

Copyright © 2003 Praxis Critical Systems Limited. All rights reserved

 Engineering Software Systems for Cus-
tomer Acceptance

 Adrian Hilton

Engineering Software Systems for Customer Acceptance

Adrian Hilton
Praxis Critical Systems Ltd

20 Manvers Street
Bath BA1 1PX, England

adrian.hilton@praxis-cs.co.uk

Abstract

Building a software system is a well-understood prob-
lem with a wide range of solutions, each suitable for some
classes of system but not for others. The commercial success
of a software system, however, depends on its acceptance
by the customer. Therefore, the developer must demonstrate
that a system is fit for its purpose. A common view is that
following a specified software or systems development pro-
cess is adequate for this purpose. However, as software and
safety standards move from a prescriptive to goal-oriented
form, this demonstration of fitness will become better tai-
lored to each system.

In this paper we examine how existing processes and
products can be used to build an evidence-based case for
high-assurance system acceptance. We draw on our own
experience of developing and delivering such systems, and
make practical recommendations for improving acceptance
rates. We show how existing technologies and tools can sup-
port this process.

1. Introduction

There are as many ways of building software systems as
there are software engineers. Each approach has strengths
and weaknesses, and is appropriate for some classes of sys-
tem but not for others. An essential step towards the suc-
cessful delivery of a system is to choose a development ap-
proach that is suited to the needs of that system and its cus-
tomers.

1.1 Building an acceptable system

We understand that building a high-assurance software
system is different to writing an application to manage
home finances, but there is a fundamental point in common.
To be judged successful, the systems must be accepted by
their customers. A home finance application must be easy

to use, run reliably on the customer’s home PC and get its
arithmetic right. If it does not, people will not buy it.

Similarly, a flight control system must keep an aircraft
stable throughout its flight, integrate with the rest of the air-
craft’s avionics, and be demonstrably safe to the level of
integrity required by the relevant aviation safety body. If it
does not, either the customer will refuse to accept it or the
safety body will not issue the required flight certification.

1.2 An historical perspective

Brooks [4] wrote of the state of the software engineering
art in 1975, and updated the 20th anniversary edition of his
book with a review of the progress that software engineers
had made. Brooks’ conjectures were that:

1. system development time does not scale in an inverse-
linear relation to team size, and indeed that adding
more manpower to a late project makes it later (the
“mythical man-month”);

2. there is no single development, in either technology
or management technique, which promises an order of
magnitude improvement within a decade in productiv-
ity, reliability or simplicity (“no silver bullet”);

3. after building one system successfully, the design and
development of a follow-on system is prone to balloon
out with pointless features and an elephantine design
(the “second system effect”); and

4. a small number of documents, in a sea of project doc-
umentation, become the critical pivots around which
every project’s management revolves (“the documen-
tary hypothesis”).

History appears to have borne out these conjectures,
which have passed into every-day software engineering
practice. We do not attack any of them in this paper; in-
deed, we advocate reading Brooks as a classic introduction
to the essentials of project management.

Instead, we assume that the system development is
planned and carried out with an eye to these laws, and stay
focused on the task of producing the system that the cus-
tomer wants. We do not aim to reduce the time taken to de-
velop a system. We aim to avoid all the extra development
time resulting from having to rework the finished system
after the customer has rejected it.

1.3 Focus

Our focus in this paper is on high-assurance systems, de-
fined as systems which have an external mandate to meet
some safety, security, liveness or performance criteria. Our
requirement is to develop and deliver this system and ac-
companying evidence such that:

• the customer is likely to agree that the system meets
the specified functional requirements;

• the safety body is likely to accept that the system is
suitably safe;

• the commercial risks of system development are iden-
tified and minimized; and

• the cost of the development is minimized.

Demonstrating that a high-assurance system meets its
functional and safety requirements is not a trivial task, and
is system-dependent. In this paper we present tactics and
strategies which we believe will assist in this process.

Our primary focus is on safety-related systems, since we
have more experience in this field, but the issues raised re-
late well to other classes of non-functional requirements
such as security, survivability and high-performance com-
puting.

1.4 Structure

Section 2 describes current best practice in constructing
good functional and safety requirements for a system. Sec-
tion 3 examines the issues involved in working to mandated
development standards. Section 4 looks at the techniques
and tools used to build dependable and demonstrably cor-
rect systems from a set of requirements. Section 5 describes
the benefits and limitations of testing.

At the end of each of these sections we collate the
evidence-gathering steps discussed in the section. This pro-
vides a summary of the evidence that could be produced in
the corresponding development phase.

Finally, section 6 draws together the main conclusions
from the analysis work.

2. Meeting requirements

It is no good building a perfectly safe system if the sys-
tem does not do what the customer requires. Nor is it worth
meeting all the functional requirements if the software has a
MTBF of a quarter of the required duration. In this section
we address the task of identifying what system to build, and
calculating how safe it needs to be.

2.1 Requirements engineering

Gathering and managing requirements is as integral to
the system development as producing code. The Standish
CHAOS reports of 1995 and 2003[31, 32] and the study
by Taylor [33] estimate that between 30% and 48% of IT
projects fail due to requirements-related problems, even
though the stage at which the projects fail is usually late in
the development cycle. The 2003 Standish report also notes
that the fraction of originally defined features that projects
deliver has decreased from 67% to 54% in the past year.

Most high-level functional requirements will come from
the customer, and these will have a profound effect on
the design of the system. Since late requirements changes
are well-known to have serious impact on development
timescales, the developer and customer should expend sig-
nificant effort and time on a thorough and structured re-
quirements elicitation. The customer is responsible for get-
ting all their requirements written down clearly; the devel-
oper is then responsible for ensuring that the final imple-
mentation can clearly be shown to satisfy each of these re-
quirements.

Requirements engineering methods such as KAOS [5]
or the Praxis Critical Systems REVEALR© method1 [11]
provide a framework for requirements engineering that can
be tailored to a particular system.

When producing requirements, we must bear in mind
that we must eventually demonstrate that the system fulfils
each requirement. For that reason, requirements should be
directly testable wherever possible. The developer should
also plan how the traceability of requirements to code is go-
ing to work. Having a complete map from each requirement
to the sections of code which implement it may be excessive
in many cases, but the developer should assume that late re-
quirement changes will arrive, either from the customer or
from the development itself.

If an existing requirement is changed, the developers
must be able to go straight to the relevant parts of the de-
sign, code and tests to change them appropriately. It may
even be possible to present a justified estimate of impact
before the requirement change gets the green light; the cost
may be enough to cause the change to be dropped. The de-
veloper must be careful to check the effect of the change

1REVEAL is a registered trademark of Praxis Critical Systems Limited

thoroughly; a small functional requirement change could
conceivably affect non-functional requirements such as sys-
tem safety or performance.

2.2 Is it safe enough?

Safety engineering is an engineering discipline in itself.
Leveson’s text “Safeware”[17] provides a good introduction
to the subject. Her analysis of accidents such as the Therac-
25 over-exposure of patients to ionising radiation[18] illus-
trates the consequences of inadequate system safety analy-
sis.

Standards such as UK Defence Standard 00-56[22] de-
fine a safety management scheme for safety-critical systems
development. The process typically incorporates features
including:

hazard analysis: demonstration that all risks posed by the
system are acceptable, identifying and setting safety
requirements;

fault tree analysis: breaking down each hazard into com-
ponent faults, proceeding recursively to identify the
basic faults of the system and their effect on system
safety; and

the safety case:an argument based on the above docu-
ments and the system development process, stating
why the system meets the required safety level.

The level of required safety can be measured in several
ways, but the approach taken by 00-56 is the use ofsafety
integrity levels(SILs) to express the expected minimum
time between failures. SIL-1, the lowest level, requires no
more than one failure per105 hours of high-demand op-
eration. SIL-4, the highest level, requires no more than 1
failure per109 hours. Since this is just over 114,150 years
we can immediately see that system testing to demonstrate
this level of reliability with any confidence will likely be
impractical. The statistical limitations of testing have been
discussed in detail by Littlewood[19].

Safety engineering can tell the developer how safe a sys-
tem component must be, and the safety case is a key piece of
safety evidence, but how to attain the required safety level
is a separate question.

2.3 Is it too safe to build?

Systems can also be too safe. The higher the required
safety level for a system, the more expensive it will be to
build. Building a system which is much safer than required
is likely to be a waste of money.

White box safety [29] is an approach that aims to reduce
the amount of a system that is at a given level of criticality.

It breaks down a single system into its components, identi-
fies the hazards in the system, and tries to exclude system
components from the causes of the hazards. When success-
fully applied, a SIL-4 system might be broken down into a
core safety task which must still be SIL-4, but other compo-
nents would have their SIL reduced or (ideally) removed.

One strategy to avoid is the movement of safety-critical
functionality from conventional software into an area of the
system not covered by a prescribed safety standard. This
was superficially attractive with prescriptive standards such
as Defence Standard 00-55 [21], and programmable logic
was one such destination for the functionality. The obvious
problem is that it does not make the system any more safe;
instead, when the developed system is presented to the cer-
tification authority they are likely to reject it and demand
that the safety case address the programmable logic compo-
nent. Retroactively building safety into an existing system
is notoriously expensive and difficult.

The interim UK Defence Standard 00-54[23] addresses
safety-related electronic hardware for precisely this rea-
son. Indeed, the requirements it places on systems with
the higher SILs are so stringent that no implementations
are known to have been certified to those levels of safety.
The conclusion to draw is that if you wish to build a SIL-
3 or SIL-4 system then you should keep safety functional-
ity out of programmable logic. Hilton and Hall have de-
scribed how existing high-assurance software engineering
techniques could be applied to programmable logic [12, 13]
but a practical demonstration of this has not yet been made.

2.4 Formal notations

Expressing requirements in English (or a similar writ-
ten language) trades off ease of reading and writing against
ambiguity. The use of formal notations for expressing some
or all of a system’s requirements removes ambiguity, at the
cost of increased effort to write (and then comprehend) the
requirements.

Common formal notations used in system specification
include Z[30], VDM[15], CSP[14] and B[1]. The choice
of notation will be dictated by what must be specified and
what tools are available.

One additional benefit of formal notations includes the
ability to prove correct sections of the system. Semi-
automatic proof tools have reduced the amount of skilled
work involved in producing such proofs. CSP, for instance,
is generally good at specifying protocols of communication
between objects, and is supported by the FDR tool[8] used
to identify deadlocks and livelocks in a CSP system. Z can
also be used effectively; in the development of the SHOLIS
helicopter guidance system [16] which involved extensive
formal specification and proof work, Z proof was found to
be significantly the most efficient phase at finding faults.

From the point of view of generating evidence of correct-
ness, formal notations provide a strong argument that the
correct system was specified (as long asthe customer was
able to read, understand and agree with the specification). A
formal proof of correctness is generally much easier to ver-
ify than to write, so any such proof will contribute towards
the evidence of correctness as long as the property proven
is relevant to the customer’s requirements or system safety.

2.5 Evidence collation

Summarising the points of evidence that we can collect
from the requirements phase:

• The use of a mature stakeholder-focused requirements
engineering method is a valid piece of evidence that
the customer’s requirements have been captured and
accurately expressed.

• A safety case is evidence that the required safety of the
system has been measured, and that the system being
built will meet that level of safety.

• A “white box” safety analysis is key safety evidence
that the components developed to SILs below that re-
quired for the main system do not compromise overall
system integrity.

• A readable specification in a formal notation is evi-
dence that the system requirements have been unam-
biguously specified. Proof carried out on this specifi-
cation demonstrates a level of self-consistency in the
specification.

• It is especially important in this phase for the customer
to be able to understand and approve the generated
documents.

3. Working to standards

Current high-assurance standards in use in the domain
of civil and military avionics include RTCA DO-178B[28]
and UK Defence Standards 00-55 and 00-56 [21, 22]. These
were included in a comparison of avionics standards by Py-
gott [26]. The key conclusion to the report was that the
standards had roughly the same overall objectives, but dif-
fered in how they recommended that the developer attain
the objectives.

Defence Standard 00-55, for instance, emphasises for-
mal methods as key to achieving the higher levels of in-
tegrity whereas RTCA DO-178B regards formal methods as
immature and requires justification of their use in a devel-
opment. This may be partly a result of time – DO-178B was
produced in 1992, whereas issue 2 of 00-55 was five years
later – but also reflects differing opinions in the certification
community about the value of such methods.

3.1 Standards evolution

UK Defence Standards undergo periodic rewriting: 00-
55 and 00-56 are at issue 2 already, and issue 3 is due to ap-
pear soon. The rewritings reflect both feedback from practi-
cal application of the previous standards and advances in the
state-of-the-practice of system development. The changes
from issue 1 to issue 2 of 00-55 reflect industrial comments
that the approach prescribed in issue 1 was too hard to ap-
ply in general, although at least one project was successfully
developed under issue 1[16].

If experts dispute such issues, and standards documents
show that conflict, how do we find a generic development
process applicable to all standards? How can we anticipate
the requirements of future versions of existing standards?
We cannot, but we can focus on the areas of agreement
noted above: the standards aim to support the process of
producing a system which is demonstrably safe at a quan-
tifiable level.

3.2 Goal-based safety

Within the United Kingdom there is a move away from
prescriptive standards (of which issue 1 of 00-55 was a good
example) towards documents that support development by
describing a wide range of ways that the development pro-
cess can produce evidence of safety and correctness.

Penny et al.[25] describe practical experience with this
“goal-based” form of safety standard in the development of
SW01, part of the regulations for ground-based air traffic
services in the UK. They split evidence into two forms:di-
rect, which directly relates to the safety of the system (such
as evidence that static analysis has been carried out and no
dangerous faults found), andbackingwhich shows that the
direct evidence is credible and sound (such as test reports
and error history of the static analysis tool used).

Penny et al. conclude that there are sound benefits to
the developer and to the certification authority in the use of
goal-based safety. Although it represents a significant shift
from common current practice, and requires support from
a wide range of tools and techniques in the development
process, it appears to be a promising approach; an approach
which this paper aims to support.

3.3 Evidence collation

The decision to follow a standard should be presented as
evidence in itself, along with a brief analysis of why this
standard was appropriate.

• Following a prescriptive development standard will
normally be taken as substantial evidence of adherence

to best practice. The hazard is that this is heavily de-
pendent on the certification authority, and the approach
prescribed may not stand the test of time.

• Adopting a goal-based standard, if available, is the op-
tion we advocate. However, the developer should en-
sure that their tools and techniques can produce ade-
quate direct and backing evidence; the results of this
check should be presented as evidence in itself.

4. Building the right system

Given good functional and safety requirements, how do
we produce a system design and implementation that can
be shown to satisfy them? This section describes how to
collect evidence of correctness and safety during program
development.

4.1 Designing to succeed

A system design expresses decisions made by develop-
ers about how they plan to address the functionality in gen-
eral terms. It typically partitions the system into modules
and describes data flow between the modules. Designs may
evolve out of requirements, be dictated by the available
toolsets and methodologies, or simply come out of the heads
of the system developers.

UML is an increasingly common notation used for cap-
turing designs. It has the great strength of a standardised no-
tation which many engineers have studied and understand.
Unfortunately it lacks any semantics, a feature which is im-
portant for the adoption of UML across a wide range of
application domains but which leads to frequent disagree-
ments about what a UML diagram actually means. It is up
to engineers in each application domain to agree on a stan-
dard semantics, and in real-time and high-assurance sys-
tems this has not yet happened. The use of UML in a system
design should take account of this.

The principles of system design have been discussed at
length elsewhere[24] and will not be repeated here. We will
restrict ourselves to observing that the design should admit
traceability back to functional requirements, and onwards
to the implementation.

The designer should also note Amey’s comments[3] on
the difference between encapsulation and hiding. To show
that code is free of unintended side effects (and hence order-
of-evaluation dependencies) it is vital for the designer to
identify the location of system state, even if it appears irrel-
evant to the compiler. This illustrates a general principle of
design, that one should not unnecessarily sacrifice structure
and information early in the design process even if it will be
lost in a later phase.

4.2 Implementation languages

For a high-assurance system, the choice of implementa-
tion language will be dictated by the availability of a trusted
compiler for the host system. Typically this restricts the de-
veloper to the “mainstream” languages of C, C++ or Ada.
Assembly language can clearly be used, but the problems
of designing large systems in this are well known; typically,
it is used in small amounts for time-critical processing or
low-level interfacing. Higher-level languages incorporating
garbage collection such as Java and Perl allow quick writing
of programs but current interpreters for these languages are
unsuited to real-time or high-assurance applications.

Auto-generation of code from a high-level design by a
tool is attractive since the implementation step is apparently
attained “for free”. In practice, however, little additional
programming expertise can be supplied by the generation
tool except in very specific target applications, so what you
get for free is what you pay for (in information-theoretic
terms). For high-assurance system either the generator it-
self must be validated (which returns us to the problem of
writing a safe and correct program) or the output code must
be analysed; such code is not normally structured for read-
ability or susceptible to automatic analysis.

If a program is then written in C or Ada, the developer
can choose to use a subset of the full language. This is
normally done to avoid known pitfalls with code constructs
outside the subset, and is intended to demonstrate to the
certification authority that the code will exclude a class of
common errors. The MISRA rules for C[20] define such a
C subset; similarly, SPARK2 Ada defines annotated subsets
of Ada 83 and 95[2, 7].

To produce evidence that the program code contains no
code constructs outside the chosen subset, a suitable tool is
required. Such a tool can be a simple parser if only the lan-
guage syntax is restricted; however, it may be possible to
take advantage of the reduced complexity of the program-
ming language and do more substantial semantic analysis.
This leads us to the technique of static analysis.

4.3 Static analysis

Developers sometimes equate static analysis with the
lint tool found in many C compiler tool sets, used to
identify unused variables and ignored function return val-
ues. This severely underestimates the technique’s potential
usefulness.

Static analysis is the compile-time identification of cer-
tain properties in a program. The developer must decide
which properties are important to identify, and then ensure

2Note: The SPARK programming language is not sponsored by or af-
filiated with SPARC International Inc. and is not based on the SPARCTM

architecture.

that the program description being compiled admits such
identification. Clearly, the richness of the program descrip-
tion will determine the level of analysis that can be carried
out. If the program description is ambiguous, as is the case
with any non-trivial subset of C, the potential of static anal-
ysis is limited.

Praxis Critical Systems has substantial practical experi-
ence in using the SPARK Examiner, a static analysis tool
that enforces the SPARK Ada subset. The subset excludes
Ada language features prone to cause error (e.g. alias-
ing, operator overloading, dynamic memory allocation), but
also insists on the use ofannotations– Ada comments
marked with an extra symbol, ignored by the compiler but
used to provide program design information to the Exam-
iner. These annotations provide information that can be effi-
ciently checked, then fed into the verification of annotations
higher up the calling tree in a SPARK Ada program.

Our experience is that the SPARK Examiner is visibly
very effective at preventing a wide range of errors at the
subprogram level. Moreover, since we require code to pass
analysis before compilation, such error detection avoids the
overhead resulting from a unit or system test failure. In the
SHOLIS development [16], for instance, we found that unit
tests picked up very few errors; the static analysis had al-
ready found the errors unrelated to proof, so they were fixed
before any testing occurred. A side effect is that compila-
tions of SPARK-checked code seldom fail.

Conversely, static analysis of Ada code tested to RTCA
DO-178B [28] Level A revealed potentially safety-critical
errors that had avoided detection. Moreover, there was no
significant difference in error rates between Level A and
Level B tested software, despite the substantial extra test-
ing effort in Level A. This analysis was described in detail
by German and Moody[9] in a general assessment of static
analysis tools and techniques. They conclude that static
analysis is an effective technique, but its nature and depth
should be selected with regard to the criticality of the code
under examination.

From the point of view of generating evidence of correct-
ness and safety, the static analysis of a program provides a
single report which assures the certification authority that
certain classes of error (e.g. use of uninitialised data) are
not present in a program. Of course, the value of this analy-
sis depends on the confidence in the correctness of the static
analysis tool.

4.4 Program proof

Program proof may follow on from static analysis. A
program proof is a rigorous demonstration that a program
satisfies one or more specified properties. Unlike static
analysis, proof cannot typically be done automatically in
a relatively short time; advances in proof tool technology

and processor speed have helped, but the construction of a
non-trivial proof will often require human intervention.

A necessary condition for proof is the use of an unam-
biguous language with a well-defined semantics. Without
this, it is not possible to construct meaningful proof rules.
C, and even Ada, do not meet this test. A language such as
SPARK can have such a semantics, but even then there are
limitations. Ada’s floating point rules, for instance, are such
that we advocate great caution when using floating point
arithmetic in SPARK. The greatest hazard in proof is an in-
correct manual proof step.

Proof may be used to demonstrate a general property of a
program (e.g. that an Ada program never raises a run-time
error), or to demonstrate that a subprogram has a specific
property. We now find it practical to run a nightly proof cal-
culation on our SPARK software development work, where
we aim to demonstrate total freedom from run-time errors.

The proofs provided as evidence of correctness will be
accompanied by sequences of proof steps, each of which
can be validated efficiently. The main work of validation
will be in ensuring that the supplied proof rules are in fact
correct, and that the proofs were carried out on the version
of code that was shipped. The value of this evidence is a
powerful argument that all the relevant system specifica-
tions (themselves unambiguously specified) were satisfied.

4.5 Evidence collation

Summarising the points of evidence collected during the
implementation phase:

• A system design in a well-understood notation indi-
cates to the certification authority how the safety re-
sponsibilities are divided in the system.

• The choice of a mainstream high-level language re-
moves doubts about compiler correctness and allows
focus on the program itself.

• Choosing an enforceable subset of a language is evi-
dence that a class of errors due to unsafe language fea-
tures have been excluded.

• Static analysis of a program can demonstrate that the
program has a range of useful properties (e.g. never
reading uninitialised data), but the properties which
can be demonstrated depend heavily on the language
subset chosen.

• Program proof is strong evidence of correctness, but is
more labour-intensive than static analysis.

5. The limits of testing

Testing is a vital part of system development. The main
kinds of testing are:

• informal testing by developers that the feature they are
developing works at least approximately as designed;

• unit testing to exercise each component of a program
(typically by subprogram or module, depending on the
implementation language);

• functional testing to check that all requirements are
covered; and

• system testing to verify that the entire system operates
as designed without any errors.

“White box” testing is informed by the design and im-
plementation details of the system, and aims to attain some
level of coverage of the code. “Black box” testing concen-
trates on the required output, ignoring system structure. As
a result, black box tests may normally be constructed earlier
in the product lifecycle than white box tests, and are more
amenable to re-use in future system variants.

However, we must remember what testing alone cannot
achieve. Modern testing techniques are efficient and suc-
cessful within a limited framework, but (as noted above)
even the most stringent testing can miss an error that tech-
niques such as static analysis can detect.

5.1 Aims and achievements of testing

Testing, as Dijkstra said[6], can only show the presence
of errors, not their absence. Functional testing aims to show
that functional requirements are met, but at best can show
that no errors occur while the function is being exercised in
a range of common ways.

Unit testing aims to exercise each individual component
(unit) in a program. There are formal notions of how thor-
oughly a unit has been tested – statement coverage, branch
coverage, MC/DC etc. – but the limiting factor in unit test-
ing is often the person writing the test. They should know
the required result of each test before writing it. The temp-
tation to derive the test result from the code is substantial,
so unit test results should ideally be written before the unit
is written. But then, the tests are unlikely to cover all of the
unit’s statements or paths.

System testing can only realistically exercise a small sec-
tion of the system’s state space. Detecting and counting er-
rors during continuous system test can give an indication
of the number ofdetectableerrors remaining in the system,
but can never assure the developer, certification authority or
customer that all the errors are gone.

If a particular testing aim is to reduce the number of er-
rors encountered by users then usage models for the system
can be useful to direct testing effort to frequently-used sec-
tions of the code. This may not be appropriate if the testing
aim is to reduce the likelihood ofanyoccurrence of a par-
ticular class of error (such as system reset).

5.2 Untestable conditions

As noted previously, for systems with a required SIL 4
rating it is not practical to achieve that level of confidence
with testing alone. There are also more specific aspects of
program correctness which are difficult to achieve by test-
ing. Absence of run-time errors can only be shown by test-
ing if the test exercises every path in the entire program for
all values of input data. This is normally computationally
infeasible.

5.3 Evidence collation

It is not easy to produce convincing evidence that effec-
tive testing has been carried out. Use of an independent
team for testing can increase the chance of testing over-
sights or unjustified assumptions being caught. It may be
useful for such a team to perform a random audit on tests
and sections of code, checking them against required prac-
tice and against the existing requirements.

Summarising the points of evidence collected during
testing:

• Test results are necessary evidence for any program,
but often not sufficient.

• Independent testers reduce, but do not remove, the dif-
ficulty of producing convincing evidence of testing.

• Functional testing is useful evidence that the cus-
tomer’s requirements are covered, at least to some de-
gree; it will provide increased assurance if the require-
ments were properly managed and tracked.

• Thorough unit testing is evidence of diligence, but may
not be an efficient way of detecting errors, and does
not provide much practical evidence of correctness or
safety.

• System testing is primarily a statistical exercise, and
for high-SIL systems cannot provide sufficient statisti-
cal confidence that the system is safe.

6. Conclusions

In this paper we have examined the problem of produc-
ing a correct and safe system, to the satisfaction of a cus-
tomer and a certification authority. This is a practical prob-
lem which many software engineers face daily.

We have adopted a standards-neutral approach of col-
lecting evidence of safety and correctness as we progress
through the system development process. We have seen
how existing and emerging tools and techniques can con-
tribute to a strong evidence-based argument that the system
does what it is supposed to, safely.

Perhaps one of the most definite pieces of evidence of
system correctness and safety is a program warranty. For
the SIL-2 CDIS air traffic control system[10], written in
200KLOC of C, Praxis delivered the system with a ten year
warranty. One claim (and fix) was made during customer
system testing; no further claims were made during the war-
ranty period. If this could be done with 1990s technologies,
how much more should we expect from software engineer-
ing in this new decade?

6.1 Acknowledgements

Thanks are due to Rod Chapman and Helen May from
Praxis Critical Systems Limited, and to Jon Hall from the
Open University, for their comments on an earlier version
of this paper.

References

[1] J.-R. Abrial. The B Book. Cambridge University Press,
1996.

[2] P. Amey. SPARK – the SPADE Ada kernel. Technical Re-
port 1.0, Praxis Critical Systems Ltd., 1999.

[3] P. Amey. Logic versus magic in critical systems. In
D. Craeynest, editor,6th Ada-Europe International Confer-
ence on Reliable Software Technologies, Proceedings, vol-
ume 2043 ofLecture Notes in Computer Science. Springer-
Verlag, May 2001.

[4] F. P. Brooks, Jr.The mythical man month: essays on soft-
ware engineering. Addison Wesley Longman Inc, anniver-
sary edition, 1995.

[5] A. Dardenne, A. van Lansweerde, and S. Fickas. Goal-
directed requirements acquisition.Science of Computer Pro-
gramming, 20, 1993.

[6] E. W. Dijkstra.A Discipline of Programming. Prentice Hall,
1976.

[7] G. Finnie and R. Wintle. SPARK 95 – the SPADE Ada 95
Kernel. Technical Report 1.0, Praxis Critical Systems Ltd.,
October 1999.

[8] Formal Systems (Europe) Ltd.FDR User Manual, May
1997.

[9] A. German and G. Mooney. Air vehicle software static code
analysis lessons learnt. In Redmill and Anderson [27], pages
175–193.

[10] J. A. Hall. Using formal methods to develop an ATC infor-
mation system.IEEE Software, 12(6), March 1996.

[11] J. Hammond, R. Rawlings, and A. Hall. Will it work? In
Proceedings of the 5th International Symposium on Require-
ments Engineering, August 2001.

[12] A. Hilton and J. Hall. On applying software development
best practice to FPGAs in safety-critical systems. In R. W.
Hartenstein and H. Grünbacher, editors,Proceedings of
the 10th International Conference on Field Programmable
Logic and Applications (FPL’00), volume 1896 ofLec-
ture Notes In Computer Science, pages 793–796. Springer-
Verlag, August 2000.

[13] A. J. Hilton and J. G. Hall. Mandated requirements for hard-
ware/software combination in safety-critical systems. In
Proceedings of the workshop on Requirements for High-
Assurance Systems 2002. Software Engineering Institute,
Carnegie-Mellon University, September 2002.

[14] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

[15] C. B. Jones.Systematic Software Development Using VDM.
Prentice-Hall International, 1986.

[16] S. King, J. Hammond, R. Chapman, and A. Pryor. The value
of verification: Positive experience of industrial proof. In
J. M. Wing, J. Woodcock, and J. Davies, editors,FM’99
— Formal Methods; Proceedings, volume 1709 ofLec-
ture Notes in Computer Science. Springer-Verlag, Septem-
ber 1999.

[17] N. Leveson. Safeware: System Safety and Computers.
Addison-Wesley Publishing Company, 1995.

[18] N. Leveson and C. Turner. An investigation of the Therac-25
accidents.Computer, July 1993.

[19] B. Littlewood and L. Strigini. Validation of ultrahigh de-
pendability for software-based systems.Communications of
the ACM, 36(11):69–80, 1993.

[20] MIRA. Guidelines for the Use of the C Language in Vehicle
Based Software, April 1998.

[21] Defence Standard 00-55 issue 2, August 1997. Require-
ments for Safety-Related Software In Defence Equipment.

[22] Defence Standard 00-56 issue 2, December 1996. Safety
Management Requirements for Defence Systems.

[23] Interim Defence Standard 00-54 issue 1, March 1999. Re-
quirements for Safety Related Electronic Hardware in De-
fence Equipment.

[24] D. L. Parnas. Designing software for ease of extension and
contraction. IEEE transactions on software engineering,
pages 128–138, March 1979.

[25] J. Penny, A. Eaton, P. G. Bishop, and R. E. Bloomfield. The
practicalities of goal-based safety regulation. In Redmill and
Anderson [27], pages 35–48.

[26] C. H. Pygott. A comparison of avionics standards. Tech-
nical Report DERA/CIS/CIS3/TR990319/1.0, UK Defence
Evaluation and Research Agency, August 1999.

[27] F. Redmill and T. Anderson, editors.Proceedings of the 9th
Safety-Critical Systems Symposium. Safety-Critical Systems
Club, Springer-Verlag, 2001.

[28] Requirements and Technical Concepts for Aviation Inc.
DO-178B / EUROCAE ED-1D: Software Considerations in
Airborne Systems and Equipment Certification, December
1992.

[29] A. Simpson and M. Ainsworth. White box safety. InPro-
ceedings: Avionics Conference and Exhibition. ERA Tech-
nology Ltd., 1999. ERA Report 99-0815.

[30] J. M. Spivey. The Z Notation: A Reference Manual.
Prentice-Hall International, second edition, 1992.

[31] The Standish Group.The CHAOS report, 1995.
[32] The Standish Group.What are your requirements? 2003,

2002. Research note.
[33] A. Taylor. IT projects sink or swim.BCS Review, pages

61–64, January 2001.

