
A Model-Oriented Approach to Safety Analysis
Using Fault Trees and a Support System

S haoying Liu
Hiroshima City University, Japan

John A. McDermid
University of York, United Kingdom

Fault-tree technique has been used in industry for

safety analysis of safety critical systems for decades. It

can be used for analyzing the safety of both software

and hardware. However, there are many problems

with ensuring the internal consistency and validity of

fault trees constructed because of the absence of

appropriate approaches for using fault tree tech-

niques. This article describes a model-oriented ap-

proach for safety analysis using fault trees. It advo-

cates that a safety analysis of a system should start

with a systematic study of the physical model of the

system and, as a result, construct a system safety

model based on the physical model. Further safety

analysis of the system -based on the system safety

model by constructing fault trees - is carried out. The

internal consistency and consistency with the system

safety model of these fault trees must be ensured. A

prototype called FTSS (Fault Tree Support System) has

been implemented by the ASAM (A Safety Argument

Manager) project to support this approach, and its

functionality is described. 0 1996 by Elsevier Sci-

ence Inc.

1. INTRODUCTION

Safety is a very important property of a safety criti-
cal system whose failure may lead to grave dangers
to human life and property. It is a measure of the
continuous delivery of service free from occurrences
of catastrophic failures. Safety analysis of such a

Address correspondence to Dr. Shaoying Liu, Hiroshima City
University, Japan.

system has been recognized as a compulsory process
for ensuring its safety in deployment (Roberts, 1981;
Leveson and Harvey, 1983a, 1983b; HSE, 1987).

Fault-Tree Analysis has been the most popular
technique for safety analysis of overall systems
(Alesso and Benson, 1980; Pate-Cornell, 1984;
Villemeur, 1992). It may be applied both to hard-
ware and software (Perkusich et al., 1994; Zhuang
and Xie, 1994). In the application of hardware safety
analysis, fault trees are traditionally derived directly,
based on the physical model of the system con-
cerned (a physical model of a physical system in-
cludes the structure, operation principle, properties
of components and relationships between compo-
nents of the physical system), which reflects poten-
tial causes of some failure (“top event”) (Lambert,
1973). Each event in such a fault tree describes
some failure involving some physical components,
and high-level events can be caused by various com-
binations of lower-level events, with the logical con-
nectives that are called AND gate, OR gate, EX-
CLUSIVE-OR gate, PRIORITY-AND gate (which
generates a true output only if the input events are
true in the order specified in an associated ‘condi-
tion’) and INHIBIT gate (which generates a true
output if some input event in the system is true, and
some external ‘conditional event’ has occurred).
Leveson and her colleagues were the first to apply
fault-tree technique to the safety analysis of soft-
ware (Leveson and Harvey, 1983a, 1983b). The goal
of software safety is the avoidance of system safety
failures that are caused by a software error or are
detected and handled by software procedures. A

J. SYSTEMS SOFTWARE 1996; 35:151-164
0 1996 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 1CKllO

0164-1212/96/$15.00
SSDI 0164-1212(95)00094-H

152 J. SYSTEMS SOFIWARE
1996; 35:151-164

S. Liu and J. A. McDermid

which may result in casualties or serious conse-
quences (Leveson and Harvey, l983a). The aim of
safety analysis of software is therefore to find all
those errors which can cause safety failures. In this
application, fault trees are derived directly from the
software (programs) based on the semantics of each
statement (e.g., sequential statement, conditional
statement, iteration statement, etc.).

The common characteristic of these two kinds of
applications of fault-tree technique is to construct
fault trees directly, based on the physical model
(hardware or software). However, this approach may
cause the constructed fault trees to be unsatisfac-
tory. The reasons for this limitation are threefold.

The first is a lack of understanding of the physical
model. The physical model of a real safety critical
system is usually very complex, and the task of
constructing a safety case is to map the physical
model to safety requirements. Therefore, without a
systematic study of the physical model to understand
various kinds of relationships between many differ-
ent components of the physical system, it is very
difficult to construct a satisfactory safety case ex-
pressed by fault trees.

The second reason is the absence of guidelines for
constructing fault trees based on a physical model.
That is, how and why a fault tree is built, in general,
based on a physical model, is not yet clear. There
might be particular rules for a particular physical
model, but for a general approach of safety analysis
using fault trees, it will be very helpful if there are
general guidelines to follow. In this case, when a
safety case is undertaken, a particular rule of con-
structing fault trees can be produced by applying the
general guidelines to a particular model.

The third reason is the lack of a firm foundation
to check whether the constructed fault trees are
consistent with the knowledge that the physical
model represents. A safety case expressed by fault
trees for a real safety critical system is usually huge.
It is therefore necessary to check whether this safety
case violates the knowledge which the physical model
represents. However, without expressing this knowl-
edge precisely and properly, it will be difficult to
carry out consistency checking, especially when this
checking is expected to be performed automatically
by a computer system.

In order to overcome these difficulties, we pro-
pose a model-oriented approach for safety analysis
(MOASA for short) using fault trees in this paper. It
advocates that safety analysis of a system should
start with a systematic study of the physical model of
the system and, as a result, construct a system safety

model that contains the basic knowledge concerning
the safety of the physical system. Then, further
safety analysis of the system is done by constructing
fault trees based on the system safety model, and
the consistency of these fault trees with the system
safety model must be ensured.

This approach is derived from our research and
experience on the ASAM’ project and has been
exercised with a case study (McDermid and Liu,
1993). A fault tree support system (FTSS) has been
prototyped using the Object-Oriented Common Lisp
(CLOS) on Macintosh. This prototype uses ONTOS
object oriented database for storing system safety
models and safety cases.

The remainder of this paper is organized as fol-
lows. Section 2 describes the strategy of MOASA.
Section 3 discusses the principles of building a sys-
tem safety model from a physical model. Section 4
addresses the issue of how to construct a fault tree
to represent a safety case. Section 5 describes the
criteria for checking the consistency of fault trees
against the system safety model. Section 6 describes
the functionality of FTSS. Finally, Section 7 presents
the conclusions and points out further research.

2. STRATEGY OF MOASA

In MOASA, a safety analysis includes three steps:
the construction of a system safety model, the con-
struction of safety cases, and consistency checking of
the safety cases. This process is expressed in Fig-
ure 1.

The construction of a system safety model should
start with a careful study of a physical model that is
an abstract representation of a physical system. A
physical system can be both hardware, such as an
aircraft, a nuclear power station, or a hospital, etc.,
and software .such as a Pascal program. A physical
model is usually expressed in a language (e.g., an
aircraft is described by a design graph and the
associated document of the design; a program is
expressed in a program language and its formal
semantics). The aim of the construction of a system
safety model based on a physical model is to dis-
cover as much knowledge that is useful for safety
analysis as possible (e.g., structure of the physical
model, relationships between components of the
physical model, etc.), to express this knowledge pre-
cisely and properly, and to provide a firm foundation

‘A Safety Argument Manager. This is a three-year project
sponsored by SERC and DTI.

Safety Analysis Using Fault Trees J. SYSTEMS SOFTWARE 153
1996; 35:1_5-164

PhyGcll wit 7

Figure 1. Process of safety analysis using MOASA.

for the construction and consistency checking of
safety cases. The contents and structure of a system
safety model will be described in next section.

Since a system safety model is expected to repre-
sent all the basic knowledge useful for safety analy-
sis of the system concerned (e.g., relationships be-
tween the components of an aircraft, possible events
happening on an aircraft, etc.), further safety analy-
sis should be carried out based on this system safety
model. As a result of this analysis, safety cases
expressed by fault trees are produced. In fact, a
safety case is a particular kind of safety knowledge
of a physical system but focuses on the causal rela-
tionships between events happening on the physical
system or components of the physical system.

Therefore, a constructed safety case must be con-
sistent with the system safety model so that the
safety knowledge does not violate the background
knowledge of a physical system. For example, if a
safety case of an aircraft describes a fact “high
temperature of the engine” is caused by the event
“cooling system is broken”, while in the system
safety model there is no relationship between the
engine and the cooling system described, then this
safety case will be inconsistent with the system safety
model. This inconsistency does not necessarily mean
the safety case is not reasonable but may indicate
that the system safety model does not capture
enough information useful for further safety analy-
sis. Therefore, if such an inconsistency occurs, both
the system safety model and the safety case must be

examined, and the system safety model may be en-
riched with new information involved in the safety
case.

Three issues especially important in this approach
include how to build a system safety model, how to
derive a safety case from this system safety model,
and how to check whether a safety case is internally
consistent and consistent with this system safety
model. They are discussed in the following sections,
respectively.

3. CONSTRUCTION OF SYSTEM
SAFETY MODEL

We want a system safety model to store sufficient
basic knowledge concerning the safety of a physical
system that should be part of the system model of
the physical system. By system model we mean a
database for storing various kinds of pieces of
knowledge about the physical system, including some
relevant and some other irrelevant to the safety of
the physical system. In this section, we try to work
out a general guideline to produce a system safety
model from a physical model that may be applied to
any particular case. To do this, we first need to
formally define the concept of system safety model.

3.1 Definition of System Safety Model

Definition 3.1 [system safety model]. A system
safety model is a quadruple: (E,, R, E,,, P), where
E, is the collection of all entities, R is a set of
binary relations between entities, E,, is a set of
events, and P is a map from E,, to 10, 11.

An entity represents an object in the real world
(e.g., a person, a computer, a cup, etc.). It usually
has attributes to describe its interesting details (e.g.,
name, age, sex, etc.). Each attribute is a value of
some type (e.g., natural number, real number,
boolean number, etc.). The set of entities E,, in a
system safety model must include all the compo-
nents, substances, and materials, etc., associated with
the physical system when it is in operation and can
usually be obtained from a physical model of the
physical system because the physical model is nor-
mally a representation of a real physical system.

A binary relation in R is a collection of pairs,
each of which consists of two entities. Since the
relations existing in the system safety model are
expected to contribute to safety case construction,
they must reflect the relationships between compo-
nents (entities) of the corresponding physical system,

154 J. SYSTEMS SOFTWARE
1996; 35:151-164

based on which causal relationships between events
involving these components can be described. Expe-
rience suggests that the following relations are nec-
essary to construct from a physical system (hardware
or software) if applicable:

1.
2.
3.
4.
5.
6.
7.
8.

9.

Physical Connection relation
Logical Connection relation
Contain relation
Control relation
Input relation (materials or information)
Output relation (materials or information)
Get-Information-From relation
Process relation (process materials or informa-
tion)
Other relations

Two entities e, and e2 have a Physical Connection
relation if they are connected physically in a physical
system, have a Logical Connection if they are con-
nected logically, have a Contain relation if e, con-
tains e2, have a Control relation if e, controls e2,
have an Input relation if e, is an input of e2, have
an Output relation if e, is an output of e2, have a
Get-Znfomation-From relation if e, gets information
from e2, have a Process relation if e, processes e2.

An event in E, represents a condition that might
cause failure of the system concerned (e.g., the
engine of an aircraft is overheated). It consists of
three components: name, content, and a set of enti-
ties. The name is an identifier used for identifying
the event. The content is a statement to express
what the event is. It must state precisely what the
fault is and should be as complete a description as
required for a third part to understand what is
happening. The set of entities presents all the enti-
ties involved in the event (e.g., ‘engine’ and ‘aircraft’
are two entities involved in the event: the engine of
an aircraft is overheated). Let e E E,, we use
e.name, e.content, and e.entities to represent the
name, content, and the set of entities of the event e.

Experience suggests that the content of an event
is usually derived either from the historical experi-
ence of the same class systems (e.g., when a new
aircraft is designed, an event may be: the engine
fails in operation. The idea of this event comes from
the historical experience of some aircraft crash due
to the failure of engine) or from some scientific
principles (e.g., the idea of the event: cracks in the
pistons in an internal combustion engine is caused
by overheating, could come from the relevant mate-
rial science).

The map P records the probabilities of events in
E,. The probability of an event indicates the degree

S. Liu and J. A. McDermid

of the possibility to which the event happens. It is
usually derived from the statistics based on historical
experience of the system under consideration.

In order to help obtain the safety knowledge
accurately and efficiently from the expertise of phys-
ical systems, we provide a Schema Editor in our
support system to allow the user to define and edit
entity types and relationship types, to define the
attributes for each, and to draw entity-relationship
diagrams. A finished schema document is trans-
formed into the internal representation stored in the
system safety model.

3.2 Examples

An example is given below to help illustrate the
principle of constructing a system safety model from
a physical model.

Figure 2 presents a physical model describing a
control mechanism of a drain valve in a PES (Pro-
grammable Electronic Systems). This PES is for
controlling and protecting a plant manufacturing
explosive pentaerythritol tetranitrate (PETN). This
substance is made by the nitration of pentaerythritol
(PE) in a batch process. The reaction is exothermic
and must be controlled to prevent an excessive tem-
perature rise that would cause decomposition of the
PETN and the production of toxic fumes. If the
condition is not brought under control, there is a
risk of fire that might spread to parts of the building
containing finished PETN.

Figure 2. Control mechanism of drain valve. (Al =
Analogue input to computer; LUI = Logic unit input;
DO = Digital output to computer; RL = Resistance Iogic;
RT = Resistance thermometer.

Safety Analysis Using Fault Trees

A predetermined quantity of nitrating acid is run
from an acid head tank into a nitrator vessel. A
preweighed quantity of PE is then fed into the vessel
from a weigh hopper by a vibrating feeder. The
vessel is cooled by the circulation of chilled water on
its outside surface, and the contents are continu-
ously stirred (the whole model of this system is
presented in McDermid and Liu, (1993) which is not
necessary for our purpose of demonstrating how to
build a system safety model in this example).

After a present time, and provided that the tem-
perature has fallen below a present value, the con-
tents of the nitrator are discharged through the
drain valve and diverted to the nitration filter for
further processing.

The control computer receives signals from plant
sensors (e.g., RT, and RT,, etc.) and computer
control outputs accordingly, but where a sensor is
monitoring a critical parameter, the sensor is dupli-
cated, and the signal from the duplicate is fed to a
Programmable Logic Controller (PLC). Operations,
such as valve open, depending on the critical param-
eters, are controlled mainly by the control computer
supplemented by back-up controller PLC.

The failure of the valve open at a proper time may
cause the nitrator to overflow, which is dangerous to
the whole system. Understanding how this failure
can happen is part of the whole safety requirements
analysis for the whole PES system.

In order to do this, we first build a system safety
model L, = (E,, R, E,, P) from the physical model
given in Figure 2 and the operation principle of the
PES system described previously as follows:

E,, = {AI,, AI,, LUI,, LUO,, DO,, DO,, RL,,
RL,, RL,, RT,, RT,, RT,, Computer, Logic-unit,
Nitrator, Agitator, PE, Valve}. This entity set in-
cludes all the components (e.g., RT,, RT,, etc.),
substance (e.g., PE), and information (e.g.,
DO,, DO,, etc.) which are used in the physical
model.
R = (Physical-Connection, Contain, Control, In-
put, Output, Process, Get-Information-From),
where each of these relations is constructed as
follows:

l Physical-Connection
= {CRT,, Computer), CRT,, Computer),

CRT,, Logic-unit), (Agitator, PE),
(Nitrator, Valve), (Computer, RL, 1,
(Computer, RL,), (Computer, RL,),
(Logic-unit, RL,), (RL,, Valve),
(RL,, Valve), (RL,, Valve))

J. SYSTEMS SOFTWARE 155
1996; 35:151-164

l Contain = {(Nitrator, PE)}.

l Control = ((Computer, RI,,), (Computer, RL,),
(Logic-unit, RL,), (RL,, Valve),
(RL,, Valve), (RL,, Valve)).

l Input = ((AI,, Computer), (AI,, Computer),
(LUI,, Logic-unit), (LUO,, Computer)).

l Output = ((DO,, Computer), (DO,, Computer),
(LUO,, Logic-unit)}.

l Process = ((Computer, AI,), (Computer, AI,),
(Logic-unit, LUI,), (Nitrator, PE)}.

l Get-Information-From
= (CRT,, Nitrator), CRT,, Nitrator),

CRT,, Nitrator)}.

These relations records all the relationships be-
tween entities in E,. They show, for example,
RT, is physically connected to Computer, Nitrator
contains PE, Computer controls RL, and RL,,
AI, is an input to Computer, DO, is an output of
Computer, Computer processes AI, and RT, gets
information from Nitrator and so on.

3. E,. = Ke,, ‘Valve fails to open’, (Valve)),
(e,, ‘RL, is out of control’. (RL,}),
(e3, ‘RL, is out of control’, (RL,)),
(e,, ‘RL, is out of control’, (RL,)),
(e,, ‘RL, crashes’, (Z&%,1),
(e,, ‘Computer is out of control’, (Com-

puter)),
(e7, ‘RL, crashes’, (RL,)),
(es, ‘RL, crashes’, (R&l),
(e,, ‘Logic-unit is out of control’, (Logic-
unit}),

(e,,, ‘RT, is out of control’, {RT,}),

(e,,, ‘RT, is out of control’, (RTJ),

(e,,, ‘Computer crashes’, (Computer}),

(e,,, ‘RT, crashes’, (RT,}),

(e14 T ‘PE is high’, (PE)),

(% ‘RT, crashes’, (RTJ),

(el,, ‘RT, is out of control’, (RTJ),

(e,,, ‘RT, crashes’, (RTJ)
This event set records for all possible events
happening to the entities given in E,. Each event
is represented by a triple, (e,, ‘Valve fails to
open’, (Valve)) for example, where e,, ‘Valve fails
to open’ and (Valve) are the name, content, and
entity set of this event, respectively.

4. P = ((e,, O.O2),(e,, O.O2),(e,, 0.021,
(e4, O.O2),(e,, 0.041, (e6, 0.09),
(e,, O.O4),(e,, O.O5),(e,, 0.03),
(e,,, 0.011, (e,,, 0.011, (e,,, 0.W
(e,,, O.Ol),(e,,, 0.121, (e,,, 0.W
(e,,, O.Ol),(e,,, 0.01)).

156 J. SYSTEMS SOFIWARE
1996: 35:151-164

S. Liu and J. A. McDermid

This map P records the probabilities of all the
events given in E, (e.g., the event with the name e,
happens with the probability 0.02). Precisely, the P
is not a map from E, to [O, 11, but a map from the
set of names of the events in E, to [0, 11. Because
the name of an event in E,; is unique, it can repre-
sent the corresponding event. Therefore, there is no
problem for us to understand P as a map from
events to probabilities.

Note that not all pieces of the knowledge repre-
sented by a system safety model is necessarily used
when a fault tree is constructed, but some fault tree
describing a particular safety case may use some
part of the knowledge and some other fault trees
may use some other parts of the knowledge.

3.3 Internal Consistency of System
Safety Models

The internal consistency of a system safety model is
defined as follows:

Definition 3.2 [internal consistency of system safety
model]. Let L, = (E,, R, E,, P) be a system safety
model. If it satisfies the conditions:

. YzkEE, * e.entities c E,,

l E,, = don-z(P)

l Y.ER . dam(r) u r&r> c E,,,

then the system safety model L, is internally con-
sistent, where dam(P) and dam(r) denote the do-
mains of the map P and the relation r, respectively,
r&r) represents the range of r.

The internal consistency of a system safety model
guarantees three things. The first is that all the
entities of any event in E, belong to E,,. The second
is that P maps every event in E, to its probability
(that is, every event must be given a probability).
The third is that all entities occurring in every
relation in R belong to E,,. The reason for guaran-
teeing these three conditions for a system safety
model is that a system safety model should be a
close system in the sense that every entity associated
with events or relations recorded in the system safety
model must exist in the system safety model. In this
case, a system safety model expresses a consistent
and sensible knowledge of the corresponding physi-
cal system (e.g., without recording ‘v&e as an
entity in E,,, it is hard to understand whether the
event ‘Value fails to open’ is sensible within the
system safety model).

Applying this definition to the system safety model
defined in Section 3.2, we can see that this system
safety model is internally consistent.

4. CONSTRUCTION OF FAULT TREES

Since a system safety model is the result of careful
study of a physical model, it usually records suffi-
cient knowledge of the physical system which is
useful for further safety analysis (safety case con-
struction).

Fault trees, which express safety cases of a physi-
cal system, should be built based on the system
safety model (but not depend on it completely be-
cause some more knowledge must be obtained from
the expertise of this physical system when a safety
case is built). Before describing the principle of
constructing fault trees based on a system safety
model, we first need to define fault trees and to
introduce the graphical notation which is used in
fault trees supported by the system FTSS.

4.1 Definition of Fault Trees

Definition 4.1 [fault tree]. A fault tree is a triple:
(F,, F,,f), where F, is the collection of events, Fg is
the collection of gates, and f is a map from the
union of F, and Fg to its power set, defined as
follows:

f:F,uF,-,,(F,uF,).

Every event in a fault tree should come from the
system safety model because the system safety model
is expected to be the basis for the construction of
safety cases (further safety analysis). Syntactically,
there are several different graphical notations to
express different kinds of events. These notations
include circle, diamond, oval, rectangle, and house,
and they represent BASIC EVENT, UNDEVEL-
OPED EVENT, CONDITIONING EVENT, IN-
TERMEDIATE EVENT, and EXTERNAL
EVENT, respectively. The detailed description of
these notations is described in Figure 3.

The four components: name, content, set of enti-
ties, and the probability of each event is presented
in the associated graphical notation. Note that these
four components are usually inputed by means of a
human-computer interface supported by FTSS. They
should be the same as those of the same event in the
corresponding system safety model but might be
different due to input errors or other reasons (e.g.,
the person constructing the fault tree and the per-
son building the system safety model are different,
and their knowledge about a same event might also

Safety Analysis Using Fault Trees J. SYSTEMS SOFIWARE 157
1996; 35:151-164

Figure 3. Fault tree symbols (a).

Event SJlnbob

nl HASH ’ EVENT
A hwic iaiti;llbg fault requiring no funher
clevebfmrnt.

IINI)EVELl)PEf) 0, An ev~ll which is run funher developed either

VENT
because it is of insufftcica amcqwncz or because
bfwmatbn is mwaibble.

I‘ONIHTlONIN(i

EVENT

~~MEIBLATE

Specific umdilblls w reswtctbns thr a ly lo my
bgic taw (axed pimvily with PRIOR rK ANI) and
INHILllT gales).

EXTERNAL An event which is nmnally exfwcld lo occur
EVENT

0

AND

EXf‘LIJSIVE

OR

‘Rl0RlT.Y

U-41)

INtIIBIT

th~cpul fmdl occurs if all of the infnal faults OCL~

Oulput faull occurs if all of Ihe inpvl faull ocau in
rspectficse once (Ihere
hy P CYBNI) ?tlONlNCt EG:;?%‘$t”
of the mkt.

thaput fwll occurs if Ihe (single) input fault ocau-s
in the prcence of emhlbg cmdiUcm (the enMing
condition is reprmenled hy a ~ONIWl’lON@J(t
EVENT drwn 10 UK right nf the twc.

be different). In addition to e.name, e.content, and
e.entities, we use e.probability to represent the prob-
ability of the event e. Note that we do not favor
formal notation to describe the four components
because otherwise, it would increase the difficulty in
readability of safety cases.

A gate in a fault tree is a logical connective. There
are several different graphical notations to denote
different gates. They are called AND, OR, EXCLU-
SIVE-OR, PRIORITY-AND, and INHIBIT. The
detailed explanation of these gates are presented in
Figure 3. Furthermore, in order to allow a big fault

tree to be drawn on separate pages, two transfer
symbols are necessary. They are called TRANSFER
IN and TRANSFER OUT, and are explained in
Figure 4.

The map f in a fault tree describes a graphical
connection relationship between events and gates.
For a, b E F, U Fg, if a of, then we call a a

child node of b and b a parent node of a. In this
case, both a and b can be either an event or a gate.
An example of a fault tree will be given when the
guideline of constructing fault trees is discussed

below.

Figure 4. Fault tree symbols (b).

Transfer Symbeb

158 J. SYSTEMS SOFTWARE
1996; 3.5:151-164

S. Liu and J. A. McDermid

4.2 Guidelines for Constructing Fault Trees cessing PE (Pentaerythritol) in the Nitrator. When

The process of constructing a fault tree concerning the process is finished, it is tested by the three

the safety of a physical system should start with the resistance thermometer RT,, RT,, and RT, and

examination of the relation set R and the set of decided by the computer and the logic-unit; the

events E, in the corresponding system safety model. computer and the logic-unit will then output the

The reason for this is because the relation set R is signals DO,, DO,, and LUO, to RL.,, RL,, and

expected to describe all the possible physical rela- RL, to open the valve underneath the nitrator. The

tionships (e.g., RT, Physical-Connection Computer, aim of constructing a fault tree is to analyze why the

Nitrator Contain PE, etc.) and logical relationships valve fails to open when the process is finished. To

(Computer Control RL,, RL, Control Value etc.), and construct the fault tree, we first examine the rela-

the set of events E, is expected to represent all the tions in R built in the corresponding system safety

possible events involving the entities which might be model to find which entities have the relations possi-

used in relations in R. The task of constructing a bly affecting the valve’s ability to open (e.g., the

fault tree is to work out how a top event is caused by entities RL,, RL,, and RL, have the relations Phys-

other events (i.e., causal relationship between dif- ical-connection and Control with the valve). Then

ferent events). During this course, the person who is search the set of event E, to see whether there is

in charge of the construction of the fault tree may any event to express the failure of opening the valve.

need to get some knowledge from the expertise of Finally, consult the relevant expertise of the physical

the physical system. Careful choice of the top event system to obtain more knowledge about the causal

is important to the success of the construction of a relationship between this top event and other events,

safety case. If it is too general, the analysis becomes and continue this process until all leaf events are

unmanageable, if it is too specific the safety case basic events that are represented by either a dia-

does not provide a sufficiently broad view of the mond or a circle. As a result of this process, a fault

event. In fact, if sufficient information (i.e., the tree is constructed, as shown in Figure 5, Figure 6,

immediate cause of each event) can be obtained, and Figure 7, where N, C, E, and P in each event

then several total or partial ordering of the events node indicate the name, content, set of entities, and

can be generated, which can help select an appropri- the probability of the event following, correspond-

ate top event. ingly.

1.

2.

3.
4.

5.

6.

The steps to construct a fault tree are as follows:

Ensure the boundaries of the system being con-
sidered are defined.
Ensure the “limit of resolution” to be used in the
construction is defined. This is the lowest level
that will be considered.
Establish the “top event” to be analyzed.
Determine the immediate causes of the “top
event”. These are not the basic causes but imme-
diate causes. The immediate cause concept allows
a fault tree to be developed step by step during
its construction.
Examine the causes leading to the event in ques-
tion and establish the type of gate (or basic event)
required.
Repeat step 5 until the “limit of resolution” re-
quired is reached, and each branch of the tree
terminates in basic events. If the “limit of resolu-
tion” is not reached, the branch should terminate
in a diamond event.

Let us take the system safety model given in
Section 3.2 as an example to demonstrate how a
fault tree is constructed based on it. The physical
model given in Figure 2 describes a system of pro-

According to this fault tree, the top event is
identified by e, and describes the fact “Valve fails to
open” with the probability 0.02. The entity involved
is Valve. This event is caused by one of the three
events identified by e2, e3, and e4, respectively, and
these events are caused by other events in the fault
tree. As this fault tree is quite straightforward, we
do not explain it in detail here.

Note that there might be some event occurring in
a fault tree that does not exist in the corresponding
system safety model. This kind of event is usually
produced during the consultation of the expertise of
the physical system. In this case, the corresponding
system safety model must be enriched with this new
event and the associated entities.

5. CONSISTENCY -OF FAULT TREES

There are two kinds of consistency to address. The
first is the consistency of a fault tree with its syntax
and semantics definition. We call this internal consis-
tency. The second is the consistency with a corre-
sponding system safety model. We call it model
consistency. It is necessary to check whether a con-
structed fault tree satisfies both internal and model

Safety Analysis Using Fault Trees

Figure 5. Fault tree about the control of drain valve
(a).

Figure 6. Fault tree about the control of drain valve (b).

J. sYs-rE~s SOFTWARE
1996: 35:151-164

II----l

160 _I. SYSTEMS SOFIWARE
1996; 35:151-164

S. Liu and J. A. McDermid

T-
A2

,
I: ‘j6

N: RTJ is OUI of WIII~~

E: RTj
I’: 0.01

)

Figure 7. Fault tree about the control of drain valve
(cl.

consistency in order to ensure that the fault tree is
valid.

5.1 Internal Consistency of Fault Trees

Internal consistency includes syntactic consistency
and semantic consistency. Syntactic consistency re-
quires that a fault tree satisfies the syntactic rules
that are described in Section 4.1. Semantic consis-
tency requires that a fault tree must not have any
semantic contradictions. They are described in detail
below,

51.1 Syntactic Consistency. To define it pre-
cisely, we need the following notation:

es indicates the shape of the graphical representa-
tion of the event e, where s can be one of the
shapes: c (circle), r (rectangle), h (house), d (di-
amond), o (oval). For example, ec represents that
the shape of the event e is a circle.

e = e, for the two events e and e, means their
four components are identical, correspondingly.
That is, e.name = e,.name, e.content = e,.content,
e.entities = e,.entities and e.probability =
e , .probabi&.

Definition 5.1 [syntactic consistency]. Let T =
(F,, Fg, f) be a fault tree. T is syntactically consis-
tent if it satisfies the following conditions:

‘* v=,., E F, *e # e, - e.name # e,.name

?. 3!, E Feve t F - et @ f(e)

3. vg:,
4. LFg

*f<d+ (1
* ed V ec *f(e) = { }

5. VetFI.e’Veh-f(e)#{ }

The syntactic consistency of a fault tree ensures
that five conditions are satisfied. The first is that
every event in a fault tree has a unique name. The
second is that there exists a unique event which has
no parent node (namely, top event). The third is that
every gate must have child nodes. We do not require
that a child node of a gate must be an event; it can
be either an event or a gate because this kind of
fault tree has been in use effectively in practice
(McDermid and Liu, 1993). The fourth is that every
circle and diamond shape of event must not possess
any child nodes because they represent basic or
undeveloped events. The last one is that every rect-
angle and house shape of event must have some
child nodes as they represent nonbasic events.

Safety Analysis Using Fault Trees J. SYSTEMS SOFTWARE 161
1996; 35:151-164

Applying this definition to the fault tree presented
in Figure 5, Figure 6 and Figure 7, we can see this
fault tree satisfies the syntactic consistency.

5.1.2 Semantic Consistency. The purpose of
checking the semantic consistency of a fault tree is
to ensure that the events and gates are used cor-
rectly in the sense of logic. For example, the fault
tree in Figure 8 is not semantically sensible because
the content (as well as the set of entities and proba-
bility) of the event identified by e, is the same as
that of the event identified by e2 (which indicates
that e, and e2, in fact, represent the same event),
but e, is caused by e2 and e3. In order to define the
semantic consistency precisely, we first need to in-
troduce several notions.

Definition 5.2 [path]. Let T = (F,, FR, f) be a fault
tree, a, b E F, be two events. Then a path between
a and b is a sequence of events ax,x2 . . . x,b such
that:

(% l FE ‘g, Ef(U)

AXI E&Y))

* (‘~2 = Fx 'g2 Ef(XI) AX2 Mg2))

A ... A (3,,EF8'g, Ef(X,) A

b Wg,)).

For example, the following are some paths be-
tween the top event e, and the events e5, e13, and
el, in the fault tree presented in Figure 5, Figure 6,
and Figure 7:

l elezes

l e1e+40e13

g ele4eYe16e17

I: c,

N: Compukr crashes

i

E: Computer
p: 0.02

Q
Figure 8. Semantically inconsistent fault tree.

Definition 5.3 [minimal cutset]. Let T = (F,, Fg, f)
be a fault tree. A minimal cutset of T, denoted by
IVES, is a set of events satisfying the following two
conditions:

l V‘zEM I -f(e) = 1 I.

l All the events in M,’ together cause the top event
of T.

An algorithm producing all the minimal cutsets of
a fault tree is given in (Roberts, 1981) and imple-
mented using the Object-oriented Common Lisp in
FTSS. For example, all the minimal cutsets of the
fault tree given in Figure 5, Figure 6, and Figure 7
are as follows:

(e,}, (e,,, e,,), {e,,, e,4, (4, (e,,, e,,},

(e,), (4, {e,,).

Definition 5.4 [semantic consistency]. Let T =
(F,, Fg, f) be a fault tree, M,’ = {e,, e2,. . . e,} be
any minimal cutset of T, e, be the top event of T.
For any event e, (i = l..n) in MT, if in a path
between e, and ei, say e,x,x2.. . x,ei, there does
not exist any two events, say xl and x2, to satisfy the
condition:

x,.content = x,.content,

then we say the fault tree T is semantically consis-
tent.

For example, the fault tree given in Figure 5,
Figure 6, and Figure 7 satisfies the semantic consis-
tency, but the fault tree in Figure 8 violates the
semantic consistency.

5.2 Model Consistency

Model consistency of a fault tree requires that the
knowledge concerning the safety of a system, which
is expressed by a fault tree, must not contradict the
knowledge represented by the system safety model.
This is reasonable because the system safety model
records the first-hand knowledge of a physical sys-
tem and is a foundation of constructing fault trees.
To define model consistency precisely, we need the
notion of a child event.

Definition 5.5 [child event]. Let T = (F,, Fg, f) be
a fault tree, a and b be two events in F,. Then b is
called a child event of a if

3 REFR.g cf(a) A b Ef(g).

We use CHILDREN(e)* to represent the collec-
tion of all child events of the event e in the fault
tree T. Note that CHZLDREN(e)T is empty if e is a

162 J. SYSTEMS SOFTWARE
1996; 35:151-164

S. Liu and J. A. McDermid

leaf event. If b is a child event of a, we call a a
parent event of b.

Definition 5.6 [model consistency]. Let T =
(F,, Fg, f) be a fault tree, L, = (E,, R, E,, P> be
the associated system safety model. The fault tree T
satisfies model consistency if

1. VeEF *e E E,.

2. KM=
3. Y?,,:

* e.entities c E,,
- e.probability = P(e)

4. ‘e ez=F, ._I’ *((e, E CHZLDREN(e,jT *

(3 en, E e,.entities,en E e,.entifies’

3 r E R - ((en,, e$I E r V (enz, enI) E r)))

Model consistency of a fault tree ensures that four
conditions are satisfied by the fault tree. The first is
that every event occurring in a fault tree must exist
in the system safety model. The reason for this is
that we want the system safety model to capture all
the possible events concerned with the correspond-
ing physical system and the safety case to reflect the
causal relationships between them. The second is
that all the entities involved in any event of a fault
tree must exist in the system safety model. The third
is that the probability of any event in a fault tree
must be the same as that of the same event in the
system safety model. The fourth condition is that for
two events e, and e2 in a fault tree such that e2 is a
child event of e,, there must exist two entities in-
volved in e, and e2, respectively such that they have
some relation existing in the system safety model.
This is because every entity in the system safety
model represents a component or substance used in
the corresponding physical system, and it is usually
impossible for two events to have a causal relation-
ship if the entities involved in these two events have
no relation at all.

Applying this definition to the fault tree presented
in Figure 5, Figure 6, and Figure 7, and the corre-
sponding system safety model described in Section
3.2, we can see that this fault tree satisfies the model
consistency.

6. SUPPORT SYSTEM

FTSS (Fault Tree Support System) is a subsystem of
SAM (Safety Argument Manager) (Forder et al.,
1993). The purpose of this system is to support the
Model-Oriented Approach for Safety Analysis intro-
duced previously. In this section, we are not pre-
pared to address the technique issues involved in the
implementation of this system but briefly introduce
its functionality.

FISS provides five kinds of services that include
fault-tree drawing, internal consistency check, model

consistency check, summary generation, and probabil-
ity management.

In the service of fault-tree drawing, a menu is
provided to list all kinds of events (rectangle, circle,
house, diamond, and oval) and gates (AND, OR,
EXCLUSIVE-OR, PRIORIT-AND, and INHIBIT)
for selection. When a user gives a command to the
system for drawing a fault tree, a window will be
available for the user to draw a fault tree in it. To
draw a fault tree, the user first needs to draw event
nodes and gate nodes, and then draw links between
them. All of the edit functions including cut, copy,
paste, and move, etc., are available for users to
construct their satisfactory fault trees, and all the
drawn fault trees are stored in the database of SAM.

In the service of internal consistency check, syn-
tactic and semantic consistency check are available
for applying to users’ fault trees. Internal consis-
tency check is implemented based on the rules given
in Definition 5.1 and 5.4. When syntactic consistency
check is selected, a window called Report then ap-
pears and the checking result is displayed in it. If
there are syntactic errors displayed, each error can
be referred to the corresponding graphical nodes
(event or gate nodes) to help users locate errors in
their fault trees. Semantic consistency check cannot
be carried out unless no syntactic error is found.
The same Report window is also used for displaying
semantic errors.

When model consistency check is selected, the
FTSS system will search both the fault tree to be
checked and the corresponding system safety model
stored in the database of SAM. According to the
rule given in Definition 5.6, the system will display
the checking result in the Report window which is
either a confirmation message of no error being
found, or a list of errors. Model consistency check
must be preceded by internal consistency check.

A summary of a fault tree can be generated
automatically if the user selects the item ‘Summary’
from the menu provided by I%%. A summary of a
fault tree T is a simplified fault tree consisting of
only the top and leaf events of T as well as one OR
gate and some AND gates. A fault tree and its
summary are equivalent in the sense that both of
them describe the same fact that the same combina-
tion of the leaf events cause the same top event. For
example, the summary of the fault tree given in
Figure 5, Figure 6, and Figure 7 is presented in
Figure 9.

In the service of probability management, three
concrete services are provided, which are: input
probability, change probability, and calculate proba-
bility. A user can input and change probabilities of

Safety Analysis Using Fault Trees .I. SYSTEMS SOFTWARE 163
1996; X:151-164

Figure 9. Summary of a fault tree.

all the events in his or her fault trees by means of a
dialog mechanism and can order the system to calcu-
late the probability of the top event of the fault trees
based on the relevant probability theory (Pate-
Cornell, 1984; Villemeur, 1992) and the probabilities
of the leaf events of the fault trees.

7. CONCLUSIONS

This paper describes a model-oriented approach for
safety analysis using fault trees and its support sys-
tem. The strategy of this approach requires that
safety analysis of a system should start with a sys-
tematic study of the physical model of the system
concerned and, as a result, construct a system safety
model. Then, further safety analysis of the system by
constructing fault trees, based on the system safety
model, is carried out. A principle of how to con-
struct a system safety model from a physical model
is described, and guidelines for constructing fault
trees based on a system safety model are presented.
In order to ensure that a system safety model and a
constructed fault tree are valid, internal consistency
of the system safety model, internal consistency, and
model consistency of the fault tree, which are well
defined in this paper, must be guaranteed. A fault-
tree support system (FISS), which has been proto-
typed on the ASAM project to support this ap-
proach, is described.

There are two limitations with this model-oriented
approach for safety analysis and its support system.
The first is that it cannot provide a precise way for
constructing a system safety model from a physical
model, although the structure of a system safety
model hints of some guidelines. The difficulty of this
limitation is how to know accurately all the possible
events and with what probabilities events will hap-
pen to the physical system or its components. In
fact, this should not only be the responsibility of this
model-oriented approach, but also (mainly) the re-

sponsibility of safety engineers. Experience suggests
that this knowledge can only be obtained by means
of repeatedly studying the expertise of the physical
system. However, an effective way of doing this
needs to be found.

Second, the FTSS is now only a prototype (but a
very useful one) and the efficiency needs to be
improved. University of York and the Software En-
gineering Ltd. of York have started another project
which aims to develop the present SAM WISS is
part of SAM) prototype into a final product.

ACKNOWLEDGMENTS

We would like to thank all the colleagues in ASAM for their

contributions to this research in various ways. Dr. Chris

Higgins of the University of York participated in the imple-

mentation of the FTSS and had frequent discussions with us

about many relevant issues. Justin Forder, Graham Storrs,

Helen Tang, and Mark Howroyd of Logica Cambridge Limited,

and Peter Fenelon of the University of York provided great

help in the implementation of the FTSS. Finally, we would

like to thank British SERC and DTI as well as Hiroshima City

University of Japan for their financial support to this project

and for improving this paper, respectively.

REFERENCES

Alesso, H. P., and Benson, H. J., Fault Tree and Reliabil-
ity Relationships for Analyzing non Coherent Two-State
Systems, Nuclear Engineering and Design, 309-20 (1980).

Forder, J., Higgins, C., McDermid, J. A., and Storrs, G.,
SAM-A Tool to Support the Construction, Review
and Evolution of Safety Arguments, in Proceedings of
Safety-critical Systems Symposium 1993, Bristol, 9th-1 lth
February, 1993.

Health and Safety Executive, PES-Programmable Elec-
tronic Systems in Safety Related Applications, Crown
copyright, pp. 80-99, 1987.

Lambert, H. E., Systems safety analysis and fault tree
analysis, UCID-16238, 31, 1973.

Leveson, N. G., and Harvey, P. R., Analyzing Software
Safety, IEEE Transactions on Software Engineering, Vol.
SE-9, No. 5, 569-579 (September 1983).

164 J. SYSTEMS SOFTWARE
1996: 35:1.5-164

Leveson, N. G., and Harvey, P. R., Software Fault Tree
Analysis, The Journal of Systems and Sofhvare, 173-181
(1983).

McDermid, J. A., and Liu, S., A Case Study Using
SAM-Safety Analysis of PES, submitted to the Journal
of High Integrity Systems, 1993.

Pate-Cornell, M. E., Fault Trees vs. Event Trees Reliabil-
ity Analysis, Risk Analysis, Vol. 4, No. 3, 177-186 (1984).

Perkusich, A., De Figueired, J. C. A., and Chang, S. K.,
Embedding Fault-Tolerant Properties in Design of
Complex Software Systems, Journal of Systems and Soft-
ware, 23-37 (April 1994).

S. Liu and J. A. McDermid

Roberts, N. H., Vesely, W. E., Haas, V. F., and Goldberg,
F. F., Fault tree handbook, Technical Report by Sys-
tems and Reliability Research Office of Nuclear Regu-
latory Research, U.S. Nuclear Regulatory Commission,
Washington, D.C. 205.55, January 1981.

Villemeur, A., Reliability, Auailability, Maintainability and
Safety Assessment, John Wiley and Sons Ltd, West Sus-
sex, England, 1992, pp. 149-195.

Zhuang, W. J., and Xie, M., Design and Analysis of Some
Fault-Tolerance Configurations Based on A Multipath
Principle, Journal of Systems and Software, 101-108
(April 1994).

