-1)/2
∧ (H-1)/2 - 1 >= 0
... 
∧ not((H-1)/2 - 1 >= 0)

when true

when false



Summary Information

• Symbolic representation of paths may become extremely complex.

• We can simplify the representation by replacing a complex condition P
with a weaker condition W such that

P => W
– W describes the path with less precision
– W is a summary of P

• Symbolic representation of paths may become extremely complex.

• We can simplify the representation by replacing a complex condition P
with a weaker condition W such that

P => W
– W describes the path with less precision
– W is a summary of P
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An Example of Summary Information

• If we are reasoning about the correctness of the binary search algorithm, 
– In “ mid = (high+low)/2  “

• The weaker condition contains less information, but still enough to 
reason about correctness. 

Weaker condition:

low = L
∧    high = H
∧ mid = M
∧ L <= M <= H

Complete condition:

low = L
∧ high = H
∧ mid = M
∧ M = (L+H) / 2

• If we are reasoning about the correctness of the binary search algorithm, 
– In “ mid = (high+low)/2  “

• The weaker condition contains less information, but still enough to 
reason about correctness. 
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Weaker condition:

low = L
∧    high = H
∧ mid = M
∧ L <= M <= H

Complete condition:

low = L
∧ high = H
∧ mid = M
∧ M = (L+H) / 2



Compositional Reasoning

• Follow the hierarchical structure of a program
– at a small scale (within a single procedure) 
– at larger scales (across multiple procedures)

• Hoare triple: [pre] block [post]

• If the program is in a state satisfying the precondition pre at entry to the 
block, then after execution of the block, it will be in a state satisfying the 
postcondition post

• Follow the hierarchical structure of a program
– at a small scale (within a single procedure) 
– at larger scales (across multiple procedures)

• Hoare triple: [pre] block [post]

• If the program is in a state satisfying the precondition pre at entry to the 
block, then after execution of the block, it will be in a state satisfying the 
postcondition post
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Reasoning about Hoare Triples: Inference

[ I ∧C ] S [ I ]

[ I ] while(C) { S } [I ∧ ¬C]

premise

While loops:
I  : invariant
C : loop condition
S : body of the loop

42

[ I ∧C ] S [ I ]

[ I ] while(C) { S } [I ∧ ¬C]

Inference rule says:
if we can verify the premise (top), 
then we can infer the conclusion (bottom)

conclusion



Other Inference Rule

if statement:

[P ∧ C] thenpart [Q]      [P ∧ ¬C] elsepart [Q]
[P] if (C) {thenpart} else {elsepart} [Q]
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[P ∧ C] thenpart [Q]      [P ∧ ¬C] elsepart [Q]
[P] if (C) {thenpart} else {elsepart} [Q]



Resources and Results

Properties to 
be proved

complex
symbolic execution

and formal reasoning
symbolic execution

and formal reasoning

finite state
verification
finite state
verification

applies techniques from
symbolic execution
and formal verification
to models that abstract
the potentially infinite state space
of program behavior
into finite representations
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Computational 
costhighlow

simple

control
and data flow 

models

control
and data flow 

models

applies techniques from
symbolic execution
and formal verification
to models that abstract
the potentially infinite state space
of program behavior
into finite representations



Finite State Verification Framework

45



The State Space Explosion Problem

• Dining philosophers - looking for deadlock with SPIN

5 phils+forks 145 states
deadlock found

10 phils+forks 18,313 states
error trace too long to be useful

15 phils+forks 148,897 states
error trace too long to be useful

• Team Practice and Homework.

• Dining philosophers - looking for deadlock with SPIN

5 phils+forks 145 states
deadlock found

10 phils+forks 18,313 states
error trace too long to be useful

15 phils+forks 148,897 states
error trace too long to be useful

• Team Practice and Homework.
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The Model Correspondence Problem

• Verifying correspondence between model and program
– Extract the model from the source code with verified procedures

• Blindly mirroring all details à state space explosion 
• Omitting crucial detail à “false alarm” reports 

– Produce the source code automatically from the model
• Most applicable within well-understood domains

– Conformance testing
• Combination of FSV and testing is a good tradeoff

• Verifying correspondence between model and program
– Extract the model from the source code with verified procedures

• Blindly mirroring all details à state space explosion 
• Omitting crucial detail à “false alarm” reports 

– Produce the source code automatically from the model
• Most applicable within well-understood domains

– Conformance testing
• Combination of FSV and testing is a good tradeoff
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Granularity of Modeling

(a) (a)

(b)

t=i;

(w)

(x)

u=i;

(w)
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(d)

i = i+1

E E

(c)

t=t+1;

(d)

i=t;

E

(y)

u=u+1;

(z)

i=u;

(z)

i = i+1

E



Analysis of Different Models

• We can find the race only with 
fine-grain models.

RacerP RacerQ

t = i;
(a)

t = t+1;
(b)

u = i;
(w)
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i = t;
(c)

(d)

u = i;

u = u+1;
(x)

i = u;
(y)

(z)



Intentional Models

• Enumerating all reachable states is a limiting factor of finite state 
verification.

• We can reduce the space by using intentional (symbolic) representations.
– describe sets of reachable states without enumerating each one individually

• Example (set of Integers)
– Enumeration {2, 4, 6, 8, 10, 12, 14, 16, 18}
– Intentional representation:  {x∈N | x mod 2 =0 and 0<x<20} 
← “characteristic function”

• Intentional models do not necessarily grow with the size of the set they 
represent 

• Enumerating all reachable states is a limiting factor of finite state 
verification.

• We can reduce the space by using intentional (symbolic) representations.
– describe sets of reachable states without enumerating each one individually

• Example (set of Integers)
– Enumeration {2, 4, 6, 8, 10, 12, 14, 16, 18}
– Intentional representation:  {x∈N | x mod 2 =0 and 0<x<20} 
← “characteristic function”

• Intentional models do not necessarily grow with the size of the set they 
represent 
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OBDD: A Useful Intentional Model

• OBDD (Ordered Binary Decision Diagram)
– A compact representation of Boolean functions

• Characteristic function for transition relations
– Transitions = pairs of states
– Function from pairs of states to Booleans is true, if there is a transition 

between the pair.
– Built iteratively by breadth-first expansion of the state space:

• Create a representation of the whole set of states reachable in k+1 steps from the 
set of states reachable in k steps

• OBDD stabilizes when all the transitions that can occur in the next step are already 
represented in the OBDD.

• OBDD (Ordered Binary Decision Diagram)
– A compact representation of Boolean functions

• Characteristic function for transition relations
– Transitions = pairs of states
– Function from pairs of states to Booleans is true, if there is a transition 

between the pair.
– Built iteratively by breadth-first expansion of the state space:

• Create a representation of the whole set of states reachable in k+1 steps from the 
set of states reachable in k steps

• OBDD stabilizes when all the transitions that can occur in the next step are already 
represented in the OBDD.
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From OBDD to Symbolic Checking

• Intentional representation itself is not enough.
• We must have an algorithm for determining whether it satisfies the 

property we are checking.

• Example: A set of communicating state machines using OBDD
– To represent the transition relation of a set of communicating state machines
– To model a class of temporal logic specification formulas

• Combine OBDD representations of model and specification to produce a 
representation of just the set of transitions leading to a violation of the 
specification

– If the set is empty, the property has been verified.

• Intentional representation itself is not enough.
• We must have an algorithm for determining whether it satisfies the 

property we are checking.

• Example: A set of communicating state machines using OBDD
– To represent the transition relation of a set of communicating state machines
– To model a class of temporal logic specification formulas

• Combine OBDD representations of model and specification to produce a 
representation of just the set of transitions leading to a violation of the 
specification

– If the set is empty, the property has been verified.
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Representing Transition Relations as 
Boolean Functions

• a Þ b and c
not(a) or (b and c) 

• BDD is a decision tree that has 
been transformed into an acyclic 
graph by merging nodes leading 
to identical sub-trees.

a
F T

F T

b
F T

c
F T

• a Þ b and c
not(a) or (b and c) 

• BDD is a decision tree that has 
been transformed into an acyclic 
graph by merging nodes leading 
to identical sub-trees.
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b
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Representing Transition Relations as 
Boolean Functions : Steps

A. Assign a label to each state
B. Encode transitions 
C. The transition tuples correspond 

to paths leading to true, and all 
other paths lead to false.

s0 (00)

s1 (01)

b (x0=1)

a (x0=0)

0 0 0 0 0 

0 0 0 1 1 

x1 x2 x3 x4 x0 

x0
0 1

x1
0 1

F T

x1
0 1

x2
0 1

x3
0 1

x4
0 1

x2
0 1

x3
0 1

x4
0 1

sym from state to state

(A)

(B)

(C)

s2 (10)

b (x0=1)

0 1 1 0 1 

x3
0 1

A. Assign a label to each state
B. Encode transitions 
C. The transition tuples correspond 

to paths leading to true, and all 
other paths lead to false.
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s0 (00)

s1 (01)

b (x0=1)

a (x0=0)

0 0 0 0 0 

0 0 0 1 1 

x1 x2 x3 x4 x0 

x0
0 1

x1
0 1

F T

x1
0 1

x2
0 1

x3
0 1

x4
0 1

x2
0 1

x3
0 1

x4
0 1

sym from state to state

(A)

(B)

(C)

s2 (10)

b (x0=1)

0 1 1 0 1 

x3
0 1



Intentional vs. Explicit Representations

• Worst case:
– Given a large set S of states,
– a representation capable of distinguishing each subset of S cannot be more 

compact on average than the representation that simply lists elements of the 
chosen subset. 

• Intentional representations work well when they exploit structure and 
regularity of the state space.

• Worst case:
– Given a large set S of states,
– a representation capable of distinguishing each subset of S cannot be more 

compact on average than the representation that simply lists elements of the 
chosen subset. 

• Intentional representations work well when they exploit structure and 
regularity of the state space.
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Model Refinement

• Construction of finite state models 
– Should balance precision and efficiency

• Often the first model is unsatisfactory 
– Report potential failures that are obviously impossible
– Exhaust resources before producing any result

• Minor differences in the model can have large effects on tractability of 
the verification procedure.

• Finite state verification as iterative process is required.

• Construction of finite state models 
– Should balance precision and efficiency

• Often the first model is unsatisfactory 
– Report potential failures that are obviously impossible
– Exhaust resources before producing any result

• Minor differences in the model can have large effects on tractability of 
the verification procedure.

• Finite state verification as iterative process is required.
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Iteration Process

construct an
initial model

attempt verification
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abstract the model 
further

exhausts 
computational 

resources

make the model
more precise

spurious
results



Refinement 1: Adding Details to the Model

M1 |= P Initial (coarse grain) model
(The counter example that violates P is possible in M1, 
but does not correspond to an execution of the real program.)

M2 |= P Refined (more detailed) model
(the counterexample above is not possible in M2 , but a new
counterexamples violates M2 , and does not correspond to an
execution of the real program too.) 

....

Mk |= P Refined (final) model
(the counter example that violates P in Mk corresponds to an
execution in the real program.) 

M1 |= P Initial (coarse grain) model
(The counter example that violates P is possible in M1, 
but does not correspond to an execution of the real program.)

M2 |= P Refined (more detailed) model
(the counterexample above is not possible in M2 , but a new
counterexamples violates M2 , and does not correspond to an
execution of the real program too.) 

....

Mk |= P Refined (final) model
(the counter example that violates P in Mk corresponds to an
execution in the real program.) 
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Refinement 2: Add Premises to the Property

Initial (coarse grain) model

M |= P

Add a constraint C1 that eliminates the bogus behavior

M |= C1 Þ P

M |= (C1 and C2) Þ P
.... 

Until the verification succeeds or produces a valid counter example

Initial (coarse grain) model

M |= P

Add a constraint C1 that eliminates the bogus behavior

M |= C1 Þ P

M |= (C1 and C2) Þ P
.... 

Until the verification succeeds or produces a valid counter example
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Part III. Problems and Methods



Terminology in Testing

Terms Descriptions

Test case a set of inputs, execution conditions, and a pass/fail criterion

Test case specification 
(Test specification) a requirement to be satisfied by one or more test cases

Test obligation a partial test case specification, requiring some property deemed 
important to thorough testing
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Test obligation a partial test case specification, requiring some property deemed 
important to thorough testing

Test suite a set of test cases

Test 
(Test execution) the activity of executing test cases and evaluating their results

Adequacy criterion a predicate that is true (satisfied) or false of a áprogram, test suiteñ pair



Source of Test Specification

Testing Other names
Source of test specification

Example

Functional 
Testing

Black box testing
Specification-based testing

Software specification

If specification requires robust recovery from power 
failure, test obligations should include simulated 
power failure.

Structural 
Testing White box testing

Source codeStructural 
Testing White box testing

Source code

Traverse each program loop one or more times

Model-based 
Testing

Models of system
• Models used in specification or design
• Models derived from source code

Exercise all transitions in communication protocol 
model

Fault-based 
Testing

Hypothesized faults, common bugs

Check for buffer overflow handling (common 
vulnerability) by testing on very large inputs
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Adequacy Criteria

• Adequacy criterion = Set of test obligations

• A test suite satisfies an adequacy criterion, iff
– All the tests succeed (pass), and
– Every test obligation in the criterion is satisfied by at least one of the test 

cases in the test suite.  

– Example: 
• “The statement coverage adequacy criterion is satisfied by test suite S for 

program P, if each executable statement in P is executed by at least one 
test case in S, and the outcome of each test execution was pass.”

• Adequacy criterion = Set of test obligations

• A test suite satisfies an adequacy criterion, iff
– All the tests succeed (pass), and
– Every test obligation in the criterion is satisfied by at least one of the test 

cases in the test suite.  

– Example: 
• “The statement coverage adequacy criterion is satisfied by test suite S for 

program P, if each executable statement in P is executed by at least one 
test case in S, and the outcome of each test execution was pass.”
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Coverage

• Measuring coverage (% of satisfied test obligations) can be a useful indicator of 
– Progress toward a thorough test suite (thoroughness of test suite)

– Trouble spots requiring more attention in testing

• But, coverage is only a proxy for thoroughness or adequacy.
– It’s easy to improve coverage without improving a test suite (much easier 

than designing good test cases)
– The only measure that really matters is (cost-) effectiveness.

• Measuring coverage (% of satisfied test obligations) can be a useful indicator of 
– Progress toward a thorough test suite (thoroughness of test suite)

– Trouble spots requiring more attention in testing

• But, coverage is only a proxy for thoroughness or adequacy.
– It’s easy to improve coverage without improving a test suite (much easier 

than designing good test cases)
– The only measure that really matters is (cost-) effectiveness.
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Comparing Criteria

• Can we distinguish stronger from weaker adequacy criteria? 

• Analytical approach
– Describe conditions under which one adequacy criterion is provably stronger 

than another
– Just a piece of the overall “effectiveness” question
– Stronger = gives stronger guarantees

→ Subsumes relation

• Can we distinguish stronger from weaker adequacy criteria? 

• Analytical approach
– Describe conditions under which one adequacy criterion is provably stronger 

than another
– Just a piece of the overall “effectiveness” question
– Stronger = gives stronger guarantees

→ Subsumes relation
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Subsumes Relation

• Test adequacy criterion A subsumes test adequacy criterion B iff, for 
every program P, every test suite satisfying A with respect to P also 
satisfies B with respect to P.

– E.g. Exercising all program branches (branch coverage) subsumes exercising 
all program statements.

• A common analytical comparison of closely related criteria
– Useful for working from easier to harder levels of coverage, but not a direct 

indication of quality

• Test adequacy criterion A subsumes test adequacy criterion B iff, for 
every program P, every test suite satisfying A with respect to P also 
satisfies B with respect to P.

– E.g. Exercising all program branches (branch coverage) subsumes exercising 
all program statements.

• A common analytical comparison of closely related criteria
– Useful for working from easier to harder levels of coverage, but not a direct 

indication of quality
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Functional Testing

• Functional testing
– Deriving test cases from program specifications 
– ‘Functional’ refers to the source of information used in test case design, not 

to what is tested.

• Also known as:
– Specification-based testing (from specifications)
– Black-box testing (no view of source code)

• Functional specification = description of intended program behavior
– Formal or informal

• Functional testing
– Deriving test cases from program specifications 
– ‘Functional’ refers to the source of information used in test case design, not 

to what is tested.

• Also known as:
– Specification-based testing (from specifications)
– Black-box testing (no view of source code)

• Functional specification = description of intended program behavior
– Formal or informal
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Systematic testing vs. Random testing

• Random (uniform) testing
– Pick possible inputs uniformly
– Avoids designer’s bias
– But, treats all inputs as equally valuable

• Systematic (non-uniform) testing
– Try to select inputs that are especially valuable
– Usually by choosing representatives of classes that are apt to fail often or not 

at all

• Functional testing is a systematic (partition-based) testing strategy.

• Random (uniform) testing
– Pick possible inputs uniformly
– Avoids designer’s bias
– But, treats all inputs as equally valuable

• Systematic (non-uniform) testing
– Try to select inputs that are especially valuable
– Usually by choosing representatives of classes that are apt to fail often or not 

at all

• Functional testing is a systematic (partition-based) testing strategy.
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Purpose of Testing

• Our goal is to find needles and remove them from hay. 
→ Look systematically (non-uniformly) for needles !!!
– We need to use everything we know about needles. 

• E.g. Are they heavier than hay? Do they sift to the bottom? 

• To estimate the proportion of needles to hay  
→ Sample randomly !!!
– Reliability estimation requires unbiased samples for valid statistics.  
– But that’s not our goal. 

• Our goal is to find needles and remove them from hay. 
→ Look systematically (non-uniformly) for needles !!!
– We need to use everything we know about needles. 

• E.g. Are they heavier than hay? Do they sift to the bottom? 

• To estimate the proportion of needles to hay  
→ Sample randomly !!!
– Reliability estimation requires unbiased samples for valid statistics.  
– But that’s not our goal. 
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Systematic Partition Testing

Failure (valuable test case)

No failure

Failures are sparse in 
the space of possible 
inputs.

But, dense in some parts 
of the space
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If we systematically test some cases 
from each part, we will include the 
dense parts.

Functional testing is one way of 
drawing pink lines to isolate regions 
with likely failures
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Main Steps of Functional Program Testing

Functional specifications

Independently Testable Feature

Representative Values Model

Identify independently testable features

Derive a modelIdentify representative values

Finite State Machine,
Grammar,

Algebraic Specification,
Logic Specification,

CFG / DFG

Brute force testing
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Representative Values Model

Test Case Specification

Test Cases

Scaffolding

Generate test case specifications

Generate test cases

Instantiate tests

Test selection 
criteria

Manual Mapping,
Symbolic Execution,

A-posteriori Satisfaction

Semantic Constraint,
Combinational Selection,
Exhaustive Enumeration,

Random Selection



Key Ideas in Combinatorial Approaches

1. Category-partition testing
– Separate (manual) identification of values that characterize the input space 

from (automatic) generation of combinations for test cases

2. Pairwise testing 
– Systematically test interactions among attributes of the program input space 

with a relatively small number of test cases

3. Catalog-based testing
– Aggregate and synthesize the experience of test designers in a particular 

organization or application domain, to aid in identifying attribute values

1. Category-partition testing
– Separate (manual) identification of values that characterize the input space 

from (automatic) generation of combinations for test cases

2. Pairwise testing 
– Systematically test interactions among attributes of the program input space 

with a relatively small number of test cases

3. Catalog-based testing
– Aggregate and synthesize the experience of test designers in a particular 

organization or application domain, to aid in identifying attribute values
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1. Category-Partition Testing

1. Decompose the specification into independently testable features
– for each feature, identify parameters and environment elements
– for each parameter and environment element, identify elementary 

characteristics (→ categories)

2. Identify representative values
– for each characteristic(category), identify classes of values

• normal values
• boundary values
• special values
• error values

3. Generate test case specifications

1. Decompose the specification into independently testable features
– for each feature, identify parameters and environment elements
– for each parameter and environment element, identify elementary 

characteristics (→ categories)

2. Identify representative values
– for each characteristic(category), identify classes of values

• normal values
• boundary values
• special values
• error values

3. Generate test case specifications
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Identify Independently Testable Units

Model

Model number

Number of required slots for selected model (#SMRS)

Number of optional slots for selected model (#SMOS)

Correspondence of selection with model slots

Number of required components with selection ¹ empty
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Components

Number of required components with selection ¹ empty

Required component selection

Number of optional components with selection ¹ empty

Optional component selection

Product 
Database

Number of models in database (#DBM)

Number of components in database (#DBC)



Step 2: Identify Representative Values

• Identify representative classes of values for each of the categories 

• Representative values may be identified by applying 
– Boundary value testing

• Select extreme values within a class 
• Select values outside but as close as possible to the class
• Select interior (non-extreme) values of the class

– Erroneous condition testing
• Select values outside the normal domain of the program

• Identify representative classes of values for each of the categories 

• Representative values may be identified by applying 
– Boundary value testing

• Select extreme values within a class 
• Select values outside but as close as possible to the class
• Select interior (non-extreme) values of the class

– Erroneous condition testing
• Select values outside the normal domain of the program
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Representative Values: Model

• Model number
Malformed
Not in database
Valid

• Number of required slots for selected model (#SMRS)
0
1
Many

• Number of optional slots for selected model (#SMOS)
0
1
Many

• Model number
Malformed
Not in database
Valid

• Number of required slots for selected model (#SMRS)
0
1
Many

• Number of optional slots for selected model (#SMOS)
0
1
Many
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Step 3: Generate Test Case Specifications

• A combination of values for each category corresponds to a test case 
specification.

– In the example, we have 314,928 test cases.
– Most of which are impossible.
– Example: zero slots and at least one incompatible slot

• Need to introduce constraints in order to
– Rule out impossible combinations, and
– Reduce the size of the test suite, if too large

– Example:
• Error constraints
• Property constraints
• Single constraints

• A combination of values for each category corresponds to a test case 
specification.

– In the example, we have 314,928 test cases.
– Most of which are impossible.
– Example: zero slots and at least one incompatible slot

• Need to introduce constraints in order to
– Rule out impossible combinations, and
– Reduce the size of the test suite, if too large

– Example:
• Error constraints
• Property constraints
• Single constraints
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Error Constraints

• [error] indicates a value class that 
corresponds to an erroneous 
values.

– Need to be tried only once

• Error value class
– No need to test all possible 

combinations of errors, and one 
test is enough.

Model number
Malformed  [error]
Not in database [error]
Valid

Correspondence of selection with model 
slots
Omitted slots [error]
Extra slots [error]
Mismatched slots [error]
Complete correspondence

Number of required comp. with non empty 
selection
0 [error]
< number of required slots [error]

Required comp. selection
³ 1 not in database [error]

Number of models in database (#DBM)
0 [error]

Number of components in database (#DBC)
0 [error]

• [error] indicates a value class that 
corresponds to an erroneous 
values.

– Need to be tried only once

• Error value class
– No need to test all possible 

combinations of errors, and one 
test is enough.

Model number
Malformed  [error]
Not in database [error]
Valid

Correspondence of selection with model 
slots
Omitted slots [error]
Extra slots [error]
Mismatched slots [error]
Complete correspondence

Number of required comp. with non empty 
selection
0 [error]
< number of required slots [error]

Required comp. selection
³ 1 not in database [error]

Number of models in database (#DBM)
0 [error]

Number of components in database (#DBC)
0 [error]
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Error constraints reduce test suite 
from 314,928 to 2,711 test cases



Property Constraints

Number of required slots for selected model (#SMRS)
1 [property RSNE]
Many [property RSNE] [property RSMANY]

Number of optional slots for selected model (#SMOS)
1 [property OSNE]
Many [property OSNE] [property OSMANY]

Number of required comp. with non empty selection
0 [if RSNE] [error]
< number required slots [if RSNE] [error]
= number required slots [if RSMANY]

Number of optional comp. with non empty selection
< number required slots [if OSNE]
= number required slots [if OSMANY]

Number of required slots for selected model (#SMRS)
1 [property RSNE]
Many [property RSNE] [property RSMANY]

Number of optional slots for selected model (#SMOS)
1 [property OSNE]
Many [property OSNE] [property OSMANY]

Number of required comp. with non empty selection
0 [if RSNE] [error]
< number required slots [if RSNE] [error]
= number required slots [if RSMANY]

Number of optional comp. with non empty selection
< number required slots [if OSNE]
= number required slots [if OSMANY]
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from 2,711 to 908 test cases



Single Constraints

Number of required slots for selected model (#SMRS)
0 [single]
1 [property RSNE] [single]

Number of optional slots for selected model (#SMOS)
0 [single]
1 [single] [property OSNE]

Required component selection
Some default [single]

Optional component selection
Some default [single]

Number of models in database (#DBM)
1 [single]

Number of components in database (#DBC)
1 [single]

Number of required slots for selected model (#SMRS)
0 [single]
1 [property RSNE] [single]

Number of optional slots for selected model (#SMOS)
0 [single]
1 [single] [property OSNE]

Required component selection
Some default [single]

Optional component selection
Some default [single]

Number of models in database (#DBM)
1 [single]

Number of components in database (#DBC)
1 [single]
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from 908 to 69 test cases



Check Configuration – Summary of Categories

Parameter Model
• Model number

– Malformed [error]
– Not in database [error]
– Valid

• Number of required slots for selected model (#SMRS)
– 0 [single]
– 1 [property RSNE] [single] 
– Many [property RSNE]  [property RSMANY]

• Number of optional slots for selected model (#SMOS)
– 0 [single]
– 1 [property OSNE] [single] 
– Many [property OSNE] [property OSMANY]

Environment Product data base
• Number of models in database (#DBM)

– 0 [error]
– 1 [single]
– Many

• Number of components in database (#DBC)
– 0 [error]
– 1 [single]
– Many

Parameter Component
• Correspondence of selection with model slots

– Omitted slots [error]
– Extra slots [error]
– Mismatched slots [error]
– Complete correspondence

• # of required components (selection ¹ empty)
– 0 [if RSNE] [error]
– < number required slots [if RSNE] [error]
– = number required slots [if RSMANY]

• Required component selection
– Some defaults [single]
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database [error]

• # of optional components (selection ¹ empty)
– 0
– < #SMOS [if OSNE]
– = #SMOS [if OSMANY]

• Optional component selection
– Some defaults [single]
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database [error]

Parameter Model
• Model number

– Malformed [error]
– Not in database [error]
– Valid

• Number of required slots for selected model (#SMRS)
– 0 [single]
– 1 [property RSNE] [single] 
– Many [property RSNE]  [property RSMANY]

• Number of optional slots for selected model (#SMOS)
– 0 [single]
– 1 [property OSNE] [single] 
– Many [property OSNE] [property OSMANY]

Environment Product data base
• Number of models in database (#DBM)

– 0 [error]
– 1 [single]
– Many

• Number of components in database (#DBC)
– 0 [error]
– 1 [single]
– Many

Parameter Component
• Correspondence of selection with model slots

– Omitted slots [error]
– Extra slots [error]
– Mismatched slots [error]
– Complete correspondence

• # of required components (selection ¹ empty)
– 0 [if RSNE] [error]
– < number required slots [if RSNE] [error]
– = number required slots [if RSMANY]

• Required component selection
– Some defaults [single]
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database [error]

• # of optional components (selection ¹ empty)
– 0
– < #SMOS [if OSNE]
– = #SMOS [if OSMANY]

• Optional component selection
– Some defaults [single]
– All valid
– ³ 1 incompatible with slots
– ³ 1 incompatible with another selection
– ³ 1 incompatible with model
– ³ 1 not in database [error]
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2. Pairwise Combination Testing

• Category partition works well when intuitive constraints reduce the 
number of combinations to a small amount of test cases.

– Without many constraints, the number of combinations may be 
unmanageable.

• Pairwise combination
– Instead of exhaustive combinations
– Generate combinations that efficiently cover all pairs (triples,…) of classes
– Rationale: 

• Most failures are triggered by single values or combinations of a few values.
• Covering pairs (triples,…) reduces the number of test cases, but reveals most faults.

• Category partition works well when intuitive constraints reduce the 
number of combinations to a small amount of test cases.

– Without many constraints, the number of combinations may be 
unmanageable.

• Pairwise combination
– Instead of exhaustive combinations
– Generate combinations that efficiently cover all pairs (triples,…) of classes
– Rationale: 

• Most failures are triggered by single values or combinations of a few values.
• Covering pairs (triples,…) reduces the number of test cases, but reveals most faults.
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An Example: Display Control

• No constraints reduce the total number of combinations 432 (3x4x3x4x3) 
test cases, if we consider all combinations.

Display Mode Language Fonts Color Screen size

full-graphics English Minimal Monochrome Hand-held

text-only French Standard Color-map Laptop
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text-only French Standard Color-map Laptop

limited-bandwidth Spanish Document-loaded 16-bit Full-size

Portuguese True-color



Pairwise Combination: 17 Test Cases
Language Color Display Mode Fonts Screen Size

English Monochrome Full-graphics Minimal Hand-held

English Color-map Text-only Standard Full-size

English 16-bit Limited-bandwidth - Full-size

English True-color Text-only Document-loaded Laptop

French Monochrome Limited-bandwidth Standard Laptop

French Color-map Full-graphics Document-loaded Full-size

French 16-bit Text-only Minimal -
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French 16-bit Text-only Minimal -

French True-color - - Hand-held

Spanish Monochrome - Document-loaded Full-size

Spanish Color-map Limited-bandwidth Minimal Hand-held

Spanish 16-bit Full-graphics Standard Laptop

Spanish True-color Text-only - Hand-held

Portuguese - - Monochrome Text-only

Portuguese Color-map - Minimal Laptop

Portuguese 16-bit Limited-bandwidth Document-loaded Hand-held

Portuguese True-color Full-graphics Minimal Full-size

Portuguese True-color Limited-bandwidth Standard Hand-held



Adding Constraints

• Simple constraints
– Example: “Color monochrome not compatible with screen laptop and full size” 

can be handled by considering the case in separate tables.

Display Mode Language Fonts Color Screen size

full-graphics English Minimal Monochrome Hand-held
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text-only French Standard Color-map

limited-bandwidth Spanish Document-loaded 16-bit

Portuguese True-color

Display Mode Language Fonts Color Screen size

full-graphics English Minimal

text-only French Standard Color-map Laptop

limited-bandwidth Spanish Document-loaded 16-bit Full-size

Portuguese True-color



Structural Testing

• Judging test suite thoroughness based on the structure of the program
itself

– Also known as 
• White-box testing
• Glass-box testing 
• Code-based testing

– Distinguish from functional (requirements-based, “black-box”) testing

• Structural testing is still testing product functionality against its 
specification.  

– Only the measure of thoroughness has changed.

• Judging test suite thoroughness based on the structure of the program
itself

– Also known as 
• White-box testing
• Glass-box testing 
• Code-based testing

– Distinguish from functional (requirements-based, “black-box”) testing

• Structural testing is still testing product functionality against its 
specification.  

– Only the measure of thoroughness has changed.
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Rationale of Structural Testing

• One way of answering the question “What is missing in our test suite?”
– If a part of a program is not executed by any test case in the suite, faults in 

that part cannot be exposed.
– But what’s the ‘part’?

• Typically, a control flow element or combination
• Statements (or CFG nodes), Branches (or CFG edges)
• Fragments and combinations: Conditions, paths 

• Structural testing complements functional testing.
– Another way to recognize cases that are treated differently

• Recalling fundamental rationale
– Prefer test cases that are treated differently over cases treated the same

• One way of answering the question “What is missing in our test suite?”
– If a part of a program is not executed by any test case in the suite, faults in 

that part cannot be exposed.
– But what’s the ‘part’?

• Typically, a control flow element or combination
• Statements (or CFG nodes), Branches (or CFG edges)
• Fragments and combinations: Conditions, paths 

• Structural testing complements functional testing.
– Another way to recognize cases that are treated differently

• Recalling fundamental rationale
– Prefer test cases that are treated differently over cases treated the same
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No Guarantee

• Executing all control flow elements does not guarantee finding all faults.
– Execution of a faulty statement may not always result in a failure.

• The state may not be corrupted when the statement is executed with some data 
values.

• Corrupt state may not propagate through execution to eventually lead to failure.

• What is the value of structural coverage?
– Increases confidence in thoroughness of testing

• Executing all control flow elements does not guarantee finding all faults.
– Execution of a faulty statement may not always result in a failure.

• The state may not be corrupted when the statement is executed with some data 
values.

• Corrupt state may not propagate through execution to eventually lead to failure.

• What is the value of structural coverage?
– Increases confidence in thoroughness of testing
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Structural Testing Complements Functional 
Testing

• Control flow-based testing includes cases that may not be identified 
from specifications alone. 

– Typical case: Implementation of a single item of the specification by multiple 
parts of the program

– E.g. Hash table collision (invisible in interface specification) 

• Test suites that satisfy control flow adequacy criteria could fail in 
revealing faults that can be caught with functional criteria.

– Typical case: Missing path faults

• Control flow-based testing includes cases that may not be identified 
from specifications alone. 

– Typical case: Implementation of a single item of the specification by multiple 
parts of the program

– E.g. Hash table collision (invisible in interface specification) 

• Test suites that satisfy control flow adequacy criteria could fail in 
revealing faults that can be caught with functional criteria.

– Typical case: Missing path faults
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Structural Testing, in Practice

• Create functional test suite first, then measure structural coverage to 
identify and see what is missing.

• Interpret unexecuted elements
– May be due to natural differences between specification and implementation
– May reveal flaws of the software or its development process

• Inadequacy of specifications that do not include cases present in the 
implementation

• Coding practice that radically diverges from the specification
• Inadequate functional test suites

• Attractive because structural testing is automated
– Coverage measurements are convenient progress indicators.
– Sometimes used as a criterion of completion of testing 

• Use with caution: does not ensure effective test suites

• Create functional test suite first, then measure structural coverage to 
identify and see what is missing.

• Interpret unexecuted elements
– May be due to natural differences between specification and implementation
– May reveal flaws of the software or its development process

• Inadequacy of specifications that do not include cases present in the 
implementation

• Coding practice that radically diverges from the specification
• Inadequate functional test suites

• Attractive because structural testing is automated
– Coverage measurements are convenient progress indicators.
– Sometimes used as a criterion of completion of testing 

• Use with caution: does not ensure effective test suites
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An Example Program: ‘cgi_decode’ and CFG

1. #include “hex_values.h”

2. int cgi_decode(char* encoded, char* *decoded) {
3. char *eptr = encoded;
4. char *dptr = decoded;
5. int ok = 0;

6. while (*eptr) {
7. char c;
8. c = *eptr;

9. if (c == ‘+’) {
10. *dptr = ‘ ‘;
11. } else if (c = ‘%’) {
12. int digit_high = Hex_Values[*(++eptr)];
13. int digit_low = Hex_Values[*(++eptr)];

14. if (digit_high == -1 || digit_low == -1) {
15. ok = 1;
16. } else {
17. *dptr = 16 * digit_high + digit_low;
18. }
19. } else {
20. *dptr = *eptr;
21. }
22. ++dptr;
23. ++eptr;
24. }

25. *dptr = ‘\0’;
26. return ok;
27. }

 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {  

while (*eptr) {
TrueFalse

int cgi_decode(char *encoded, char *decoded)

A

C

B

1. #include “hex_values.h”

2. int cgi_decode(char* encoded, char* *decoded) {
3. char *eptr = encoded;
4. char *dptr = decoded;
5. int ok = 0;

6. while (*eptr) {
7. char c;
8. c = *eptr;

9. if (c == ‘+’) {
10. *dptr = ‘ ‘;
11. } else if (c = ‘%’) {
12. int digit_high = Hex_Values[*(++eptr)];
13. int digit_low = Hex_Values[*(++eptr)];

14. if (digit_high == -1 || digit_low == -1) {
15. ok = 1;
16. } else {
17. *dptr = 16 * digit_high + digit_low;
18. }
19. } else {
20. *dptr = *eptr;
21. }
22. ++dptr;
23. ++eptr;
24. }

25. *dptr = ‘\0’;
26. return ok;
27. }
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*dptr = ' ';
} 

*dptr = '\0';
return ok;
}

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high + 
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else
*dptr = *eptr;
}

D E

F G

H I

LM



Structural Testing Techniques

1. Statement Testing

2. Branch Testing

3. Condition Testing
– Basic
– Compounded
– MC/DC

4. Path Testing
– Bounded interior
– Loop boundary
– LCSAJ
– Cyclomatic

1. Statement Testing

2. Branch Testing

3. Condition Testing
– Basic
– Compounded
– MC/DC

4. Path Testing
– Bounded interior
– Loop boundary
– LCSAJ
– Cyclomatic
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1. Statement Testing

• Adequacy criterion: 
– Each statement (or node in the CFG) must be executed at least once. 

• Coverage:
number of executed statements

number of statements

• Rationale: 
– A fault in a statement can only be revealed by executing the faulty statement.

• Nodes in a CFG often represent basic blocks of multiple statements.
– Some standards refer to ‘basic block coverage’ or ‘node coverage’.
– Difference in granularity, but not in concept

• Adequacy criterion: 
– Each statement (or node in the CFG) must be executed at least once. 

• Coverage:
number of executed statements

number of statements

• Rationale: 
– A fault in a statement can only be revealed by executing the faulty statement.

• Nodes in a CFG often represent basic blocks of multiple statements.
– Some standards refer to ‘basic block coverage’ or ‘node coverage’.
– Difference in granularity, but not in concept
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An Example: for Function “cgi_decode”

< Test cases >
T0 = 
{“”, “test”, “test+case%1Dadequacy”}
17/18 = 94% Statement coverage

T1 = 
{“adequate+test%0Dexecution%7U”}
18/18 = 100% Statement coverage

T2 = {“%3D”, “%A”, “a+b”, “test”}
18/18 = 100% Statement coverage

T3 = {“ ”, “+%0D+%4J”}
…

T4 = {“first+test%9Ktest%K9”}
…
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< Test cases >
T0 = 
{“”, “test”, “test+case%1Dadequacy”}
17/18 = 94% Statement coverage

T1 = 
{“adequate+test%0Dexecution%7U”}
18/18 = 100% Statement coverage

T2 = {“%3D”, “%A”, “a+b”, “test”}
18/18 = 100% Statement coverage

T3 = {“ ”, “+%0D+%4J”}
…

T4 = {“first+test%9Ktest%K9”}
…



Coverage is not a Matter of Size

• Coverage does not depend on the number of test cases.
– T0 , T1 :   T1 >coverage T0        T1 <cardinality T0 

– T1 , T2 :   T2 =coverage T1         T2 >cardinality T1 

• Minimizing test suite size is not the goal.
– Small test cases make failure diagnosis easier.
– But, a failing test case in T2 gives more information for fault localization than 

a failing test case in T1

• Coverage does not depend on the number of test cases.
– T0 , T1 :   T1 >coverage T0        T1 <cardinality T0 

– T1 , T2 :   T2 =coverage T1         T2 >cardinality T1 

• Minimizing test suite size is not the goal.
– Small test cases make failure diagnosis easier.
– But, a failing test case in T2 gives more information for fault localization than 

a failing test case in T1
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Complete Statement Coverage

• Complete statement coverage 
may not imply executing all 
branches in a program.

• Example: 
– Suppose block F were missing
– But, statement adequacy would 

not require false branch from D 
to L

• T3 = {“ ”, “+%0D+%4J”}
– 100% statement coverage
– No false branch from D

 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {  

*dptr = ' ';

while (*eptr) {

TrueFalse

TrueFalse
 elseif (c == '%') {

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

• Complete statement coverage 
may not imply executing all 
branches in a program.

• Example: 
– Suppose block F were missing
– But, statement adequacy would 

not require false branch from D 
to L

• T3 = {“ ”, “+%0D+%4J”}
– 100% statement coverage
– No false branch from D
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dptr = ' ';
} 

*dptr = '\0';
return ok;
}

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high + 
digit_low;
}

False

++dptr;
++eptr;
}

False

 elseif (c == % ) {

else {
*dptr = *eptr;
}

D E

F G

H I

LM



2. Branch Testing

• Adequacy criterion: 
– Each branch (edge in the CFG) must be executed at least once.

• Coverage:
number of executed branches

number of branches

• Example:
– T3 = {“”, “+%0D+%4J”} 

• 100% Stmt Cov.
• 88% Branch Cov. (7/8 branches)

– T2 = {“%3D”, “%A”, “a+b”, “test”}
• 100% Stmt Cov. 
• 100% Branch Cov. (8/8 branches)

• Adequacy criterion: 
– Each branch (edge in the CFG) must be executed at least once.

• Coverage:
number of executed branches

number of branches

• Example:
– T3 = {“”, “+%0D+%4J”} 

• 100% Stmt Cov.
• 88% Branch Cov. (7/8 branches)

– T2 = {“%3D”, “%A”, “a+b”, “test”}
• 100% Stmt Cov. 
• 100% Branch Cov. (8/8 branches)
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Statements vs. Branches

• Traversing all edges causes all nodes to be visited.
– Therefore, test suites that satisfy the branch adequacy also satisfy the 

statement adequacy criterion for the same program.
– Branch adequacy subsumes statement adequacy.

• The converse is not true (see T3)
– A statement-adequate test suite may not be branch-adequate.

• Traversing all edges causes all nodes to be visited.
– Therefore, test suites that satisfy the branch adequacy also satisfy the 

statement adequacy criterion for the same program.
– Branch adequacy subsumes statement adequacy.

• The converse is not true (see T3)
– A statement-adequate test suite may not be branch-adequate.
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All Branches Coverage

• “All branches coverage” can still miss conditions.

• Example: 
– Supposed that we missed the negation operator of “digit_high == -1”

digit_high == 1 || digit_low == -1

• Branch adequacy criterion can be satisfied by varying only ‘digit_low’.
– The faulty sub-expression might never determine the result.
– We might never really test the faulty condition, even though we tested both 

outcomes of the branch.

• “All branches coverage” can still miss conditions.

• Example: 
– Supposed that we missed the negation operator of “digit_high == -1”

digit_high == 1 || digit_low == -1

• Branch adequacy criterion can be satisfied by varying only ‘digit_low’.
– The faulty sub-expression might never determine the result.
– We might never really test the faulty condition, even though we tested both 

outcomes of the branch.
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3. Condition Testing

• Branch coverage exposes faults in how a computation has been 
decomposed into cases.

– Intuitively attractive: checking the programmer’s case analysis
– But, only roughly: grouping cases with the same outcome 

• Condition coverage considers case analysis in more detail.
– Consider ‘individual conditions’ in a compound Boolean expression

• E.g. both parts of ‘”igit_high == 1 || digit_low == -1”

• Adequacy criterion: 
– Each basic condition must be executed at least once.

• Basic condition testing coverage:
number of truth values taken by all basic conditions

2 * number of basic conditions

• Branch coverage exposes faults in how a computation has been 
decomposed into cases.

– Intuitively attractive: checking the programmer’s case analysis
– But, only roughly: grouping cases with the same outcome 

• Condition coverage considers case analysis in more detail.
– Consider ‘individual conditions’ in a compound Boolean expression

• E.g. both parts of ‘”igit_high == 1 || digit_low == -1”

• Adequacy criterion: 
– Each basic condition must be executed at least once.

• Basic condition testing coverage:
number of truth values taken by all basic conditions

2 * number of basic conditions
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Basic Conditions vs. Branches

• Basic condition adequacy criterion can be satisfied without satisfying 
branch coverage.

• T4 = {“first+test%9Ktest%K9”}
– Satisfies basic condition adequacy
– But, does not satisfy branch condition adequacy

• Branch and basic condition are not comparable. 
– Neither implies the other.

• Basic condition adequacy criterion can be satisfied without satisfying 
branch coverage.

• T4 = {“first+test%9Ktest%K9”}
– Satisfies basic condition adequacy
– But, does not satisfy branch condition adequacy

• Branch and basic condition are not comparable. 
– Neither implies the other.
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Covering Branches and Conditions

• Branch and condition adequacy: 
– Cover all conditions and all decisions

• Compound condition adequacy:
– Cover all possible evaluations of compound conditions.
– Cover all branches of a decision tree.

• Branch and condition adequacy: 
– Cover all conditions and all decisions

• Compound condition adequacy:
– Cover all possible evaluations of compound conditions.
– Cover all branches of a decision tree.
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Compounded Conditions

• Compound conditions often have exponential complexity.

• Example: (((a || b) && c) || d) && e

105



Modified Condition/Decision (MC/DC)

• Motivation
– Effectively test important combinations of conditions, without exponential 

blowup in test suite size 
– “Important” combinations means: 

• Each basic condition shown to independently affect the outcome of each decision

• Requires
– For each basic condition C, two test cases,
– Values of all ‘evaluated’ conditions except C are the same.
– Compound condition as a whole evaluates to ‘true’ for one and ‘false’ for the 

other.

• Motivation
– Effectively test important combinations of conditions, without exponential 

blowup in test suite size 
– “Important” combinations means: 

• Each basic condition shown to independently affect the outcome of each decision

• Requires
– For each basic condition C, two test cases,
– Values of all ‘evaluated’ conditions except C are the same.
– Compound condition as a whole evaluates to ‘true’ for one and ‘false’ for the 

other.
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Complexity of MC/DC

• MC/DC has a linear complexity.

• Example:  (((a || b) && c) || d) && e

Test a b c d e outcome
Case
(1) true -- true -- true true
(2) false true true -- true true
(3) true -- false true true true
(6) true -- true -- false false
(11) true -- false false -- false
(13) false false -- false -- false

• Underlined values independently affect the output of the decision.
– Required by the RTCA/DO-178B standard

• MC/DC has a linear complexity.

• Example:  (((a || b) && c) || d) && e

Test a b c d e outcome
Case
(1) true -- true -- true true
(2) false true true -- true true
(3) true -- false true true true
(6) true -- true -- false false
(11) true -- false false -- false
(13) false false -- false -- false

• Underlined values independently affect the output of the decision.
– Required by the RTCA/DO-178B standard
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Comments on MC/DC

• MC/DC is 
– Basic condition coverage (C)
– Branch coverage (DC)
– Plus one additional condition (M) 

• Every condition must independently affect the decision’s output.

• It is subsumed by compound conditions and subsumes all other criteria 
discussed so far.

– Stronger than statement and branch coverage

• A good balance of thoroughness and test size 
– Widely used

• MC/DC is 
– Basic condition coverage (C)
– Branch coverage (DC)
– Plus one additional condition (M) 

• Every condition must independently affect the decision’s output.

• It is subsumed by compound conditions and subsumes all other criteria 
discussed so far.

– Stronger than statement and branch coverage

• A good balance of thoroughness and test size 
– Widely used
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4. Path Testing

• There are many more paths than branches.
– Decision and condition adequacy criteria consider individual decisions only.

• Path testing focuses combinations of decisions along paths.

• Adequacy criterion: 
– Each path must be executed at least once.

• Coverage:
number of executed paths

number of paths

• There are many more paths than branches.
– Decision and condition adequacy criteria consider individual decisions only.

• Path testing focuses combinations of decisions along paths.

• Adequacy criterion: 
– Each path must be executed at least once.

• Coverage:
number of executed paths

number of paths
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Path Coverage Criteria in Practice

• The number of paths in a program with loops is unbounded. 
– Usually impossible to satisfy

• For a feasible criterion,  
– Should partition infinite set of paths into a finite number of classes

• Useful criteria can be obtained by limiting 
– Number of traversals of loops
– Length of the paths to be traversed
– Dependencies among selected paths

• The number of paths in a program with loops is unbounded. 
– Usually impossible to satisfy

• For a feasible criterion,  
– Should partition infinite set of paths into a finite number of classes

• Useful criteria can be obtained by limiting 
– Number of traversals of loops
– Length of the paths to be traversed
– Dependencies among selected paths
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Comparing Structural Testing Criteria
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Subsumption Relation among Structural Test Adequacy Criteria



Motivation

• Middle ground in structural testing
– Node and edge coverage don’t test interactions.
– Path-based criteria require impractical number of test cases.

• Only a few paths uncover additional faults, anyway.

– Need to distinguish “important” paths

• Intuition:  Statements interact through data flow.
– Value computed in one statement, is used in another.
– Bad value computation can be revealed only when it is used.

• Middle ground in structural testing
– Node and edge coverage don’t test interactions.
– Path-based criteria require impractical number of test cases.

• Only a few paths uncover additional faults, anyway.

– Need to distinguish “important” paths

• Intuition:  Statements interact through data flow.
– Value computed in one statement, is used in another.
– Bad value computation can be revealed only when it is used.
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Def-Use Pairs

• Value of x at 6 could be 
computed at 1 or at 4.

• Bad computation at 1 or 4 could 
be revealed only if they are used 
at 6.

• (1, 6) and (4, 6) are def-use (DU) 
pairs.

– defs at 1, 4
– use at 6

x = .... 

if .... 

x = .... .... 4

1

2

3

• Value of x at 6 could be 
computed at 1 or at 4.

• Bad computation at 1 or 4 could 
be revealed only if they are used 
at 6.

• (1, 6) and (4, 6) are def-use (DU) 
pairs.

– defs at 1, 4
– use at 6
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y = x + ... 
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3

5



Terminology

• DU pair
– A pair of definition and use for some variable, such that at least one DU path 

exists from the definition to the use.
– “x = ...”  is a definition of x
– “= ... x ...” is a use of x

• DU path 
– A definition-clear path on the CFG starting from a definition to a use of a 

same variable
– Definition clear:  Value is not replaced on path.
– Note: Loops could create infinite DU paths between a def and a use.

• DU pair
– A pair of definition and use for some variable, such that at least one DU path 

exists from the definition to the use.
– “x = ...”  is a definition of x
– “= ... x ...” is a use of x

• DU path 
– A definition-clear path on the CFG starting from a definition to a use of a 

same variable
– Definition clear:  Value is not replaced on path.
– Note: Loops could create infinite DU paths between a def and a use.
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Definition-Clear Path

• 1,2,3,5,6 is a definition-clear path 
from 1 to 6.

– x is not re-assigned between 1 
and 6.

• 1,2,4,5,6 is not a definition-clear 
path from 1 to 6.

– the value of x is “killed” 
(reassigned) at node 4.

• (1, 6) is a DU pair because 
1,2,3,5,6 is a definition-clear path.

x = .... 

if .... 

4

1

2

3

• 1,2,3,5,6 is a definition-clear path 
from 1 to 6.

– x is not re-assigned between 1 
and 6.

• 1,2,4,5,6 is not a definition-clear 
path from 1 to 6.

– the value of x is “killed” 
(reassigned) at node 4.

• (1, 6) is a DU pair because 
1,2,3,5,6 is a definition-clear path.
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Adequacy Criteria

• All DU pairs 
– Each DU pair is exercised by at least one test case.

• All DU paths 
– Each simple (non looping) DU path is exercised by at least one test case.

• All definitions
– For each definition, there is at least one test case which exercises a DU pair 

containing it.
– Because, every computed value is used somewhere.

• Corresponding coverage fractions can be defined similarly.

• All DU pairs 
– Each DU pair is exercised by at least one test case.

• All DU paths 
– Each simple (non looping) DU path is exercised by at least one test case.

• All definitions
– For each definition, there is at least one test case which exercises a DU pair 

containing it.
– Because, every computed value is used somewhere.

• Corresponding coverage fractions can be defined similarly.
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Difficult Cases

• x[i] = ... ; ... ; y = x[ j]
– DU pair (only) if i==j

• p = &x ; ... ; *p = 99 ; ... ; q = x
– *p is an alias of x

• m.putFoo(...); ... ; y=n.getFoo(...); 
– Are m and n the same object?
– Do m and n share a “foo” field? 

• Problem of aliases: 
– Which references are (always or sometimes) the same? 
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Data Flow Coverage in Practice

• The path-oriented nature of data flow analysis makes the infeasibility 
problem especially relevant.

– Combinations of elements matter.
– Impossible to (infallibly) distinguish feasible from infeasible paths. 
– More paths = More work to check manually

• In practice, reasonable coverage is (often, not always) achievable.
– Number of paths is exponential in worst case, but often linear.
– All DU paths is more often impractical. 

• The path-oriented nature of data flow analysis makes the infeasibility 
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Overview

• Models used in specification or design have structure.
– Useful information for selecting representative classes of behavior 
– Behaviors that are treated differently with respect to the model should be 

tried by a thorough test suite.
– In combinatorial testing, it is difficult to capture that structure clearly and 

correctly in constraints.

• We can devise test cases to check actual behavior against behavior 
specified by the model.

– “Coverage” similar to structural testing, but applied to specification and 
design models

• Models used in specification or design have structure.
– Useful information for selecting representative classes of behavior 
– Behaviors that are treated differently with respect to the model should be 

tried by a thorough test suite.
– In combinatorial testing, it is difficult to capture that structure clearly and 

correctly in constraints.

• We can devise test cases to check actual behavior against behavior 
specified by the model.

– “Coverage” similar to structural testing, but applied to specification and 
design models
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Deriving Test Cases from Finite State Machines

Informal 
Specification

FSM Test Cases
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Informal Specification: Feature “Maintenance” of 
the Chipmunk Web Site

Maintenance: The Maintenance function records the history of items undergoing maintenance.

If the product is covered by warranty or maintenance contract, maintenance can be requested either by 
calling the maintenance toll free number, or through the web site, or by bringing the item to a 
designated maintenance station.
If the maintenance is requested by phone or web site and the customer is a US or EU resident, the item 
is picked up at the customer site, otherwise, the customer shall ship the item with an express courier.
If the maintenance contract number provided by the customer is not valid, the item follows the 
procedure for items not covered by warranty.
If the product is not covered by warranty or maintenance contract, maintenance can be requested only by 
bringing the item to a maintenance station. The maintenance station informs the customer of the 
estimated costs for repair. Maintenance starts only when the customer accepts the estimate.      
If the customer does not accept the estimate, the product is returned to the customer.
Small problems can be repaired directly at the maintenance station. If the maintenance station cannot 
solve the problem, the product is sent to the maintenance regional headquarters (if in US or EU) or to 
the maintenance main headquarters (otherwise).
If the maintenance regional headquarters cannot solve the problem, the product is sent to the 
maintenance main headquarters.
Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.

Maintenance: The Maintenance function records the history of items undergoing maintenance.

If the product is covered by warranty or maintenance contract, maintenance can be requested either by 
calling the maintenance toll free number, or through the web site, or by bringing the item to a 
designated maintenance station.
If the maintenance is requested by phone or web site and the customer is a US or EU resident, the item 
is picked up at the customer site, otherwise, the customer shall ship the item with an express courier.
If the maintenance contract number provided by the customer is not valid, the item follows the 
procedure for items not covered by warranty.
If the product is not covered by warranty or maintenance contract, maintenance can be requested only by 
bringing the item to a maintenance station. The maintenance station informs the customer of the 
estimated costs for repair. Maintenance starts only when the customer accepts the estimate.      
If the customer does not accept the estimate, the product is returned to the customer.
Small problems can be repaired directly at the maintenance station. If the maintenance station cannot 
solve the problem, the product is sent to the maintenance regional headquarters (if in US or EU) or to 
the maintenance main headquarters (otherwise).
If the maintenance regional headquarters cannot solve the problem, the product is sent to the 
maintenance main headquarters.
Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.
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Corresponding Finite State Machine
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Test Cases Generated from the FSM

• FSM can be used both to
1. Guide test selection (checking each state transition)
2. Constructing an oracle that judge whether each observed behavior is correct

• Questions:
– Is this a thorough test suite? 
– How can we judge? 

à Coverage criteria require. 

TC1 0 2 4 1 0

TC2 0 5 2 4 5 6 0

• FSM can be used both to
1. Guide test selection (checking each state transition)
2. Constructing an oracle that judge whether each observed behavior is correct

• Questions:
– Is this a thorough test suite? 
– How can we judge? 

à Coverage criteria require. 
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TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0



Transition Coverage Criteria

• State coverage
– Every state in the model should be visited by at least one test case.

• Transition coverage
– Every transition between states should be traversed by at least one test case. 
– Most commonly used criterion
– A transition can be thought of as a (precondition, postcondition) pair

• State coverage
– Every state in the model should be visited by at least one test case.

• Transition coverage
– Every transition between states should be traversed by at least one test case. 
– Most commonly used criterion
– A transition can be thought of as a (precondition, postcondition) pair
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Deriving Test Cases from Decision Structures

• Some specifications are structured as decision tables, decision trees, or 
flow charts.  

• We can exercise these as if they were program source code.
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Corresponding Decision Table

Education Individual

EduAc T T F F F F F F

BusAc - - F F F F F F

CP > CT1 - - F F T T - -

YP > YT1 - - - - - - - -

CP > CT2 - - - - F F T T

YP > YT2 - - - - - - - -YP > YT2 - - - - - - - -

SP < Sc F T F T - - - -

SP < T1 - - - - F T - -

SP < T2 - - - - - - F T

Out Edu SP ND SP T1 SP T2 SP
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…

Constraints
at-most-one (EduAc, BusAc)        at-most-one (YP < YT1, YP > YT2) 
YP > YT2 → YP > YT1 at-most-one (CP < CT1, CP > CT2)
CP > CT2 → CP > CT1 at-most-one (SP < T1, SP > T2
SP > T2 → SP > T1



Deriving Test Cases from Control and Data Flow 
Graph

• If the specification or model has both decisions and sequential logic, we 
can cover it like program source code.

• Flowgraph based testing
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Corresponding Control Flow Graph

preferred shipping method = land freight,
OR expedited land freight OR overnight air

Process shipping order

CostOfGoods < MinOrder

shipping address

no

domestic

preferred shipping method  =  air
freight OR expedited air freight

international

calculate domestic shipping chargecalculate international shipping charge

total charge = goods + shipping
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yes

individual customer no

yes

obtain credit card data: number, name
on card, expiration date

method of payement

credit card

invoice

billing address = shipping address

obtain billing address

no

yes

valid credit card
information

no

yes

payement status = valid
enter order

prepare receipt

invalid order

nono

abort order?
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Test Cases Generated from the CFG

• Node adequacy criteria

• Branch adequacy criteria

Case Too Small Ship Where Ship 
Method Cust Type Pay 

Method Same Address CC valid

TC-1 No Int Air Bus CC No Yes

TC-2 No Dom Air Ind CC - No (abort)

• Node adequacy criteria

• Branch adequacy criteria
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Case Too Small Ship Where Ship 
Method Cust Type Pay 

Method Same Address CC valid

TC-1 No Int Air Bus CC No Yes

TC-2 No Dom Land - - - -

TC-3 Yes - - - - - -

TC-4 No Dom Air - - - -

TC-5 No Int Land - - - -

TC-6 No - - Edu Inv - -

TC-7 No - - - CC Yes -

TC-8 No - - - CC - No (abort)

TC-9 No - - - CC - No  (no abort)



Estimating Test Suite Quality

• Supposed that I have a program with bugs.

• Add 100 new bugs
– Assume they are exactly like real bugs in every way
– I make 100 copies of my program, each with one of my 100 new bugs.

• Run my test suite on the programs with seeded bugs
– And the tests revealed 20 of the bugs. 
– The other 80 program copies do not fail.

• What can I infer about my test suite’s quality?

• Supposed that I have a program with bugs.

• Add 100 new bugs
– Assume they are exactly like real bugs in every way
– I make 100 copies of my program, each with one of my 100 new bugs.

• Run my test suite on the programs with seeded bugs
– And the tests revealed 20 of the bugs. 
– The other 80 program copies do not fail.

• What can I infer about my test suite’s quality?
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Basic Assumptions

• We want to judge effectiveness of a test suite in finding real faults, 
– by measuring how well it finds seeded fake faults.

• Valid to the extent that the seeded bugs are representative of real bugs
– Not necessarily identical
– But, the differences should not affect the selection

• We want to judge effectiveness of a test suite in finding real faults, 
– by measuring how well it finds seeded fake faults.

• Valid to the extent that the seeded bugs are representative of real bugs
– Not necessarily identical
– But, the differences should not affect the selection

131



Mutation Testing

• A mutant is a copy of a program with a mutation.

• A mutation is a syntactic change (a seeded bug).
– Example: change (i < 0) to (i <= 0)

• Run test suite on all the mutant programs
• A mutant is killed, if it fails on at least one test case. (The bug is found.)

• If many mutants are killed, infer that the test suite is also effective at 
finding real bugs. 

• A mutant is a copy of a program with a mutation.

• A mutation is a syntactic change (a seeded bug).
– Example: change (i < 0) to (i <= 0)

• Run test suite on all the mutant programs
• A mutant is killed, if it fails on at least one test case. (The bug is found.)

• If many mutants are killed, infer that the test suite is also effective at 
finding real bugs. 
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Assumptions on Mutation Testing

• Competent programmer hypothesis
– Programs are nearly correct. 

• Real faults are small variations from the correct program.
• Therefore, mutants are reasonable models of real buggy programs.

• Coupling effect hypothesis
– Tests that find simple faults also find more complex faults.
– Even if mutants are not perfect representatives of real faults, a test suite that 

kills mutants is good at finding real faults too.

• Competent programmer hypothesis
– Programs are nearly correct. 

• Real faults are small variations from the correct program.
• Therefore, mutants are reasonable models of real buggy programs.

• Coupling effect hypothesis
– Tests that find simple faults also find more complex faults.
– Even if mutants are not perfect representatives of real faults, a test suite that 

kills mutants is good at finding real faults too.
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Mutant Operators

• Syntactic changes from legal program to illegal program
– Specific to each programming language

• Examples: 
– crp: constant for constant replacement

• E.g. from (x < 5)  to (x < 12)
• Select from constants found somewhere in program text

– ror: relational operator replacement
• E.g. from (x <= 5) to (x < 5)

– vie: variable initialization elimination
• E.g. change int x =5;  to int x;

• Syntactic changes from legal program to illegal program
– Specific to each programming language

• Examples: 
– crp: constant for constant replacement

• E.g. from (x < 5)  to (x < 12)
• Select from constants found somewhere in program text

– ror: relational operator replacement
• E.g. from (x <= 5) to (x < 5)

– vie: variable initialization elimination
• E.g. change int x =5;  to int x;
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Fault-based Adequacy Criteria

• Mutation analysis consists of the following steps:
1. Select mutation operators
2. Generate mutants
3. Distinguish mutants

• Live mutants
– Mutants not killed by a test suite

• Given a set of mutants SM and a test suite T, the fraction of 
nonequivalence mutants killed by T measures the adequacy of T with 
respect to SM.

• Mutation analysis consists of the following steps:
1. Select mutation operators
2. Generate mutants
3. Distinguish mutants

• Live mutants
– Mutants not killed by a test suite

• Given a set of mutants SM and a test suite T, the fraction of 
nonequivalence mutants killed by T measures the adequacy of T with 
respect to SM.
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Automating Test Execution

• Designing test cases and test suites is creative.
– Demanding intellectual activity
– Requiring human judgment

• Executing test cases should be automatic.
– Design once, execute many times

• Test automation separates the creative human process from the 
mechanical process of test execution.

• Designing test cases and test suites is creative.
– Demanding intellectual activity
– Requiring human judgment

• Executing test cases should be automatic.
– Design once, execute many times

• Test automation separates the creative human process from the 
mechanical process of test execution.
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From Test Case Specifications to Test Cases

• Test design often yields test case specifications, rather than concrete data.
– E.g. “a large positive number”, not 420,023
– E.g. “a sorted sequence, length > 2”, not “Alpha, Beta, Chi, Omega”

• Other details for execution may be omitted.

• Test Generation creates concrete, executable test cases from test case 
specifications.

• A Tool chain for test case generation & execution
– A combinatorial test case generation to create test data

• Optional: Constraint-based data generator to “concretize” individual values, e.g., 
from “positive integer” to 42

– ‘DDSteps’ to convert from spreadsheet data to ‘JUnit’ test cases
– ‘JUnit’ to execute concrete test cases

• Test design often yields test case specifications, rather than concrete data.
– E.g. “a large positive number”, not 420,023
– E.g. “a sorted sequence, length > 2”, not “Alpha, Beta, Chi, Omega”

• Other details for execution may be omitted.

• Test Generation creates concrete, executable test cases from test case 
specifications.

• A Tool chain for test case generation & execution
– A combinatorial test case generation to create test data

• Optional: Constraint-based data generator to “concretize” individual values, e.g., 
from “positive integer” to 42

– ‘DDSteps’ to convert from spreadsheet data to ‘JUnit’ test cases
– ‘JUnit’ to execute concrete test cases

137



Scaffolding

• Code produced to support development activities
– Not part of the “product” as seen by the end user
– May be temporary (like scaffolding in construction of buildings)

• Scaffolding includes 
– Test harnesses
– Drivers
– Stubs

• Code produced to support development activities
– Not part of the “product” as seen by the end user
– May be temporary (like scaffolding in construction of buildings)

• Scaffolding includes 
– Test harnesses
– Drivers
– Stubs
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Scaffolding

• Test driver
– A “main” program for running a test

• May be produced before a “real” main program
• Provide more control than the “real” main program

– To drive program under test through test cases

• Test stub
– Substitute for called functions/methods/objects

• Test harness
– Substitutes for other parts of the deployed environment
– E.g. Software simulation of a hardware device

• Test driver
– A “main” program for running a test

• May be produced before a “real” main program
• Provide more control than the “real” main program

– To drive program under test through test cases

• Test stub
– Substitute for called functions/methods/objects

• Test harness
– Substitutes for other parts of the deployed environment
– E.g. Software simulation of a hardware device
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Controllability & Observability

• Example: We want to automate tests, 
– But, interactive input provides limited control and
– Graphical output provides limited observability.

GUI input (MVC “Controller”)
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GUI input (MVC “Controller”)

Program Functionality

Graphical output (MVC “View”)



Controllability & Observability

• Solution: A design for automated test provides interfaces for control (API) 
and observation (wrapper on output)

GUI input (MVC “Controller”) Test driver
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Program Functionality

Graphical output (MVC “View”)
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Generic vs. Specific Scaffolding

• How general should scaffolding be?
– We could build a driver and stubs for each test case.
– Or at least factor out some common code of the driver and test management 

(e.g. JUnit)
– Or further factor out some common support code, to drive a large number of 

test cases from data (as in DDSteps)
– Or further generate the data automatically from a more abstract model (e.g. 

network traffic model)

• It’s a question of costs and re-use, just as for other kinds of software. 

• How general should scaffolding be?
– We could build a driver and stubs for each test case.
– Or at least factor out some common code of the driver and test management 

(e.g. JUnit)
– Or further factor out some common support code, to drive a large number of 

test cases from data (as in DDSteps)
– Or further generate the data automatically from a more abstract model (e.g. 

network traffic model)

• It’s a question of costs and re-use, just as for other kinds of software. 
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Test Oracles

• No use running 10,000 test cases automatically, if the results must be 
checked by hand.

• It’s a problem of ‘range of specific to general’, again
– E.g. JUnit: Specific oracle (“assert”) coded by hand in each test case

• Typical approach
– Comparison-based oracle with predicted output value
– But, not the only approach

• No use running 10,000 test cases automatically, if the results must be 
checked by hand.

• It’s a problem of ‘range of specific to general’, again
– E.g. JUnit: Specific oracle (“assert”) coded by hand in each test case

• Typical approach
– Comparison-based oracle with predicted output value
– But, not the only approach
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Comparison-based Oracle

• With a comparison-based oracle, we need predicted output for each 
input.

– Oracle compares actual to predicted output, and reports failure if they differ.
– Fine for a small number of hand-generated test cases
– E.g. for hand-written JUnit test cases

• With a comparison-based oracle, we need predicted output for each 
input.

– Oracle compares actual to predicted output, and reports failure if they differ.
– Fine for a small number of hand-generated test cases
– E.g. for hand-written JUnit test cases
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Self-Checks as Oracles

• An oracle can also be written as self-checks.
– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically generated test 
suites, but often only a partial check

– E.g. structural invariants of data structures
– Recognize many or most failures, but not all

• An oracle can also be written as self-checks.
– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically generated test 
suites, but often only a partial check

– E.g. structural invariants of data structures
– Recognize many or most failures, but not all
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Overview

• Automated program analysis techniques complement test and inspection 
in two ways:

– Can exhaustively check some important properties
• Which conventional testing is particularly ill-suited

– Can extract and summarize information for test and inspection design
• Replacing or augmenting human efforts

• Automated analysis
– Replace human inspection for some class of faults
– Support inspection by 

• Automating extracting and summarizing information
• Navigating through relevant information
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• Automating extracting and summarizing information
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Static vs. Dynamic Analysis

• Static analysis
– Examine program source code

• Examine the complete execution space
• But, may lead to false alarms

• Dynamic analysis
– Examine program execution traces 

• No infeasible path problem
• But, cannot examine the execution space exhaustively

• Example:
– Concurrency faults
– Memory faults
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• Example:
– Concurrency faults
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Extracting Behavior Model from Execution

• Behavior analysis can
– Gather information from executing several test cases
– And synthesize a model that characterizes those execution,
– To the extent that they are the representative of other executions as well.

• Using behavioral models for
– Testing : validate tests thoroughness 

– Program analysis : understand program behavior

– Regression testing : compare versions or configurations

– Testing of component-based software : compare components in different contexts

– Debugging : Identify anomalous behaviors and understand causes

• Behavior analysis can
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