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Abstract

Modular system architectures, such as integrated modular avionics (IMA) in the aerospace sector, offer potential benefits of improved

flexibility in function allocation, reduced development costs and improved maintainability. However, they require a new certification

approach. The traditional approach to certification is to prepare monolithic safety cases as bespoke developments for a specific system in a

fixed configuration. However, this nullifies the benefits of flexibility and reduced rework claimed of IMA-based systems and will necessitate

the development of new safety cases for all possible (current and future) configurations of the architecture. This paper discusses a modular

approach to safety case construction, whereby the safety case is partitioned into separable arguments of safety corresponding with the

components of the system architecture. Such an approach relies upon properties of the IMA system architecture (such as segregation and

location independence) having been established. The paper describes how such properties can be assessed to show that they are met and

trade-offs performed during architecture definition reusing information and techniques from the safety argument process.
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1. Introduction

Extensibility, adaptability and resilience to change are

increasingly desirable characteristics for many safety

critical systems. Modular system architectures, such as

integrated modular avionics (IMA) in the aerospace sector,

are being seen by many as offering the potential benefits of

improved flexibility in function allocation, reduced develop-

ment costs and a means of managing the ever present issues

of technology obsolescence and update.

The characteristics desirable in these systems (such as

change resilience and timeliness) cannot easily be retrofitted

into a system design. Ability to exhibit these characteristics

depends to a large extent on the architecture of the system in

question (e.g. concerning the partitioning, communication

mechanisms and scheduling policies). Therefore, consider-

ation must be given during architecture definition as to how

these objectives will be satisfied. In this paper we highlight

how dependability and maintainability criteria can be

elaborated and considered during the architecture definition

process. In particular, we describe how the exploration of

alternative satisfaction arguments for these criteria can

enable assessment of architectural tradeoffs.

One of the most significant problems posed by the

adoption of modular systems in safety critical applications

lies in their certification. The traditional approach to

certification relies heavily upon a system being statically

defined as a complete entity and the corresponding

(bespoke) system safety case being constructed. However,

a principal motivation behind IMA is that there is through-

life (and potentially run-time) flexibility in the system

configuration. An IMA system can support many possible

mappings of the functionality required to the underlying

computing platform.

In constructing a safety case for IMA an attempt could be

made to enumerate and justify all possible configurations

within the architecture. However, this approach is unfea-

sibly expensive for all but a small number of processing

units and functions. Another approach is to establish the

safety case for a specific configuration within the archi-

tecture. However, this nullifies the benefit of flexibility in

using an IMA solution and will necessitate the development

of completely new safety cases for future modifications or

additions to the architecture.

A more promising approach is to attempt to establish a

modular, compositional, approach to constructing safety

arguments that has a correspondence with the structure of

the underlying system architecture. However, to create such

arguments requires a system architecture that has been

designed with explicit consideration of enabling properties
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such as independence (e.g. including both non-interference

and location ‘transparency’), increased flexibility in func-

tional integration, and low coupling between components.

In this paper we describe how a modular safety case can be

established and managed.

For a modular safety critical system architecture, a

modular, change resilient, safety case architecture is also

desirable. However, it is extremely difficult for system

architects to reason about the implications of their choices in

defining the system architecture on the possible configura-

tions of the certification case without a means of defining

and reasoning about safety case architecture. In the paper we

highlight the dependency between the possible organisation

of the safety case and the choices made during system

architecture definition and how recognition of these

dependencies can be factored into the architecture trade-

off analysis process.

We begin by presenting a process for the evaluation of

required architectural quality attributes in Section 2. This

process is illustrated by means of an example, evaluating a

number of specific quality attributes, within Section 3.

Section 4 defines the concept of modular safety cases and

discusses how evaluation of system architecture can be

extended to consider the degree to which a modularised

safety case can be supported. Evaluation of the modifiability

of any proposed safety case architecture is discussed within

Section 5. Section 6 illustrates the modular approach to

safety case construction by means of an example derived

from consideration of IMA architectures. Finally, con-

clusions are presented in Section 7.

2. Evaluating required qualities during system

architecture definition

The system architecture is of paramount importance

when producing a system because it dictates how much

effort is involved in designing, integrating, verifying,

maintaining and reusing the system and its component

parts. There is no architectural design that is best in all

circumstances. Instead for a particular system being

developed, there are architectural designs that will meet

some of these objectives better than others. An

inappropriate architectural design can make achieving

the desired results difficult and costly. As systems are

becoming complex, the need to perform architectural

analysis is becoming apparent but to date few techniques

exist and those that do exist are still evolving to

industrial strength solutions [1]. Part of our work is

looking at how architectures should be designed and

analysed.

As part of designing an appropriate system architecture it

is important to consider the following activities

1. Derivation of choices: identifies where different design

solutions are available for satisfying a goal.

2. Manage sensitivities: identifies dependencies (i.e. con-

tracts) between components such that consideration of

whether and how to relax them can be made. A benefit of

relaxing dependencies could be a reduced impact to

change.

3. Evaluation of options: allows assessment criteria to be

derived whose answers can be used for identifying

solutions that do/do not meet the system properties,

judging how well the primary objectives, that is property

requirements are met, and indicating where refinements

of the design might add benefit. A similar process can be

followed for secondary objectives. The distinction

between primary and secondary objectives is that

primary objectives are properties that have to be met

(e.g. correct functional behaviour) whereas secondary

objectives are characteristics that should be met as well

as possible but a failure to meet them does not affect the

system’s operation (e.g. supporting managed change).

4. Influence on the design: identifies constraints on how

components should be designed to support the meeting of

the system’s overall objectives. This leads to definitions

of functionality, abstractions and interfaces.

5. Influence on the design: identifies constraints on how

components should be designed to support the meeting of

the system’s overall objectives.

2.1. Analysing different design solutions and performing

trade-offs

Fig. 1 provides a diagrammatic overview of the proposed

method. Stage (1) of the trade-off analysis method is

Fig. 1. Overview of the method.
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producing a model of the system to be assessed. This model

should be decomposed to a uniform level of abstraction.

Currently our work uses the class diagrams from UML [2]

for this purpose, however, it could be applied to any

modelling approach that clearly identifies components and

their interactions (interaction is considered to be the link and

interfaces between two components).

In stage (2), arguments are then produced for each

interaction to a corresponding (but lower so that the impact

of later choices can be made) abstraction level than the

system model (an overview of goal structuring notation

(GSN) symbols is given in Section 2.3, further details of the

notation can be found in Ref. [3]). The arguments are

derived from the top-level properties and objectives of the

particular system being developed. The properties often of

interest are lifecycle cost, dependability, and maintain-

ability. Clearly these properties can be broken down further,

e.g. dependability may be decomposed to reliability, safety,

timing (as described in Ref. [4]). Safety may further involve

providing guarantees of independence between function-

ality. In practice, the arguments should be generic or based

on patterns where possible. The objectives often of interest

are managed change, ease of integration and ease of

verification. Stage (3) then uses the information in the

argument to derive options and evaluate particular solutions

via assessment criteria.

When evaluating particular design solutions, the results

from more than one assessment criteria have to be traded-off

because a design modification that suits one-assessment

criterion may not suit another. For example, introducing an

extra processor may reduce the load across the processors in

the system making task schedulability easier. However, it

may increase the load on the communications bus making

message schedulability more difficult and more power

would be used. Initially when the design is in its early stage

the evaluation may have to be qualitative in nature but as the

design is refined then quantitative assessment may be used

where appropriate. Representative scenarios have been used

as part of this activity to evaluate solutions.

Based on the findings of stage (3), the design is modified

to fix any problems that are identified—this may require

stages (1)–(3) to be repeated to show the revised design is

appropriate. When this is complete and all necessary design

choices have been made, the process returns to stage (1)

where the system is then decomposed to the next level of

abstraction using guidance from the arguments. Com-

ponents reused from another context could be incorporated

as part of the decomposition. Only proceeding when design

choices and problem fixing are complete is preferred to

allowing trade-offs across components at different stages of

decomposition because the abstractions and assumptions are

consistent.

Currently the refinement of the design (stage (4) of the

process) and the refinement of the model (stage 1(b)) are

currently performed manually to decide how best to

decompose the current architecture to the next level. Future

work will look at using a combination of the current

approach and multi-criteria optimisation to address the

problem.

The method will be illustrated by means of an example

presented in Section 3.

2.2. Previous work on architectural analysis

A technique (the architecture trade-off analysis method

(ATAM)) [5] for evaluating architectures for their support

of architectural qualities, and trade-offs in achieving those

qualities, has been developed by the Software Engineering

Institute. Our proposed approach is intended for use within

the nine-step process of ATAM. The approach is largely

based on deriving quality attributes from overall system

objectives, and then turning the quality attributes into

questions that can be asked of the architecture and its

designers.

There are numerous other techniques that follow similar

processes—for example goal question metrics (GQM) [6],

and quality function deployment (QFD) [7]. GQM could be

used within our proposed approach to help derive assess-

ment criteria from the objectives contained within the goal

structured attribute arguments. Again, we can use some of

the findings when converting our arguments into assessment

criteria—i.e. transitioning from stage 3(b)–(c). The differ-

ences between our strategy and other existing approaches,

e.g. ATAM, include the following.

1. The techniques used in our approach are already

accepted and widely used (e.g. nuclear propulsion system

and missile system safety arguments) [2], and as such

processes exist for ensuring the correctness and consist-

ency of the results obtained.

2. The technique offers: (a) strong traceability and a

rigorous method for deriving the attributes and assess-

ment criteria (this is considered to be more rigorous than

questions) with which designs are analysed; (b) the

ability to capture design rationale and assumptions which

is essential if component reuse is to be achieved.

3. Information generated from their original intended use

can be reused, rather than repeating the effort.

4. The method is equally intended as a design technique

to assist in the evaluation of the architectural design

and implementation strategy as it is for evaluating a

design at particular fixed stages of the process.

As stated above, a defining characteristic of our proposed

method is the use of a well established argumentation

notation (GSN) to explore alternative satisfaction arguments

for desirable architectural criteria. Before providing an

example walkthrough of the method a brief introduction to

GSN is given in Section 2.3.
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2.3. Overview of GSN

The GSN [8]—a graphical argumentation notation—

explicitly represents the individual elements of any safety

argument (requirements, claims, evidence and context) and

(perhaps more significantly) the relationships that exist

between these elements (i.e. how individual requirements

are supported by specific claims, how claims are supported

by evidence and the assumed context that is defined for the

argument). The principal symbols of the notation are shown

in Fig. 2 (with example instances of each concept).

The principal purpose of a goal structure is to show how

goals (claims about the system) are successively broken

down into (‘solved by’) sub-goals until a point is reached,

where claims can be supported by direct reference to

available evidence. As part of this decomposition, using the

GSN it is also possible to make clear the argument strategies

adopted (e.g. adopting a quantitative or qualitative

approach), the rationale for the approach (assumptions,

justifications) and the context in which goals are stated

(e.g. the system scope or the assumed operational role). For

further details on GSN see Ref. [8].

GSN has been widely adopted by safety-critical indus-

tries for the presentation of safety arguments within safety

cases. However, to date GSN has largely been used for

arguments that can be defined in one place as a single

artefact rather than as a series of modularised inter-

connected arguments. Later in the paper we show how

GSN has been extended to explicitly represent interrelated

modules of safety case argument.

3. Example—simple control system

The example presented in this section is used throughout

the course of this work to illustrate the techniques presented.

The example is a continuous control loop that has health

monitoring to check for whether the loop is complying with

the defined correct behaviour (i.e. accuracy, responsiveness

and stability) and then takes appropriate actions if it does

not. The platform is scheduled using static scheduling.

Static scheduling is where each task in the system is

assigned its own slot(s) that are always executed at the same

time. The sequence of slots is continually repeated.

At the highest level of abstraction the control loop (the

architectural model of which is shown in Fig. 3) consists of

three elements; a sensor, an actuator and a calculation stage

(with feedback from actuator to sensor). It should be noted

that at this level, the design is abstract of whether the

implementation is achieved via hardware or software. The

requirements (key safety properties to be maintained are

signified by (S), functional properties by (F) and non-

functional properties by (NF), and explanations, where

needed, in italics) to be met are

1. the sensors have input limits (S) (F);

2. the actuators have input and output limits (S) (F);

3. the overall process must allow the system to meet the

desired control properties, i.e. responsiveness (dependent

on errors caused by latency (NF)), stability (dependent

on errors due to jitter (NF) and gain at particular

frequency responses (F)) [6] (S);

4. where possible the system should allow components

that are beginning to fail to be detected at an early

stage by comparison with data from other sources

(e.g. additional sensors) (NF). Early recognition would

Fig. 2. Principal elements of the goal structuring notation.

Fig. 3. Class diagram for the control loop.
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allow appropriate actions to be taken including the

planning of maintenance activities.

In practice as the system development progresses, the

component design in Fig. 3 would be refined to show more

detail. For reasons of space only the calculation–health

monitor interaction is considered. In Section 3.1 we will

describe how satisfaction of architectural criteria concerned

with this interaction can be examined and tradeoffs

identified using the method as outlined in Section 2.

3.1. Overall argument that the system meets its objectives

This section presents the argument that the system meets

its objectives. At higher levels of architectural decompo-

sition the arguments can be generic in nature. That is, the

arguments only become specific when the design of the

system is at a low level. For the purposes of this paper,

higher-level issues are to be considered, therefore, the

arguments are to be generic in nature.

The overall argument that the system meets its objectives

is shown in Fig. 4. The argument shows how the overall

objective is split into three parts; that the system is

dependable as judged by the appropriate regulatory

authority, the system is maintainable (i.e. upgrades can be

performed with a minimum of effort) and the lifecycle costs

are minimized. Whilst some definitions of dependability

include maintainability [4] this is typically from a reliability

and availability perspective. Our concern with maintain-

ability is principally with adaptation of the system. The

maintainability and dependability arguments are explored

further in the following sections.

In the arguments, the leaf goals (generally at the bottom)

have a diamond below them that indicates the development

of that part of the argument is not yet developed. In the case

of the argument in Fig. 5, the cost argument is left

undeveloped.

3.2. Dependability argument

For a full decomposition of dependability we refer the

reader to Ref. [4]. Fig. 5 presents a breakdown of the

dependability property highlighting the particular concerns

of timing, safety, reliability and function [4]. The timing

property is then broken down further. This shows a choice

(a choice is depicted by a black diamond in the arguments)

emerging from goal Timing that is often made between

having highly-dependable components (goal Timing(1)) or

less dependent components but with appropriate fault

tolerance mechanisms in place (goal Timing(2)).

For each of the choices shown in Fig. 5 associated

assumptions and justifications are stated. For example,

related to goal Timing(1) an away goal, AG0001, has to be

supported that it is possible to produce components of

sufficient integrity and justify this is the case. The justifi-

cation for doing this, J0001, is that the extra complication of

fault tolerance is not needed.

The argument shown in Fig. 5 uses a new extension to

GSN—the ‘Away’ Goal (elements AG0001 and AG0002).

Away Goals are used within the arguments to denote claims

that must be supported but whose supporting arguments are

located in another part of the safety case. The name of the

part of the safety case in which this supporting argument is

expected to be found is shown at the bottom of the away

goal symbol. For example, in Fig. 5 the use of the away goal

AG0001 as context for Goal Timing(1) shows that the

timing claim is made on the assumption that the component

integrity claim will be satisfied in the argument labelled

ApplnAArg. The ability to represent inter-argument depen-

dencies in this way is crucial to being able to model modular

safety cases. Section 4 discuss the modelling of these

dependencies in more detail.

3.2.1. Goal timing(2)—tolerance of errors in timing

From an available argument pattern, the argument in

Fig. 6 was produced that decomposes the goal Timing(2).

Typically, this is achieved by the system having health

Fig. 5. Top level argument for dependability.

Fig. 4. Overall argument.

I. Bate, T. Kelly / Reliability Engineering and System Safety 81 (2003) 303–324 307



monitoring components—away goal AG0003. Fig. 6

shows how the argument is split into two parts. Firstly,

evidence has to be obtained using appropriate verification

techniques that the requirements are met in the

implementation, e.g. when and in what order function-

ality should be performed. Secondly, the health monitor

checks for unexpected behaviour. There are two ways in

which unexpected behaviour can be detected—just one of

the techniques could be used or a combination of the two

ways. The first way is for the health monitor component

to be functionally integrated with the calculation

component. That is the health monitor component relies

entirely on the results of the internal health monitoring of

the calculation component to indicate the current state of

the calculations. If the health monitor component is to

rely on the calculation component then, a guarantee

needs to be produced between the components that

would act as a contract which could be re-visited when

either of the components changed-away goal AG0006.

Once the nature of the contract has been determined,

there is a great deal of work available for specifying and

managing the interaction between the components [9].

The second way is for the health monitor component to

monitor the operation of the calculation component by

observing the inputs and outputs to the calculation

component.

Fig. 6. Argument for tolerating errors in timing behaviour.

Table 1

Choices extracted from the arguments

Content Choice Pros Cons

G0021—operation is

monitored and unexpected

behaviour handled

G0022—health monitor

detects failures based on health

information provided to it

J0004—simplicity since

health monitor does not need

to access and interpret another

component’s state

AG0004—can a failing/failed component be

trusted to interpret error-free data? AG0006

—a contract needs to be establish and

managed between the components

G0023—health monitor detects

failures based on provided information

J0005—health monitor can be

protected against failures in

other components easier

AG0005—health monitor is more complex

and prone to change due to dependence on

the component

Timing—the system meets

its timing requirements

Timing(1)—system meets its timing

requirements with sufficient reliability

J0001—there is no need for fault

tolerance mechanisms to be provided

AG0001—it is hard to produce components

of sufficiently high integrity and hard to

justify this has been achieved

Timing(2)—mechanisms in place to

tolerate key errors in timing behaviour

J0002—individual components can

be produced to a lower integrity

J0003—fault tolerance mechanism

can be abstract of specific failures

AG0002—fault tolerance mechanism has to

be demonstrated to protect the component

sufficiently well against anticipated failures
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3.2.2. Consideration of choices derived from

the dependability and timing arguments

The next stage (stage 3(a)) in the approach is the

elicitation and evaluation of choices. This stage extracts

the choices, and considers their relative pros and cons. In

general, where there is a choice there should be both assump-

tions or away goals and justifications for each of the options.

In many cases these form the basis for the pros and cons for

each of the options. The results are presented in Table 1.

From Table 1 it can be seen that some of the choices that

need to be made about individual components are affected

by choices made by other components within the system.

For instance, goal G0022 is a design option of producing the

health monitoring component relying on the other com-

ponents to provide health data in-order that it is less

complex. However, this results in the other components

being more complex and hence it is harder to justify they

satisfy the Dependability goal in Fig. 4.

Table 2

Evaluation based on timing argument

Item No Arg ids Question Importance Response Design advice

1 G0020 Is sufficient information about the

bounds on timing behaviour known?

Essential More information is needed

2 G0015 Are the timing requirements

specified appropriately?

Essential More information is needed Use a sufficiently expressive and

well-defined notation for representing

timing requirements

3 G0016 Is the system implemented in

a predictable manner?

Essential Static scheduling provides a deter

ministic scheduling model

4 G0016 Does the implementation approach

support graceful degradation?

Value

added

There is no graceful degradation

available since the scheduling

model assumes tasks execute

in their given slot.

A scheduling approach such as fixed priority

scheduling is considered to degrade

gracefully in the presence of timing

overruns [10].

5 G0016 Does the implementation approach

support scalability?

Value

added

There is no scalability available

since the scheduling model

assumes tasks execute in their

given slot. As such the only way

to handle change is to re-allocate

slots and adjust their size.

A scheduling approach such as fixed priority

scheduling is considered flexible in a manner

that supports scalability well.

6 G0017 Are verification techniques

available for the scheduling

model available?

Essential Yes (for details see Ref. [11])

7 G0017 Are execution time analysis

approaches available for the

underlying

platform? (i.e. processor)

Essential More information is needed Use a processor for which a valid model

exists such that execution time analysis can be

derived. This can be difficult especially with

modern processors [12].

8 G0021 Is unexpected behaviour captured? Essential More information is needed Requirements should be placed on the health

monitoring component in-order to detect errors

in the timing behaviour. The implementation

of these requirements should be tolerant to the

failures being detected, e.g. be able to respond

to the software becoming live locked.

9 G0022 Can the health monitor detect

failures using health information

provided to it?

Essential More information is needed

10 G0023 Does the health monitor ensure

the integrity of the information

provided to it?

Essential More information is needed The health monitor needs to obtain data from

another source that allows it to validate the

information received. This requires the

establishing and managing of contracts. For

timing, a watchdog mechanism in either

hardware or software can be used.

9 G0022 Can the health monitor detect

failures using health information

provided to it?

Essential More information is needed

10 G0023 Does the health monitor ensure

the integrity of the information

provided to it?

Essential More information is needed The health monitor needs to obtain data from

another source that allows it to validate the

information received. For timing, a watchdog

mechanism in either hardware or software

can be used.
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3.2.3. Assessment criteria derived from the timing argument

Stage 3(b) then extracts assessment criteria from the

argument that can then be used to evaluate whether particular

solutions (stage 3(c)) meets the claims from the arguments

generated earlier in the process. The assessment criteria have

been derived mainly from the leaf goals in the tree. The

reason is an assessment criteria derived from a higher-level

goal would be a more general version of assessment criteria

derived from the lower-level goals that support it.

Table 2 presents some of the results of extracting

assessment criteria from the arguments for claim Timing(2)

from Fig. 5. The table includes an evaluation of a solution

based on a proportional integration differentiation (PID)

loop with static scheduling as discussed in Section 3. Table 2

shows how assessment criteria have different importance

associated (e.g. Essential versus Value Added). These relate

to properties that must be upheld or those whose handling in

a different manner may add benefit (e.g. reduced suscepti-

bility to change).

The responses in the table are only partially for the

solution considered due to the lack of other design

information. Where information is provided it is mostly

based on a qualitative assessment of the design. As the

design evolves the level of detail contained in the table

would increase and the table could then be populated with

evidence gathered quantitatively from verification activi-

ties, e.g. timing analysis, where appropriate. The tables give

a number of recommendations on how the design should

evolve—note only recommendations are given at this stage

since the satisfaction of other objectives may make these

recommendations prohibitive.

The principal recommendations are that

† timing requirements are specified using an appropriate

notation

† part of the health monitoring functionality should be to

detect unanticipated timing behaviour

† use a scheduling approach that has a valid model

associated with it and has additional properties such as

better support for scalability and graceful degradation in

the presence of timing errors. An example of this form of

scheduling approach is fixed priority scheduling [10]

† contracts are established between the satisfaction argu-

ments associated with health monitoring functionality

and those concerning expected application behaviour.

3.3. Change argument

Fig. 7 presents the top-level argument for Upgrade can

be performed with a minimum of effort—goal G11. The key

requirements for change to be managed appropriately within

the design should be taken from knowledge from previous

projects or experience of what the likely changes are

(assumption A11) and which of those changes can be

considered killer changes (assumption A12). Killer changes

are considered to be those that are both anticipated

and expensive to carry out. The goal G11 is satisfied by a

choice of one or more of the following: the resilience to

change is increased (goal G12), the scope of changes is

reduced (goal G13) and the ease of change is increased (goal

G14). The goal G11 is justified (justification J11) by the

need for cost effective upgrade and changes to systems. The

following subsections expand goals G12, G13 and G14.

3.3.1. Goal G12—increasing resilience to change

Fig. 8 contains the argument that expands on the

previously stated goal, G12, that resilience to change is

increased. This goal is satisfied by a strategy that splits it

into functional and non-functionality properties. The

functional aspects leads to a choice between building

flexibility into the design such that foreseeable changes are

handled and having generic functions instantiated at run-

time. The non-functional aspects of the system is further

split into timing, memory and availability that are all

Fig. 7. Top level argument for change management.

Fig. 8. Building resilience to change into the overall system’s design.
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satisfied by an away goal G71—an away goal is used so that

the same argument strategy can be applied to each of

the properties. The arguments for goals G71 and G51 are

given in Figs. 9 and 10, respectively.

Goal G71 has two choices of how resilience can be

increased; to make the functionality robust to changes,

and to use a reservation-based form of analysis [13] and

assign budgets to maximise scalability. Following of

either of the approaches means the interaction between

the components needs to be controlled through the use of

contracts. The contracts would establish guarantees for

the dependence of the functional properties of com-

ponents on the non-functional properties of the systems

(sometimes referred to as emergent properties). This

would mean when any part of the system changed

leading to a change in the non-functional properties, e.g.

timing, then the impact on the functional properties can

be checked.

3.3.2. Goal G13—reducing the scope of changes

Fig. 11 contains the argument that expands on the

previously stated goal, G12, that scope of change is reduced.

This goal is satisfied by a strategy that splits it into

† functional, which leads to a choice between
* generic functions initialised at run-time using separ-

ately provided initialisation details (refer to the

argument in Fig. 10 for further details), or
* standard interfaces being established (refer to

the argument in Fig. 12 for further details) or
* separating out the parts of the system that are likely to

change in a modular fashion such that the change can

be reasoned about in a contained area (refer to the

argument in Fig. 13 for further details)

† and non-functionality properties. The non-functional

aspects are left undeveloped because the satisfaction of

these goals places requirements on how the infrastructure

of the system is implemented which is out of scope at this

stage of architectural design.

3.3.3. Goal G14—easing the task of changing the system

Fig. 14 contains the argument that also expands on the

previously stated goal, G14, that the work needed to

perform change is reduced. This goal is satisfied by a

strategy that splits it into functional and non-functionality

properties. One of the following strategies again satisfies the

functional aspects. It should be noted that the strategies are

the same as the ones used in Section 3.3.2 that were

Fig. 9. Generic argument for increasing resilience to change.

Fig. 10. Generic argument for the use of run-time initialisation.
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developed for reducing the impact of change. To reuse the

strategies is relevant because having a reduced scope often

eases the task of performing change

† having generic functions that are initialised at run-time

using separate initialisation details (refer to Fig. 10), or

† specific functions and generic interfaces (refer to

Fig. 12), or

† separating out the functionality that is likely to change

(refer to Fig. 13).

The non-functional aspects are left undeveloped because

the satisfaction of these goals places requirements on how

the infrastructure of the system is implemented which in the

case of this work is out of scope.

As discussed earlier, where there is an interaction to be

managed there will be a need to establish and manage

contracts. The argument presented in Fig. 14 has a number

of interactions. These include between

† the initialisation and generic parts of a component there

will need to be a contract that ensures the initialisation

part contains all the necessary information needed by the

generic part

† the main part of a component and the parts that have been

separated out there will need to be a contract that ensures

the initialisation part contains all the necessary infor-

mation needed by the generic part

† two components that communicate across a standard

interface

† the non-functional and functional aspects of com-

ponents—refer to Section 3.3.2 for further details.

3.3.4. Consideration of choices derived from the change

arguments

The choices presented in Table 3 emerge from consider-

ing the change arguments presented in Sections 3.3.1–3.3.3.

Table 3 indicates the relative pros and cons of the

two choices that can be made. The actual best choice in

Fig. 11. Argument for reducing scope of changes.

Fig. 13. Argument for the use of separation.Fig. 12. Generic argument for the use of standard interfaces.
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a particular situation will depend on the nature of the

component’s functionality and the types of change that need

to be carried out. For instance there are only certain classes

of function that can be made generic or robust to change

without considerable cost and effort; however, generic

interfaces, reservation-based techniques and separating

out functionality are more universally applicable. Also,

functions that are generic, robust or separated out can only

easily be applied to the component itself, whereas standard

interfaces and reservation-based techniques can be applied

to groups of components.

It should be noted that

† a combination of the options can be employed where

needed

† some options will be affected by other objectives, e.g.

supporting managed change at the expense of a more

complicated design might affect the ability to certify the

final product

† currently the options are chosen through the assessment

criteria extracted from the arguments. In future it is

envisage that multi-criteria optimisation may be used.

3.3.5. Assessment criteria derived from the change

arguments

From the arguments presented in Sections 3.3.1–3.3.3,

assessment criteria that can be applied to potential solutions

have been derived as shown in Table 4. Table 4 indicates that

the importance of all assessment criteria is value added rather

than essential. The reason is managing change better is not

essential. However, it does affect cost and when/if changes

can be carried out during the system’s operational life.

The recommendations in the table include:

† use a PID loop but separate out the gains used from the

main functionality of the component and try to choose

these gains such that the behaviour of the system is

resilience to other changes and errors. A contract would

be required between the functionality of the PID loop

and the rest of the system that managed the interaction

between the PID loop and the non-functional properties

of the system

† schedule the calculation component such that other

changes in the temporal behaviour have less effect on it.

To do this in practice, a contract would have to be

established that controls the interaction between the

scheduler and the calculation component. This contract

would specify properties such as latency and jitter.

† separate the functionality of the health monitoring compo-

nent from that of the calculations wherever possible.

With the principles that we have established for

organising the safety case structure ‘in-the-large’, and the

complementary approach we have described for reasoning

about the required properties of the system architecture, we

believe it is possible to create a flexible, modular, certifica-

tion argument for IMA. This is discussed in Section 4.

4. Establishing a modular safety case

A conventional safety case can be considered as

consisting of the following four elements

Fig. 14. Argument for ease of change.
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† Objectives: the safety requirements that must be

addressed to assure safety

† Argument: showing how the evidence indicates com-

pliance with the requirements

† Evidence: information from study, analysis and test of

the system in question

† Context: identifying the basis of the argument presented

Defining a safety case ‘module’ involves defining the

objectives, evidence, argument and context associated

with one aspect of the safety case. Assuming a top–down

progression of objectives-argument-evidence, safety cases

can be partitioned into modules both horizontally

and vertically.

† Vertical (hierarchical) partitioning: the claims of one

safety argument can be thought of as objectives for

another. For example, the claims regarding software

safety made within a system safety case can serve as

the objectives of the software safety case.

† Horizontal partitioning: one argument can provide the

assumed context of another. For example, the argument

that ‘all system hazards have been identified’ can be the

assumed context of an argument that ‘all identified system

hazards have been sufficiently mitigated’.

In defining a safety case module it is essential to identify

the ways in which the safety case module depends upon the

arguments, evidence or assumed context of other modules.

A safety case module, should therefore be defined by the

following interface

1. objectives publicly addressed by the module

2. evidence presented within the module

3. context defined within the module

4. arguments requiring support from other modules.

Table 3

Consideration of choices

Goal Choice Pros Cons

G22 G26—initialisation and generic function J51—only the initialisation file needs

altering not the code

1. A51—component can be represented

by a generic function

2. A52—anticipated changes can be

handled by the initialisation language.

This means not only the types of changes

but also their nature needs to be known.

G27—use flexible functions capable

of handling anticipated changes

J21—functionality would not need to

be modified following certain changes

1. A23—possible changes have to be

known at design time

2. AG21—the design will become more

complicated leading to other difficulties

(e.g. certification) which may negate any

benefit.

G32 and G42 G53 and G46—initialisation

and generic function

J51—only the initialisation file needs

altering not the code

1. A51—component can be represented

by a generic function

2. A52—anticipated changes can be

handled by the initialisation language. This

means not only the types of changes

but also their nature needs to be known.

3. AG21—the design will become more

complicated leading to other difficulties

(e.g. certification) which may negate any

benefit

G61 and G47—use a standard

interface

J61—only the specific function

needs altering

1. AG61—interface semantics can be

represented by standard interface

2. A62—anticipated changes can be handled

by specific function. This means not only the

types of changes but also their nature needs

to be known.

G35 and G48—separate out functionality J81—only a single module

needs to be updated

1. A81—the types of changes must be known

2. A82—changes can be contained behind a

standard interface

G71 G72—make functionality robust to

change

J71—if application functionality can

be made less susceptible to other changes,

then number of changes needed can be reduced

AG21—resilient functionality can be more

complex to produce and reason about

G73—use reservation-based techniques

and optimise budgets

J72—budgets are optimised to provide ability to

change where most needed and hence reduce

number of changes to the budgets

AG71—a form of analysis is used that is

based on budgets being assigned
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Table 4

Evaluation based on change argument

Item no Arg ids Question Importance Response Design advice

1 G27 Can the functionality be

made flexible enough to handle

likely changes?

Value added Whilst the nature of the calculations

may change, the fundamental data

input and output from the system

should be relatively stable

Produce the health monitoring

such that it is largely dependent

on the input/output values (e.g.

checking values are within a

valid range) rather than the

specifics of the calculation

2 G72 Can the resilience of the component’s

functionality to changes in timing

behaviour be increased?

Value added If the calculations are performed

using a proportional integration

differentiation (PID) loop, then time

variations will cause errors and

frequent changes to its gain parameters.

Using a robust control technique

(e.g. H-infinity) will significantly reduce

the susceptibility to time variations

The advantage of PID loops is

that it is a tried and tested app

roach. Therefore, use a PID

loop but separate out the gain

factors such that change

becomes more manageable

3 G72 Can the resilience of the component’s

functionality to changes in memory

usage be increased?

Value added The interaction in question is unaffected

by memory usage at this level of design

4 G72 Can the resilience of the component’s

functionality to changes in availability

be increased?

Value added The interaction in question is unaffected

by availability at this level of design

5 G73 Can budgets given to individual compo

nents be assigned such that changes

within the systems can be handled better?

Value added The calculation component could be

scheduled and designed with timing

characteristics that assume a slower

response than initially expected and

features put in place to ensure faster

than expected performance does

not cause a problem

Assign the calculation compo

nent a larger budget and assign

it a place in the schedule that

is not affected by release jitter.

With fixed priority scheduling

this can be achieved using off

sets and priorities. With static

scheduling this can be achieved

using an appropriate slot position

6 G31 Can the scope of changes caused by

temporal properties be reduced?

Value added Refer to item 2 Refer to item 2

7 G31 Can the scope of changes caused by

memory usage properties reduced?

Value added Refer to item 3 Refer to item 3

8 G31 Can the scope of changes caused by

availability properties reduced?

Value added Refer to item 4 Refer to item 4

9 G51 Can the nature of the function be made

abstract of the likely/costly changes and

a standard language is defined for

instantiating the function?

Value added As stated in item 1, the health monitoring

component’s functionality can be based on

just the inputs and outputs of the

calculation component. This level of

integration requires appropriate contracts

to be established and managed

Refer to item 1

10 G61 Can an interface be produced that

isolates the likely/costly changes on

either side of an interaction?

Value added Refer to item 9 Refer to item 9

11 G43 Can the work that needs to be per

formed when temporal properties

change is reduced?

Value added Refer to item 2 Refer to item 2

12 G44 Can the work that needs to be

performed when memory properties

change be reduced?

Value added Refer to item 3 Refer to item 3

13 G45 Can the work that needs to be

performed when availability

properties change is reduced?

Value added Refer to item 4 Refer to item 4

14 A21,

A31,

A41

Can the component’s functionality be

made to robust to changes in the

system’s safety properties?

Value added Refer to item 1 Refer to item 1

15 A22,

A32,

A42

Can the component’s functionality be

made to robust to changes in the

system’s reliability properties?

Value added Again, robust algorithms could be used if

their integrity can be justified. Alternatively,

the PID loop gains could be optimised to

withstand some errors

Optimise PID loop gains

such that some errors

(continued on next page)
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Inter-module dependencies

5. reliance on objectives addressed elsewhere

6. reliance on evidence presented elsewhere

7. reliance on context defined elsewhere.

Importantly, the interface abstracts from the internal

detail of the safety argument presented within the module.

Item 1 declares the public objectives supported by the

module without revealing the supporting argument. Princi-

pally, the interface must specify the safety argument claims

being addressed by a module. For example, the interface for

a safety argument module for a specific piece of

functionality must describe clearly the safety claims that

are supported for the functionality. It is crucial that the

interface also exposes items 2 and 3 of the interface shown

above in order to ensure that when modules are composed

together they form a consistent whole. Firstly, the module

must define the pieces of supporting evidence that are used

in support of the module argument. When modules are

composed with others, it is necessary to check that this

evidence is consistent with that used in the other modules

(e.g. that the models and assumptions embedded in a piece

of safety analysis are not contradicted by the models and

assumptions of another piece of safety analysis). Context

defines the bounds and limitations of the argument

presented within the module. Context could be defined at

any number of points during the safety argument within a

module, e.g. to define the assumed operational context,

interface with other systems, assumed duration and

frequency of operation or acceptability/tolerability criteria.

All such context must be exposed at the boundary interface

of the module in order to ensure that in composition of

modules the collective context is consistent. Item 3 defines

the environment in which the argument presented within the

module holds.

The argument within a safety case may not fully address

all of the claims of the module. There may remain claims

requiring support from other modules (as yet unknown). For

example, part of a software safety argument may rest upon

a claim regarding the reliability of input sensors. As this is a

hardware systems issue it should fall to another module to

support such a claim. Under item 4 of the interface proposed

above, all argument claims remaining to be supported are

required to be defined.

Items 5–7 of the interface definition recognise that there

will be times within a specific safety case module when the

argument may depend upon the claims, evidence or context

defined within another (known) module. For example,

within software safety argument the justification of devel-

oping the software to a specific level of integrity may

depend upon the existence (claim) of an effective hardware

interlock—addressed as part of the hardware argument

presented in another module. Where such explicit cross-

references exist they should be highlighted within the

definition of the safety case module interface. This is

strongly analogous to declaring the ‘use’ relationships that

exist between software modules where one module is

known to require the services of another module.

The principal need for having such well-defined inter-

faces for each safety case module arises from being able to

ensure that modules are being used consistently and

correctly in their target application context (i.e. when

composed with other modules). This topic is addressed in

the following section.

4.1. Safety case module composition

Safety case modules can be usefully composed if their

claims and arguments complement each other—i.e. one or

more of the claims supported by a module match one or

more of the arguments requiring support in the other.

For example, the software safety argument is usefully

composed with the system safety argument if the software

argument supports one or more of claims set by the system

argument. At the same time, an important side-condition it

that the evidence and assumed context of one module is

consistent with that presented in the other. For example, the

operational usage context assumed within the software

safety argument must be consistent with that put forward

within the system level argument.

The definition of safety case module interfaces and

satisfaction of conditions across interfaces upon compo-

sition is analogous to the long established rely-guarantee

Table 4 (continued)

Item no Arg ids Question Importance Response Design advice

16 AG21 Does any added complexity cause

problems for other activities such

as certification?

Value added No added complexity has been proposed at

this level of design refinement

17 G22 Can the resilience of the compo

nent’s functionality to other func

tional changes

be increased?

Value added Refer to item 1 Refer to item 1

18 G81 Can functionality where changes

are likely to happen be separated

out to reduce the cost of

performing changes?

Value added Refer to item 2 Refer to item 2

I. Bate, T. Kelly / Reliability Engineering and System Safety 81 (2003) 303–324316



approach to specifying the behaviour of software modules.

Jones in Ref. [14] talks of ‘rely’ conditions that express the

assumptions that can be made about the interrelations

(interference) between operations and ‘guarantee’ con-

ditions that constrain the end-effect assuming that

the ‘rely’ conditions are satisfied. For a safety case module,

the rely conditions can be thought of items 4–7 of the

interface introduced in Section 4 whilst item 1 (claims

addressed) define the guarantee conditions. (Items 4–7

define the context in which the argument of the module is

presented.) Items 2 (evidence presented) and 3 (context

defined) must continue to hold (i.e. not be contradicted by

inconsistent evidence or context) during composition of

modules.

Table 5 defines the steps that must be undertaken when

attempting to usefully compose two safety case modules A

and B with interfaces defined in accordance with the format

introduced in Section 4. The steps in Table 5 assume the

argument in module A provides the target context for B (i.e.

module A is expected to be at a higher level in the overall

safety case argument and therefore sets claims to be satisfied

by subsidiary modules such as B).

It should be recognised that partial claim matching is

acceptable within Step 1—i.e. where a module is partially

supported by another. A number of modules may need to be

composed together in order to fully support outstanding

claims. Where a number of modules are to be composed

together pairs of modules can successively composed

together. For example, to compose modules A–C together,

a pair of modules is first composed together then the

resulting composition is composed with the remaining

module. Order of composition is not important as

composition is commutative.

Consistency between modules is a symmetric relation

(i.e. Module A is consistent with B implies Module B is

consistent with A). Step 2 (Consistency Checks) is easily

stated but in reality hard to satisfy given the varied nature of

the evidence and context defined within any safety case

argument. For example, within Step 2 lies the challenge of

determining whether the safety analysis presented within

one module (e.g. component level failure modes and effects

analyses) is consistent with that presented in another (e.g. a

fault tree analysis). Although these two different techniques

have distinct roles as pieces of evidence they also

potentially overlap in their model of the system behaviour,

e.g. a component level failure mode within the FMEA may

also appear as a basic event at the bottom of the fault tree.

Where such overlap occurs lies the problem of potential

inconsistency. Identifying and managing consistency

between safety analysis evidence is sufficiently challenging

that it has warranted discussion as a problem in its own

right, see Wilson et al. in Ref. [15].

The defined context of one module may also conflict with

the evidence presented in another. For example, implicit

within a piece of evidence within one module may be the

simplifying assumption of independence between two

system elements. This assumption may be contradicted by

the model of the system (clearly identifying dependency

between these two system elements) defined as context in

another module. There may also simply be a problem of

consistency between the system models (defined in GSN as

context) defined within multiple modules. For example,

assuming a conventional system safety argument/software

safety argument decomposition (as defined by UK Defence

Standards 00-56 [16] and 00-55 [17]) the consistency

between the state machine model of the software (which, in

addition to modelling the internal state changes of the

software will almost inevitably model the external—

system—triggers to state changes) and the system level

view of the external stimuli. As with checking the

consistency of safety analyses, the problem of checking

the consistency of multiple, diversely represented, models is

also a significant challenge in its own right.

4.2. The challenge of compositionality

It is widely recognised (e.g. by Perrow [18] and Leveson

[19]) that relatively low risks are posed by independent

component failures in safety-critical systems. However, it is

not expected that in a safety case architecture where

modules are defined to correspond with a modular system

structure that a complete, comprehensive and defensible

argument can be achieved by merely composing the

arguments of safety for individual system modules. Safety

Table 5

Steps involved in safety case module composition

Step 1—claim

matching

a. Assess whether any of the claims requiring

support in Module A (i.e. those listed under item 4

of the declared interface for Module A) match the

claims addressed by Module B (i.e. those listed

under item 1 of the interface for Module B).

b. Conversely, assess whether any of the claims

requiring support in Module B (i.e. those listed

under item 4 of the declared interface for

Module B) match the claims addressed by

Module A (i.e. those listed under item 1 of the

interface for Module A).

Step 2—consistency

checks

If matched claims are found as a result of Step 1,

assess whether the context and evidence defined

by Module B (i.e. those listed under items 2 and 3

of the declared interface for Module B) are

consistent with the context and evidence defined

by Module A (i.e. those listed under items 2 and 3

of the declared interface for Module A).

Step 3—handling

cross-references

a. Where cross-references are made by Module A

to Module B (i.e. references listed under items 5–7

of the declared interface for Module A) check that

the entities referenced do indeed exist within

Module B.

b. Conversely, where cross-references are made

by Module B to A (i.e. references listed under

items 5–7 of the declared interface for Module B)

check that the entities referenced do indeed exist

within Module A.
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is a whole system, rather than a ‘sum of parts’, property.

Combination of effects and emergent behaviour must be

additionally addressed within the overall safety case

architecture (i.e. within their own modules of the safety

case). Modularity in reasoning should not be confused with

modularity (and assumed independence) in system

behaviour.

4.3. Safety case module ‘contracts’

Where a successful match (composition) can be made of

two or more modules, a contract should be recorded of the

agreed relationship between the modules. This contract aids

in assessing whether the relationship continues to hold and

the (combined) argument continues to be sustained if at a

later stage one of the argument modules is modified or a

replacement module substituted. This is a commonplace

approach in component based software engineering, where

contracts are drawn up of the services a software component

requires of, and provides to, its peer components, e.g. as in

Meyer’s Eiffel contracts [9] and contracts in object-oriented

reuse [20].

In software component contracts, if a component

continues to fulfil its side of the contract with its peer

components (regardless of internal component implemen-

tation detail or change) the overall system functionality is

expected to be maintained. Similarly, contracts between

safety case modules allow the overall argument to be

sustained whilst the internal details of module arguments

(including use of evidence) are changed or entirely

substituted for alternative arguments provided that the

guarantees of the module contract continue to be upheld.

A contract between safety case modules must record the

participants of the contract and an account of the match

achieved between the goals addressed by and required by

each module. In addition the contract must record the

collective context and evidence agreed as consistent

between the participant modules. Finally, away goal context

and solution references that have been resolved amongst the

participants of the contract should be declared. A proposed

format for contracts between composed safety case modules

that covers each of these aspects is illustrated in Fig. 15.

4.4. Safety case architecture

We define safety case architecture as the high level

organisation of the safety case into modules of argument

and the interdependencies that exist between them. In

deciding upon the partitioning of the safety case, many of

the same principles apply as for system architecture

definition, for example:

† high cohesion/low coupling: each safety case module

should address a logically cohesive set of objectives and

(to improve maintainability) should minimise the amount

of cross-referencing to, and dependency on, other

modules.

† Supporting work division and contractual boundaries:

module boundaries should be defined to correspond with

the division of labour and organisational/contractual

boundaries such that interfaces and responsibilities are

clearly identified and documented.

† Supporting future expansion: module boundaries should

be drawn and interfaces described in order to define

explicit ‘connect’ points for future additions to the

overall safety case argument (e.g. additional safety

arguments for added functionality).

† Isolating change: arguments that are expected to change

(e.g. when making anticipated additions to system

functionality) should ideally be located in modules

Fig. 15. Format of contract between safety case modules.
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separate from those modules where change to the

argument is less likely (e.g. safety arguments concerning

operating system integrity).

The principal aim in attempting to adopt a modular safety

case architecture for IMA-based systems is for the modular

structure of the safety case to correspond as far as is possible

with the modular partitioning of the hardware and software

of the actual system. Arguments of functional (application)

safety would ideally be contained in modules separate from

those for the underlying infrastructure (e.g. for specific

processing nodes of the architecture). Additionally, cross-

references from application arguments to claims regarding

the underlying infrastructure need to be expressed in non-

vendor (non-solution) specific terms as far as are possible.

For example, part of the argument with the safety case

module for an application may depend upon the provision of

a specific property (e.g. memory partitioning) by the

underlying infrastructure. It is desirable that the cross-

reference is made to the claim of the property being

achieved rather than how the property has been achieved. In

line with the principles of module interfaces and contracts as

defined in the Sections 4.2 and 4.3, this allows alternative

solutions to achieving this property to be substituted without

undermining the application level argument. From this

example, it is possible to see that in addition to thoughtful

division of the safety case into modules, care must be taken

as to the nature of the cross-references made between

modules.

To help consider the maintainability of the certification

case for a given system architecture the corresponding

safety case architecture must also be considered at an early

stage in the system development lifecycle. In Section 4.5 we

describe how change scenarios may be considered against a

proposed safety case architecture in order to assess long

term maintainability.

4.5. Managing modular safety case change

Maintainability is one of the principle objectives in

attempting to partition a safety case into separate modules.

When change occurs that impacts traditional safety cases

(defined as total entities for a specific configuration of

system elements) reassessment of the ‘whole’ case is often

necessary in order to have confidence in a continuing

argument of safety. In such situations it will often be the

case that for certain forms of change large parts of the safety

required no reassessment. However, without having for-

mally partitioned these parts of the case behind well-defined

interfaces and guarantees defined by contracts it is difficult

to justify non-re-examination of their arguments.

When changes occur that impact a modular safety case it

is desirable that these changes can be isolated (as far as is

possible) to a specific set of modules whilst leaving others

undisturbed. The definition of interfaces and the agreement

of contracts mean that the impact path of change can be

halted at these boundaries (providing interfaces are

sustained and contracts continue to be upheld).

The principal strength of modular safety cases will be

observed when assessing the impact of possible changes

through being able to state with confidence that the effects

of change do not propagate outside of a safety case module

boundary providing that the interface is preserved. The

interfaces defined for modular safety cases will also help

deciding upon a recovery action to fix a ‘broken’ argument

by showing clearly the ‘non-negotiable’ safety properties

that must be upheld through any change suggested to the

safety argument in order to re-establish the argument.

In extremis for an IMA system it is desirable that when

entire modules of the system are replaced, applications

removed or added, or when the hardware of part of the

system is substituted for that of a different vendor

correspondingly entire modules of the safety case can be

removed and replaced for those that continue to sustain the

same safety properties. However, in order to achieve this

flexibility, the following considerations need to be made for

both the definition of context and the nature of cross-

references made between modules.

Avoid unnecessary restriction of context. It was

highlighted in Section 4.1 that the significant ‘side-

condition’ of composing two or more modules together

is that their collective context must be consistent. Often,

the more specialised or restricted context is defined the

harder it becomes to satisfy this condition (through

incompatibility between defined contexts being more

likely). For example, one module of the safety case may

assume for the purposes of its argument that the

temperature operating range is 10–20 8C (i.e. the safety

argument holds assuming the operating temperature is not

less than 10 8C and not greater than 20 8C) whilst another

modules may assume that the operating temperature is

20–30 8C. Both ranges would form part of the defined

context for each module and would create an incon-

sistency upon composition of the modules.

There will be specific occasions when it is necessary to

restrict the assumed context of an module in order for the

module argument to hold. However, narrowing of context

should be avoided as far as is possible. An analogy can be

made with the operating range of a conventional mains

power adaptor. If the adaptor is qualified over the entire

operating range 110–250 V then it may be used in wider

number of situations (e.g. for both 110–120 V main supply

and 230–240 V mains supply). If the adaptor is qualified to

a narrower operating range then obviously its scope of

applicability is more restricted.

Claims to be supported within modules should state

limits rather than objectives. Borrowing terminology from

the ALARP (as low as reasonably practicable) framework

[21], ‘limits’ refer to the boundary between tolerable and

intolerable risks, whilst ‘objectives’ refer to the boundary

between tolerable and negligible risks. In order to permit the

widest range of possible solutions of combinations with

I. Bate, T. Kelly / Reliability Engineering and System Safety 81 (2003) 303–324 319



other modules, unsupported claims within a module (i.e.

claims that will have to be supported through composition

of this module with another) should define acceptability

criteria rather than ‘desirability criteria’. (More informally,

this means stating ‘what you will accept’ vs. ‘what you

want’). It is easier to for another module to exceed (i.e.

improve upon) a limit than it is to fail to meet an objective

that was too harshly defined. Wherever possible boundary

claims should ideally communicate both of limit and

objective aspects of any requirement (by means of defining

clearly the acceptance context of any undeveloped claim).

A true assessment of the modifiability of any proposed

safety case architecture can only be achieved through

consideration of realistic change scenarios and examination

of their impact on the module structure of the architecture.

This form of evaluation is discussed further in the following

section.

5. Evaluation of safety case architecture

In the discipline of software architecture early lifecycle

assessment of any proposed architecture is encouraged to

gain an appreciation of how well the architecture supports

required architectural quality attributes such as scalability,

performance, extensibility and modifiability. To assess

software architectures (particularly with regard to

modifiability) a scenario based evaluation technique—

software architecture analysis method (SAAM) has been

developed by Kazman et al. [22].

With little modification, the SAAM method of architec-

ture evaluation can be read-across to the domain of safety

case architecture. One of the overriding aims in defining a

modular safety case architecture is improve maintainability

and (as a subtype of maintainability) extensibility. How-

ever, it is difficult to determine a priori whether a proposed

safety case architecture will be maintainable. Adopting a

similar approach to SAAM but for safety case architectures

would suggest that a number of change ‘scenarios’ should

be identified. These scenarios should attempt to anticipate

all credible changes that could impact the safety case over

its lifetime (e.g. a change of hardware manufacturer,

addition of functionality). For each of these change

scenarios (NB—by definition these scenarios would be

classified as indirect in the SAAM methodology), a

walkthrough should be conducted to assess the likely

impact of the change upon the individual modules of the

proposed safety case architecture.

In the SAAM method, the effects of indirect scenarios are

classified according to the following three classes of change:

† local change—change isolated within a single module of

the architecture

† non-local change—change forced to a number of

modules within the architecture

† architectural change—widespread change forced to a

large proportion of modules within the architecture.

These ideas can also be usefully applied to the safety case

architecture domain. Ideally, for a modular safety parti-

tioned and carefully cross referenced in accordance with the

principles stated in this report the effects of all credible

scenarios would fall within the first of the categories listed

above. To illustrate how the categories of change read-

across to the concept of a modular safety case architecture

consider a simple safety case architecture as shown in

Fig. 16 containing the following four modules

SysArg safety case module containing the top level safety

arguments for the overall system identifying top

level claims for each application run as part of the

system and a top level claim regarding the safety of

the interactions between applications.

AppAArg safety case module containing the arguments of

safety for Application A.

AppBArg safety case module containing the arguments of

safety for Application B.

InteractionArg safety case module containing the argu-

ments of safety for the interactions between

Applications A and B.

The ‘SysArg’ module is supported by the ‘AppAArg’,

‘AppBArg’ and ‘InteractionArg’ modules. The ‘AppAArg’

module relies upon guarantees of safe interaction with

Application B as defined by the claims contained within the

‘InteractionArg’ module (hence ‘AppAArg’ is shown

making a contextual reference to ‘InteractionArg’). Simi-

larly, the safety argument for Application B (‘AppBArg’)

relies upon guarantees of safe interaction with Application

A as defined in the ‘InteractionArg’ module. The following

are three possible change scenarios that could have an

impact on the outlined safety case architecture

Scenario #1 application A is rewritten (perhaps including

some additional functionality) but still preserves

the safety obligations as defined in the contract

between AppAArg, SysArg and InteractionArg.

Scenario #2 application A is rewritten and interacts with

Application B differently from before.

Fig. 16. A simple safety case architecture.
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Scenario #3 change is made to the system memory

management model that enables new means of

possible (unintentional) interaction between appli-

cations.

The effect of scenario #1 would be that the safety

argument for Application A (‘AppAArg’) would need

revision to reflect the new implementation. However,

provided that the safety obligations of the module to the

other modules (as defined by the contracts between the

module safety case interfaces) continue to be upheld no

further change to other modules would be necessary. Fig. 17

depicts the effects of this scenario (a cross over a module

indicates that the module is ‘challenged’ by the change and

revision is necessary). The effects of this scenario could be

regarded as a local change.

The effect of scenario #2 would be that not only must the

safety argument for Application A (‘AppAArg’) be revised

but in addition the safety argument for the interaction

between modules (contained in ‘InteractionArg’) would

need to be rexamined in light of the altered interaction

between applications A and B. If, however, the revised

‘InteractionArg’ could continue to support the same

assurances to the Application B argument of the safety of

interactions with Application A then the Application B

safety arguments (contained in ‘AppBArg’) would be

unaffected. Fig. 18 depicts the effects of this scenario. The

effects of this scenario could be regarded as a non-local

change (owing to the fact that the change impact has spread

across a number of modules).

The effect of scenario #3 is that it changes the nature

of possible interactions between all applications. As such,

the safety argument for the interaction between modules

(contained in ‘InteractionArg’) would obviously need to

be revised. It is likely that the nature of the assurances

given by interaction argument to the safety arguments for

applications A and B (as defined by the contracts

between ‘InteractionArg’ and ‘AppAArg’, and between

‘InteractionArg’ and ‘AppBArg’) could be altered.

Consequently both of these modules could be impacted.

The change to the memory management model may even

such that it alters the nature of the top level claim that

needs to be made in the ‘SysArg’ module regarding the

safety of application interactions (i.e. the ‘SysArg’

module may also be affected. Fig. 19 depicts the effects

of this scenario. The effects of this scenario could be

regarded as architectural (owing to the fact that the

change can potentially impact many modules). This is

perhaps to be expected as this scenario describes

modifying a fundamental services provided as part of

the system infrastructure.

5.1. Reasoning about interactions and independence

One of the main impediments to reasoning separately

about individual applications running on an IMA based

architecture separately is the degree to which applications

interact or interfere with one another. DO178B [23], in

discussing partitioning between software elements devel-

oped to differing development assurance levels identifies

that there are a number of possible routes through which

interference is possible.

† Hardware resources: processors, memory, input output

devices, timers, etc.

† Control coupling: vulnerability to external access

† Data coupling: shared data, including processor stacks

and registers

† Hardware failure modes

For example, partitioning must be provided to ensure that

one process cannot overwrite the memory space of another

process. Similarly, a process should not be unintentionally

allowed to overrun its allotted schedule such that it deprives

another process of processor time.

The European railways safety standard CENELEC ENV

50129 [15] makes an interesting distinction between those

Fig. 17. Illustration of local change.

Fig. 18. Illustration of non-local change.

Fig. 19. Illustration of architectural change.
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interactions between system components that are intentional

(e.g. component X is meant to communicate with com-

ponent Y) are those that are unintentional (e.g. the impact of

electromagnetic interference generated by one component

on another).

Unintentional interactions are typically the result of an

error (whether random or systematic). For example, the

unintentional interaction of one process overwriting the

memory space of another is a fault condition. A further

observation made in ENV 50129 is that there are a class of

interactions that are non-intentional but created through

intentional connections. An example of this form of

interaction is the influence of a failed processing node that

is ‘babbling’ and interfering with another node through the

intentional connection of a shared databus.

6. Example safety case architecture for a modular

system

In Section 3 we illustrated how the elaboration of

satisfaction arguments for key architectural qualities could

be used in the process of architectural trade-off analysis for

a simple control system. In particular, we described

the possible structure of the timing argument and how this

argument depended upon other aspects of the safety case.

This timing argument (when developed) will form one of

the ‘modules’ of the overall safety case required for this

system. The overall architecture of this safety case is shown

in Fig. 20 (the UML package notation is used to represent

safety case modules). The module of the safety case

concerned with timing is shown in the bottom right hand

corner of Fig. 20.

The role of each of the modules of the safety case

architecture shown in Fig. 20 is as follows

† ApplnAArg: specific argument for the safety of Appli-

cation A (one required for each application within the

configuration)

† CompilationArg: argument of the correctness of the

compilation process. Ideally established once-for-all

† HardwareArg: argument for the correct execution of

software on target hardware. Ideally an abstract argu-

ment established once-for-all leading to support from

specific modules for particular hardware choices

† ResourcingArg: overall argument concerning the suffi-

ciency of access to, and integrity of, resources (including

time, memory, and communications)

† TimingArg: overall argument concerning the system

architectures ability to predict whether the timing

requirements are met with sufficient reliability

† ApplnInteractionArg: argument addressing the inter-

actions between applications, split into two legs: one

concerning intentional interactions, the second concern-

ing unintentional interactions (leading to the NonInter-

fArg Module)

† InteractionIntArg: argument addressing the integrity of

mechanism used for intentional interaction between

applications. Supporting module for ApplnInteraction-

Arg. Ideally defined once-for-all

† NonInterfArg: argument addressing unintentional inter-

actions (e.g. corruption of shared memory) between

Fig. 20. Safety case architecture of modularised IMA safety argument.
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applications. Supporting module for ApplnteractionArg.

Ideally defined once-for-all

† PlatFaultMgtArg: argument concerning the platform

fault management strategy (e.g. addressing the general

mechanisms of detecting value and timing faults, locking

out faulty resources). Ideally established once-for-all.

(NB Platform fault management can be augmented by

additional management at the application level)

† ModeChangeArg: argument concerning the ability of the

platform to dynamically reconfigure applications (e.g.

move application from one processing unit to another)

either due to a mode change or as requested as part of the

platform fault management strategy. This argument will

address state preservation and recovery

† SpecificConfigArg: module arguing the safety of the

specific configuration of applications running on the

platform. Module supported by once-for-all argument

concerning the safety of configuration rules and specific

modules addressing application safety

† TopLevelArg: the top level (once-for-all) argument of the

safety of the platform (in any of its possible configur-

ations) that defines the top level safety case architecture

(use of other modules as defined above)

† ConfigurationRulesArg: Module arguing the safety of a

defined set of rules governing the possible combinations

and configurations of applications on the platform.

Ideally defined once-for-all.

† TransientArg: Module arguing the safety of the platform

during transient phases (e.g. start-up and shut-down).

It should be noted that Fig. 20 only depicts the

satisfaction relationships that are expected between

the various argument modules (e.g. showing how the

Timing Argument—TimingArg—supports the Resourcing

Argument—ResourcingArg) and does not (for clarity) show

contextual dependencies.

The safety case architecture promotes the ideal (e.g. in

the NonInterfArg module) that ‘once-for-all’ arguments are

established by appeal to the properties of the IMA

infrastructure to address unintentional interactions. For

example, a ‘non-interference through shared memory space’

argument could be established by appeal to the segregation

offered by a memory management unit (MMU). An

argument of ‘non-interference through shared scheduler’

could be established by appeal to the priority-based

scheduling scheme offered by the scheduler. Although the

particular forms of interference between applications will

need to be drawn out (within the ApplnInteractionArg

module) it is expected that these specific arguments can be

addressed through the general infrastructure arguments

provided by the NonInterfArg module.

It is not possible to provide ‘once-for-all’ arguments for

the intentional interactions between components-as these

can only be determined for a given configuration of

components. However, it is desirable to separate those

arguments addressing the logical intent of the interaction

from those addressing the integrity of the medium of

interaction. For example, if application A passes a data

value to application B across a data bus it would be desirable

to partition those arguments that address the possibility of A

sending to wrong value to B from the arguments that address

the possible corruption of the data value on the data bus.

Both issues must be clearly identified and reasoned about

(within the ApplnInteractionArg module). However, the

supporting arguments concerning the integrity of the

medium of interaction can be established ‘once-for-all’

within the InteractionIntArg module.

6.1. Illustration of an example contract

In the argument concerned with the toleration of errors in

timing behaviour (shown in Fig. 6 in Section 3.2.1),

assumed to be contained within the TimingArg module as

discussed Section 6, dependencies on the Platform Fault

Management Argument (PlatFaultMgtArg), Application

Argument (ApplnAArg) and Application Interaction

Fig. 21. Extract from contract established between control system arguments.
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Argument (ApplnInteractionArg) were highlighted. Where

such dependencies exist between composed argument

modules, contracts (as described in Section 4.3) should be

established. Using the format described for documenting

contracts in Section 4.3, Fig. 21 shows the relevant contract

terms associated with the contextual dependencies of the

timing argument on the other arguments.

As described in Section 4.5, the benefit of establishing

such a contract between the participant modules is that it

becomes possible to make changes to the internal detail of

individual argument modules without affecting the

others providing that the contract terms continue to be

upheld.

7. Conclusions

In order to reap the potential benefits of modular

construction of safety critical and safety related systems a

modular approach to safety case construction and accep-

tance is also required.

This paper has presented a method to support

architectural design and implementation strategy trade-off

analysis, one of the key parts of component-based devel-

opment. Specifically, the method presented provides

guidance when decomposing systems so that the system’s

objectives are met and deciding what functionality the

components should fulfil in-order to achieve the remaining

objectives.

One of the criteria to be considered during architectural

trade-off analysis is the maintainability of the associated

safety case structure. This paper has indicated how safety

case architecture can be represented and considered as part

of the system design process.
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