Software Cost Reduction

Constance L. Heitmeyer*

Introduction

Software Cost Reduction (SCR) is a set of techniques for designing software sys-
tems developed by David Parnas and researchers from the U.S. Naval Research
Laboratory (NRL) beginning in the late 1970s. A major goal of the original SCR
research team was to evaluate the utility and scalability of software engineer-
ing principles by applying the principles to the reconstruction of software for
a practical system, the Operational Flight Program (OFP) for the U.S. Navy’s
A-T7 aircraft. The process of applying the principles produced a number of new
techniques for software design, which were demonstrated in a requirements doc-
ument [18] and several software design documents (e.g., a module guide [6]) for
the A-7. Further research during the 1990s produced two formal models, the
Four Variable Model [37] and the SCR requirements model [15], and a set of
software tools for analyzing SCR-style requirements documents [16].

A central notion of SCR is that software should be designed using an ide-
alized process called the “Rational Design Process” [36]. Although designing
software using a perfectly rational process is impossible, software developers are
more likely to produce a rational design if they follow a rational process rather
than if they proceed on an ad hoc basis. In the Rational Design Process, software
is designed and implemented in stages. At each stage, a work product, such as a
requirements document or a design document, is produced. Each work product
is associated with criteria that the work product must satisfy and a description
of the information that the work product contains. This article focuses on the
SCR techniques for constructing and evaluating the requirements document, the
work product built during the requirements stage of software development, and
the aspect of SCR that has received significant attention during both the early
and the more recent research. It also briefly describes, and gives pointers to, the
SCR approach to software design, focusing on the design and documentation of
the module structure, the module interfaces, and the uses hierarchy.

*Code 5546, Naval Research Laboratory, Washington, DC 20375. This work was supported
by the Office of Naval Research.

SCR Approach to Requirements

The A-7 Requirements Document

The A-7 requirements document, a fully worked-out specification of the re-
quired behavior of the A-7 OFP, was published in 1978 to demonstrate the SCR
techniques for specifying software requirements [18, 19, 1]. This document intro-
duced three major aspects of the SCR, approach to requirements: the focus on
outputs, a special tabular notion for specifying each output, and a set of criteria
for evaluating a requirements document. A critical step in constructing an SCR
software requirements document is to identify all outputs that the software must
produce and to express the value of each output as a mathematical function of
the state and history of the environment. To represent these functions precisely
and compactly, the A-7 document introduced a special tabular notation. This
notation facilitates writing and understanding the functions and also aids in
detecting specification errors, such as missing cases and ambiguity. In addition
to specifying the outputs, the A-7 document contained a specification of the
input and output interfaces that the software would use to communicate with
its environment, a specification of the computers on which the software was
expected to run, timing and accuracy constraints on each output, a description
of ways in which the software was likely to change, and a discussion of software
responses to undesired events (e.g., the failure of an input or output device). To
be acceptable, a requirements document must satisfy selected criteria, including
completeness (i.e., any implementation satisfying every statement in the require-
ments document should be acceptable), freedom from implementation bias, and
organization as a reference document (information in the document should be
easy to find).

To specify the required behavior precisely and concisely, the A-7 require-
ments document introduced conditions, events, modes, and terms [19]. A con-
dition was defined as a predicate that characterizes “some aspect of the system
for a measurable period of time.” An event occurs when the value of a condition
changes from true to false or vice versa. The notation “@QT(c)” was introduced
to denote that condition ¢ becomes true and “@QF(c¢)” to denote that ¢ becomes
false. A mode was defined as a class of system states and a term as a “text
macro” that reduces redundancy.

During the 1980s and 1990s, a number of organizations in both industry
and government (e.g., Grumman, Bell Laboratories, NRL, and Ontario Hydro),
used the SCR techniques to document the requirements of a wide range of prac-
tical systems, including the OFP for the A-6 aircraft [27], the Bell telephone
network [20], a submarine communications system [17], and safety-critical com-
ponents of the Darlington nuclear power plant [32, 26]. Moreover, in 1994, a
version of SCR called CoRE [11] was used to document the requirements of the
OFP of Lockheed’s C-130J aircraft [12]. The Lockheed requirements document
contains over 1000 tables and the OFP over 250K lines of Ada source code, thus
demonstrating that the SCR techniques scale.

The Four Variable Model

To generalize the SCR techniques for writing requirements and to establish a
formal foundation for the notions introduced in the A-7 requirements document
(e.g., the inputs and outputs, the accuracy and timing requirements, and the
required responses to undesired events), Parnas and Madey in 1995 published
the Four Variable Model [37]. This model represents the required behavior of a
software system in terms of four sets of variables—monitored, controlled, input,
and output variables—and four relations—NAT, REQ, IN, and OUT. Whereas
the A-7 requirements document specifies the required behavior of software by
describing outputs as functions of the state and history of the environment,
the Four Variable Model describes the required behavior of a software system
by describing the required relation between two sets of environmental quanti-
ties, quantities that the system monitors and those that it controls. NAT and
REQ are relations on the monitored and controlled variables, variables that rep-
resent the time-varying discrete and continuous environmental quantities that
the system monitors and controls. NAT describes assumptions about system
behavior, i.e., constraints imposed on the monitored and controlled quantities
by physical laws and the system environment. REQ describes those aspects of
the environment that the system is expected to control, i.e., how the system
is required to change the controlled quantities in response to changes in the
monitored quantities.

In the Four Variable Model, the system requirements are specified in two
steps. First, the “ideal” system behavior is specified: i.e., NAT and REQ are
defined as if the system could obtain perfect values of the monitored variables
and compute perfect values of the controlled variables. Next, the relations
IN and OUT are used to specify the tolerances, i.e., the accuracy required
in measuring values of the monitored quantities and in computing values of
the controlled quantities. In the model, input devices (e.g., sensors) measure
values of the monitored quantities and output devices (e.g., actuators) assign
values to the controlled quantities. The variables that the input devices read,
called input variables, and those that the output devices write, called output
variables, are directly available to the software.! IN defines the tolerances on
the monitored quantities as a mapping from the monitored quantities to the
input variables. Similarly, OUT defines the the tolerances on the controlled
quantities as a mapping from the output variables to the controlled quantities.

Example

To illustrate the SCR approach to requirements, this section introduces a simple
control system which turns safety injection on and off in a nuclear power plant.
This Safety Injection System (SIS), a simplified version of the system described
in [9], monitors water pressure and adds coolant to the reactor core when the
pressure falls below some threshold. A drop in water pressure below the constant

IThese variables correspond to the inputs and outputs in the A-7 requirements document.

Low causes the SIS to enter mode TooLow; an increase in water pressure above
a larger constant Permit causes the system to enter mode High. A system
operator blocks safety injection by turning a “Block” switch to On and resets
the SIS after blockage by turning a “Reset” switch to On. An assumption in
the SIS is that water pressure ranges between 0.0 and 2000.0 psi (pounds per
square inch).

The SIS requirements may be represented in SCR using three monitored
variables, a controlled variable, a mode class (a set of modes), and a term.
The monitored variables WaterPres, Block, and Reset and the controlled vari-
able SafetyInjection represent the three monitored quantities and the single
controlled quantity. The mode class Pressure contains three modes, TooLow,
Permitted, and High, each representing a range of values of the monitored
variable WaterPres. The term Overridden describes when safety injection is
blocked. Each of these state variables (a state variable is a monitored or con-
trolled variable, a mode class, or a term) may be used to describe conditions
and events. An example of a condition in the SIS specification is “WaterPres
< Low”. Two types of events are monitored events, events that occur when
a monitored variable changes value, and conditioned events, events that occur
when a specified condition is true. In the SIS specification, an example of a
monitored event is “@T(Block=0mn)” (the operator turns Block from 0ff to
On); an example of a conditioned event is “@QT(Block=0n) WHEN WaterPres
< Low” (the operator turns Block to On when water pressure is below Low).

Different parts of the above description may be associated with the REQ
and NAT relations. To define REQ, the values of the three dependent variables,
Pressure, Overridden, and SafetyInjection, are expressed as mathematical
functions. Composing these functions defines REQ, the required relation (in
this example, a function) between the monitored and controlled variables. The
assumptions, WaterPres is a non-negative real-valued variable no greater than
2000.0 and Low < Permit, are considered part of NAT. The SIS example may
also be used to illustrate the IN relation. Suppose three sensors measure water
pressure, and let the input variable w;, 1 <14 < 3, represent the value read by
sensor i. If each sensor is required to measure WaterPres within one psi, then
the predicate |WaterPres — w;| < 1 is part of IN. Alternately, if the average of
the values read by the three sensors must be within one psi of the actual value
of WaterPres, then |WaterPres — (wy + wy + w3)/3| < 1 is part of IN.

SCR Tables

Among the tables in SCR specifications are condition tables, event tables, and
mode transition tables. Each defines a dependent variable (a controlled variable,
mode class, or term) as a mathematical function. Typically, a condition table
defines a variable as a function of a mode and a condition, and an event table
defines a variable as a function of a mode and an event. A mode transition
table, a special case of an event table, defines a mode as a function of a mode

and an event. In some cases, a condition or event table is modeless, i.e., defines
a variable without referring to modes.

Tables 1-3 define REQ, the required relation between the monitored and
controlled variables in the SIS. Table 1 is a mode transition table describing the
mode class Pressure as a function of the current mode and events defined on the
monitored variable WaterPres. The table makes explicit all events that change
the value of Pressure. For example, the first row states, “If Pressure is TooLow
and WaterPres rises to or above Low, then Pressure changes to Permitted.”
Events which do not change the mode are omitted from the table. For example,
if Pressure is TooLow and WaterPres changes but remains less than Low, then
Pressure remains TooLow after the event.

Old Mode Event New Mode
TooLow QT(WaterPres > Low) Permitted
Permitted @QT(WaterPres > Permit) High
Permitted QT(WaterPres < Low) TooLow
High QT(WaterPres < Permit) Permitted

Table 1: Mode Transition Table for Pressure.

Table 2 is an event table describing the term Overridden as a function of
Pressure and the monitored variables Block and Reset. Like mode transition
tables, event tables make explicit only those events that cause the variable
defined by the table to change. For example, the middle entry in the second
row states, “If Pressure is TooLow or Permitted and Block becomes On when
Reset is 0ff, then Overridden becomes true.” In contrast, if the mode is High
and either Block or Reset changes, then the value of Overridden remains the
same because no events in the first row involve either Block or Reset. The
entry “False” in row 1 means that when the mode is High, no event can cause
Overridden to become true.

Mode Class
Pressure Events
High False QF (Pressure=High)
TooLow, QT (Block=0n) QT (Pressure=High) OR
Permitted WHEN Reset=0ff Q@QT(Reset=0n)
Overridden True False

Table 2: Event Table for Overridden.

Table 3 is a condition table describing the controlled variable SafetyInjection
as a function of Pressure and the term Overridden. Table 3 states, “If
Pressure is High or Permitted, or if Pressure is TooLow and Overridden
is true, then Safety Injection is 0ff; if Pressure is TooLow and Overridden
is false, then Safety Injectionis On.” The entry “False” in the first row means

that Safety Injection is never On when Pressure is High or Permitted.

Mode Class
Pressure Conditions
High, Permitted True False
TooLow Overridden NOT O0Overridden
Safety Injection 0ff On

Table 3: Condition Table for Safety Injection.

SCR Requirements Model

The purpose of the SCR requirements model [15] is two-fold: to assign a precise
semantics to the constructs and notation in SCR requirements specifications and
to provide a formal foundation for mechanized analysis of the specifications. A
special case of the Four Variable Model, the SCR. model represents a system as
a state machine and focuses on the REQ and NAT relations. Representing a
system as a state machine means that SCR requirements specifications based
on this model usually assign monitored and controlled variables discrete values.
For example, using this model, the variable WaterPres in the SIS could be
represented as a non-negative integer that does not exceed 2000.

In the model, a system state is defined as a function mapping each state
variable to a type-correct value and TY as a function that maps each state
variable to its type, i. e., set of legal values. In the SIS, the type definitions
include

TY(Pressure) = {ToolLow, Permitted, High}
TY (WaterPres) = {0,1,2,---,2000}
TY(Overridden) = {true, false}
TY(Block) = {0On, Off}.

In the model, a condition is a predicate on a single system state and an
event a predicate on two system states which is true if the states differ in the
value of at least one state variable. The model defines a conditioned event
“@T(c) WHEN d” as

def

QT(c) WHEN d = —c¢ A ¢ A d, (1)

where ¢ and d are conditions, and the unprimed ¢ denotes ¢ in the old state
and the primed c¢ denotes ¢ in the new state. Applying the definition in (1),
the conditioned event @QT(Block=0n) WHEN Reset=0ff can be rewritten as
Block # On A Block' = On A Reset = 0ff. This event occurs if both Block
and Reset are Off in the old state and Block is switched On in the new state.

In the SCR model, a software system ¥ is represented as a state machine
¥ =(5,80,E™,T), where S is a set of states, Sp C S is the initial state set, E™
is the set of monitored events, and 7 is the transform describing the allowed
state transitions. The transform T' (which corresponds to REQ in the Four
Variable Model) maps a monitored event e in E™ and a state s in S to a new
state s’. A basic assumption, called the One Input Assumption, is that exactly
one monitored event occurs at each state transition. A second assumption,
called the Synchrony Assumption, requires a system ¥ to completely process
each monitored event before it processes the next monitored event. To compute
the next state, the transform 7" composes the functions derived from the con-
dition, event, and mode transition tables. For T to be well-defined, no circular
dependencies are allowed in the definitions of the state variables. To achieve
this, the model requires a partial order on the values of state variables in the
new state.

The model contains definitions of the functions that can be derived from the
SCR tables.? Applying the definition in the model to the condition table in Ta-
ble 3 produces the following definition of the controlled variable SafetyInjection:

0ff if Pressure=High V Pressure=Permitted V
SafetyInjection = (Pressure = TooLow A Overridden = {rue)
On if Pressure = TooLow A Overridden = false.

Similarly, applying the definition in the model to the event table in Table 2
produces the following definition of the term Overridden:

(true if (Pressure = TooLow A Block’ =0n A
Block = 0ff A Reset = 0ff) V
(Pressure = Permitted A Block’ = 0On A
Block = 0ff A Reset = Dff)

false if (Pressure = TooLow A Reset’ =0n A

Reset = Off) V
(Pressure = Permitted A Reset’ =0n A
Reset = 0ff) V
(Pressure’ = High A Pressure # High)

Overridden’ =

\ Overridden otherwise

To define the required behavior completely and unambiguously, each SCR
table must define a total function. To achieve this, the model requires the in-
formation in each table to satisfy certain properties. To define the required
behavior unambiguously, each condition and event table must satisfy the Dis-
jointness Property: the pairwise conjunction of conditions (events) in each row
of a condition (an event) table must always be false. Inspection of Tables 2 and 3
shows that both tables satisfy the Disjointness Property. For example, in Ta-
ble 3, true A false = false and Overridden A —0Overridden = false. To define
the required behavior completely, a condition table must satisfy the Coverage
Property: the disjunction of the conditions in each row of the table must be

2For a more general model of tabular expressions, see [22].

true. Inspection shows that the condition table in Table 3 satisfies the Coverage
Property (since true V false = true and Overridden V —0Overridden = true).
By requiring the value of the variable defined by an event table to remain the
same if an event occurs which does not appear explicitly in the table, the model
ensures that the table defines a total function.

SCR Tools

Until the mid-1990s, SCR requirements specifications were analyzed for defects
using mostly manual inspection. Although inspection can expose many defects,
it has two serious shortcomings. First, inspection can be very expensive. In the
certification of the Darlington system, for example, the inspection of SCR tables
cost millions of dollars. Second, human inspections often overlook many errors.
In a 1996 study by NRL, for example, a mechanized analysis of the condition
tables and mode transition tables in the A-7 requirements document exposed 17
missing cases (violations of Coverage) and 57 instances of ambiguity (violations
of Disjointness) [15]. These flaws were detected even though the document had
previously been inspected by two independent review teams. In a 1998 study
by Rockwell Aviation, which produced similar results, software tools exposed 28
errors, many of them serious, in a requirements specification of a flight guidance
system [29]. The discovery of so many errors was somewhat surprising given
that the specification, according to the project leader [28], “represented our best
effort at producing a correct specification manually.”

While human effort is critical to creating specifications and manual inspec-
tions can detect many specification errors, effective use of SCR requirements
specifications in industrial settings requires automated tool support. Not only
can tools find specification errors that inspections miss, they can do so more
cheaply. To explore what form such tools should take, NRL has designed a suite
of software tools for constructing and analyzing requirements specifications in
the SCR tabular notation.

To develop an SCR requirements specification, a four-step process may be
followed. Like the Rational Design Process, this is an idealization of a real-world
process. First, a requirements specification is constructed using the SCR tabular
notation. Second, the specification is analyzed for violations of application-
independent properties, such as missing cases and unwanted ambiguity. Third,
the specification is validated by application experts to ensure that it captures the
intended behavior. Finally, the specification is analyzed for critical application
properties, such as security and safety properties.

The SCR tools may be used to support this process. To begin, the user
invokes a tool called the specification editor to construct the SCR requirements
specification [13]. Next, the user invokes the consistency checker [15] to ana-
lyze the specification for properties derived from the SCR requirements model.
Designed to detect errors automatically, the consistency checker exposes syntax
and type errors, variable name discrepancies, missing cases, ambiguity, and cir-
cular definitions. When an error is detected, the consistency checker provides

detailed feedback to aid in error correction. To perform the most computation-
ally complex checks, checks for Disjointness (to detect nondeterminism) and for
Coverage (to detect missing cases), the consistency checker uses an extension of
the semantic tableaux algorithm [38].

To validate the specification, the user may run scenarios, sequences of mon-
itored events, through the SCR simulator [13, 16] and analyze the results to
ensure that the specification captures the intended behavior. In addition, the
user can define application properties believed to be true of the required be-
havior and, using simulation, execute a series of scenarios to determine if any
violate the properties. To facilitate validation of the specification by applica-
tion experts, the simulator supports the rapid construction of graphical user
interfaces, customized for particular application domains [16].

To analyze an SCR requirements specification for application properties, the
user may first run a model checker, such as SPIN [21], to analyze a finite state
model of the specification. Prior to model checking, the SCR. tools automatically
translate the specification into Promela, the language of SPIN. Often, model
checking exposes property violations. Due to the state explosion problem, model
checking may not be effective for verifying application properties. To verify
properties of an SCR specification, the user may apply a theorem prover, such
as TAME [2, 3], a specialized interface to the general-purpose theorem prover
PVS [30], or Salsa, an automatic theorem prover based on decision procedures
[4], to prove properties automatically. In using either TAME or Salsa to verify
application properties, completing a proof may require auxiliary lemmas. To
construct candidate lemmas, the user may invoke the SCR invariant generator
[23, 24], which automatically generates state invariants, properties true of every
reachable state, from an SCR requirements specification.

Applying the SCR Tools to Practical Systems

The SCR tools have been applied in four projects involving practical systems. In
one project, NASA used the consistency checker to detect missing assumptions
and unwanted nondeterminism in the requirements specification of the Interna-
tional Space Station [10]. In a second project, Rockwell Aviation used the SCR
tools to detect 28 errors in the requirements specification of a flight guidance
system (FGS) [29]. One-third of the errors were found when the FGS require-
ments specification was entered into the SCR toolset, another third when the
consistency checker was applied, and the remaining third when the simulator
was executed. These results suggest that different tools find different classes of
errors. In a third project, NRL used the SCR tools to expose a serious safety
violation in a moderately large contractor specification of a U.S. weapons sys-
tem [14]. This specification, which contains over 250 variables and six safety
properties, was translated semi-automatically into the SCR tabular notation.
Applying abstraction to reduce the size of the SCR specification and then in-
voking SPIN on the abstract model exposed the safety violation. In a fourth

project, NRL used the SCR tools to analyze the requirements specification of a
cryptographic device for eight security properties [25]. Individually, both TAME
and Salsa automatically verified seven of the properties. In proving three of the
properties, state invariants constructed by the invariant generator were required.
TAME and Salsa also detected a possible violation of the eighth property. Ex-
perimentation with the simulator validated that the detected problem was an
actual violation.

SCR Approach to Software Design

Introduced briefly below are three major activities in the SCR approach to soft-
ware design and the documentation associated with each. For more information
about the overall SCR approach to software design, see [36].

Designing the Module Structure

A critical activity in the design of software is the decomposition of the soft-
ware into modules. In the SCR approach, each module is either a collection of
submodules or a single work assignment, that is, a programming task that can
be completed by a single programmer. The overall goal of module decomposi-
tion is to reduce the cost of software development and maintenance by allowing
modules to be designed, implemented, and modified independently. In SCR,
this is achieved by applying the information hiding principle [31] to module de-
composition. According to this principle, the system details that are likely to
change independently are assigned to separate modules. To begin, the infor-
mation hiding principle is used to divide the software into a small number of
modules. Then, information hiding is used to decompose each of these modules
into submodules. This process continues until each module is small enough to
describe a single work assignment.

The document which describes the module structure is called the module
guide. This guide, which has a tree structure, describes the responsibility of each
module by stating the design decisions that will be encapsulated by the module.
For a complete example of a module guide, see [6]. For more information about
the SCR approach to designing the module structure, see [7, 33].

Designing the Module Interfaces

To construct software efficiently, programmers must be able to work indepen-
dently. Although the module guide describes the responsibility of each module,
it does not provide sufficient information for the programmer who will imple-
ment the module nor for other programmers whose modules will use the module.
The purpose of the module interface is to describe 1) the set of assumptions that
the programmers responsible for other modules may make about the module and

10

2) the set of access programs that programs in other modules use to access the
data or services provided by the module. Two major classes of access pro-
grams exist: those that return information to the calling program and those
that change the state of the module to which the program belongs.

For each module, a module interface specification must be written. This
specification must be formal and provide a blackbox view of the module. The
module interface specification should be reviewed by programmers who will use
the module as well as others interested in the design, e.g., reviewers. For more
information about the design of module interfaces, see [5, 8].

Designing the Uses Hierarchy

Once the modules and their interfaces are known, the uses hierarchy [35] can
be defined. This hierarchy is a relation defined on the access programs in the
module interface specifications. Suppose A and B are access programs. Then,
we say that A uses B if and only if the correctness of program A depends on the
presence of a correct program B. Requiring the access programs to be organized
by a uses hierarchy, i.e., a loop-free graph, eliminates interdependencies among
the programs.

Restricting the uses relation to a loop-free graph has the following advan-
tage: it defines a number of usable subsets of the complete system. Suppose
level O of the uses hierarchy is associated with the set of programs that use no
other programs and that level i, i > 1, is associated with the set of programs
that use at least one program at level ¢ — 1 and no program at a level higher
than ¢ — 1. Then, each level of the hierarchy is associated with a usable subset
of the system. This avoids the problem of many systems in which nothing works
unless everything works. Usable subsets are not only important for staged de-
liveries, they are also important in the development of program families [34]. A
convenient way to document the uses hierarchy is to use a binary matrix, where
the entry in position (A, B) is true if and only if program A uses program B.
For more information about the uses hierarchy and an example, see [35].

References

[1] T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A. Parker, D. L. Parnas, and J. E.
Shore. Software requirements for the A-7E aircraft. Technical Report NRL-9194,
Naval Research Lab., Wash., DC, 1992.

[2] M. Archer, C. Heitmeyer, and E. Riccobene. Using TAME to prove invariants
of automata models: Case studies. In Proc. 2000 ACM SIGSOFT Workshop on
Formal Methods in Software Practice (FMSP’00), August 2000.

[3] Myla Archer. Using PVS strategies for special-purpose theorem proving. Annals
of Mathematics and Artificial Intelligence, 29(1-4):139-181, 2000.

11

[4]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers with BDDs for
automatic invariant checking. In Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’2000), Berlin, March 2000.

Kathryn Britton, R. A. Parker, and David Parnas. A procedure for designing
abstract interfaces for device interface modules. In Proc. 5th Int’l Conf. on Softw.
Eng. (ICSE 81), 1981.

Kathryn Britton and David L. Parnas. A-7E software module guide. Technical
Report 4702, Naval Research Lab., Wash., DC, 1981.

Paul Clements, David Parnas, and David Weiss. Enhancing reusability with infor-
mation hiding. In Proc. Workshop on Reusability in Programming, pages 240247,
September 1983. Available at http://chacs.nrl.navy.mil/publications/a7/.

Paul C. Clements, R. A. Parker, David L. Parnas, John Shore, and Kathryn
Britton. A standard organization for specifying abstract interfaces. Tech-
nical Report 8815, Naval Research Lab., Wash., DC, 1984. Available at
http://chacs.nrl.navy.mil/publications/a7/.

P.-J. Courtois and David L. Parnas. Documentation for safety critical software.
In Proc. 15th Int’l Conf. on Softw. Eng. (ICSE ’93), pages 315-323, Baltimore,
MD, 1993.

Steve Easterbrook, Robyn Lutz, Richard Covington, Yoko Ampo, and David
Hamilton. Experiences using lightweight formal methods for requirements mod-
eling. IEEFE Transactions on Software Engineering, 24(1), January 1998.

S. R. Faulk, J. Brackett, P. Ward, and J. Kirby, Jr. The CoRE method for
real-time requirements. IEEE Software, 9(5):22-33, September 1992.

S. R. Faulk, L. Finneran, J. Kirby, Jr., S. Shah, and J. Sutton. Experience
applying the CoRE method to the Lockheed C-130J. In Proc. 9th Annual Conf.
on Computer Assurance (COMPASS ’94), Gaithersburg, MD, June 1994.

C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: A toolset for specifying
and analyzing requirements. In Proc. 10th Annual Conf. on Computer Assurance
(COMPASS ’95), pages 109-122, Gaithersburg, MD, June 1995.

C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using abstrac-
tion and model checking to detect safety violations in requirements specifications.
IEEE Trans. on Softw. Eng., 24(11), November 1998.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated counsistency check-
ing of requirements specifications. ACM Transactions on Software Engineering
and Methodology, 5(3):231-261, April-June 1996.

Constance Heitmeyer, James Kirby, Jr., Bruce Labaw, and Ramesh Bharadwaj.
SCR*: A toolset for specifying and analyzing software requirements. In Proc.
Computer-Aided Verification, 10th Annual Conf. (CAV’98), Vancouver, Canada,
1998.

Constance L. Heitmeyer and John McLean. Abstract requirements specifications:
A new approach and its application. IEEE Trans. Softw. Eng., SE-9(5):580-589,
September 1983.

12

[18]

[19]

[20]
[21]
[22]

23]

[24]

[25]

[26]

[27]

[28]
29]

(30]

[31]
(32]

[33]

Kathryn Heninger, David L. Parnas, John E. Shore, and John W. Kallander. Soft-
ware requirements for the A-7E aircraft. Technical Report 3876, Naval Research
Lab., Wash., DC, 1978.

Kathryn L. Heninger. Specifying software requirements for complex systems:
New techniques and their application. IEEE Trans. Softw. Eng., SE-6(1):2-13,
January 1980.

S. D. Hester, D. L. Parnas, and D. F. Utter. Using documentation as a software
design medium. Bell System Tech. J., 60(8):1941-1977, October 1981.

G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279-295, May 1997.

Ryszard Janicki and Ridha Khedri. On a formal semantics of tabular expressions.
Science of Computer Programming, 39(2-3):189-213, March 2001.

Ralph Jeffords and Constance Heitmeyer. Automatic generation of state invari-
ants from requirements specifications. In Proc. Sizth ACM SIGSOFT Symp. on
Foundations of Software Engineering, November 1998.

Ralph D. Jeffords and Constance L. Heitmeyer. An algorithm for strengthen-
ing state invariants generated from requirements specifications. In Proc. Fifth
IEEE Int’l Symp. on Requirements Engineering (RE’01), Toronto, Canada, Au-
gust 2001.

J. Kirby, Jr., M. Archer, and C. Heitmeyer. SCR: A practical approach to building
a high assurance COMSEC system. In Proceedings of the 15th Annual Computer
Security Applications Conference (ACSAC ’99). IEEE Computer Society Press,
December 1999.

M. Lawford, J. McDougall, P. Froebel, and G. Moum. Practical application of
functional and relational methods for the specification and verification of safety
critical software. In Proc. Algebraic Methodology and Software Technology, 8th
Intern. Conf. (AMAST 2000), LNCS 1816, Iowa City, Iowa, May 2000.

S. Meyers and S. White. Software requirements methodology and tool study for
A6-E technology transfer. Technical report, Grumman Aerospace Corp., Beth-
page, NY, July 1983.

S. P. Miller, March 1997. Personal communication.

Steve Miller. Specifying the mode logic of a flight guidance system in CoRE
and SCR. In Proc. 2nd ACM Workshop on Formal Methods in Software Practice
(FMSP’98), 1998.

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Sys-
tem Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,
September 1999.

D. L. Parnas. Technique for software module specification with examples. Com-
munications of the ACM, 15(5), 1972.

D. L. Parnas, G.J.K. Asmis, and Jan Madey. Assessment of safety-critical software
in nuclear power plants. Nuclear Safety, 32(2), April-June 1991.

David Parnas, Paul Clements, and David Weiss. The modular structure of com-

plex systems. In Proc. 7th Int’l Conf. on Softw. Eng. (ICSE ’84), pages 408-417,
March 1984.

13

[34] David L. Parnas. On the design and development of program families. IEEE
Trans. Softw. Eng., 2, 1976.

[35] David L. Parnas. Designing software for ease of extension and contraction. IEEE
Trans. Softw. Eng., 5(2):128-138, February 1979.

[36] David L. Parnas and Paul C. Clements. A rational design process: How and why
to fake it. IEEE Trans. Softw. Eng., SE-12(2):251-257, February 1986.

[37] David L. Parnas and Jan Madey. Functional documentation for computer systems.
Science of Computer Programming, 25(1):41-61, October 1995.

[38] R. M. Smullyan. First-Order Logic. Springer-Verlag, 1968. Republished by Dover
Publications Inc., 1993.

14

