
768 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 9, SEPTEMBER 1995

TLA in Pictures
Leslie Lamport

Abstract-Predicate-action diagrams, which are similar to
standard state-transition diagrams, are precisely defined as for-
mulas of TLA (the Temporal Logic of Actions). We explain how
these diagrams can be used to describe aspects of a specification-
and those descriptions then proved correct+ven when the com-
plete specification cannot be written as a diagram. We also use
the diagrams to illustrate proofs.

Index Term-Concurrency, specification, state-transition dia-

ample. It shows how diagrams are used to describe aspects ofa
complete specification, and to provide complementary views
of a system. Section IV gives another example of how predi-
cate-action diagrams are used to describe a system, and shows
how they are used to illustrate a proof.

11. TLA
grams, temporal logic.

We now describe the syntax and semantics of TLA. The de-
scription is illustrated with the formulas defined in Fig. l . (The I. INTRODUCTION

ICTURES aid understanding. A simple flowchart is easier to P understand than the equivalent programming-language
text. However, complex pictures are confusing. A large, spa-
ghetti-like flowchart is harder to understand than a properly
structured program text.

Pictures are inadequate for specifying complex systems, but
they can help us understand particular aspects of a system. For
a picture to provide more than an informal comment, there
must be a formal connection between the complete specifica-
tion and the picture. The assertion that the picture is a correct
description of (some aspect of) the system must be a precise
mathematical statement.

We use TLA (the Temporal Logic of Actions) to specify
systems. In TLA, a specification is a logical formula describ-
ing all possible correct behaviors of the system. As an aid to
understanding TLA formulas, we introduce here a type of pic-
ture called a predicate-action diagram. These diagrams are
similar to the various kinds of state-transition diagrams that
have been used for years to describe systems, starting with
Mealy and Moore machines [l], [2]. We relate these pictures
to TLA specifications by interpreting a predicate-action dia-
gram as a TLA formula. A diagram denoting formula D is a
correct description of a system with specification S iff (if and
only it) S implies D. We therefore provide a precise statement
of what it means for a diagram to describe a specification.

We use predicate-action diagrams in three ways that we be-
lieve are new for a precisely defined formal notation:

0 To describe aspects of a specification even when it is not
feasible to write the complete specification as a diagram.

0 To draw different diagrams that provide complementary
views ofthe same system.

0 To illustrate formal correctness proofs.
Section I1 is a brief review of TLA; a more leisurely intro-

duction to TLA appears in [3]. Section 111 describes predicate-
action diagrams, using an n-input Muller C-element as an ex-

A symbol = means equals by definition.)

Fig. 1. The TLA formula CP describing a simple program that repeatedly in-
crements x or y.

We assume an infinite set of variables (such as x and y) and
a class of semantic values. Our variables are the flexible vari-
ables of temporal logic, which are analogous to variables in a
programming language. TLA also includes the rigid variables
of predicate logic, which are analogous to constant parameters
of a program, but we ignore them here. The class of values
includes numbers, strings, sets, and functions.

A state is an assignment of values to variables. A behavior
is an infinite sequence of states. Semantically, a TLA formula
is true or false of a behavior. Syntactically, TLA formulas are
built up from state functions using Boolean operators (7, A, v,
a [implication], and = [equivalence]) and the operators ' and
0, as described below. TLA also has a hiding operator 3,
which we do not use here.

A state function is a nonBoolean expression built from vari-
ables, constants, and constant operators. Semantically, it as-
signs a value to each state-for example x + 1 assigns to state s
one plus the value that s assigns to the variable x. A state
predicate (often called just a predicate) is a Boolean expres-
sion built from variables, constants, and constant operators
such as +. Semantically, it is true or false for a state-for ex-
ample the predicate Init, is true of state s iff s assigns the value
zero to both x and y .

An action is a Boolean expression containing primed and
unprimed variables. Semantically, an action is true or false of a
pair of states, with primed variables referring to the second
state-for example, action 34, is true for (s, t) iff the value

Manuscript received November 1994; revised July 1995.
L. Lamport is with Digital Equipment Corporation's Systems Research

Laboratory, Palo Alto, Calif. e-mail: lamport@pa.dec.com.
IEEECS Log Number S95038.

0098-5589/95$04.00 0 1995 IEEE

mailto:lamport@pa.dec.com

LAMPORT: TLA IN PICTURES 169

that state t assigns to x equals one plus the value that state s
assigns to x, and the values assigned to y by states s and t are
equal. A pair of states satisfying an action A is called an A
step. Thus, an step is one that increments x by one and
leaves y unchanged.

Iff is a state function or state predicate, we write f’ for the
expression obtained by priming all the variables of f: For ex-
ample (x + 1)’ equals x’ + 1, and Init; equals (x’ = 0) A

(y’ = 0). For an action A and a state function v, we define
[A], to equal A v (v’ = v), so a [A], step is either an A step
or a step that leaves the value of v unchanged. Thus, a [%1],

step is one that increments x by one and leaves y unchanged, or
else leaves the ordered pair (x, y) unchanged. Since a tuple is
unchanged iff each component is unchanged, a [Jkfl],, step is
one that increments x by one and leaves y unchanged, or else
leaves both x and y unchanged. We define (A), to equal A A

(v’ # v), so an step is an M1 step that changes x or y .
Since an M1 step leaves y unchanged, an (341)(x, step is a
step that increments x by 1, changes the value of x, and leaves
y unchanged.

We say that an action A is enabled in state s iff there exists
a state t such that (s, t) is an A step. For example, N1 is en-
abled iff it is possible to take a step that increments x by one,
changes x, and leaves y unchanged. Since x + 1 # x for any
natural number x, action (NI) , is enabled in any state in
which x is a natural number. If - + 1 equals -, then (N1)(x,N

is not enabled in a state in which x equals -.
A TLA formula is true or false of a behavior. A predicate is

true of a behavior iff it is true of the first state. An action is
true of a behavior iff it is true of the first pair of states. As
usual in temporal logic, if F is a formula then OF is the for-
mula meaning that F is always true. Thus, OZnit, is true of a
behavior iff x and y equal zero for every state in the behavior.
The formula O[34lx,, is true of a behavior iff each step (pair
of successive states) of the behavior is a [NI(,,, step.

Using 0 and “enabled” predicates, we can define faimess
operators WF and SF. The weak fairness formula WF,(A)
asserts of a behavior that there are infinitely many (A), steps,
or there are infinitely many states in which (A), is not en-
abled. In other words, WFv(A) asserts that if (A), becomes
enabled forever, then infinitely many (A), steps occur. The
strong fairness formula SF,(A) asserts that either there are
infinitely many (A), steps, or there are only finitely many
states in which (A), is enabled. In other words, SF,(A) asserts
that if (A), is enabled infinitely often, then infinitely many
(A), steps occur.

The standard form of a TLA specification is h i t A O[W, A

L, where Init is a predicate, N i s an action, v is a state func-
tion, and L is a conjunction of fairness conditions. This for-
mula asserts of a behavior that

1) Init is true for the initial state,
2) every step of the behavior is an N s t e p or leaves v un-

changed, and

3) L holds.
Formula Q, of Fig. 1 is in this form, asserting that

1) initially x and y both equal zero,
2) every step either increments x by one and leaves y un-

changed, increments y by one and leaves x unchanged, or
leaves both x and y unchanged, and

3) the fairness condition WF,,(3f1) A WF,,(.M2) holds.

Formula WF,,(3M1) asserts that there are infinitely many
(341)(x, steps or is infinitely often not enabled. Since
1) and 2) imply that x is always a natural number, (%,), is
always enabled. Hence, WF,(%,) implies that there are in-
finitely many (341)(x, steps, so x is incremented infinitely of-
ten. Similarly, WF,,(3M2) implies that y is incremented infi-
nitely often. Putting this all together, we see that Q, is true of a
behavior iff

1) x and y are initially zero,
2) every step increments either x or y by one and leaves the

other unchanged or else leaves both x and y unchanged,
and

3) both x and y are incrqrnented infinitely many times.

The formula Init A O[w, is a safety property [4]. It de-
scribes what steps are allowed, but it does not require anything
to happen. (The formula is satisfied by a behavior satisfying
the initial condition in which no variables ever change.) Fair-
ness conditions are used to specify that something must
happen.

111. PREDICATE-ACTION DIAGRAMS

A. AnExample

circuit with n binary inputs
We take as an example a Muller C-element [5] . This is a

in [l], ..., in [n]

and one binary output out, as shown in Fig. 2. As the figure
indicates, we are considering the closed system consisting of
the C-element together with its environment. Initially, all the
inputs and the output are equal. The output becomes 0 when
all the inputs are 0, and it becomes 1 when all the inputs are 1.
After an input changes, it must remain stable until the output
changes.

out

Fig. 2. A Muller C-element.

~

770 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 9, SEPTEMBER 1995

Fig. 3. Predicate-Action diagram of (;n [I], in [2], ouf) for a 2-input C-element, and the corresponding TLA formula.

The behavior of a 2-input C-element and its environment is
described by the predicate-action diagram of Fig. 3a, where C
is defined by:

C(i,j,k) 4 (in[l]= i)~ (in[2]=j)~(out=k).

The short arrows, with no originating node, identify the nodes
labeled C(0, 0, 0) and C(1, 1, 1) as initial nodes. They indicate
that the C-element starts in a state satisfying C(0, 0, 0) or C(1,
1, 1). The arrows connecting nodes indicate possible state
transitions. For example, fiom a state satisfying C(1, 1, l), it is
possible for the system to go to a state satisfying either
C(0, 1, 1) or C(1, 0, 1). More precisely, these arrows indicate
all steps in which the triple (in['], in[2], out) changes-that

is, transitions in which at least one of in[l], in[2], and out

changes. Steps that change other variables-for example, vari-
ables representing circuit elements inside the environment-
but leave (in [11, in [2], out) unchanged are also possible.

The predicate-action diagram of Fig. 3a looks like a stan-
dard' state-transition diagram. However, we interpret it for-
mally not as a conventional state machine, but as the TLA
formula of Fig. 3b.' This formula has the form Znit A A, F,,
where Znit is a state predicate and there is one conjunct F, for
each node 0. The predicate h i t is C(0, 0,' 0) v C(1, 1, 1). Each
F, describes the possible state changes starting from a state
described by node 0. For example, the formula F, for the node
labeled C(1, 1,O) is

1 ('"[I], '421, O U f)

0 c(1, 1, 0) * c(1, 1, 1)' [
A predicate-action diagram represents a safety property; it
does not include any fairness conditions.

Fig. 3a is a reasonable way to describe a 2-input C-element.
However, the corresponding diagram for a 3-input C-element

1 . A list of formulas bulleted by A or v denotes their conjunction or dis-
junction; A and v are also used as ordinary infix operators.

would be quite complicated; and there is no way to draw such
a diagram for an n-input circuit. The general specification is
written directly as a TLA formula in Fig. 4. The array of inputs
is represented formally by a variable in whose value is a func-
tion with domain { 1, . . ., n}, where square brackets denote
hnction application. (Formally, n is a rigid variable--one
whose value is constant throughout a behavior.) We introduce
two pieces of notation fot representing functions:

0 [i E S H e(i)] denotes the functionfwith domain S such
thatf[i] equals e(i) for every i in S.

0 lfexcept ! [i] = e] denotes the function g that is the same
asfexcept that g [i] equals e.

The formulas defined in Fig. 4 have the following interpreta-
tion.

0 Initc: a state predicate asserting that out is either 0 or 1,
and that in is the fimction with domain { 1, . . ., n} such
that in[i] equals out for all i in its domain.
Znput(i): an action that is enabled iff in[i] equals out. It
complements in[i] , leaves in[j] unchanged for j # i, and
leaves out unchanged. (The symbol i is a parameter.)

0 Output: an action that is enabled iff all the in[i] are dif-
ferent fiom out. It complements out and leaves in
unchanged.

0 Next: an action that is the disjunction of Output and all
the Znput(i) actions, for i E { 1, . . ., n}. Thus, a Next step
is either an Output step or an Input(i) step for some input
line i.

0 Q: a temporal formula that is the specification of the C-
element (together with'its environment). It asserts that

1) hi tc holds initially,
2) Every step is either a Next step or else leaves (in, out)

unchanged, and
3) Output cannot be enabled forever without an Output

step occurring.
The fairness condition 3) requires the output to change if all
the inputs have; inputs are not required to change. (Since

LAMPORT: TLA IN PICTURES 77 1

predicate-action diagrams describe only safety properties, the
fairness condition is irrelevant to our explanation of the
diagrams.)

A
In i tC

Input(i) = A in[;] = out

= A out E (0,l)
A i n = [i E (l , ..., n } c r o u t]

A in‘ = [in except ! [a] = 1 - i n [i]]

A

Fig. 6. Another predicate-action diagram of (in[i], out) for nc, where
1 I i I n .

A out’ = out

A out’ = 1 - out
A in‘ = in

A = A Vi E (1,. . . , n} : in[i] # out
(a) A predicate-action diagram of (in [i] , out).

Output
Input (a)

A

A
Nezt = Output V 3 i E (1,. . . , n} : Input(i)

= I n i t c A O[”tl(in,out) AWF(in,out) (Output)
output

(b) The corresponding TLA formula. Fig. 4. A TLA specification of an n-input C-element.

A in[i] = out

A O[(in [i] = out) * Input(;) A (in’[;] # ~ u t ’)] (i ~ [i] , ~ ~ t)
A O[(in[i] # out) =+ Output A (in’[z] = o u t ’)] (; , [; ~ , ~ ~ t)

The specification I& is short and precise. However, it is not
as reader-fiiendly as a predicate-action diagram. We therefore
use diagrams to help explain the specification, beginning with
the predicate-action diagram of Fig. 5 . It is a diagram of the
state function (in[i], out), meaning that it describes transitions
that change (in[& out). It is a diagram for the formula n,,

Fig. 7. A more informative predicate-action diagram of (in[i], out) for nc, and
the corresponding TLA

meaning that it represents a formula that is implied by nC. The
diagram shows the synchronization between the C-element’s
ith input and its output.

A h[z] = 1 n Aout = O

Fig. 5 . A predicate-action diagram of (in[i], out) for the specification IIc of an
n-input C-element, where 1 I i I n.

We can draw many different predicate-action diagrams for
the same specification. Fig. 6 shows another diagram of (in[&
out) for ll,. It is simpler than the one in Fig. 5 , but it contains
less information. It does not indicate that the values of in[i]
and out are always 0 or 1, and it does not show which variable
is changed by each transition. The latter information is added
in the diagram of Fig. 7a, where each transition is labeled with
an action. The label Znput(i) on the left-to-right arrow indicates
that a transition fiom a state satisfying in[i] = out to a state
satisfying in[i] f out is an Znput(i) step. This diagram repre-
sents the TLA formula of Fig. 7b.

Even more information is conveyed by a predicate-action
diagram of (in, out), which also shows transitions that leave
in[i] and out unchanged but change in [j] for somej f i. Such a
diagram is drawn in Fig. 8a. Fig. 8b gives the corresponding
TLA formula.

(a) A predicateaction diagram of (in , out) .

output

(b) The corresponding TLA formula.

Fig. 8. A predicate-action diagram of (in, out) for nc, and the corresponding
TLA formula, where 1 I i 5 n.

There are innumerable predicate-action diagrams that can
be drawn for a specification. Fig. 9 shows yet another diagram
for the C-element specification n,. Since we are not relying on
these diagrams as our specification, but simply to help explain
the specification, we can show as much or as little information
in them as we wish. We can draw multiple diagrams to illus-
trate different aspects of a system. Actual specifications are
written as TLA formulas, which are much more expressive
than pictures.

712 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 9, SEPTEMBER 1995

out' = 1 - ouf

Fig. 9. Yet another predicate-action diagram of (in, our) for &.

B. A Formal Treatment

B. 1. Definition

We first define precisely the TLA formula represented by a
diagram. Formally, a predicate-action diagram consists of a
directed graph, with a subset of the nodes identified as initial
nodes, where each node is labeled by a state predicate and
each edge is labeled by an action. We assume a given diagram
of a state function v and introduce the following notation.

N The set of nodes.
I The set of initial nodes.
E(n) The set of edges originating at node n.
d(e) The destination node of edge e.
P, The predicate labeling node n.
Ee The action labeling edge e.

A A Init& A V n E N : O[P, A,],
E h i t& A 0([3n E N : p,],,)

A V n E N : O[P, * dnIv
[because A implies 0(3 n E N : Pn)]

E InifA O ((3 n E N : P,)
A V n E N : (P, + d,)jV

[because 0 distributes over conjunction and V, and
[XI, A Vn E N : [YnlV is equivalent to
[XAVn E N : Yn]y]

h i t A A 0[3?1 E N : P, A A,],
[by predicate logic, since B C implies O [B] . j O[C],]

A i i
0

(B) If
implies A.
PROOF. By propositional logic, the hypothesis implies

(3 n E N : P n A &) 3 (V n E N : P , * a) .

(P, A P,) holds for all m, n in N with m f n, then

The result then follows fiom simple temporal reasoning, es-
sentially by the reverse of the string of equivalences and

0

We usually label the nodes of a predicate-action diagram
with disjoint predicates, in which case (A) and (B) imply that
the interpretations A and are equivalent. Diagrams with

implication used to prove (A).

The formula A represented by the diagram is defined as
follows.

nondisjoint node labels may occasionally be useful; A is the
more convenient interpretation of such diagrams.

A Init, = 3n E I : P,

A A = Init, AVn E N : O[P, a&]".

When no explicit label is attached to an edge e, we take E, to
be true. When no set of initial nodes is explicitly indicated, we
take I to be N. With the usual convention for quantification
over an empty set, A,, is defined to equal false if there are no
edges originating at node n.

B. 2. Another Interpretation

gram is the formula A, defined by
Another possible interpretation of the predicate-action dia-

This is perhaps a more obvious interpretation-especially if
the diagram is viewed as a description of a next-state relation.
We now show that A always implies A, and that the converse
implication holds if the predicates labeling the nodes are
disjoint.
(A) A implies A.
PROOF. A simple invariance proof, using rule INVl of [3], Fig.

5 , page 888, shows that A implies 0(3n E N : P,).
We then have:

C. Proving a Predicate-Action Diagram
Saying that a diagram is a predicate-action diagram for a

specification ll asserts that n implies the formula A repre-
sented by the diagram. Formula ll will usually have the form
Init, A O[M], A L, where L is a fairness condition. Formula A
equals Init, A Vn E N : O [P , 3 A,,]". To prove ll a A, we
prove:

1) Init, 3 Init,
2) Init, A O[M], =;' O [P , 3 A,,lY, for each node n.

The first condition is an assertion about predicates; it is gen-
erally easy to prove. To prove the second condition, one usu-
ally finds an invariant Inv such that Init, A 0[34], implies
Cy,,, so ll implies 0[34 A Znv],. The second condition is
then proved by showing that [M A Inv], implies [Pn 2 A,,],,
for each node n. Usually, U and v are tuples and every compo-
nent of v is a component of U, so U' = U implies v' = v . In this
case, one need show only that 34 A Inv implies [P, AIY,
for each n. By definition of A, this means proving

P, r\Mr*Inv*(3m E E(n) : gm A ~ ; (,)) v (v ' = v)

for each node n. This formula asserts that an 34 step that starts
with P, and Inv true and changes v is an E, step that ends in a
state satisfj4ng P4m), for some edge m originating at node n.

IV. ILLUSTRATING PROOFS

In TLA, there is no distinction between a specification and a
property; they are both formulas. Verification means proving

LAMPORT: TLA IN PICTURES 113

that one formula implies another. A practical, relatively com-
plete set of rules for proving such implications is described in
[3]. We show here how predicate-action diagrams can be used
to illustrate these proofs. We take as our example the same one
treated in [3], that the specification Y defined in Section 1V.A
below implies the specification cf, defined in Section I1 above.

A. Another Specification
We define a TLA formula Y describing a program with two

processes, each of which repeatedly loops through the se-
quence of operations P(sem); increment; V(sem), where one
process increments x by one and the other increments y by one.
Here, P(sem) and V(sem) denote the usual operations on a
semaphore sem. To describe this program formally, we intro-
duce a variable p c that indicates the control state. Each process
has three control points, which we call “a”, “b”, and “g”.
(Quotes indicate string values.)

We motivate the definition of Y with the three predicate-
action diagrams for Y in Fig. 10. In these diagrams, the predi-
cate PC(p, q) asserts that control is at p in process 1 and at q in
process 2. Fig. 10a shows how the control state changes when
the P(sem), V(sem), and increment actions are performed.
Variables other than p c not mentioned in an edge label are left
unchanged by the indicated steps-for example, steps de-
scribed by the edge labeled x’ = x + l leave y and sem un-
changed-but this is not asserted by the diagram. The next-
state action N i s written as the disjunction NI v N2 of the
next-state actions of each process; and each .!A(is written as
the disjunction a, v j3, v 15. Fig. 10b illustrates this decompo-
sition. Finally, the predicate-action diagram of Fig. 1Oc de-
scribes how the semaphore variable sem changes.

To write the specification Y, we let p c be a function with
domain { 1 , 21, with pc[i] indicating where control resides in
process i. The formula PC(p, q) can then be defined by

The semaphore actions P and V are defined by

P(sem) i! AO<sem

A sem =sem - 1

P(rem

PC(”a“, “a”)

PC(”a”, “a”)

PC(“a”, 7) PC(“a”, “g“)

Pi vPa

sem = 1 sem = 0

71 v72

Fig. 10. Three predicate-action diagrams of (x, y , pc, sem) for Y .

B. An Illustrated Proof

conditions:
The proof of Y j @ is broken into the proof of three

1) Znit, a Znit,

2) Init, A O [n l w * O [~ I , ,

3) Y a WF(,,,(N,), for i = 1,2.
We illustrate the proofs of conditions 2 and 3 with the predi-
cate-action diagram of (x, y, sem, p c) for Y in Fig. 12, where
Q is defined by

A
Qi(P,q) A APC(P,q) V(sem) = sem’=sem -t 1.

Missing from Fig. 10 are a specification of the initial values of
x and y , which we take to be zero, and a fairness condition.
One could augment predicate-action diagrams with some nota-

Asem=i

A (X E Nut) A (y E Nut)

tion for indicating fairness conditions. However, the conditions
that are easy to represent with a diagram are not expressive
enough to describe the variety of faimess requirements that
arise in practice. The WF and SF formulas, which are expres-
sive enough, are not easy to represent graphically. So, we have
not attempted to represent fairness in our diagrams. We take as
the fairness condition for our specification Y strong faimess
on the next-state action nl; of each process. The complete
definition of Y appears in Fig. 1 1.

and Nut is the set of natural numbers.
First, we must show that the diagram in Fig. 12 is a predi-

cate-action diagram for Y. This is easy using the definition in
Section III.B.1; no invariant is needed. For example, the con-
dition to be proved for the node labeled Qo(“b”, “a”) is that an
N s t e p that starts with QO(“b)), “U”) true is an .7M1 step (one
that increments x and leaves y unchanged) that makes
Qo(“g”, “U”) true. This follows easily from the definitions of Q
and 9(since an N s t e p starting with PC(“b”, “a”) true must
be a PI step.

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 9, SEPTEMBER 1995

A
In&p = A pc = [i E {1 ,2} I+ “a”]

A (z = 0) A (y = 0)
A s e m = l

A
ai = A (pc[i] = “a”) A (0 < sem)

A pc‘ = [pc except ![i] = “b“]
A sem’ = sem - 1
A (2, Y)’ = (2, Y)

A
yi = A pc[;] = “g”

A pcf = [pc except ![i] = “a”]
A sem‘ = sem + 1
A (2, Y)‘ = (5, Y)

A = A pc[l] = “b”
A pc‘ = [pc except ![1] = “g”]
A z ’ = z + 1
A (y, sem)’ = (y, s e n)

A pc‘ = [pc except ![2] = “g“]
A y ‘ = y + l
A (5, sem)‘ = (z, s e n)

A
p2 = A pc[2] = “b”

A Ni = a ; ~ P i v 7 i

N 5 N I V N Z
w = (z , y , s e m , p c)

A

@ e In&* A O [N w A SF,(J\/1) A SFw(n/2)

Fig. 1 1 . The specification Y.
occur. Similarly, taking infinitely many (N2), steps implies
that infinitely many (342)(x, f i steps occur. This completes the
proof of condition 3.

Using the predicate-action diagram does not simplify the
proof. If we were to make the argument given above rigorous,
we would go through precisely the same steps as in the proof
described in [3]. However, the diagram does allow us to
visualize the proof, which can help us to understand it.

Fig. 12. Another predicate-action diagram of (x, y , sem, pc) for Y.

To prove condition 2, it sufices to prove that every step
allowed by the diagram of Fig. 12 is a [34],, step. The steps
not shown explicitly by the diagram are ones that leave w un-
changed. Such steps leave (x, y) unchanged, so they are
[34](x,, steps. The actions labeling all the edges of the diagram
imply [34](x,fi, so all the steps shown explicitly by the diagram
are also [34Ix,, steps. This proves condition 2.

We now sketch the proof of condition 3. To prove
W F , JNi), it suffices to show that infinitely many ,
steps occur. We first observe that each of the predicates label-
ing a node in the diagram implies that either (NI), or (N2), is
enabled. The fairness condition of ‘I’ then implies that a behav-
ior cannot remain forever at any node, but must keep moving
through the diagram. Hence, the behavior must infinitely often
pass through the Ql(“u”, “ U ”) node. The predicate Ql(“u”,
“ U ”) implies that both (NI), and (N2), are enabled. Hence,
the fairness condition SF,(%) A SF,(N2) implies that infi-
nitely many (NI), steps and infinitely many (N2), steps must
occur. Action (NI), is enabled only in the three nodes of the
top loop. Taking infinitely many (NI), steps is therefore pos-
sible only by going around the top loop infinitely many times,
which implies that infinitely many NI steps occur, each start-
ing in a state with QO((‘bl’, “U”) true. Since Qo(“b”, “U”) implies
x E Nut, an 34, step starting with Qo(“b”, “U”) true changes x,
so it is an (341)(x,fi step. Hence, infinitely many (341)(x,fi steps

V. CONCLUSION

We have described three uses of diagrams that we believe

0 To describe particular aspects of a complex specification
with a simple diagram. An n-input C-element cannot be
specified with a simple picture. However, we explained
the specification with diagrams describing the synchroni-
zation between the output and each individual input.

0 To provide complementary views of the same system.
Diagrams b and c of Fig. 10 look quite different, but they
are diagrams for the same specification.

0 To illustrate proofs. The disjunction of the predicates la-
beling the nodes in Fig. 12 equals the invariant I of the
proof in Section 7.2 of [3]. The diagram provides a
graphical representation of the invariance proof.

TLA differs from traditional specification methods in two
important ways. First, all TLA specifications are interpreted
over the same set of states. Instead of assigning values just to
the variables that appear in the specification, a state assigns
values to all of the infinite number of variables that can appear
in any specification. Second, TLA specifications are invariant
under stuttering. A formula can neither require nor rule out
finite sequences of steps that do not change any variables
mentioned in the formula. (The state-function subscripts in
TLA formulas are there to guarantee invariance under
stuttering.)

These two differences lead to two major differences be-
tween traditional state-transition diagrams and predicate-action
diagrams. In traditional diagrams, each node represents a sin-
gle state. Because states in TLA assign values to an infinite
number of variables, it is impossible to describe a single state

are new for diagrams with a precise formal semantics:

LAMPORT: TLA IN PICTURES 775

with a formula. Any formula can specify the values of only a
finite number of variables. To draw diagrams of TLA formu-
las, we let each node represent a predicate, which describes a
set of states. In traditional diagrams, every possible state
change is indicated by an edge. Because TLA formulas are
invariant under stuttering, we draw diagrams of particular state
functions-usually tuples of variables.

TLA differs fiom most specification methods because it is a
logic. It uses simple logical operations like implication and
conjunction instead of more complicated automata-based no-
tions of simulation and composition [6] . Everything we have
done with predicate-action diagrams can be done with state-
transition diagrams in any purely state-based formalism. How-
ever, conventional formalisms must use some notion of ho-
momorphism between diagrams to describe what is expressed
in TLA as logical implication.

Most formalisms employing state-transition diagrams are
not purely state-based, but use both states and events. Nodes
represent states, and edges describe input and output events.
The meaning of a diagram is the sequence of events it allows;
the states are effectively hidden. In TLA, there are only states,
not events. Systems are described in terms of changes to inter-
face variables rather than in terms of interface events. Vari-
ables describing the internal state are hidden with the existen-
tial quantifier 3 described in [3]. Changes to any variable,
whether internal or interface, can be indicated by node labels
or edge labels. Hence, a purely state-based approach like TLA
allows more flexibility in how diagrams are drawn than a
method based on states and events.

REFERENCES

[I]

[2]

G.H. Mealy, “A method for synthesizing sequential circuits,” Bell Sys-
tem Technical J., vol. 34, pp. 1,045-1,079, Sept. 1955.
E.F. Moore, “Gedanken-experiments on sequential machines,” C.E.
Shannon and J. McCarthy, eds., Automata Studies, pp. 129-153. Prince-
ton, N.J.: Princeton Univ. Press, 1956.

[3] L. Lamport, “The temporal logic of actions,” ACM Trans. Programming
Languages and Systems, vol. 16, pp. 872-923, May 1994.

[4] B. Alpem and F.B. Schneider, “Defining liveness,” Information Proc-
essingktters, vol. 21, pp. 181-185, Oct. 1985.

[SI C. Mead and L. Conway, Introduction to VLSI Systems, ch. 7. Reading,
Mass.: Addison-Wesley, 1980.

[6] M. Abadi and L. Lamport, “Conjoining specifications,” ACM Tramac-
tions on Programming Languages and Systems, vol. 17, no. 3, pp. 507-
534, May 1995.

Leslie Lamport attended the Bronx High School of
Science, where he took a course in mechanical draw-
ing. He later received a PhD in mathematics from
Brandeis University, where he studied the propagation
of singularities in the Cauchy problem for analytic
partial differential equations. Since 1985, he has been
a member of Digital Equipment Corporation’s Sys-
tems Research Laboratory, where he has written sev-
eral biographical sketches.

