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� Introduction

The class of Modal Logics was originally developed by philosophers to study di�erent �modes� of
truth� For example� the assertion P may be false in the present world� and yet the assertion possibly
P true� if there exists an alternate world where P is true� Temporal Logic is a special type of Modal
Logic� it provides a formal system for qualitatively describing and reasoning about how the truth
values of assertions change over time� In a system of Temporal Logic� various temporal operators
or �modalities� are provided to describe and reason about how the truth values of assertions vary
with time� Typical temporal operators include sometimes P which is true now if there is a future
moment at which P becomes true and always Q which is true now if Q is true at all future moments�

In a landmark paper �Pn		
 Pnueli argued that Temporal Logic could be a useful formalism
for specifying and verifying correctness of computer programs� one that is especially appropriate
for reasoning about nonterminating or continuously operating concurrent programs such as oper�
ating systems and network communication protocols� In an ordinary sequential program� e�g� a
program to sort a list of numbers� program correctness can be formulated in terms of a Precon�
dition�Postcondition pair in a formalism such as Hoare�s Logic because the programs underlying
semantics can be viewed as given by a transformation from an initial state to a �nal state� However�
for a continuously operating� reactive program such as an operating system� its normal behavior
is a nonterminating computation which maintains an ongoing interaction with the environment�
Since there is no �nal state� formalisms such as Hoares logic which are based on a transformational
semantics� are of little use for such nonterminating programs� The operators of temporal logic such
as sometimes and always appear quite appropriate for for describing the time�varying behavior of
such programs�

These ideas were subsequently explored and extended by a number of researchers� Now Tempo�
ral Logic is an active area of research interest� It has been used or proposed for use in virtually all
aspects of concurrent program design� including speci�cation� veri�cation� manual program com�
position �development�� and mechanical program synthesis� In order to support these applications
a great deal mathematical machinery connected with Temporal Logic has been developed� In this
survey we focus on this machinery� which is most relevant to Theoretical Computer Science� Some
attention is given� however� to motivating applications�

The remainder of this paper is organized as follows� In section � we describe a multi�axis classi��
cation of systems of Temporal Logic� in order to give the reader a feel for the large variety of systems
possible� Our presentation centers around only a few�those most thoroughly investigated�types
of Temporal Logics� In section � we describe the framework of Linear Temporal Logic� In both
its propositional and First�order forms� Linear Temporal Logic has been widely employed in the
speci�cation and veri�cation of programs� In section � we describe the competing framework of
Branching Temporal Logic which has also seen wide use� In section � we describe how Temporal
Logic structures can be used to model concurrent programs using nondeterminism and fairness�
Technical machinery for Temporal reasoning is discussed in section �� including decision proce�
dures and axiom systems� Applications of Temporal Logic are discussed in section 	� while in the
concluding section � other modal and temporal logics in computer science are brie�y described�
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� Classi�cation of Temporal Logics

We can classify most systems of TL �Temporal Logic� used for reasoning about concurrent programs
along a number of axes� propositional versus �rst�order� global versus compositional� branching
versus linear� points versus intervals� and past versus future tense� Most research to date has
concentrated on global� point�based� discrete time� future tense logics� therefore our survey will
focus on representative systems of this type� However� to give the reader an idea of the wide range
of possibilities in formulating a system of Temporal Logic� we describe the various alternatives in
more detail below�

��� Propositional versus First�order

In a propositional TL� the non�temporal �i�e�� non�modal� portion of the logic is just classical
propositional logic� Thus formulae are built up from atomic propositions� which intuitively express
atomic facts about the underlying state of the concurrent system� truth�functional connectives� such
as �� �� � �representing �and�� �or�� and �not�� respectively�� and the temporal operators� Propo�
sitional TL corresponds to the most abstract level of reasoning� analogous to classical propositional
logic�

The atomic propositions of propositional TL are re�ned into expressions built up from variables�
constants� functions� predicates� and quanti�ers� to get First�order TL� There are several di�erent
types of First order TLs� We can distinguish between uninterpreted First order TL where we make
no assumptions about the special properties of structures considered� and interpreted First order
TL where a speci�c structure �or class of structures� is assumed� In a fully interpreted First order
TL� we have a speci�c domain �e�g� integer or stack� for each variable� a speci�c� concrete function
over the domain for each function symbol� and so forth� while in a partially interpreted First order
TL we might assume a speci�c domain but� e�g�� leave the function symbols uninterpreted� It is
also common to distinguish between local variables which are assigned� by the semantics� di�erent
values in di�erent states and global variables which are assigned a single value which holds globally
over all states� Finally� we can choose to impose or not impose various syntactic restrictions on the
interaction of quanti�ers and temporal operators� An unrestricted syntax will allow� e�g�� modal
operators within the scope of quanti�ers� For example� we have instances of Barcan�s Formula�
�y always �P�y�� � always ��y P�y��� Such unrestricted logics tend to be highly undecidable� In
contrast we can disallow such quanti�cation over temporal operators to get a restricted �rst�order
TL consisting of essentially propositional TL plus a �rst�order language for specifying the �atomic�
propositions�

��� Global versus Compositional

Most systems of TL proposed to date are endogenous� In an endogenous TL� all temporal operators
are interpreted in a single universe corresponding to a single concurrent program� Such TLs are
suitable for global reasoning about a complete� concurrent program� In an exogenous TL� the syntax
of the temporal operators allows expression of correctness properties concerning several di�erent
programs �or program fragments� in the same formula� Such logics facilitate compositional �or
modular� program reasoning� We can verify a complete program by specifying and verifying its
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constituent subprograms� and then combining them into a complete program together with its
proof of correctness� using the proofs of the subprograms as lemmas �cf� �BKP��
� �Pn��
��

��� Branching versus Linear Time

In de�ning a system of temporal logic� there are two possible views regarding the underlying nature
of time� One is that the course of time is linear� At each moment there is only one possible future
moment� The other is that time has a branching� tree�like nature� At each moment� time may split
into alternate courses representing di�erent possible futures� Depending upon which view is chosen�
we classify a system of temporal logic as either a linear time logic in which the semantics of the
time structure is linear� or a system of branching time logic based on the semantics corresponding
to a branching time structure� The temporal modalities of a temporal logic system usually re�ect
the character of time assumed in the semantics� Thus� in a logic of linear time� temporal modalities
are provided for describing events along a single time line� In contrast� in a logic of branching
time� the modalities re�ect the branching nature of time by allowing quanti�cation over possible
futures� Both approaches have been applied to program reasoning� and it is a matter of debate as
to whether branching or linear time is preferable �cf� �La��
� �EH��
� �Pn��
�

��� Points versus Intervals

Most temporal logic formalisms developed for program reasoning have been based on temporal
operators that are evaluated as true or false of points in time� Some formalisms �cf� �SMV��
�
�Mo��
� �HS��
��however� have temporal operators that are evaluated over intervals of time� the
claim being that use of intervals greatly simpli�es the formulation of certain correctness properties�

The following related issue has to do with the underlying structure of time�

��� Discrete versus Continuous

In most temporal logics used for program reasoning� time is discrete where the present moment
corresponds to the programs current state and the next moment corresponds to the programs
immediate successor state� Thus the temporal structure corresponding to a program execution� a
sequence of states� is the nonnegative integers� However� tense logics interpreted over a continuous
�or dense� time structure such as the reals �or rationals� have been investigated by philosophers�
Their application to reasoning about concurrent programs was proposed in �BKP��
 to facilitate
the formulation of fully abstract semantics� Such continuous time logics may also have applications
in so�called real�time programs where strict� quantitative performance requirements are placed on
programs�

��� Past versus Future

As originally developed by philosophers� temporal modalities were provided for describing the
occurrence of events in the past as well as the future� However� in most temporal logics for
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reasoning about concurrency� only future tense operators are provided� This appears reasonable
since� as a rule� program executions have a de�nite starting time� and it can be shown that� as
a consequence� inclusion of past tense operators adds no expressive power� Recently� however� it
has been advanced that use of the past tense operators might be useful simply in order to make
the formulation of speci�cations more natural and convenient �cf� �LPZ��
�� Moreover� past tense
operators appear to play an important role in compositional speci�cation somewhat analogous to
that of history variables�

� The Technical Framework of Linear Temporal Logic

��� Timelines

In linear temporal logic the underlying structure of time is a totally ordered set �S���� In the sequel
we will further assume that the underlying structure of time is isomorphic to the natural numbers
with their usual ordering �jN���� Note that under our assumption time�

�i� is discrete�

�ii� has an initial moment with no predecessors� and

�iii� is in�nite into the future�

We remark that these properties seem quite appropriate in view of our intended application� reason�
ing about the behavior of ongoing concurrent programs� Property �i� re�ects the fact that modern
day computers are discrete� digital devices� property �ii� is appropriate since computation begins at
an initial state� and �iii� is appropriate since we develop our formalism for reasoning about ongoing�
ideally nonterminating behavior�

Let AP be an underlying set of atomic proposition symbols� which we denote by P� Q� P�� Q��
P�� Q�� etc� We can then formalize our notion of a timeline as a linear time structure M � �S�x�L�
where

S � is a set of states�
x � jN � S � is an in�nite sequence of states� and
L � S � PowerSet�AP� � is a labelling of each state with
the set of atomic propositions in AP true at the state�

We usually employ the more convenient notation x � �s�� s�� s�� � � � � � �x���� x���� x���� � � � � to
denote the timeline x� Alternative terminology permits us to refer to x as a fullpath� or computation
sequence� or computation� or simply as a path� the latter could cause confusion in rare instances
since we intend the maximal path x� not just one of its pre�xes� whence the term fullpath� but
ordinarily no confusion will result� �Other synonyms include execution� execution sequence� trace�
history� and run��

Remark� We could convey the same information associating a truth value to each atomic
proposition at each state by de�ning the labelling L as a mapping AP� PowerSet�S� which assigns
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to each atomic proposition the set of states at which it is true� Another equivalent alternative is to
use a mapping L � S � AP� ftrue� falseg such that L�s�P� � true i� it is intended that P be true at
s� Still another alternative is to have L � S� �AP� ftrue� falseg� so that L�s� is an interpretation
of each proposition symbol at state s� In the future� we will use whichever presentation is most
convenient for the purpose at hand� assuming the above equivalences to be obvious�

��� Propositional Linear Temporal Logic

In this subsection we will de�ne the formal syntax and semantics of Propositional Linear Temporal
Logic �PLTL�� The basic temporal operators of this system are Fp ��sometime p�� also read as
�eventually p��� Gp ��always p�� also read as �henceforth p��� Xp ��nexttime p��� and p U q
��p until q��� Figure � below illustrates their intuitive meanings� The formulae of this system
are built up from atomic propositions� the truth�functional connectives ��� �� �� etc�� and the
above�mentioned temporal operators� This system� or some slight variation thereof� is frequently
employed in applications of temporal logic to concurrent programming�

����� Syntax

The set of formulae of Propositional Linear Temporal Logic �PLTL� is the least set of formulae
generated by the following rules�

�� Each atomic proposition P is a formula�

�� If p and q are formulae then p � q and �p are formulae�

�� If p and q are formulae then p U q and Xp are formulae�

The other formulae can then be introduced as abbreviations in the usual way� For the propositional
connectives� p � q abbreviates ���p � �q�� p� q abbreviates �p � q� and p	 q abbreviates �p�
q� � �q � p�� The boolean constant true abbreviates p � �p� while false abbreviates �true� Then
the temporal connective Fp abbreviates �true U p� and Gp abbreviates �F �p� It is convenient to

also have
�

Fp abbreviate GFp �in�nitely often��
�

Gp abbreviate FGp ��almost everywhere��� and �p
B q� ��p precedes q�� abbreviate ���p U q��

Remark� The above is an abstract syntax where we have suppressed detail regarding paren�
thesization� binding power of operators� and so forth� In practice� we use the following notational
conventions� supplemented by auxiliary parentheses as needed� The connectives of highest binding

power are the temporal operators F� G� X� U� B�
�

F� and
�

G� The operator � is of next highest
binding power� followed by �� followed by �� followed by �� followed �nally by 	 as the operator
of least binding power�

Example� �p� U q� � r� � r� means ���p� U q��� � r�� � r��
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����� Semantics

We de�ne the semantics of a formula p of PLTL with respect to a linear time structure M � �S�x�L�
as above� We write M�x j� p to mean that �in structure M formula p is true of timeline x�� When
M is understood we write x j� p� The notational convention that xi � the su�x path si�si���si�����
is used� We de�ne j� inductively on the structure of the formulae�

�� x j� P i� P 
 L�s��� for atomic proposition P

�� x j� p � q i� x j� p and x j� q
x j� �p i� it is not the case that x j� p

�� x j� �p U q� i� �j �xj j� q and �k � j�xk j� p��
x j� Xp i� x� j� p

The modality �p U q�� read as �p until q� asserts that q does eventually hold and that p will
hold everywhere prior to q�

The modality Xp� read as �next time p� holds now i� p holds at the next moment�

For conciseness� we took the temporal operator U and X as primitive� and de�ned the others as
abbreviations� However� the other operators are themselves of su�cient independent importance
that we also give their formal de�nitions explicitly�

The modality Fq� read as �sometimes q� or �eventually q� and meaning that at some future
moment q is true� is formally de�ned so that

x j� Fq i� �j �xj j� q�

The modality Gq� read as �always q� or �henceforth q� and meaning that at all future moments
q is true� can be formally de�ned as

x j� Gq i� �j �xj j� q�

The modality �p B q�� read as �p precedes q� or �p before q� and which intuitively means that
�if q ever happens in the future� it is strictly preceded by an occurrence of p�� has the following
formal de�nition

x j� �p B q� i� �j �xj j� q implies �k � j�xk j� p��

The modality
�

Fp� which is read as �in�nitely often p�� intuitively means that it is always true
that p eventually holds� or in other words that p is true in�nitely often� can be de�ned formally as

x j�
�

Fp i� �k �j � k xj j� p

The modality
�

Gp� which is read as �almost everywhere p� or �almost always p�� intuitively
means that p holds at all but a �nite number of times� can be de�ned as

x j�
�

Gp i� �k �j � k xj j� p
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����� Basic De�nitions

We say that PLTL formula p is satis�able i� there exists a linear time structure M � �S�x�L� such
that x j� p� We say that any such structure de�nes a model of p� We say that p is valid� and write
j� p� i� for all linear time structures M � �S�x�L� we have x j� p� Note that p is valid i� �p is not
satis�able�

����� Examples

We have the following examples�

p� Fq intuitively means that �if p is true now then at some future moment q will be true�� This
formula is satis�able� but not valid�

G�p� Fq� intuitively means that �whenever p is true� q will be true at some subsequent moment��
This formula is also satis�able� but not valid�

G�p � Fq� � �p � Fq� is a valid formula� but its converse only satis�able�

p � G�p � Xp� � Gp means that if p is true now and whenever p is true it is also true at the
next moment� then p is always true� This formula is valid� and is a temporal formulation of
mathematical induction�

�p U q� � ���p� B q� means that p will be true until q eventually holds� and that the �rst
occurrence of q will be preceded by �p� This formula is unsatis�able�

Signi�cant Validities

The duality between the linear temporal operators are illustrated by the following assertions�

j� G �p � �Fp
j� F �p � �Gp
j� X �p � �Xp

j�
�

F�p � �
�

Gp

j�
�

G�p � �
�

Fp
j����p� U q� � ��p B q�

The following are some important implications between the temporal operators� which cannot be
strengthened to equivalences�

j� p � Fp
j� Gp � p
j� Xp � Fp
j� Gp � Xp
j� Gp � Fp
j� Gp � XGp
j� p U q � Fq

j�
�

Gq �
�

Fq

	



The idempotence of F� G�
�

F� and
�

G are asserted below�

j� FFp � Fp

j�
�

F
�

F �
�

Fp
j� GGp � Gp

j�
�

G
�

Gp �
�

Gp

Note� of course� XXp � Xp is not valid� We also have that X commutes with F� G� and U

j� XFp � FXp
j� XGp � GXp
j���Xp� U �Xq�� � X�p U q�

The in�nitary modalities
�

F and
�

G �gobble up� other unary modalities applied to them�

j�
�

Fp � X
�

Fp � F
�

Fp � G
�

Fp �
�

F
�

Fp �
�

G
�

Fp

j�
�

Gp � X
�

Gp � F
�

Gp � G
�

Gp �
�

F
�

Gp �
�

G
�

Gp

�Note� in the above we make use of the abuse of notation that j� a� ����� an abbreviates the n��

valid equivalences j� a� � a������ j� an�� � an�� The F�
�

F operators have an existential nature�

the G�
�

G operators a universal nature� while the U operator is universal in its �rst argument and
existential in its second argument� We thus have the following distributivity relations between
these temporal operators and the boolean connectives � and ��

j� F�p � q� � �Fp � Fq�

j�
�

F�p � q� � �
�

Fp �
�

Fq�
j� G�p � q� � �Gp � Gq�

j�
�

G�p � q� � �
�

Gp �
�

Gq�
j���p � q� U r� � ��p U r� � �q U r��
j��p U �q � r�� � ��p U q� � �p U r��

Since the X operator refers to a unique next moment� it distributes with all the boolean connectives�

j� X�p � q� � �Xp � Xq�
j� X�p � q� � �Xp � Xq�
j� X�p � q� � �Xp � Xq�
j� X�p � q� � �Xp � Xq�

�Note� j� X�p � �Xp was given above��

When we mix operators of universal and existential characters we get the following implications�
which again cannot be strengthened to equivalences�

j��Gp � Gq� � G�p � q�

j� �
�

Gp �
�

Gq� �
�

G�p � q�
j� F�p � q� � Fp � Fq

j�
�

F�p � q� � �
�

Fp �
�

Fq�
j� ��p U r� � �q U r�� � ��p � q� U r�
j� �p U �q � r�� � ��p U q� � �p U r��
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We next note that the temporal operators below are monotonic in each argument�

j� G�p � q� � �Gp � Gq�
j� G�p � q� � �Fp � Fq�
j� G�p � q� � �Xp � Xq�

j� G�p � q� � �
�

Fp �
�

Fq�

j� G�p � q� � �
�

Gp �
�

Gq�
j� G�p � q� � ��p U r� � �q U r��
j� G�p � q� � ��r U p� � �r U q��

Finally� we have following important �xpoint characterizations of the temporal operators �cf� Sec�
tion �����

j�Fp � p � XFp
j�Gp � p � XGp
j��p U q� � q � �p � X�p U q��
j��p B q� � �q � �p � X�p B q��

����	 Minor Variants of PLTL

One minor variation is to change the basic temporal operators� There are a number of variants of
the until operator p U q� which is de�ned as the strong until� there does exist a future state where
q holds and p holds until then� We could write p Us q or p U� q to emphasize its strong� existential
character� The operator weak until� written p Uw q �or p U�q�� is an alternative� It intuitively
means that p holds for as long as q does not� even forever if need be� It is also called the unless
operator� Its technical de�nition can be formulated as�

x j� p U� q i� �j � ��k  j x
k j� �q� implies xj j� p �

exhibiting its �universal� character� Note that� given the boolean connectives� each until operator
is expressible in terms of the other�

�a� p U� q � p U� q � Fq

�b� p U� q � p U� q � Gp � p U� q � G�p � �q�

We also have variations based on the answer to the question� does the future include the present�
The future does include the present in our formulation� and is thus called the re�exive future� We
might instead formulate versions of the temporal operators referring to the strict future� i�e�� those
times strictly greater than the present� A convenient notation for emphasizing the distinction
involves use of � or � as a superscript�

F�p � � a strict future moment when p holds
F�p � � a moment� either now or in the future� when p holds
F�p � XF�p
F�p � p � F�p

Similarly we have the strict always �G�p� in addition to our �ordinary� always �G�p��
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The strict �strong� until P U� q � X�p U q� is of particular interest� Note that false U�q �
X�false U q� � Xq� The single modality strict� strong until is enough to de�ne all the other linear
time operators �as shown by Kamp �Ka��
��

Remark� One other common variation is simply notational� Some authors use �p for Gp� �p
for Fp� and �p for Xp�

Another minor variation is to change the underlying structure to be any initial segment I of
jN� possibly a �nite one� This seems sensible because we may want to reason about terminating
programs as well as nonterminating ones� We then correspondingly alter the meanings of the basic
temporal operators� as indicated �informally� below�

Gp � for all subsequent times in I� p holds�
Fp � for some subsequent times in I� p holds�
p U q � for some subsequent time in I q holds� and p holds at all subsequent times until then�

We also now can distinguish two notions of nexttime�

X�p�weak nexttime�if there exists a successor moment then p holds there
X� p�strong nexttime�there exists a successor moment and p holds there

Note that each nexttime operator is the dual of the other� X�p � ��X� �p and X�p � �X�
�p��

Remark� Without loss of generality� we can restrict our attention to structures where the
timeline � jN and still get the e�ect of �nite timelines� This can be done in either of two ways�

�a� Repeat the �nal state so the �nite sequence s� s� � � � sk of states is represented by the in�nite
sequence s� s� � � � sk sk sk � � � � �This is somewhat like adding a self�loop at the end of a �nite�
directed linear graph��

�b� Have a proposition PGOOD true for exactly the good �i�e�� �nite� portion of the timeline�

Adding past tense temporal operators

As used in computer science� all temporal operators are future tense� we might use the following
suggestive notation and terminology for emphasis�

F�p � sometime in the future p holds�
G�p � always in the future p holds�
X�p � nexttime p holds �Note� �next� implies implicitly the future�
p U� q � sometime in the future q holds and p holds subsequently until then

However� as originally studied by philosophers there were past tense operators as well� we can use
the corresponding notation and terminology�

F�p � sometime in the past p holds
G�p � always in the past p holds
X�� p � lasttime p holds �Note� �last� implicitly refers to the past�
p U�q � sometime in the past q holds and p holds previously until then

��



When needed for emphasis we use PLTLF for the logic with just future tense operators� PLTLP
for the logic with just past tense operators� and PLTLB for the logic with both�

For temporal logic using the past tense operators� given a linear time structure M � �S�x�L� we
interpret formulae over a pair �x�i�� where x is the timeline and the natural number index i speci�es
where along the timeline the formula is true� Thus� we write M� �x�i� j� p to mean that �in structure
M along timeline x at time i formula p holds true�� when M is understood we write just �x�i� j�
p� Intuitively� pair �x�i� corresponds to the su�x xi� which is the forward interval x�i��� starting
at time i� used in the de�nition of the future tense operators� When the past is allowed the pair
�x�i� is needed since formulae can reference positions along the entire timeline� both forward and
backward of position i� If we restrict our attention to just the future tense as in the de�nition of
PLTL� we can omit the second component of �x�i� � in e�ect assuming that i��� and that formulae
are interpreted at the beginning of the timeline � and write x j� p for �x��� j� p�

The technical de�nitions of the basic past tense operators are as follows�

�x�i� j� p U�q i� �j�j  i and �x�j� j� q and �k �j � k  i implies �x�j� j� p��
�x�i� j� X�� p i� i � � and �x�i��� j� p

Note that the lasttime operator is strong� having an existential character� asserting that there
is a past moment� thus is false at time ��

The other past connectives are then introduced as abbreviations as usual� e�g�� the weak lasttime
X�� p for �X

�
� �p� F

�p for �true U�p�� and G�p for �F� �p�

For comparison we also present the de�nitions of some of the basic future tense operators using
the pair �x�i� notation�

�x�i� j� �p U q� i� �j �j � i and �x�j� j� q and �k�i  k � j implies �x�k� j� p��
�x�i� j� Xp i� �x�i �� j� p
�x�i� j� Gq i� �j�j � i implies �x�j� j� q�
�x�i� j� Fq i� �j�j � i and �x�j� j� q�

Remark� Philosophers used a somewhat di�erent notation� F�p was usually written as Pp�
G�p as Hp� and p U q as p S q meaning �p since q�� We prefer the present notation due to its
more uniform character�

The decision whether to allow i to �oat or to anchor it at � yields di�erent notions of equivalence�
satis�ability� and validity� We say that a formula p is initially satis�able provided there exists a
linear time structure M � �S�x�L� such that M��x��� j� p� We say that a formula p is initially
valid provided for all timeline structures M � �S�x�L� we have M��x��� j� p� We say that a formula
p is globally satis�able provided that there exists a linear time structure M � �S�x�L� and time i
such that M��x�i� j� p� We say that a formula p is globally valid provided that for all linear time
structures M � �S�x�L� and times i we have M��x�i� j� p�

In an almost trivial sense inclusion of the past tense operators increases the expressive power
of our logic�

We say that formula p is globally equivalent to formula q� and write p �g q� provided that �
linear structure x � time i 
 jN ��x�i� j� p i� �x�i� j� q
�
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Theorem ���� As measured with respect to global equivalence� PLTLB is strictly more ex�
pressive than PLTLF�

Proof� The formula F�Q is not expressible in PLTLF� as can be seen by considering two
structures x� x� as depicted below�

Q
� � � �����

�Q
� � � �����

The structures are identical except for their respective state at time �� At time � F�Q distin�
guishes the two structures �i�e� �x��� j� F�Q and �x���� �j� F�Q� yet future tense PLTLF cannot
distinguish �x��� from �x����� since the in�nite su�xes beginning at time � are identical� �

Yet in the sense that programs begin execution in an initial state� inclusion of the past tense
operators adds no expressive power�

We say that formula p is initially equivalent to formula q� and write p �i q� provided that �
linear structure x ��x��� j� p i� �x��� j� q
�

Theorem ���� As measured with respect to initial equivalence� PLTLB is equivalent in ex�
pressive power to PLTLF�

This can be proved using results regarding the theory of linear orderings �cf� �GPSS��
��

We also note the following relationship between �i and �g�

Proposition ���� p �g q i� Gp �i Gq�

By convention we shall take satis�able to mean initially satis�able and valid to mean initially
valid� unless otherwise stated� Intuitively� this makes sense since programs start execution in an
initial state� Moreover� whenever we refer to expressive power we are measuring it with respect to
initial equivalence� unless otherwise stated� One bene�t of comparing expressive power on the basis
of initial equivalence� is that it suggests we view formulae of PLTL and its variants as de�ning sets
of sequences� i�e� formal languages� �See section ���

��� First�Order Linear Temporal Logic 	FOLTL


First�order linear temporal logic �FOLTL� is obtained by taking propositional linear temporal logic
�PLTL� and adding to it a First order language L� That is� in addition to atomic propositions� truth�
functional connectives� and temporal operators we now also have predicates� functions� individual
constants� and individual variables� each interpreted over an appropriate domain with the standard
Tarskian de�nition of truth�
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Symbols of L

We have a �rst order language L over a set of function symbols and a set of predicate symbols�
The zero�ary function symbols comprise the subset of constant symbols� Similarly� the zero�ary
predicate symbols are known as the proposition symbols� Finally� we have a set of individual
variable symbols�

We use the following notations�

�� �� � � � � etc� for n�ary� n � �� predicate symbols�
P� Q� � � � � etc� for proposition symbols�
f� g� � � � � etc� for n�ary� n � �� function symbols�
c� d� � � � � etc� for constant symbols� and
y� z� � � � � etc� for variable symbols�

We also have the distinguished binary predicate symbol �� known as the equality symbol� which
we use in the standard in�x fashion� Finally� we have the usual quanti�er symbols � and �� denot�
ing universal and existential quanti�cation� respectively� which are applied to individual variable
symbols� using the usual rules regarding scope of quanti�ers� and free and bound variables�

Syntax of L

The terms of L are de�ned inductively by the following rules�

T� Each constant c is a term�

T� Each variable y is a term�

T� If t�� � � � � tn are terms and f is an n�ary function symbol then f�t�� � � � � tn� is a term�

The atomic formulae of L are de�ned by the following rules�

AF� Each ��ary predicate symbol �i�e� atomic proposition� is an atomic formula�

AF� If t�� � � � � tn are terms and � is an n�ary predicate then ��t�� � � � � tn� is an atomic formula�

AF� If t�� t� are terms then t� � t� is also an atomic formula�

Finally� the �compound� formulae of L are de�ned inductively as follows�

F� Each atomic formula is a formula�

F� If p�q are formulae then �p � q�� �p are formulae�

F� If p is a formula and y is a free variable in p then �yp is a formula�

Semantics of L

The semantics of L is provided by an interpretation I over some domain D� The interpretation
I assigns an appropriate meaning over D to the �non�logical� symbols of L� Essentially� the n�ary
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predicate symbols are interpreted as concrete� n�ary relations over D� while the n�ary function
symbols are interpreted as concrete� n�ary functions on D� �Note� an n�ary relation over D may
be viewed as an n�ary function Dn � jB� where jB � ftrue� falseg is the distinguished Boolean
domain�� More precisely I assigns a meaning to the symbols of L as follows�

� for an n�ary predicate symbol �� n � �� the meaning I��� is a function Dn � jB

� for a proposition symbol P� the meaning I�P� is an element of jB

� for an n�ary function symbol f� n � �� the meaning I�f� is a function Dn � D

� for an individual constant symbol c� the meaning I�c� is an element of D

� for an individual variable symbol y� the meaning I�y� is an element of D

The interpretation I is extended to arbitrary terms� inductively�

I�f�t�� � � � � tn�� � I�f� �I�t��� � � � � I�tn��

We now de�ne the meaning of truth under interpretation I of formula p� written I j� p� First�
for atomic formulae we have�

I j� P� where P is an atomic proposition� i� I�P� � true�
I j� ��t�� � � � � tn�� where � is an n�ary predicate and t�� � � � � tn are terms�

i� I��� �I�t��� � � � � I�tn�� � true�
I j� t� � t� i� I�t�� � I�t���

Next� for compound formulae we have�

I j� p � q i� I j� p and I j� q�
I j� �p i� it is not the case that I j� p�
I j� �y p� where y is a free variable in p� i� there exists some d 
 D such that I�y � d
 j� p
where I�y � d
 is the interpretation identical to I except that y is assigned value d�

Global versus Logical Symbols

For de�ning First Order Linear Temporal Logic �FOLTL�� we assume that the set of symbols
is divided into two classes� the class of global symbols and the class of local symbols� Intuitively�
each global symbol has the same interpretation over all states� the interpretation of a local symbol
may vary� depending on the state at which it is evaluated� We will subsequently assume that all
function symbols �and thus all constant symbols� are global� and that all n�ary predicate symbols�
for n � �� are also global� Proposition symbols �i�e� ��ary predicate symbols� and variable symbols
may be local or may be global�

A ��rst order� linear time structure M � �S�x�L� is de�ned just as in the propositional case�
except that L now associates with each state s an interpretation L�s� of all symbols at s� such that
for each global symbol w� L�s��w� � L�s���w�� for all s�s� 
 S� Note that the structure M has an
underlying domain D� as for L� Also� it is sometimes convenient to refer to the global interpretation
I associated with M by I�w� � L�s��w�� where w is any global symbol and s is any state of M� �Note�
Implicitly given with a structure is its signature or similarity type consisting of the alphabets of
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all the di�erent kinds of symbols� The signature of the structure is assumed to match that of the
language �FOLTL���

Description of FOLTL

We are now ready to de�ne the language of First�Order Linear Temporal Logic �FOLTL� ob�
tained by adding L to PLTL� First� the terms of FOLTL are those generated by rules T��� for L
plus the rule�

T� If t is a term then Xt is a term �intuitively� denoting the immediate future value of term t��

The atomic formulae of FOLTL are generated by the same rules as for L� but now are used in
conjunction with the expanded set of rules T��� for terms�

Finally� the �compound� formulae of FOLTL are de�ned inductively using the following rules�

FOLTL� Each atomic formula is a formula�

FOLTL� If p�q are formulae� then so are p � q� �p�

FOLTL� If p�q are formulae� then so are p U q� Xp�

FOLTL� If p is a formula and y is a free variable in p� then �y p is a formula�

The semantics of FOLTL is provided by a �rst order linear time structure M over a domain D
as above� Global interpretation I of M assigns a meaning to each global symbol� while the local
interpretations L��� associated with M assign a meaning to each local symbol�

Since the terms of FOLTL are generated by rules T��� for L plus the rule T� above� we extend
the meaning function�now denoted by a pair �M�x��for terms�

�M�x� �c� � I�c�� since all constants are global�
�M�x� �y� � I�y�� where y is a global variable�
�M�x� �y� � L�s�� �y�� where y is a local variable and x � �s��s��s��� � ���
�M�x� �f�t�� � � � � tn�� � �M�x� �f� ��M�x� �t��� � � � � �M�x� �tn���
�M�x� �Xt� � �M�x�� �t��

Now the extension of j� is routine� For atomic formulae we have�

M�x j� P i� I j� P where P is a global proposition�
M�x j� P i� L�s�� �P� � true where P is a local proposition and x � �s��s��s��� � ���
M�x j� ��t��� � � �tn� i� �M�x� ��� ��M�x� �t���� � � � �M�x� �tn�� � true�
M�x j� t� � t� i� �M�x� �t�� � �M�x� �t���

We �nish o� the semantics of FOLTL with the inductive de�nition of j� for compound formulae�

M�x j� p � q i� M�x j� p and M�x j� q�

M�x j� �p i� it is not the case that M�x j� p�

��



M�x j� �p U q� i� �j � M�xj j� q and �k�j �M�xk j� p��

M�x j� Xp i� M�x� j� p

M�x j� �y p� where y is a global variable free in p� i� there exists some d 
 D for which M�y �
d
�x j� p� where M�y � d
 is the structure having global interpretation I�y � d
 identical to
I except y is assigned the value d�

A formula p of FOLTL is valid i� for every for every �rst order linear time structure M �
�S�x�L� we have M�x j� p� The formula p is satis�able i� there exists M � �S�x�L� such that M�x
j� p�

Remark� For notational simplicity we have assumed the L is a one�sorted �rst order language�
Thus each symbol �function symbol� predicate symbol� etc�� is of the same sort and is interpreted
over the single domain D� For certain applications� it is more convenient to assume that L is a
multi�sorted language� where the symbols of L are partitioned into di�erent sets� each of which
corresponds to a di�erent domain with di�erent argument positions� The extension to multi�sorted
languages is routine� although a bit cumbersome notationally�

� The Technical Framework of Branching Temporal Logic

��� Tree�like Structures

In branching time temporal logics� the underlying structure of time is assumed to have a branching
tree�like nature where each moment may have many successor moments� The structure of time
thus corresponds to an in�nite tree� In the sequel� we will further assume that along each path in
the tree� the corresponding time line is isomorphic to jN� We do allow a node in the tree to have
in�nitely many �even uncountably many� successors� while we require each node to have at least
one successor� It will turn out that� as far as our branching temporal logics are concerned� such
trees are indistinguishable from trees with �nite� even bounded� branching� Trees of the latter type
have a natural correspondence with the computations of concurrent or nondeterministic programs�
as discussed in the next section�

We say that a temporal structure M � �S�R�L� where

S is the set of states�

R is a total binary relation � S � S �i�e�� one where �s 
 S �t 
 S �s�t� 
 R�� and

L�S � PowerSet�AP� is a labelling which associate with each state s an interpretation L�s� of all
atomic proposition symbols at state s�

We may view M as a labelled� directed graph with node set S� arc set R� and node labels given
by L� We say �the graph of� M
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�a� is acyclic provided it contains no directed cycles�

�b� is tree�like provided that it is acyclic and each node has at most � R�predecessor �i�e�� there
is no �merging� of paths�� and

�c� is a tree provided that it is tree�like and there exists a unique node�called the root�from
which all other nodes of M are reachable and that has no R�predecessors�

We have not required that �the graph of� M be a tree� However� we may assume� without loss
of generality� that it is� We de�ne the Structure !M � �!S�!R�!L�� called the structure obtained by
unwinding M starting at state s� 
 S� where !S� !R are� respectively� the least subsets of S � jN� !S
� !S such that�

� �s���� 
 !S

� if �s�n� 
 !S then
f�t�n �� � t is an R�successor of s in Mg � !S� and
f��s�n�� �t�n ��� � t is an R�successor of s in Mg � !R�

and !L��s�n�� � L�s�� Then �the graph of� !M is a tree with root �s����� and it is easily checked that�
for all the branching time logics we will consider� a formula p holds at s� in M i� p holds at �s����
in !M� See Figure ��

��� Propositional Branching Temporal Logics

In this section we provide the formal syntax and semantics for two representative systems of propo�
sitional branching time temporal logics The simpler logic� CTL �Computational Tree Logic� allows
basic temporal operators of the form� a path quanti�er�either A ��for all futures�� or E ��for
some future��followed by a single one of the usual linear temporal operators G ��always��� F
��sometime��� X ��nexttime��� or U ��until��� It corresponds to what one might naturally �rst
think of as a branching time logic� CTL is closely related to branching time logics proposed in
�La��
� �EC��
� �QS��
� �BPM��
� and was itself proposed in �CE��
� However� as we shall see� its
syntactic restrictions signi�cantly limit its expressive power� We therefore also consider the much
richer language CTL"� which is sometimes referred to informally as full branching time logic� The
logic CTL" extends CTL by allowing basic temporal operators where the path quanti�er �A or E�
is followed by an arbitrary linear time formula� allowing boolean combinations and nestings� over
F� G� X� and U� It was proposed as a unifying framework in �EH��
� subsuming both CTL and
PLTL� as well as a number of other systems� Related systems of high expressiveness are considered
in �Pa	�
� �Ab��
� �ST��
� and �VW��
�

Syntax

We now give a formal de�nition of the syntax of CTL"� We inductively de�ne a class of state
formulae �true or false of states� using rules S��� below and a class of path formulae �true or false
of paths� using rules P��� below�

S� Each atomic proposition P is a state formula
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S� If p�q are state formulae then so are p � q� �p

S� If p is a path formula then Ep� Ap are state formulae

P� Each state formula is also a path formula

P� If p�q are path formulae then so are p � q� �p

P� If p�q are path formulae then so are Xp� p U q

The set of state formulae generated by the above rules forms the language CTL"� The other
connectives can then be introduced as abbreviations in the usual way�

Remark� We could take the view that Ap abbreviates �E �p� and give a more terse syntax in
terms of just the primitive operators E� �� �� X� and U� However� the present approach makes it
easier to give the syntax of the sublanguage CTL below�

The restricted logic CTL is obtained by restricting the syntax to disallow boolean combinations
and nestings of linear time operators� Formally� we replace rules P��� by

P� if p�q are state formulae then Xp� p U q are path formulae�

The set of state formulae generated by rules S��� and P� forms the language CTL� The other boolean
connectives are introduced as above while the other temporal operators are de�ned as abbreviations
as follows� EFp abbreviates E�true U p�� AGp abbreviates �EF �p� AFp abbreviates A�true U
p�� and EGp abbreviates �AF�p� �Note� this de�nition can be seen to be consistent with that of
CTL"��

Also note that the set of path formulae generated by rules by P��P� yield the linear time PLTL�

Semantics

A formula of CTL" is interpreted with respect to a structure M � �S�R�L� as de�ned above� A
fullpath of is an in�nite sequence s��s��s����� of states such that �i �si�si��� 
 R� We use the convention
that x � �s��s��s��� � � � denotes a fullpath� and that xi denotes the su�x path �si�si���si���� � � �� We
write M�s� j� p �respectively� M�x j� p� to mean that state formula p �respectively� path formula p�
is true in structure M at state s� �respectively� of fullpath x�� We de�ne j� inductively as follows�

S� M�s� j� p i� P 
 L�s��

S� M�s� j� p � q i� M�s� j� p and M�s� j� q M�s� j� �p i� not�M�s� j� p�

S� M�s� j� Ep i� � fullpath x � �s��s��s��� � �� in M� M�x j� p
M�s� j� Ap i� � fullpath x � �s��s��s��� � �� in M� M�x j� p

P� M�x j� p i� M�s� j� p

P� M�x j� p � q i� M�x j� p and M�x j� q
M�x j� �p i� not�M�x j� �p�

P� M�x j� p U q i� �i �M�xi j� q and �j � j � i implies M�xj j� p�

M�x j� Xp i� M�x� j� p
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A formula of CTL is also interpreted using the CTL" semantics� using rule P� for path formulae
generated by rule P��

We say that a state formula p �resp�� path formula p� is valid provided that for every structure
M and every state s �resp�� fullpath x� in M we have M�s j� p �resp�� M�x j� p�� A state formula
p �resp�� path formula p� is satis�able provided that for some structure M and some state s �resp��
fullpath x� in M we have M�s j� p �resp�� M�x j� p��

Generalized Semantics

We can de�ne CTL" and other logics over various generalized notions of structure� For example�
we could consider more general structures M � �S�X�L� where S is a set of states and L a labelling
of states as usual� while X � S� is a family of in�nite computation sequences �fullpaths� over S�
The de�nition of CTL" semantics carries over directly� with path quanti�cation restricted to paths
in X� provided that �a fullpath x in M� is understood to refer to a fullpath x in X�

In the most general case X can be completely arbitrary� However� it is often helpful to impose
certain requirements on X �cf� �La��
� �Pr	�
� �Ab��
� �Em��
�� We say that X is su�x closed
provided that if computation s�s�s���� 
 X� then the su�x s�s���� 
 X� Similarly� X is fusion closed
provided that whenever x�sy�� x�sy� 
 X then x�sy� 
 X� The idea is that the system should always
be able to follow the pre�x of one computation and then continue along the su�x sy� of another
computation� thus the computation actually followed is the �fusion� of two others� Both su�x and
fusion closure are needed to ensure that the future behavior of a program depends only on the
current state and not how the state is reached�

We may also wish to require that X be limit closed meaning that whenever x�y�� x�x�y��
x�x�x�y����� are all elements of X� then the in�nite path x�x�x����� which is the limit of the pre�xes
x��x��x��x�x�x����� is also in X� In short� if it possible follow a path arbitrarily long� then it can be
followed forever� Finally� a set of paths is R�generable if there exists a total binary relation R on S
such that a sequence x � s�s�s���� 
 X i� �i �si�si��� 
 R� It can be shown that X is R�generable
i� it is limit closed� fusion closed and su�x closed� Of course� the basic type of structures we
ordinarily consider are R�generable� which correspond to the execution of a program under pure
nondeterministic scheduling�

Some such restrictions on the set of paths X are usually needed in order to have the abstract�
computation path semantics re�ect the behavior of actual concurrent programs� An additional
advantage of these restrictions is that they ensure the validity of many commonly accepted principles
of temporal reasoning� For example� fusion closure is needed to ensure that EFEFp � EFp� Su�x
closure is needed for EFp � �p � EXEFp� and limit closure for p � AGEXp � EGp� An R�
generable structure satis�es all these natural properties�

Another generalization is to de�ne amultiprocess temporal structure� which is a re�nement of the
notion of a branching temporal structure that distinguishes between di�erent processes� Formally�
a multiprocess temporal structure M � �S�R�L� where

S is a set of states�

R is a �nite family fR��� � � �Rk g of binary relations Ri on S �intuitively� Ri represents the
transitions of process i� such that R � � R is total �i�e� �s 
 S �t 
 S �s�t� 
 R��
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L associates with each state an interpretation of symbols at the state�

Just as for a �uniprocess� temporal structure� a multiprocess temporal structure may be viewed
as a directed graph with labelled nodes and arcs� Each state is represented by a node that is
labelled by the atomic propositions true there� and each transition relation Ri is represented by a
set of arcs that are labelled with index i� Since there may be multiple arcs labelled with distinct
indices between the same pair of nodes� technically the graph�theoretic representation is a directed
multigraph�

The previous formulation of CTL" over uniprocess structures refers only to the atomic formulae
labelling the nodes� However� it is straightforward to extend it to include� in e�ect� arc assertions
indicating which process performed the transition corresponding to an arc� This extension is needed
to formulate the technical de�nitions of fairness in the next section� so we brie�y describe it�

Now� a fullpath x � �s��d��s��d��s��� � � �� depicted below

d� d� d� d�
� � � � � � � � � � �

s� s� s� s�

is an in�nite sequence of states si alternating with relation indices di�� such that �si�si��� 
 Rdi�� �
indicating that process di�� caused the transition from si to si��� We also assume that there are
distinguished propositions enabled�� � � � � enabledk� executed�� � � �executedk� where intuitively enabledj
is true of a state exactly when process j is enabled� i�e�� when a transition by process j is possible�
and executedj is true of a transition when it is performed by process j� Technically� each enabledj is
an atomic proposition�and hence a state formula�true of exactly those states in domain Rj�

M�s� j� enabledj i� s� 
 domain Rj � f s 
 S � �t 
 S �s�t� 
 R g

while each executedj is an atomic arc assertion�and a path formula such that

M�x j� executedj i� d� � j�

It is worth pointing out that there are alternative formalisms that are essentially equivalent
to this notion of a �multiprocess� structure� A transition system M is a formalism equivalent to
a multi�process temporal structure consisting of a triple M � �S�R�L� where R is a �nite family
of transitions �i � S � PowerSet�S�� To each transition �i there is a corresponding relation Ri �
f�s�t� 
 S � S� t 
 �ig and conversely� Similarly� there is a correspondence between multiprocess
temporal logic structures and do�od programs �cf� �Di	�
�� Assume we are given a do�od program
� � do B� � A� �
 ��� �
 Bk � Ak od� where each Bi may be viewed as subset of the state space S
and each Ai as a function S � S� Then we may de�ne an equivalent structure M��S�R�L�� where
each Ri � f �s�t� 
 S� s 
 Bi and t � Ai�s�g� and L gives appropriate meanings to the symbols in
the program� Conversely� given a structure M� there is a corresponding generalized do�od program
�� where by generalized we mean that each action Ai is allowed to be a relation� viz�� it is do B�
� A� �
����
 Bk � Ak od� where each Bi � domain Ri � f s 
 S� � t 
 S �s�t� 
 Rig and Ai � Ri�

We can de�ne a single type of general structure which subsumes all of those above� We assume an
underlying set of symbols� divided into global and local subsets as before and called state symbols
to emphasize that they are interpreted over states� as well as an additional set of arc assertion
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symbols that are interpreted over transitions �s�t� 
 R� Typically we think of L��s�t�� as the set of
indices �or names� of processes which could have performed the transition �s�t�� A �generalized�
fullpath is now a sequence of states si alternating with arc assertions di as depicted above�

Now we say that a general structure M � �S�R�X�L� where

S is a set of states�

R is a total binary relation � S � S�

X is a set of fullpaths over R� and

L is a mapping associating with each state s an interpretation L�s� of all state symbols at s�
and with each transition �s�t� 
 R an interpretation of each arc assertion at �s�t�

There is no loss of generality due to including R in the de�nition� for any set of fullpaths X� let
R � f�s�t� 
 S � S� there is a fullpath of the form ystz in X� where y is a �nite sequence of states
and z an in�nite sequence of states in Sg� then all consecutive pairs of states along paths in X are
related by R�

The extensions needed to de�ne CTL" over such a general structure M are straightforward�
The semantics of path quanti�cation as speci�ed in rule S� carries over directly to the general M�
provided that a �full path in M� refers to one in X� If d is an arc assertion we have that�

M�x j� d i� d 
 L��s��s���

��� First�Order Branching Temporal Logic

We can de�ne systems of First�order Branching Temporal Logic� The syntax is obtained by com�
bining the rules for generating a system of propositional Branching Temporal Logic plus a �multi�
sorted� �rst�order language� The underlying structure M � �S�R�L� is extended so that it associates
with each state s an interpretation L�s� of local and global symbols at state s� including in par�
ticular local variables as well as local atomic propositions� The semantics is given by the usual
Tarskian de�nition of truth� Validity and satis�ability are de�ned in the usual way� The details
of the technical formulation are closely analogous to those for �rst�order linear temporal logic and
are omitted here�

� Concurrent Computation� A Framework

��� Modelling Concurrency by Nondeterminism and Fairness

Our treatment of concurrency is the usual one where concurrent execution of a system of processes
is modelled by the nondeterministic interleaving of atomic actions of the individual processes� The
semantics of a concurrent program is thus given by a computation tree� a concurrent program
starting in a given state may follow any one of a �possibly in�nite� number of di�erent computation
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paths in the tree �i�e�� sequences of execution states� corresponding to the di�erent sequences of
nondeterministic choices the program might make� Alternatively� the semantics can be given simply
by the set of all possible execution sequences� ignoring that they can be organized into a tree� for
each possible starting state�

We remark that it is always possible to model concurrency by nondeterminism� since by picking
a su�ciently �ne level of granularity for the atomic actions to be interleaved� any behavior that
could be produced by true concurrency �i�e�� true simultaneity of action� can be simulated by
interleaving� In practice� it is helpful to use as coarse of granularity as possible� as it reduces the
number of interleavings that must be considered�

There is one additional consideration in the modelling of concurrency by nondeterminism� This
is the fundamental notion of fair scheduling assumptions� commonly called fairness� for short�

In a truly concurrent system� implemented physically� it would be reasonable to assume that
each sequential process Pi of a concurrent program P� k� � �k Pn is assigned to its own physical
processor� Depending on the relative rates of speed at which the physical processors ran� we would
expect that the corresponding nondeterministic choices modeling this concurrent system� would
favor� more often the faster processes� For a very simple example� consider a system P�kP� with
just two processes� If each process ran on its own physical processor� and the processors ran at
approximately equal speeds� we would expect the corresponding sequence of interleavings of steps
of the individual processes to be of the form�

P�P�P�P�P�P�� � �
or

P�P�P�P�P�P�� � �
or� perhaps

P�P�P�P�P�P�P�P�P�� � �

where� for each i� after i steps in all have been executed� roughly i�� steps of each individual process
has been executed� If processor � ran� say� three times faster than processor � we would expect
corresponding interleavings such as

P�P�P�P�P�P�P�P�P�P�P�P�� � �

where steps of process P� occur about � times more often than steps of process P��

Now� on the other hand� we would not expect to see a sequence of actions such as P�P�P�P�
� � �where process P� is always chosen while process P� is never chosen� This would be unfair to
process P�� Under the assumption that each processor is always running at some positive� �nite
speed� regardless of how the relative ratios of the processors speed might vary� we would thus
expect to see fair sequences of interleavings where each process is executed in�nitely often� This
notion of fair scheduling thereby corresponds to the reasonable and very weak assumption that
each process makes some progress� In the sequel� we shall assume that the nondeterministic choices
of which process is to next execute a step are such that resulting in�nite sequence is fair�

For the present we let the above notion of fairness�that each process be executed in�nitely
often�su�ce� actually� however� there are a number of technically distinct re�nements of this
notion� �See� for example� the book by Francez �Fr��
 as well as �Ab��
� �FK��
� �GPSS��
� �La��
�
�LPS��
� �Pn��
� �QS��
� �LPZ��
 and �EL��
�� Some of these will be described subsequently�
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Thus to model the semantics of concurrency accurately we need fairness assumptions in addi�
tion to the computation sequences generated by nondeterministic interleaving of the execution of
individual processes�

We remark on an advantage a�orded by fairness assumptions� By the principal of separation
of concerns� we should distinguish the issue of correctness of a program� from concerns with its
e�ciency or performance� Correctness is a qualitative sort of property� To say that we are concerned
that a program be totally correct means we wish to establish that it does eventually terminate
meeting a certain post condition� Establishing just when it terminates is a quantitative sort of
property that is distinct from the qualitative notion of eventually terminating� Temporal logic
is especially appropriate for such qualitative reasoning� Moreover� fairness assumptions facilitate
such qualitative reasoning� Since fairness corresponds to the very weak qualitative notion that each
process is running at some �nite positive speed� programs proved correct under a fair scheduling
assumption will be correct no matter what the rates are at which the processors actually run�

We very brie�y summarize the preceding discussion by saying that� for our purposes� concur�
rency � nondeterminism  fairness� Somewhat less pithily but more precisely and completely� we
can say that a concurrent program amounts to a global state transition system� with global state
space essentially the cartesian product of the state spaces of the individual sequential processes and
transitions corresponding to the atomic actions of the individual sequential processes� plus a fair�
ness constraint and a starting condition� The behavior of a concurrent program is then described
in terms of the trees �or simply sets� containing all the computation sequences of the global state
transition system which meet the fair scheduling constraint and starting condition�

��� Abstract Model of Concurrent Computation

With the preceding motivation� we are now ready to describe our abstract model of concurrent
computation�

An abstract concurrent program is a triple �M� �START� #� where M is a �multiprocess� temporal
structure� �START is an atomic proposition corresponding to a distinguished set of starting states
in M� # is a fair scheduling constraint which we� for convenience� take to be speci�ed in linear
temporal logic�

Among possible fairness constraints� are the following very common ones�

��� Impartiality� An in�nite sequence is impartial i� every process is executed in�nitely often

during the computation� which is expressed by # � �ki��
�

F executedi

��� Weak fairness �also known as justice�� An in�nite computation sequence is weakly fair i�
every process enabled almost everywhere is executed in�nitely often� which is expressed by #

� �ki�� �
�

G enabledi �
�

F executedi�

��� Strong fairness �also known simply as fairness�� An in�nite computation sequence is strongly
fair i� every process enabled in�nitely often is executed in�nitely often� which is expressed

by # � �ki�� �
�

F enabledi �
�

F executedi�
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��� Concrete Models of Concurrent Computation

Di�erent concrete models of concurrent computation can be obtained from our abstract model by
re�ning it in various ways� These include�

�i� providing structure for the global state space�

�ii� de�ning �classes of� instructions which each process can execute to manipulate the state
space� and

�iii� providing concrete domains for the global state space�

We now describe some concrete models of concurrent computation�

Concrete Models of Parallel Computation Based on Shared Variables

Here� we consider parallel programs of the form P�kP�k� � �kPk consisting of a �nite� �xed set
of sequential processes P��� � � �Pk running together in parallel� There is also an underlying set of
variables v��� � � �vm assuming values in a domain D� that are shared among the processes in order
to provide for inter�process communication and coordination� Thus� the global state set S consists
of tuples of the form �l��� � � �lk�v��� � � �vm� 
 �

k
h�� LOC�Ph� � �m

h��� Dh� � where each process Pi has
an associated set LOC�Pi� � fl�i �� � � � l

ni
i g of locations� Each process Pi is described by a transition

diagram with nodes labelled by locations� Alternatively� a process can be described by an equivalent
text� Associated with each arc �l�l�� there is an instruction I which may be executed by process Pi
whenever process Pi is selected for execution and the current global state has the location of Pi at
l� The instruction I is presented as a guarded command B � A� where guard B is a predicate over
the variables $v and action A is an assignment $u �� $e of a tuple of expressions to the corresponding
tuple of variables�

It is possible to make further re�nements of the model� By imposing appropriate restrictions on
the way instructions can access �i�e�� read� and manipulate �i�e�� write� the data we can get models
ranging from those that can perform �test�and�set� instructions which permit a read followed by
a write in a single atomic operation on a variable to those that only permit an atomic read or an
atomic write of a variable�

We might also wish to impose restrictions on which processes are allowed which kind of access
to which variables� One such rule is that each variable v is �owned� by some one unique process P�
�think of v as being in the �local� memory of process p�� then� each process can read any variable
in the system� while only the process which owns a variable can write into it� This specialization
is referred to as the distributed shared�variables model�

Still� another re�nement is to specify a speci�c domain for the variables� say jN � the natural
numbers� Yet another is to specify the type of instructions �e�g� �copy the value of variable y into
variable z��� They can be combined to get a completely concrete program with instructions such
as �load the value of variable z into variable y and decrement by the natural number ���

Concrete Models of Parallel Computation based on Message Passing

This model is similar to the previous one� However� each process has its own set of local variables
y������yn that cannot be accessed by other processes� All interprocess communication is e�ected by
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message passing primitives similar to those of CSP �Ho	�
� processes communicate via channels�
which are essentially message bu�ers of length �� The communication primitives are

� B�e%	�send the value of expression e along channel 	� provided that guard predicate B is
enabled and there is a corresponding receive command ready�

� B�v�	�receive a value along channel 	 and store it in variable v� provided that the guard
predicate B is enabled and there is a corresponding send command ready�

As in CSP� we assume that message transmission occurs as a single� synchronous event� with
sender and receiver simultaneously executing the send� resp� receive primitive�

Remark� For programs in one of the above concrete frameworks� we use atomic propositions
such as atlji to indicate that� in the present state� process i is at location lj�

��� Connecting the Concurrent Computation Framework with Temporal Logic

For an abstract concurrent program �M��START�#� and Temporal Logic formula p we write �M��START�#�
j� p and read it precisely �and a bit long�windedly� as �for program text M with starting condition
�START and fair scheduling constraint #� formula p holds true�� the technical de�nition is as follows�

�i� in the linear time framework�
�M��START�#� j� p i� �x in M such that M�x j� �START and M�x j� #� we have M�x j� p

�ii� in the branching time framework�
�M��START�#� j� p i� �s in M such that M�s j� �START we have M�s j� p��
where p� is the branching time formula obtained from p by relativizing all path quanti�cation
to scheduling constraint #� i�e�� by replacing �starting at the innermost subformulae and
working outward� each subformula Aq by A�# � q� and Eq by E�# � q��

� Theoretical Aspects of Temporal Logic

In this section we discuss the work that has been done in the Computing Science community on the
more purely theoretical aspects of Temporal Logic� This work has tended to focus on decidability�
complexity� axiomitizability� and expressiveness issues� Decidability and complexity refer to natural
decision problems associated with a system of Temporal Logic including �i� satis�ability�given a
formula� does there exist a structure that is a model of the formula�� �ii� validity�given a formula�
is it true that every structure is a model of the formula�� and �iii� model checking�given a formula
together with a particular �nite structure� is the structure a model of the formula� �Note� a
formula is valid i� its negation is not satis�able� so satis�ability and validity are� in e�ect� equivalent
problems�� Axiomitizability refers to the question of the existence of deductive systems for proving
all the valid formulae of a system of Temporal Logic� and the investigation of their soundness and
completeness properties� Expressiveness concerns what correctness properties can and cannot be
formulated in a given logic� The bulk of theoretical work has thus been to analyze� classify� and
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compare various systems of Temporal Logic with respect to these criteria� and to study the tradeo�s
between them� We remark that these issues are not only of intrinsic interest� but are also signi�cant
due to their implications for mechanical reasoning applications�

��� Expressiveness


���� Linear Time Expressiveness

It turns out that PLTL has intimate connections with formal language theory� This connection was
�rst articulated in the literature by Wolper who argued in �Wo��
 that PLTL �is not su�ciently
expressive��

Theorem 
��� The property G�Q� meaning that �at all even times ���������� � �etc��� Q is true��
is not expressible in PLTL�

To remedy this shortcoming Wolper �Wo��
 suggested the use of an extended logic based on
grammar operators� for example� the grammar

V� � Q� true� V�

de�nes the set of models of G�Q� This relation with formal languages is discussed in more detail
subsequently�

Quanti�ed PLTL

Another way to extend PLTL is to allow quanti�cation over atomic propositions �cf� �Wo��
�
�Si��
�� The syntax of PLTL is augmented by the formation rule�

if p is a formula and Q is an atomic proposition occurring free in p�
then �Qp is a formula also�

The semantics of �Qp is given by

M�x j� �Qp i� there exists a linear structure M� � �S�x�L�� such that M��i j� p where M � �S�x�L�
and L� di�ers from L in at most the truth value of Q�

The formula �Qp thus represents existential quanti�cation over Q� since� under the interpre�
tation M� Q may be viewed as de�ning an in�nite sequence of truth values� one for every state s
along x� this is a type of 	nd order quanti�cation� We use �Qp to abbreviate ��Q �p� of course�
it means universal quanti�cation over Q�

The extended temporal operator G�Q can be de�ned in QPLTL�

G�Q �i �Q��Q� � X�Q� � G�Q� 	 XXQ�� � G�Q� � Q�

It can be shown that QPLTL coincides in expressive power with a number of formalisms from
language theory including the just discussed grammar operators of �Wo��
�
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���� Monadic Theories of Linear Ordering

The First�Order Language of Linear Order �FOLLO� is that formal system corresponding to the
�Right�Hand�Side� of the de�nitions of the basic temporal operators of PLTL� A formula of FOLLO
is interpreted over a linear time structure �S���� for our purposes� we as usual only consider �jN���
or �I��� where I is an initial segment of jN� The language of linear order is built from the following
symbols�

P� Q� � � �etc� denoting monadic �� argument� predicate symbols �and intuitively corresponding to
atomic propositions��

t� u� � � �etc� denoting individual variables �and intuitively ranging over moments of time in jN��
and

� � the distinguished less than symbol �representing the temporal ordering�

A linear time structure M��S�x�L� is then de�ned just as for PLTL� note that L may be viewed
as assigning to each monadic predicate symbol in AP the set of times at which it is true�

The formulae of FOLLO are those generated by the following rules�

LO�� If t�u are individual variables then t � u is a formula

LO�� If P is a monadic predicate symbol and t is an individual variable� then P�t� is a formula

LO�� If p�q are formulae then so are p � q� p � q� �p

LO�� If p is a formula and t is a free individual variable in p� then �t�p� is a formula

The Second Order Language of Linear Order �SOLLO� is obtained by using the following
additional rule�

LO�� If Q is a monadic predicate symbol not in AP that appears free in formula p then �Qp is a
formula

The semantics of SOLLO and FOLLO are de�ned in the obvious way� The results depicted
below indicate how the expressive powers of the variants of PLTL and the Theories of Linear
Ordering compare�

Theorem 
��� As measured with respect to initial equivalence� the relative expressive power
of these linear time formalisms is as depicted below�

PLTLF �i PLTLB �i FOLLO �i SOLLO �i QPLTLB �i QPLTLF�

For the sake of thoroughness� we include

Theorem 
��� As measured with respect to global equivalence� the relative expressive power
of these linear time formalisms is as depicted below� where any two logics not connected by a chain
of �gs and �gs are of incomparable expressive power�
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PLTLB �g FOLLO
� n

PLTLF �g �g SOLLO �g QPLTLB
n �

QPLTLF

Note that QPLTLB �respectively� QPLTLF� denotes the version of PLTL with quanti�cation
over auxiliary propositions having both past and future tense temporal operators �respectively�
future tense temporal operators only��


���� Regular Languages and PLTL

There is an intimate relationship between languages de�nable in �variants and extensions of� PLTL�
the monadic theories of linear ordering� and the regular languages� We will �rst consider languages
of �nite strings� and then languages of in�nite strings� In the sequel let & be a �nite alphabet� For
simplicity� we further assume & � PowerSet�AP� for some set of atomic propositions AP� Moreover�
we assume that the empty string 
 is excluded so that the languages of �nite strings are subsets of
&�� rather than &��

Languages of Finite Strings

Before presenting the results we brie�y review regular expression notations and certain concept
concerning �nite state automata� The reader is referred to �Th��
 for more details�

There are several types of regular expression notations�

� the restricted regular expressions which are those built up from the alphabet symbols �� for
each � 
 �� and �� �� and "� denoting �concatenation�� �union�� and �kleene �or star� closure�
respectively�

� the general regular expressions which are those built up from the alphabet symbols � for each
� 
 & and �� �� �� �� " denoting �concatenation�� �intersection�� �complementation �with
respect to &"��� �union�� and �kleene �or star� closure� respectively�

� the star�free regular expressions are those general regular expressions with no occurrence of
"�

The restricted regular expressions are equivalent in expressive power to the general regular
expressions� however� the star�free regular expressions are strictly less expressive�

A �nite state automaton M��Q�&���q��F� is said to be counter�free i� it is not the case that
there exist distinct states q��� � � �qk�� 
 Q� k � �� and a word w 
 &� such that qi�� mod k 

��qi�w�� A language L is said to be noncounting i� it is accepted by some counter�free �nite state
automaton� Intuitively� a counter�free automaton cannot count modulo n for any n � �� It is
also known that the noncounting languages coincide with those expressible by star�free regular
expressions� We now have the following results�

Theorem 
��� The following are equivalent conditions on languages L of �nite strings�
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�a� L � &� is de�nable in PLTL

�b� L � &� is de�nable in FOLLO

�c� L � &� is de�nable by a star�free regular expression

�d� L � &� is de�nable by a counter�free �nite state automaton

This result thus accounts for why Wolpers property G�P is not expressible in PLTL� for it
requires counting modulo �� The following result also suggests why his regular grammar operators
su�ce�

Theorem 
�	� The following are equivalent conditions for languages L of �nite strings�

�a� L � &� is de�nable in QPLTL

�b� L � &� is de�nable in SOLLO

�c� L � &� is de�nable by a regular expression

�d� L � &� is de�nable by a �nite state automaton

The equivalence of conditions �b�� �c�� and �d� was established using lengthy and di�cult
arguments in the monograph of McNaughton ' Pappert �MP��
� The equivalence of conditions �a�
and �b� in Theorem ��� was established in Kamp �Ka��
� while for Theorem ��� it was established in
�LPZ��
� Direct translations between PLTL and star�free regular expressions were given in �Zu��
�

Remark� Since we have past tense operators� it is natural to think of history variables� If x
� �s��s��s��� � �� is a computation then the most general history variable h would be that which at
time j has accumulated the complete history s� � � �sj up to �and including� time j� The expressive
power of a language with history variables depends on the type of predicates we may apply to the
history variables� One natural type of history predicate is of the form �	
H where 	 is a �star�free�
regular expression� with semantics given by

�x�i� j� �	
H i� s� � � � si considered as a string over & � PowerSet�AP�
is in the language over & denoted by 	

These history variables will be helpful in describing canonical forms for languages of in�nite strings
subsequently�

Languages of In�nite Strings

In extending the notion of regular language to encompass languages of in�nite strings� the
principle concern is how to �nitely describe an in�nite string� For �nite state automata this is done
using an extended notion of acceptance involving repeating a designated set of states in�nitely
often� See �Th��
� The framework of regular expressions can be similarly extended� in one of two
ways�

�i� by adding an in�nite repetition operator� �� If 	 is an �ordinary� regular expression� then
	� represents all strings of the form a� a� a� � � � � where each ai 
 	�
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�ii� by adding a limit operator� lim� If 	 is an ordinary regular expression� then lim 	 consists of
all those strings in &� which have in�nitely many �distinct� �nite pre�xes in 	�

We now have the two results below which follow from an assemblage of results in the literature
�cf� �Ka��
� �LPZ��
� �Th��
��

Theorem 
�
 The following are equivalent conditions for languages L of in�nite strings�

�a� L � &� is de�nable in QPLTL

�b� L � &� is de�nable in SOLLO

�c�� L � &� is de�nable by an ��regular expression� i�e� an expression of the form �mi�� 	i 
�
i

where 	i� i are regular expressions

�c�� L � &� is de�nable by an ��limit regular expression� i�e� an expression of the form �mi�� 	i
lim i where 	i� i are regular expressions

�c�� L � &� is representable as �mi�� �lim 	i � �lim i� where 	i� i are regular expressions

�c�� L � &� is expressible as �mi�� �
�

F �	i
H � �
�

F �i
H� where 	i� i are regular expressions

For the case of the star�free ��languages we have

Theorem 
��� The following are equivalent conditions for languages L of in�nite strings�

�a� L � &� is de�nable in PLTL

�b� L � &� is de�nable in FOLLO

�c�� L � &� is de�nable by an ��regular expression� i�e� an expression of the form �mi�� 	i lim i
where 	i� i are star�free regular expressions

�c�� L � &� is representable as �mi�� �lim 	i � �lim i� where 	i� i are star�free regular expressions

�c�� L � &� is expressible in the form �mi�� �
�

F �	i
H � �
�

F �i
H� where 	i� i are star�free regular
expressions�

Result ��	 �c�� analogous to Result ��� �c�� was intentionally omitted�because it does not hold
as noted in �Th	�
� It is not the case that �mi�� 	i 

�
i�� where 	i� i are star�free regular expressions�

must itself denote a star�free regular set� For example� consider the language L � ��� � ���� L is
expressible as a union of 	i �i � take m � �� 	i � �� � � �� � �� But L� which consists intuitively
of exactly those strings for which there is an even number of �s between every consecutive pair of
�s� is not de�nable in FOLLO� nor is it star�free regular�

Remark� One signi�cant issue we do not address here in any detail � and which is not very
thoroughly studied in the literature � is that of succinctness� Here we refer to how long or short a
formula is needed to capture a given correctness property� Two formalisms may have the same raw
expressive power� but one may be much more succinct than the other� For example� while FOLLO
and PLTL have the same raw expressive power� it is known that FOLLO can be signi�cantly
�nonelementarily� more succinct than PLTL �cf� �Me	�
��
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���� Branching Time Expressiveness

Analogy with the linear temporal framework suggests several formalisms for describing in�nite trees
that might be compared with branching temporal logic� Among these are� �nite state automata on
in�nite trees� the monadic second order theory of many successors �SnS�� and the monadic second
order theory of partial orders� However� not nearly so much is known about the comparison with
related formalisms in the branching time case�

One di�culty is that� technically� the types of branching objects considered di�er� Branching
Temporal Logic is interpreted over structures which are� in e�ect� trees with nodes of in�nite
outdegree� whereas� e�g�� tree automata take input trees of �xed �nite outdegree� Another di�culty
is that the logics� such as CTL"� as ordinarily considered� do not distinguish between� e�g�� left and
right successor nodes� whereas the tree automata can�

To facilitate a technical comparison� we therefore restrict our attention to �a� structures corre�
sponding to in�nite binary trees and �b� tree automata with a �symmetric� transition function that
do not distinguish� e�g�� left from right� Then we have the following result from �ESi��
 comparing
logics augmented with existential quanti�cation over atomic propositions with tree automata�

Theorem 
���

�i� EQCTL" is exactly as expressive as symmetric pairs automata on in�nite trees

�ii� EQCTL is exactly as expressive as symmetric Buchi automaton in�nite trees�

Here� EQCTL" consists of the formula �Q� � � ��Qmf� where f is a CTL" formula and the Qi are
atomic propositions appearing in f� The semantics is that� given a structure M��S�R�L�� M�s j�
�Q� � � ��Qmf i� there exists a structure M���S�R�L�� such that M��s j� f and L� di�ers from L at
most in the truth assignments to each Qi� �  i  m� Similarly� EQCTL consists of formulae �Q�

� � �Qmf� where f is a CTL formula�

A related result is from �HT�	
�

Theorem 
�� CTL" is exactly as expressive as the monadic second order theory of two
successors with set quanti�cation restricted to in�nite paths� over in�nite binary trees�

Remark� By augmenting CTL" with arc assertions which allow it to distinguish outgoing arc i
from arc i � the result extends to in�nite n�ary trees� n � �� By taking n � �� the result specializes
to the �expressive completeness� result of Kamp �Ka��
 that PLTL is equivalent in expressive power
to FOLLO �our Theorem ��	 �a�b���

While less is known about comparisons of BTLs �Branching Time Logics� against external
�yardsticks�� a great deal is known about comparisons of BTLs against each other� This contrasts
with the reversed situation for LTLs �Linear Time Logics�� Perhaps this re�ects the much greater
degree of �freedom� due to the multiplicity of alternative futures found in the BTL framework�

It is useful to de�ne the notion of a basic modality of a BTL� This is a formula of the form Ap or
the form Ep� where p is a pure linear time formula �containing no path quanti�ers�� Then a formula
of a logic may be seen as being built up by combining basic modalities using boolean connectives

��



and nesting� For example� EFP is a CTL basic modality� so is AFQ� EFAFQ is formula of CTL
�but not a basic modality� obtained by nesting AFQ within EFP �more precisely� by substituting
AFQ for P within EFP�� E�FP � FQ� is a basic modality of CTL"� but not a basic modality nor
a formula of CTL�

A large number of sublanguages of CTL" can be de�ned by controlling the way the linear time
operators combine using boolean connectives and nesting of operators in the basic modalities of the
language� For instance� we use B�F�X�U� to indicate the language where only a single linear time
operator X� F� or U can follow a path quanti�er� and B�F�X�U����� to indicate the language where
boolean combinations of these linear operators are allowed� but not nesting of the linear operators�
Thus formula E�Fp � Gq� is in the language B�F�X�U����� but not in B�X�F�U��

The diagram in Figure � shows how some of these logics compare in expressive power� The
notation L� � L� means that L� is strictly less expressive than L�� which holds provided that

�a� � formula p of L� � a formula q of L� such that � structure M � state s in M� M�s j� p i� M�s
j� q� and

�b� the converse of �a� does not hold�

while L� � L� means L� and L� are equivalent in expressive power� and L�  L� means L� � L� or
L� � L��

Most of the logics shown are known from the literature� B�F� is the branching time logic of
Lamport �La��
� having basic modalities of the form A or E followed by F or G� The logic B�X�F��
which has basic modalities of the form A or E followed by X� F� or G� was originally proposed

in �BPM��
 as the logic UB� The logic B�X�F�U� is of course CTL� The logic B�X�F�U�
�

F����� is

essentially the logic proposed in �EC��
� its in�nitary modalities
�

F and
�

G permit speci�cation of
fairness properties�

We now give some rough� high�level intuition underlying these results� Semantic containment
along each edge follows directly from syntactic containment in all cases� except edges � and �� which
follow given the semantic equivalence of edge � �discussed below��

The X operator �obviously� cannot be expressed in terms of the F operator� which accounts for
edge �� B�F�  B�F�X�� Similarly� the U operator cannot be expressed in terms of X� F� and boolean
connectives� This was known �classically� �cf� �Ka��
�� and accounts for edge �� B�X�F����� �
B�X�F�U��

To establish the equivalence of edge �� we need to provide a translation of B�X�F�U����� into
B�X�F�U�� The basic idea behind this translation can be understood by noting that E�FP � FQ�
� EF�P � EFQ� � EF�Q � EFP�� However� it is a bit more subtle than that� the ability to do the
translation in all cases depends on the presence of the until �U� operator �cf� edge ��� The following
validities� two of which concern the until� can be used to inductively translate each B�X�F�U�����
formula into an equivalent B�X�F�U� formula�

E� �p� U q�� � �p� U q�� � �
E� �p� � p�� U �q� � E�p� U q���� � E� �p� � p�� U �q� � E�p� U q����

E���p U q�� � E� ��q � �p� U �q � p� � � EG�q
E��Xp� � EX�p
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E
�

FQ� a B�X�F�U�
�

F� formula is not expressible in B�X�F�U� accounting for the strict containment
on arc �� This is probably the most signi�cant result� for it basically says that correctness under
fairness assumptions cannot be expressed in a BTL with a simple set of modalities� For example�
the property that P eventually becomes true along all fair computations �fair inevitability of P� is

of the form A�
�

FQ � FP� for even a �very� simple fairness constraint like
�

FQ� Neither it� nor its

dual E�
�

FQ � GP�� is expressible in B�X�F�U�� since by taking P to be true the dual becomes E
�

FQ�

The inexpressibility of E
�

FQ was established in �EC��
� using recursion�theoretic arguments

to show that the predicate transformer associated with E
�

FQ is &�
��complete while the predicate

transformers for B�X�F�U� are arithmetical� The underlying intuition is that E
�

FQ uses second
order quanti�cation in an essential way to assert that that there exists a sequence of nodes in the
computation tree where Q holds� Another version of this inexpressiveness result was established
by Lamport �La��
 in a somewhat di�erent technical framework� Still another proof of this result
was given by Emerson and Halpern �EH��
� The type of inductive� combinatorial proof used is
paradigmatic of the proofs of many inexpressiveness results for TL� so we describe the main idea
here�

Theorem 
���� E
�

FQ is not expressible in B�X�F�U�

Proof Idea� We inductively de�ne two sequences M��M��M����� and N��N��N����� of structures
as shown in Figure �� It is plain that for all i�

�"� Mi�si j� E
�

FQ and Ni�si j� �E
�

FQ

Thus E
�

FQ distinguishes between the two sequences� However� we can show by an inductive argu�
ment that each formula of B�X�F�U� is �confused� by the two sequences� in that

�""� Mi�si j� p i� Ni�si j� p

If some formula p of B�X�F�U� were equivalent to E
�

FQ� we would then have for i � the length
of p that

M�si j� p and N�si j� �p by virtue of �"�
and also that

N�si j� p� by virtue of �""�� a contradiction� �

The strict containment along the rest of the edges follow from these inexpressiveness results�

E�FP � GQ� is not expressible in B�X�F�� for edge �� E�
�

FP� �
�

FP�� is not expressible in

B�X�F�U�
�

F�� for edge �� A�F�P � XP�� is not expressible in B�X�F�U�
�

F������ for edge �� The

proofs are along the lines of the theorem above for E
�

FQ�

It is also possible to compare branching with linear time logics� When a linear time formula
is interpreted over a program� there is usually an implicit universal quanti�cation over all possible
computations� This suggests that when given a linear time language L� which is of course a set
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of path formulae� we convert it into a branching time language by pre�xing each path formula by
the universal path quanti�er A� We thus get the corresponding branching language BL�L� � f Ap�
p 
 Lg� Figure � shows how various branching and linear logics compare� Not surprisingly� the
major limitation of linear time is its inability to express existential path quanti�cation �cf� �La��
�
�EH��
��

Theorem 
���� The formula EFP is not expressible in any BL��� logic�

��� Decision Procedures for Propositional Temporal Logics

In this section we discuss algorithms for testing if a given formula p� in a system of propositional
TL is satis�able� The usual approach to developing such algorithms is to �rst establish the small
model property for the logic� if a formula is satis�able� then it is satis�able in a �small� �nite
model� where �small� means of size bounded by some function� say� f� of the length of the input
formula� This immediately yields a decision procedure for the logic� Guess a small structure M as
a candidate model of given formula p�� then check that M is indeed a model of p�� This check can
be done by exhaustive search� since M is �nite� and can often be done e�ciently�

An elegant technique for establishing the small model property is through use of the quotient
construction� also called�in classical model logic��ltration� where an equivalence relation of small
�nite index is de�ned on states� Then equivalent states are identi�ed to collapse a possibly in�nite
model to a small �nite one�

An example of a quotient construction is its application to yield a decision procedure for Propo�
sitional Dynamic Logic of �FL	�
� discussed in �KT��
� There the equivalence relation is de�ned
so that� in essence� two states are equivalent when they agree �i�e�� have the same truth value� on
all subformulae of the formula p� being tested for satis�ability� This yields a decision procedure
of nondeterministic exponential time complexity� calculated as follows� The total complexity is
the time to guess a small candidate model plus the time to check that it is indeed a model� The
candidate model can be guessed in time polynomial in its size which is exponential in the length of
p�� since for a formula of length n there are about n subformulae and �

n equivalence classes� And
it turns out that checking that the candidate model is a genuine model can be done in polynomial
time�

Of course the deterministic time complexity of the above algorithm is double exponential� The
complexity can be improved through use of the tableau construction�

A tableau for formula p� is a �nite directed graph with nodes labelled by subformulae associated
with p� that� in e�ect� encodes all potential models of p�� In particular� as in the case of Propo�
sitional Dynamic Logic� the tableau contains as a subgraph the quotient structure corresponding
to any model of p�� The tableau can be constructed� and then tested for consistency to see if it
contains a genuine quotient model� Such testing can often be done e�ciently� In the case of of
Propositional Dynamic Logic� the tableau is of size exponential in the formula length� while the
testing can be done in deterministic polynomial time in the tableau size� yielding a deterministic
single exponential time decision procedure�

For some logics� no matter how we de�ne a �nite index equivalence relation on states� the
quotient construction yields a quotient structure that is not a model� However� for many logics� the
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quotient structure still provides useful information� It can be viewed as a �pseudo�model� that can
be unwound into a genuine� yet still small� model� The tableau construction� moreover� can still be
used to perform a systematic search for a pseudo�model� to be unwound into a genuine model�

We remark that the tableau construction is a rather general one� that applies to many logics�
Tableau�based decision procedures for various logics are given in �Pr	�
� �BPM��
� �BHP��
� �Wo��
�
�Wo��
� �HS��
� See also the excellent survey by Wolper �Wo��
� In the sequel we describe a tableau�
based decision procedure for CTL formulae� along the lines of �EC��
 and �EH��
� The following
de�nitions and terminology are needed�

We assume that the candidate formula p� is in positive normal form� obtained by pushing
negations inward as far as possible using de Morgans laws ���p � q� � �p � �q� ��p � q� � �p �
�q� and dualities ��AGp � EF�p� �A�p U q
 � E��p B q
� etc��� This at most doubles the length
of the formula� and results in only atomic propositions being negated� We write �p for the formula
in positive normal form equivalent to �p� The closure of p�� cl�p��� is the least set of subformulae
such that�

� Each subformulae of p�� including p� itself� is a member of cl�p���

� If EFq� EGq� E�p U q
� or E�p B q
 
 cl�p�� then� respectively� EXEFq� EXEGq� EXE�p U
q
� or EXE�p B q
 
 cl�p���

� If AFq� AGq� A�p U q
� or A�p B q
 
 cl�p�� then� respectively� AXAFq� AXAGq� AXA�p U
q
� or AXA�p B q
 
 cl�p���

The extended closure of p�� ecl�p�� � cl�p�� � f�p� p 
 cl�p��g� Note that card�ecl�p��� �
O�length�p����

At this point we give the technical de�nitions for the quotient construction� as they are needed
in the proof of the small model theorem of CTL� We also show the the quotient construction by
itself is inadequate for getting a small model theorem for CTL�

Let M��S�R�L� be a model of p�� let H be a set of formulae� and let �H be an equivalence
relation on S induced by agreement on the formulae in H� i�e� s �H t whenever � q 
 H� M�s j� q i�
M�t j� q� We use �s
 to denote the equivalence class ft� t �H sg of s� Then the quotient structure
of M by �h� M��H� � �S��R��L�� where S� � f�s
� s 
 Sg� R� � f��s
��t
�� �s�t� 
 Rg� and L���s
� �
L�s� � H� Ordinarily� we take H � ecl�p���

However� as the following theorem shows� no way of de�ning the equivalence relation for the
quotient construction preserves modelhood�

Theorem 
���� For every set H of �CTL� formulae� the quotient construction does not preserve
modelhood for the formula AFP� In particular� there is a model M of AFP such that for every �nite
set H� M��H is not a model for AFP�

Proof Idea� Note the structure shown in Figure ��a� is a model of AFP� But however the
quotient relation collapses the structure two distinct states si and sj will be identi�ed� resulting in
a cycle in the quotient structure� along which P is always false� as suggested in Figure ��b�� Hence
AFP does not hold along the cycle� �
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We now proceed with the technical development needed� To simplify the exposition� we assume
that the candidate formula p� is of the form p� � AGEXtrue� syntactically re�ecting the semantic
requirement that each state in a structure have a successor state�

We say that a formula is elementary provided that it is a proposition� the negation of a proposi�
tion� or has main connective AX or EX� Any other formula is nonelementary� Each nonelementary
formula may be viewed as either a conjunctive formula 	 � 	� � 	� or a disjunctive formula  � �
� �� Clearly� f � g is an 	 formula and f � g is a  formula� A modal formula may be classi�ed as 	
or  based on its �xpoint characterization �cf� section ����� e�g�� EFp � p � EXEFp is a  formula
and AGp � p � AXAGp is an 	 formula� The following table summarizes the classi�cation�

	 � p � q 	� � p 	� � q
	 � A�p B q
 	� � �q 	� � p � AXA�p B q

	 � E�p B q
 	� � �q 	� � p � EXE�p B q

	 � AGq 	� � q 	� � AXAGq
	 � EGq 	� � q 	� � EXEGq
 � p � q � � p � � q
 � A�p U q
 � � q � � p � AXA�p U q

 � E�p U q
 � � q � � p � EXE�p U q

 � AFq � � q � � AXAFq
 � EFq � � q � � EXEFq

A formula of the form A�p U q
 or E�p U q
 is an eventuality formula� An eventuality makes
a promise that something will happen� This promise must be ful�lled� The eventuality A�p U q

�E�p U q
� is ful�lled for s in M provided that for every �respectively� for some� path starting at
s� there exists a �nite pre�x of the path in M whose last state is labelled with q and all of whose
other states are labelled with p� Since AFq and EFq are special cases of A�p U q
 and E�p U q
�
respectively� they are also eventualities� In contrast� A�p B q
� E�p B q
� and their special cases
AGq and EGq� are invariance formulae� An invariance property asserts that whatever happens to
occur �if anything� will meet certain conditions �cf� subsection 	����

We say that a prestructure M is a triple �S�R�L� just like a structure except that the binary
relation R is not required to be total� An interior node of a prestructure is one with at least one
successor� A frontier node is one with no successors�

It is helpful to associate certain consistency requirements on the labelling of a �pre�structure�
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Propositional Consistency Rules


PC� �p 
 L�s� implies p �
 L�s�
PC� 	 
 L�s� implies 	� 
 L�s� and 	� 
 L�s�
PC�  
 L�s� implies � 
 L�s� or � 
 L�s�

Local Consistency Rules


LC� AXp 
 L�s� implies � successor t of s� p 
 L�t�
LC� EXp 
 L�s� implies � successor t of s� p 
 L�t�

A fragment is a prestructure whose graph is a dag �directed acyclic graph� such that all of its
nodes satisfy PC��� and LC� above� and all of its interior nodes satisfy LC� above�

A Hintikka structure �for p�� is a structure M��S�R�L� �with p� 
 L�s� for some s 
 S� which
meets the following conditions�

�� the propositional consistency rules PC����
�� the local consistency rules LC���� and
�� each eventuality is ful�lled�

Proposition 
���� If structure M � �S�R�L� de�nes a model of p� and each state s is labelled
with exactly the formula in ecl�p�� true at s� then M is a Hintikka structure for p�� Conversely� a
Hintikka structure for p� de�nes a model of p��

If M is a Hintikka structure� then for each node s of M and each eventuality r in ecl�p�� such
that M�s j� r� there is a fragment� call it DAG�s�r
� which certi�es ful�llment of r at s in M� What is
the nature of this fragment� It has s as its root� i�e�� node from which all other nodes in DAG�s�r

are reachable� If r is of the form AFq� then DAG�s� AFq
 is obtained by taking node s and all nodes
along all paths emanating from s up to and including the �rst state where q is true� The resulting
subgraph is indeed a dag all of whose frontier nodes are labelled with q� If r were of the form A�p
U q
� DAG�s� A�p U q

 would be the same except its interior nodes are all labelled with p� In the
case of DAG�s� EFq
 take a shortest path leading from node s to a node labelled with q� and then
add su�cient successors to ensure that LC� holds of each interior node on the path� In the case of
DAG�s� E�p U q

� the only change is that p labels each interior node on the path�

In a Hintikka structure M for p�� each ful�lling fragment DAG�s� r
 for each eventuality r�
is �cleanly embedded� in M� If we collapse M by applying a �nite index quotient construction�
the resulting quotient structure is not� in general� a model because cycles are introduced into such
fragments� However� there is still a fragment� call it DAG��s�r
� �contained� in the quotient structure
of M� It is simply no longer cleanly embedded� Technically� we say prestructure M� � �S��R��L��
is contained in prestructure M� � �S��R��L�� whenever S� � S�� R� � R�� and L� � L�jS�� the
labelling L� restricted to S�� We say M� is cleanly embedded in M� provided M� is contained in M��
and also every interior node of M� has the same set of successors in M� as in M��

A pseudo�Hintikka structure �for p�� is a structure M��S�R�L� �with p� 
 L�s� for some s 
 S�
which meets the following conditions�

�� the propositional consistency rules PC����
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�� the local consistency rules LC���� and

�� each eventuality is pseudo�ful�lled in the following sense�

AFq 
 L�s� �resp�� A�p U q
 
 L�s��
implies there is a �nite fragment�called DAG�s� AFq
 �resp�� DAG�s� A�p U q

��
rooted at s contained in M such that
for all frontier nodes t of the fragment� q 
 L�t�
�resp�� and for all interior nodes u of the fragment� p 
 L�u���

EFq 
 L�s� �resp�� E�p U q
 
 L�s��
implies there is a �nite fragment�called DAG�s� EFq
 �resp�� DAG�s� E�p U q

��
rooted at s contained in M such that
for some frontier node t of the fragment� q 
 L�t�
�resp�� and for all interior nodes u of the fragment� p 
 L�u���

Theorem 
���� �Small Model Theorem for CTL� Let p� be a CTL formula of length n�
Then the following are equivalent�

�a� p� is satis�able
�b� p� has a in�nite tree model with �nite branching bounded by O�n�
�c� p� has a �nite model of size  exp�n�
�d� p� has a �nite pseudo�Hintikka structure of size  exp�n�

Proof Sketch� We show that �a� � �b� � �d� � �c� � �a��

�a�� �b�� Suppose M�s j� p�� Then as described in subsection ���� M can be unwound into an
in�nite tree model M�� with root state s� a copy of s� It is possible that M� has in�nite branching
at some states� so �if needed� we chop out spurious successor states to get a bounded branching
subtree M� of M� such that still M��s� j� p�� We proceed down M� level�by�level deleting all but n
successors of each state� The key idea is that for each formula EXq 
 L�s�� where s is a retained
node on the current level� we keep a successor t of s of least q�rank� where the q�rank�s� is de�ned
as the length of the shortest path from s ful�lling q� if q is of the form EFr or E�p U r
� and is
de�ned as � if q is of any other form� This will ensure that each eventuality of the form EFr or E�p
U r
 is ful�lled in the tree model M�� Moreover� since there are at most O�n� formulae of the form
EXq in ecl�p��� the branching at each state of M� is bounded by O�n��

�b�� �d�� Let M be a bounded branching in�nite tree model with root s�� such that M�s� j� p��
We claim that the quotient structure M� � M��ecl	p�


is a pseudo�Hintikka structure� It su�ces to
show that for each state �s
 of M�� and each eventuality r in the label of �s
 there is a �nite fragment
contained in M� certifying pseudo�ful�llment of r� We sketch the argument in the case r � AFq�
The argument for other types of eventuality is similar�

So suppose AFq appears in the label of �s
� By de�nition of the quotient construction� in the
original structure M AFq is true at state s� and thus there exists a �nite fragment DAG�s� AFq

with root s cleanly embedded in M� Extract �a copy of� the fragment DAG�s� AFq
� Chop out
states with duplicate labels� Given two states s� s� with the same label� let the deeper state replace
the shallower� where the depth of a state is the length of the longest path from the state back to the
root s�� This ensures that after the more shallow node has been chopped out� the resulting graph
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is still a dag� and moreover� a fragment� Since we can chop out any pair of duplicates the �nal
fragment� call it DAG���s
�AFq
 has at most a single occurrence of each label� Therefore �a copy of�
DAG���s
� AFq
 is contained in the quotient structure M�� It follows that M� is a pseudo�Hintikka
model as desired�

�d� � �c�� Let M � �S�R�L� be a pseudo�Hintikka model for p�� For simplicity we identify a
state s with its label L�s�� Then for each state s and each eventuality q 
 s� there is a fragment
DAG�s�q
 contained in M certifying ful�llment of q� We show how to splice together copies of the
DAGs� in e�ect unwinding M� to obtain a Hintikka model for p��

For each state s and each eventuality q� we construct a dag rooted at s� DAGG�s�q
� If q 
 s
then DAGG�s�q
 � DAG�s�q
� otherwise DAGG�s�q
 is taken to be the subgraph consisting of s plus
a su�cient set of successors to ensure that local consistency rules LC��� are met�

We now take �a single copy of� each DAGG�s�q
 and arrange them in a matrix as shown in
Figure 	� the rows range over eventualities q�����qm and the columns range over the states s������sN
in the tableau� Now each frontier node s in row i is replaced by the copy of s that is the root of
DAGG�s�qi��
 in row i �� Note that each fullpath through the resulting structure goes through
each row in�nitely often� As a consequence� the resulting graph de�nes a model of p�� as can be
veri�ed by induction on the structure of formulae� The essential point is that each eventuality qi is
ful�lled along each fullpath where needed� at least by the time the fullpath has gone through row i�

The cyclic model consists of m�N DAGGs� each consisting of N nodes� It is thus of size m�N�

nodes� where the number of eventualities m  n and the number of tableau nodes N  �n� and n
is the length of p�� We can chop out duplicate nodes with the same label within a row� using an
argument based on the depth of a node like that used above in the proof of �b� � �d�� to get a
model of size m�N � exp�n��

�c� � �a� is immediate� �

We now describe the tableau�based decision procedure for CTL� Let p� be the candidate CTL
formula which is to be tested for satis�ability� We proceed as follows�

�� Build an initial tableau T��S�R�L� for p�� which encodes potential pseudo�Hintikka structures
for p�� Let S be the collection of all maximal� propositionally consistent subsets s of ecl�p���
where by maximal we mean that for every formula p 
 ecl�p��� either p or �p 
 s� while
propositionally consistent refers to rules PC��� above� Let R � S � S be de�ned so that �s�t�

 R unless AXp 
 s and not�p� 
 t� for some formula AXp 
 ecl�p��� Let L�s� � s� Note
that the tableau as initially constructed meets all propositional consistency rules PC��� and
local consistency rule LC��

�� Test the tableau for consistency and pseudo�ful�llment of eventualities� by repeatedly applying
the following deletion rules until no more nodes in the tableau can be deleted�

� Delete any state s such that eventuality r 
 L�s� and there does not exist a fragment
DAG�s�r
 rooted at s contained in the tableau which certi�es pseudo�ful�llment of r�

� Delete any state which has no successors�

� Delete any state which violates LC��
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Note that this portion of the algorithm must terminate� since there are only a �nite number
of nodes in the tableau�

�� Let T� be the �nal tableau� If there exists a state s� in T� with p� 
 L�s
�� then return �YES�

p� is satis�able��� If not� then return �NO� p� is unsatis�able��

To test the tableau for the existence of the appropriate fragments to certify ful�llment of even�
tualities we can use a ranking procedure� For an A�p U q
 eventuality initially assign rank � to all
nodes labelled with q and rank� to all other nodes� Then for each node s and each formula r such
that EXr is in the label of s� de�ne SUCCr�s� � fs��� s� is a successor of s in the tableau with r 

label of s��g and compute rank�SUCCr�s�� � min frank s

�� s�� 
 SUCCr�s�g� Now for each node s
of rank � � such that p 
 L�s� let rank�s� � �  max frank�SUCCr�s�� EXr 
 L�s�g� Repeatedly
apply the above ranking rules until stabilization� A node has �nite rank i� A�p U q
 is ful�lled
at it in the tableau� To test for ful�llment of an AFq is a special case of the above� ignoring the
formula p� To test for ful�llment of E�p U q
 use a procedure like the above� but compute rank�s�
� �  min frank�SUCCr�s�� EXr 
 L�s�g� To test for ful�llment of EFq is again a special case�
where the formula p is ignored�

Theorem 
��	� The problem of testing satis�ability for CTL is complete for deterministic
exponential time�

Proof idea� The above algorithm can be shown to run in deterministic exponential time in
the length of the input formula� since the size of the tableau is� in general� exponential in the
formula size� and the tableau can be constructed and tested for containment of a pseudo�Hintikka
structure in time polynomial in it size� This establishes the upper bound� The lower bound follows
by a reduction from alternating polynomial space bounded Turing machines� similar to that used
to establish exponential time hardness for Propositional Dynamic Logic �see �KT��
�� �

The above formulation of the CTL decision procedure is sometimes known as the maximal
model approach� since the nodes in the initial tableau are maximal� propositionally consistent sets
of formulae and we put in as many arcs as possible� One drawback is that its average case complexity
is as bad as its worst case complexity� since it always constructs the exponential size collection of
maximal� propositionally consistent sets of formulae�

An alternative approach is to build the initial tableau incrementally� which in practice often
results in a signi�cant decrease in its size and time required to construct it� The tableau construction
will now begin with a bipartite graph T� � �C�D�RCD�RDC�L� where nodes in C are referred to as
states while nodes in D are known as prestates� RCD � C � D and RDC � D � C� The labels of
the states will be sparsely downward closed sets of formulae in ecl�p��� i�e�� sets which satisfy PC��
PC�� and PC���  
 L�s� implies either � 
 L�s� or � 
 L�s��

Initially� let C � the empty set� D � a single prestate d labelled with p��
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Repeat
Let e be a frontier node of T�

If e is a prestate d then
let c������ck be states whose labels comprise all the sparsely downward closed supersets of L�d�
add c������ck as RDC�successors of d in T

�

Note� if any ci has the same label as another state c
� already

in T�� then identify ci and c
� �i�e�� delete ci

and draw an RDC�arc from d to c���
If e is a state c labelled with nexttime formulae AXp������AXpl�EXq������EXqk then

create prestates d������dk labelled with sets resp� fp������pl�q�g����� fp������pl�qkg
and add them as RCD�successors to c in T

�

Note� if any di has the same label as another prestate d
� already

in T�� then identify di and d
� as above

Until all nodes in T� have at least one successor

Now the tableau T � �C�R�LjC� where C is the set of states in T� above and R � RCD�RDC� LjC
is the labelling L restricted to C� Then the remainder of the decision procedure described previously
can be applied to this new tableau constructed incrementally�

Remark� It is possible to construct the original type of tableau incrementally� Let the initial
prestate be labelled with p� � �p� and use maximal� propositionally consistent sets for the labels
of states�

The decision procedure for CTL also yields a deterministic exponential time decision procedure
for PLTL�

Theorem 
��
� Let p� be a PLTL formula in positive normal form� Let p� be the CTL formula
obtained from p� by replacing each temporal operator F� G� X� U� B by AF� AG� AX� AU� AB�
resp� Then p� is satis�able i� p� is satis�able�

We can in fact do better for PLTL and various fragments of it� The following results on the
complexity of deciding linear time are due to Sistla and Clarke �SC��
�

Theorem 
���� The problem of testing satis�ability for PLTL is PSPACE�complete�

Proof Idea� To establish membership in PSPACE� we design a nondeterministic algorithm
that� given an input formula p�� guesses a satisfying path through the tableau for p� which de�nes
a linear model of size exp�n�� where n � length�p��� This path can be guessed and veri�ed to be a
model in only O�n� space� since the algorithm need only remember the label of the current and next
state along the path� and the point where the path loops back� in order to check that eventualities
are ful�lled� PSPACE�hardness can be established by a generic reduction from polynomial space
Turing machines� �

For the sublanguage of PLTL restricted to allow only the F operator �and its dual G�� denoted
PLTL�F� further improvement is still possible� We �rst establish the somewhat surprising

Theorem 
���� �Linear Size Model Theorem for PLTL�F�� If PLTL�F� formula p� of
length n is satis�able� then it has a �nite linear model of size O�n��

Proof idea� The important insight is that truth of a PLTL�F� formula only depends on the
set of successor states� and not their order or arrangement� Now suppose p� is satis�able� Let x �
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s��s��s����� be a model of p�� Then there exist i and j such that i � j and si � sj and the set of states
appearing in�nitely often along x equals fsi� ���� sj��g� Let x

� be the linear structure obtained be
deleting all states of index greater than j�� and making si the successor of sj��� It is readily checked
that x�j�p�� Moreover� since the order of successor states does not matter we can� in general� delete
many states� while preserving the truth of p� in the resulting linear structure� We need only retain
in the �loop�� from state si to sj�� and back� a single state labelled q� for each formula Fq that
appears in the label some state in the loop� The other states in the loop can be deleted� reducing
its size to at most n states� We also need to ensure that each Fq that appears somewhere in the
�stem�� from s� to si��� is ful�lled by a q labelling some subsequent state� The other states in the
stem can be deleted reducing the size of the stem to at most n states� The �nal structure� x��� is
still a model of p�� and is of size at most �n states� �

Theorem 
��� The problem of testing satis�ability for PLTL�F� is NP�complete�

Proof Idea� Membership in NP follows using the Linear Size Model Theorem� An algorithm
can be designed that� given a formula of length n� guesses a candidate model of size O�n� and
then checks that it is indeed a model in time O�n��� NP�hardness follows since the logic subsumes
propositional logic� �

Finally� it can be shown that the complexity of testing satis�ability of the very expressive
branching time logic CTL" has an upper bound of deterministic double exponential time� by means
of a quite elaborate reduction to the nonemptiness problem for �nite state automata on in�nite trees
�see section ����� A lower bound of deterministic double exponential time has also been established
by a reduction from alternating exponential space Turing machines in �VS��
� �Note� By double
exponential we mean exp�exp�n��� where exp�n� is a function cn� for some c � ��� Thus we have�

Theorem 
���� The problem of testing satis�ability for CTL" is complete for deterministic
double exponential time�

��� Deductive Systems

A deductive system for a temporal logic consists of a set of axiom schemes and inference rules� A
formula p is said to be provable� written �p� if there exists a �nite sequence of formulae� ending
with p such that each formula is an instance of an axiom or follows from previous formulae by
application of one of the inference rules� A deductive system is said to be sound if every provable
formula is valid� It is said to be complete if every valid formula is provable�

Consider the following axioms and rules of inference�
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Axiom Schemes�

Ax�� All validities of propositional logic
Ax� EFp � E�true U p

Ax�b� AGp � �EF�p
Ax�� AFp � A�true U p

Ax�b� EGp � �AF�p
Ax�� EX�p � q� � EXp � EXq
Ax�� AXp � �EX �p
Ax�� E�p U q� � q � �p � EXE�p U q��
Ax	� A�p U q� � q � �p � AXA�p U q��
Ax�� EXtrue � AXtrue
Ax�� AG�r � ��q � EXr�� � �r � �A�p U q��
Ax�b� AG�r � ��q � EXr�� � �r � �AFq��
Ax��� AG�r � ��q � �p � AXr��� � �r � �E�p U q��
Ax��b� AG�r � ��q � AXr�� � �r � �EFq��
Ax��� AG�p � q� � �EXp � EXq�

Rules of Inference�

R�� if �p then �AGp �Generalization�

R�� if �p and �p � q then �q �Modus Ponens�

This deductive system for CTL is easily seen to be sound� We can also establish the following
�cf� �EH��
� �BPM��
��

Theorem 
���� The above deductive system for CTL is complete�

Proof Sketch� Suppose p� is valid� Then �p� is unsatis�able� We apply the above tableau�
based decision procedure to �p�� All nodes whose label includes �p� will be eliminated� In the
sequel� we use the following notation and terminology� We use �s to denote the conjunction of all
formulae labelling node s� We also write p 
 s for p 
 L�s�� and we say that formula p is consistent
provided that not � �p�

Claim �� If node s is deleted then � ���s��

Assuming the claim� we will show that �p�� We will use the formulae below� whose validity can
be established by propositional reasoning�

� q � �f�s� s is a node in the tableau and q 
 sg for each formula q 
 ecl�p��
� �f�s� s is a node in the tableau and q 
 s and �s is consistentg

� true � �f�s� s is a node in the tableaug � �f�s� s is a node in the tableau and �s is consistentg

Thus ��p� � �f�s� s is a node in the tableau and not�p�� 
 sg� Because �p� is unsatis�able
the decision procedure will delete each node s containing p� in its label� By Claim � above� for
each such node s that is eliminated� � not��s�� Thus we get j���p� and also � p��
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Before proving Claim �� we establish

Claim �� If �s�t� �
 R as originally constructed then �s � EX�t is inconsistent�

Proof� Suppose �s�t� �
 R� Then for some formulae AXp� AXp 
 s and �p 
 t� Thus� we can
prove the following

a� � �s � AXp �since AXp 
 s�
b� � �t � �p �since �p 
 t�
c� � AG��t � �p� �generalization rule�
d� � EX�t � EX�p �Ax��� monotonicity of EX operator�
e� � ��s � EX�t� � AXp � EX�p �lines a�d and propositional reasoning�
f� � ��s � EX�t� � false �Ax� and def� AX operator�
g� � ���s � EX�t� �propositional reasoning�

Thus we have established that �s � EX�t is inconsistent� thereby completing the proof of claim ��

We now are ready to give the proof of Claim �� We argue by induction on when a node is
deleted that� if node s is deleted then � ��s�

Case �� If �s is consistent� then s is not deleted on account of having no successors�

To see this� we note that we can prove

� �s � �s � EXtrue
� �s � EX��f�t� �t is consistentg�
� �s ��fEX�t� �t is consistentg�
� �f�s � EX�t� �t is consistentg

Thus if �s is consistent� �s � EX�t is consistent for some t� By Claim � above �s�t� 
 R in the
original tableau� By induction� hypothesis� node t is not eliminated� Thus� �s�t� 
 R in the current
tableau and node s is not eliminated due to having no successors�

Case �� Node s is eliminated on account of EXq 
 s� but s has no successor t with q 
 t�

This is established using an argument like that in case ��

Case �� Node s is deleted on account of EFq 
 s� which is not ful�lled �ranked� at s�

Let V � ft � EFq 
 t but is not ful�lledg � ft � EFq �
 tg� Note that node s 
 V� Moreover�
the complement of V � ft� EFq 
 t and is ful�lledg�

Let r � �f� t� t 
 Vg� We claim that � r � ��q � AXr�� It is clear that � r � �q� because
�q 
 t for each t 
 V and � �t � �q� We must now show that � r � AXr� It su�ces to show
that for each t 
 V� � �t � AXr� Suppose not� Then � t 
 V� �t � EX�r is consistent� Since
�r � �f�t�� t� �
 Vg� � t 
 V � t� �
 V� �t � EX�t� is consistent� By claim � above� �t�t�� 
 R as
originally constructed� and since �t and �t� are each consistent neither is eliminated� by induction
hypothesis� So �t�t�� 
 R in the current tableau� Since t� �
 V� EFq 
 � and is ranked� But by
virtue of the arc �t�t�� in the tableau� t should also be ranked for EFq� a contradiction to t being a
member of V� Thus � r � AXr�
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By generalization � AG�r � AXr� and by the induction axiom for EF and modus ponens� �
r � �EFq� Now � �s � r� by de�nition of r �as the disjunction of formulae for each state in V�
which includes node s�� However� we had assumed EFq 
 s which of course means that � �s �
EFq� Thus � �s � false� so that � s is inconsistent�

The proofs for the other cases for eventualities E�p U q�� AFq� and A�p U q� are similar to that
for case �� �

��� Model Checking

The model checking problem �roughly� is� Given a �nite structure M and a propositional TL
formula p� does M de�ne a model of p� For most any propositional TL the model checking
problem is decidable since we can do� if needed� an exhaustive search through the paths of the
�nite input structure� The problem has important applications to mechanical veri�cation of �nite
state concurrent systems �see section 	���� The signi�cant issues from the theoretical standpoint
are to analyze and classify logics with respect to the complexity of model checking� For some
logics� which have adequate expressive power to capture certain important correctness properties�
we can develop very e�cient algorithms for model checking� Other logics cannot be model checked
so e�ciently�

We say roughly because there is some potential ambiguity in the above de�nition� What system
of TL is the formula p from� In particular� it is branching or linear time� Also� what does it mean
for a structure M to be a model of a formula p� From the de�nition of satis�ability for a formula
p� of branching time logic� a state formula� it seems that we should say a structure M is a model
of a formula p� provided it contains a state s such that M�s j� p�� From the technical de�nition
of satis�ability for a formula p� of linear time logic� it appears we should say a structure M is a
model of a formula p� provided it contains a fullpath x such that M�x j� p�� However� the number
of fullpaths can be exponential in the size of a �nite structure M� It thus seems that the complexity
of model checking for linear time could be very high� since in e�ect an examination of all paths
through the structure could be required�

To overcome these di�culties� we therefore formalize the model checking problem as follows�

The Branching Time Logic Model Checking Problem �BMCP� formulated for propositional
branching time logic BTL is� Given a �nite structure M��S�R�L� and a BTL formula p� deter�
mine for each state s in S whether M�s j� p and� if so� label s with p� The Linear Time Logic Model
Checking Problem �LMCP� for propositional linear time logic LTL can be similarly formulated as
follows� Given a �nite structure M��S� R� L� and an LTL formula p� determine for each state in
S� whether there is a fullpath satisfying p starting at s� and� if so� label s with Ep�

This de�nition of LMCP may� at �rst glance� appear to be incorrectly formulated because it
de�nes truth of linear time formulae in terms of states� However� one should note that there is a
fullpath in �nite structure M satisfying linear time formula p� i� there is such a fullpath starting at
some state s of M� It thus su�ces to solve LMCP and then scan the states to see if one is labelled
with Ep� We can also handle the applications�oriented convention that linear time formula p is
true of a structure �representing a concurrent program� i� it is true of all �initial� paths in the
structure� because p is true of all paths in the structure i� Ap holds at all states of the structure�
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Since Ap � �E�p� by solving LMCP and then scanning all �initial� states to check whether Ap
holds� we get a solution to the applications formulation�

We now analyze the complexity of model checking linear time� The next three results are from
�SC��
�

Lemma 
���� The model checking problem for PLTL is polynomial time reducible �trans�
formable� to the satis�ability problem for PLTL�

Proof Sketch� The key idea is that we can readily encode the organization of a given �nite
structure into a PLTL formula� Suppose M � �S�R�L� is a �nite structure and p� a PLTL formula�
over underlying set of atomic propositions AP� Let AP� be an extension of AP obtained by including
a new� �fresh� atomic proposition Qs for each state s 
 S� The local organization of M at each state
s is captured by the formula

qs � Qs � � �P�L	s
P � �P	�L	s
 � �	s�t
�RXQt

while the formula below asserts that the above local organization prevails globally�

q� � G� �&s�SQs��� � �s�Sq��

and means� in more detail� that exactly one Qs is true at each time and that the corresponding qs
holds�

Claim� There exists a fullpath x� in M such that M�x� j� p� i� q
� � p� is satis�able�

The � direction is clear� annotate M with propositions from AP�� The path x� so annotated is
model of q� � p��

The � direction can be seen as follows� Suppose M��x j� q� � p�� The x � u��u��u����� matches
the organization of M in that� for each i �a� with state ui we associate a state s of M�the unique
one such that M��ui j� Ps�that satis�es the same atomic propositions in AP as does s� call it s�ui�
and �b� the successor ui�� along x of ui is associated with a state t � s�ui��� of M which is a
successor of s in M� Thus� the path x� � s�u���s�u���s�u������ in M is such that M�x� j� p�� �

Theorem 
���� The model checking problem for PLTL is PSPACE�complete�

Proof Idea� Membership in PSPACE follows from the preceding lemma and the theorem
establishing that satis�ability is in PSPACE� PSPACE�hardness follows by a generic reduction
from PSPACE Turing machines� �

Remark� The above PSPACE�completeness result holds for PLTL�F�X�� the sublanguage of
PLTL obtained by restricting the temporal operators to just X� F� and its dual G� It also holds for
PLTL�U�� the sublanguage of PLTL obtained by restricting the temporal operators to just U and
its dual B�

Theorem 
���� The problem of model checking for PLTL�F� is NP�complete�

Proof Idea� To establish membership in NP� we design a nondeterministic algorithm that
guesses a �nite path in the input structure M leading to a strongly connected component� such
that any unwinding of the component pre�xed by some �nite path comprises a candidate model of
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the input formula p�� To check that it is indeed a model evaluate each subformula of each state of
the candidate model� which can be done in polynomial time� NP�hardness follows by a reduction
from ��SAT� �

We now turn to model checking for branching time logic� First we have from �CE��
�

Theorem 
��	� The model checking problem for CTL is in deterministic polynomial time�

This result is somewhat surprising since CTL seems somehow more complicated than the lin�
ear time logic PLTL� Because of such seemingly unexpected complexity results� the question of
the complexity of model checking has been an issue in the branching versus linear time debate�
Branching time� as represented by CTL� appears to be more e�cient than linear time� but at the
cost of potentially valuable expressive power� associated with� for example� fairness�

However� the real issue for model checking is not branching versus linear time� but simply what
are the basic modalities of the branching time logic to be used� Recall that the basic modalities
of a branching time logic are those of the form Ap or Ep� where p is a �pure� linear time formula
containing no path quanti�ers itself� Then we have the following result of �EL��
�

Theorem 
��
� Given any model checking algorithm for a linear logic LTL there is a model
checking algorithm for the corresponding branching logic BTL� whose basic modalities are de�ned
by the LTL� of the same order of complexity�

Proof idea� Simply evaluate nested branching time formulae Ep or Ap by recursive descent�
For example� to model check EFAGP� recursively model check AGP� then label every state labelled
with AGP with fresh proposition Q and model check EFQ� �

For example� CTL" can be reduced to PLTL since the basic modalities of CTL" are of the form
A or E followed by a PLTL formula� As a consequence we get �cf� �CES��
��

Corollary 
���� The model checking problem for CTL" is PSPACE�complete�

Thus the increased expressive power of the basic modalities of CTL" incurs a signi�cant com�
plexity penalty� However� it can be shown that basic modalities for reasoning under fairness as�
sumptions do not cause complexity di�culties for model checking� These matters are discussed
further in Section 	�

��� Automata on In�nite Objects

There has been a resurgence of interest in �nite state automata on in�nite objects� due to their
close connection to TL� They provide an important alternative approach to developing decision
procedures for testing satis�ability for propositional temporal logics� For linear time temporal
logics the tableau for formula p� can be viewed as de�ning a �nite automaton on in�nite strings
that essentially accepts a string i� it de�nes a model of the formula p�� The satis�ability problem
for linear logics is thus reduced to the emptiness problem of �nite automata on in�nite strings� In
a related but somewhat more involved fashion� the satis�ability problem for branching time logics
can be reduced to the nonemptiness problem for �nite automata on in�nite trees�
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For some logics� the only known decision procedures of elementary time complexity �i�e�� of time
complexity bounded by the composition of a �xed number of exponential functions�� are obtained
by reductions to �nite automata on in�nite trees� The use of automata transfers some di�cult
combinatorics onto the automata�theoretic machinery� Investigations into such automata�theoretic
decision procedures is an active area of research interest�

We �rst outline the automata�theoretic approach for linear time� As suggested by Theorem �����
the tableau construction for CTL can be specialized� essentially by dropping the path quanti�ers
to de�ne a tableau construction for PLTL� The extended closure of a PLTL formula p�� ecl�p��� is
de�ned as for CTL� remembering that in a linear structure� Ep � Ap � p� The notions of maximal�
and propositionally consistent subsets of of ecl�p�� are also de�ned analogously� The �initial� tableau
for p� is then a structure T � �S�R�L� where S is the set of maximal� propositionally consistent
subsets of ecl�p��� i�e�� states� R � S � S consists of the transitions �s�t� de�ned by the rule �s�t� 

R exactly when � formula Xp 
 ecl�p��� Xp 
 s i� p 
 t� and L�s� � s� for each s 
 S�

We may view the tableau for PLTL formula p� as de�ning the transition diagram of a non�
deterministic �nite state automaton A which accepts the set of in�nite strings over alphabet &
� PowerSet�AP� that are models of p�� by letting the arc �u�v� be labelled with AtomicPropo�
sitions�v�� i�e�� the set of atomic propositions in v� Technically� A is a tuple of the form �S �
fs�g�&� �� s�� � � where s� �
 S is a unique start state� � is de�ned so that ��s��a� � f states s 

S� p� 
 s and AtomicPropositions�s� � ag for each a 
 &� ��s�a� � f states t 
 S� �s�t� 
 R and
AtomicPropositions�s� � ag� The acceptance condition is de�ned below� A run r of A on input
x � a�a�a���� 
 &

� is an in�nite sequence of states s�s�s���� such that �i � � ��si�ai��� � fsi��g�
Note that �i � � AtomicPropositions�si� � ai� Any run of A would correspond to a model of p�� in
that �i � �� xi j� �f formulae p� p 
 sig� except that eventualities might not be ful�lled� To check
ful�llment� we can easily de�ne acceptance in terms of complemented pairs �cf� �Th��
�� If ecl�p��
has m eventualities �p� U q��������pm U qm�� we let A have m pairs �REDi� GREENi� of lights� Each
time a state containing �pi U qi� is entered� �ash REDi� each time a state containing qi is entered
�ash GREENi� A run r is accepted i� for each i 
 ���m
� there are in�nitely many REDi �ashes
implies there are in�nitely many GREENi �ashes i� every eventuality is ful�lled i� the input string
x is a model of p��

We can convert A into an equivalent nondeterministic Buchi automatonA�� where acceptance is
de�ned simply in terms of a single GREEN light �ashing in�nitely often� We need some terminology�
We say that the eventuality �p U q� is pending at state s of run r provided that �p U q� 
 s and
q �
 s� Observe that run r of A on input x corresponds to a model of p� i� not�� eventuality �p
U q� 
 ecl�p��� �p U q� is pending almost everywhere along r� i� � eventuality �p U q� 
 ecl�p���
�p U q� is not pending in�nitely often along r� The Buchi automaton A� is then obtained from
A augmenting the state with an m � valued counter� The counter is incremented from i to i �
mod �m  �� when the ith eventuality� �pi U qi� is next seen to be not pending along the run r�
When the counter is reset to �� �ash GREEN and set the counter to �� �If m � �� �ash GREEN
is every state�� Now observe that there are in�nitely many GREEN �ashes i� �i
���m
 �pi U qi� is
not pending in�nitely often i� every pending eventuality is eventuality ful�lled i� the input string
x de�nes a model of p�� Moreover� A� still has exp�jp�j��O�jp�j� � exp�jp�j� states�

Similarly� the tableau construction for a branching time logic with relatively simple modalities
such as CTL can be viewed as de�ning a Buchi tree automaton that� in essence� accepts all models
of a candidate formula p�� �More precisely� every tree accepted by the automaton is a model of p��
and if p� is satis�able there is some tree accepted by the automaton�� General automata�theoretic
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techniques for reasoning about a number of relatively simple logics� including CTL� using Buchi
tree automata have been described by Vardi and Wolper �VW��
�

For branching time logics with richer modalities such as CTL"� the tableau construction is not
directly applicable� Instead� the problem reduces to constructing a tree automaton for the branch�
ing time modalities �such as Ap� in terms of the string automaton for the corresponding linear time
formula �such as p�� This tree automaton will in general involve a more complicated acceptance
condition such as pairs or complemented pairs� rather than the simple Buchi condition� Somewhat
surprisingly� the only known way to build the tree automaton involves di�cult combinatorial argu�
ments and�or appeals to powerful automata�theoretic results such as McNaughtons construction
��McN��
� for determinizing automata on in�nite strings�

The principal di�culty manifests itself with just the simple modality Ap� The naive approach
of building the string automaton for p and then running it down all paths to get a tree automaton
for Ap will not work� The string automaton for p must be determinized �rst� To see this� consider
two paths xy and xz in the tree which start o� with the same common pre�x x but eventually
separate to follow two di�erent in�nite su�xes y or z� It is possible that p holds along both paths�
but in order for the nondeterministic automaton to accept� it might have to �guess� while reading
a particular symbol of x whether it will eventually read the su�x y or the su�x z� The state it
guesses for y is in general di�erent from the state it guesses for z� Consequently� no single run of
a tree automaton based on a nondeterministic string automaton can lead to acceptance along all
paths�

For a CTL" formula of length n� use of classical automata�theoretic results yields an automaton
of size triple exponential in n� �Note� by triple exponential we mean exp�exp�exp�n���� etc�� The
large size re�ects the exponential cost to build the string automaton as described above for a linear
time formula p plus the double exponential cost of McNaughtons construction to determinize it�
Nonemptiness of the automaton can be tested in exponential time to give a decision procedure of
deterministic time complexity quadruple exponential� in n� In �ESi��
 it was shown that� due to the
special structure of the string automata derived from linear temporal logic formulae� such string
automata could be determinzed with only single exponential blowup� This reduced the complexity
of the CTL" decision procedure to triple exponential� Further improvement is possible as described
below�

The size of a tree automaton is measured in terms of two parameters� the number of states
and the number of pairs in the acceptance condition� A careful analysis of the tree automaton
constructions in temporal decision procedures shows that the number of pairs is logarithmic in the
number of states� and for CTL" we get an automaton with double exponential states and single
exponetial pairs� An algorithm of �EJ��
 shows how to test nonemptiness in time polynomial in
the number of states� while exponential in the number of pairs� For CTL" this yields a decision
procedure of deterministic double exponential time complexity� matching the lower bound of �VS��
�

One drawback to the use of automata is that� due to the delicate combinatorial constructions
involved� there is usually no clear relationship between the structure of the automaton and the syn�
tax of the candidate formula� An additional drawback is that in such cases� the automata�theoretic
approach provides no aid in �nding sound and complete axiomitizations� For example� the existence
of an explicit� sound and complete axiomitization for CTL" has been an open question for some
time� �Note� We refer here to an axiomitization for its validities over the usual semantics generated
by a binary relation� interestingly� for certain nonstandard semantics� complete axiomitizations are
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known �cf� �Ab��
� �LS��
���

However� there are certain de�nite advantages to the automata�theoretic approach� First� it
does provide the only known elementary time decision procedures for some logics� Secondly� au�
tomata can provide a general� uniform framework encompassing temporal reasoning �cf� �VW�

�VW��
 �V�	
�� Automata themselves have been proposed as a potentially useful speci�cation
language� Automata� moreover� bear an obvious relation to temporal structures� abstract con�
current programs� etc� This makes it possible to account for various types of temporal reasoning
applications such as program synthesis and mechanical veri�cation of �nite state programs in a
conceptually uniform fashion� Veri�cation systems based on automata have also been developed
�cf� �Ku��
��

We note that not only has the �eld of TL bene�ted from automata theory� but the converse
holds as well� For example� the tableau concept for the branching time logic CTL� particularly the
state�prestate formulation� suggests a very helpful notion of the transition diagram for a tree au�
tomaton �cf� �Em��
�� This has made it possible to apply tableau�theoretic techniques to automata�
resulting in more e�cient algorithms for testing nonemptiness of automata� which in turn can be
used to get more e�cient decision procedures for satis�ability of TLs �cf� �EJ��
�� Still another
improved nonemptiness algorithm� motivated by program synthesis applications is given in �PR��
�
New types of automata on in�nite objects have also been proposed to facilitate reasoning in TLs
�cf� �St��
� �VS��
� �MP�	a
�� A particularly important advance in automata theory motivated by
TL is Safras construction ��Sa��
� for determinizing an automaton on in�nite strings with only
a single exponential blowup� without regard to any special structure possessed by the automa�
ton� Not only is Safras construction an exponential improvement over McNaughtons construction
but it is conceptually much more simple and elegant� In this way we see that not only can TL
sometimes bene�t from adopting the automata�theoretic viewpoint� but also conversely and even
synergistically� the study of automata on in�nite objects has been advanced by work motivated by
and using the techniques of TL�

	 The Application of Temporal Logic to Program Reasoning

Temporal Logic has been suggested as a formalism especially appropriate to reasoning about on�
going concurrent programs� such as operating systems� which have a reactive nature� as explained
below �cf� �Pn��
��

We can identify two di�erent classes of programs �also referred to as systems�� One class consists
of those ordinarily described as �sequential� programs� Examples include a program to sort a list�
programs to implement a graph algorithm as discussed in� say� the chapter on graph algorithms�
and programs to perform a scienti�c calculation� What these programs have in common is that they
normally terminate� Moreover� their behavior has the following pattern� they initially accept some
input� perform some computation� and then terminate yielding �nal output� For all such systems�
correctness can be expressed in terms of a Precondition�Postcondition pair in a formalism such
as Hoares logic or Dijkstras weakest preconditions� because the systems underlying semantics
can be viewed as a transformation from initial states to �nal states� or from Postconditions to
Preconditions�

The other class of programs consists of those which are continuously operating� or� ideally�
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nonterminating� Examples include operating systems� network communication protocols� and air
tra�c control systems� For a continuously operating program its normal behavior is an arbitrarily
long� possibly nonterminating computation� which maintains an ongoing interaction with the en�
vironment� Such programs can be described as reactive systems� The key point concerning such
systems is that they maintain an ongoing interaction with the environment� where intermediate
outputs of the program can in�uence subsequent intermediate inputs to the program� Reactive
systems thus subsume many programs labelled as concurrent� parallel� or distributed� as well as
process control programs� Since there is in general no �nal state� formalisms such as Hoares logic
which are based on an initial state��nal state semantics� are of little use for such reactive programs�
The operators of temporal logic such as sometimes and always appear quite appropriate for for
describing the time�varying behavior of such programs�

What is the relationship between concurrency and reactivity� They are in some sense indepen�
dent� There are transformational programs that are implemented to exploit parallel architectures
�usually� to speed processing up� allowing the output to be obtained more quickly�� A reactive
system could also be implemented on a sequential architecture�

On the other hand� it can be recommended that in general concurrent programs should be
viewed as reactive systems� In a concurrent program consisting of two or more processes running in
parallel� each process is generally maintaining an ongoing interaction with its environment� which
usually includes one or more of the other processes� If we take the compositional viewpoint� where
the meaning of the whole is de�ned in terms of the meaning of its parts� then the entire system
should be viewed in the same fashion as its components� and the view of any system is a reactive
one� Even if we are not working in a compositional framework� the reactive view of the system as
a whole seems a most natural one in light of the ongoing behavior of its components� Thus� in the
sequel when we refer to a concurrent program� we mean a reactive� concurrent system�

There are two main schools of thought regarding the application of TL to reasoning about
concurrent programs� The �rst might be characterized as �proof�theoretic�� The basic idea is
to manually compose a program and a proof of its correctness using a formal deductive system�
consisting of axioms and inference rules� for an appropriate temporal speci�cation language� The
second might be characterized as �model�theoretic�� The idea here is to use decision procedures
that manipulate the underlying temporal models corresponding to programs and speci�cations to
automate the tasks of program construction and veri�cation� We subsequently outline the approach
of each of these two schools� First� however� we discuss the types of correctness properties of
practical interest for concurrent programs and their speci�cation in TL�

��� Correctness Properties of Concurrent Programs

There are a large number of correctness properties that we might wish to specify for a concurrent
program� These correctness properties usually fall into two broad classes �cf� �Pn		
� �OL��
��
One class is that of �safety� properties also known as �invariance� properties� Intuitively� a safety
property asserts that �nothing bad happens�� The other class consists of the �liveness� properties
also referred to as �eventuality� properties or �progress� properties� Roughly speaking� a liveness
property asserts that �something good will happen�� These intuitive descriptions of safety and
liveness are made more precise below� following �Pn��
�
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A safety property states that each �nite pre�x of a �possibly in�nite� computation meets some
requirement� Safety properties are thus those that are �initially� equivalent to a formula of the
form Gp� for some past formula p� The past formula describes the condition required of �nite
pre�xes� while the G operator ensures that p holds of all �nite pre�xes� Note that this formal
de�nition of safety requires that always �nothing bad has happened yet�� consistent with the
intuitive characterization of �OL��
 mentioned above�

Any formula built�up from past formulae� the propositional connectives � and �� and the future
temporal operators G and Uw can be shown to express a safety property� For example� �p Uw q�
�i G�G

�p � F��q � X�G�p��

A number of concrete examples of safety properties can be given� The partial correctness of a
program with respect to a precondition � and postcondition �� which stipulates that if program
execution begins in a state satisfying �� then if it terminates the �nal state satis�es �� is expressed
by

atl� � � � G�atlh � ��

where the programs start label is l� and its halt label is lh� �Note� this formula is initially equivalent
to G�F����atl� � �� � X�

w false�� � G�atlh � ��� thereby demonstrating that it is safety property
according to the technical de�nition��

Other safety properties include global invariance of assertion p is expressed simply by Gp� To
capture local invariance which means that p holds whenever control is at location l� we write G�atl
� p��

The requirement of mutual exclusion for a two process solution to the critical section problem
can be written

G� ��atCS� � atCS���

where atCSi indicates that control of process i is at its critical section�

Another very important property for concurrent programs is freedom from deadlock� A concur�
rent program is deadlocked if no process is enabled to proceed� The formula G� enabled� � ��� �
enabledm � captures freedom from deadlock for a concurrent program with m processes�

Liveness properties are in some sense dual to safety properties� requiring that some �nite pre�x
property hold a certain number of times�

The basic liveness properties are technically de�ned to be those �initially� expressible in the

form Fp�
�

Fp� or
�

Gp� where p is a past formula required to hold for some� for in�nitely many� or for
all but but a �nite number� resp�� of the �nite pre�xes of a computation� It is interesting to note
that �p Us q� �i F�q � X�

w G�p� for any past formulae p and q� thus showing the strong until to
be a basic liveness property� even though it is not immediately obvious that it can be expressed in
the required form� Also note that Fp �i GF�F

�p� �i FG�F
�p� and is technically redundant� even

though we �nd it more convenient to keep Fp separated out� A more serious redundancy is that�
by our de�nition� each safety property is a basic liveness property� since Gp �i GF�G

�p� for any
past formula p�
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If we wish to avoid this redundancy� we can �rst de�ne an invincible past formulae to be one
such that every �nite sequence x has a �nite extension x� with �x��length�x��� j� p �i�e�� with p
holding at the last state of x���

We then de�ne the pure liveness properties to be those initially equivalent to one of the formulae
Fp� GFp� FGp� for some invincible past formula p� Note that any satis�able state formula p is an
invincible past formula� so that the pure liveness formulae still include a broad range of properties�
However� �p Us q� is not a pure liveness property� because while �p Us q� �i F�q � X

�F�p�� the
formula q � X�F�p is not invincible� It is expressible as the conjunction of a safety property and
a pure liveness property� �p Us q� �i �p Uw q� � Fq�

Note that if p is a pure liveness property� then it has the following characteristic� every �nite
sequence x can be extended to a �nite or in�nite sequence x� such that �x���� j� p� This corresponds
to the intuitive characterization of liveness� that �something good will happen�� of �OL��
�

Further work on syntactic and semantic characterizations of safety and liveness properties are
given in �AS��
 and �Si���


One important generic liveness property has the form

G�p � Fq�

for past formulae p and q� and is called temporal implication �cf� �Pn		
� �La��
�� Many speci�c
correctness properties are instances of temporal implication� as described below�

An intermittent assertion is expressed by

G� �atl � �� � F�atl� � ����

meaning that whenever � is true at location l� then �� will eventually be true at location l� �cf�
�Bu	�
� �MW	�
�� An important special type of intermittent assertion is total correctness of a
program with respect to a precondition � and postcondition �� It is expressed by

atl� � � � F�atlh � ��

which indicates that if the program starts in a state satisfying �� then it halts in a state satisfying
��

The property of guaranteed accessibility for a process in a solution to the mutual exclusion
problem to enter its critical section� once it has indicated that it wishes to do so is expressed by

G�atTryi � FatCSi�

where atTryi and atCSi indicated that process i is in its Trying section or Critical section� respec�
tively� This property is sometimes referred to as absence of individual starvation for process i�
General guaranteed accessibility is of the form

G�atl � Fatl��

Still another property expressible in this way is responsiveness� Consider a system consisting
of a resource controller that monitors access to a shared resource by competing user processes� We
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would like to ensure that each request for access eventually leads to a response in the form of a
granting of access� This is captured by an assertion of the form G�reqi � Fgranti� where reqi and
granti are predicates indicating that a request by process is made or a grant of access to process i
is given� respectively�

The fairness properties discussed in Section � are also liveness properties�

A �nal general type of correctness property is informally known as the precedence properties�
These properties have to do do with temporal ordering� precedence� or priority of events� We shall
not give a formal de�nition but instead illustrate the class by several examples�

To express absence of unsolicited response as in the resource controller example above� where
we want a granti to be issued only if preceded by a reqi we can write

�granti � ��granti Uw reqi��

Alternatively� we can write �reqi B grant i�� where we recall that the precedes operator �p B q�
asserts that the �rst occurrence of q� if any� is strictly preceded by an occurrence of p�

The important property of First�In�First�Out�FIFO� responsiveness can be written in a straight�
forward but slightly imprecise fashion as

�reqi B reqj� � �granti B grantj��

A more accurate expression is

�reqi � �reqj � �grantj� � ���grantj� Uw granti�

where we rely on the assumption that once a request has been made� it is not withdrawn before it
has been granted� Hence� reqi � �reqj implies that process is request preceded that of process j�

It is interesting to note the importance of correctly formalizing in the formal speci�cation
language our intuitive understanding of the problem� An important application where this issue
arises is the speci�cation of correct behavior for a message bu�er� Such bu�ers are often used in
distributed systems based on message passing� where one process transmits messages to another
process via an intermediate� asynchronous bu�er that temporarily stores messages in transit�

We assume that the bu�er has an input channel x and output channel y� It also has unbounded
storage capacity and is assumed to operate according to FIFO discipline� We want to specify that
the log of input�output transactions for the bu�er is correct� viz�� that the sequence of messages
output on channel y equals to the sequence of messages input on channel x�

An important limitation of PLTL and related formalisms was established by Sistla et� al�
�SCFM��
 which shows that an unbounded FIFO bu�er cannot be speci�ed in PLTL� Essentially�
the problem is that any particular formula p of PLTL is of a �xed size and corresponds to a
bounded size �nite state automaton� while the bu�er can hold an arbitrarily large sequence of
messages� thereby permitting the �nite automaton to become �confused�� Moreover� the problem
is not alleviated by extending the formalism to be pure �i�e�� uninterpreted� FOLTL �cf� �Ko�	
��

However� as noted in �SCFM��
 there exist partially interpreted FOLTLs which make it possible
to capture correct behavior for a message bu�er� One such logic provides history variables that
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accumulate the string of all previous states along with a pre�x predicate �  � on these histories�
The safety portion of the speci�cation is given by G�y  x� which asserts that the sequence of
messages output is always a pre�x of the sequence of messages input� The liveness requirement is
expressed by �z G�x�z � F�y�z�� which ensures that whatever sequence appears along the input
channel is eventually replicated along the output channel�

The essential feature of the above speci�cation based on histories is the ability to� in e�ect�
associate a unique sequence number with each message� thereby ensuring that all messages are
distinct� Using in�m� to indicate that message m is placed on input channel x and out�m� for the
placement of message on output channel y� we have the following alternative speci�cation in the
style of �Ko�	
�� The formula

�m G�in�m� B out�m��

speci�es that any message output must have been previously input�

The formula

�m�m� G�in�m� � XFin�m�� � F� out�m� � XFout�m����

asserts that FIFO disciple is maintained� i�e� messages are output in the same order they were
input�

The liveness requirement is expressed by

�m G�in�m� � Fout�m��

while the assumption of message uniqueness is captured by

�m �m� G� �in�m� � XFin�m��� � �m �� m�� �

Note that the requirement of message uniqueness is essential for the correctness of the speci�ca�
tion� Without it� a computation with� e�g�� the same message output twice for each input message
would be permitted�

Recently� Wolper �Wo��
 has provided additional insight into the power of logical formalisms for
specifying message bu�ers� First� he pointed out that PLTL is a priori inadequate for specifying
message bu�ers when the underlying data domain is in�nite� since each PLTL formula is �nite�
However� he goes on to show that PLTL is nonetheless adequate for specifying message bu�er
protocols that the data independence criterion� which requires that the behavior of the protocol
does not depend on the value or content of a message� While it is in general undecidable whether
a protocol is data independent� a simple syntactic check of the protocol� if positive� ensures data
independence� This amounts to checking that the only possible operation performed on message
contents are reading from channels to variables� writing from variables to channels� and copying
between variables�

It is shown in �Wo��
 that it is enough for data independent bu�er protocols to assert cor�
rectness over a � symbol message alphabet & � fm��m��m�g� so that the input is of the form
m�

�m�m�
�m�m�

� i� the output is of the form m�
�m�m�

�m�m�
�� This matching of output to in�

put can be expressed in PLTL� using propositions in mi and out mi �assumed to be exclusive and
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exhaustive�� �  i  �� to indicate the appearance of message mi on the input channel and on the
output channel� respectively� as

� �in m� U �in m� � X�in m� U �in m� � XGin m����� �
�out m� U �out m� � X�out m� U �out m� � XGout m����� �

� �i������ �out mi B in mi��

Intuitively this works because it ensures that each pair of distinct input messages are transmitted
through to the output correctly� since the bu�er is assumed to be oblivious to the message contents�
the only way it can ensure such correct transmission for the three symbol alphabet is to transmit
correctly over any alphabet� including those with distinct messages�

The reader may have noticed that the above example speci�cations were given in linear TL� If
we wished to express them in branching TL we would merely need to pre�x each assertion by the
universal path quanti�er� The reason linear TL su�ced was that above we were mainly interested in
properties holding of (all computations of a concurrent program� If we want to express lower bounds
on nondeterminism and�or concurrency we need the ability to use existential path quanti�cation�
provided only by branching time logic� Such lower bounds are helpful in applications such as
program synthesis� Moreover� branching time makes it possible to distinguish between inevitability
of predicate P� which is captured by AFP� and potentiality of predicate P� which is captured by EFP�
It also ensures that our speci�cation logic is closed under semantic negation so that we can express�
for example� not only absence of deadlock along all futures but also the possibility of deadlock
along some future �cf� �La��
� �EH��
� �Pn��
��

��� Veri�cation of Concurrent Programs Proof�Theoretic Approach

A great deal of work has been done investigating the proof�theoretic approach to veri�cation of
concurrent programs using TL �cf� e�g� �Pn��
� �MP��
� �MP��
� �MP��
� �La ��
� �Ha��
� �OL��
�
�La��
� �SMS��
�� Typically� one tries to prove� by hand� that a given program meets a certain
TL speci�cation using various axioms and inference rules for the system of TL� A drawback of
this approach is that proof construction is often a di�cult and tedious task� with many details
that require considerable e�ort and ingenuity to organize in an intellectually manageable fashion�
The advantage is that human intuition can provide useful guidance that would be unavailable in
a �purely� mechanical veri�cation system� It should also be noted that the emphasis of this work
has been to develop axioms� rules� and techniques that are useful in practice� as demonstrated on
example programs� as opposed to meta�theoretic justi�cations of proof systems�

A proof system in the LTL framework has been given by Manna and Pnueli �MP��
 consisting
of three parts �i� A general part for reasoning about temporal formulae valid over all interpreta�
tions� This includes PLTL and FOLTL� �ii� A domain part for reasoning about variables and data
structures over speci�c domains� such as the natural numbers� trees� lists� etc�� and �iii� A program
part specialized to program reasoning� This system is referred to as a global system� since is it
intended for reasoning about a program as a whole� In this survey� we focus on some useful proof
rules from the program part� applicable to broad classes of properties� The reader is referred to
�MP��
 and �Pn��
 for more detail�

The rules are presented in the form
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A�

�
�
�
An

��
B

where A������An are premises and B is the conclusion� The meaning is that if all the premises are
shown to hold for a program then the conclusion is also true of the program�

The following invariance rule �INVAR� is adequate for proving most safety properties� Let �
be an assertion�

�

G�� � X��
������
G�

Note that this rule really has the form of an induction rule� The �rst premise� the basis� ensures
that � holds initially� The second premise� the induction step� states that whenever � holds� it also
holds at the following moment� The conclusion is thus that � always holds�

To perform the induction step� we must show that � is preserved across all atomic actions of the
program� In practice this can often be determined by inspection� considering only the potentially
falsifying transitions and ignoring those which obviously cannot make � false�

As an example� we now verify safety for Petersons solution ��Pe��
� to the mutual exclusion
problem shown in Figure �� Each process has a noncritical section �l�� m�� resp�� in which it idles
unless it needs access to its critical section �l�� m�� resp��� signalled by entry into its trying region �l�
and l�� m� and m�� resp�� Presence in the critical sections should be mutually exclusive� The safety
property we wish to establish is thus that the system never reaches a state where both processes
are in their respective critical sections at the same time� G���atl� � atm����

It is helpful to establish several preliminary invariances� We use the notation atl����� to abbreviate
atl� � atl� � atl��

G��� �� � y� � atl�����
G��� �� � y� � atm�����

G��� �� � atl� � atm� � t
G��� �� � atm� � atl� � t
G�� � � ��atl� � atm��

�� plainly holds initially� Only transitions of process p� can a�ect it� Transitions l� � l� leaves
it true� Each of the other transitions of P� preserve its truth also� since y� is true whenever P� is
at l�� l�� or l�� and false when P� is at l�� Thus G�� is established�

A similar argument proves G���

�� is vacuously true initially� The only potentially falsifying transitions for �� are�
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l� � l� ensures atl� is false so �� is preserved�

l� � l� while atm��is enabled only when �y� � t holds� Since y� is true� by virtue of �� and
atm�� it must be that t is true both before and after the transition� Hence �� is preserved�

m� � m� makes t true so that �� is again preserved�

Thus G�� is established�

A similar argument establishes ���

Now to prove G� we �rst note that � holds initially� The only potentially falsifying transitions
are in fact never enabled�

l� � l� by process P� while process P� atm��By ��� t is false and by ��� y� holds� Since the
enabling condition for the transition is �y� � t� the transition is never enabled�

m� � m� by process P� while process P� atl��is similarly shown to be impossible�

Thus G� �i�e� G���atl� � atm���� is established�

We have the following liveness rule �LIVE�� which is adequate for establishing eventualities
based on a single step of a helpful process� Here we have formulae � and �� and write Xkp for
enabledk � �executedk � Xp�� which means that the next execution of a step of process Pk will
establish p� The rule is

G�� � X�� � ���
G�� � Xk��
G�� � � � enabledk�
����������
G�� � F��

Often several invocations of LIVE must be linked together to prove an eventuality� We thus
have the following rule� CHAIN�

G��i � F��j�i�j � ���
������������
G��i
k�i � F��

In many cases the rule CHAIN is adequate� in particular for �nite state concurrent programs�
In some instances� however� no a priori bound on the number of intermediate assertions �i can be
given� We therefore use an assertion ��a� with parameter a ranging over a given well�founded set
�W� � �� which is a set W partially ordered by � having no in�nite decreasing sequence a� � a� �
a� � ��� � Note that this rule� WELL� generalizes the CHAIN rule� since we can take W to be the
interval ���k
 with the usual ordering and ��i� � �i�

G���a� � F��b � a ��b� � ���
��������������
G��a��a� � F��

We illustrate the application of the CHAIN rule on Petersons �Pe��
 algorithm for mutual
exclusion� We wish to prove guaranteed accessibility�
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G�atl� � Fatl��

�which is sometimes also called absence of starvation for process P��� indicating that whenever
process � wants to enter its critical section� it will eventually be admitted�

We de�ne the following assertions

� � atl�
�� � atl� � atm� � t
�� � atl� � atm�

�� � atl� � atm�

�� � atl� � atm�

�� � atl� � atm� � �t
�� � atl�

and establishing the corresponding temporal implication by an application of the LIVE rule in
order to meet the the hypothesis of the CHAIN rule�

G��� � F��� � �� � �� � ����� using helpful process P�
G��� � F���� using helpful process P�
G��� � F���� using helpful process P�
G��� � F�� � ��� using helpful process P�
G��� � F�� � ��� using helpful process P�
G��� � F��� using helpful process P�

The CHAIN rule now yields G��� � F��� i�e�� G�atl� � Fatl�� as desired� The argument can
be summarized in a proof lattice as depicted in Figure � �cf� �OL��
� �MP��
��

��� Mechanical Synthesis of Concurrent Programs from Temporal Logic Spec�
i�cations

One ambitious but promising possibility is that of automatically synthesizing concurrent programs
from high�level speci�cations expressed in Temporal Logic� Here one deals with the synchronization
skeleton of the program� which is an abstraction of the actual program where detail irrelevant
to synchronization is suppressed� For example� in the synchronization skeleton for a solution to
the critical section problem each processs critical section may be viewed as a single node since
the internal structure of the critical section is unimportant� Most solutions to synchronization
problems in the literature are in fact given as synchronization skeletons� Because synchronization
skeletons are in general �nite state� a propositional version of Temporal Logic su�ces to specify
their properties�

The synthesis method exploits the small model property of the propositional TL� It uses a
decision procedure so that� given a TL formula� p� it will decide whether p is satis�able or unsat�
is�able� If p is satis�able� a �nite model of p is constructed� In this application� unsatis�ability
of p means that the speci�cation is inconsistent �and must be reformulated�� If the formula p is
satis�able� then the speci�cation it expresses is consistent� A model for p with a �nite number
of states is constructed by the decision procedure� The synchronization skeleton of a program
meeting the speci�cation can be read from this model� The small model property ensures that any
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program whose synchronization properties can be expressed in the TL can be realized by a system
of concurrently running processes� each of which is a �nite state machine�

One suitable logic is the branching time logic CTL� It has been used to specify and to synthesize�
e�g�� a starvation�free solution to the mutual exclusion problem �cf� �EC��
�� Consider two processes
P� and P�� where each process is always in one of three regions of code� NCSi�the NonCritical
Section� TRYi�the TRYing Section� or CSi�the Critical Section� which it cycles through� in order�
repeatedly� When it is in region NCSi� process Pi performs �noncritical� computations which can
proceed in parallel with computations by other process Pj� At certain times� however� Pi may need
to perform certain �critical� computations in the region CSi� Thus� Pi remains in NCSi as long
as it has not yet decided to attempt critical section entry� When and if it decides to make this
attempt� it moves into the region TRYi� From there it enters CSi as soon as possible� provided
that the mutual exclusion constraint ��atCS� � atCS�� is not violated� It remains in CSi as long
as necessary to perform its �critical� computations and then re�enters NCSi�

It is assumed that only transitions between di�erent regions of sequential code are recorded�
Moves entirely within the same region are not considered in specifying synchronization� Moreover�
the programs are running in a shared�memory environment with test�and�set primitives� The
behavior of the system can be speci�ed using the formulae listed below�

�� start state

atNCS� � atNCS�

�� mutual exclusion

AG ���atCS� � atCS���

�� absence of starvation for Pi �i � ����

AG �atTRYi � AFatCSi�

plus some additional formulae to formally specify the information regarding the model of concurrent
computation which was informally communicated in the above narrative� The global state transition
diagram of a program meeting the conjunction of the above speci�cations� obtained by applying the
synthesis method outlined� is shown in Figure ��� Solutions to other well known synchronization
problems such as readers�writers and dining philophers can also be synthesized�

A closely related synthesis method for CSP programs based on the use of a decision procedure
for PLTL was given in �MW��
� In the recent �PR��
 a method for synthesizing an individual
component of a reactive system from a speci�cation in �essentially� CTL" is described� Earlier
informal e�orts toward synthesis of concurrent programs from TL�like formalisms include �La	�

and �RK��
�

There are a number of advantages to this type of automatic program synthesis method� It
obviates the need to compose a program as well as the need to construct a correctness proof�
Moreover� since it is algorithmic rather than heuristic in nature� it is both sound and complete�
It is sound in that any program produced as a solution does in fact meet the speci�cation� It is
complete in that if the speci�cation is satis�able� a solution will be generated�

A drawback of this method is� of course� the �at least� exponential complexity of the decision
procedure� Is this an insurmountable barrier to the development of this method into a practical
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software tool� Recall that while deciding satis�ability of propositional formulae requires exponential
time in the worst case using the best known algorithms� the average case performance appears
to be substantially better� and working automatic theorem provers and program veri�ers are a
reality� Similarly� the performance in practice of the decision procedure used by the synthesis
method may be substantially better than the potentially exponential time worst case� �See �ESS��
��
Furthermore� synchronization skeletons are generally small� It therefore seems conceivable that this
approach may� in the long run� turn out to be useful in practical applications�

��� Automatic Veri�cation of Finite State Concurrent Systems

The global state transition graph of a �nite state concurrent system may be viewed as a �nite tem�
poral logic structure� and a model checking algorithm �cf� Section ���� can be applied to determine
whether the structure is a model of a speci�cation expressed as a formula in an appropriately cho�
sen system of propositional TL� In other words� the model checking algorithm is used to determine
whether a given �nite state program meets a particular correctness speci�cation� Provided that
the model checking algorithm is e�cient� this approach is potentially of wide applicability since
a large class of concurrent programming problems have �nite state solutions� and the interesting
properties of many such systems can be speci�ed in a propositional TL� For example� many network
communication protocols can be modeled as a �nite state system�

The basic idea behind this mechanical model checking approach to veri�cation of �nite state
systems is to make brute force graph reachability analysis e�cient and expressive through the use
of TL as an assertion language� Of course� research in protocol veri�cation has attempted to exploit
the fact that protocols are frequently �nite state� making exhaustive graph reachability analysis
possible� The advantage o�ered by model checking seems to be that it provides greater �exibility
in formulating speci�cations through the use of TL as a single� uniform assertion language that can
express a wide variety of correctness properties� This makes it possible to reason about� e�g�� both
safety and liveness properties with equal facility�

Historically� �Pn		
 showed that the problem of deciding truth of a linear temporal formula
over a �nite structure was decidable� However� his decision procedure was nonelementary� and the
problem is PSPACE�complete in general �Theorem ���	�� The term �model checking� was coined
by �CE��
� who gave an e�cient �polynomial time� model checking algorithm for the branching
time logic CTL� and �rst proposed that it could be used as the basis of a practical automatic
veri�cation technique� At roughly the same time� �QS��
 gave a model checking algorithm for a
similar branching time logic� but did not analyze its complexity�

To illustrate how model checking algorithms work� we now describe a simple model checking
algorithm for CTL� Note that it is similar to the global �ow analysis algorithms used in compiler
optimization� Assume that M � �S�R�L� is a �nite structure and p� is a CTL formula� The goal
is to determine at which states s of M� we have M�s j� p�� The algorithm is designed to operate
in stages� the �st stage processes all subformulae of p� of length �� the �nd stage processes all
subformulae of p� of length �� and so on� At the end of the ith stage� each state will be labeled
with the set of all subformulae of length  i that are true at the state� To perform the labelling
at stage i� information gathered in earlier stages is used� For example� subformulae q � r should
be placed in the label of a state s precisely when q and r are both already in the label of s� For
the modal subformula A�q U r
� information from the successor states of s� as well as state s itself�
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is used� Since A�q U r
 � q � AXA�q U r
� A�q U r
 is initially added to the label of each state
already labelled with r� Then satisfaction of A�q U r
 is propagated outward� by repeatedly adding
A�q U r
 to the label of each state labelled by q and having A�q U r
 in the label of all successors�

Let

�A�q U r
�� � r
�A�q U r
�j�� � r � �q � AX�A�q U r
�j�

It can be shown that M�s j� �A�q U r
�j i� M�x j� A�q U r
 and along every path starting at s� r
holds within distance j� Thus� states where �A�q U r
�� holds are found �rst� then states where �A�q
U r
�� holds� etc� If A�q U r
 holds� then �A�q U r
�card	S
 must hold since all loop�free paths in M
are of length  card�S�� Thus� if after card�S� steps of propagating outward� A�q U r
 has still not
been found to hold at state s� then A�q U r
 is false at s� Satisfaction of the other CTL modality
E�p U q
 propagates outward in the same fashion�

This version of the algorithm can be naively implemented to run in time linear in the length
of p� and quadratic in the size of structure M� A more clever version of the algorithm can be
implemented to run in time linear in the length of the input formula p and the size of M �cf�
�CES��
��
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for i � � to length�p��
for each subformula p of p� of length i

Case on the form of p
p � P� an atomic proposition �" nothing to do "�

p � q � r � for each s 
 S
if q 
 L�s� and r 
 L�s� then

add q � r to L�s�
end

p � �q � for each s 
 S
if q �
 L�s� then

add �q to L�s�
end

p � EXq� for each s 
 S
if �for some successor t of s� q 
 L�t�� then

add EXq to L�s�
end

p � A�q U r
 � for each s 
 S
if r 
 L�s� then

add A�q U r
 to L�s�
end

for j � � to Card�S�
for each s 
 S

if q 
 L�s� and �for each successor t of s�
A�q U r

L�t�� then add A�q U r
 to L�s�

end
end

p � E�q U r
� for each s 
 S
if r 
 L�s� then

add E�q U r
 to L�s�
end

for j � � to Card�s�
for each s 
 S

if q 
 L�s� and �for some successor t of s�
E�q U r
 
 L�t�� then add E�q U r
 to L�s�

end
end

end of case
end

end

One limitation of the logic CTL is� of course� that it cannot express correctness under fair
scheduling assumptions� However� the extended logic FairCTL described in �EL��
 can express
correctness under fairness �cf� �QS��
�� An FCTL speci�cation �p�� #�� consists of a functional as�
sertion p�� which is a state formula� and an underlying fairness assumption #�� which is a pure path
formula� The functional assertion p� is expressed in essentially CTL syntax with basic modalities of
the form either A� ��for all fair paths�� or E� ��for some fair path�� followed by one of the linear
time operators F� G� X� or U� The path quanti�ers range over paths meeting the fairness constraint
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#�� which is a boolean combination of the in�nitary linear time operators
�

F ��in�nitely often�� and
�

G ��almost always��� applied to propositional arguments� We can then view a subformula such as
A�FP of functional assertion p� as an abbreviation for the CTL" formula A�#� � FP
� Similarly�
E�GP abbreviates E�#� � GP
� In this way FairCTL inherits its semantics from CTL"� Provided
that #� is in the canonical form

�ni�� �
ni
j�� �

�

Fpij �
�

Fqij�

then the model checking problem for FairCTL can be solved in time that is linear in the input
structure size and small polynomial in the speci�cation size�

Nevertheless� there are still correctness properties that one might like to describe that are not
expressible within FairCTL� although they are describable in CTL" or even PLTL� The PSPACE�
completeness of these latter logics� on �rst hearing� would seem to be a serious drawback� Lichten�
stein and Pnueli �LP��
 noted� however� that model checking is a problem with two input parame�
ters� the structure and the speci�cation� and then proceeded to develop a model checking algorithm
for PLTL of complexity exponential in the the length of the speci�cation but only linear in the size
of the structure� They argued that since speci�cations are generally quite short while the structures
representing programs are usually quite large� the exponential complexity in the speci�cation size
can be discounted� In practice� the dominating factor in the complexity should thus be the linear
growth in the structure size�

It is worth pointing out that model checking� despite �because of�� its simplicity� is one approach
to automatic veri�cation that really seems to be useful in practice� It has been used to verify a large
variety of �nite state concurrent programs� These programs range from examples in the academic
literature on concurrency to large�scale network communication protocols� For instance� a solution
to the mutual exclusion problem given in �OL��
 and proved correct there manually using linear
TL is actually �nite state� It was mechanically veri�ed using the CTL model checking algorithm
as described in �CES��
� Model checking is also applicable to the design of VLSI hardware and
asynchronous circuits� Clarke has developed an e�cient implementation of the CTL model checker
along with various pieces of support software� which together forms the EMC �Extended Model
Checker� system at CMU� In �MC��
 the use of the EMC system resulted in the detection of a
previously unknown error in a circuit for a self�time queue element published in the text �MC	�
�
Other applications to the design of sequential circuits are discussed in �BCD��
� �BCDM��a
� and
�DC��
� as well as the overview article �CG�	
� Finally� model checking is applicable to large�
scale network communication protocols� Indeed� one project in France �Si�	
 has bought dedicated
hardware to use for model checking network protocols� Finite state systems with on the order of
��� states �and arcs� can currently be handled�

Despite the above practical successes� a potentially serious drawback to the entire model check�
ing approach is that the size of the global state transition graph grows exponentially with the
number of processes� Recent work in �CG��
� �SG�	
� �CG�	
 suggests that it may be possible to
avoid this exponential blowup in some cases for concurrent systems with many �copies� of the same
process� although this is not possible in general �cf� �AK��
�� Other work on reducing the size of
the state graph based on hierarchical speci�cation and hiding of states at lower levels of abstraction
is presented in �MC��
�
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 Other Modal and Temporal Logics in Computer Science

��� Classical Modal Logic

The class of Modal Logics was originally developed by philosophers to study di�erent �modes�
of truth� Such modes include possibility� necessity� obligation� knowledge� belief� and perception�
Among the most important modes of truth are what �must be� true �necessity� and what �may
be� true �possibility�� For example� the assertion P may be false in the present world� and yet the
assertion possibly P true� if there exists another world where P is true� The assertion necessarily P
is true provided that P is true in all worlds�

Thus we have the well known possible worlds semantics of Kripke� where the truth value of a
modal assertion at a world depends on the truth value�s� of its subassertions�s� at other possible
worlds� This is formalized in terms of a Kripke structure M � �S�R�L� consisting of an underlying
set S of possible worlds� also called states� an accessibility relation R � S � S between worlds� and
a labelling L which provides an interpretation of primitive �i�e� nonmodal� assertions at each world�
The technical de�nitions are such that possibly P is true at world s i� P is true at some world
accessible from s� and necessarily P is true at world s i� P is true at all worlds accessible from s�

As we have seen� Temporal Logic is a particular kind of Modal Logic that has been specialized
for reasoning about program behavior� Temporal Logic provides a much richer set of modalities�
varying in how their truth value depends on which argument�s� hold�s� at which worlds� with the
accessibility relation corresponding to the evolution of a concurrent system over time�

��� Propositional Dynamic Logic

An alternative development of a modal logic framework for program reasoning is represented by
Dynamic Logic� originally proposed by Pratt �Pr	�
 in the �rst order version� specialized to the
propositional version by Fischer and Ladner �FL	�
� and� in general studied intensively by Harel
�Ha	�
 and others� �Detailed treatements of Dynamic logic can be found in �KT��
 and �Ha��
��
The basic modalities of Propositional Dynamic Logic �PDL� are of the form �	�p where 	 is a
regular expression over �atomic programs� and p is a formula� The intuitive meaning is that there
exists an execution of program 	 leading from the present state to a state where p holds� PDL may
be viewed as a propositional Branching Time Logic� with basic modalities of the form E� where
 is a regular expression over atomic propositions �node labels� and atomic programs �arc labels��
and which means that there exists a path �a sequence of alternating states and arcs� starting at
the present state that matches the regular expression � A variety of extensions of PDL have
been proposed in order to increase its expressive power� One is of particular interest to Temporal
Logicians� viz�� that with a repetition construct referred to a PDL  repeat or )�PDL� In Temporal
Logic terms� its basic modalities are of the form E� where  is an ��regular expression such as 	���
The � iteration operator corresponds to the repeat operator )� )�PDL strictly subsumes CTL" in
expressive power� and is thus able to express modalities such as AFp that cannot be expressed in
ordinary PDL� Historically� )�PDL is important for reasons beyond its high expressive power� It is
with )�PDL that automata�theoretic techniques for testing satis�ability were pioneered by Streett
�St��
�
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��� Probabilistic Logics

Various probabilistic Temporal Logics have been proposed� For instance� �Lehmann ' Shelah

describe logic� TC� with essentially the same syntax as CTL"� but where Ap means for almost all
paths �i�e�� for a set of paths of measure �� p holds� and Ep means for signi�cantly many paths �i�e�
for a set of paths of positive measure� p holds� They give a deterministic double exponential time
decision procedure and a sound and complete axiomitization for it� Interestingly� the logic TC has
the same axiomitization as the logic MPL �Modal Process Logic� of Abrahamson �Ab��
� MPL has
essentially the same syntax as CTL" but interprets it over more abstract structures� where the set
of paths is not required to be generated by a binary relation� A probabalistic version of CTL is
considered in �HS��
�

��� Fixpoint Logics

Temporal operators can be characterized in terms of extremal �xpoints of monotonic functionals�
Let M � �S�R�L� be a structure� We use PRED�S� to denote the lattice of total predicates over
state set S� where each predicate is identi�ed with the set of states which make it true and the
ordering on predicates is set inclusion� Then a formula p de�nes a member of PRED�S�� f s 
 S�
M�s j� pg� and if it contains an atomic proposition Q� e�g�� p�Q�� it de�nes a function PRED�S�
� PRED�S� where the value of p�Q� varies as Q varies� Let � � PRED�S� � PRED�S� be given�
then

� � is said to be monotonic provided P � Q implies ��P� � ��Q�

� � is said to be ��continuous provided that P� � P� � P���� implies ���iPi� � �i��Pi��

� � is said to be ��continuous provided that P� � P� � P���� implies ���iPi� � �i��Pi��

A predicate P is said to be a �xpoint of functional � if P � ��P�� The theorem of Tarski�Knaster
��Ta��
� ensures that a monotonic functional � � PRED�S� � PRED�S� always has a least �xpoint�
�Z���Z� � �f Y� ��Y� � Yg� and a greatest �xpoint �Z���Z� � �f Y� ��Y� � Yg� Whenever � is
��continuous then �Z���Z� � �i�

i�false� and whenever � is ��continuous then �Z���Z� � �i�
i�true��

�Note� ���false� � ����false��� etc��

For example� shown below are the �xpoint characterizations for certain CTL modalities�

EFP � �Z�P � EXZ AGP � �Z�P � AXZ
AFP � �Z�P � AXZ EGP � �Z�P � EXZ

Intuitively� the properties characterized as least �xpoints correspond to eventualities� while
those characterized as greatest �xpoints are invariance properties

Assume for simplicity that each state in the underlying structure has a �nite number of succes�
sors� Then each of the above functionals is both ��continuous and ��continuous in the argument
Z� and we can readily establish the correctness for the above characterizations� For example� to
show that EFP � �Z���Z�� with ��Z� � P � EXZ� it su�ces to show that for each i �ranging over
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jN�� � i�false� � f states s in M � there exists a path of length i in M from state s to some state t
such that M�t j� Pg

These �xpoint characterizations are used in the model checking algorithm of section 	 and in
the tableau�based decision procedure of section ��

We can de�ne an entire logic built�up from atomic proposition constants P� Q����� atomic propo�
sition variables Y�Z���� boolean connectives �� �� �� the nextime operators EX� AX� and the least
�xpoint � and greatest �xpoint � operators� We require that each formula be syntactically mono�
tone� meaning that �xpoint formulae such as �Z���Z� �or �X���Z�� are legal only when Z appears
under an even number of negations within � � The semantics is given in the obvious way suggested
above�

Essentially this system was dubbed the �the Propositional Mu�Calculus� by Kozen �Ko��
�
This Mu�Calculus has very considerable expressive power� It can encode �and in fact subsumes�
CTL� FairCTL� CTL"� and� interpreted over multi�process structures� also PDL and PDL repeat�
It practical terms it also allows expression of extended modalities such as P is true at all even
moments along all futures� which is captured by �Z�P � AXAXZ� Related systems were considered
in �EC��
 and �PR��
� Other proposals for formalisms based on �xpoints can be found in� e�g��
�deBS��
� �Pa	�
� �deRo	�
� �Di	�
� and �Pa��
�

��� Knowledge

There has recently been interest in the development of modal and temporal logics for reasoning
about the states of knowledge in reactive systems� Knowledge can be especially important in
the realm of distributed systems where processes are geographically dispersed and� at any given
moment� possess only incomplete knowledge regarding the status of other processes in the system�
Indeed� in many informal instances of reasoning about the behavior of distributed systems� it is
a natural metaphor to refer to what a process knows� Logics of knowledge represent an e�ort to
provide a formal basis for such reasoning�

A number of systems have been proposed �cf� �HM��
� �Le��
� �LR��
� �DM��
�� Typical
modalities include Kip which means that �process i knows p� and Cp which means that �p is
common knowledge� in the sense that �all processes know p� all processes know that all processes
know p� all processes know that all process know that all process know p� ��� �� These modalites
of knowledge can be combined in various ways with temporal operators to permit reasoning about
distributed systems� Certain semantic constraints� expressed as axioms �e�g� KiXp � XKip �� are
usually required� Subtle interactions between the syntax of the logic and the assumptions made
regarding the model of distributed computation can lead to widely varying complexities for the
decision problems of the resulting logics �cf� �HV��
�� In general� this seems a promising area for
future research� We refer the reader to the excellent survey by Halpern �Ha�	
 for an in�depth
treatment�
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