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Published online: 28 September 2007
© Springer Science+Business Media, LLC 2007

Abstract The aim of this paper is to show, how a multitasking application running
under a real-time operating system compliant with an OSEK/VDX standard can be
modeled by timed automata. The application under consideration consists of sev-
eral non-preemptive tasks and interrupt service routines that can be synchronized by
events. A model checking tool is used to verify time and logical properties of the
proposed model. Use of this methodology is demonstrated on an automated gearbox
case study and the result of the worst-case response time verification is compared
with the classical method based on the time-demand analysis. It is shown that the
model-checking approach provides less pessimistic results due to a more detailed
model and exhaustive state-space exploration.

Keywords Formal methods · Verification · Model-checking · Timed automata ·
OSEK/VDX · Multitasking

1 Introduction

This paper deals with formal modeling of applications running under real-time oper-
ating system (OS). The typical application under assumption, shown as a case study
in Sect. 7, is a complex controller consisting of periodic and aperiodic tasks con-
strained by deadlines and synchronized via inter-task communication primitives. The
objective is to use model-checking approach (Larsen et al. 1995; Berard et al. 2001)
for automatic verification of the model described in this paper.
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The model based on timed automata (Alur and Dill 1994) considers an operat-
ing system, application tasks and a controlled environment behavior. It assumes a
fine grain model of the task internal structure consisting of computations, OS calls,
selected variables, code branching and loops. Therefore the model combines both,
logic and timing characteristics of the discrete event system enabling one to check
rather complex properties (safety and bounded liveness properties, state reachability
or schedulability) by model checking tools (e.g. UPPAAL; Larsen et al. 1997 and
Kronos; Daws et al. 1996) in finite time. Deadlock freeness of the application, occur-
rence of the race condition during access to shared data structures, a concrete value
of some essential variable under certain conditions, end to end response time of an
arbitrary event, proper ordering and timing of events in the control application or the
controlled environment can be verified, for example.

Due to the composability of timed automata, models produced by different authors
can be directly combined together. For example, a single processor system model can
be simply expanded to a distributed system model by adding a communication layer
model (Krákora et al. 2004).

Even though timed automata and model-checking (analogous to other formal
methods) allow one to model and verify almost everything, it is generally known,
that they are susceptible to the state space explosion. This fact restricts the size of
verified application to a small size that seems to be unusable in practice (compared
with matured response time analysis methods (Klein et al. 1993) or the offset-based
analysis proposed by Palencia and Harbour (1998)). Therefore we try to show in
this paper, how to build a compromised model of a reasonable size on one side and
reasonable granularity on the other side, allowing for a detailed formal analysis of
real-time properties that can not be made by response time analysis.

Methods for response time analysis based on time-demand analysis (Buttazzo
1997; Klein et al. 1993; Liu 2000) are well known and used in practice. These
methods, e.g. rate monotonic analysis (RMA) (Sha et al. 1991), are straightforward
for systems with independent periodic tasks but incorporation of non-periodic tasks
and inter-task communication primitives can lead to pessimistic results (Bailey et
al. 1995). This is caused by limited information inherent in the simple model of a
task consisting of the worst-case execution time (WCET), the worst-case inter-arrival
period and the worst-case blocking by lower-priority tasks. Analysis of end-to-end
response time of transactions in a distributed system has been successfully solved by
Tindell and Clark (1994) and later extended by Palencia and Harbour (1998). Also,
these approaches however do not consider the detailed model of the controlled envi-
ronment and the tasks internal structure as our approach does.

The response time analysis based on an exhaustive analysis of the fine grain model
provides more precise (less pessimistic) results in some cases as is shown in Sect. 8.
The price paid for this is higher memory requirements and time complexity of the
model-checking method. Therefore the model-checking-based response time analysis
cannot be seen as a universal method but as a less pessimistic and more demanding
alternative to classical scheduling theory-based methods.

This paper focuses on a non-preemptive scheduling since tasks consisting of non-
preemptive blocks of code can be modeled by timed automata, for which effective
verification algorithms based on symbolic and reduction methods (see e.g. Larsen et
al. 2003) exist.



Real-Time Syst (2008) 38: 39–65 41

Modeling of preemptive tasks has been studied by Corbett in (1996). This work
provides a method for constructing models of real-time Ada tasking programs based
on constant slope linear hybrid automata. Even though the author reports that the
analyzing algorithm does usually terminate in practice, the reachability problem for
hybrid automata is undecidable and therefore the analyzing algorithm termination is
not guaranteed in general. The termination of the timed automata model verification
is guarantied, which is the advantage of our approach.

When modeling preemption in a multitasking application, it is necessary to stop
a clock variable measuring the execution time of a preempted task and remember
its value until the task is scheduled again. This can be done in hybrid automata, but
not in timed automata. On the other hand the reachability problem is decidable for
timed automata. This is a motivation of work (Waszniowski and Hanzálek 2005)
providing a timed automata based over-approximate model of preemptive tasks. The
over-approximation of the model means that besides the real behavior of the system,
also some additional behavior is modeled. Therefore only properties preserved by
this approximation (e.g. safety and bounded liveness properties) can be verified by a
model-checking tool. Similarly, the model presented in this paper is over-approximate
(in some cases, see Sect. 6) due to interrupts.

There are also extensions of Time Petri Nets allowing one to model systems with
preemption; Preemptive Time Petri Nets (pTPN) (Bucci et al. 2004) and Schedul-
ing Extended Time Petri Nets (SETPN) (Lime and Roux 2004). However, states of
these formalisms are represented by a general convex polyhedra and the problem of
state reachablity is undecidable. It has been shown in Henzinger et al. (1998) that
the problem of state reachability is undecidable for any formalisms that is expre-
sive enough for modelling preemption. Therefore, decidable (finite state space) over-
approximations that preserve safety and bounded liveness properties are usually used
for verification of preemptive systems.

Timed automata are used to model primitives of Ravenscar run-time kernel for
Ada in Lundqvist and Asplund (2003). However, the variable used to measure the
execution time of tasks (modeling the system clock) is an integer, periodically incre-
mented by a timed automaton after each “tick”. Therefore the notion of time in the
application is discrete opposite to our approach where time is dense.

Discrete time for modeling a real-time application is also used in Campos and
Clarke (1999) presenting a modeling language and a symbolic algorithm for quanti-
tative analysis (providing minimum and maximum time between events) of synchro-
nous real-time systems. Discrete time is also used in Fredette and Cleaveland (1993)
where a generalized approach to schedulability analysis based on process algebra is
proposed. Even though these approaches consider the task internal structure, the con-
trolled environment affecting release times of tasks is not modeled. Our approach
considers the controlled environment model.

Another interesting approach to schedulability analysis is based on timed automata
extended by asynchronous tasks (i.e. tasks triggered by events) that provide a model
for event-driven systems (Fersman et al. 2002, 2003). Each task specified by its ex-
ecution time is associated to one timed automaton location. A transition leading to
the location denotes an event releasing the task. Released tasks are stored in a queue
and they are assumed to be executed according to a given scheduling strategy. The
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problem of the system schedulability is transformed to the reachability problem in a
timed automaton. This approach provides good results for aperiodic tasks (due to the
detailed model of the environment releasing the tasks) but it does not consider the
task internal structure. It would be possible to model the task internal structure by
splitting the task to blocks of code and assigning them to locations of extended timed
automaton representing control structure of the original task. Shared variables can be
used to synchronize the end of one block of code execution, with the transition of
the control structure timed automaton that starts the next block of code. However, the
reachability problem of such a model is decidable only for non-preemptive schedul-
ing or when all tasks have constant execution times (Krčál and Yi 2004).

In recent years several approaches integrating the schedulability analysis to some
formal description methods have been published. Alvarez et al. in (2003) developed
a method for computation of response time of tasks integrated to specification and
description language (SDL). Similarly, Wang and Tsai (2004) present an approach
to extend message sequence chart (MSC) by tasks parameters, and by response time
analysis. Both these methods are an application of standard response time analysis
without considering the internal structure of tasks and controlled environment.

This paper is organized as follows: Sect. 2 gives an overview on the basic features
of OSEK compliant operating system. Readers familiar with OSEK specification do
not need to read this section. Section 3 describes the fine grain model used in this pa-
per. Sections 4, 5, and 6 presents the main results of this paper—timed automata mod-
els of tasks, OSEK compliant OS kernel and interrupt service routine (ISR). Section 7
demonstrates the proposed approach on an automated gearbox case study and Sect. 8
compares the task’s response time analysis made by the model-checking approach
and by the classical time-demand analysis. The paper is concluded with Sect. 9.

2 OSEK/VDX overview

This section surveys the basic features of an operating system compliant with
OSEK/VDX Operating System specification, version 2.2.3 (OSEK 2005) (further
called OSEK). OSEK is a simple static multitasking singleprocessor executive for
electronic control units (ECU) used in automotive applications. Small memory de-
mand requires simple services, which can be modeled by timed automata of reason-
able size. All objects of the system are created in compilation time. Therefore they
can be modeled by timed automata and static data structures.

2.1 Task management

OSEK provides static priority based, preemptive and non-preemptive scheduling
(OSEK 2005), but we consider only non-preemptive scheduling in this paper. Even
though OSEK distinguishes basic and extended tasks, we consider only extended
ones, since basic tasks are only a subset variant of extended ones and both are mod-
eled in the same way.

Tasks, created as suspended at the system generation time, become ready after ac-
tivation by the OS service ActivateTask called from ISR or another task. The highest
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priority ready task starts running. The running task may terminate its execution by
calling the service TerminateTask and become suspended or it may voluntarily re-
linquish the processor by calling the service Schedule and become ready. If there is
no higher-priority ready task, calling of the service Schedule does not affect the task
execution. Extended tasks are, moreover, allowed to use the system call WaitEvent,
which may result in a waiting state. To become ready, the waiting task requires the
event (which it is waiting for) to be set.

2.2 Event management

OSEK provides an event management for task synchronization. The event is repre-
sented by one bit in a byte assigned to an extended task—the event’s owner. The event
is therefore identified by its owner and its name (or mask specifying more than one
event). The event owner may wait for the event and clear the event (services Wait-
Event and ClearEvent). All tasks may set or get the binary value of a non-suspended
task event (services SetEvent and GetEvent).

2.3 Resource management

Resource management is used to coordinate the access of several tasks (and interrupt
service routines) to the critical section. The resource access protocol is used to pro-
vide mutually exclusive access, to prevent priority inversion and deadlock. According
to this protocol, the priority ceiling is statically assigned to the resource at the sys-
tem generation time. Its value is equal to the highest priority of all tasks (or ISR)
accessing the resource. At run time, the priority of the task occupying the resource is
increased to the resource priority ceiling. Task priority is reset to the previous value
after releasing the resource. Consequently, no task (or ISR) ever tries to access the
occupied resource and therefore no task can be blocked on the resource (notice that
the OSEK specification does not allow any blocking OS services inside the critical
section).

In non-preemptive scheduling, the mutually exclusive access of several tasks to
the critical section is provided just by its non-preemptability and by the restriction of
calling the OS services Schedule, WaitEvent and TerminateTask from the critical sec-
tion. Simultaneous access of a task and an ISR to the critical section can be prevented
by disabling interrupts within the critical section or by using resources.

2.4 Interrupt management

OSEK distinguishes interrupt service routines (ISRs) of category 1 that do not use
any OS services (no influence on the task management) and ISR of category 2 al-
lowing all OS services except some services dedicated entirely to tasks (WaitEvent,
TerminateTask). There is no difference between both categories from the modeling
point of view. When a task with priority higher than the interrupted one is activated
by an OS service called from the ISR, the interrupted task is not preempted due to
non-preemptive scheduling. Even when the processor is idling, when an interrupt oc-
curs, no rescheduling takes place at the OS service called from the ISR, but the OS
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service only changes states of tasks, and the rescheduling takes place at the end of
the ISR. Therefore, when several tasks are activated in the ISR, it does not depend on
their activation order, but the highest priority one is scheduled at the end of the ISR
(when no task is currently running).

3 Fine grain model of multitasking application

The fine grain model treats the internal structure of the tasks and the interrupt service
routines (ISR), the OS functionality and the controlled environment behavior. All
components are modeled by timed automata synchronized via channels and by shared
variables. The task model consists of several blocks of code called computations, calls
of OS services, selected variables, code branching and loops (affected by values of
selected variables). Computations are defined by the BCET (the best-case execution
time) and the WCET (the worst-case execution time). Considering the execution time
as an interval 〈BCET, WCET〉, it allows one to incorporate the uncertainty of the
execution time due to non-modeled code branching inside the computations, cycle
stealing by a DMA device, etc. When a general property of the model is analyzed
by an exhaustive state space search (made by a model checking tool), the execution
time of a task must be specified by an interval covering all possible cases, i.e. 〈BCET,
WCET〉. Due to the possibility of a scheduling anomaly, the WCET of computations
does not necessarily lead to the worst-case response time of the whole task.

The structure of the entire model is shown in Fig.1. Rectangular blocks represent
particular timed automata (e.g. task automaton in Fig. 5b) or OS service automaton
in Fig. 8). Synchronization of timed automata is expressed by arcs labeled by the
name of the synchronization channel (ActivateTask, EndSysCall, etc.). The most im-
portant data structures (e.g. Q,P,State) are shown on the right side of the figure. The
essential components are explained in Sects. 4, 5 and 6.

Since the schedulability is one of the most often analyzed properties, it is attrac-
tive to compare our fine grain model based on timed automata with the classical
scheduling theory task model based on the WCET of the whole task, its minimum
inter-arrival time and its blocking time related to resources (Buttazzo 1997; Sha et al.
1991; Liu 2000). Classical response time analysis based on such model computes the
worst case finishing time of the task by adding together its worst case execution time,
duration of preemption by higher-priority tasks in the worst case inter-arrival times
and phasing, and the worst case blocking by lower-priority tasks on shared resources.
Such worst-case finishing time is a conservative abstraction of all possible finishing
times but it could be a too pessimistic abstraction in many applications, since all the
mentioned worst cases do not occur at the same time (Bailey et al. 1995).

Exhaustive analysis of fine grain model behavior (automatically completed by
model checking tool UPPAAL) considers the task finishing times corresponding to
the realistic phasing, the realistic blocking and the realistic execution time in relation
to the modeled code branching. Therefore, the result is as precise as the model. The
price paid for the exhaustive analysis is higher complexity.

We will demonstrate the advantage of the model containing the tasks internal
structure in a simple example. Let us consider two tasks, higher-priority Task1 and
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Fig. 1 Overview of entire timed automata model

Fig. 2 Tasks pseudocode

lower-priority Task2 listed in Fig. 2. Task1 is activated with a period 12. Depend-
ing on the variable data, it performs either LongComputation taking 8 time units or
ShortComputation taking only 2 time units. Task2 is activated if and only if Short-
Computation is executed. Task2 execution takes 10 time units.

Figure 3 shows that both tasks are finished prior to their next activation in both
cases, Data == OK and Data! = OK.

Let us analyze the application by demand analysis (Liu 2000) based on a simple
model considering only the WCET and the period of tasks. Without knowledge of
Task1’s internal structure, we must consider its WCET1 to be equal to 8 and activation
of Task2 must be considered at each period of Task1.
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Fig. 3 Schedule considering
tasks internal structure

Fig. 4 Schedule ignoring tasks
internal structure

In the case of preemptive scheduling, Task1 is always finished 8 time units after the
beginning of the period, but the worst-case response time of Task2 is 10 + 3 × 8 = 34
(see Fig. 4), which exceeds its period.

In the case of non-preemptive scheduling, the worst-case response time of both
tasks is 10 + 8 = 18, which is longer than the activation period.

4 Task model

Each task instance is modeled by one timed automaton that is synchronized with the
OS model via channels depicted as arrows in Fig. 1. Figure 5 demonstrates the mod-
eling methodology in the example of a simple task executing computations Comp1
and Comp2 and calling OS services WaitEvent (task, event) and TerminateTask.

Timed automata are depicted in the UPPAAL notation (Larsen et al. 1997), where
the location with double circles represents the initial location. Each location can be
labeled by its name and time invariant (both in bold font). Invariant in the form
“c <= U”, allows it to stay in the location only when the valuation of the clock
variable c is smaller than or equal to integer U . Each transition can be labeled by
synchronization (channel name with ‘?’ or ‘!’), guard (logical terms separated by a
comma, e.g., c >= L[1],State[1] == RUNNING) and assignment (assignments us-
ing the sign ‘:=’ separated by a comma).

Each computation is represented by one location of the same name (e.g. Comp1).
Time spent in this location (measured by clock c) represents the computation’s fin-
ishing time (i.e. time necessary for its execution including interrupts) and is bounded
by values stored as integer variables L and U(provided by time invariant c ≤ U and
guard c ≥ L). Clock c is reset and variables L and U are initialized by the BCET and
the WCET of the computation on the transition incoming at the corresponding lo-
cation (e.g. c := 0,L := BCET1,U := WCET1 on the transition leading to Comp1).
Variables L and U are increased when the task is interrupted (provided by timed au-
tomaton modeling ISR; see Sect. 6). Notice that due to non-preemptive scheduling,
only one clock c can be shared by all task timed automata, which considerably re-
duces the size of the state space. The guard ID == RunID prevents the task timed
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Fig. 5 Simple task example

automaton from progressing when it is not scheduled (i.e. an ISR is executed). Con-
stant ID is a unique identifier (0,1,2, . . .) of tasks and ISR.

OS service call is modeled by the transition synchronized via the channel of the
corresponding name (e.g. WaitEventCh!) with the automaton modeling the OS ser-
vice functionality, and by the location of the corresponding name (e.g. WaitEvent) in
which the task is waiting a return from the service (channel Return[ID]?). OS ser-
vice parameters, if they are required, are delivered through shared variables ParTask
and ParEvent. Notice that some OS services (e.g. Schedule or WaitEvent) can cause
rescheduling. In this case, the return from the called service occurs after finishing all
higher-priority tasks.

Realize that the task can be running or interrupted when its model is in a location
corresponding to a computation. When the task model is in location corresponding to
an OS service, OS executes the service and then the task can continue its execution
(e.g. service SetEvent), or the task is blocked while waiting for an external event (ser-
vice WaitEvent), or the task is ready to execute but a higher priority task is executed
(service Schedule) or the task is suspended (service TerminateTask). Even though the
task code in Fig. 5a is linear (it does not contain any loops), the timed automaton in
Fig. 5b is cyclic since the suspended task (task timed automaton is in the location
TerminateTask) can be activated and start its execution from the beginning. This is
also the reason why location TerminateTask is the initial one.

5 OS kernel model

The OS kernel model consists of integer variables representing the OS objects (e.g.
ready queue), the timed automata representing OS services functionality, and the
timed automaton sorting the ready queue according to priorities (SortQueue). See
the model overview in Fig. 1.

5.1 Kernel variables

The task priority is stored in a global array P , indexed by ID. Higher number rep-
resents higher priority. P can be a constant when the resource management is not
modeled.
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Fig. 6 SortQ automaton

The task state is stored in the array State at the index corresponding to task ID.
The task state is either SUSPENDED, WAITING, READY or RUNNING. However it
is necessary to distinguish only the state SUSPENDED from all others in the proposed
model. Therefore the symbols WAITING, READY or RUNNING have the same value
in the model.

The variable RunID stores ID of the currently running task or interrupt service
routine.

IDs of all tasks, which are ready for execution, are stored in the ready queue mod-
eled as a global array Q (see Fig. 1). IDs of tasks are stored at the lowest positions in
the array. The variable wQ contains the first empty position in Q. Tasks are ordered
in descending order according to their priorities in Q. The ready task with the highest
priority is always at the position zero; the ready task with the lowest priority is always
at the position wQ-1.

The queue must be reordered according to tasks priorities after writing a new task
and all elements of the queue must be shifted to the left after reading the highest
priority ready task from the zero position. Both these mechanisms are provided by
the automaton SortQueue depicted in Fig. 6.

The reordering mechanism is started by the synchronization channel wQCh after
writing a new ID to Q[wQ]. The pointer wQ is then increased and priorities of tasks
in neighboring position in Q are compared (started from wQ) and if there is a higher
priority task in a higher position, IDs are swapped. The termination of this mechanism
is announced by the channel QSorted. Shifting of Q after reading Q[0] is started
by the synchronization channel rQCh and its finishing is announced by the channel
QSorted.

Notice that it would be possible to implement the ready queue as a circular buffer.
The top of the queue would not always be at position zero, but it would be pointed by
the pointer (lets call it rQ) that is increased after reading the highest priority task. It is
not necessary to shift elements of Q in this case. A circular buffer would, therefore, be
a more elegant approach from the programming point of view, but it is not appropriate
for verification purposes, since such a model generates a bigger state space. Realize
that two different configurations of a circular buffer containing the same tasks but
stored in different positions (different rQ and wQ) are represented by two different
states in the state space, but they represent the same situation from the application
point of view. Contrary to that, all situations when Q contains the same tasks are
represented by only one state in our approach, since the same set of tasks is always
stored in the same position in Q(from zero to wQ-1).

Events are represented by the integer array Event associating one byte Event[ID]
to each task. Each bit in Event[ID] represents one event that can be set or cleared.
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Fig. 7 WaitEvent OS service
pseudo-code

Moreover, the integer array WaitMask represents events, which the corresponding
task is waiting for.

Variables L and U are necessary for model execution of the task code. As it has
been already stated in Sect. 4, the variables are used to store lower and upper margins
of the finishing time of the current started computation. These integers are initialized
by the BCET and WCET respectively, at the start of the computation and they are in-
creased by an ISR BCET and WCET respectively when an interrupt occurs (provided
by a timed automaton modeling the ISR).

5.2 OS services

Each OS service is modeled by a timed automaton representing its functionality de-
fined by OSEK specification (OSEK 2005). The automaton is waiting in its initial
location until its function is called from the task model (by synchronization via the
corresponding channel e.g. WaitEventCh). Then it manipulates the tasks’ states, ready
queue and other operating system objects (e.g. events). OS services Schedule, Wait-
Event and TerminateTask can, moreover, reschedule the current tasks. This is done
by choosing the highest priority ready task and storing its ID in the variable RunID.
The next computation of the RunID task is then started by taking a transition syn-
chronized by channel Return[RunID]. Models of all OSEK services can be found on:
http://dce.felk.cvut.cz/waszniowski/RTVerif/ RTVerif.htm

As an example of a service model, we introduce WaitEvent(Mask) service that
causes the task to wait for events specified by Mask. Figure 7 shows WaitEvent OS
service functionality in pseudo-code. The corresponding automaton is in Fig. 8. It is
supposed that interrupts are disabled within the whole service. Locations marked by
“C” are so called committed locations. The committed location is left immediately
without any interference from another automaton that is not in committed location.
Since all locations in the OS services automata, except the initial one, are committed
locations, the whole service is atomic from the point of view of the tasks and the
controlled environment models. The execution time of the OS services is involved in
the execution times of computations calling them.

6 Interrupt service routine model

In this section we present a timed automata model of an ISR. The ISR can interrupt
the execution of a task. It is modeled by increasing the bounds of the interrupted task
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Fig. 8 WaitEvent OS service
automaton

execution time (stored in variables L,U) by the bounds of the ISR execution time
(BCET_ISR, WCET_ISR). We show that this approach brings an over-approximation
to the model.

For reasons of simplicity, only one ISR is assumed to exist in this article, but it
can be generalized when all hardware details are considered. The ISR is modeled by
a timed automaton modeling application dependent code in the same way as the task
code. Moreover, there is an initialization part preventing a task scheduling inside the
ISR. RunID is stored in the local variable InterruptedID and the ID of the ISR (IsrID)
is written to the variable RunID. Therefore the OS services called from the ISR do not
schedule any task (because RunID! = IDLE). Values of L and U are increased by the
BCET_ISR and WCET_ISR respectively. Further, there is a finalization part providing
task scheduling at the end of the ISR (as it is required by OSEK specification (OSEK
2005)). Either InterruptedID or, if it is equal to IDLE, the ID from the top of the ready
queue is written to the variable RunID. An example of ISR pseudocode is in Fig. 13
and the corresponding timed automaton is in Fig. 19.

Lets us explore the approach for taking the ISR execution time into account in the
interrupted task execution time. When the interrupt occurs the execution time bounds
of the interrupted computation (stored in variables L and U) should be prolonged
by the duration of the ISR execution. Since the right duration of the interruption
cannot be measured in timed automata (a clock variable cannot be stopped or stored),
the bounds L and U are increased by bounds of the possible ISR execution time
BCET_ISR and WCET_ISR. This introduces an additional non-determinism to the
model since the modeled duration of the interrupted task interruption is not necessary
equal to the ISR execution (what holds in the real system). Therefore the set of real
system behaviors is a subset of the modeled behaviors, i.e. the model is an over-
approximation of the real system.

To illustrate the over-approximation let us consider for example a computation of
task T with the execution time CT ∈ [1,4] interrupted by an ISR with the execution
time CISR ∈ [2,4]. All possible relative finishing times of the interrupted computa-
tion versus the ISR execution time in the real system and in the proposed model are
depicted in Fig. 9. Finishing time of the interrupted computation is equal to its execu-
tion time CT plus interruption duration. Interruption duration is bounded by bounds
of CISR in the model but it is equal to the actual execution time of ISR in the real
system.

Figure 9 shows that not all modeled behaviors can occur in the real system. It
is very important to keep this fact in mind during the verification process, since the
over-approximation does not preserve a general property. It means that it cannot be
automatically concluded that a general property satisfied by the model is also satisfied
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Fig. 9 Possible values of
relative finishing time FT of the
interrupted computation of the
task T versus the ISR execution
time CISR

Fig. 10 Gear box mechanism

by the real system. On the other hand, it is important from the practical point of view,
that over-approximation preserves safety and bounded liveness properties (Berard et
al. 2001). A safety property states that, under certain conditions, an undesirable event
never occurs. A bounded liveness property states that, under certain condition, some
desirable event will occur within some deadline. See examples in Sect. 7.

Please realize that the model is over-approximate only in the case that the
WCET_ISR differs from the BCET_ISR.

Schedulability is an often verified property, exploring whether computations are
finished prior to their deadlines (dISR and dT in Fig. 9) in all situations. Figure 9
shows that the worst case finishing time of the task or ISR is the same in the model
and in the real system. A result of the schedulability analysis based on this model is
therefore correct and corresponds to reality (it is not pessimistic).

7 Gear box case study

7.1 System description

The proposed modeling methodology is demonstrated on an automated gearbox con-
trol system. The controlled system consists of a five-speed gearbox and a dry clutch.
The gearbox mechanics are depicted in Fig. 10. They consist of three shift rails and
a shift finger actuated by SelectServo and ShiftServo. SelectServo can move the shift
finger from a slot of one rail to another one. ShiftServo engages one of two gears (odd
or even) or neutral by moving the selected rail by the shift finger. The direction of the
shift finger movement is limited by a gait.
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Fig. 11 Slip control task
pseudocode

Fig. 12 Select Gear task
pseudocode

The gearbox is controlled by a single processor control unit running an OSEK
compliant OS. The application software consists of three tasks (SlipCtrlTask, Select-
GearTask, GearBoxCtrlTask) and one ISR.

The ISR (see pseudocode in Fig.13) is periodically invoked by a timer (with the
period 10) and by the clutch, ShiftServo or SelectServo when their position changes.
The source of the interrupt is specified by bits bTimerInt, bClutchInt, bShiftServoInt
and bSelectServoInt. According to the source of the interrupt, tasks are activated
(bTimerInt) or an event is set (bClutchInt, bShiftServoInt and bSelectServoInt).

Task SlipCtrlTask (see pseudocode in Fig. 11) is periodically activated by ISR.
Its priority is 2 and its period is 10. It provides slip control and torque tracking but
its detailed functionality is not relevant to verification, therefore, it is not considered
here. Only its computation time is modeled.

Task SelectGearTask (see pseudocode in Fig. 12) is periodically activated by ISR.
Its priority is 0 and its period is 500. It selects the appropriate transmission rate, writes
it to the variable DesiredGear, and if the desired gear differs from the current one, it
activates task GearBoxCtrlTask that controls changing of the gear. Also the model of
this task is very rough.

Task GearBoxCtrlTask (see pseudocode in Fig. 14) has priority 1. It sends a com-
mand to open the clutch first, then it waits for the event ClutchEvent signaling that
the clutch is open. If NEUTRAL is not currently engaged, it disengages the current
gear by sending the command to the ShiftServo to move the shift finger to the neutral
position and waits for the event ShiftServoEvent. Then the new gear, stored in vari-
able DesiredGear, can be engaged. First, the rail and shift direction corresponding to
the DesiredGear are computed and stored in the variable DesiredRail (Rail 0, 1, or 2)
and DesiredShift (ODD or EVEN). Then if the DesiredRail is not currently selected,
the command to the SelectServo is sent to move the shift finger to the position of
the DesiredRail. When the DesiredRail is selected (signalled by the event SelectSer-
voEvent) the DesiredGear is engaged by sending the command to the ShiftServo to
move the selected rail to DesiredShift position. After finishing the ShiftServo move-
ment (signalled by the event ShiftServoEvent), the command to close the clutch is
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Fig. 13 Interrupt service routine pseudocode
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Fig. 14 Gear Box Control task pseudocode

sent and when the clutch is closed (signaled by the event ClutchEvent), the variable
CurrentGear is updated and the task is terminated.

7.2 Model

A model of the whole system consists of timed automata representing the controlled
system (Clutch, SelectServo and ShiftServo), a hardware of a control unit (periodic
timer generating interrupts), an OS (services ActivateTask, TerminateTask, SetEvent,
WaitEvent and automaton SortQueue), three application tasks (SlipCtrlTask, Select-
GearTask, GearBoxCtrlTask) and one ISR. An overview of the whole model is de-
picted in Fig. 15 and Fig. 16. Figure 15 shows the timed automata synchronization
via the channels and Fig. 16 shows events and variables shared by the timed automata
in the model. The variables and timed automata modeling OS have been explained in
the previous section, therefore they are omitted in both figures.
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Fig. 15 Model
overview—timed automata
(rectangles) and
synchronizations via channels
(arrows)

Fig. 16 Model overview—timed automata (rectangles) and shared variables (ovals)

Since the Timer timed automaton is very simple, it is not depicted here. It only
waits in its initial location and periodically generates interrupt via the channel IRQ
and the variable bTimerInt.

The Clutch timed automaton is depicted in Fig. 17. It is in the location Closed or
Opened in a steady state. When the Clutch receives the command to open or close (via
channel OpenClutch or CloseClutch respectively), it moves to Opening or Closing
respectively. After the time bounded by ShiftTime and ShiftTimeU, the Clutch reaches
a new steady state and generates an interrupt request (IRQ) via the channel IRQ.

The SelectServo timed automaton is depicted in Fig. 18. The automaton is in one
location corresponding to Rail0, Rail1 or Rail2 in a steady state. When the command
to select a new rail is received via the channel SelectCh, the SelectServo automa-
ton moves to the DesiredRail (BetweenRail0andRail1 and BetweenRail1andRail2).
When the DesiredRail is reached, an IRQ is generated via the channel IRQ.

The ShiftServo timed automaton (not depicted here) differs from the SelectServo
timed automaton only in a few details. Locations Rail0, Rail1, Rail2, Between-
Rail0andRail1 and BetweenRail1andRail2 are replaced by OddPos, NeutralPos,
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Fig. 17 Clutch timed
automaton

Fig. 18 SelectServo timed
automaton

Fig. 19 ISR timed automaton

EvenPos, BetweenNeutralAndOdd and BetweenNeutralAndEven. Variables and chan-
nels related to selecting (DesiredRail, CurrentRail, SelectCh, bSelectServoInt) are
replaced by variables and channels related to shifting (DesiredShift, CurrentShift,
ShiftCh, bShiftServoInt). Moreover, the time spent in locations BetweenNeutralAn-
dOdd and BetweenNeutralAndEven is not 100 time units but 200 time units.

Timed automata modeling tasks SlipCtrlTask, SelectGearTask and GearBoxCtrl-
Task and ISR function are depicted in Fig. 20, Fig. 21, Fig. 22 and Fig. 19, re-
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Fig. 20 SlipCtrlTask timed
automaton

Fig. 21 SelectGearTask timed
automaton

spectively. They have been obtained by translating tasks pseudocedes from Fig. 11,
Fig. 12, Fig. 14 as well as Fig. 13 to timed automata according to the methodology
described in Sects. 4 and 6, respectively.

Notice that the computation of the DesiredGear in the SelectGearTask is modeled
by non-deterministic choice in the SelectGearTask timed automaton. Therefore, all
possibilities are explored by the model-checking tool. Notice also that the OS service
ClearEvent is very simple (Event[ID] := Event[ID]&!ClutchEvent); it is not mod-
eled by a special automaton but it is modeled directly in the GearBoxCtrlTask timed
automaton (see Fig. 22).

7.3 Formal verification

The following properties are required for proper function of the system:

Safety properties:

P1. Shifting is allowed only when the clutch is open
P2. Selecting is allowed only when the shift servo is in neutral
P3. Shifting is allowed only when a rail is selected
P4. Clutch cannot be open longer than 650 time units
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Fig. 22 GearBoxCtrlTask timed automaton
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Bounded liveness:

P5–P11. When new desired gear (NEUTRAL, 1. . .5, R) is selected, it is engaged in
1020 time units

Deadlock-freeness:

P12. The system is deadlock free

Notice that since multiple tasks activation is disabled in the model, deadlock-
freeness (P12) guarantees that all tasks are finished prior to their new activation in the
next period. Therefore the property P12 can be interpreted as schedulability (dead-
lines at the end of periods).

Please realize that the deadlock-freeness is not proved to be preserved by the over-
approximation described in Sect. 6. It can be therefore verified only in the case of the
WCET_ISR equal to the BCET_ISR that holds in this model.

The above listed properties have been formalized in UPPAAL requirement speci-
fication language as follows:

P1. A[] Clutch.Closed imply (ShiftServo.OddPos or ShiftServo.NeutralPos or
ShiftServo.EvenPos)

P2. A[] not (SelectServo.Rail0 or SelectServo.Rail1 or SelectServo.Rail2) imply
ShiftServo.NeutralPos

P3. A[] not ShiftServo.NeutralPos imply
(SelectServo.Rail0 or SelectServo.Rail1 or SelectServo.Rail2)

P4. A[] Clutch.Opened imply Clutch.t <= 650
P5. (DesiredGear == 0 and SelectGearTask.ActivateTask)

–> (ShiftServo.NeutralPos and rt1 <= 1020)
P6. (DesiredGear == 1 and SelectGearTask.ActivateTask)

–> (ShiftServo.OddPos and SelectServo.Rail0 and rt1 <= 1020)
P7. (DesiredGear == 2 and SelectGearTask.ActivateTask)

–> (ShiftServo.EvenPos and SelectServo.Rail0 and rt1 <= 1020)
P8–P11. Similar to P6 and P7

P12. A[] not deadlock

In UPPAAL requirement specification language the syntax A[] f represents the
computation tree logic (CTL) formula ∀�f (i.e. “invariantly holds f ”), and the syn-
tax p –> q denotes a CTL property ∀� (p ⇒ ∀ 	 q) (i.e. “whenever p holds, eventu-
ally q will hold as well”). Notice that the clock rt1 measuring the response time in all
bounded liveness properties P5–P11 is reset when the new DesiredGear is selected
in the SelectGearTask timed automaton depicted in Fig. 21.

All the above mentioned properties of the system have been successfully verified
by model-checker UPPAAL 3.4.7 running on Windows 2000 on PC AMD Athlon
1 GHz, with 1.3 GB RAM. The time required for verification of all of these twelve
properties is 58 seconds. The required memory is 78 MB. The most demanding prop-
erties are the bounded liveness properties. Realize that time and memory require-
ments drastically grow with the complexity of the model. Even though the memory
requirement of 78 MB is acceptable, an augmentation of the model by other tasks can
easily make the verification impossible.
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8 Response time analysis

The previous section presents the verification possibilities of the model-checking
methods. One of the many properties that can be verified by model-checking is,
whether a task response time satisfies its deadline. This section compares a task re-
sponse time analysis based on the classical scheduling theory (Klein et al. 1993) and
(Palencia and Harbour 1998) to the one based on the model-checking approach pro-
posed in this paper. Both these approaches are applied on the SlipCtrTask and the
GearBoxCtrlTask and the worst-case response times (WCRT) obtained by both ap-
proaches are compared. The results show, that the worst-case response times obtained
by the model-checking approach are, due to a more detailed model and exhaustive
state space analysis, less pessimistic. In the case of the SlipCtrlTask, the advantage of
the model-checking approach is based on the information contained in the controlled
environment model and the model of the task internal structure. In the case of the
GearBoxCtrlTask containing self-suspension, the advantage of the model-checking
approach is based on exhaustive analysis of the model state space.

On the other hand, exhaustive analysis of the state-space (very quickly growing
with the number of tasks, computations and variables) limits the size of applications
for which the model-checking method can be used. Therefore, we do not want to
present the model-checking approach as a universal method for response time analy-
sis but as an alternative approach providing some reasonable advantages in some
cases.

8.1 WCRT of the SlipCtrlTask by scheduling theory based approach

Let us explore the response time of the SlipctrlTask from its activation within the ISR
(see pseudo code in Fig. 13) till its termination. The scheduling theory based response
time analysis deals with the following information.

The WCET of the SlipCtrTask is 2 time units. Even though the SlipCtrTask is
executed at the highest priority, its response time can be prolonged by the longest
non-preemptable part of any lower-priority task, and by an ISR. The longest non-
preemptable block in the system is the task SelectGearTask whose WCET is 10. The
ISR is invoked by the timer (with period 10), the clutch (with minimal inter-arrival
time 200), the SelectServo (with minimal inter-arrival time 100), and the ShiftServo
(with minimal inter-arrival time 200). Servicing each of the mentioned requests takes
one time unit.

The WCRT of SlipCtrlTask in the worst-case phasing (all interrupts occurred and
the longest non-preemptable block just began) is 17 (2 + 10 + 2 × 1 + 1 + 1 + 1).

Notice that the timer ISR is considered twice, since it is invoked twice prior the
SlipCtrlTask is finished (after 17 time units).

8.2 WCRT of the SlipCtrlTask by model-checking approach

Contrary to the scheduling theory based approach presented in the previous section,
the model-checking approach considers only the possible phasing determined by the
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detailed model of the controlled environment (the gearbox mechanism: Clutch, Se-
lectServo and ShiftServo) and the control algorithm (GearBoxCtrlTask). It is impos-
sible in this phasing that all interrupts are invoked by the Clutch, SelectServo and
ShiftServo simultaneously. The model-checking tool, moreover, explores the right
blocking time of the SlipCtrlTask by lower priority tasks.

We explore the WCRT of the SlipCtrTask in the following way: The response time
of the task is measured by the clock variable rt0, which is reset when the SlipCtrlTask
is activated in ISR, at the transition leading to the location ActivateTask0. Then the
following property is verified: “Always, when the end of the SlipCtrlTask (location
End) is reached, the inequality rt0 <=WCRT holds”. This property is formalized in
the UPPAAL requirement specification language as follows:

A[] SlipCtrlTask.End imply rt0 <= WCRT.
Then the verification is made by UPPAAL for the particular value of the WCRT.

First, the value of the WCRT must be estimated by the designer and then, if the
formula is satisfied, its value can be decreased. The smallest value of the WCRT
can be found in several iterations. Notice that algorithms also exist for parametric
model-checking verifying whether a state is reachable in a model with an uncertain
parameter (the WCRT in the observer automaton). However, this problem is unde-
cidable in general (Alur et al. 1993). The smallest value of the WCRT is therefore
found by the interval bisection. The WCRT of SlipCtrlTask obtained by the model-
checking approach is 5. This result is a significantly smaller value than in the case of
the scheduling theory approach (see Sect. 8.1). This result is valid only in the case
when the SlipCtrlTask is never activated more than once before it is finished. This
requirement is expressed by the property A[] nActivated[SlipCtrlTaskID] < 1 and it
has been successfully verified in the proposed model.

Both of these properties have been successfully verified by the model-checker
UPPAAL 3.4.9 running on Windows 2000 on PC AMD Athlon 1 GHz, with 1.3 GB
RAM. The time required for verification of both of these properties is 7 seconds. The
required memory is 57 MB.

8.3 WCRT of GearBoxCtrlTask by scheduling theory based approach

It is clear from the GearBoxCtrlTask pseudocode listed in Fig. 14 that the task sus-
pends itself several times while waiting for external events. This fact must be consid-
ered in the WCRT analysis since the suspended task had to compete for the processor
again after the end of the suspension. The worst-case execution path of GearBoxCtrl-
Task is in Fig. 23. It consists of six computations (Comp1 to Comp6) separated by
five self-suspensions (WaitEvent(. . .)). The WCET of all computations are 1 and the
worst-case self-suspension times (WCSST) are 200.

Palencia and Harbour (1998) proposed an offset-based approach for response-time
analysis of tasks with static and dynamic offsets that can be successfully applied to
tasks with self-suspension. The response-time analysis based on this approach has
been implemented in the tool MAST (González Harbour et al. 2001) that can be
downloaded at http://mast.unican.es/mast.html. We have used this tool to compute
the WCRT of GearBoxCtrlTask. The WCRT of GearBoxCtrlTask obtained by offset-
based approach is 1021.
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Fig. 23 GearBoxCtrlTask
worst-case execution path

Realize however that the offset-based approach does not consider branching af-
fected by values of variables. Since the contribution of the higher priority task SlipC-
trlTask to the WCRT of the GearBoxCtrTask strongly depends on the value of vari-
able ClutchState (see Fig. 11), and the blocking by the lower priority task Select-
GearTask strongly depends on value of variable GBReady (see Fig. 12), the model
used for analysis by the tool MAST has been manually modified in the following
way: The task SelectGearTask is not considered in the model, since it never blocks
any computation of GearBoxCtrTask (GearBoxCtrTask is started at the end of Select-
GearTask and the execution of SelectGearTask is blocked by the value of the variable
GBReady that is zero during the execution of the whole GearBoxCtrTask). The task
SlipCtrlTask cannot affect computations Comp2 to Comp5 of the task GearBoxCtr-
Task due to value of the variable ClutchState (see Fig. 14). The contribution of the
task SlipCtrlTask is therefore involved in the WCET of computations Comp1 and
Comp6 and the task SlipCtrlTask is not considered in the model.

This modification of the model prevents the pessimisms of the analysis caused by
not considering the branching affected by values of variables. Realize however that
such modification would be hard or even impossible for a more complex system struc-
ture and cannot be therefore understood as a systematic approach to analysis. We have
done it only for a fair comparison with the model-checking approach. The WCRT of
GearBoxCtrlTask obtained by offset-based approach without described modification
is 1034.

8.4 WCRT of the GearBoxCtrlTask by model-checking approach

We explore the WCRT of the GearBoxCtrTask in a similar way as in the case of
SlipCtrTask. The response time of GearBoxCtrlTask is measured by the clock vari-
able rt1, which is reset when the GearBoxCtrlTask is activated in SelectGearTask, at
the transition from location if2 to location ActivateTask. Then the following property
is verified: “Always, when the end of GearBoxCtrlTask (location End) is reached,
the inequality rt <= WCRT holds”. This property is formalized in the UPPAAL
requirement specification language as follows:

A[] GearBoxCtrlTask.End imply rt <= WCRT.
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Then the verification is made by UPPAAL for the particular value of the WCRT.
The smallest value of the WCRT of GearBoxCtrlTask is 1011. This result is
valid only in the case when GearBoxCtrlTask is never activated more than once
before it is finished. This requirement is expressed by the property A[] nActi-
vated[GearBoxCtrlTaskID] < 1 and it has been successfully verified in the proposed
model.

Both of these properties have been successfully verified by model-checker UP-
PAAL 3.4.9 running on Windows 2000 on PC AMD Athlon 1 GHz, with 1.3 GB
RAM. The time required for verification of both of these properties is 8 seconds. The
required memory is 61 MB.

The difference between the WCRT found by model-checking (1011) and schedul-
ing theory (1021) seems to be minor. Realize however that the biggest part of the
WCRT corresponds to the duration of the self-suspension (5 × 200). The pessimism
of the scheduling theory approach (1021–1011) is therefore comparable with the ex-
act time when the task is ready or executed (1011 − 5 × 200).

9 Conclusions

In this paper, we have demonstrated, how timed automata can be used for modeling of
multitasking, non-preemptive applications. The complex time and logical properties
of the proposed model, considering the values of variables, behavior of the controlled
environment and an internal structure of the control system tasks (e.g. “Shifting is
allowed only when the clutch is opened”, “Desired gear is engaged in 1020 time
units”, “System is deadlock free”, “A task is finished within X time units”, etc.), can
be automatically verified by a model-checking tool.

Even when comparing to the task response time analysis, where classical schedul-
ing theory can be applied, an advantage of the model-checking approach based on
a fine grain timed automata model is that it considers the task internal structure and
the controlled environment and it exhaustively analyzes its state space by a symbolic
model-checking algorithm. Consequently, a more precise (less pessimistic) analysis
is provided by the model-checking approach in the cases, when the analyzed applica-
tion contains features that make the response time analysis pessimistic (e.g. branching
in the tasks code, tasks self-suspension), or when the worst-case behavior, considered
by the classical scheduling theory, can never occur in the controlled environment. It
is clear however that the high memory requirements of the model-checking are pre-
venting this method from becoming a universal response time analysis method.

An exhaustive analysis of the detailed timed automata model subjects to state
space explosion (which is a general property of most formal methods (Corbett 1996)).
Therefore, the proposed model is abstract as much as possible and it contains only in-
formation necessary for correct verification of the system specification. The operating
system model uses only modest data structures, it does not use any clock variables, it
does not allow any non-determinism and all locations are committed, which prevents
paths interleaving and therefore restricts the explored state space. Moreover the OS
model is scalable. Therefore only features used in the modeled application are used
in the OS model. Notice also that OSEK is one of the most appropriate operating
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systems to be modeled by timed automata since it is static (all objects are created at
compilation time) and it is designed for modest runtime environment of embedded
devices. For example events and resources do not require any queue of waiting tasks.
The model of an application tasks must be designed as a compromise between the
model precision and its state space size. It is necessary to limit the size of modeled
data, non-determinism and number of computations in order to obtain the model of
reasonable size. In spite of these restrictions, the model-checking approach is applica-
ble for formal verification of realistic applications whose verification made manually
by humans would be hard and error prone.
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