
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

c©2002 Society for Desing and Process Science

Formal Fault Tree Semantics

Gerhard Schellhorn, Andreas Thums, Wolfgang Reif
Lehrstuhl für Softwaretechnik und Programmiersprachen

Universit ät Augsburg
D-86135 Augsburg, Germany

email:{schellhorn,thums,reif}@informatik.uni-augsburg.de

ABSTRACT: In train control systems, more and more
(electro-)mechanical devices are substituted by software
based devices. To sustain the high level safety standards
for these embedded systems, we propose the integration
of fault tree analysis and formal methods. This combines
two important safety analysis methods from the involved
domains of engineering and software development.

Our approach proposes to build a formal model of the
system together with fault trees, which investigate the
safety critical aspects by breaking them down to software
and hardware requirements. The events of fault trees are
formalized with respect to the model. Formal completeness
and correctness conditions are given, using Interval Tempo-
ral Logic with continuous semantics. They define a formal
semantics of fault trees, which allows cause-consequence
relations between events in addition to boolean decomposi-
tion. The semantics is therefore suitable for dynamic sys-
tems. We will prove, that the conditions guarantee, that the
fault tree is a correct and complete analysis of the causes of
the considered fault.

I. I NTRODUCTION

In engineering, a number of very useful techniques have
been developed to analyze safety-critical systems. Exam-
ples are fault tree analysis (FTA) [21], failure mode and ef-
fects analysis (FMEA) [20], or hazard and operability anal-
ysis (HAZOP) [8]. These techniques assist in the detection
of design errors, safety flaws, and weaknesses of technical
systems. Classical safety analysis mainly operates on infor-
mal grounds. It is based on an informal description of the
underlying system. Therefore it is quite hard to mechanize
the safety analysis or to check the description for adequacy
or consistency. This is an issue where formal specification
techniques might help. The idea is to formally specify the
system model, and to check consistency and other proper-
ties derived from the safety analysis by formal verification
techniques.

Originally, safety analysis was applied on hardware com-
ponents and formal methods mainly on software. For sys-
tems like the train control example it is necessary to inte-
grate both.

Work supported by the DFG (Deutsche Forschungsgemeinschaft), pri-
ority programme ‘Integrating Software Specification Techniques for En-
gineering Applications’

In this paper we present a formalization of fault tree anal-
ysis. An example of a decentralized radio-based crossing
control serves to explain our approach [14]. Fault tree anal-
ysis breaks down a system hazard to component failures
step by step by linking failure events with their causes. Be-
cause fault tree analysis is used for qualitative and quanti-
tative analysis of the system, it is essential that for a hazard
every cause is considered in the fault tree and, the other
way round, that every mentioned cause is actually needed
to trigger the hazard. If some causes do not lead to the haz-
ard, the analysis considers the system less safe than it is and
if some causes are ignored, the system seems safer than it
actually is.

Therefore we developed verification conditions which
link fault events and their causes. These conditions express
that every cause is considered and that every mentioned
cause actually is one. The conditions have to be verified
over the formal system model to get a complete and correct
fault tree. Thereby we get a highly reliable safety analysis
of the system which guarantees that no additional failure
cause for the system hazard has been overlooked.

To benefit from the intuitive approach of fault tree anal-
ysis we propose to start with an informal model. Based on
this model, we develop a formal model and the fault trees
for all important hazards separately first. By stepwise ad-
justing the notions used in both models, the events of the
fault tree are formalized, so that they can be expressed in the
formal model and the corresponding correctness and com-
pleteness conditions can be verified.

In this paper we will focus on the formal semantics for
fault trees and refer to [19] for the methodological aspects
and to [15] for the formal description of the radio-based
crossing control example, which will informally be de-
scribed in Sect. II. Sect. III sketches the fault tree analy-
sis technique in general. The logical foundations for the
formalization of FTA will be given in Sect. IV and the for-
malization itself in Sect. V. Some related work is discussed
in Sect. VI. Finally, Sect. VII describes our current work
on the development of a formal safety analysis tool, and
Sect. VIII concludes.

II. THE RADIO-BASED CROSSINGCONTROL

The German railway organization, Deutsche Bahn, pre-
pares a novel technique to control level crossings: the de-

2

radio communication

central office

defects
route
profile

Fig. 1. Radio-Based Crossing Control System

centralized, radio-based level crossing control [4]. This
technique aims at medium speed routes, i.e. routes with
maximum speed of 160 km/h. An overview is given in
Fig. 1. The main difference between this technology and the
traditional control of level crossings is, that signals andsen-
sors on the route are replaced by radio communication and
software computations in the train and level crossing. This
offers cheaper and more flexible solutions, but also shifts
safety critical functionality from hardware to software.

Instead of detecting an approaching train by a sensor, the
train computes the position where it has to send a signal to
secure the level crossing. Therefore the train has to know
the position of the level crossing, the time needed to secure
the level crossing, and its current speed and position. The
first two items are memorized in a data store and the last
two items are measured by an odometer.

When the level crossing receives the command ‘secure’,
it switches on the traffic lights, and then closes the barri-
ers. When they are closed, the level crossing is ‘safe’ for a
certain period of time. The ‘stop’ signal on the train route,
indicating an insecure crossing, is also substituted by com-
putation and communication. Shortly before the train ar-
rives the ‘latest braking point’ (latest point, where it is pos-
sible for the train to stop before the crossing), it requeststhe
status of the level crossing. When the crossing is safe, it re-
sponds with a ‘release’ signal which indicates, that the train
may pass the crossing. Otherwise the train has to brake and
stop before the crossing.

The level crossing periodically performs self-diagnosis
and automatically informs the central office about defects
and problems. The central office is responsible for repair
and provides route descriptions for trains. These descrip-
tions indicate the positions of level crossings and maximum
speed on the route.

III. FAULT TREE ANALYSIS (FTA)

FTA was developed for technical systems to analyze if
they permit a hazard (top event). This event is noted at the
root of the fault tree. Events which cause the hazard are

given in the child nodes and analyzed recursively, resulting
in a tree of events. Each analyzed event (main event) is
connected to its causes (sub-events) by a gate in the fault
tree (see Fig. 2). An AND-gate indicates that all sub-events
are necessary to trigger the main event, for an OR-gate only
one sub-event is necessary. An INHIBIT-gate states that in
addition to the cause stated in the sub-event the condition
(noted in the oval) has to be true to trigger the main event.
The inhibit gate is more or less an AND-gate, where the
condition has not to be a fault. The leaves of the tree are the
low level causes (basic events) for the top event, which have
to occur in combination (corresponding to the gates in the
tree) to trigger the top event. A combination of basic events

event

AND-gate

OR-gate
INHIBIT-gate

basic event

Fig. 2. Fault Tree Symbols

which leads to the hazard is calledcut set. A minimal cut set
is a cut set which can not lead to the top level hazard, if only
one event of the set is prevented. This information helps to
identify failure events whose exclusion secures the system.
E.g. if one event occurs in different minimal cut sets, the
probability of the top level hazard will strongly decrease,if
this event can be excluded.

Minimal cut sets can be computed from fault trees by
combining the primary events with boolean operators as in-
dicated by the gates. A minimal cut set then consists of the
elements of one conjunction in the disjunctive normal form
of the resulting formula.

Our aim is to formalize this analysis technique and to get
verification conditions which guarantee that the fault tree
is correct and complete, corresponding to a given model.
Nevertheless the meaning of the (minimal) cut sets should

3

be preserved, because they give hints for improving the sys-
tem.

As an example of a partial fault tree let us consider the
top level hazardcollision for the radio-based level crossing
(see Fig. 3). Collision was defined astrain on crossing, bar-
riers not closed. This event occurs if either the train does
not brake before the crossing despite it has no ‘release’ sig-
nal or the crossing does send a ‘release’ signal even though
the barriers are not closed. The left sub-event has again two
reasons. Either the brakes are defective or they have not re-
ceived a ‘brake’ signal from the train control. The rest of
the tree can be developed by breaking down the properties
to the components of the model (see [19] for the complete
fault tree).

IV. L OGICAL FOUNDATIONS

Our formal semantics for fault trees is based on Interval
Temporal Logic (ITL, [17]) with a continuous semantics
similar to Duration Calculus [13], [6]. Syntax and seman-
tics are defined briefly in this section.

The set of ITL-formulas is defined as an extension of
the first-order formulasϕ over a many-sorted signature SIG
and a set of variables X. We assume the reader is familiar
with the semantics of such formulas using SIG-algebrasA
and valuations (or states)σ, which map the variables of X
to appropriate elements of the carrier sets ofA. The set of
states is denoted S. An interpretationI: I → S is a valuation
of the variables for all points of time within an interval I.
The interval I may be finite, then I = [a,b] with two real
numbers 0≤ a ≤ b. Or it may be infinite, i.e. I = [a,∞)
with 0 ≤ a. ITL-formulas are evaluated over an algebraA
and an interpretationI. A first-order formulaϕ is true over
A andI (i.e. A, I |= ϕ holds), ifϕ evaluates to true over
A and the stateI(a) using the usual first-order definition
(where a is the left border of the interval on whichI is
defined).

Temporal formulas are built from first-order formulas us-
ing propositional connectives and the following temporal
operators1: i2 ϕ (“in all initial intervals ϕ”), x2 ϕ (“in all
subintervalsϕ”), and ϕ ; ψ (readϕ chopψ: “the interval
can be split, such thatϕ holds in the first part andψ in
the second”). The semantics of the temporal operators is
defined as follows (assumingI is defined on the interval
[a,b], andI|[c,d] is the restriction ofI to [c,d]):
• A, I |= i2 ϕ iff

for all c 6= ∞ with a≤ c≤ b: A, I|[a,c] |= ϕ

• A, I |= x2 ϕ iff
for all c 6= ∞,d with a≤ c≤ d≤ b: A, I|[c,d] |= ϕ

• A, I |= ϕ ; ψ iff
there is c6= ∞ with a≤ c≤ b such that
A, I|[a,c] |= ϕ andA, I|[c,b] |= ψ

1ITL also defines quantification and many other derived operators not
needed here

i3 ϕ (“in some initial intervalϕ”) and x3 ϕ (“in some subin-
tervalϕ”) abbreviate¬ i2 ¬ ϕ resp.¬ x2 ¬ ϕ.

A temporal logic specification SPEC = (SIG,Ax) consists
of a signature SIG and a number of temporal logic formulas
Ax. Its semantics SEM(SPEC) are all pairs (A, I), such
thatI (called “run” or “trace”) starts at time a = 0 andA,
I |= ψ holds for all axiomsψ ∈ Ax. We call a run finite
(or terminating) if b< ∞, infinite otherwise. A formulaϕ
is valid over a specification SPEC (in short SPEC|= ϕ), iff
A, I |= ϕ holds for all (A, I) ∈ SEM(SPEC).

V. FAULT TREE SEMANTICS

In this section we will define a formal semantics for fault
trees. The basis for such a formalization is a formal model
for the system under consideration, in our case a formal
specification SPEC of the level crossing of Sect. II. The
second step consists in replacing the informal descriptions
of fault events described by the nodes of the fault tree by
formal descriptions using the signature of this specification.
We have done this for the fault tree given in Fig. 3.

For the formal description of fault events we use the
continuous Interval Temporal Logic described in Sect. IV.
In contrast to simpler temporal logics as LTL or CTL*
this allows to formalize events which describe continuous
changes and have a duration like “speed increasing linearly
by 1 m/sec2 for 10 seconds”. Such events are necessary in
the example, where train speed is needed to compute the
latest braking point before the crossing.

Based on SPEC and the formulas in the nodes of the
fault tree the result of our semantics will be a set ofcon-
ditions (also formulas of ITL) for each gate of the fault
tree. Verification of all these conditions over the formal
specification of the system guarantees, that the top event of
the fault tree is indeed adequately partitioned into the basic
events at the leaves. We will prove theorems to this effect
at the end of the section.

A first naive approach to the definition of such condi-
tions, which is suggested by most informal presentations
of FTA such as [21] or [16], is to define the semantics of
AND- and OR-gates simply as the conjunction resp. dis-
junction of the sub-events. The condition derived from this
semantics then is the equivalence between the conjunction
(disjunction) of the formulas describing the sub-events and
the formula describing the main event of the gate. This ap-
proach seems attractive since it suggests the automatic con-
struction of gates by splitting along the formula structure: if
the top event is described as a formula of the formϕ1 ∧ ϕ2

then it seems natural to define an AND-gate with sub-nodes
ϕ1 andϕ2.

But this simple approach is wrong for several reasons.
The problems can be demonstrated with one of the nodes
of Fig. 3 which is described (using suitable predicates) as:

release = true∧ ¬ closed(barriers) (1)

4

sing, barriers
train on cros−

not closed

no release
but train does

not brake

release

not closed
barriers

brakes defect
no release

no brake−
signal

crossing sends

not closed
release, barriers

although release
barriers opening

Fig. 3. FTA for the hazardcollision

If one defines two sub-events each containing one con-
junct, then each conjunct alone does no longer describe a
fault event. The fact that the barriers are not closed, does
not indicate a faulton it’s own, otherwise we would have
to keep the barriers closed all the time. Similarly, the fact
that the train has received the ‘release’ signal and therefore
assumes the crossing to be safe, is not faulty, otherwise we
would have to prevent any train from passing over the cross-
ing.

Therefore we must reject splitting the conjunction with
an AND-gate in this case. Note that the Fault Tree Hand-
book [21], p. IV-3 explicitly requires an intermediate event
to be “A fault event that occurs because . . . ”.

In fact, our fault tree proposes two causes (2)∨ (3) for
the event: Either the crossing has sent the ‘release’ signal,
although the barriers were not closed, or the barriers started
to open after the train received the ‘release’ signal.

crossingsendsrelease = true∧ ¬ closed(barriers) (2)
release = true∧ crossingopensignal = true (3)

This decomposition shows another problem, in case we
define the semantics simply as a disjunction: It does
not take into account that the sub-events (causes) happen
strictly before the main event (consequence).

That this problem is usually neglected in the literature,
is mainly due to the fact, that only simple hardware sys-
tems are analyzed, where time delays between causes and
consequences are unimportant. Then all gates are decom-
position gates (short: D-gates), which simply partition the
set of faulty states into subsets. Since we consider dynamic
systems, where timing conditions are essential, we will dis-
tinguish such D-gates from cause-consequence gates (short:
C-gates). Such a distinction is proposed informally in [9],
too.

The fact, that in a C-gate the cause must occur before the
consequence, implies that we cannot formalize its seman-

tics as a simple equivalence. Instead we need two condi-
tions. Thecorrectness condition guarantees that if the cause
happens, the consequence must happen too. Thecomplete-
ness condition guarantees, that all causes have been listed:
the consequence must not happen without the cause. For
symmetry, we also split the equivalence condition for D-
gates: the implication from sub-events to main event is the
correctness condition, the reverse implication becomes the
completeness condition.

Finally, for C-AND-gates we must distinguish two cases,
depending on whether the two causes must happen simulta-
neously to result in the consequence. We call the first type
synchronous, the other asynchronous.

Summarizing, we get 5 types of gates: D-OR- and
D-AND-gates (D , D), C-OR-gates (C), and syn-

chronous and asynchronous C-AND-gates (C , AC).
Two additional gates, C-INHIBIT- and D-INHIBIT-
gates (C , D), will be explained below. The
correctness- and completeness conditions for each of these
types of gates are listed in Fig. 4. The case of two causes is
shown, the generalization to n> 2 causes should be obvi-
ous.

The conditions for D-gates gives the usual boolean se-
mantics, which should hold in any subinterval of the run.
The correctness conditions for C-OR-gates says, that if in
a run one of the causes occurs, then the consequence must
also happen during the run. Note that it is not suitable to
require, that the consequence must happenafter the cause
for two reasons. First, there may be several occurrences of
given causes and the consequence then is required to occur
only after the first occurrence (if “brake failure” leads toa
train crash, then a subsequent occurrence of “barriers do not
close” will not result in a second train crash). Second, there
may be other causes for the consequence, since the causes
have not been listed completely. The latter case is excluded

5

gate g correctness CORR(g) completeness COMPL(g)

ϕ2ϕ1

D

ψ

x2 (ϕ1 ∧ ϕ2 → ψ) x2 (ψ → ϕ1 ∧ ϕ2)

ϕ2ϕ1

D

ψ

x2 (ϕ1 ∨ ϕ2 → ψ) x2 (ψ → ϕ1 ∨ ϕ2)

ϕ2ϕ1

C

ψ

x3 (ϕ1 ∧ ϕ2) → x3 ψ ¬ (¬ x3 (ϕ1 ∧ ϕ2) ; i3 ψ)

ϕ2ϕ1

AC

ψ

x3 ϕ1 ∧ x3 ϕ2 → x3 ψ ¬ (¬ x3 ϕ1 ; i3 ψ) ∧ ¬ (¬ x3 ϕ2 ; i3 ψ)

ϕ2ϕ1

C

ψ

x3 ϕ1 ∨ x3 ϕ2 → x3 ψ ¬ (¬ x3 (ϕ1 ∨ ϕ2) ; i3 ψ)

χ

ϕ

C

ψ

x3 (ϕ1 ∧ χ) → x3 ψ ¬ (¬ x3 (ϕ1) ; i3 ψ)

χ

ϕ

D

ψ

x2 (ϕ1 ∧ χ → ψ) x2 (ψ → ϕ1)

Fig. 4. semantics of fault trees

by the completeness condition, which says, that it must not
be possible to partition a run at some point of time t, such
that no cause happens before t, and the consequence hap-
pens after t. Our completeness condition is stronger than
the condition

i2 (x3 (ψ) → x3 (ϕ1 ∨ ϕ2)) (4)

proposed in [12], since we require that the cause must have
beencompleted, before the consequence can happen. The
formalization (4) just requires, that the cause must have
started before the consequence finishes, which is not ad-
equate for events with a duration. Consider e.g. the event
(consequence) “barriers not closing for 60 seconds although
signal to close them was sent”. A cause for this may be
be “power switch breaks”. But if we immediately see the
consequence and the power switch breaks only after 30 sec-
onds, there must have been another cause. Nevertheless (4)
can be shown, which falsely asserts that the analysis is al-
ready complete.

The conditions for synchronous and asynchronous C-
AND-gates are similar. Instead of one of the two
causes they require both causes (synchronously or asyn-
chronously).

When we tried to verify the conditions of the example
fault tree, we found that sometimes the correctness condi-
tion is violated, since the number of states considered faulty
by the sub-events is larger than the ones of the main event
of the gate. We found that such gates typically represent
design decisions. An example is the topmost gate of our
fault tree. The formal specification of the top-event is:

pos(train) = pos(crossing)∧ ¬ closed(barriers) (5)

This event is decomposed into two cases, depending on
whether the train has received a ‘release’ signal. In the pos-
itive case (right sub-event) we get

release = true∧ pos(train) = pos(crossing)
∧ ¬ closed(barriers)

(6)

Then we drop the condition, that the train is on the cross-
ing, yielding formula (1). This reflects the design decision,
that we consider all states described by (1) already faulty,
regardless whether the train is still able to brake.

The considered gate is a D-gate, but a design decision to
enlarge the set of faulty states can also be made in C-gates.
The fact, that correctness conditions are sometimes unprov-

6

able, has led previous formalization attempts to either re-
quire the completeness condition only [12] or to define two
different semantics for correctness and completeness [5].
We prefer to make those points in the fault tree explicit,
where the set of faulty states is enlarged. To this purpose
we use an INHIBIT-gate between (5) and (6) with side con-
dition χ := pos(train) = pos(crossing). The correctness
condition for an INHIBIT-gate requires only that the cause
together with the condition must lead to the consequence.
Again we have two versions: A D-gate which just enlarges
the state set and a C-gate which allows time to pass be-
tween cause and consequence. In our case, the side con-
dition specifies exactly, which additional states are consid-
ered faulty. By giving the trivial side conditiontrue it is also
possible to specify that the faulty states described by the
main event are enlarged to all states of the sub-event. The

(5)

... (6)
χ

(1)

(2) (3)

Fig. 5. formal FTA

completeness condition does not mention the side condition
and just requires that without the cause the consequence
must not happen. Note that our semantics of INHIBIT-gates
is different from the semantics of AND-gates: the side con-
dition of an INHIBIT-gate is allowed to describeany set of
states, it is not necessary (and even not desirable, otherwise
we would use an AND-gate) that it describes a fault. Also,
side conditions will not occur in minimal cut sets described
below. The formalized fault tree of Fig. 3 is shown in Fig. 5.

This completes the definition of the conditions, which
have to be verified to show that the fault tree describes a
meaningful decomposition of the the top-event into basic
events. The advantage of formalization is, that we can now
give a precise definition of the informal term “meaningful
decomposition” in the form of theorems. For correctness
we get:

correctness theorem
If a fault tree contains no INHIBIT-gates, no syn-

chronous C-AND-gates and no D-AND-gates, and if all
correctness conditions from Fig. 4 can be proved, then the
following holds: When during a system run all primary
events of some minimal cut set occur, then the top-level
event must also occur.

Formally: If for all gates SPEC |= CORR(g) and
SPEC |= x3 b for all basic events b of a minimal cut set,
then SPEC |= x3 e for the top-event e.

Minimal cut sets are computed as usual (see Sect. III).
The theorem does hold neither for synchronous C-AND-
gates nor for D-AND-gates with causesϕ1 andϕ2, since
even the simultaneous occurrence of all primary events
which are causes forϕ1 or ϕ2 can not enforce, thatϕ1 and
ϕ2 will happen at the same time. For completeness we have
the following stronger theorem:

completeness theorem (minimal cut set theorem)
If all completeness conditions (see Fig. 4) of a fault tree

can be verif ied, and if for each minimal cut set it is possible
to exclude at least one of its basic events from happening on
each run, then the top-level event will never happen.

Formally: If for all gates SPEC |= COMPL(g) and if for
each cut set s SPEC |= x2 ¬ b for some element b ∈ s, then
SPEC |= x2 ¬ e for the top-event e.

For a complete fault tree it is sufficient to prevent one pri-
mary event of each minimal cut set, to avoid the fault under
consideration altogether. A complete fault tree is therefore
a partial proof for the safety of the system. The complete-
ness theorem gives a formal justification for the use of min-
imal cut sets in safety analysis, even for cases where timing
conditions are relevant.

Both theorems are proved using structural induction over
the size of the fault tree. The basic fact underlying both
proofs is transitivity of the cause-consequence relation (in
both directions), which is proved using the semantics of the
involved basic temporal operators. The proofs were verified
formally using an algebraic specification of the syntax and
semantics of continuous Interval Temporal Logic as de-
scribed in Sect. IV in KIV [2]2.

VI. RELATED WORK

Three different semantics for fault trees are proposed
in [5], where the temporal logic CTL is used to define
cause-consequence gates. The first approach is the stan-
dard boolean approach, which corresponds to using D-gates
only. The other two semantics agree with our correctness
and completeness conditions reduced to the special case of
discrete events without duration. No global completeness
or correctness theorem is proven. Note also that [5] sug-
gests another methodology for safety analysis, by propos-
ing to use the conditions derived from the fault tree (or from
several fault trees) as a first specification of the intended
system (i.e. using them for synthesis of the system), while
we propose to develop a system model separately and to
analyze the system to satisfy the fault tree conditions.

Hansen’s work is the only other work we know of that

2note that the formalization is purely algebraic. It does not use the tem-
poral logic we currently implement in KIV (see Sect. VII).

7

proposes to use a logic for a continuous setting (Duration
Calculus). [12] defines a completeness condition that is
close to our condition for C-gates (see Sect. V). Later work
[10], [11] allows D-gates only, which makes all formulas
in intermediate nodes definable as boolean combinations
of primary events. With this semantics it is impossible to
define causes which lead to an effect only after some time.
Therefore our fault tree for the level crossing is impossible
to define in this setting.

[9] defines a predicate logic approach to safety anal-
ysis. Although we found the idea of distinguishing be-
tween D- and C-gates useful, we do not know how the ap-
proach should be used in practice, since it requires a pre-
defined causal relationship between events, not offered by
most specification methods (e.g. statecharts or algebraic
specification).

Finally, it should be noted, that all of the cited approaches
transform INHIBIT-gates to AND-gates. We give them a
different semantics, exploiting the fact, that side conditions
do not have to be fault events.

VII. A F ORMAL SAFETY ANALYSIS TOOL

The formal semantics of fault tree analysis defined in
Sect. V is currently used to realize a formal fault tree anal-
ysis tool, which will allow the integrated development of
formal system descriptions and formal fault trees. It will
also allow to formalize the events and to prove the com-
pleteness and correctness conditions, presented in Sect. V.
As an implementation platform, we use the specification
and verification environment KIV [2] which already of-
fers strong proof support for algebraic specifications with
higher order logic and for the verification of sequential pro-
grams. Verification of temporal properties with interval
temporal logic with a discrete semantics is already possible
[1], and more deduction support is added currently. Support
for fault trees still has to be implemented.

To model systems we not only use temporal logic but
also allow statecharts in the KIV system [3]. Since we use
the STATEMATE3 semantics of statecharts [18], which was
formalized in [7], we are able to use the STATEMATE model
for the level crossing we co-developed in [15] directly as
our system model. First experiments with the verification
of ITL properties show, that an overall verification of fault
tree conditions should be possible.

VIII. C ONCLUSION

In this paper we presented an approach to the safety anal-
ysis of systems, which integrates fault tree analysis from
engineering and formal specification from software devel-
opment.

Because software-based systems have a dynamic behav-
ior, fault tree analysis was enhanced to capture this behavior

3STATEMATE is a registered trademark of i-Logix Inc.

within the fault tree. This resulted in a definition of the se-
mantics of seven different kinds of fault tree gates with cor-
rectness and completeness conditions in ITL. The seman-
tics allows to define cause-consequence relations, where
time may pass between cause and consequence. It satisfies
the minimal cut set theorem which states, that if for every
minimal cut set one event can be prevented, the hazard may
not occur. To our knowledge this is the first temporal se-
mantics for fault trees for dynamic systems, which respects
the meaning of minimal cut sets from classical fault tree
analysis.

Currently we are working on an extension of the
specification and verification environment KIV, which will
allow to develop and formalize fault trees, and to generate
and verify the correctness and completeness conditions.

REFERENCES

[1] M. Balser, C. Duelli, W. Reif, and G. Schellhorn. Verifying concur-
rent systems with symbolic execution.Journal of Logic and Compu-
tation (Special Issue), 2002. (to appear).

[2] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. For-
mal system development with KIV. In T. Maibaum, editor,Funda-
mental Approaches to Software Engineering, number 1783 in LNCS.
Springer, 2000.

[3] M. Balser and A. Thums. Interactive veri£cation of statecharts. In
INT2000: Integration of Speci£cation Techniques with Application
in Engineering, 2002.

[4] Betriebliches Lastenheft für FunkFahrBetrieb. Stand 1.10.1996.
[5] G. Bruns and S. Anderson. Validating safety models with fault trees.

In J. Górski, editor,SafeComp’93: 12th International Conference on
Computer Safety, Reliability, and Security, pages 21 – 30. Springer-
Verlag, 1993.

[6] Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of
durations.Information Processing Letters, 40(5):269–276, Decem-
ber 1991.

[7] W. Damm, B. Josko, H. Hungar, and A. Pnueli. A compositional
real-time semantics of STATEMATE designs. In W.-P. de Roever,
H. Langmaack, and A. Pnueli, editors,COMPOS’ 97, volume 1536
of LNCS, pages 186–238. Springer-Verlag Berlin Heidelberg, 1998.

[8] P. Fenelon, J. McDermid, A. Nicholson, and D. Pumfrey. Experi-
ence with the application of HAZOP to computer-based systems.In
Proceedings of the 10th Annual Conference on Computer Assurance,
Gaithersburg, MD, 1995. IEEE.

[9] J. Górski. Extending safety analysis techniques with formal seman-
tics. In F. J. Redmill and T. Anderson, editors,Technology and As-
sessment of Safety Critical Systems, pages 147 – 163, London, 1994.
Springer Verlag.

[10] K. Hansen. Linking Safety Analysis to Safety Requirements. PhD
thesis, Danmarks Tekniske Universitet, Lyngby, August 1996.

[11] K. Hansen, A. Ravn, and V. Stavridou. From safety analysis to soft-
ware requirements.IEEE Transactions on Software Engineering,
24(7):573 – 584, July 1998.

[12] K. M. Hansen, A. P. Ravn, and V. Stavridou. From safety analysis
to formal speci£cation. ProCoS II document [ID/DTH KMH 1/1],
Technical University of Denmark, 1994.

[13] M. R. Hansen and Zhou Chaochen. Semantics and completeness of
the Duration Calculus. In J. W. de Bakker, K. Huizing, W.-P. de
Roever, and G. Rozenberg, editors,Real-Time: Theory in Practice,
volume 600 ofLecture Notes in Computer Science, pages 209–225.
Springer-Verlag, 1992.

[14] L. Jansen and E. Schnieder. Referenzfallstudie Bahnübergang – Ref-
erenzfallstudie im Bereich Verkehrsleittechnik des DFG-SPP Soft-
warespezi£kation. Technical report, Institut für Regelungs- und
Automatisierungstechnik, http://www.ifra.ing.tu-bs.de/m33/spezi/,
1999. in German.

[15] J. Klose and A. Thums. The STATEMATE reference model of the
reference case study ‘Verkehrsleittechnik’. Technical Report 2002-
01, University Augsburg, 2002.

8

[16] R. D. Leitsch. Reliability Analysis for Engineers: An Introduction.
Oxford Science Publications, 1995.

[17] B. Moszkowski. A temporal logic for multilevel reasoningabout
hardware.IEEE Computer, 18(2):10–19, 1985.

[18] A. Pnueli and M. Shalev. What is in a step: On the semantics of state-
charts. InSymposium on Theoretical Aspects of Computer Software,
pages 244–264, 1991.

[19] W. Reif, G. Schellhorn, and A. Thums. Safety analysis of aradio-
based crossing control system using formal methods. In9th IFAC
Symposium on Control in Transportation Systems 2000, 2000.

[20] D. Reifer. Software failure modes and effects analysis.IEEE Trans-
actions on Reliability, 28(3):147 – 249, August 1979.

[21] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault
Tree Handbook. Washington, D.C., 1981. NUREG-0492.

