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Abstract

Fault tree (FT) is a simple, visual, popular and standardized notation for representing relationships between a fault in a system and the
associated events. FTs are widely used for supporting products and systems in diverse industries like process control, avionics, aerospace,
nuclear power systems, etc. where they are used to capture specialized and experiential knowledge for diagnosis and maintenance. FTs are
also used to represent safety requirements of a system, obtained during the hazard analysis phase of the system development cycle. However,
a problem that prevents more analytical use of FT is their lack of rigorous semantics. Users’ understanding of an FT depends on the clarity
and correctness of the natural language annotations used to label and describe various parts. Moreover, it is not clear how to adapt the FT
notation to represent temporal relationships between faults and events in dynamic systems. We propose to augment the FT notation by adding
simple temporal gates to capture temporal dependence between events and faults. We propose techniques to perform qualitative analysis of
such temporal fault trees (TFT) to detect the causes of the top event fault by matching the TFT with the trace (or log) of the system activities.
We present two algorithms for depth-first traversal and cut-set computations for a given TFT that can be used for diagnosis based on TFTs.
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1. Introduction

A large number of notations have been developed for
formal specification of requirements of real-time safety-
critical systems, where explicit temporal aspects of the
system can be rigorously expressed, e.g. temporal logics
[1-9] (see Ref. [1] for an excellent survey), timed automata
[10—13], timed Petri nets [14—18], as also various process
algebras. In many such systems, an important sub-class of
requirements deals with detection, control, prevention and
handling of various faults. Hence, hazard analysis is a criti-
cal step in the building of real-time safety-critical (and
mission-critical) systems and products. During hazard
analysis, the possible external hazards and internal faults
(e.g. component failures) that such a system may suffer
from and their relationships to various events are identified.
Hazard analysis leads to identification of safety require-
ments of the system to be built. These safety requirements
are taken into account during the design, implementation,
testing, operation and maintenance of the system.

Fault tree (FT) is a simple, visual, standardized [19] and
popular notation used to state safety requirements gathered
during hazard analysis. A number of FT tools have been
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reported for safety analysis of systems; see for example,
Refs. [20,21].

There are two basic ways in which FTs are used in the life
cycle of a safety- or mission-critical system. In the first case,
the FTs are taken as specifications of a part of the system
requirements and then the system design and implementa-
tion is checked against these specifications. Often, only
parts of the requirements are specified in the FT notation,
the rest of the requirements being specified in other nota-
tions. In this case, the users of FTs are system analysts,
designers and developers. FTs are increasingly being used
to express safety requirements of not only physical systems
but also of digital and software systems [22]. For example,
in Refs. [23,24], software FTs were used to verify safety
properties of software written in Ada.

In the second case, the FTs describe the faults that can
happen in a system and relate them to their causes. In this
case, the FTs are constructed ‘away’ from the requirements
and design documents and the main ‘users’ of FTs are
operations and maintenance/support engineers. In this
way, the FT notation is widely used for supporting products
and systems in diverse industries like process control, avio-
nics, aerospace, nuclear power systems, bio-medical instru-
mentation, etc. where it is used to capture specialized and
experiential knowledge for diagnosis and maintenance.
Many kinds of analysis (e.g. model-based safety analysis
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[25], automatic FT generation [26], dependability analysis
[27] and much more) and fault diagnosis procedures are
developed for safety requirements and fault knowledge
expressed using FT; see Ref. [28] for an overview of the
basic techniques for FT analysis.

However, one problem that prevents more widespread
use of the FT notation is their lack of rigorous semantics.
Users’ understanding of the requirements represented in
these notations depends on the clarity and correctness of
the natural language annotations used to label and describe
various parts. Such lack of rigour leads to ambiguity and
prevents formal analysis of the safety requirements and
knowledge expressed using FT. Moreover, it is not clear
how to adapt the FT notation to represent temporal relation-
ships between faults and events in dynamic systems. In this
paper, we attempt to address these issues.

In one stream of closely related work, the essential idea is
to enhance the FT notation and relate it to timed Petri net
models. For example, in Ref. [29], the authors have used a
system of equalities and inequalities (which captures the
temporal context of events) to perform analysis of time
dependencies in an FT. They have also shown that the
expressive power of the resulting FT notation is the same
as that of a timed Petri net. In our work, we have added
temporal gates (to the FT notation) that directly map to
connectives in a temporal logic and the users do not provide
any further quantitative information. We also do not relate
our TFT notation to any executable mode like timed Petri
nets or timed automata. However, we have a prototype
implementation of the algorithms for qualitative analysis
of a given TFT. A similar work is reported in Ref. [30]
where an enhanced FT notation is used to specify the nature
of intrusions in an intrusion detection system, which is then
automatically translated to a coloured Petri net and subse-
quently, to an implementation. Apart from special gates for
trust and context, this work also includes some special gates
in the FT notation for temporal ordering and intervals, as
based on the interval temporal logic of Allen and Ferguson
[5]. The research reported in Ref. [31] is also directly related
to our work. However, they have retained the basic FT
notation and chosen to label the leaf nodes with formulae
in Duration Calculus [2]. We have instead retained the
simple propositional labelling of the leaf events and added
temporal gates to the FT notation to explicitly depict
temporal dependencies. We have also used a much simpler
instance-oriented linear temporal logic PLTLP.

Several attempts have been made to provide a simple
visual front-end to temporal logics—none of them adopt
the FT notation to the best of our knowledge; see Refs.
[3,4], which adopted the timing diagram notation. It is
also not the intention of the paper to simply define a
diagrammatic visual interface for a temporal logic (as in
Refs. [3,4]), although this work can be viewed that way.

In this paper, we propose a simple way of enhancing the
FT notation, which results in what we call as temporal fault
trees (TFT). The TFT notation allows the users to easily

specify the temporal dependence between events and faults.
The enhancements in TFT are based on the premises that

(i) the simple, qualitative and visual nature of the FT
notation should be preserved;

(ii) the underlying semantics of the FT notation should be
as intuitive and simple as possible;

(iii) a user need not be expert in temporal logic to build or
understand the TFT. More specifically, although the user
needs to understand the basic semantics of the temporal
connectives, detailed technical knowledge about say
temporal deduction, model-checking, etc. is typically
not required.

The method we have used to enhance the FT notation is
essentially through an introduction of new temporal gates in
the FT notation. The events are still labelled by simple
atomic propositions without any structure. This is in
contrast with other approaches where the events are actually
complex temporal conditions. The semantics of the TFT
notation is defined in terms of a past-oriented simple propo-
sitional linear temporal logic PLTLP [1]. We also extend the
standard top-down depth-first traversal procedure for FT to
work with a TFT; this procedure is used to identify the set of
events that lead to the occurrence of the top event in the
TFT.

It is not an intention of the paper to invent any new
notation for the specification of time-dependent require-
ments of real-time safety-critical systems. As mentioned,
the purpose of the paper is to enhance the FT notation by
adding explicit temporal facilities so that the new FT nota-
tion can better and more explicitly reflect the temporal rela-
tionships between events/conditions for a specific hazard.
We also then intend to perform some FT-specific analysis
for the enhanced FT notation. The way in which temporal
facilities are added will naturally reflect how the semantics
of the enhanced FT notation is to be defined. Thus, for
example, the semantics of such an enhanced FT notation
can be defined in terms of say, timed Petri nets [29] or
timed automata. Following, for example Refs. [30,31], we
have chosen temporal logic since we feel that just as propo-
sitional logic bears a close resemblance to the (untimed) FT
notation so the propositional temporal logic would provide a
close foundation for the TFT notation.

It is well known that temporal logic (particularly the
simple temporal logic used in this paper) is inadequate in
many ways to capture the entire spectrum of requirements of
safety-critical systems (as in the first case). It is to the
second use of FTs that the paper is directed. In this case,
the FTs are simply used to relate a hazard to a temporal
sequence of causal events or conditions. The main contribu-
tion of the paper is that the temporal relationships of a top
event with such events/conditions are made obvious in the
diagram, rather than remaining hidden implicitly in the
textual labels on the (ordinary) FT diagrams.

The rest of the paper is organized as follows. Section 2
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Table 1
Commonly used symbols used in the FT notation

Gate symbol Gate type Informal description
AND gate Output event occurs only if all
input events occur
OR gate Output event occurs if any one

of the input events occurs

INHIBIT gate Input event produces output
event only when the conditional

event is present

> >0

NOT gate Output event is the negation of
input event

Event symbol Event type

Basic event A primitive well-understood

event with sufficient data

An event that cannot be
developed any further, typically
as a result of limiting the
analysis

Undeveloped event

Intermediate event An event represented by a gate

An event to control the
INHIBIT gate

Conditional event

OLF OO

describes the basic FT notation and a simple formalization
for it. Section 3 proposes some temporal enhancements for
the FT and defines the semantics of the resulting TFT nota-
tion in terms of a simple temporal logic. Section 4 describes
some illustrative examples. Section 5 describes algorithms
for depth-first traversal and cut-set computations for TFT
which can be used for diagnosis based on TFTs. Section 6
contains conclusions, discussion of our work and further
work.

2. Fault trees
2.1. The FT notation

An FT allows a top-down logical representation of diag-
nostic knowledge and failure propagation. An FT is essen-
tially a vertex-labelled, directed, rooted, bipartite tree.
There are two classes of vertices in an FT: logical gates
and events of various types (Table 1 depicts the common
symbols used in FT; there are several others). Labels are
often associated only with leaf (i.e. non-intermediate) event
vertices; labels are typically natural language textual
descriptions of conditions. Fig. 1 shows an example of an
FT.

The root is an event vertex, called the fop-event and indi-
cates a system failure of some kind. The sub-failures that
lead to an event are indicated by the next level of event
vertices. These event vertices are connected to the event
by means of a logical gate. An AND gate is used if occur-
rences of all the sub-failures in the next level together cause
the event. An OR gate is used if occurrence of one or more
sub-failures cause the event. Each of these sub-failures is
then expended (or developed) similarly. A basic event is
an event that is not developed further. Typically, several

Lxplosion

High Pressure
reported for last 5
minutes

v

| Valve Does Not Open |

v
v

| Computer Does Not Open Valve

Fig. 1. An example of a fault tree.
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LA AN

(c) FT with OR gate

Fig. 2. Semantics of the logical gates in FT.

failures are identified for a system and a set of FT is devel-
oped—one for each failure.

There is another way to classify the events in an FT,
although we shall not use this classification. An event in
an FT is a primary event if it represents the failure of a
component due to its internal defects (e.g. valve stuck
open). An event in an FT is a secondary event if it represents
the failure of a component due to excessive environmental
or operational stress (e.g. motor overloading). An event in
an FT is a command event if it represents the failure of a
component due to incorrect or absent control signals or (e.g.
failure of a relay due to the coil not being energized).

In Fig. 1, the top event denotes an occurrence of an explo-
sion. This can happen when the pressure is high for the last
5 min (which is depicted as a primary event) and the valve is
not opened. The valve is not opened because the valve sensor
may have failed (e.g. erroneously reporting that the valve is
already open—depicted as a primary event) or because the
control computer failed to issue the valve open command. The
computer may fail to open the valve because of failure of the
pressure sensor (e.g. erroneously reporting low pressure) or
because the valve open command was not generated (e.g.
because of a bug in the software—Dboth of which are depicted
as primary events). Note that some of the primary events (e.g.
high pressure for the last 5 min) are actually explicitly
temporal conditions and some others (e.g. valve failure) may
contain implicitly temporal information. In this paper, we
propose additional facilities in the FT notation using which
such temporal conditions and temporal relationships between
events can be explicitly represented in the FT.

2.2. Formalization of FT

An important problem in understanding FT is the infor-
mal nature of the notation. It is easy to see that there is a
need for formalization of the semantics of the FT notation.
What exactly is the meaning of the information represented
in an FT? What is the meaning of a collection of FTs?
Clearly, the logical gates have a precise meaning that can
be derived from mathematical logic. However, one problem
is the informal (natural language) nature of the event labels
associated with leaf nodes in FT. Can some more precise
meaning be associated with the event description? A
frequent solution for this problem is to impose a rigorous
notation for writing an event label. In this approach, events
often represent a condition on the state of a system.

Let VAR = {V, : Dy,...,V, : D,} be a set of n system
state variables V;, along with a finite non-empty domain
of possible values D; associated with the variable V. In
general, the system state variables include the inputs and
controls from the environment, outputs generated by the
system as well as internal state variables maintained by
the system. At any point in time, the state of the system is
a vector of n values s = {d,,d, ..., d,) where d € D; is the
current value of the state variable V;. For a dynamic system,
the values of the state variables (i.e. state vector) change
over time as the system receives and processes the inputs
and generates outputs. A condition is a Boolean expression
containing the names of variables V; and the constants from
their domains. Thus a condition is instantaneous in the sense
that it refers only to the current values of the state variables



G.K. Palshikar / Information and Software Technology 44 (2002) 137—-150 141

Table 2
Intuitive meaning for the temporal connectives in PLTLP

0X X is true at the previous instant

0, X X is true at the instant #,_, in the past (if k = n); false if
k<n

Oox X is true now and for all the previous instants in the past

0, X X is true now and for the last n instants in the past

O7X X is either true now or at some instant in the past

S X X is either true now or at some instant within the last n
instants

XUy Sometime in the past Y holds and X holds everywhere
before that

X,C.Y X is true now and at the previous m instants and Y is true

for n instants before that

X,SC,Y X is true now and at the previous m instants and Y is true
for the strictly earlier n instants before that

X, CF,Y X is true now and at the previous m instants but Y is not
true at all the earlier n instants before that

X, FC,Y X is not true either now or at some of the m earlier instants

and Y is always true for all the previous n instants before
the m instants from now

and does not depend on the past values. Given a state vector
(i.e. the system state at a particular time instant), an instan-
taneous condition evaluates to either frue or false. We
assume that each event in an FT is labelled by an instanta-
neous condition.

As an example, suppose the state variable V; represents
the water level within a mineshaft and has the domain [0,10]
of all real numbers between 0 and 10. Then low = V| <2,
normal = V; =2 A V| = 8 and high = V| > 8 represent the
low, normal and high water level conditions, respectively.
Thus low, normal and high can be used as event labels in an
FT, with the understanding that they refer to specific condi-
tions on the current system state vector. We shall assume
from here onwards that the leaves in an FT are labelled with
such atomic proposition symbols.

The semantics of any given FT can then be easily defined
by treating the logical gates as the standard connectives in
mathematical logic and event labels as atomic proposition
symbols. Fig. 2 shows our formalization of such a proposi-
tional FT. Essentially, each FT corresponds to a formula in
propositional logic. In the FT notation, there is an implicit
upward flow of increasing abstraction across the levels of
the FT from the leaves to the root node. To make this flow
explicit we have used directed edges in the FT. Note that
this semantics is compositional in the sense that meaning of
an FT, which is composed of sub-trees connected by means
of a logical gate, is inductively defined in terms of the
semantics of the sub-trees and that of the logical gate.

3. Temporal fault tree

It is easy to see that an FT cannot represent conditions
that change over time. The labels often include text frag-
ments like ‘too late’, ‘too long’, ‘eventually’, ‘before’, etc.

which need to be understood formally. Stated another way,
the entire FT needs to be evaluated at the same state vector;
it is not clear how to use the FT notation to describe explicit
temporal relationships between events. We propose to
handle this problem by introducing additional temporal
gates in the FT notation. We then define the semantics of
this TFT in terms of the past-oriented propositional linear
temporal logic.

3.1. Propositional linear temporal logic PLTLP

We define a past-oriented linear propositional temporal
logic PLTLP [1]. The underlying model of time is a linear
sequence of discrete time instants, not necessarily equally
separated and beginning at #y; TIME = ¢, t,,... where each ¢;
is a positive integer and #; < t;4,. Let PROP be a finite set of
propositional symbols. Each propositional symbol from
PROP has a Boolean value at each instant in time and this
value may change over time. The past-oriented nature of the
temporal logic is due to the top-down declarative temporal
reading of a temporal fault, where one begins with a fault in
the current instant and traces its causes in the past occur-
rences.

PLTLP provides the usual non-temporal operators or
logical connectives: — (not), V (or), A (and), —
(implies), and < (if and only if). In addition, there are
several instance-oriented past temporal operators: O~
(PREV), O, (PREV n), 0" (ALLPAST), J, (FORPAST
n), <, (WITHIN n), & (SOMETIME-PAST), U~
(UNTIL-PAST), here n is a positive integer. There are
also several pseudo-interval temporal connectives, called
the chop connectives; ,C, (m CHOP n), ,SC, (m
STRONG-CHOP n), ,CF, (m CHOP-FAIL n) and ,FC,
(m FAIL-CHOP n) where m, n are given non-negative inte-
gers. The connectives that include a subscript are called
counting connectives, e.g. O,, ,, <, are counting
connectives. The chop connectives appear to be new in
linear temporal logic, although they are available in some-
what similar form in interval oriented temporal logics like
the Duration Calculus [2] (see also Ref. [32]).

Each of the counting connectives actually stands for a set
of connectives, one for each specific value of n. For
instance, there are infinite connectives <;, <, and so on.
These connectives can also be defined inductively. For
instance, the connectives O, allow us to state that a formula
X was true at precisely the nth instants in the past (from the
current instant). These connectives can be inductively
defined for a given positive integer n as:

0/ X=0X

0,X=00,_,X ifn>1

The syntax of a well-formed formula (wff) in PLTLP is
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to t1 t2 ee tk
L - . - - - timeline where tx is the curtent instant (now)
T
"t Ad hd A A hd (O P PREV P
p
ot L d L L4 L L4 0_3 p (PREV 3) P
p
-~ . - - . “p ALLPAST p
p p p p p
ot L d L L4 v Ld _3 P (FORPAST 3) p
p p
L o4 v v v \d o p SOMETIME p
p
ot A4 A4 A d Ad A4 0_3 p (WITHIN 3) p
“~— . - . . pU g p UNTIL-PAST g
p p P
-= L J L d L d Ld L J L J p 2C3 (1 CHOP
q q q P9 P P
-~ . - . . . p2SCsq STRONG-CHOP
q P P
- . . . v v v p 2CF; q CHOP-FAIL
q —q q Pq p p
-‘1 hd L4 hd A4 Ad Ad p 2FC3 q FAIL*CHOP
p p P9 q —-q q

Fig. 3. Example state sequences to illustrate the intuition behind the temporal connectives. The rightmost dot indicates the current instant ‘now’.

inductively defined as follows
X::i=p|-X[XVYXAYX—YX
- Y|0” X|0, X|O,X|0x|©,X|[¢X|XUY|X,,C,Y|
X,,SC,Y|X,,CF,Y|X,FC,Y

where p is any propositional symbol from the set P and X, Y
are arbitrary wif in PLTLP.

The intuitive meaning of the temporal connectives is
given in Table 2. Note that the formulae involving counting
connectives are false at the current instant ¢, if there are less
than n instances between the current instant and the initial
instant £, i.e. if k <n.

Fig. 3 depicts the intuition behind the temporal connectives.
Some examples of formulae in PLTLP are: rain— (&5

(cold A humid)), lift_arrives — (&7 (req_from_floor vV
req_from_passenger)), [J (door_open — (lift_stopped A
alarm_on)).

As another example, a cycle of a simple square wave

where the line remains high for first 2 s and low for the
next 3 s is defined by the formula S = p,SC;(— p). Note
that we cannot say, using the notation given in this section,
the fact that the square wave consists of 10 such cycles in
the past, as it involves counting modulo 5. Thus the CHOP
connectives have to be used cautiously. Often, it is neces-
sary to have the CHOP connectives as ‘outermost’ ones in a
formula, e.g. in general, it is difficult to model situations
where [, is used to repeat a formula containing the
CHOP connectives.

Note that we can define some of the connectives in terms
of the chop connectives, e.g.

0O X= truGICOX

0, X = true,C, X

X,,CF,Y =X,Cy(—0,7Y)
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B=0T,A B= B=0,A
SOMETIME ALLPAST PREV
B=0"A B= "A B=0"A

Fig. 4. Some temporal gates and the semantics of the associated TFT in terms of PLTLP.

3.2. Semantics of PLTLP

Let PROP be a finite set of propositional symbols. In this
section, without loss of generality, we denote the timeline
TIME by the sequence [0,n] =0, 1,2,...,n. n indicates a
(generic) current instance called ‘now’. A temporal inter-
pretation (or just interpretation) I: [0,n] — 2" is a function
which associates a subset of propositions from P with every
time instant. If 7 is a temporal interpretation for P and if k is
any time instant k € TIME such that I(k) = P;, where
P, C PROP, we assume that all propositions in P; are true
at the time instant k and all propositions in P — P, are false
at the time instant k. Note that at any instant k € TIME, the
value of the temporal interpretation I(k) constitutes an
instantaneous interpretation for P in the sense that I(k)
associates true or false values with symbols in P which
hold only at the instant k. I(k) is also called the state at
time instant k.

We say that a PLTLP formula is non-temporal formula if
it does not include any temporal operators; otherwise, the
formula is said to be a temporal formula. Given a temporal
interpretation / and a non-temporal PTL formula X, the
instantaneous truth-value of X under / at any instant k in
TIME, denoted by I(k)(X), is the truth value of X under the
instantaneous interpretation I(k); 1(k)(X) can be obtained by
any standard method of propositional logic (e.g. truth
tables). If I: TIME — 27 is a temporal interpretation and
k € TIME, then I’ denotes the temporal interpretation
obtained by a temporal shift of k time instants into the
past, i.e. Ik(i) =k —1i) for i=0,1,2,...and i = k. I*is
called the k-shifted temporal interpretation. Note that [° = I.

Let X be an arbitrary formula in PLTLP. Let I
TIME — 2% be a temporal interpretation. The truth-value
of X in I, denoted I(X), is inductively defined below:

e if X is a non-temporal formula then /(X) = I(0)(X);

e if X is of the form O~ Y then I(X) = I'(Y);

e if X is of the form O,,Y then I(X) = I"(Y) and false if
m > n;

e if X is of the form O7Y then IX) =I°(Y) AIN(Y) A
PX)APX) A - ATFX). Alternatively, I(X) = false
if there is some k € TIME such that Ik(Y) = false; other-
wise, I(X) = true;

e if X is of the form O, Y then I(X) = I°(Y) AI'(Y) A
PX)APX) A - AI™X) and false if m > n. Alterna-
tively, I(X) = false if there is some k, n —m=k=n,
such that Ik(Y) = false; otherwise, I(X) = true;

e if X is of the form <Y then I(X) = true if there is some
k € TIME such that Ik(Y) = true; otherwise, I(X) = false;

e if X is of the form <, Y then I(X) =I°(Y)VI'(Y)V
PX)VEX) V- VI'X) and false if m > n. Alterna-
tively, I(X) = false if there is some k, n —m=k=n,
such that 7%(Y) = false; otherwise, 1(X) = true;

e if X is of the form YUZ then I(X) = true if there is some
k € TIME such that I(Z) = true and if I(Y) = I*"'(v) =
... = JI'(Y) = true; otherwise, I(X) = false.

The semantics of the chop connectives can be defined
similarly.

A temporal interpretation / is a temporal model (or simply,
model) for a PLTLP formula X if I(X) = true. A PLTLP
formula is called temporally satisfiable (or simply, satisfiable)
if a temporal model exists for X; otherwise, X is called tempo-
rally unsatisfiable(or simply, unsatisfiable). A PLTLP
formula X is called femporally valid (or simply, valid) if
every possible temporal interpretation is a temporal model
for X, i.e. I(X) = true for any temporal interpretation /.

Examples. Let P={p,q}, n=>35, 1=
{(0{g}). (1, (.9, 2. {p.q}). B, {p}, 4 {p}). 5. {pH}.
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TrainArrived CmdFailure
CmdGenerated
\ 4

| IPREVS | | ‘ |WITHIN5| |

| Trainln | | CmdCloseGate |
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SOMETIME

I
()
SOMETIME

©

Fig. 5. Some simple TFTs.

Then I(p — q) = false and I’(p — ¢)) = true; so that the
formula O™ (p — ¢q) is temporally satisfiable but not tempo-
rally valid. Similarly, /(&GO p) = false but it would have
been true if I had included (0,{p,q}); so this formula is
temporally satisfiable but not temporally valid. The formula
O p A ST —pis temporally unsatisfiable. If X is a formula

®)
valid in propositional logic, then [J X is temporally valid in
PLTLP. For example, (p — p) is valid in propositional logic;
hence L~ (p — p) is temporally valid in PLTLP. Similarly,
p—q) <~ (—pVgq) is valid in propositional logic, so
O ((»p—¢q) <= (—pV q)) is temporally valid in PLTLP.
LetS = {F|,F,,...,F,} be afinite set of PLTLP formulae.

Explosion

v

PressureTooHigh |

A

v

‘ ValveDoesNotOpen |

| ‘ FORPAST 5 | |
ValveFailed
| ’ FORPAST 5 | ‘

| ComputerDoesNotOpenValve |

0

PressureSensorFailed | | OpenCmdNotGencerated |

y

| |FORPAST5 | ‘ f

‘ |WITHIN5 | |

Fig. 6. A simple TFT.
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TrainFailsToStop

| |3OCHOP$AHJO |

(a) TFT for the failure of a train to stop

Condition2

l DangerousCondition |

v

‘ |5CHOP4 | |

A A 4

HighTemp

(b) TFT for a dangerous condition

Fig. 7. Examples of TFT using the CHOP connectives.

Let X be another formula. We say that the PLTLP formula X is
a logical consequence of S or S logically entails X, written
S E X, for any temporal interpretation / such that I(F; A F, A
-+ A F,) = true, then I(X) = true.

3.3. Temporal fault tree notation

We now propose a method to augment the FT notation
and define a TFT notation, which includes facilities for
expressing temporal events and temporal dependencies
among them. We treat the logical gates as non-temporal
and introduce special-purpose temporal gates, one for
each of the temporal connectives introduced earlier. The
temporal gates for O, [J,, &7, &7, O and O are
unary and those for other temporal operators are binary
(unlike, say, an AND gate which has an arbitrary arity in
the FT notation). To avoid a profusion of special symbols in
the TFT notation, we use a common symbol to denote all
temporal gates—a rectangle with double vertical borders
and a text label containing the name of the temporal connec-
tive and the associated parameters (integers m, n), if any.
Fig. 4 depicts the use of some temporal gates and the seman-
tics of the associated TFT in terms of a formula in PLTLP.
Note that the TFT notation has retained the compositional
approach of the FT notation of deriving the meaning.

4. Examples

In this section, we present some simple examples where
the TFT notation is used to build FT, which depict temporal
events and temporal dependencies among them. We also
present a top-down declarative temporal method to ‘read’
and ‘understand’ the TFT notation.

As a first example, consider a simple controller for a gate
on a railway crossing. The gate controller fails if the train
arrived exactly 5 s ago but command to close the gate was
not generated within the last 5 s. This situation is defined by

the following PLTLP formula and depicted in the associated
TFT in Fig. 5(a).

GateFailure = (05 Trainln) A (¢5 CmdCloseGate)

Note that we have used the directional arrows to informally
indicate the time flow from the top. The current instant is
associated with the top event, i.e. the fault and the causes in
the past for that event are depicted along the downward flow
in the TFT. A chaining of temporal gates is illustrated in a
TFT in Fig. 5(b). The corresponding formula for the top
node is given later which says that the top event C is true
now if A is true sometime in the past and B is true sometime
before that. D1 and D2 are dummy (pseudo) events.

C=0"(AA(OTB))

As another example [22], Fig. 6 depicts a TFT for a situation
where an explosion occurs because the pressure (in a cham-
ber, say) was too high and the release valve did not operate.

Simple examples for the use of chop connectives are as
follows. A failure of a train to stop can be described as
HighSpeed ,,CF,Braking. In this formula, the condition
HighSpeed holds now and for past m seconds but the condi-
tion Braking does not hold for all # seconds before that. The
condition that a period of high temperature and high pres-
sure is preceded by a period of high temperature is described
by the formula (HighTemp A HighPressure) ,C, High-
Temp. Associated TFTs are shown in Fig. 7.

5. Analysis of TFT

Given the observation that a top event in an FT has
occurred, the next task is the identification of the possible
causes for the top event to occur. The standard approaches
to this task are: (i) top-down depth-first traversal of the FT
till a set of basic events is reached and matched with the
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Table 3

A sample trace (log) for a system
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Timestamp HighPressure ValveReading PressureReading CmdGenerated
18 1 Closed 38.8 Nil
17 1 Closed 37.4 Nil
16 1 Closed 36.0 Nil
15 1 Closed 344 Nil
14 1 Closed 33.8 Nil
13 1 Closed 31.0 Nil
12 0 ? 29.0 Nil
11 0 ? ? Nil

observations and (ii) computation of the cut-sets and path-
sets. We now consider these tasks in turn.

5.1. Depth-first traversal of a TFT

In case of TFT, the TFT traversal is complicated by the
fact that there are temporal gates to traverse and the obser-
vations are not a single static snapshot of the system, but
instead a timestamped trace or log of the system, i.e. a
temporal database. We have employed the critical idea
that this temporal database forms an interpretation for the
PLTLP formula represented by the given TFT. The TFT
traversal involves evaluating each sub-tree rooted at a
temporal gate according to the method of Section 3.2 for
constructing the truth-value of the temporal formula asso-
ciated with the sub-tree. This recursive top-down depth-first
traversal of the TFT begins at the root and traverses the TFT
downwards one level at a step. At any level, if the current
gate is AND then all the events at that level are assumed to
be true and the search proceeds to the next level. If the gate
was OR, then each event at the level is recursively searched
to see if it is true. If the gate is temporal, then the corre-
sponding temporal formula is checked against the temporal
trace or log.

Rather than formally define this procedure, we illustrate it
to identify the cause for the top event in the TFT of Fig. 6.
Table 3 shows a sample trace (log) for such a system. Time-
stamps are arbitrary; the top event is assumed to occur at the
first record in Table 3, which has the timestamp = 18. High-
Pressure is a Boolean variable, which is true if the current
pressure is above 10.0 and O otherwise. ValveReading is a
Boolean variable indicating whether the valve is currently
open or closed. PressureReading is a numeric value of the
current pressure as sent by a sensor. Both ValveReading and
PressureReading fields can contain a special value ? to indi-
cate absence of a reading or occurrence of an error while
taking a measurement from the associated sensor.

The top event in Fig. 6 has an AND gate connected to two
events. The left event PressureTooHigh is the root of a TFT;
the associated formula is PressureTooHigh = s HighPres-
sure. This PLTLP formula is easily verified to be true since
HighPressure is true at the current time (18) and it is also
true for all the past times up to 13. Similarly, the PLTLP
formula ValveFailed = s (ValveReading = ?) is easily

seen to be false at time 18; note that the errors in ValveR-
eading at time 12 and 11 do not affect the truth of this
formula. The formula PressureSensorFailed = [J5 (Pressur-
eReading = ?) is also false at time = 18. However, the
PLTLP formula ValveCmdNotGenerated = — (5
(CmdOpenValve)). Thus the entire PLTLP formula for the
top event is true and the causes are events PressureTooHigh
and OpenCmdNotGenerated.

We have a prototype Prolog [33] implementation of the
depth-first traversal of a TFT. The implementation includes
a set of Prolog predicates that directly implements the
semantics of the PLTL (i.e. the predicates correspond to
temporal gates). The temporal database (e.g. Table 3) is
given as a set of application-specific Prolog facts, each of
which includes a timestamp. The structure (graph) of the
TFT is also provided as a separate set of Prolog facts. The
user can ask various questions by asking the system to eval-
uate a given temporal formula at the given instant; this
evaluation essentially corresponds to the depth-first traver-
sal of the TFT. Some examples of such questions (regarding
the TFT in Fig. 6) are given later. Note that the last query
corresponds to evaluating the PLTL formula for node
ComputerDoesNotOpenValve in Fig. 6.

Question: Is it true at instant = 18 that no command was
generated at all past instants? Answer: yes

Question: Is it true at instant = 18 that there was high
pressure for last five instants? Answer: yes

Question: Is it true at instant = 18 that there was high
pressure for last eight instants? Answer: no

Question: Is it true at instant = 18 that either there was an
error in pressure reading for the last five instants or no
command was generated within the last five instants?
Answer: yes

The depth-first traversal algorithm for TFT can do better
than evaluating given temporal formulae at the given
instant. It can also be used to examine the given temporal
database and return a list of causes (in the form of a cut-
set—see Section 5.2) that have caused the given top event at
the given instant. If there are more than one set of causes
(cut-sets) that could have caused the top event (as present in
the given temporal database) then the algorithm succes-
sively reports all of them (not in any particular order). In
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The Minimal Cut-sets:

{H, 1,1}
{1, L], K}
{E, F}
{E, ], K}

Fig. 8. A non-TFT and all its minimal cut-sets [28].

Fig. 6, the top event Explosion can be caused by several
combinations of events (i.e. cut-sets—see Section 5.2).
However, the given trace in Table 3 shows the occurrence
of a specific cut-set, which is detected and reported by the
depth-first algorithm for TFT traversal. Hence, in the
following case, the algorithm reports that there is only one
cut-set that is observed to have occurred in the given trace.
If there were several possible combinations of events (i.e.
cut-sets) that could have led to the occurrence of the top

=
v}

WITHIN 3

—

147

event in the TFT, the algorithm can backtrack and generate
all of them.

Question: What caused the top event Explosion in the
TFT of Fig. 6 at instant 18?

Answer: Us HighPressure A — (&5 CmdValveOpen), i.e.
the pressure was high for the last five instants and no
command was issued within the last five instants.

5.2. Fault diagnosis using cut-sets

A cut-set of a (non-temporal) FT is the set of those basic
(leaf) events in the FT such that the occurrence of all events
in the set will cause the top event to occur. A cut-set is
minimal if no proper subset of it is itself a cut-set. Cut-
sets are useful for fault diagnosis using FT. Here, given a
single FT and given that fact that its top event has occurred,
the algorithm finds all minimal cut-sets. Each minimal cut-
set is a possible diagnosis for the top event. After finding all
cut-sets, they are ranked according to importance or prob-
ability. Elements in each cut-set are then further ordered
according to factors like importance, probability or ease of
testing. A cut-set whose all elements (events) are checked to
have occurred is then a confirmed diagnosis. There are well-
known algorithms [28] that generate the set of all cut-sets
for a given (non-temporal) FT (Fig. 8). We now consider the
problem of generating all cut-sets for a TFT.

Essentially, there are two equivalent approaches to this
task. In both approaches the aim is to make use of the
existing algorithm for generating all minimal cut-sets of a
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Fig. 9. Some temporal gates and their replacements.
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non-TFT [28]. In the first approach, the idea is to replace
every temporal gate and its associated events by a basic
event labelled with a temporal formula. This process results
in a non-TFT to which the usual algorithms can be applied
to generate the minimal cut-sets. Note that each element in
the cut-set is actually a temporal event and consequently
checking whether it has occurred or not needs to be handled
carefully. The programs in our implementation handle this
aspect. Another complication is that the events associated
with a temporal gate may not be basic events and they
themselves be connected to further temporal gates (see
Fig. 5(b)). In such a case the algorithm should recursively
replace the temporal gates starting at the ‘lowest-level’
temporal gates first. This will result in a non-TFT in
which some of the events are labelled with complex
temporal formulae. For example, applying this algorithm
to the TFT in Fig. 6 will result in essentially the same
non-TFT as in Fig. 1, except that the basic events are now
labelled with the temporal formulae as follows:

e; = High_pressure_reported_for_last_5_minutes = [Js
HighPressure

e, = ValveSensorFailure = [s ValveSensorFailure

e3 = PressureSensorFailure = [J5 PressureSensorFailure
e, = OpenValveCommandNotlssued = — (<5 Cmd
ValveOpen)

Clearly, the minimal cut-sets for this non-TFT are: {e,
er}, {el, e3}, {1, e4}. Note that each e; is a temporal formula
(as given before).

There is actually another (basically similar) approach to
convert a TFT into a non-TFT. Here, we replace each
temporal gate by a logical gate and the events associated
with the temporal gate by one or more events. In this way,
the resulting FT is non-temporal, although much larger than
the associated TFT. Moreover, this approach can handle
temporal events that are defined in turn in terms of temporal
gates. The transformations associated with a selected sub-
set of temporal gates (for a specific value of bounds in the
temporal gates) is shown in Fig. 9. The dummy event true is
always assumed to occur at every instant. The TFT in Fig. 6
can easily be transformed using this algorithm.

6. Conclusions and further work

The popular and simple FT notation is widely used for
hazard analysis and to express diagnostic/maintenance
knowledge. However, a problem that prevents more analy-
tical use of FT is their lack of rigorous semantics. Users’
understanding of an FT depends on the clarity and correct-
ness of the natural language annotations used to label and
describe various parts. Moreover, it is not clear how to adapt
the FT notation to represent temporal relationships between
faults and events in dynamic systems. In this paper, we have
proposed an enhanced TFT notation by adding simple

temporal gates to capture temporal dependence between
events and faults. We also described a technique to perform
qualitative analysis of TFT to detect the causes of the top
event fault by matching the TFT with the trace (or log) of
the system activities as also transformations to convert a
TFT into a non-TFT so that minimal cut-sets can be
generated.

We feel that the TFT notation is simple, rigorous and in
the same spirit as the original FT notation. It adds consider-
able expressive power to allow the end-users to express
temporal dependencies between events, hopefully without
any training in formal temporal logic. Many different kinds
of automatic analysis techniques can be devised to work
with the TFT notation.

There is a large variety of temporal logics defined (see
Ref. [1] for a comprehensive survey), depending on whether
the time is linear/branching, dense/discrete, point-oriented/
interval-oriented, etc. Limitations of propositional linear
temporal logic, as used in this paper, in so far as expressive
power for specifying requirements of complex system is
concerned, are well known; see Ref. [1] for detailed theore-
tical comparisons. We have chosen this logic because it is
the simplest temporal logic and we expect it to be easier for
safety engineers (and not necessarily system developers) to
understand and use. We feel that branching time and many
other varieties of temporal logic are not always the easiest
and most intuitive ones, although they may be more expres-
sive. Moreover, actually, if we remove the PREV gates from
our TFT notation, the semantics of the resulting notation can
be defined in terms of any linear temporal logic, since most
of them provide past-oriented operators like UNTIL-PAST,
SOMETIME, ALWAYS-PAST, etc. Of course, we could
also have provided more expressive facilities, borrowing
from some temporal logics; for example, the ‘freeze
context’ operator from Ref. [9]. We could also have chosen
an interval oriented temporal logic [2,5] but the resulting FT
notation would need associating quantitative information
with the FT nodes. We wanted to retain the essentially
qualitative flavour of the FT notation and not add too
many complex quantitative facilities to it (see Refs.
[29,30]) although many of them have obvious advantages.
However, we have chosen what we hope to be a sufficiently
useful subset of temporal operators.

As a final point, we wish reiterate that the intended use of
the enhance FT notation is really ‘post facto’, i.e. after the
system is developed. Hence, we have assumed that the
system is observed by means of ‘periodic sampling’. This
is the view for most operational and maintenance/support
engineers and consequently the users of our TFT notation.
In such a case, whether or not the underlying model of the
time is dense, the ‘observed’ model of the time is certainly
linear and discrete. That is one more reason why we have
adopted a linear discrete-time temporal logic. In such a case,
one of the problems that need to be solved is the identifica-
tion of the causes of the observed hazard (top event) by
examining the trace/log of the system (which is necessarily
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a periodically sampled timestamped database, as in a tele-
metry data, for example). We have treated these problems in
Section 5.

We repeat that we have no intention to re-invent any
notation for specification of real-time safety-critical system.
In particular, there is no intention to re-invent timed Petri
nets or timed automata. Both of these are ‘executable’ or
operational notations whereas temporal logic presents a
more abstract view—although of course there is a relation
between them (e.g. temporal logic semantics can be defined
in terms of say Buchi automata). Temporal logic also does
not provide any explicit facilities (as in Petri nets) for asyn-
chronous, distributed, concurrent events. That is why we do
not consider the problem of translating the TFT into either
timed Petri nets or timed automata. We have only focused
on the problems of (i) what kind of temporal facilities are
needed by the users of the FT notation (ii) how the seman-
tics of this enhanced TFT notation can be defined, keeping
as close to the logical framework of the untimed FT notation
as possible and (iii) what kind of analysis can be performed
on the enhanced FT notation.

For further work, one can investigate the suitability of the
TFT notation to work with interval oriented temporal logics
like the Duration Calculus [2] or Interval Temporal Logic
[5]. Synthesis of TFTs is also an interesting problem. We are
investigating the methods to adapt the standard fault diag-
nosis algorithms based on FT to work with the TFT nota-
tion. We are also investigating the definitions of fuzzy TFT
where each of the propositional symbols associated with the
leaves of the TFT are actually fuzzy propositions whose
truth-values are real numbers from the interval [0,1].
These propositions are useful to model non-crisp observa-
tions like ‘the temperature is too high’ or the ‘pressure is
increasing rapidly’. The semantics of the temporal gates
also then need to be modified accordingly, to work with
such a fuzzy temporal logic [32]. One further work concerns
investigating how probabilistic extensions can be added in
the TFT notation.
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