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TLA in Pictures 
Leslie Lamport 

Abstract-Predicate-action diagrams, which are similar to 
standard state-transition diagrams, are precisely defined as for- 
mulas of TLA (the Temporal Logic of Actions). We explain how 
these diagrams can be used to describe aspects of a specification- 
and those descriptions then proved correct+ven when the com- 
plete specification cannot be written as a diagram. We also use 
the diagrams to illustrate proofs. 

Index Term-Concurrency, specification, state-transition dia- 

ample. It shows how diagrams are used to describe aspects ofa  
complete specification, and to provide complementary views 
of a system. Section IV gives another example of how predi- 
cate-action diagrams are used to describe a system, and shows 
how they are used to illustrate a proof. 

11. TLA 
grams, temporal logic. 

We now describe the syntax and semantics of TLA. The de- 
scription is illustrated with the formulas defined in Fig. l .  (The I. INTRODUCTION 

ICTURES aid understanding. A simple flowchart is easier to P understand than the equivalent programming-language 
text. However, complex pictures are confusing. A large, spa- 
ghetti-like flowchart is harder to understand than a properly 
structured program text. 

Pictures are inadequate for specifying complex systems, but 
they can help us understand particular aspects of a system. For 
a picture to provide more than an informal comment, there 
must be a formal connection between the complete specifica- 
tion and the picture. The assertion that the picture is a correct 
description of (some aspect of) the system must be a precise 
mathematical statement. 

We use TLA (the Temporal Logic of Actions) to specify 
systems. In TLA, a specification is a logical formula describ- 
ing all possible correct behaviors of the system. As an aid to 
understanding TLA formulas, we introduce here a type of pic- 
ture called a predicate-action diagram. These diagrams are 
similar to the various kinds of state-transition diagrams that 
have been used for years to describe systems, starting with 
Mealy and Moore machines [l], [2]. We relate these pictures 
to TLA specifications by interpreting a predicate-action dia- 
gram as a TLA formula. A diagram denoting formula D is a 
correct description of a system with specification S iff (if and 
only it) S implies D. We therefore provide a precise statement 
of what it means for a diagram to describe a specification. 

We use predicate-action diagrams in three ways that we be- 
lieve are new for a precisely defined formal notation: 

0 To describe aspects of a specification even when it is not 
feasible to write the complete specification as a diagram. 

0 To draw different diagrams that provide complementary 
views ofthe same system. 

0 To illustrate formal correctness proofs. 
Section I1 is a brief review of TLA; a more leisurely intro- 

duction to TLA appears in [3]. Section 111 describes predicate- 
action diagrams, using an n-input Muller C-element as an ex- 

A symbol = means equals by definition.) 

Fig. 1. The TLA formula CP describing a simple program that repeatedly in- 
crements x or y. 

We assume an infinite set of variables (such as x and y )  and 
a class of semantic values. Our variables are the flexible vari- 
ables of temporal logic, which are analogous to variables in a 
programming language. TLA also includes the rigid variables 
of predicate logic, which are analogous to constant parameters 
of a program, but we ignore them here. The class of values 
includes numbers, strings, sets, and functions. 

A state is an assignment of values to variables. A behavior 
is an infinite sequence of states. Semantically, a TLA formula 
is true or false of a behavior. Syntactically, TLA formulas are 
built up from state functions using Boolean operators (7, A, v, 
a [implication], and = [equivalence]) and the operators ' and 
0, as described below. TLA also has a hiding operator 3, 
which we do not use here. 

A state function is a nonBoolean expression built from vari- 
ables, constants, and constant operators. Semantically, it as- 
signs a value to each state-for example x + 1 assigns to state s 
one plus the value that s assigns to the variable x. A state 
predicate (often called just a predicate) is a Boolean expres- 
sion built from variables, constants, and constant operators 
such as +. Semantically, it is true or false for a state-for ex- 
ample the predicate Init, is true of state s iff s assigns the value 
zero to both x and y .  

An action is a Boolean expression containing primed and 
unprimed variables. Semantically, an action is true or false of a 
pair of states, with primed variables referring to the second 
state-for example, action 34, is true for (s, t )  iff the value 
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that state t assigns to x equals one plus the value that state s 
assigns to x, and the values assigned to y by states s and t are 
equal. A pair of states satisfying an action A is called an A 
step. Thus, an step is one that increments x by one and 
leaves y unchanged. 

Iff is a state function or state predicate, we write f’ for the 
expression obtained by priming all the variables of f: For ex- 
ample (x + 1)’ equals x’ + 1, and Init; equals (x’ = 0) A 

(y’ = 0). For an action A and a state function v, we define 
[A], to equal A v (v’ = v), so a [A], step is either an A step 
or a step that leaves the value of v unchanged. Thus, a [%1], 

step is one that increments x by one and leaves y unchanged, or 
else leaves the ordered pair (x, y )  unchanged. Since a tuple is 
unchanged iff each component is unchanged, a [Jkfl],, step is 
one that increments x by one and leaves y unchanged, or else 
leaves both x and y unchanged. We define (A), to equal A A 

(v’ # v), so an step is an M1 step that changes x or y .  
Since an M1 step leaves y unchanged, an (341)(x, step is a 
step that increments x by 1, changes the value of x, and leaves 
y unchanged. 

We say that an action A is enabled in state s iff there exists 
a state t such that (s, t )  is an A step. For example, N1 is en- 
abled iff it is possible to take a step that increments x by one, 
changes x, and leaves y unchanged. Since x + 1 # x for any 
natural number x, action (NI) ,  is enabled in any state in 
which x is a natural number. If - + 1 equals -, then (N1)(x,N 

is not enabled in a state in which x equals -. 
A TLA formula is true or false of a behavior. A predicate is 

true of a behavior iff it is true of the first state. An action is 
true of a behavior iff it is true of the first pair of states. As 
usual in temporal logic, if F is a formula then OF is the for- 
mula meaning that F is always true. Thus, OZnit, is true of a 
behavior iff x and y equal zero for every state in the behavior. 
The formula O[34lx,, is true of a behavior iff each step (pair 
of successive states) of the behavior is a [NI(,,, step. 

Using 0 and “enabled” predicates, we can define faimess 
operators WF and SF. The weak fairness formula WF,(A) 
asserts of a behavior that there are infinitely many (A), steps, 
or there are infinitely many states in which (A), is not en- 
abled. In other words, WFv(A) asserts that if (A), becomes 
enabled forever, then infinitely many (A), steps occur. The 
strong fairness formula SF,(A) asserts that either there are 
infinitely many (A), steps, or there are only finitely many 
states in which (A), is enabled. In other words, SF,(A) asserts 
that if (A), is enabled infinitely often, then infinitely many 
(A), steps occur. 

The standard form of a TLA specification is h i t  A O[W, A 

L, where Init is a predicate, N i s  an action, v is a state func- 
tion, and L is a conjunction of fairness conditions. This for- 
mula asserts of a behavior that 

1) Init is true for the initial state, 
2)  every step of the behavior is an N s t e p  or leaves v un- 

changed, and 

3) L holds. 
Formula Q, of Fig. 1 is in this form, asserting that 

1) initially x and y both equal zero, 
2) every step either increments x by one and leaves y un- 

changed, increments y by one and leaves x unchanged, or 
leaves both x and y unchanged, and 

3) the fairness condition WF,,(3f1) A WF,,(.M2) holds. 

Formula WF,,(3M1) asserts that there are infinitely many 
(341)(x, steps or is infinitely often not enabled. Since 
1) and 2)  imply that x is always a natural number, (%,), is 
always enabled. Hence, WF,(%,) implies that there are in- 
finitely many (341)(x, steps, so x is incremented infinitely of- 
ten. Similarly, WF,,(3M2) implies that y is incremented infi- 
nitely often. Putting this all together, we see that Q, is true of a 
behavior iff 

1) x and y are initially zero, 
2 )  every step increments either x or y by one and leaves the 

other unchanged or else leaves both x and y unchanged, 
and 

3) both x and y are incrqrnented infinitely many times. 

The formula Init A O[w, is a safety property [4]. It de- 
scribes what steps are allowed, but it does not require anything 
to happen. (The formula is satisfied by a behavior satisfying 
the initial condition in which no variables ever change.) Fair- 
ness conditions are used to specify that something must 
happen. 

111. PREDICATE-ACTION DIAGRAMS 

A. AnExample 

circuit with n binary inputs 
We take as an example a Muller C-element [ 5 ] .  This is a 

in [l], ..., in [n] 

and one binary output out, as shown in Fig. 2. As the figure 
indicates, we are considering the closed system consisting of 
the C-element together with its environment. Initially, all the 
inputs and the output are equal. The output becomes 0 when 
all the inputs are 0, and it becomes 1 when all the inputs are 1. 
After an input changes, it must remain stable until the output 
changes. 

out 

Fig. 2. A Muller C-element. 
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Fig. 3. Predicate-Action diagram of (;n [I], in [2], ouf ) for a 2-input C-element, and the corresponding TLA formula. 

The behavior of a 2-input C-element and its environment is 
described by the predicate-action diagram of Fig. 3a, where C 
is defined by: 

C(i,j,k) 4 ( in[ l ]= i )~  (in[2]=j)~(out=k).  

The short arrows, with no originating node, identify the nodes 
labeled C(0, 0, 0) and C( 1, 1, 1) as initial nodes. They indicate 
that the C-element starts in a state satisfying C(0, 0, 0) or C(1, 
1, 1). The arrows connecting nodes indicate possible state 
transitions. For example, fiom a state satisfying C(1, 1, l), it is 
possible for the system to go to a state satisfying either 
C(0, 1, 1) or C(1, 0, 1). More precisely, these arrows indicate 
all steps in which the triple (in['], in[2], out) changes-that 

is, transitions in which at least one of in[l], in[2], and out 

changes. Steps that change other variables-for example, vari- 
ables representing circuit elements inside the environment- 
but leave (in [ 11, in [2], out) unchanged are also possible. 

The predicate-action diagram of Fig. 3a looks like a stan- 
dard' state-transition diagram. However, we interpret it for- 
mally not as a conventional state machine, but as the TLA 
formula of Fig. 3b.' This formula has the form Znit A A, F,, 
where Znit is a state predicate and there is one conjunct F, for 
each node 0. The predicate h i t  is C(0, 0,' 0) v C( 1, 1, 1). Each 
F, describes the possible state changes starting from a state 
described by node 0. For example, the formula F, for the node 
labeled C( 1, 1,O) is 

1 ('"[I], '421, O U f )  

0 c(1, 1, 0) * c(1, 1, 1)' [ 
A predicate-action diagram represents a safety property; it 
does not include any fairness conditions. 

Fig. 3a is a reasonable way to describe a 2-input C-element. 
However, the corresponding diagram for a 3-input C-element 

1 .  A list of formulas bulleted by A or v denotes their conjunction or dis- 
junction; A and v are also used as ordinary infix operators. 

would be quite complicated; and there is no way to draw such 
a diagram for an n-input circuit. The general specification is 
written directly as a TLA formula in Fig. 4. The array of inputs 
is represented formally by a variable in whose value is a func- 
tion with domain { 1, . . ., n}, where square brackets denote 
hnction application. (Formally, n is a rigid variable--one 
whose value is constant throughout a behavior.) We introduce 
two pieces of notation fot representing functions: 

0 [ i  E S H e(i)] denotes the functionfwith domain S such 
thatf[i] equals e(i) for every i in S. 

0 lfexcept ! [ i ]  = e] denotes the function g that is the same 
asfexcept that g [  i] equals e. 

The formulas defined in Fig. 4 have the following interpreta- 
tion. 

0 Initc: a state predicate asserting that out is either 0 or 1, 
and that in is the fimction with domain { 1, . . ., n} such 
that in[i] equals out for all i in its domain. 
Znput(i): an action that is enabled iff in[i] equals out. It 
complements in[i] , leaves in[j] unchanged for j  # i, and 
leaves out unchanged. (The symbol i is a parameter.) 

0 Output: an action that is enabled iff all the in[i] are dif- 
ferent fiom out. It complements out and leaves in 
unchanged. 

0 Next: an action that is the disjunction of Output and all 
the Znput(i) actions, for i E { 1, . . ., n}. Thus, a Next step 
is either an Output step or an Input(i) step for some input 
line i. 

0 Q: a temporal formula that is the specification of the C- 
element (together with'its environment). It asserts that 

1) hi tc  holds initially, 
2) Every step is either a Next step or else leaves (in, out) 

unchanged, and 
3) Output cannot be enabled forever without an Output 

step occurring. 
The fairness condition 3) requires the output to change if all 
the inputs have; inputs are not required to change. (Since 
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predicate-action diagrams describe only safety properties, the 
fairness condition is irrelevant to our explanation of the 
diagrams.) 

A 
In i tC 

Input( i )  = A in[;] = out 

= A out E (0,l) 
A i n = [ i E ( l ,  ..., n } c r o u t ]  

A in‘ = [ in  except ! [a]  = 1 - i n [ i ] ]  

A 

Fig. 6. Another predicate-action diagram of (in[i], out) for nc, where 
1 I i I n .  

A out’ = out 

A out’ = 1 - out 
A in‘ = in  

A = A Vi  E (1,. . . , n} : in[ i ]  # out 
(a) A predicate-action diagram of ( in [ i ] ,  out). 

Output 
Input ( a )  

A 

A 
Nezt = Output V 3 i E (1,. . . , n} : Input(i)  

= I n i t c  A O[”tl(in,out) AWF(in,out) (Output)  
output 

(b) The corresponding TLA formula. Fig. 4. A TLA specification of an n-input C-element. 

A in[ i ]  = out 

A O[( in [ i ]  = out)  * Input(;) A ( in’[;]  # ~ u t ’ ) ] ( i ~ [ i ] , ~ ~ t )  
A O[( in[ i ]  # out) =+ Output A (in’[z] = o u t ’ ) ] ( ; , [ ; ~ , ~ ~ t )  

The specification I& is short and precise. However, it is not 
as reader-fiiendly as a predicate-action diagram. We therefore 
use diagrams to help explain the specification, beginning with 
the predicate-action diagram of Fig. 5 .  It is a diagram of the 
state function (in[i], out), meaning that it describes transitions 
that change (in[& out). It is a diagram for the formula n,, 

Fig. 7. A more informative predicate-action diagram of (in[i], out) for nc, and 
the corresponding TLA 

meaning that it represents a formula that is implied by nC. The 
diagram shows the synchronization between the C-element’s 
ith input and its output. 

A h[z] = 1 n Aout = O  

Fig. 5 .  A predicate-action diagram of (in[i], out) for the specification IIc of an 
n-input C-element, where 1 I i I n. 

We can draw many different predicate-action diagrams for 
the same specification. Fig. 6 shows another diagram of (in[& 
out) for ll,. It is simpler than the one in Fig. 5 ,  but it contains 
less information. It does not indicate that the values of in[i] 
and out are always 0 or 1, and it does not show which variable 
is changed by each transition. The latter information is added 
in the diagram of Fig. 7a, where each transition is labeled with 
an action. The label Znput(i) on the left-to-right arrow indicates 
that a transition fiom a state satisfying in[i] = out to a state 
satisfying in[i] f out is an Znput(i) step. This diagram repre- 
sents the TLA formula of Fig. 7b. 

Even more information is conveyed by a predicate-action 
diagram of (in, out), which also shows transitions that leave 
in[ i ]  and out unchanged but change in [ j ]  for somej f i. Such a 
diagram is drawn in Fig. 8a. Fig. 8b gives the corresponding 
TLA formula. 

(a) A predicateaction diagram of ( in ,  out) .  

output 

(b) The corresponding TLA formula. 

Fig. 8. A predicate-action diagram of (in, out) for nc, and the corresponding 
TLA formula, where 1 I i 5 n. 

There are innumerable predicate-action diagrams that can 
be drawn for a specification. Fig. 9 shows yet another diagram 
for the C-element specification n,. Since we are not relying on 
these diagrams as our specification, but simply to help explain 
the specification, we can show as much or as little information 
in them as we wish. We can draw multiple diagrams to illus- 
trate different aspects of a system. Actual specifications are 
written as TLA formulas, which are much more expressive 
than pictures. 
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out' = 1 - ouf 

Fig. 9. Yet another predicate-action diagram of (in, our) for &. 

B. A Formal Treatment 

B. 1. Definition 

We first define precisely the TLA formula represented by a 
diagram. Formally, a predicate-action diagram consists of a 
directed graph, with a subset of the nodes identified as initial 
nodes, where each node is labeled by a state predicate and 
each edge is labeled by an action. We assume a given diagram 
of a state function v and introduce the following notation. 

N The set of  nodes. 
I The set of initial nodes. 
E(n) The set of edges originating at node n. 
d(e) The destination node of edge e.  
P, The predicate labeling node n. 
Ee The action labeling edge e.  

A A Init& A V n  E N : O[P, A,], 
E h i t& A 0([3n  E N : p,],,) 

A V n  E N : O[P, * dnIv 
[because A implies 0(3 n E N : Pn) ] 

E InifA O ( ( 3 n  E N : P,) 
A V n  E N : (P, + d,)jV 

[because 0 distributes over conjunction and V, and 
[XI, A Vn E N : [YnlV is equivalent to 
[XAVn E N : Yn]y] 

h i t A  A 0[3?1 E N : P, A A,], 
[by predicate logic, since B C implies O [ B ] .  j O[C], ] 

A i i  
0 

(B) If 
implies A. 
PROOF. By propositional logic, the hypothesis implies 

( 3 n E  N : P n A & ) 3 ( V n E  N : P , * a ) .  

(P, A P,) holds for all m, n in N with m f n, then 

The result then follows fiom simple temporal reasoning, es- 
sentially by the reverse of the string of equivalences and 

0 

We usually label the nodes of a predicate-action diagram 
with disjoint predicates, in which case (A) and (B) imply that 
the interpretations A and are equivalent. Diagrams with 

implication used to prove (A). 

The formula A represented by the diagram is defined as 
follows. 

nondisjoint node labels may occasionally be useful; A is the 
more convenient interpretation of such diagrams. 

A Init, = 3n E I :  P, 

A A = Init, AVn E N : O[P, a&]". 

When no explicit label is attached to an edge e,  we take E, to 
be true. When no set of initial nodes is explicitly indicated, we 
take I to be N. With the usual convention for quantification 
over an empty set, A,, is defined to equal false if there are no 
edges originating at node n. 

B. 2. Another Interpretation 

gram is the formula A, defined by 
Another possible interpretation of the predicate-action dia- 

This is perhaps a more obvious interpretation-especially if 
the diagram is viewed as a description of a next-state relation. 
We now show that A always implies A, and that the converse 
implication holds if the predicates labeling the nodes are 
disjoint. 
(A) A implies A.  
PROOF. A simple invariance proof, using rule INVl of [3], Fig. 

5 ,  page 888, shows that A implies 0(3n  E N : P,). 
We then have: 

C. Proving a Predicate-Action Diagram 
Saying that a diagram is a predicate-action diagram for a 

specification ll asserts that n implies the formula A repre- 
sented by the diagram. Formula ll will usually have the form 
Init, A O[M],  A L, where L is a fairness condition. Formula A 
equals Init, A Vn E N : O [ P ,  3 A,,]". To prove ll a A, we 
prove: 

1) Init, 3 Init, 
2 )  Init, A O[M],  =;' O [ P ,  3 A,,lY, for each node n. 

The first condition is an assertion about predicates; it is gen- 
erally easy to prove. To prove the second condition, one usu- 
ally finds an invariant Inv such that Init, A 0[34], implies 
Cy,,, so ll implies 0[34 A Znv],. The second condition is 
then proved by showing that [M A Inv], implies [Pn 2 A,,],, 
for each node n. Usually, U and v are tuples and every compo- 
nent of v is a component of U, so U' = U implies v' = v .  In this 
case, one need show only that 34 A Inv implies [P, AIY, 
for each n. By definition of A, this means proving 

P, r\Mr*Inv*(3m E E(n)  : gm A ~ ; ( , ) ) v ( v ' = v )  

for each node n. This formula asserts that an 34 step that starts 
with P,  and Inv true and changes v is an E, step that ends in a 
state satisfj4ng P4m), for some edge m originating at node n. 

IV. ILLUSTRATING PROOFS 

In TLA, there is no distinction between a specification and a 
property; they are both formulas. Verification means proving 
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that one formula implies another. A practical, relatively com- 
plete set of rules for proving such implications is described in 
[3]. We show here how predicate-action diagrams can be used 
to illustrate these proofs. We take as our example the same one 
treated in [3], that the specification Y defined in Section 1V.A 
below implies the specification cf, defined in Section I1 above. 

A. Another Specification 
We define a TLA formula Y describing a program with two 

processes, each of which repeatedly loops through the se- 
quence of operations P(sem); increment; V(sem), where one 
process increments x by one and the other increments y by one. 
Here, P(sem) and V(sem) denote the usual operations on a 
semaphore sem. To describe this program formally, we intro- 
duce a variable p c  that indicates the control state. Each process 
has three control points, which we call “a”, “b”, and “g”. 
(Quotes indicate string values.) 

We motivate the definition of Y with the three predicate- 
action diagrams for Y in Fig. 10. In these diagrams, the predi- 
cate PC(p, q )  asserts that control is at p in process 1 and at q in 
process 2.  Fig. 10a shows how the control state changes when 
the P(sem), V(sem), and increment actions are performed. 
Variables other than p c  not mentioned in an edge label are left 
unchanged by the indicated steps-for example, steps de- 
scribed by the edge labeled x’ = x + l leave y and sem un- 
changed-but this is not asserted by the diagram. The next- 
state action N i s  written as the disjunction NI v N2 of the 
next-state actions of each process; and each .!A( is written as 
the disjunction a, v j3, v 15. Fig. 10b illustrates this decompo- 
sition. Finally, the predicate-action diagram of Fig. 1Oc de- 
scribes how the semaphore variable sem changes. 

To write the specification Y, we let p c  be a function with 
domain { 1 ,  21, with pc[i]  indicating where control resides in 
process i. The formula PC(p, q )  can then be defined by 

The semaphore actions P and V are defined by 

P(sem) i! AO<sem 

A sem =sem - 1 

P( rem 

PC(”a“, “a”) 

PC(”a”, “a”) 

PC( “a”, 7 )  PC( “a”, “g“) 

Pi vPa 

sem = 1 sem = 0 

71 v72 

Fig. 10. Three predicate-action diagrams of (x, y ,  pc, sem) for Y .  

B. An Illustrated Proof 

conditions: 
The proof of Y j @ is broken into the proof of three 

1)  Znit, a Znit, 

2) Init, A O [ n l w  * O [ ~ I , ,  

3) Y a WF(,,,(N,), for i = 1,2. 
We illustrate the proofs of conditions 2 and 3 with the predi- 
cate-action diagram of (x, y, sem, p c )  for Y in Fig. 12, where 
Q is defined by 

A 
Qi(P,q) A APC(P,q)  V(sem) = sem’=sem -t 1. 

Missing from Fig. 10 are a specification of the initial values of 
x and y ,  which we take to be zero, and a fairness condition. 
One could augment predicate-action diagrams with some nota- 

Asem=i 

A (X E Nut) A ( y  E Nut) 

tion for indicating fairness conditions. However, the conditions 
that are easy to represent with a diagram are not expressive 
enough to describe the variety of faimess requirements that 
arise in practice. The WF and SF formulas, which are expres- 
sive enough, are not easy to represent graphically. So, we have 
not attempted to represent fairness in our diagrams. We take as 
the fairness condition for our specification Y strong faimess 
on the next-state action nl; of each process. The complete 
definition of Y appears in Fig. 1 1. 

and Nut is the set of natural numbers. 
First, we must show that the diagram in Fig. 12 is a predi- 

cate-action diagram for Y. This is easy using the definition in 
Section III.B.1; no invariant is needed. For example, the con- 
dition to be proved for the node labeled Qo(“b”, “a”) is that an 
N s t e p  that starts with QO(“b)), “U”) true is an .7M1 step (one 
that increments x and leaves y unchanged) that makes 
Qo(“g”, “U”) true. This follows easily from the definitions of Q 
and 9( since an N s t e p  starting with PC(“b”, “a”) true must 
be a PI step. 
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A 
In&p = A pc = [i E {1 ,2}  I+ “a”] 

A (z = 0) A (y = 0) 
A s e m = l  

A 
ai = A (pc[i] = “a”) A (0 < sem) 

A pc‘ = [pc except ![i] = “b“] 
A sem’ = sem - 1 
A (2, Y)’ = (2, Y) 

A 
yi = A pc[;] = “g” 

A pcf = [pc except ![i] = “a”] 
A sem‘ = sem + 1 
A (2, Y)‘ = (5, Y) 

A = A pc[l] = “b” 
A pc‘ = [pc except ![1] = “g”] 
A z ’ = z + 1  
A (y, sem)’ = (y, s e n )  

A pc‘ = [pc except ![2] = “g“] 
A y ‘ = y + l  
A (5, sem)‘ = (z, s e n )  

A 
p2 = A pc[2] = “b” 

A Ni = a ; ~ P i v 7 i  

N 5 N I V N Z  
w = ( z , y , s e m , p c )  

A 

@ e In&* A O [ N w  A SF,(J\/1) A SFw(n/2) 

Fig. 1 1 .  The specification Y. 
occur. Similarly, taking infinitely many (N2), steps implies 
that infinitely many (342)(x, f i  steps occur. This completes the 
proof of condition 3.  

Using the predicate-action diagram does not simplify the 
proof. If we were to make the argument given above rigorous, 
we would go through precisely the same steps as in the proof 
described in [3]. However, the diagram does allow us to 
visualize the proof, which can help us to understand it. 

Fig. 12. Another predicate-action diagram of (x,  y ,  sem, pc) for Y. 

To prove condition 2, it sufices to prove that every step 
allowed by the diagram of Fig. 12 is a [34],, step. The steps 
not shown explicitly by the diagram are ones that leave w un- 
changed. Such steps leave (x, y)  unchanged, so they are 
[34](x,, steps. The actions labeling all the edges of the diagram 
imply [34](x,fi, so all the steps shown explicitly by the diagram 
are also [34Ix,, steps. This proves condition 2. 

We now sketch the proof of condition 3.  To prove 
W F ,  JNi), it suffices to show that infinitely many , 
steps occur. We first observe that each of the predicates label- 
ing a node in the diagram implies that either (NI), or (N2), is 
enabled. The fairness condition of ‘I’ then implies that a behav- 
ior cannot remain forever at any node, but must keep moving 
through the diagram. Hence, the behavior must infinitely often 
pass through the Ql(“u”, “ U ” )  node. The predicate Ql(“u”, 
“ U ” )  implies that both (NI), and (N2), are enabled. Hence, 
the fairness condition SF,(%) A SF,(N2) implies that infi- 
nitely many (NI), steps and infinitely many (N2), steps must 
occur. Action (NI), is enabled only in the three nodes of the 
top loop. Taking infinitely many (NI), steps is therefore pos- 
sible only by going around the top loop infinitely many times, 
which implies that infinitely many NI steps occur, each start- 
ing in a state with QO((‘bl’, “U”) true. Since Qo(“b”, “U”) implies 
x E Nut, an 34, step starting with Qo(“b”, “U”) true changes x, 
so it is an (341)(x,fi step. Hence, infinitely many (341)(x,fi steps 

V. CONCLUSION 

We have described three uses of diagrams that we believe 

0 To describe particular aspects of a complex specification 
with a simple diagram. An n-input C-element cannot be 
specified with a simple picture. However, we explained 
the specification with diagrams describing the synchroni- 
zation between the output and each individual input. 

0 To provide complementary views of the same system. 
Diagrams b and c of Fig. 10 look quite different, but they 
are diagrams for the same specification. 

0 To illustrate proofs. The disjunction of the predicates la- 
beling the nodes in Fig. 12 equals the invariant I of the 
proof in Section 7.2 of [3]. The diagram provides a 
graphical representation of the invariance proof. 

TLA differs from traditional specification methods in two 
important ways. First, all TLA specifications are interpreted 
over the same set of states. Instead of assigning values just to 
the variables that appear in the specification, a state assigns 
values to all of the infinite number of variables that can appear 
in any specification. Second, TLA specifications are invariant 
under stuttering. A formula can neither require nor rule out 
finite sequences of steps that do not change any variables 
mentioned in the formula. (The state-function subscripts in 
TLA formulas are there to guarantee invariance under 
stuttering.) 

These two differences lead to two major differences be- 
tween traditional state-transition diagrams and predicate-action 
diagrams. In traditional diagrams, each node represents a sin- 
gle state. Because states in TLA assign values to an infinite 
number of variables, it is impossible to describe a single state 

are new for diagrams with a precise formal semantics: 
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with a formula. Any formula can specify the values of only a 
finite number of variables. To draw diagrams of TLA formu- 
las, we let each node represent a predicate, which describes a 
set of states. In traditional diagrams, every possible state 
change is indicated by an edge. Because TLA formulas are 
invariant under stuttering, we draw diagrams of particular state 
functions-usually tuples of variables. 

TLA differs fiom most specification methods because it is a 
logic. It uses simple logical operations like implication and 
conjunction instead of more complicated automata-based no- 
tions of simulation and composition [6] .  Everything we have 
done with predicate-action diagrams can be done with state- 
transition diagrams in any purely state-based formalism. How- 
ever, conventional formalisms must use some notion of ho- 
momorphism between diagrams to describe what is expressed 
in TLA as logical implication. 

Most formalisms employing state-transition diagrams are 
not purely state-based, but use both states and events. Nodes 
represent states, and edges describe input and output events. 
The meaning of a diagram is the sequence of events it allows; 
the states are effectively hidden. In TLA, there are only states, 
not events. Systems are described in terms of changes to inter- 
face variables rather than in terms of interface events. Vari- 
ables describing the internal state are hidden with the existen- 
tial quantifier 3 described in [3]. Changes to any variable, 
whether internal or interface, can be indicated by node labels 
or edge labels. Hence, a purely state-based approach like TLA 
allows more flexibility in how diagrams are drawn than a 
method based on states and events. 
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