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Fault-tree technique has been used in industry for 

safety analysis of safety critical systems for decades. It 

can be used for analyzing the safety of both software 

and hardware. However, there are many problems 

with ensuring the internal consistency and validity of 

fault trees constructed because of the absence of 

appropriate approaches for using fault tree tech- 

niques. This article describes a model-oriented ap- 

proach for safety analysis using fault trees. It advo- 

cates that a safety analysis of a system should start 

with a systematic study of the physical model of the 

system and, as a result, construct a system safety 

model based on the physical model. Further safety 

analysis of the system -based on the system safety 

model by constructing fault trees - is carried out. The 

internal consistency and consistency with the system 

safety model of these fault trees must be ensured. A 

prototype called FTSS (Fault Tree Support System) has 

been implemented by the ASAM (A Safety Argument 

Manager) project to support this approach, and its 

functionality is described. 0 1996 by Elsevier Sci- 

ence Inc. 

1. INTRODUCTION 

Safety is a very important property of a safety criti- 
cal system whose failure may lead to grave dangers 
to human life and property. It is a measure of the 
continuous delivery of service free from occurrences 
of catastrophic failures. Safety analysis of such a 
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system has been recognized as a compulsory process 
for ensuring its safety in deployment (Roberts, 1981; 
Leveson and Harvey, 1983a, 1983b; HSE, 1987). 

Fault-Tree Analysis has been the most popular 
technique for safety analysis of overall systems 
(Alesso and Benson, 1980; Pate-Cornell, 1984; 
Villemeur, 1992). It may be applied both to hard- 
ware and software (Perkusich et al., 1994; Zhuang 
and Xie, 1994). In the application of hardware safety 
analysis, fault trees are traditionally derived directly, 
based on the physical model of the system con- 
cerned (a physical model of a physical system in- 
cludes the structure, operation principle, properties 
of components and relationships between compo- 
nents of the physical system), which reflects poten- 
tial causes of some failure (“top event”) (Lambert, 
1973). Each event in such a fault tree describes 
some failure involving some physical components, 
and high-level events can be caused by various com- 
binations of lower-level events, with the logical con- 
nectives that are called AND gate, OR gate, EX- 
CLUSIVE-OR gate, PRIORITY-AND gate (which 
generates a true output only if the input events are 
true in the order specified in an associated ‘condi- 
tion’) and INHIBIT gate (which generates a true 
output if some input event in the system is true, and 
some external ‘conditional event’ has occurred). 
Leveson and her colleagues were the first to apply 
fault-tree technique to the safety analysis of soft- 
ware (Leveson and Harvey, 1983a, 1983b). The goal 
of software safety is the avoidance of system safety 
failures that are caused by a software error or are 
detected and handled by software procedures. A 
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which may result in casualties or serious conse- 
quences (Leveson and Harvey, l983a). The aim of 
safety analysis of software is therefore to find all 
those errors which can cause safety failures. In this 
application, fault trees are derived directly from the 
software (programs) based on the semantics of each 
statement (e.g., sequential statement, conditional 
statement, iteration statement, etc.). 

The common characteristic of these two kinds of 
applications of fault-tree technique is to construct 
fault trees directly, based on the physical model 
(hardware or software). However, this approach may 
cause the constructed fault trees to be unsatisfac- 
tory. The reasons for this limitation are threefold. 

The first is a lack of understanding of the physical 
model. The physical model of a real safety critical 
system is usually very complex, and the task of 
constructing a safety case is to map the physical 
model to safety requirements. Therefore, without a 
systematic study of the physical model to understand 
various kinds of relationships between many differ- 
ent components of the physical system, it is very 
difficult to construct a satisfactory safety case ex- 
pressed by fault trees. 

The second reason is the absence of guidelines for 
constructing fault trees based on a physical model. 
That is, how and why a fault tree is built, in general, 
based on a physical model, is not yet clear. There 
might be particular rules for a particular physical 
model, but for a general approach of safety analysis 
using fault trees, it will be very helpful if there are 
general guidelines to follow. In this case, when a 
safety case is undertaken, a particular rule of con- 
structing fault trees can be produced by applying the 
general guidelines to a particular model. 

The third reason is the lack of a firm foundation 
to check whether the constructed fault trees are 
consistent with the knowledge that the physical 
model represents. A safety case expressed by fault 
trees for a real safety critical system is usually huge. 
It is therefore necessary to check whether this safety 
case violates the knowledge which the physical model 
represents. However, without expressing this knowl- 
edge precisely and properly, it will be difficult to 
carry out consistency checking, especially when this 
checking is expected to be performed automatically 
by a computer system. 

In order to overcome these difficulties, we pro- 
pose a model-oriented approach for safety analysis 
(MOASA for short) using fault trees in this paper. It 
advocates that safety analysis of a system should 
start with a systematic study of the physical model of 
the system and, as a result, construct a system safety 

model that contains the basic knowledge concerning 
the safety of the physical system. Then, further 
safety analysis of the system is done by constructing 
fault trees based on the system safety model, and 
the consistency of these fault trees with the system 
safety model must be ensured. 

This approach is derived from our research and 
experience on the ASAM’ project and has been 
exercised with a case study (McDermid and Liu, 
1993). A fault tree support system (FTSS) has been 
prototyped using the Object-Oriented Common Lisp 
(CLOS) on Macintosh. This prototype uses ONTOS 
object oriented database for storing system safety 
models and safety cases. 

The remainder of this paper is organized as fol- 
lows. Section 2 describes the strategy of MOASA. 
Section 3 discusses the principles of building a sys- 
tem safety model from a physical model. Section 4 
addresses the issue of how to construct a fault tree 
to represent a safety case. Section 5 describes the 
criteria for checking the consistency of fault trees 
against the system safety model. Section 6 describes 
the functionality of FTSS. Finally, Section 7 presents 
the conclusions and points out further research. 

2. STRATEGY OF MOASA 

In MOASA, a safety analysis includes three steps: 
the construction of a system safety model, the con- 
struction of safety cases, and consistency checking of 
the safety cases. This process is expressed in Fig- 
ure 1. 

The construction of a system safety model should 
start with a careful study of a physical model that is 
an abstract representation of a physical system. A 
physical system can be both hardware, such as an 
aircraft, a nuclear power station, or a hospital, etc., 
and software .such as a Pascal program. A physical 
model is usually expressed in a language (e.g., an 
aircraft is described by a design graph and the 
associated document of the design; a program is 
expressed in a program language and its formal 
semantics). The aim of the construction of a system 
safety model based on a physical model is to dis- 
cover as much knowledge that is useful for safety 
analysis as possible (e.g., structure of the physical 
model, relationships between components of the 
physical model, etc.), to express this knowledge pre- 
cisely and properly, and to provide a firm foundation 
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Figure 1. Process of safety analysis using MOASA. 

for the construction and consistency checking of 
safety cases. The contents and structure of a system 
safety model will be described in next section. 

Since a system safety model is expected to repre- 
sent all the basic knowledge useful for safety analy- 
sis of the system concerned (e.g., relationships be- 
tween the components of an aircraft, possible events 
happening on an aircraft, etc.), further safety analy- 
sis should be carried out based on this system safety 
model. As a result of this analysis, safety cases 
expressed by fault trees are produced. In fact, a 
safety case is a particular kind of safety knowledge 
of a physical system but focuses on the causal rela- 
tionships between events happening on the physical 
system or components of the physical system. 

Therefore, a constructed safety case must be con- 
sistent with the system safety model so that the 
safety knowledge does not violate the background 
knowledge of a physical system. For example, if a 
safety case of an aircraft describes a fact “high 
temperature of the engine” is caused by the event 
“cooling system is broken”, while in the system 
safety model there is no relationship between the 
engine and the cooling system described, then this 
safety case will be inconsistent with the system safety 
model. This inconsistency does not necessarily mean 
the safety case is not reasonable but may indicate 
that the system safety model does not capture 
enough information useful for further safety analy- 
sis. Therefore, if such an inconsistency occurs, both 
the system safety model and the safety case must be 

examined, and the system safety model may be en- 
riched with new information involved in the safety 
case. 

Three issues especially important in this approach 
include how to build a system safety model, how to 
derive a safety case from this system safety model, 
and how to check whether a safety case is internally 
consistent and consistent with this system safety 
model. They are discussed in the following sections, 
respectively. 

3. CONSTRUCTION OF SYSTEM 
SAFETY MODEL 

We want a system safety model to store sufficient 
basic knowledge concerning the safety of a physical 
system that should be part of the system model of 
the physical system. By system model we mean a 
database for storing various kinds of pieces of 
knowledge about the physical system, including some 
relevant and some other irrelevant to the safety of 
the physical system. In this section, we try to work 
out a general guideline to produce a system safety 
model from a physical model that may be applied to 
any particular case. To do this, we first need to 
formally define the concept of system safety model. 

3.1 Definition of System Safety Model 

Definition 3.1 [system safety model]. A system 
safety model is a quadruple: (E,, R, E,,, P), where 
E, is the collection of all entities, R is a set of 
binary relations between entities, E,, is a set of 
events, and P is a map from E,, to 10, 11. 

An entity represents an object in the real world 
(e.g., a person, a computer, a cup, etc.). It usually 
has attributes to describe its interesting details (e.g., 
name, age, sex, etc.). Each attribute is a value of 
some type (e.g., natural number, real number, 
boolean number, etc.). The set of entities E,, in a 
system safety model must include all the compo- 
nents, substances, and materials, etc., associated with 
the physical system when it is in operation and can 
usually be obtained from a physical model of the 
physical system because the physical model is nor- 
mally a representation of a real physical system. 

A binary relation in R is a collection of pairs, 
each of which consists of two entities. Since the 
relations existing in the system safety model are 
expected to contribute to safety case construction, 
they must reflect the relationships between compo- 
nents (entities) of the corresponding physical system, 
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based on which causal relationships between events 
involving these components can be described. Expe- 
rience suggests that the following relations are nec- 
essary to construct from a physical system (hardware 
or software) if applicable: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

9. 

Physical Connection relation 
Logical Connection relation 
Contain relation 
Control relation 
Input relation (materials or information) 
Output relation (materials or information) 
Get-Information-From relation 
Process relation (process materials or informa- 
tion) 
Other relations 

Two entities e, and e2 have a Physical Connection 
relation if they are connected physically in a physical 
system, have a Logical Connection if they are con- 
nected logically, have a Contain relation if e, con- 
tains e2, have a Control relation if e, controls e2, 
have an Input relation if e, is an input of e2, have 
an Output relation if e, is an output of e2, have a 
Get-Znfomation-From relation if e, gets information 
from e2, have a Process relation if e, processes e2. 

An event in E, represents a condition that might 
cause failure of the system concerned (e.g., the 
engine of an aircraft is overheated). It consists of 
three components: name, content, and a set of enti- 
ties. The name is an identifier used for identifying 
the event. The content is a statement to express 
what the event is. It must state precisely what the 
fault is and should be as complete a description as 
required for a third part to understand what is 
happening. The set of entities presents all the enti- 
ties involved in the event (e.g., ‘engine’ and ‘aircraft’ 
are two entities involved in the event: the engine of 
an aircraft is overheated). Let e E E,, we use 
e.name, e.content, and e.entities to represent the 
name, content, and the set of entities of the event e. 

Experience suggests that the content of an event 
is usually derived either from the historical experi- 
ence of the same class systems (e.g., when a new 
aircraft is designed, an event may be: the engine 
fails in operation. The idea of this event comes from 
the historical experience of some aircraft crash due 
to the failure of engine) or from some scientific 
principles (e.g., the idea of the event: cracks in the 
pistons in an internal combustion engine is caused 
by overheating, could come from the relevant mate- 
rial science). 

The map P records the probabilities of events in 
E,. The probability of an event indicates the degree 
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of the possibility to which the event happens. It is 
usually derived from the statistics based on historical 
experience of the system under consideration. 

In order to help obtain the safety knowledge 
accurately and efficiently from the expertise of phys- 
ical systems, we provide a Schema Editor in our 
support system to allow the user to define and edit 
entity types and relationship types, to define the 
attributes for each, and to draw entity-relationship 
diagrams. A finished schema document is trans- 
formed into the internal representation stored in the 
system safety model. 

3.2 Examples 

An example is given below to help illustrate the 
principle of constructing a system safety model from 
a physical model. 

Figure 2 presents a physical model describing a 
control mechanism of a drain valve in a PES (Pro- 
grammable Electronic Systems). This PES is for 
controlling and protecting a plant manufacturing 
explosive pentaerythritol tetranitrate (PETN). This 
substance is made by the nitration of pentaerythritol 
(PE) in a batch process. The reaction is exothermic 
and must be controlled to prevent an excessive tem- 
perature rise that would cause decomposition of the 
PETN and the production of toxic fumes. If the 
condition is not brought under control, there is a 
risk of fire that might spread to parts of the building 
containing finished PETN. 

Figure 2. Control mechanism of drain valve. (Al = 
Analogue input to computer; LUI = Logic unit input; 
DO = Digital output to computer; RL = Resistance Iogic; 
RT = Resistance thermometer. 
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A predetermined quantity of nitrating acid is run 
from an acid head tank into a nitrator vessel. A 
preweighed quantity of PE is then fed into the vessel 
from a weigh hopper by a vibrating feeder. The 
vessel is cooled by the circulation of chilled water on 
its outside surface, and the contents are continu- 
ously stirred (the whole model of this system is 
presented in McDermid and Liu, (1993) which is not 
necessary for our purpose of demonstrating how to 
build a system safety model in this example). 

After a present time, and provided that the tem- 
perature has fallen below a present value, the con- 
tents of the nitrator are discharged through the 
drain valve and diverted to the nitration filter for 
further processing. 

The control computer receives signals from plant 
sensors (e.g., RT, and RT,, etc.) and computer 
control outputs accordingly, but where a sensor is 
monitoring a critical parameter, the sensor is dupli- 
cated, and the signal from the duplicate is fed to a 
Programmable Logic Controller (PLC). Operations, 
such as valve open, depending on the critical param- 
eters, are controlled mainly by the control computer 
supplemented by back-up controller PLC. 

The failure of the valve open at a proper time may 
cause the nitrator to overflow, which is dangerous to 
the whole system. Understanding how this failure 
can happen is part of the whole safety requirements 
analysis for the whole PES system. 

In order to do this, we first build a system safety 
model L, = (E,, R, E,, P) from the physical model 
given in Figure 2 and the operation principle of the 
PES system described previously as follows: 

E,, = {AI,, AI,, LUI,, LUO,, DO,, DO,, RL,, 
RL,, RL,, RT,, RT,, RT,, Computer, Logic-unit, 
Nitrator, Agitator, PE, Valve}. This entity set in- 
cludes all the components (e.g., RT,, RT,, etc.), 
substance (e.g., PE), and information (e.g., 
DO,, DO,, etc.) which are used in the physical 
model. 
R = (Physical-Connection, Contain, Control, In- 
put, Output, Process, Get-Information-From), 
where each of these relations is constructed as 
follows: 

l Physical-Connection 
= {CRT,, Computer), CRT,, Computer), 

CRT,, Logic-unit), (Agitator, PE), 
(Nitrator, Valve), (Computer, RL, 1, 
(Computer, RL,), (Computer, RL,), 
(Logic-unit, RL,), (RL,, Valve), 
(RL,, Valve), (RL,, Valve)) 
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l Contain = {(Nitrator, PE)}. 

l Control = ((Computer, RI,,), (Computer, RL,), 
(Logic-unit, RL,), (RL,, Valve), 
(RL,, Valve), (RL,, Valve)). 

l Input = ((AI,, Computer), (AI,, Computer), 
(LUI,, Logic-unit), (LUO,, Computer)). 

l Output = ((DO,, Computer), (DO,, Computer), 
(LUO,, Logic-unit)}. 

l Process = ((Computer, AI,), (Computer, AI,), 
(Logic-unit, LUI,), (Nitrator, PE)}. 

l Get-Information-From 
= (CRT,, Nitrator), CRT,, Nitrator), 

CRT,, Nitrator)}. 

These relations records all the relationships be- 
tween entities in E,. They show, for example, 
RT, is physically connected to Computer, Nitrator 
contains PE, Computer controls RL, and RL,, 
AI, is an input to Computer, DO, is an output of 
Computer, Computer processes AI, and RT, gets 
information from Nitrator and so on. 

3. E,. = Ke,, ‘Valve fails to open’, (Valve)), 
(e,, ‘RL, is out of control’. (RL,}), 
(e3, ‘RL, is out of control’, (RL,)), 
(e,, ‘RL, is out of control’, (RL,)), 
(e,, ‘RL, crashes’, (Z&%,1), 
(e,, ‘Computer is out of control’, (Com- 

puter)), 
(e7, ‘RL, crashes’, (RL,)), 
(es, ‘RL, crashes’, (R&l), 
(e,, ‘Logic-unit is out of control’, (Logic- 
unit}), 

(e,,, ‘RT, is out of control’, {RT,}), 

(e,,, ‘RT, is out of control’, (RTJ), 

(e,,, ‘Computer crashes’, (Computer}), 

(e,,, ‘RT, crashes’, (RT,}), 

(e14 T ‘PE is high’, (PE)), 

(% ‘RT, crashes’, (RTJ), 

(el,, ‘RT, is out of control’, (RTJ), 

(e,,, ‘RT, crashes’, (RTJ) 
This event set records for all possible events 
happening to the entities given in E,. Each event 
is represented by a triple, (e,, ‘Valve fails to 
open’, (Valve)) for example, where e,, ‘Valve fails 
to open’ and (Valve) are the name, content, and 
entity set of this event, respectively. 

4. P = ((e,, O.O2),(e,, O.O2),(e,, 0.021, 
(e4, O.O2),(e,, 0.041, (e6, 0.09), 
(e,, O.O4),(e,, O.O5),(e,, 0.03), 
(e,,, 0.011, (e,,, 0.011, (e,,, 0.W 
(e,,, O.Ol),(e,,, 0.121, (e,,, 0.W 
(e,,, O.Ol),(e,,, 0.01)). 
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This map P records the probabilities of all the 
events given in E, (e.g., the event with the name e, 
happens with the probability 0.02). Precisely, the P 
is not a map from E, to [O, 11, but a map from the 
set of names of the events in E, to [0, 11. Because 
the name of an event in E,; is unique, it can repre- 
sent the corresponding event. Therefore, there is no 
problem for us to understand P as a map from 
events to probabilities. 

Note that not all pieces of the knowledge repre- 
sented by a system safety model is necessarily used 
when a fault tree is constructed, but some fault tree 
describing a particular safety case may use some 
part of the knowledge and some other fault trees 
may use some other parts of the knowledge. 

3.3 Internal Consistency of System 
Safety Models 

The internal consistency of a system safety model is 
defined as follows: 

Definition 3.2 [internal consistency of system safety 
model]. Let L, = (E,, R, E,, P) be a system safety 
model. If it satisfies the conditions: 

. YzkEE, * e.entities c E,, 

l E,, = don-z(P) 

l Y.ER . dam(r) u r&r> c E,,, 

then the system safety model L, is internally con- 
sistent, where dam(P) and dam(r) denote the do- 
mains of the map P and the relation r, respectively, 
r&r) represents the range of r. 

The internal consistency of a system safety model 
guarantees three things. The first is that all the 
entities of any event in E, belong to E,,. The second 
is that P maps every event in E, to its probability 
(that is, every event must be given a probability). 
The third is that all entities occurring in every 
relation in R belong to E,,. The reason for guaran- 
teeing these three conditions for a system safety 
model is that a system safety model should be a 
close system in the sense that every entity associated 
with events or relations recorded in the system safety 
model must exist in the system safety model. In this 
case, a system safety model expresses a consistent 
and sensible knowledge of the corresponding physi- 
cal system (e.g., without recording ‘v&e as an 
entity in E,,, it is hard to understand whether the 
event ‘Value fails to open’ is sensible within the 
system safety model). 

Applying this definition to the system safety model 
defined in Section 3.2, we can see that this system 
safety model is internally consistent. 

4. CONSTRUCTION OF FAULT TREES 

Since a system safety model is the result of careful 
study of a physical model, it usually records suffi- 
cient knowledge of the physical system which is 
useful for further safety analysis (safety case con- 
struction). 

Fault trees, which express safety cases of a physi- 
cal system, should be built based on the system 
safety model (but not depend on it completely be- 
cause some more knowledge must be obtained from 
the expertise of this physical system when a safety 
case is built). Before describing the principle of 
constructing fault trees based on a system safety 
model, we first need to define fault trees and to 
introduce the graphical notation which is used in 
fault trees supported by the system FTSS. 

4.1 Definition of Fault Trees 

Definition 4.1 [fault tree]. A fault tree is a triple: 
(F,, F,,f), where F, is the collection of events, Fg is 
the collection of gates, and f is a map from the 
union of F, and Fg to its power set, defined as 
follows: 

f:F,uF,-,,(F,uF,). 

Every event in a fault tree should come from the 
system safety model because the system safety model 
is expected to be the basis for the construction of 
safety cases (further safety analysis). Syntactically, 
there are several different graphical notations to 
express different kinds of events. These notations 
include circle, diamond, oval, rectangle, and house, 
and they represent BASIC EVENT, UNDEVEL- 
OPED EVENT, CONDITIONING EVENT, IN- 
TERMEDIATE EVENT, and EXTERNAL 
EVENT, respectively. The detailed description of 
these notations is described in Figure 3. 

The four components: name, content, set of enti- 
ties, and the probability of each event is presented 
in the associated graphical notation. Note that these 
four components are usually inputed by means of a 
human-computer interface supported by FTSS. They 
should be the same as those of the same event in the 
corresponding system safety model but might be 
different due to input errors or other reasons (e.g., 
the person constructing the fault tree and the per- 
son building the system safety model are different, 
and their knowledge about a same event might also 
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Figure 3. Fault tree symbols (a). 

Event SJlnbob 

nl HASH ’ EVENT 
A hwic iaiti;llbg fault requiring no funher 
clevebfmrnt. 

IINI)EVELl )PEf) 0, An ev~ll which is run funher developed either 

VENT 
because it is of insufftcica amcqwncz or because 
bfwmatbn is mwaibble. 

I‘ONIHTlONIN(i 

EVENT 

~~MEIBLATE 

Specific umdilblls w reswtctbns thr a ly lo my 
bgic taw (axed pimvily with PRIOR rK ANI) and 
INHILllT gales). 

EXTERNAL An event which is nmnally exfwcld lo occur 
EVENT 

0 

AND 

EXf‘LIJSIVE 

OR 

‘Rl0RlT.Y 

U-41) 

INtIIBIT 

th~cpul fmdl occurs if all of the infnal faults OCL~ 

Oulput faull occurs if all of Ihe inpvl faull ocau in 
rspectficse once (Ihere 
hy P CYBNI) ?tlONlNCt EG:;?%‘$t” 
of the mkt. 

thaput fwll occurs if Ihe (single) input fault ocau-s 
in the prcence of emhlbg cmdiUcm (the enMing 
condition is reprmenled hy a ~ONIWl’lON@J(t 
EVENT drwn 10 UK right nf the twc. 

be different). In addition to e.name, e.content, and 
e.entities, we use e.probability to represent the prob- 
ability of the event e. Note that we do not favor 
formal notation to describe the four components 
because otherwise, it would increase the difficulty in 
readability of safety cases. 

A gate in a fault tree is a logical connective. There 
are several different graphical notations to denote 
different gates. They are called AND, OR, EXCLU- 
SIVE-OR, PRIORITY-AND, and INHIBIT. The 
detailed explanation of these gates are presented in 
Figure 3. Furthermore, in order to allow a big fault 

tree to be drawn on separate pages, two transfer 
symbols are necessary. They are called TRANSFER 
IN and TRANSFER OUT, and are explained in 
Figure 4. 

The map f in a fault tree describes a graphical 
connection relationship between events and gates. 
For a, b E F, U Fg, if a of, then we call a a 

child node of b and b a parent node of a. In this 
case, both a and b can be either an event or a gate. 
An example of a fault tree will be given when the 
guideline of constructing fault trees is discussed 

below. 

Figure 4. Fault tree symbols (b). 

Transfer Symbeb 



158 J. SYSTEMS SOFTWARE 
1996; 3.5:151-164 

S. Liu and J. A. McDermid 

4.2 Guidelines for Constructing Fault Trees cessing PE (Pentaerythritol) in the Nitrator. When 

The process of constructing a fault tree concerning the process is finished, it is tested by the three 

the safety of a physical system should start with the resistance thermometer RT,, RT,, and RT, and 

examination of the relation set R and the set of decided by the computer and the logic-unit; the 

events E, in the corresponding system safety model. computer and the logic-unit will then output the 

The reason for this is because the relation set R is signals DO,, DO,, and LUO, to RL.,, RL,, and 

expected to describe all the possible physical rela- RL, to open the valve underneath the nitrator. The 

tionships (e.g., RT, Physical-Connection Computer, aim of constructing a fault tree is to analyze why the 

Nitrator Contain PE, etc.) and logical relationships valve fails to open when the process is finished. To 

(Computer Control RL,, RL, Control Value etc.), and construct the fault tree, we first examine the rela- 

the set of events E, is expected to represent all the tions in R built in the corresponding system safety 

possible events involving the entities which might be model to find which entities have the relations possi- 

used in relations in R. The task of constructing a bly affecting the valve’s ability to open (e.g., the 

fault tree is to work out how a top event is caused by entities RL,, RL,, and RL, have the relations Phys- 

other events (i.e., causal relationship between dif- ical-connection and Control with the valve). Then 

ferent events). During this course, the person who is search the set of event E, to see whether there is 

in charge of the construction of the fault tree may any event to express the failure of opening the valve. 

need to get some knowledge from the expertise of Finally, consult the relevant expertise of the physical 

the physical system. Careful choice of the top event system to obtain more knowledge about the causal 

is important to the success of the construction of a relationship between this top event and other events, 

safety case. If it is too general, the analysis becomes and continue this process until all leaf events are 

unmanageable, if it is too specific the safety case basic events that are represented by either a dia- 

does not provide a sufficiently broad view of the mond or a circle. As a result of this process, a fault 

event. In fact, if sufficient information (i.e., the tree is constructed, as shown in Figure 5, Figure 6, 

immediate cause of each event) can be obtained, and Figure 7, where N, C, E, and P in each event 

then several total or partial ordering of the events node indicate the name, content, set of entities, and 

can be generated, which can help select an appropri- the probability of the event following, correspond- 

ate top event. ingly. 

1. 

2. 

3. 
4. 

5. 

6. 

The steps to construct a fault tree are as follows: 

Ensure the boundaries of the system being con- 
sidered are defined. 
Ensure the “limit of resolution” to be used in the 
construction is defined. This is the lowest level 
that will be considered. 
Establish the “top event” to be analyzed. 
Determine the immediate causes of the “top 
event”. These are not the basic causes but imme- 
diate causes. The immediate cause concept allows 
a fault tree to be developed step by step during 
its construction. 
Examine the causes leading to the event in ques- 
tion and establish the type of gate (or basic event) 
required. 
Repeat step 5 until the “limit of resolution” re- 
quired is reached, and each branch of the tree 
terminates in basic events. If the “limit of resolu- 
tion” is not reached, the branch should terminate 
in a diamond event. 

Let us take the system safety model given in 
Section 3.2 as an example to demonstrate how a 
fault tree is constructed based on it. The physical 
model given in Figure 2 describes a system of pro- 

According to this fault tree, the top event is 
identified by e, and describes the fact “Valve fails to 
open” with the probability 0.02. The entity involved 
is Valve. This event is caused by one of the three 
events identified by e2, e3, and e4, respectively, and 
these events are caused by other events in the fault 
tree. As this fault tree is quite straightforward, we 
do not explain it in detail here. 

Note that there might be some event occurring in 
a fault tree that does not exist in the corresponding 
system safety model. This kind of event is usually 
produced during the consultation of the expertise of 
the physical system. In this case, the corresponding 
system safety model must be enriched with this new 
event and the associated entities. 

5. CONSISTENCY -OF FAULT TREES 

There are two kinds of consistency to address. The 
first is the consistency of a fault tree with its syntax 
and semantics definition. We call this internal consis- 
tency. The second is the consistency with a corre- 
sponding system safety model. We call it model 
consistency. It is necessary to check whether a con- 
structed fault tree satisfies both internal and model 
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Figure 5. Fault tree about the control of drain valve 
(a). 

Figure 6. Fault tree about the control of drain valve (b). 
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Figure 7. Fault tree about the control of drain valve 
(cl. 

consistency in order to ensure that the fault tree is 
valid. 

5.1 Internal Consistency of Fault Trees 

Internal consistency includes syntactic consistency 
and semantic consistency. Syntactic consistency re- 
quires that a fault tree satisfies the syntactic rules 
that are described in Section 4.1. Semantic consis- 
tency requires that a fault tree must not have any 
semantic contradictions. They are described in detail 
below, 

51.1 Syntactic Consistency. To define it pre- 
cisely, we need the following notation: 

es indicates the shape of the graphical representa- 
tion of the event e, where s can be one of the 
shapes: c (circle), r (rectangle), h (house), d (di- 
amond), o (oval). For example, ec represents that 
the shape of the event e is a circle. 

e = e, for the two events e and e, means their 
four components are identical, correspondingly. 
That is, e.name = e,.name, e.content = e,.content, 
e.entities = e,.entities and e.probability = 
e , .probabi&. 

Definition 5.1 [syntactic consistency]. Let T = 
(F,, Fg, f) be a fault tree. T is syntactically consis- 
tent if it satisfies the following conditions: 

‘* v=,., E F, *e # e, - e.name # e,.name 

?. 3!, E Feve t F - et @ f(e) 

3. vg:, 
4. LFg 

*f<d+ ( 1 
* ed V ec *f(e) = { } 

5. VetFI.e’Veh-f(e)#{ } 

The syntactic consistency of a fault tree ensures 
that five conditions are satisfied. The first is that 
every event in a fault tree has a unique name. The 
second is that there exists a unique event which has 
no parent node (namely, top event). The third is that 
every gate must have child nodes. We do not require 
that a child node of a gate must be an event; it can 
be either an event or a gate because this kind of 
fault tree has been in use effectively in practice 
(McDermid and Liu, 1993). The fourth is that every 
circle and diamond shape of event must not possess 
any child nodes because they represent basic or 
undeveloped events. The last one is that every rect- 
angle and house shape of event must have some 
child nodes as they represent nonbasic events. 
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Applying this definition to the fault tree presented 
in Figure 5, Figure 6 and Figure 7, we can see this 
fault tree satisfies the syntactic consistency. 

5.1.2 Semantic Consistency. The purpose of 
checking the semantic consistency of a fault tree is 
to ensure that the events and gates are used cor- 
rectly in the sense of logic. For example, the fault 
tree in Figure 8 is not semantically sensible because 
the content (as well as the set of entities and proba- 
bility) of the event identified by e, is the same as 
that of the event identified by e2 (which indicates 
that e, and e2, in fact, represent the same event), 
but e, is caused by e2 and e3. In order to define the 
semantic consistency precisely, we first need to in- 
troduce several notions. 

Definition 5.2 [path]. Let T = (F,, FR, f) be a fault 
tree, a, b E F, be two events. Then a path between 
a and b is a sequence of events ax,x2 . . . x,b such 
that: 

(% l FE ‘g, Ef(U) 

AXI E&Y)) 

* (‘~2 = Fx 'g2 Ef(XI) AX2 Mg2)) 

A ... A (3,,EF8'g, Ef(X,) A 

b Wg,)). 

For example, the following are some paths be- 
tween the top event e, and the events e5, e13, and 
el, in the fault tree presented in Figure 5, Figure 6, 
and Figure 7: 

l elezes 

l e1e+40e13 

g ele4eYe16e17 

I: c, 

N: Compukr crashes 

i 

E: Computer 
p: 0.02 

Q 
Figure 8. Semantically inconsistent fault tree. 

Definition 5.3 [minimal cutset]. Let T = (F,, Fg, f) 
be a fault tree. A minimal cutset of T, denoted by 
IVES, is a set of events satisfying the following two 
conditions: 

l V‘zEM I -f(e) = 1 I. 

l All the events in M,’ together cause the top event 
of T. 

An algorithm producing all the minimal cutsets of 
a fault tree is given in (Roberts, 1981) and imple- 
mented using the Object-oriented Common Lisp in 
FTSS. For example, all the minimal cutsets of the 
fault tree given in Figure 5, Figure 6, and Figure 7 
are as follows: 

(e,}, (e,,, e,,), {e,,, e,4, (4, (e,,, e,,}, 

(e,), (4, {e,,). 

Definition 5.4 [semantic consistency]. Let T = 
(F,, Fg, f) be a fault tree, M,’ = {e,, e2,. . . e,} be 
any minimal cutset of T, e, be the top event of T. 
For any event e, (i = l..n) in MT, if in a path 
between e, and ei, say e,x,x2.. . x,ei, there does 
not exist any two events, say xl and x2, to satisfy the 
condition: 

x,.content = x,.content, 

then we say the fault tree T is semantically consis- 
tent. 

For example, the fault tree given in Figure 5, 
Figure 6, and Figure 7 satisfies the semantic consis- 
tency, but the fault tree in Figure 8 violates the 
semantic consistency. 

5.2 Model Consistency 

Model consistency of a fault tree requires that the 
knowledge concerning the safety of a system, which 
is expressed by a fault tree, must not contradict the 
knowledge represented by the system safety model. 
This is reasonable because the system safety model 
records the first-hand knowledge of a physical sys- 
tem and is a foundation of constructing fault trees. 
To define model consistency precisely, we need the 
notion of a child event. 

Definition 5.5 [child event]. Let T = (F,, Fg, f) be 
a fault tree, a and b be two events in F,. Then b is 
called a child event of a if 

3 REFR.g cf(a) A b Ef(g). 

We use CHILDREN(e)* to represent the collec- 
tion of all child events of the event e in the fault 
tree T. Note that CHZLDREN(e)T is empty if e is a 
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leaf event. If b is a child event of a, we call a a 
parent event of b. 

Definition 5.6 [model consistency]. Let T = 
(F,, Fg, f) be a fault tree, L, = (E,, R, E,, P> be 
the associated system safety model. The fault tree T 
satisfies model consistency if 

1. VeEF *e E E,. 

2. KM= 
3. Y?,,: 

* e.entities c E,, 
- e.probability = P(e) 

4. ‘e ez=F, ._I’ *((e, E CHZLDREN(e,jT * 

(3 en, E e,.entities,en E e,.entifies’ 

3 r E R - ((en,, e$I E r V (enz, enI) E r))) 

Model consistency of a fault tree ensures that four 
conditions are satisfied by the fault tree. The first is 
that every event occurring in a fault tree must exist 
in the system safety model. The reason for this is 
that we want the system safety model to capture all 
the possible events concerned with the correspond- 
ing physical system and the safety case to reflect the 
causal relationships between them. The second is 
that all the entities involved in any event of a fault 
tree must exist in the system safety model. The third 
is that the probability of any event in a fault tree 
must be the same as that of the same event in the 
system safety model. The fourth condition is that for 
two events e, and e2 in a fault tree such that e2 is a 
child event of e,, there must exist two entities in- 
volved in e, and e2, respectively such that they have 
some relation existing in the system safety model. 
This is because every entity in the system safety 
model represents a component or substance used in 
the corresponding physical system, and it is usually 
impossible for two events to have a causal relation- 
ship if the entities involved in these two events have 
no relation at all. 

Applying this definition to the fault tree presented 
in Figure 5, Figure 6, and Figure 7, and the corre- 
sponding system safety model described in Section 
3.2, we can see that this fault tree satisfies the model 
consistency. 

6. SUPPORT SYSTEM 

FTSS (Fault Tree Support System) is a subsystem of 
SAM (Safety Argument Manager) (Forder et al., 
1993). The purpose of this system is to support the 
Model-Oriented Approach for Safety Analysis intro- 
duced previously. In this section, we are not pre- 
pared to address the technique issues involved in the 
implementation of this system but briefly introduce 
its functionality. 

FISS provides five kinds of services that include 
fault-tree drawing, internal consistency check, model 

consistency check, summary generation, and probabil- 
ity management. 

In the service of fault-tree drawing, a menu is 
provided to list all kinds of events (rectangle, circle, 
house, diamond, and oval) and gates (AND, OR, 
EXCLUSIVE-OR, PRIORIT-AND, and INHIBIT) 
for selection. When a user gives a command to the 
system for drawing a fault tree, a window will be 
available for the user to draw a fault tree in it. To 
draw a fault tree, the user first needs to draw event 
nodes and gate nodes, and then draw links between 
them. All of the edit functions including cut, copy, 
paste, and move, etc., are available for users to 
construct their satisfactory fault trees, and all the 
drawn fault trees are stored in the database of SAM. 

In the service of internal consistency check, syn- 
tactic and semantic consistency check are available 
for applying to users’ fault trees. Internal consis- 
tency check is implemented based on the rules given 
in Definition 5.1 and 5.4. When syntactic consistency 
check is selected, a window called Report then ap- 
pears and the checking result is displayed in it. If 
there are syntactic errors displayed, each error can 
be referred to the corresponding graphical nodes 
(event or gate nodes) to help users locate errors in 
their fault trees. Semantic consistency check cannot 
be carried out unless no syntactic error is found. 
The same Report window is also used for displaying 
semantic errors. 

When model consistency check is selected, the 
FTSS system will search both the fault tree to be 
checked and the corresponding system safety model 
stored in the database of SAM. According to the 
rule given in Definition 5.6, the system will display 
the checking result in the Report window which is 
either a confirmation message of no error being 
found, or a list of errors. Model consistency check 
must be preceded by internal consistency check. 

A summary of a fault tree can be generated 
automatically if the user selects the item ‘Summary’ 
from the menu provided by I%%. A summary of a 
fault tree T is a simplified fault tree consisting of 
only the top and leaf events of T as well as one OR 
gate and some AND gates. A fault tree and its 
summary are equivalent in the sense that both of 
them describe the same fact that the same combina- 
tion of the leaf events cause the same top event. For 
example, the summary of the fault tree given in 
Figure 5, Figure 6, and Figure 7 is presented in 
Figure 9. 

In the service of probability management, three 
concrete services are provided, which are: input 
probability, change probability, and calculate proba- 
bility. A user can input and change probabilities of 
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Figure 9. Summary of a fault tree. 

all the events in his or her fault trees by means of a 
dialog mechanism and can order the system to calcu- 
late the probability of the top event of the fault trees 
based on the relevant probability theory (Pate- 
Cornell, 1984; Villemeur, 1992) and the probabilities 
of the leaf events of the fault trees. 

7. CONCLUSIONS 

This paper describes a model-oriented approach for 
safety analysis using fault trees and its support sys- 
tem. The strategy of this approach requires that 
safety analysis of a system should start with a sys- 
tematic study of the physical model of the system 
concerned and, as a result, construct a system safety 
model. Then, further safety analysis of the system by 
constructing fault trees, based on the system safety 
model, is carried out. A principle of how to con- 
struct a system safety model from a physical model 
is described, and guidelines for constructing fault 
trees based on a system safety model are presented. 
In order to ensure that a system safety model and a 
constructed fault tree are valid, internal consistency 
of the system safety model, internal consistency, and 
model consistency of the fault tree, which are well 
defined in this paper, must be guaranteed. A fault- 
tree support system (FISS), which has been proto- 
typed on the ASAM project to support this ap- 
proach, is described. 

There are two limitations with this model-oriented 
approach for safety analysis and its support system. 
The first is that it cannot provide a precise way for 
constructing a system safety model from a physical 
model, although the structure of a system safety 
model hints of some guidelines. The difficulty of this 
limitation is how to know accurately all the possible 
events and with what probabilities events will hap- 
pen to the physical system or its components. In 
fact, this should not only be the responsibility of this 
model-oriented approach, but also (mainly) the re- 

sponsibility of safety engineers. Experience suggests 
that this knowledge can only be obtained by means 
of repeatedly studying the expertise of the physical 
system. However, an effective way of doing this 
needs to be found. 

Second, the FTSS is now only a prototype (but a 
very useful one) and the efficiency needs to be 
improved. University of York and the Software En- 
gineering Ltd. of York have started another project 
which aims to develop the present SAM WISS is 
part of SAM) prototype into a final product. 
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