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Abstract. A hybrid system is a dynamical system whose
behavior exhibits both discrete and continuous change.
A hybrid automaton is a mathematical model for hy-
brid systems, which combines, in a single formalism, au-
tomaton transitions for capturing discrete change with
differential equations for capturing continuous change.
HyTech is a symbolic model checker for linear hybrid
automata, a subclass of hybrid automata that can be ana-
lyzed automatically by computing with polyhedral state
sets. A key feature of HyTech is its ability to perform
parametric analysis, i.e., to determine the values of design
parameters for which a linear hybrid automaton satisfies
a temporal-logic requirement.
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1 Introduction

A hybrid system typically consists of a collection of dig-
ital programs that interact with each other and with an
analog environment. Examples of hybrid systems include
manufacturing controllers, automotive and flight con-
trollers, medical equipment, micro-electromechanical sys-
tems, and robots. When these systems occur in mission-
critical applications, formal guarantees about the ab-
sence of logical and timing errors are desirable. The
formal analysis of the mixed digital-analog nature of
hybrid systems requires a mathematical model that in-
tegrates the discrete behavior of computer programs
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with the continuous behavior of environment variables,
such as time, position, and temperature. The first exten-
sions of discrete state-transition models toward mixed
discrete-continuous behavior concentrated on the single
most important environment parameter – real time. One
such model is the timed automaton – a finite automa-
ton augmented with a finite number of clocks, which are
real-valued variables whose values change continuously
with the constant rate 1 [4]. Timed automata have been
used successfully to analyze real-time protocols and asyn-
chronous circuits. For modeling more general kinds of
hybrid systems, we use the hybrid automaton – a finite au-
tomaton with a finite number of real-valued variables that
change continuously, as specified by differential equations
and differential inequalities, in more general ways than
clocks [2, 3, 36].

For analyzing hybrid systems, we build on the model-
checking technology for system verification. In model
checking, a formal model of a system is checked, fully au-
tomatically, for correctness with respect to a requirement
expressed in temporal logic [11, 37]. For this purpose, the
entire state space of the system is explored. This can be
done enumeratively, by considering each state individu-
ally, or symbolically, by computing with constraints that
represent state sets. Because of its ability to deal with
very large state spaces, symbolic model checking has been
proven an effective technique for the automatic analysis
of complex finite state-transition systems [10]. In recent
years, the model-checking approach has been extended
to several classes of infinite state-transition systems, in-
cluding timed automata [1]. Since clock values range over
the infinite domain of the nonnegative reals, it is impos-
sible to enumerate all states of a timed automaton, and
symbolic representations of state sets must be employed.
Specifically, the symbolic model checking of a timed au-
tomaton requires the manipulation of certain linear con-
straints on clock values, namely, disjunctions of inequali-
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ties of the form x∼ b and x−y ∼ b, for clock vectors x
and y, an inequality operator∼∈ {≤,≥}, and a constant
integer vector b, whose components are bounded for any
given automaton [29]. Since there are only finitely many
of these constraints, all computations required for model
checking are guaranteed to terminate.

By admitting more general linear constraints on con-
tinuous variables, namely, disjunctions of inequalities of
the form Ax∼ c, where A is a constant matrix and c is
a constant vector, the symbolic model-checking method
for timed automata can be extended to a more gen-
eral class of hybrid automata called linear hybrid auto-
mata [5]. In a linear hybrid automaton, the dynamics of
the continuous variables are defined by linear differential
inequalities of the form Aẋ ∼ b, where ẋ is the vector
of first derivatives of the variables x.1 Since the number
of possible constraints is no longer finite, when moving
from timed automata to linear hybrid automata, the price
to pay for the increased generality is the loss of guaran-
teed termination for model checking. The method is still
of practical interest, however, because termination hap-
pens naturally in many examples and can be enforced in
others, say, by considering the behavior of a system over
a bounded interval of time.

Model checking can be used to provide more than
a mere “yes” or “no” answer to the question of whether
a system satisfies a correctness requirement. The model
checker HyTech provides also diagnostic information
that aids in design and debugging. If a system descrip-
tion contains design parameters, whose values are not
specified, then HyTech computes necessary and suffi-
cient constraints on the parameter values that guarantee
correctness. For example, for a railroad crossing, we will
compute the exact cutoff point, in meters from the cross-
ing, at which a train has to signal its approach in order for
the gate to be closed by the time the train passes through
the crossing. If a system fails to satisfy a correctness re-
quirement, then HyTech generates an error trajectory,
which illustrates a time-stamped sequence of events that
leads to a violation of the requirement.

While linear hybrid automata are expressive com-
pared to other formalisms for which model checking is
possible, such as finite automata and timed automata,
many embedded applications do not meet the linearity
constraints. In such cases, we conservatively approximate
the system using linear hybrid automata so that if the ap-
proximate automaton satisfies a correctness requirement,
then the original system satisfies the requirement as well.
If, on the other hand, the approximate system violates
the requirement, and the generated error trajectory is not
a possible trajectory of the original system, then the ap-
proximation must be refined.

1 It is important to realize that the definition of linearity for
hybrid automata differs from the definition of linearity commonly
used in systems theory. In particular, the differential inequalities
of linear hybrid automata must not depend on the values of the
variables, and thus dynamics of the form ẋ= x are prohibited.

This paper consists of three sections. Section 2 presents
the model of hybrid automata, Sect. 3 illustrates the an-
alysis techniques, and Sect. 4 briefly describes the tool
HyTech. A simple thermostat is used as a running ex-
ample to demonstrate modeling, approximation, safety
verification, parametric analysis, and the use of the tool.
For more involved model-checking procedures of general
temporal-logic requirements, as well as for theoretical
results on timed automata, the interested reader is en-
couraged to consult other literature [19].

2 Hybrid automata

2.1 Example: a simple thermostat

A euclidean dynamical system prescribes how a set of
real-valued variables evolve over time. A system state is
a point in Rn (where n is the number of variables), and
a system trajectory is a curve in Rn (called a flow). The
deterministic evolution of real variables is naturally pre-
scribed by an initial condition and differential equations;
for example, the temperature x ∈R of a heated plant may
observe the initial condition x = 2 and the differential
equation ẋ =−x+ 5. The nondeterministic evolution of
real-valued variables can be prescribed using differential
inequalities, such as ẋ ∈ [3, 4].

By contrast, a boolean dynamical system prescribes
how a set of boolean-valued variables evolve over time.
A system state is a point in Bm (wherem is the number of
variables), and a system trajectory is a sequence of states
(each pair of consecutive states is called a jump). The
nondeterministic evolution of boolean variables is natu-
rally prescribed by an initial condition and a transition
relation, which indicates for every state the set of possible
successor states. For example, the status y ∈ {on, off } of
a heater may observe the initial condition y = on and the
transition relation {(on , off ), (off , on)}, i.e., the heater
may be turned on or off. A boolean dynamical system,
thus, can be viewed as a finite automaton.

A hybrid dynamical system has both real-valued and
boolean-valued variables, say n real variables and m
boolean variables. A system state, then, is a point in
Bm×Rn, and a system trajectory is a sequence of flows
and jumps: during flows, the boolean part of the state
stays constant and the real part of the state evolves over
time; at jumps, the entire state changes instantaneously.
We describe hybrid dynamical systems using hybrid auto-
mata. A hybrid automaton annotates the control graph
of a finite automaton with conditions on real-valued vari-
ables. Each node of the graph represents an operating
mode of the system, and is annotated with differential in-
equalities that prescribe the possible evolutions (flows) of
the real variables while the system remains in the given
mode. Each edge of the graph represents a switch in op-
erating mode, and is annotated with a condition that
prescribes the possible changes (jumps) of the real vari-
ables when the system executes the given mode switch.



112 T.A. Henzinger et al.: HyTech: a model checker for hybrid systems

on

1≤ x≤ 3
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Fig. 1. Thermostat automaton

If we combine the temperature x ∈ R with the heater
y ∈ {on, off }, we obtain a thermostat. The hybrid au-
tomaton of Fig. 1 has two operating modes: either the
heater is on (mode on), or the heater is off (mode off ).
Initially, the heater is on and the temperature x is 2 de-
grees. When the heater is on, the temperature rises at
the rate of −x+ 5 degrees per minute; when the heater
is off, the temperature falls at the rate of −x degrees per
minute. The heater can be turned off when the tempera-
ture reaches 3 degrees, and it can be turned on when the
temperature falls to 1 degree. This is due to the edge con-
ditions x= 3 and x= 1, which assert when a mode switch
may occur. To force mode switches, such as forcing the
heater to be turned off when the temperature reaches 3
degrees, we annotate the operating modes with so-called
invariant conditions (in addition to the annotation with
differential inequalities): the system can remain in a mode
only as long as the corresponding invariant condition is
satisfied. Thus, the invariant conditions 1≤ x≤ 3 of both
operating modes prescribe that a mode switch must occur
before the temperature leaves the operating interval of
[1, 3] degrees.

2.2 Formal definition

A hybrid automaton is a systemA= (X,V,flow , inv , init ,
E, jump,Σ, syn) that consists of the following compo-
nents [2]:

Variables A finite ordered set X = {x1, x2, . . . , xn} of
real-valued variables. For example, the thermostat au-
tomaton of Fig. 1 uses the variable x to model the
plant temperature (in this case, n= 1).

Control modes A finite set V of control modes. For
example, the thermostat automaton has two control
modes, on and off .

Flow conditions A labeling function flow that assigns
a flow condition to each control mode v ∈ V . The flow
condition flow(v) is a predicate over the variables in
X ∪ Ẋ, where Ẋ = {ẋ1, . . . , ẋn}. The dotted variable
ẋi, for 1≤ i≤ n, refers to the first derivative of xi with
respect to time, i.e., ẋi = dxi/dt. While the control of
the hybrid automaton A is in mode v, the variables
in X evolve along a differentiable curve such that at
all points along the curve, the values of the variables
and their first derivatives satisfy the flow condition
flow(v). For example, the control mode on of the ther-
mostat automaton has the flow condition ẋ=−x+ 5;
the control mode off has the flow condition ẋ=−x.

Invariant conditions A labeling function inv that as-
signs an invariant condition to each control mode v ∈
V . The invariant condition inv(v) is a predicate over
the variables in X. While the control of the hybrid
automatonA is in mode v, the variables inX must sat-
isfy the invariant condition inv(v). For example, both
control modes of the thermostat automaton have the
invariant condition 1≤ x≤ 3.

Initial conditions A labeling function init that assigns
an initial condition to each control mode v ∈ V . The
initial condition init(v) is a predicate over the vari-
ables in X. The control of the hybrid automaton A
may start in the mode v when the initial condition
init(v) is true. In the graphical representation of auto-
mata, initial conditions appear as labels on incoming
arrows without source modes, and initial conditions
of the form false are not depicted. For example, the
control mode on of the thermostat automaton has the
initial condition x = 2; the control mode off has the
initial condition false .

Control switches A finite multiset E of control
switches. Each control switch (v, v′) is a directed
edge between a source mode v ∈ V and a target
mode v′ ∈ V . For example, the thermostat automaton
has two control switches, (on, off ) and (off , on).

Jump conditions A labeling function jump that as-
signs a jump condition to each control switch e ∈ E.
The jump condition jump(e) is a predicate over the
variables inX ∪X ′, whereX ′ = {x′1, . . . , x

′
n}. The un-

primed symbol xi, for 1 ≤ i ≤ n, refers to the value
of the variable xi before the control switch, and the
primed symbol x′i refers to the value of xi after the
control switch. Thus, a jump condition relates the
values of the variables before a control switch to the
possible values after the control switch. In the graph-
ical representation of automata, we use guarded as-
signments to represent jump conditions; for example,
assuming n= 2, the guarded assignment

x1 = x2→ x1 := 2x2

stands for the jump condition

x1 = x2∧x
′
1 = 2x2∧x

′
2 = x2

(notice that because the variable x2 is not assigned
a new value, its value after the jump is equal to its
value before the jump). In the thermostat automa-
ton, the control switch (on , off ) has the jump condi-
tion x= 3∧x′ = x; the control switch (on , off ) has the
jump condition x= 1∧x′ = x.

Events A finite set Σ of events, and a labeling func-
tion syn that assigns an event in Σ to each control
switch e∈E. For example, the control switch (on , off )
of the thermostat automaton corresponds to the event
turn_off ; the control switch (off , on) corresponds to
the event turn_on . Though not used in the thermostat
example, events permit the synchronization of jumps
between concurrent hybrid automata.
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2.3 States and trajectories

A state of the hybrid automaton A is a pair (v,a) consist-
ing of a control mode v ∈ V and a vector a = (a1, . . . , an)
that represents a value ai ∈ R for each variable xi ∈X.
The state (v,a) of A is admissible if the predicate inv(v)
is true when each variable xi is replaced by the value ai.
The state (v,a) is initial if the predicate init(v) is true
when each xi is replaced by ai. For example, the state
(on, 1.5) of the thermostat automaton is admissible; the
state (on , 0.5) is not. The thermostat automaton has ex-
actly one initial state, (on, 2).

Consider a pair (q, q′) of two admissible states q =
(v,a) and q′ = (v′,a′). The pair (q, q′) is a jump of A if
there is a control switch e ∈ E with source mode v and
target mode v′ such that the predicate jump(e) is true
when each variable xi is replaced by the value ai, and
each primed variable x′i is replaced by the value a′i. The
thermostat automaton has exactly two jumps, ((on , 3),
(off , 3)) and ((off , 1), (on, 1)). The pair (q, q′) is a flow
of A if v = v′ and there is a nonnegative real δ ∈ R≥0

(the duration of the flow) and a differentiable function
ρ : [0, δ]→Rn (the curve of the flow) such that the follow-
ing three requirements hold:

1. Endpoints: ρ(0) = a and ρ(δ) = a′.
2. Invariant condition: For all time instants t ∈ (0, δ), the

state (v, ρ(t)) is admissible.
3. Flow condition: Let ρ̇ : [0, δ]→ Rn be the first time

derivative of ρ. For all time instants t ∈ (0, δ), the
predicate flow(v) is true when each variable xi is re-
placed by the i-th coordinate of the vector ρ(t), and
each dotted variable ẋi is replaced by the i-th coordi-
nate of ρ̇(t).

For example, ((off , 3), (off , 2)) and ((off , 3), (off , 2.5))
are flows of the thermostat automaton. If (q, q′) is a jump,
we say that q′ is a jump successor of q; if (q, q′) is a flow,
then q′ is called a flow successor of q (notice that every ad-
missible state is a flow successor of itself, because there is
always a flow of duration 0).

A trajectory of the hybrid automaton A is a finite
sequence q0, q1, . . . , qk of admissible states qj such that
(1) the first state q0 of the sequence is an initial state ofA,
and (2) each pair (qj , qj+1) of consecutive states, 1 ≤ j ≤
k, in the sequence is either a jump of A or a flow of A.
A state of A is reachable if it is the last state of some tra-
jectory of A. While this is not usually the case, all admis-
sible states of the thermostat automaton are reachable.

2.4 Safety requirements

A safety requirement asserts that nothing bad will hap-
pen during the evolution of a system. Safety requirements
can often be specified by describing the “unsafe” values
and value combinations of the system variables. Then, the
system satisfies the safety requirement iff all reachable
states are safe. Safety verification, therefore, amounts to
computing the set of reachable states.

off

1≤ x≤ 3

ẋ=−x
∧ ẏ = 1∧ ż = 0

x= 2

∧ y = 0

∧ z = 0 turn_on

x= 1
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∧ ẏ = 1∧ ż = 1

Fig. 2. Thermostat automaton augmented for safety verification

For hybrid automata, we specify safety requirements
using state assertions. A state assertion ϕ for the hybrid
automaton A is a function that assigns to each control
mode v ∈ V a predicate ϕ(v) over the variables in X.
We say that the state assertion ϕ is true (or false) for
a state (v,a) ofA if the predicate ϕ(v) is true (false) when
each variable xi is replaced by the value ai. The states
for which ϕ is true are called the ϕ-states. For example,
the invariant conditions of A define a state assertion inv ,
and the inv -states are precisely the admissible states;
similarly, the initial conditions define a state assertion
init that is true precisely for the initial states (flow and
jump conditions do not define state assertions). If unsafe
is a state assertion for the hybrid automaton A, then A
satisfies the safety requirement specified by unsafe if the
state assertion unsafe is false for all reachable states of A.

Sometimes the given variables or control modes are
not sufficient to specify a safety requirement, and the sys-
tem description needs to be augmented with additional
variables and control modes (or with so-called monitor
automata, which are executed concurrently with the sys-
tem and report when an unsafe state is entered; see be-
low). For example, for the thermostat automaton, con-
sider the requirement that the heater is active less than
2/3 of the first 60 minutes. To specify this requirement,
we need a means of representing (1) the total elapsed
time, say y, and (2) the total accumulated time that the
heater has been active, say z. To this end, we add the
two auxiliary variables y and z to the thermostat au-
tomaton, in a way that does not alter the behavior of the
automaton: the variable y is a clock (i.e., ẏ = 1 for all
control modes) that measures the elapsed time; the vari-
able z is a stopwatch (i.e., ż = 1 or ż = 0) that measures
the accumulated time spent in the control mode on . The
augmented automaton is shown in Fig. 2. Now we can
specify the unsafe states using the state assertion unsafe
that assigns the predicate y = 60∧z ≥ 2y/3 to both con-
trol modes. We will use HyTech to verify that the state
assertion unsafe is false for all reachable states of the aug-
mented thermostat (notice that it is no longer the case
that all admissible states are reachable).

3 Analysis of hybrid automata

3.1 Computing the reachable states

To check if the hybrid automaton A satisfies the safety
requirement specified by the state assertion unsafe, we at-
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tempt to compute another state assertion, reach, which is
true exactly for the reachable states of A. Then we check
if there is any state for which both reach and unsafe are
true: if so, the safety requirement is violated, and we pro-
duce an error trajectory from an initial state to an unsafe
state (this is useful for debugging the system); if not, the
safety requirement is satisfied. We attempt to compute
the state assertion reach as follows. For a state assertion
ϕ, let Post(ϕ) be a state assertion that is true precisely for
the jump and flow successors of the ϕ-states, i.e., Post(ϕ)
is true for a state q′ iff there exists a ϕ-state q such that
(q, q′) is either a jump or a flow ofA. If we succeed in com-
puting the state assertion ϕ1 = Post(init), then we have
characterized all states that are reachable by trajectories
of length 1 (i.e., by a single jump or flow); if we succeed
in computing the state assertion ϕ2 = Post(ϕ1), then we
have characterized all states that are reachable by trajec-
tories of length 2; etc. Finally, if for some natural number
k, we find that ϕk and ϕk+1 = Post(ϕk) are equivalent
(i.e., they are true for the same states), then we can con-
clude that ϕk characterizes all states that are reachable
by trajectories of any length, and therefore reach = ϕk
(notice that, because every admissible state is a flow suc-
cessor of itself, if a state is reachable by a trajectory of
length k, then it is also reachable by a trajectory of length
k+ 1).

The success of this computation of reach hinges on
two issues. First, for a state assertion ϕ, we need to be
able to compute the state assertion Post(ϕ). This can be
done reasonably efficiently for a restricted class of hybrid
automata called linear hybrid automata. Second, the iter-
ative computation of reach must converge within a finite
number of Post applications. This can be guaranteed for
certain restricted classes of linear hybrid automata, such
as the class of timed automata, all of whose variables are
clocks. While we address the first issue below, the sec-
ond issue is more of theoretical than practical interest:
if a verification attempt does not succeed, by exhaust-
ing all available space or time resources, it is of little
value to know that with unlimited resources the com-
putation would have converged. The convergence issue,
therefore, is not discussed further, and we refer the inter-
ested reader to the literature, where decidability results
for several subclasses of linear hybrid automata can be
found [17, 18, 26–28, 34].

3.2 Linear hybrid automata

The hybrid-automaton model is very expressive. While
convenient for providing formal descriptions of hybrid
systems, the very generality of the model prohibits auto-
matic analysis. We therefore consider a restricted class of
hybrid automata, the linear hybrid automata, for which
the function Post on state assertions can be computed ef-
ficiently.

An atomic linear predicate is an inequality between
a rational constant and a linear combination of variables

with rational coefficients, such as 3x1−x2 + 7x5 ≤ 3/4.
A convex linear predicate is a finite conjunction of lin-
ear inequalities. A linear predicate is a finite disjunction
of convex linear predicates. The hybrid automaton A is
a linear hybrid automaton if it satisfies the following two
requirements [5]:

1. Linearity: For every control mode v ∈ V , the flow con-
dition flow(v), the invariant condition inv(v), and the
initial condition init(v) are convex linear predicates.
For every control switch e ∈ E, the jump condition
jump(e) is a convex linear predicate.

2. Flow independence: For every control mode v ∈ V , the
flow condition flow(v) is a predicate over the vari-
ables in Ẋ only (and does not contain any variables
from X).

The second requirement ensures that the possible flows
are independent from the values of the variables, and de-
pend only on the control mode. While this requirement
is quite limiting, and prohibits flow conditions such as
ẋ= x, it does permit many kinds of variables that typic-
ally arise in real-time computing, such as clocks (ẋ= 1),
stopwatches (ẋ = 1 or ẋ = 0), and clocks with bounded
drift (ẋ ∈ [1− ε, 1 + ε] for some constant ε).

A state assertion ϕ for A is linear if for every control
mode v ∈ V , the predicate ϕ(v) is linear. For linear hy-
brid automata, we have the following theorem [5]: if A is
a linear hybrid automaton, and ϕ is a linear state asser-
tion for A, then Post(ϕ) can be computed and the result
is again a linear state assertion for A. This is because for
linear hybrid automata, every flow curve can be replaced
by a straight line between the two endpoints. The theo-
rem enables the automatic analysis – safety verification as
well as more general temporal-logic model checking [5] –
of linear hybrid automata.

3.3 From nonlinear to linear hybrid automata

The thermostat automaton of Fig. 1 is not a linear hy-
brid automaton, because the requirement of flow inde-
pendence is violated in both control modes. Since we have
no direct means of automatically verifying nonlinear hy-
brid automata using HyTech, we have developed two
techniques for replacing a nonlinear hybrid automaton by
a linear hybrid automaton [25]. The first technique, called
clock translation, replaces variables that cause nonlinear-
ity by clocks. The second technique, called linear phase-
portrait approximation, replaces nonlinear predicates by
more relaxed linear predicates.

Clock translation

The idea behind clock translation is that sometimes the
value of a variable can be determined from a past value
and the time that has elapsed since the variable had that
value. For instance, the variable xi of the hybrid automa-
ton A is clock-translatable if the following two require-
ments hold:
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1. Solvability: In each flow condition flow(v), all occur-
rences of xi and ẋi are within a conjunct of the form
ẋi = gvi (xi), where gvi :R→R is an integrable function
with constant sign over the invariant condition (i.e.,
for any two admissible states (v,a) and (v,b), either
both gvi (ai) and gvi (bi) are positive, or both are nega-
tive). In each invariant, initial, and jump condition, all
occurrences of xi and x′i are within conjuncts of the
form x′i = xi or xi ∼ c or x′i ∼ c, for inequality opera-
tors∼ and rational constants c.

2. Initialization: For every control mode v, the initial
condition init(v) implies xi = c for some constant c.
For every control switch (v, v′), either gvi = gv

′

i and
jump(v, v′) implies x′i = xi, or jump(v, v′) implies x′i =
c for some constant c.

Under the conditions above, the value of xi is determined
by (a) the time since it was last reassigned to a constant,
and (b) the value of that constant. Therefore, all invari-
ant, initial, and jump conditions on the clock-translatable
variable xi can be translated to conditions on a clock txi
that is restarted whenever xi is reassigned to a constant.
If necessary, control modes may need to be duplicated to
account for reassignments of xi to different constants.

The variable x of the thermostat automaton is clock-
translatable. Clock translation results in the hybrid au-
tomaton of Fig. 3. The control mode on is split into two
control modes, one for each of the two values that x may
have when entering the mode on . The initial value of x
is 2, from which x follows the curve x(t) = −3e−t+ 5. It
takes ln(3/2) minutes to reach the threshold temperature
of 3 degrees. Thus the invariant condition x≤ 3 for mode
on is translated to tx ≤ ln(3/2) at mode (on , 2). The jump
condition x = 3∧x′ = x of the switch (on , off ) is trans-
lated to the jump condition tx = ln(3/2)∧ t′x = 0 for the
switch ((on , 2), (off , 3)). The translated jump condition
resets the clock tx, since the differential equations pre-
scribing the evolution of x differ at the source and target
modes of the switch. Whenever the automaton control
reenters the mode on, the variable x has the value 1 and

turn_off
tx = ln(3/2)→ tx := 0

turn_off

tx = ln 2→ tx := 0

turn_on

tx = ln 3→ tx := 0

tx ≤ ln 3

(off , 3)

(on, 2)

ṫx = 1

(on , 1)

tx ≤ ln 2

ṫx = 1

ṫx = 1

tx ≤ ln(3/2)tx = 0

Fig. 3. Clock translation of the thermostat automaton

follows the curve x(t) =−4e−t+ 5 for ln 2 minutes before
reaching the value 3.

Linear phase-portrait approximation

The idea behind linear phase-portrait approximation is
to relax nonlinear flow, invariant, initial, and jump con-
ditions using weaker linear conditions: each nonlinear
predicate p is replaced by a linear predicate p′ such that
p implies p′. For example, the linear hybrid automaton
of Fig. 4 is a linear phase-portrait approximation of the
thermostat automaton. Since the invariant, initial, and
jump conditions of the thermostat are all linear, only the
flow conditions need to be relaxed. For the control mode
on, the invariant condition 1≤ x ≤ 3 and the flow con-
dition ẋ= −x+ 5 imply that the first derivative of x is
bounded from above by 4 and bounded from below by 2.
Hence the flow condition ẋ=−x+5 can be relaxed to the
linear condition ẋ ∈ [2, 4]. Similarly, for the control mode
off , the nonlinear flow condition can be relaxed to the lin-
ear condition ẋ ∈ [−3,−1].

off

1≤ x≤ 3

ẋ ∈ [−3,−1]

x= 3

turn_on

x= 1

turn_off

on

ẋ ∈ [2, 4]

1≤ x≤ 3
x= 2

Fig. 4. Linear phase-portrait approximation of the thermostat
automaton

While clock translation preserves the trajectories of a sys-
tem, linear phase-portrait approximation adds trajecto-
ries to a system. Hence, if we prove that the relaxed sys-
tem satisfies a safety property, we can be sure that the
original system also satisfies the property. However, if the
relaxed system violates a safety property, then we must
check if the discovered error trajectory is a valid trajec-
tory of the original system. If not, then the analysis is
inconclusive and the approximation needs to be refined,
perhaps by splitting control modes in order to gain more
accurate overapproximations of the possible flows. For ex-
ample, the control mode on of the thermostat automaton
can be split into two control modes, on1 and on2, each
with the flow condition ẋ =−x+ 5, mode on1 with the

off

1≤ x≤ 3

ẋ ∈ [−3,−1]

x= 1

turn_on

x= 3

turn_off

x= 2

x= 2

on2

1≤ x≤ 2

on1

ẋ ∈ [3, 4]

2≤ x≤ 3

ẋ ∈ [2, 3]

x= 2

Fig. 5. Tighter linear phase-portrait approximation of the
thermostat automaton
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invariant condition 1≤ x≤ 2, mode on2 with the invari-
ant condition 2≤ x≤ 3, and a control switch from on1 to
on2 labeled x= 2. Relaxation, then, yields the linear flow
conditions ẋ ∈ [3, 4] for on1 and ẋ ∈ [2, 3] for on2. The re-
sulting linear hybrid automaton appears in Fig. 5. It has
strictly more trajectories than the original nonlinear au-
tomaton, but strictly fewer than the earlier approxima-
tion from Fig. 4. Since tighter linear approximations yield
more control modes, analysis becomes more expensive.

3.4 Safety verification of the thermostat

Recall that we wish to verify that the heater is active for
less than 2/3 of the first hour of operation. By adding the
auxiliary variables y and z, described above, to the linear
phase-portrait approximation of the thermostat automa-
ton from Fig. 4, we obtain the linear hybrid automaton of
Fig. 6. To ensure convergence of the computation of the
reachable states, the conjunct y ≤ 60 has been added to
the invariant conditions, so that trajectories are tracked
only for the first 60 minutes. As above, the unsafe states
are specified by the linear state assertion unsafe that
assigns the predicate y = 60∧ z ≥ 2y/3 to both control
modes. Since the linear hybrid automaton of Fig. 6 has
strictly more trajectories than the original nonlinear ther-
mostat from Fig. 2, it suffices to prove the safety require-
ment for the linear version.

ẋ ∈ [2, 4] ∧

on

ẏ = 1∧ ż = 1

1≤ x≤ 3∧y ≤ 60

x= 2

∧ z = 0

∧ y = 0

off

1 ≤ x≤ 3∧y ≤ 60

ẋ ∈ [−3,−1] ∧

ẏ = 1∧ ż = 0

turn_on

x= 1

x= 3

turn_off

Fig. 6. Linear thermostat automaton for safety verification

We write {(on, p1), (off , p2)} for the state assertion that
assigns the predicate p1 to the control mode on , and as-
signs p2 to off . The computation of the reachable states
starts from the state assertion

ϕ0 = init = {(on, x= 2∧y = 0∧z = 0), (off , false)},

i.e., all initial states have the control mode on, and x
is initially 2 degrees. We compute the state assertion
ϕ1 = Post(ϕ0) in two steps. First, we find all jump suc-
cessors of ϕ0-states: there are none, because the control
switch from on to off requires that x is 3 degrees. Second,
we find all flow successors of ϕ0-states. For this purpose,
observe that for a state assertion ϕ, the predicate

∃x1, . . . , xn . ∃ δ ≥ 0 . ∃ ẋ1, . . . , ẋn . ϕ(v)∧flow(v) ∧

x′1 = x1 + δẋ1∧ . . .∧ x
′
n = xn+ δẋn

is true for the values a1, . . . , an of the variables x′1, . . . , x
′
n

iff the state (v,a) is a flow successor of a state for which
ϕ is true, assuming the unconstraining invariant condi-
tion inv(v) = true. From linear predicates, the existential
quantifiers can be eliminated effectively. In particular, for
ϕ= ϕ0 and v = on , we obtain the predicate

∃x, y, z. ∃ δ ≥ 0. ∃ ẋ, ẏ, ż. x= 2∧y = 0∧z = 0 ∧

ẋ ∈ [2, 4]∧ ẏ = 1∧ ż = 1∧x′ = x+ δẋ ∧

y′ = y+ δẏ∧z′ = z+ δż

= (∃ δ ≥0. 2 + 2δ≤ x′ ≤ 2 + 4δ ∧ y′ = δ∧z′ = δ)

= (2z′+2≤ x′ ≤ 4z′+ 2 ∧ y′ = z′) ,

which corresponds to the unbounded cone in Fig. 7. After
renaming primed symbols to unprimed symbols and in-
tersecting with the invariant condition of the control
mode on, we obtain the predicate

x≤ 3 ∧ 2z+ 2≤ x≤ 4z+ 2∧y= z ,

which corresponds to the shaded region in Fig. 8. This
predicate characterizes the states with the control mode
on that can be reached from an initial state by a single
flow. Since there are no states with the control mode off
that can be reached from an initial state by a single flow,

y, z

2 xon

ϕ0-state

Fig. 7. Flow successors of the ϕ0-state, if inv(on) were true

y, z

2 3 x

1
2

1
4

1

on

ϕ0-state

Fig. 8. Flow successors of the ϕ0-state
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we conclude

ϕ1 = Post(ϕ0)

=

{
(on, x≤ 3 ∧ 2z+ 2≤ x≤ 4z+ 2 ∧ y = z) ,
(off , false)

}
.

Next, we compute ϕ2 = Post(ϕ1). The jump successors of
ϕ1-states are those states for which the state assertion

{(on, false), (off , x= 3∧
1

4
≤ z ≤

1

2
∧y = z)}

is true. This is because the control switch from on to off
may happen only when x= 3, and the values of x, y, and z
are not changed by the jump, and 2z+2≤ 3≤ 4z+2 sim-
plifies to 1/4≤ z ≤ 1/2. Since ϕ1 is already closed under
flow successors (i.e., all flow successors of ϕ1-states are
also ϕ1-states), we conclude

ϕ2 = Post(ϕ1)

=

{
(on, x≤ 3∧2z+ 2≤ x≤ 4z+ 2∧y= z),
(off , x= 3∧ 1

4 ≤ z ≤
1
2 ∧y = z)

}
.

For computing ϕ3 = Post(ϕ2), there are no new jump suc-
cessors and no new flow successors with the control mode
on. The addition of all flow successors with the control
mode off yields

ϕ3 = Post(ϕ2)

=

(on , x≤ 3∧2z+ 2≤ x≤ 4z+ 2∧y= z),
(off , 1≤ x≤ 3∧z+ 2

3 ≤ y ≤ z+ 2∧
2z ≤ x≤ 4z)

 .

Now the control switch from off to on adds new jump
successors:

ϕ4 = Post(ϕ3)

=



on,
(x≤ 3∧2z+ 2≤ x≤ 4z+ 2∧y= z) ∨
(x= 1∧ 1

4 ≤ z ≤
1
2 ∧z+ 2

3 ≤ y ≤ z+ 2)

 ,

(off , 1≤ x≤ 3∧z+ 2
3 ≤ y ≤ z+ 2∧

2z ≤ x≤ 4z)

 .

The first disjunct of the on part of ϕ4 characterizes the
states that can be reached without jumps; the off part
characterizes the states that can be reached by flows and
at most one jump, from on to off ; and the second disjunct
of the on part characterizes the states that can be reached
by flows and at most two jumps, from on to off and from
off to on . HyTech performs these computations for us,
fully automatically, until neither new jump successors nor
new flow successors can be found. After 73 iterations,
it returns the linear state assertion reach that is true
precisely for the reachable states. Last, HyTech veri-
fies that the variable-free predicate ∃X.

∨
v∈V (reach(v)∧

unsafe(v)) is false. Hence there is no state for which both
reach and unsafe are true, which confirms that the ther-
mostat satisfies the safety requirement.

3.5 Parallel composition and monitors

Safety requirements cannot always be specified using
state assertions. In the thermostat example, it was neces-
sary to embellish the original automaton from Fig. 1 with
the variables y and z in order to specify the desired heater
utilization requirement. Sometimes, it is convenient to
build a separate automaton, called a monitor, whose role
is to enter an unsafe state precisely when the original
system violates a requirement. The monitor must ob-
serve the original system without changing its behavior.
Reachability analysis is then performed on the parallel
composition of the system with the monitor.

For the thermostat example, consider the task of ver-
ifying that the temperature lies in the midrange [1.5, 2.5]
at least 25% of the first 60 minutes of operation. The mon-
itor automaton of Fig. 9 uses the variable y to measure
the total elapsed time, as before, and uses the variable
z to measure the accumulated time that the tempera-
ture has been in the range [1.5, 2.5]. The unsafe states are
specified by the state assertion that assigns the predicate
y = 60∧z < y/4 to all control modes of the monitor au-
tomaton.

x= 1.5

x= 1.5 x= 2.5

x= 2.5

y = 0∧z = 0

low
1≤ x≤ 1.5

mid_range
1.5≤ x≤ 2.5

high
2.5≤ x≤ 3

∧ 0≤ y ≤ 60

∧ ż = 0

∧ 0 ≤ y ≤ 60

∧ ż = 1

∧ 0≤ y ≤ 60

∧ ż = 0
ẏ = 1 ẏ = 1 ẏ = 1

Fig. 9. Monitor automaton

x = 1.5

x = 1.5

x = 2.5

x = 2.5

x = 2.5

x = 2.5x = 1.5

x = 1.5 1.5 ≤ x≤ 2.5

x = 2∧y = 0∧ z = 0

(on, mid_range)

ẋ ∈ [2, 4]

1.5 ≤ x≤ 2.5

(off, mid_range)

ẋ ∈ [−3,−1]

1 ≤ x≤ 1.5

(on,low)

ẋ ∈ [2, 4]

1 ≤ x≤ 1.5

(off, low)

ẋ ∈ [−3,−1]

2.5 ≤ x≤ 3

(on, high)

ẋ ∈ [2, 4]

2.5 ≤ x≤ 3

(off, high)

ẋ ∈ [−3,−1]

∧ 0≤ y ≤ 60

∧ ẏ = 1

∧ ż = 0

∧ 0 ≤ y ≤ 60

∧ ẏ = 1

∧ ż = 1

∧ 0 ≤ y ≤ 60

∧ ẏ = 1

∧ ż = 0

∧ 0≤ y ≤ 60

∧ ẏ = 1

∧ ż = 0

∧ 0 ≤ y ≤ 60

∧ ẏ = 1

∧ ż = 1

∧ 0 ≤ y ≤ 60

∧ ẏ = 1

∧ ż = 0

turn_on

x = 1

turn_off

x = 3

Fig. 10. Parallel composition of thermostat automaton and the
monitor automaton

The parallel composition of the monitor automaton and
the thermostat automaton of Fig. 4 is depicted in Fig. 10.
The variable set of the compound automaton is the union
of the variable sets of both component automata, and the
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control graph of the compound automaton is the carte-
sian product of the component graphs. Each control mode
of the compound automaton corresponds to both a con-
trol mode from the first component automaton and a con-
trol mode from the second component automaton (hence
there are 2×3 = 6 control modes in our example). Each
control switch of the compound automaton corresponds
either to simultaneous control switches (with matching
event labels) of both component automata (this cannot
happen in the example), or to a control switch (whose
event label does not appear in the event set of the other
component) of one of the component automata. This no-
tion of parallel composition corresponds to the interleav-
ing model of discrete concurrent computation. HyTech

constructs the compound automaton automatically and
confirms the desired safety requirement, namely, that all
reachable states of the compound automaton correspond
to safe states of the monitor automaton.

3.6 Parametric analysis

High-level system descriptions often use design param-
eters – symbolic constants with unknown, fixed values.
The parameters are not assigned values until the imple-
mentation phase of design. The goal of parametric an-
alysis is to determine necessary and sufficient constraints
on the parameters under which safety violations cannot
occur. Thus, rather than merely verifying (or falsifying)
systems for certain values of the design parameters, quan-
titative information is extracted, further aiding the de-
sign process. Common uses for parametric analysis in-
clude determining minimum and maximum bounds on
variables, and finding cutoff values for timers and cutoff
points for the placement of sensors.

In a linear hybrid automaton A, a design parame-
ter α can be represented as a variable whose value never
changes, i.e., all flow conditions must imply α̇= 0 and all
jump conditions must imply α′ = α. Then, in all states
of a trajectory of A, the parameter α has the same value
(but the value of α may differ from trajectory to trajec-
tory). The value a ∈ R is called safe for α if whenever
we add the conjunct α = a to all initial conditions of A,
then no unsafe state is reachable. This is the case pre-
cisely when there is no trajectory of A such that (1) the
last state of the trajectory is unsafe, and (2) the parame-
ter α has the value a in all states of the trajectory. Since
the value of α is constant along each trajectory, require-
ments (1) and (2) are equivalent to the single require-
ment that the last state of the trajectory is unsafe and
assigns the value a to the parameter α. Thus, the predi-
cate ∃X \{α}.

∨
v∈V (reach(v)∧unsafe(v)) is a predicate

over the variable α which is true precisely for the unsafe
values for α. If reach and unsafe are linear state asser-
tions, then the existential quantifier can be eliminated
effectively, and we obtain, by negation, a linear predicate
that characterizes exactly the safe values for the parame-
ter α. Multiple parameters can be handled analogously.

open
x≤ 5

closing

0.9≤ ẋ≤ 1.1

train_present

x := 0
x= 5

train_leaves

closed

Fig. 11. Railroad-gate controller automaton

Example: railroad-gate controller

We consider the railroad-gate controller from Figs. 19
and 21 of [6]. The controller, modeled by the automaton
of Fig. 11, lowers and raises a gate at a railroad crossing.
Whenever it detects the presence of an oncoming train, it
closes the gate after 5 time units, as measured with the lo-
cal clock x. The clock is subject to 10% drift, and thus the
gate may be closed at any time between 4.5 time units and
5.5 time units after the approaching train is detected. The
controller raises the gate when the train exits the vicin-
ity of the crossing. The train is modeled by the automaton
of Fig. 12. It approaches the crossing at a speed between
45 and 55 meters per time unit. When it is 1000 meters
from the crossing, a sensor signals its approach to the con-
troller, and the speed of the train is reduced to the range
of 35 to 50 meters per time unit. A second sensor, at 100
meters past the crossing, signals the exit of the train. The
train may return to the crossing, but only on a route that
is at least 5100 meters long.

near

d≥−100

−50≤ ḋ≤−35

d=−100

train_leaves

d= 1000

train_present

approaching

d≥ 1000

d := 5000

−55≤ ḋ≤−45

far
d= 5000

Fig. 12. Train automaton

The complete system is represented by the parallel com-
position of the controller automaton and the train au-
tomaton. In this example, event labels are used to syn-
chronize the concurrent execution of the controller and
the train: the control switches labeled train_present must
be executed simultaneously, thus ensuring that the con-
troller receives the approach signal from the train; sim-
ilarly, the control switches labeled train_leaves must be
executed simultaneously, ensuring that the controller re-
ceives the exit signal from the train (as before, control
switches without event labels are executed individually).
The resulting compound automaton is shown in Fig. 13.
Many of the control modes of the compound automaton
are not reachable in the control graph via a path of di-
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−55≤ ḋ≤−45

(approaching, open)

d≥ 1000

(far, open)

d := 5000

−50≤ ḋ≤−35

d≥−100∧x ≤ 5

∧ ẋ= 1

(near, closing)

d≥−100

−50≤ ḋ≤−35

(near , closed)

d= 5000

x= 5

train_leaves

d=−100 d= 1000→
train_present

x := 0

Fig. 13. Parallel composition of train automaton and controller
automaton

rected edges from the initial mode (far , open). No state in
such a mode can satisfy the state assertion reach, so these
modes are excluded from the figure. The safety require-
ment of interest asserts that whenever the train is within
10 meters of the crossing, then the gate is closed. Accord-
ingly, the unsafe states are specified by the state assertion
that assigns the predicate false to the control modes of
the compound automaton whose controller component
is closed , and assigns −10≤ d ≤ 10 to all other control
modes. HyTech automatically verifies this property.

In this example, parametric analysis can be used to
determine how much advance notice the controller re-
quires in order to meet the safety requirement. For this
purpose, we replace the constant 1000, which indicates
the location of the sensor that detects oncoming trains,
by a parameter α. Then, the controller is alerted when
an approaching train is α meters from the crossing. The
parametric train automaton is shown in Fig. 14. HyTech

computes that for the same controller and the same safety
requirement as before, the necessary and sufficient con-
straint for correctness is α > 287 7

9 . Thus the controller

near

d≥−100

−50≤ ḋ≤−35

∧ α̇= 0

train_present

d= αd=−100

train_leaves

approachingfar
d := 5000

d≥ α

α̇= 0

−55≤ ḋ≤−45

∧ α̇= 0

d= 5000

Fig. 14. Parametric train automaton

will lower the gate in time if and only if it is warned of the
approaching train before the train is 287 7

9 meters from
the crossing.

Example: heater utilization

For the thermostat example, we can use parametric an-
alysis to determine an upper bound on the time the heater
is active during the first hour of operation. For this pur-
pose, we introduce a parameter α and specify the unsafe
states by the state assertion that assigns the predicate
y = 60∧z ≥ α to all control modes. We then let HyTech

compute the values of α for which an unsafe state is reach-
able. The largest such α value is an upper bound on the
value of z after 60 minutes of elapsed time. For the lin-
ear phase-portrait approximation from Fig. 6, HyTech

returns the constraint α≤ 36, implying that the thermo-
stat is active for no more than 36 minutes during the first
hour. For the more accurate approximation from Fig. 5,
HyTech computes the tighter upper bound of 33 1

3 min-
utes.

The clock translation of the thermostat automaton,
depicted in Fig. 3, leads to tighter bound. The hybrid au-
tomaton of Fig. 3 is not itself a linear hybrid automaton,
because its description involves irrational constants such
as ln 2. Hence, linear phase-portrait approximation must
be applied before the automaton can be analyzed with
HyTech. For example, the value of ln 2 is approximately
0.69315, so the invariant tx ≤ ln 2 for the mode (on , 1)
may be replaced by tx ≤ 70/100, and the constraint tx =
ln 2 in the jump condition for the switch ((on , 1), (off , 3))
may be replaced by 69/100≤ tx ≤ 70/100. 3/2= 0.405465
to the nearest 1/100, HyTech computes an upper bound
of 23.51 minutes for heater utilization.

4 HYTECH

We now give a very brief introduction to HyTech – a de-
tailed tutorial appears in the user guide [24]. A HyTech

input file consists of two parts. The first part contains
the textual description of a collection of linear hybrid
automata, which are automatically composed for the an-
alysis. The second part of the input contains a sequence
of analysis commands. The analysis language is a simple
while-programming language that provides as primitive
the data type “state assertion” with a variety of opera-
tions, including Post , boolean operators, and existential
quantification. This gives the user a flexible framework
for writing state-space exploration programs. For added
convenience, there are built-in macros for reachability an-
alysis, parametric analysis, the conservative approxima-
tion of state assertions [22], and the generation of error
trajectories (see below).

For example, the following command lines are taken
from the analysis script for determining, for the thermo-
stat from Fig. 6, the duration α that the heater is active
during the first hour of operation:
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unsafe := y=60 & z >= alpha; (1)
reachable := (2)
reach forward from init_states endreach; (3)
bad_alpha_values := omit all locations (4)
hide non_parameters in reachable & unsafe endhide; (5)
prints "Spec. violated for parameter values:"; (6)
print omit all locations bad_alpha_values; (7)
good_alpha_values := ~bad_alpha_values; (8)
prints "Spec. satisfied for parameter values:"; (9)
print omit all locations good_alpha_values; (10)

In line 1, the unsafe states are specified. The states that
are reachable from the initial states via iteration of the
Post operator are computed in lines 2 and 3. The com-
mand on lines 4 and 5 performs existential quantification,
in order to obtain a predicate that characterizes the un-
safe reachable states as a constraint on the parameters.
The symbol ~ that appears in line 8 denotes the negation
operation. The statements in lines 6, 7, 9, and 10 produce
the following output:

Spec. violated for parameter values:

alpha <= 36

Spec. satisfied for parameter values:

alpha > 36

4.1 Diagnostic information

One of the main benefits of state-space exploration tools
lies in their ability to generate error trajectories when
a system fails to satisfy a requirement. This information
can then be used for debugging the system. If a system
fails to satisfy a safety requirement, then an error trajec-
tory leads from an initial state to an unsafe state. For

Time: 0.00

Location: on

x = 2 & y = 0 & z = 0

---------------

VIA 0.50 time units

---------------

Time: 0.50

Location: on

x = 3 & 2y = 1 & 2z = 1

-------------------------------

VIA: turn_off

-------------------------------

Time: 0.50

Location: off

x = 3 & 2y = 1 & 2z = 1

---------------

VIA 0.67 time units

---------------

Time: 1.17

Location: off

x = 1 & 6y = 7 & 2z = 1

-------------------------------

VIA: turn_on

-------------------------------

Time: 1.17

Location: on

x = 1 & 6y = 7 & 2z = 1

---------------

VIA 0.83 time units

---------------

Time: 2.00

Location: on

3x = 8 & y = 2 & 3z = 4

Fig. 15. Error trajectory

example, for the thermostat of Fig. 6, the heater can be
active for more than 2/3 of the time during the first two
minutes of operation. A debugging trace that demon-
strates this fact is generated by the following input com-
mands:

unsafe := y=2 & z >= 2/3 y; (1)
reachable := (2)
reach forward from init_states endreach; (3)

if not empty(reachable & unsafe) (4)
then print trace to unsafe using reachable; (5)
else prints "Safety property satisfied."; (6)

endif; (7)

During the reachability analysis invoked in lines 2 and 3,
backward pointers are maintained to indicate a prede-
cessor state for each reachable state. This information is
utilized by the command on line 5, which constructs an
error trajectory. The HyTech output appears in Fig. 15.
It corresponds to the trajectory

(on , 2, 0, 0), (on, 3,
1

2
,

1

2
), (off , 3,

1

2
,

1

2
), (off , 1, 1

1

6
,

1

2
),

(on , 1, 1
1

6
,

1

2
), (on , 2

2

3
, 2, 1

1

3
),

where (on, 2, 0, 0) represents the state (on , x = 2, y =
0, z = 0), etc. Notice that the HyTech output also pro-
vides the duration of flows. In the generated trajectory,
the temperature x increases as slowly as possible in con-
trol mode on , until it reaches 3 degrees after 0.5 minutes;
then it decreases as fast as possible in control mode off ,
until it reaches 1 degree at 1.17 minutes; and then it
increases as slowly as possible until the time limit of 2
minutes. From the last state of the trajectory, we infer
that the heater has been active for exactly 2/3 of the first
2 minutes of elapsed time.
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4.2 Applications

HyTech has been used in a number of case studies –
primarily control-based applications – including a distri-
buted robot controller [21], a robot system in manufac-
turing [21], the Philips audio control protocol [33], an
active structure controller [23], a generalized railroad
controller [23], a nonlinear temperature controller [20],
a predator-prey ecology [30], an aircraft landing-gear sys-
tem [35], a steam-boiler controller [31], and an automo-
tive engine chassis-level controller [38]. Corbett [12] has
verified robot controllers written in a subset of Ada by
automatically translating them into linear hybrid auto-
mata for analysis with HyTech. We are currently experi-
menting with the modeling and analysis of timed circuits.
Tools are also available for the simulation of hybrid auto-
mata, such as Shift [14], and for the abstract interpre-
tation of linear hybrid automata, such as Polka [16].
Abstract-interpretation techniques can enforce the con-
vergence of fixpoint computations by relaxing state as-
sertions. For the verification of hybrid systems that are
primarily discrete but include clocks, we recommend the
use of specialized tools for the restricted class of timed
automata. Symbolic model checkers for timed automata
include Kronos [13], timed Cospan [7], timed Hsis [8],
Uppaal [9], and Veriti [15]. These systems use algo-
rithms that are specific to clocks, and therefore are more
efficient for clock systems than the more general algo-
rithms of HyTech. For the analysis of hybrid systems
whose complexity is primarily in the continuous domain,
we recommend the use of dynamics theory and numerical
tools: in this case, the abstractions from nonlinear hy-
brid automata to linear hybrid automata are likely to be
too crude to reap the full benefits of automated analysis.
HyTech has been most successful when applied to sys-
tems that involve an intricate interplay between discrete
and continuous dynamics.

4.3 Availability

Early versions of HyTech were built using Mathemat-
ica [21, 32], and linear predicates were represented and
manipulated as symbolic formulas. Based on the ob-
servation that a linear predicate over n variables de-
fines a union of polyhedra in Rn, the current, more effi-
cient generation of HyTech [23] manipulates linear pred-
icates via calls to a library for polyhedral operations [16].
HyTech has been ported to the following platforms: Dig-
ital workstations running Ultrix V4.5 and Digital Unix
V3.2D-1, HP 9000 workstations running HP-UX, Sun
workstations running SunOS 4.x and Solaris 5.4, and x86
PCs running Linux. The HyTech home page

http://www.eecs.berkeley.edu/˜tah/HyTech

includes the source code, executables, an online demo,
a user guide, a graphical front end (courtesy of members
of the Uppaal project [9]), numerous examples, online

versions of papers, and pointers to additional literature.
Requests may also be sent to hytech@eecs.berkeley.edu.

References

1. R. Alur, C. Courcoubetis, D. Dill. Model checking in dense real
time. Information and Computation 104(1):2–34, 1993

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H.
Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine. The algorith-
mic analysis of hybrid systems. Theoretical Computer Science
138:3–34, 1995

3. R. Alur, C. Courcoubetis, T. Henzinger, P.-H. Ho. Hybrid
automata: an algorithmic approach to the specification and
verification of hybrid systems. In R. Grossman, A. Nerode,
A. Ravn, H. Rischel, editors, Hybrid Systems I, Lecture Notes
in Computer Science 736, p. 209–229. Berlin, Heidelberg, New
York: Springer-Verlag, 1993

4. R. Alur, D. Dill. A theory of timed automata. Theoretical
Computer Science 126:183–235, 1994

5. R. Alur, T. Henzinger, P.-H. Ho. Automatic symbolic verifi-
cation of embedded systems. IEEE Transactions on Software
Engineering 22(3):181–201, 1996

6. R. Alur, T. Henzinger. Real-time system = discrete system
+ clock variables. Software Tools for Technology Transfer
1(1+2): 86–109, 1997

7. R. Alur, R. Kurshan. Timing analysis in Cospan. In R. Alur,
T. Henzinger, E. Sontag, editors, Hybrid Systems III, Lecture
Notes in Computer Science 1066, p. 220–231. Berlin, Heidel-
berg, New York: Springer-Verlag, 1996

8. F. Balarin, A. Sangiovanni-Vincentelli. Iterative algorithms
for formal verification of embedded real-time systems. In Pro-
ceedings of the International Conference on Computer-aided
Design (ICCAD) p. 450–457. ACM press, 1994

9. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi.
Uppaal: a tool-suite for automatic verification of real-time
systems. In R. Alur, T. Henzinger, E. Sontag, editors, Hybrid
Systems III, Lecture Notes in Computer Science 1066, p. 232–
243. Berlin, Heidelberg, New York: Springer-Verlag, 1996

10. J. Burch, E. Clarke, K. McMillan, D. Dill, L. Hwang. Symbolic
model checking: 1020 states and beyond. Information and
Computation 98(2):142–70, 1992

11. E. Clarke, E. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Work-
shop on Logic of Programs, Lecture Notes in Computer Sci-
ence 131, p. 52-71. Berlin, Heidelberg, New York: Springer-
Verlag, 1981

12. J. Corbett. Timing analysis of Ada tasking programs. IEEE
Transactions on Software Engineering 22(7):461–483, 1996

13. C. Daws, A. Olivero, S. Tripakis, S. Yovine. The tool Kronos.
In R. Alur, T. Henzinger, E. Sontag, editors, Hybrid Systems
III, Lecture Notes in Computer Science 1066, p. 208–219.
Berlin, Heidelberg, New York: Springer-Verlag, 1996
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