
Safety Case Construction and Reuse using Patterns
T P Kelly, J A McDermid

High Integrity Systems Engineering Group
Department of Computer Science

University of York
York YO1 5DD

E-mail: tpk|jam@cs.york.ac.uk
Phone: +44 0|1904 434728 Fax: +44 0|1904 4322708

Abstract
This paper presents an approach to the reuse of common structures in safety case arguments through
their documentation as ‘Safety Case Patterns’. Problems with the existing, informal and ad-hoc
approaches to safety case material reuse are highlighted. We argue that through explicit capture and
documentation of reusable safety case elements as patterns, the process of safety case construction and
reuse can be made more systematic. For the description of patterns a safety case pattern language and a
graphical pattern notation (based on the Goal Structuring Notation) are presented. Using this
framework we briefly describe a number of example argument patterns. A fully documented example
pattern is also included.

Introduction
The purpose of a safety case is to present the argument that a system, be it physical or procedural, is
acceptably safe to operate. This argument should demonstrate how the available evidence concerning the
system can be reasonably and defensibly interpreted as indicating compliance with the system safety
requirements. As such, each safety case will ultimately be specific to a particular system - defined by both
the details of the available evidence and safety requirements. However, amongst these ‘specific’ safety
cases, patterns of argument emerge through, for example, common approaches to addressing a standard
requirement or class of requirements, typical combinations of argument and accepted interpretations of
specific types of evidence.
Informal reuse of safety case material is already commonplace, especially within stable and well-
understood domains, e.g. aerospace engine controllers. However, this type of uncontrolled and often ad-
hoc reuse can fail to fully exploit opportunities for reuse, and can in some cases be potentially dangerous.
This paper describes the problems of informal safety case reuse and introduces the concept of Safety Case
Patterns as a means of explicitly and clearly documenting common elements found between safety cases.

The Problems of Informal Safety Case Material Reuse
Much of existing safety case material reuse is triggered by, and centres around, the safety engineers
responsible for the production of the safety case. It is not uncommon for an engineer, having recognised a
similarity, to plunder a previously developed safety case to help in the development of a safety case in a
new project. In some cases, the engineer may believe certain elements of the two projects to be sufficiently
similar to actually “cut-and-paste” parts of the original documentation and subject them only to minor
review and modification.
The central role of people in the reuse of safety artefacts is often crucial: many existing safety cases fail to
clearly present the intent and rationale of the safety arguments and safety processes. Such safety cases
cannot easily be read and understood in a way that permits re-application of principles propounded. They
require interpretation. To understand the intent of the safety case can take many readings. To understand
the rationale behind elements of a safety case can require a form of ‘reverse engineering’. Safety cases with
these properties are not readily amenable to reuse. Therefore, the safety engineers who worked on a safety
case form an important ‘missing link’ in any attempt to gain value from it in future safety case
developments. However, a number of potential problems arise where people are the principal medium for
cross-project reuse of safety case artefacts, including:
• Artefacts being reused inappropriately

If the original context of a safety case artefact is not fully recognised the artefact may be applied
inappropriately in another context. An argument of safety from one context that is not applicable in the
context in which it is reused can create a false or misleading picture of a system’s safety. Such reuse can

carry “hidden assumptions” from the original context that are inconsistent with the application context.
This danger is obviously greatest with the extreme “cut-and-paste” reuse.

• Reuse occurring in an ad-hoc fashion
Reuse is dependent entirely on the engineer’s ability, firstly, to recognise the potential to reuse some
artefact and, secondly, to recall the appropriate information. Consequently, reuse often occurs in a fairly
random, opportunistic, fashion and cannot be said to be exploited systematically. Opportunities to reuse
an artefact may be wasted.

• Loss of knowledge
A total reliance on people to achieve cross-project reuse is an admission that project documentation is
insufficient to support systematic reuse. A danger is that particular people, the company ‘experts’,
become a bottleneck on any project. Without documentation of their experience or expertise, they
become a critical resource in an organisation. They effectively act as an ‘index’ into the organisation’s
existing documentation. If such people leave an organisation, disproportionately large amounts of the
organisation’s ‘corporate memory’ is lost and, as a result, less reuse is possible.

• Lack of Consistency / Process Maturity
Without explicitly recognising and documenting the repeatable elements of safety case development
there can be no assurance that these elements are being used consistently. If an element is not
consistently applied, it is difficult to argue that the associated development process is mature. It is also
difficult to argue how this process has been, and will be, improved and evolved over time.

• Lack of traceability
Informal reuse is often invisible in the final safety case produced. No record is kept of reuse from
existing documentation. This lack of traceability can lead to problems in maintaining the safety case. For
example, if it were found that a particular reused safety argument was unsound (e.g. in the light of
contradictory operational evidence), it would be necessary to locate all uses of that argument in order to
update all appropriately. With no record of where it was reused this could be an extremely difficult
task. Reuse has the potential to propagate one error many times. To deal with such potential situations
requires adequate visibility and traceability of the reuse process.

These problems stem from the key issue of documentation. The process of safety case reuse must be
explicitly recognised and documented in order to control and support it. This involves identifying and
abstracting reusable elements from existing safety cases; documenting them with information defining their
characteristic function(s), applicability, record of applications, etc. Once such things are “down on paper”
they can be evaluated, exploited, evolved and traced. The following section introduces the concept of
recorded patterns as a means of documenting the common elements of safety case construction.

Patterns
The use of patterns as a means of describing common elements (or ‘themes’) of complex structures was first
documented in the field of building architecture. Christopher Alexander, in his book, “The Timeless Way of
Building” [1], argues that “Beyond its elements each building is defined by certain patterns of relationships
amongst its elements”. Alexander shows how patterns can be used to abstract away from the details of
particular buildings and capture something essential to the design (the principles underlying the building;
the reasons why elements of the building are successful or unsuccessful) that can then be used elsewhere. In
later books, “A Pattern Language” [2], and, “The Oregon Experiment” [3], Alexander describes in more
concrete terms how patterns can be documented and applied using pattern languages.
Influenced by Alexander’s work, over the last five years the concept of patterns and pattern languages has
received increasing interest from software designers [4,5,6]. Designers have turned to patterns as a means
of capturing the repeatable and successful elements of a software design. Many have been disappointed
with the unfulfilled promise of traditional component-based (compositional) reuse and believe that
successful reuse lies is the ability to describe higher level software structures [7]. These structures
communicating how components are combined to achieve certain functions, the principles of interfacing
components, etc. The attraction of patterns is that they offer this means of abstracting fundamental design
strategies from the details of particular designs.
Informal analysis of a number of safety cases suggests that patterns provide an appropriate level of
abstraction to make safety case artefacts reusable without significantly reducing the benefit per application.
Reuse of the specifics of safety cases (e.g. particular pieces of evidence) will largely be unsuccessful, as
between different safety cases these are likely to change. However, reuse of the general principles of safety
cases (i.e. the whys and hows of the construction of the safety case) is likely to be more successful as these

are more constant between safety cases. Patterns can provide a means of describing these general
principles, structures and processes of the safety case.
To describe safety case patterns requires a pattern language. The following section proposes a safety case
pattern language, adapted from those described for software design patterns.

A Safety Case Pattern Language
As with the design patterns of Gamma et. al. [8], safety case patterns are an attempt to capture solutions
that have evolved over time. A safety case pattern should be a simple and efficient solution to a particular
problem, whether it be the execution of a safety process or the construction of a particular safety argument.
In [8] a pattern format is proposed for describing design patterns. This format has been adapted for the
description of safety case patterns:

Pattern Name and
Classification

The pattern’s name should convey the essence of the pattern succinctly. A
good name is vital because, with use, it will become part of your design
vocabulary.

Intent A short statement that answers the following questions: What does the
pattern do / represent? What is it’s rationale and intent? What particular
safety issue / requirement / process does it address?

Also Known As Other well known names for the pattern, if any.
Motivation A scenario that illustrates a safety issue / process and how the elements of

the goal structure solve the problem. The scenario will help you understand
the more abstract description of the pattern that follow.

Applicability
(Necessary Context)

What are the situations in which the safety case pattern can be applied? What
information is required as context for the pattern to be successful (necessary
inputs to the pattern). How can you recognise situations in which the pattern
can be applied.

Structure A graphical representation of the pattern using the extended form of the goal
structuring notation. The representation can describe a product or a process
style goal structure. Where the structure indicates generality or optionality it
should be clear how the pattern can be instantiated.

Participants The elements of the goal structure and their function in the pattern.
Collaborations How the participants collaborate to carry out the function of the pattern.
Consequences How does the pattern support its objectives? What are the trade-offs and

results of using the pattern? For a product oriented pattern - what are the
principal arguments put forward? For a process oriented pattern - what are
the outputs of the activities described?

Implementation What pitfalls, hint or technique should you beware of when using the
pattern? What degrees of flexibility are there in following the pattern?

Sample Text Text fragments that illustrate how you might describe the pattern in the final
safety case / safety plan.

Known Uses Examples of the patterns application in existing safety documentation should
be cited. If possible examples from two different applications should be
shown.

Related Patterns Safety Case Patterns that are related to this pattern, e.g. with the same
motivation but different applicability conditions (e.g. different standards,
different systems). For a process orientated pattern, related product
(argument) patterns. For a product orientated pattern, related process
patterns.

The principal differences between the format for design patterns and format for safety case patterns are
firstly, the use of the Goal Structuring Notation (GSN) [9] rather than Rumbaugh’s Object Modelling
Technique OMT [10] to graphically describe the structural details of the pattern, and secondly the use of

sample text (for the eventual safety case) rather than sample source code. The use of GSN for pattern
description is described in the next section.
A key element of the pattern format when applied to safety cases is the notion of pattern applicability.
Applicability defines under what circumstances the pattern can be legitimately applied. For example,
descriptions of applicability could indicate which standards the pattern adheres to, the level of design
detail required or the assumption of system behaviour. Applicability of a safety case pattern is perhaps
more closely tied to the structural description of the pattern than with design patterns. The goal structure
representation of the pattern may specifically require certain elements to be present in the goal structure
into which the pattern is placed (e.g. a context entity, model, assumption or constraint).
A difference in emphasis between the design patterns of Gamma and safety case patterns is that, in
addition to the pattern rationale being documented by intent and motivation, the rationale behind a safety
argument or safety process should also be embedded in the elements of the structural description using the
goal structuring notation (through the conventional use of the GSN elements - strategies, assumptions and
justifications).
Safety case patterns are intended to describe partial solutions and will not typically describe the complete
structure of a system safety argument. It is expected that a collection of patterns will therefore emerge over
time forming a ‘recipe book’ of safety arguments and processes, a number of which would be used together
to aid in the construction of the safety case.

Structural Pattern Description using the Goal Structuring Notation
The Goal Structuring Notation (GSN) [9] was developed for the description of safety arguments, relating
the breakdown of safety requirements to arguments based upon available evidence. Figure 1 shows an
example goal structure, illustrating the key elements of the notation.

G19

C/S logic is fault free

S03

Argument by
omission of all
identified software
hazards

C13
Identified
software hazards

AddContext

G21

'Abort' Transition of
PLC state machine

includes
BUTTON_IN going

FALSE

Sn04

C/S State Machine

G18

'Failure1' transition
of PLC state machine

includes
BUTTON_IN

remaining TRUE

S04

Argument by
satisfaction of all
C/S safety
requirements

G17

Press controls being
'jammed on' will

cause press to halt

G20

Release of controls
prior to press passing

physical PoNR will
cause press operation

to abort

G38

C/S fails-safe (halts)
on, and annunciates

(by sounding
klaxon), all single

component failures

G41

C/S state machine is
an accurate

representation of
implementation

behaviour

G42

Unintended opening
of press (after PoNR)

can only occur as a
result of component

failure

G43

Unintended closing
of press can only

occur as a result of
component failure

Sn06

Fault tree cutsets for
event 'Hand in press
due to command error'

Sn08

Black Box Test
Results

Sn15

Hazard Directed
Testing Results

Figure 1. An Example Goal Structure

In the structure shown in figure 1, as in most, there exist ‘top level’ goals – statements that the goal
structure is designed to support. In this case, “C/S (Control System) Logic is fault free”, is the (singular) top
level goal. Beneath the top level goal or goals, the argument is broken down into sub-goals, either directly
or, as in this case, indirectly through a strategy. The two argument strategies put forward as a means of
addressing the top level goal in this structure are “Argument by satisfaction of all C/S (Control System) safety
requirements”, and, ”Argument by omission of all identified software hazards”. These strategies are then
substantiated by five sub-goals. At some stage in a goal structure, a goal statement is put forward that
need not be broken down and can be clearly supported by reference to some evidence. In this case, it is
shown that the goal “Unintended Closing of press after PoNR (Point of No Return) can only occur as a result of
component failure”, is supported by direct reference to the solutions, “Fault tree cut-sets … ” and “Hazard
Directed Testing Results”.
In its existing form, GSN can be used to express details of a specific safety argument, e.g. as shown in figure
1. However, in order to express patterns rather than simply instances, and perform the equivalent role for
safety case patterns that OMT performs for design patterns, GSN must also be capable of representing
generalisations of goal structures. For this reason, a number of extensions have been made to GSN to
support entity and structural abstraction over the existing elements. Figure 2 shows a simple goal structure
pattern that uses these extensions. (This pattern is described in the following section.)

G oal

S trategy Context

Solution

G1: {System X} is Safe

G2: {Function Y} is safe

S1: Argument by
claiming safety of all

safety-related functions
implemented by system

C1: Safety Related
Functions of {System X}

(n = # functions)

n

G3: Interactions
between system

functions are non-
hazardous

G4: All system
functions are
independent

(no interactions)

Provides {Function Y}

Figure 2. Extensions for Structural Abstraction

Example Safety Case Patterns

Patterns can emerge at many different levels in the safety argument and at varying degrees of specificity.
At the highest level it is possible to identify a number of basic argument structures that are used to
decompose ill-defined system safety requirements. For example, against the ultimate top level requirement
…

“{System X} is safe”

… two possible argument approaches could be applied:
• Hazard Directed Argument

• Functional Decomposition Argument

Figure 3 shows the GSN pattern (without accompanying text) representing a hazard directed argument.
In this pattern, the implicit definition of ‘safe’ is ‘hazard avoidance’. The requirement G1 is addressed by
arguing that all identified hazards have been addressed (S1). This strategy can only be executed in the
context of some knowledge of plausible hazards, e.g. identified by Hazard Analysis. Given this
information (C1), identifying n hazards, n sub-goals of the form G2 can be constructed. The argument then
develops from this ‘hazard avoidance’ goals.

Indicates th at
Elem ent Rem ains To
Be Ins tantiated

Indicates th at
Elem ent Rem ains To
Be Dev eloped (i.e.
S upported)

Indicates th at
Elem ent Rem ains To
Be Ins tantiated &
Th en D ev eloped

Indicates a Range of
Options A v ailable

Indicates a 1- to-
m any Relations h ip

In the previous section, Figure 2 shows the GSN
pattern (again, without accompanying text)
representing a functional decomposition argument. In
this structure, the top level goal of system safety (G1) is
re-expressed as a number of goals of functional safety
(G2) as part of the strategy identified by S1. In order to
support this strategy, it is necessary to have identified
all system functions affecting overall safety (C1) e.g.
through a Functional Hazard Analysis. In addition, it
is also necessary to put forward (and develop) the
claim that either all the identified functions are
independent, and therefore have no interactions that
could give rise to hazards (G4) or that any interactions
that have been identified are non-hazardous (G3).
At lower levels in the safety case argument, patterns
also emerge. For example, when arguing the safety of
software it is often common to claim a level of software
integrity from an appeal to having used best practice
tools, techniques and methods during development
and testing. Other common argument structures
emerge from the use of particular techniques. For
example, to support the claim that a particular software
condition cannot arise, a pattern could be identified

showing the typical use of either formal verification, Software Fault Tree Analysis (SFTA), or black box testing —
each strand of argument having its own associated arguments to develop (e.g. that the formal specification
is an accurate representation of the final target code (for formal verification), that sequential composition
has been appropriately represented (for SFTA), that sufficient coverage achieved (for testing) .
Figure 4 shows an example pattern that could be found in the lower levels of a safety case argument.

G2: <property x>
enforced by software

G1: Software element
of system is 'fault-free'

C1: Fault = deviation from intended
behaviour that could lead to a

system level hazard

C2: Free = Software itself does not
initiate any events that could lead

 to a system level hazard

S1: Argument by
satisfaction of all
software safety

properties/requirements

S2: Argument by
showing software

cannot cause
any of the identified
hazardous software

conditions

C4: Identified Hazardous
Software Conditions
(m = # of conditions)

C3: Identified Software
Requirements / Properties

(n = # of requirements / properties)

n

G3: <condition y> can
only occur by physical

component failure

m

Figure 4. Fault Free Software Pattern.

In this pattern, the claim that the software element in a system is ‘fault free’ (G1) is supported by two main
strands of argument (S1 and S2). First, over a list (C3) of identified hazardous software conditions (e.g.
“Controller demands speed greater than maximum safe speed”) the m sub-goals of the form G3 are expressed, to
argue that these hazards can only occur through physical component failures. Second, over a list (C4) of
identified software requirements (e.g. “Operation will not start if operator detected near machinery”) the n sub-
goals of the form G2 are expressed to argue that these properties are enforced in the software. In order that
this pattern will be appropriately applied, the context of the pattern is made clear through the elements C1
and C2 - both defining key terms in the top level claim.
The example patterns given here are deliberately general, as they can be readily understood and have wide
applicability across technologies and regulatory contexts. However, in well understood and stable domains
it is possible to identify argument patterns at a greater level of specificity. For example, in the civil

G1: {System X} is safe

S1: Argument by
claiming addressed

all identified
plausible hazards

C1: Identified Hazards for
{System X}

in the

context of

n = # hazards

Provides {Hazard X}

G2: {Hazard X} has
been addressed

n

Figure 3. Hazard Avoidance Pattern

aerospace sector common arguments are often developed against particular individual regulations (in
Europe from the Joint Aviation Requirements, in the U.S. from the Federal Aviation Requirements) - e.g.
capturing what is an acceptable approach to arguing that “Thrust Reverser will not deploy during flight”.
An example of a pattern complete with supporting text is provided as an appendix to this paper. This
pattern presents an approach to arguing satisfaction of the ALARP (As Low As Reasonably Practicable)
Principle at the highest level in a safety case.

Using Patterns in Argument Construction

It is intended that, over time and within individual domains, collections of safety case patterns will be
developed. These collections will be used as ‘recipe books’ for future safety case developments. When
faced with particular requirements to support, engineers will then be able to retrieve and execute the
approach as defined by the corresponding pattern. As well as potentially saving development effort, using
patterns in argument construction in this way addresses many of the identified problems of informal reuse:
• Artefacts being reused inappropriately

Through documentation of artefacts as patterns, including documentation of applicability and clear
description of the required context (both in the text and in the structural pattern) - inappropriate use of
material is made less likely.

• Reuse occurring in an ad-hoc fashion
Through the development of a core ‘recipe book’ of patterns, opportunities for reuse can be more easily
identified and exploited.

• Loss of knowledge
Documentation through patterns, especially including the supporting text, helps to explicitly capture the
knowledge developed within an organisation.

• Lack of Consistency / Process Maturity
Through the development of a core ‘recipe book’ of patterns, the consistency of approach between
developments can be more readily encouraged and supported.

• Lack of traceability
Through the more explicit reuse of material as patterns, ease of recording traceability information (e.g.
documenting those (versions of) patterns used within a new development) is improved.

Conclusions
There is potential for reuse of material between safety case developments. This is borne out by the levels of
informal reuse instigated by safety engineers. However, there are a number of deficiencies with such an ad-
hoc approach. Documentation of common safety case argument structures as patterns provides a suitable
medium through which to foster systematic artefact reuse and aid in the development of new safety cases.

References
[1] ‘The Timeless Way of Building’, Christopher Alexander, Oxford University Press, New York, 1979
[2] ‘A Pattern Language’, Christopher Alexander, Oxford University Press, New York, 1977
[3] ‘The Oregon Experiment’, Christopher Alexander, Oxford University Press, New York, 1975
[4] ‘Patterns and Software Development’, Kent Beck, Dr. Dobbs Journal, 1993 vol. 19 no. 2 pp 18-23
[5] ‘Patterns’, Grady Booch, Object Magazine, 1993 vol. 3 no.2
[6] ‘Object-Oriented Patterns’, Peter Coad, Communications of the ACM, September 1993 vol. 35 no. 9

pp 153-159
[7] ‘Reusing software: issues and research directions’, H. Mili, F. Mili and A. Mili IEEE Transactions on

Software Engineering, June 1995 vol.21 no. 6 pp 528-62
[8] ‘Design Patterns: Elements of Reusable Object-Oriented Software’, Erich Gamma, Richard Helm,

Ralph Johnson and John Vlissides, Addison-Wesley, December 1995
[9] ‘SAM User Manual’, Stephen Wilson, Pete Kirkham, University of York, December 1995
[10] ‘Object-Oriented Modeling and Design’, James Rumbaugh, Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen, Prentice-Hall, 1991

Appendix: ALARP (As-Low-As-Reasonably-Practicable) Pattern

ALARP (As-Low-As-Reasonably-Practicable) Pattern
Author Tim Kelly

Created 04/02/97 10:41 Last Modified 05/02/97 09:47

Intent This pattern provides a framework for arguing that identified risks in a system have been
sufficiently addressed in accordance with the ALARP principle.

Also Known As • Risk Reduction Argument Pattern

Motivation This pattern was developed for two reasons:
• To argue compliance with the ALARP principle at the highest level when addressing

system level hazards.
• To provide a more structured approach to presenting a ‘Hazard Avoidance’ argument

(See Hazard Avoidance Pattern) by showing differing treatment of hazards according
to their associated risk.

Structure

System hazards
addressed in

accordance with
ALARP Principle

No intolerable risks
present in system

All tolerable risks have
reduced as low as

reasonably practicable

Risk associated with all
remaining hazards is

negligable

Identified system
hazards

Definition of
'intolerable'

Definition of
'tolerable'

Definition of
'negligable'

System Hazard
Log

Risk associated with
{Hazard X} has been

addressed

n = # hazards from
'Identified System

Hazards' (previously)
meeting definition of

intolerable
n>0 n=0

n

{Hazard X} has been
eliminated and can no

longer occur

Risk associated with
{Hazard X} has been
reduced to a tolerable

level

Risk associated with
{Hazard X} has been

reduced as low as
reasonably practicable

m

m = # hazards from
'Identified System
Hazards' meeting

definition of tolerable

{Hazard X} is
necessarily present in
system (because of

some positive benefit)

Measures have been
taken to reduce risk

associated with
{Hazard X}

Further reduction of risk
associated with

{Hazard X} requires
disproportionate

expense

Risk associated with
{Hazard X} has been

shown to be negligable

o

o = # hazards from
'Identified System
Hazards' meeting

definition of
negligable

Provides {Hazard X}

Definition of
'disproportionate'1

G1

G2

G3

G4

G5

G6 G7 G8G9

G10 G11 G12

C1

C2

C3

C4

C5

Sn1

Key
Element to be instantiated

Structure to be developed

Element to be instantiated
and developed

Option to be taken

n
Multiple (n) instantiations

required

Participants G1 Defines the overall objective of the pattern

G2, G3, G4 Defines targets for three classes of identified risks: negligible, tolerable,
and intolerable

Sn1 Provided at this point to support the claim that no intolerable risks have
(ever) been identified with the system

G6 or
G7 and G8

Claims either that hazard has been eliminated or associated risk
reduced to a tolerable level and dealt with as a tolerable risk.

G8 Defines ALARP target for each identified tolerable risk

G10, G11, G12 Claims required to support ALARP target:
• Hazard only acceptable if positive benefit achieved
• Risk reduction measures have been taken up to the point where

further measures would be disproportionate to benefit gained.
G9 Claim for each remaining hazard that associated risk shown to be

negligible
C1 A context identifying all system hazards, including indication of

associated risks (e.g. Risk Category from A, B, C, D).
C2, C3, C4 A workable definition of ‘intolerable’/ ’tolerable’/ ’negligible’ risks that

can be used as a basis for selection from the list of hazards(e.g.
Intolerable = Risk Category A, Tolerable = Risk Category B or C,
Negligible = D).

C5 The ALARP principle relies on some understanding of when it is no
longer cost-effective to spend further money on risk reduction. This
element, a definition of cost-effectiveness, is therefore required.

Collaborations An important aspect of this pattern is that it divides and conquers the goal of hazard
mitigation / elimination according to the level of risk associated with each hazard. There
are three strands to the safety argument: one tackling intolerable risks, one tackling
tolerable risk and one discounting negligible risks. To satisfactorily support the top level
goal (G1) it is important that these three strands address all identified risks. The definitions
of tolerable, intolerable and negligible (C3, C2 and C4 respectively) should therefore be so
defined to cover and classify the range of possible levels of risks.
It should also be noted that the definitions of negligibility (C4) and disproportionate (C5)
cannot be considered entirely independently. It would not make sense, for example, to
force risk reduction to a level below that identified elsewhere as negligible.
As the goal structure shows, if the means of addressing a previously identified intolerable
risk is to reduce it to a tolerable level, then the remaining risk must be tackled as for all
tolerable risks. If the level of risk has been reduced to a negligible level, then the hazard
must be tackled as a negligible risk.
It is important that the source of Identified System Hazards (C1) identifies the level of risk
posed by a hazard in a way that permits sub-division into the classes of risk defined by C2,
C3 and C4.

Applicability This pattern is applicable in contexts where the ALARP principle is accepted as the device
for reasoning about the relative importance of risks and the cost-effectiveness of risk
reduction.
In order to apply this pattern it is necessary to have access to the following contextual
information:
• C1: Identified System Hazards

(See Participants section)
• C2, C3, C4: Definition of Intolerable / Tolerable / Negligible Risk

(See Participants section)
These definitions are typically provided by the appropriate regulatory authority,
standards or through investigations by safety engineers, including discussions with
customers.

• C5: Definition of Disproportionate
(See Participants section)

Consequences After applying this pattern, there will be a number of undeveloped goals of the form:
• G7: Risk associated with {Hazard X} has been reduced to a tolerable level

• G9: Risk associated with {Hazard X} has been shown to be negligible

• G6: {Hazard X} has been eliminated and can no longer occur

• G10: {Hazard X} is necessarily present in the system

• G11: Measures have been taken to reduce risk associated with {Hazard X}

• G12: Further reduction of risk associated with {Hazard X} requires disproportionate
expense

Implementation Implementation of this pattern involves first instantiating the contexts C1, C2, C3, C4. In
the context of the list of hazards referenced by C1, the solutions to goals G2, G3 and G4 can
be provided. If no tolerable risks were ever present in the system, then reference to the
system hazard log (Sn1) is sufficient to support the claim G2. However, if any intolerable
risks have been identified, it is necessary to claim (G5) that these have been resolved
through complete elimination of the hazard (G6), or reduction to a tolerable (G7, G8) or
negligible (G9) level.
For each tolerable risk identified an argument must be constructed (G6, G10, G11, G12) to
demonstrate that it has been addressed in accordance with the ALARP principles.
Measures taken in risk reduction must be stated in support of G11. Some evidence /
argument of the non cost-effectiveness of further risk reduction measures must be supplied
in support of G12, in accordance with the definition given by C5.
Evidence of risk analysis (probably based upon consideration of probability of occurrence)
is required in support of each claim of hazards posing negligible risk (G9).
Possible Pitfalls

• Not providing complete coverage of levels of risk through definitions C2, C3, C4
• Expressing definitions C2, C3, C4 in a way that is difficult to apply to the information

provided by C1 (and vice versa)
• Not having a commonly agreed concept of when to stop attempting further risk

reduction (C1) - this can result in a non-uniform approach to tackling risks where
significantly different levels of effort are committed to risks at the same level.

Examples TBD

Known Uses See Industrial Press Safety Argument

Related Patterns • Safe by Hazard Mitigation Argument

