
SASD of CFG Generator

Original : Team 6

200811425 김평석

200811435 신성호

200811451 이형열

200811454 젂인서

Amender :Team 5

200711453 류진렬

200711454 윤병현

200711459 이남섭

200711463 이준하

Contents
• Structured Analysis

– Statement of Purpose

– System Context Diagram

– Event List

– Data Flow Diagram

– Final State Machine

– Data Dictionary

– Process Specification

• Structured Design

– Structured Charts

• Appendix

– Middle Language

– Parse Code

– Construct CFG
2

Structured Analysis

3

Statement of Purpose

 - Entire Statement of Purpose

 - Specific Statement of Purpose

4

Entire Statement of Purpose

CFG Generator is operated in CUI-based Cygwin.

CFG Generator make State lists and Edge lists from C language-program

input.

After confirming the validity of C language-program input, CFG

Generator makes Middle-Languages.

CFG Generator derives the CFG information from the Middle-Languages.

As the selected option, Derived CFG information is outputted on file or

console.

As the system condition, proper messages are outputted on console.

Entire Statement of Purpose[1/1]

5

Specific Statement of Purpose[1/3]

Input Statement of Purpose

Line command is the input type for executing this program. It contains

Source File Name, Ouput File Name and Ouput Option.

C Program File that will be inputted in CFG Generator is single file that

has *.c filename extension. It has no more 200 letters.

The C Program File code has Main function.

The C Program File code must not have any Pointer.

The C Program File code must not have any header and library defined

by user.

The C code input file is must be a perfect file that has no syntax error.

6

Specific Statement of Purpose[2/3]

Parsing Statement of Purpose

Classify the C Code file using the defined token.

Convert the classified C Code to Middle Language.

CFG file doesn‟t have branch at the macro.

CFG file dosen‟t have branch at the trinomial operator(x ? y : z)

CFG file dosen‟t have branch at user-defined-function.

7

Constructing CFG Statement of Purpose

Generate the block lists of the CFG from Middle Language.

Using the block Lists, generate the edge Lists.

Output Statement of Purpose

When Command Error or File Error is occurred, Error Message and Help

Message will be outputted on console.

As the output option inputted by user, CFG Generator outputs the CFG

on file or on console using CFG component List.

Specific Statement of Purpose[3/3]

8

System Context Diagram

& Event List

9

File

CUI

CFG
Generator

File

Console

Input/Output

Event
Description Format/Type

Command

String includes Input File Name, Output File Name

and Output Option.

Ex) ./cfg [option] [input file name] [output file name]

string

C Code

C source code to convert CFG. The File must have

*.c extension name.

Source code produced by C standard .

*.c

CFG to File CFG to be printed file, written by string format. string

Console

Message

CFG and Message to be outputted console. This

message is about each situation.

CmdError / FileError /

HelpMessage /

GenerateMessage / CFG /

OutFileName

Terminator

Data Process

Data Flow

10

 Data Flow Diagram

11

Notation of
Data Flow Diagram

Data Process Data Flow

Control Process Control Flow

Terminator Data Store

12

File

CUI

CFG
Generator

0

File

Console

Data Flow Diagram[1/5] - Level 0

13
Data Dictionary

Scanner
1

CFG
Controller

2

Output Option
& Error Data

Data Flow Diagram[2/5] - Level 1

14
Data Dictionary

command Command
Data

File Name
Data

Error
Data

Output
Option
Data

Determine
Output

Option Data
1.4

Interpret
Command

1.1

Determine
Error Data

1.3

Determine
File Name

1.2

Data Flow Diagram[3/5] - Level 2

15
Data Dictionary Process Specification

Controller
2.1

Print
Report
Name
2.3

Print
File Error

2.8

Error
Data

Output
Option
Data

Trigger

File Name
Data

Generate
CFG
2.2

C Code

Print
Generate
Message

2.6

Print CFG
To

Console
2.5

File Error
Message

Generate
Message

CFG to
Console

CFG to File

Out File Name

CFG
Data

Print CFG
To File

2.4

Data Flow Diagram[4/5] – Level 2

Print
Cmd Error

2.9

Print Help
Message

2.7

Command Error
Message

Help
Message

16

Data Dictionary

Process Specification

This is an original slide.
Next slide is a modified slide.

Controller
2.1

Error
Data

Output
Option
Data

File Name
Data

Generate
CFG
2.2

C Code

File Error
Message

Generate
Message

CFG to
Console

CFG to File

Out File Name

CFG
Data

Print CFG
To File

2.4

Data Flow Diagram[4/5] - Level 2

Command Error
Message

Help
Message

17

Data Dictionary

Process Specification

Print
Report
Name
2.3

Print CFG
To

Console
2.5

Print Help
Message

2.7

Print
Generate
Message

2.6

Print
File Error

2.8

Print
Cmd Error

2.9

Modified details are shown
as different color.

Explanation of modified slide (slide number 17)

On the DFD of the original slide, the file name data doesn’t go through
the controller. It is connected with „Generate CFG’ process and
„Print report name‟ process directly. But, on the Structured Chart of the SD,
controller calls the „Determine file name‟ process. File name data from the
process(Determine file name process) is also delivered to controller.
It generate discordance between DFD and Structured Chart.
So we modify the DFD. On the DFD of the modified slide, File name data go
through the controller, and it is delivered to „Generate CFG‟ process and „Print
report name‟ process.

On the DFD of the original slide, Error data and Output Option data are
delivered to controller. But it is not expressed where to go. Some connections
between the data store and process are connected directly. We modified these
things according to adequate flow of the data.

Parse
Code
2.2.1

CFG
Data

Construct
CFG
2.2.2

Middle
Language File Name

Data

Data Flow Diagram[5/5] - Level 3

19 Process Specification

1.1

1.2

1.3

1.4

command
Command

Data

File Name
Data

Error
Data

Option
Data

2.1

2.3

2.7

2.8

2.9

Trigger

2.6

2.5

Help
Message

File Error
Message

Command Error
Message

Generate
Message

CFG

CFG

File Name

CFG
Data

2.4

2.2.1 2.2.2

Middle
Language

Data Flow Diagram - Final

20

This is an original slide.
Next slide is a modified slide.

1.1

1.2

1.3

1.4

command
Command

Data

File Name
Data

Output Option
Data

Error
Data

2.1

2.3

2.7

2.8

2.9

Trigger

2.6

2.5

Command Error
Message

File Error
Message

Help
Message

Generate
Message

CFG

CFG

File Name

CFG
Data

2.4

2.2.1 2.2.2

Middle
Language

Data Flow Diagram - Final

21

Modified details are shown
as different color.

Explanation of modified slide (slide number 21)

On the DFD of the original slide, the file name data doesn’t go through
the controller. It is connected with „Generate CFG’ process and
„Print report name‟ process directly. But, on the Structured Chart of the SD,
controller calls the „Determine file name‟ process. File name data from the
process(Determine file name process) is also delivered to controller.
It generate discordance between DFD and Structured Chart.
So we modify the DFD. On the DFD of the modified slide, File name data go
through the controller, and it is delivered to „Generate CFG‟ process and „Print
report name‟ process.

On the DFD of the original slide, Error data and Output Option data are
delivered to controller. But it is not expressed where to go. Some connections
between the data store and process are connected directly. We modified these
things according to adequate flow of the data.

*This slide is the same with slide number 18.

Final State Machine

23

Print Cmd Error

Print Generate
Message

Print File Error

Generate CFG

Print CFG
To Console

/Trigger “Print Cmd Error”

[ED==CE]
/Trigger “Print Help Message”

[ED!=CE]
/Trigger “Print File Error”

[ED == NE]
/Trigger “Print Generate Message”

[ED==FE]
/Trigger “Print Help Message”

/Trigger “Generate CFG”

[OO==PF]
/Trigger “Print Report Name”

[OO==PC]
/Trigger “Print CFG To Console”

/Trigger “Print Report Name”

&Condition

OO : Output Option (2)
- PF : Print File(Default)
- PC : Print Console

with File

ED : Error Data (3)
- FE : File Error
- CE : Command Error
- NE : None Error

Final State Machine

Print Report
Name

Print Help
Message

Terminal
State

Initial
State

flow

Notation

State

24

This is an original slide.
Next slide is a modified slide.

Print Cmd Error

Print Generate
Message

Print File Error

Generate CFG

Print CFG
To Console

/Trigger “Print Cmd Error”

[ED==CE]
/Trigger “Print Help Message”

[ED!=CE]
/Trigger “Print File Error”

[ED == NE]
/Trigger “Print Generate Message”

[ED==FE]
/Trigger “Print Help Message”

/Trigger “Generate CFG”

[OO==PF]
/Trigger “Print CFG To File”

[OO==PC]
/Trigger “Print CFG To Console”

/Trigger “Print CFG To File”

&Condition

OO : Output Option (2)
- PF : Print File(Default)
- PC : Print Console

with File

ED : Error Data (3)
- FE : File Error
- CE : Command Error
- NE : None Error

Final State Machine

Print CFG To
File

Print Help
Message

Terminal
State

Initial
State

flow

Notation

State

25
Print Report

Name

/Trigger “Print Report Name”

Modified details are shown in
different colored background.

Explanation of modified slide (slide number 25)

On the Final State Machine of the original slide, there is no process of
„print CFG to File‟. The FSM of original slide means that after finishing
„Generate CFG‟ process, it doesn’t print CFG to File. It is not satisfied with
basic requirement.

So we add one more state(‟print CFG to File‟) in modified FSM.
The process of „print CFG to File‟ is necessary after „Generate CFG‟ process.
Regardless of Output Option data, this process must be operated.
(if the generating is successed correctly.)

Data Dictionary

27

Input/Output

Event
Description Format/Type

Command

String includes Input File Name, Output File Name

and Output Option.

Ex) ./cfg [option] [input file name] [output file name]

string

C Code

C source code to convert CFG. The File must have

*.c extension name.

Source code produced by C standard .

*.c

CFG to File CFG to be printed file, written by string format. string

Console

Message

CFG and Message to be outputted console. This

message is about each situation.

CmdError / FileError /

HelpMessage /

GenerateMessage / CFG /

OutFileName

Data Dictionary Level 0

28

DFD

Input/Output

Event
Description

Format /

Type

Output

option

Save the status of Output Option.

String type variable OO contains Output Option Data.

The variable OO may have two data type.

*PF(print only file), PC(print console with file). Default data

type is „PF‟.

Ex string OO = “PC”;

string

Error Data

Save the Error Data.

String type variable ED contains Error Data.

*CE (Command Error : When command line input has wrong

syntax and inadequate form.), FE (File Error : When the format of

the input file is wrong or the input file is not exist.) NE (None

Error : When there is no error.)

Ex) string ED = “NE”;

string

Data Dictionary Level 1

29

DFD

Input/Output
Event

Description Format/Type

Command
Data

Save the Command Data.

If the command input is correct, it will be devided into

several string type data and saved as struct type.

Ex) ./cfg [option] [input file name] [output file name]

Struct

File Name
Data

Input File Name and Output File Name from command

data is saved in struct.
Struct

Data Dictionary Level 2

30

DFD

There were another sentence about command data(„만약 적젃하지 않은 명령
어가 들어오면 모두 NULL값이 저장된다.‟) in the original slide.
If wrong command is inputted in CFG Generator, this program going to
Help Message Process and quit. So, that requirement is not necessary for
this program. So we remove the sentence.

Input/Output

Event
Description

Format/T

ype

Error Data

After checking the Command Error and File Error from Command

Data, adequate status of data will be saved as a string type data.

CE (Command Error :When command line input has wrong syntax

and inadequate form.),

FE (File Error : When the format of input file is wrong or the

input file is not exist.)

NE (None Error : When there is no error) One of them will be

saved in string type variable ED.

Ex) string ED = “NE”;

string

Output

Option Data

The string type variable OO contains output option data from

Command Data.

One of the two data(PF,PC) is saved in OO.

Ex) string OO = “PC”;

string

Data Dictionary Level 2

31

DFD

Input/Output
Event

Description Format/Type

CFG Data

Save CFG Data.
From inputted C code, node list & edge list are saved in struct-
type-data.
Based on this data, CFG will be outputted on File or Console.

Struct

Command Error Whether the cmd error occurred or not. String

Output File
Name

Output file name for result CFG file. string

Input File Name Input file name for C code input file.

File Error Whether File exist or not. String

Help Message Help Message to help user for correct command input. String

Generate
Message

The complete message of generating. String

CFG (Console) CFG that will be outputted to console. string

Data Dictionary Level 2

32

DFD

Input/Output

Event
Description Format/Type

Middle Language

It stores Middle-Language produced by

parsing process . It is a data for producing

CFG component by analyzing the source

code.

It stores each branch information as a list

or array in struct.

Struct List /

Array

Data Dictionary Level 3

33

DFD

Process Specification

34

Reference 1.1

Name Interpret Command

Input Command

Output Command Data

Process

Description

“Command” come in this Process from CUI.

The data in the command consist of string is divided

into three part of string by this process, “Interpret Command”.

After that work, this process save Command Data Systematically .

Process Specification Level 2 DFD

Reference 1.2

Name Determine File name

Input Command Data

Output File Name Data

Process

Description

“Command Data” come in this Process from The storage.

The data have “File Name Data” that is consist of

Report Name(Output File Name) and C Code File.

This Process extract the data from “Command Data” And save File

Name data Systematically for convenience of Controller.

Process Specification Level 2 DFD

Reference 1.3

Name Determine Error Data

Input Command Data

Output Error Data

Process

Description

“Command Data” come in this Process from The storage.

The data have “Error Data” that is consist of File Error Data and

Cmd Error Data.

This Process try to open the C Code File to check the File‟s validity.

And save Error data Systematically for convenience of Controller.

Process Specification Level 2 DFD

Reference 1.4

Name Determine Output Option Data

Input Command Data

Output Output Option Data

Process

Description

“Command Data” come in this Process from The storage.

The data have “Output Option Data” that have two condition,

 Print File and Print Console.

The Print File is default option when any option does not income.

After extract Output Option Data from Command Data,

This process save output option data for convenience of Controller.

Process Specification Level 2 DFD

Reference 2.1

Name Controller

Input Error Data, Output Option Data

Output Trigger

Process

Description

“Error Data” and “Output Option data” come in this process

for divergence. Controller can make a decision with that data for p

rocess of Program. The Operation of this Process is represented to

“state machine” specifically.

Process Specification Level 2

39

DFD

Reference 2.3

Name Print Report Name

Input Trigger, File Name Data

Output File Name

Process

Description

After Triggered, this process print report name as meaning of finis

hing print CFG and succeeding this program.

Process Specification Level 2

40

DFD

Reference 2.4

Name Print CFG To File

Input Trigger, CFG Data

Output CFG

Process

Description

After Triggered, this process, “Print CFG To File” print CFG Data to

File. Since CFG can be printed on two stream, File and Console,

this process is named „Print CFG To File‟ not „Print CFG‟.

If the CFG generating is completed, this process must be operated

regardless of „Output Option‟.

Process Specification Level 2

41

DFD

Reference 2.5

Name Print CFG To Console

Input Trigger , CFG Data

Output CFG

Process

Description

After Triggered, this process ,„Print CFG To Console‟,

print CFG Data to Console.

This process operate selectively, the contrary “Print CFG To File”

operate unconditionally after generate CFG.

Process Specification Level 2

42

DFD

Reference 2.6

Name Print Generate Message

Input Trigger

Output Generate Message

Process

Description

After Triggered, this process print Generate Message

meaning of „No Error‟ and starting „Generate CFG Data‟

Process Specification Level 2

43

DFD

Reference 2.7

Name Print Cmd Error

Input Trigger

Output Command Error Message

Process

Description

When Cmd Error occur,

The controller trigger this process to print command error

message. After print command error message, controller trigger

„print help‟ process .

If there is no error in command, this process does not print error

message.

Process Specification Level 2

44

DFD

Reference 2.8

Name Print File Error

Input Trigger

Output File Error Message

Process

Description

When File Error occur,

The controller trigger this process to print file error message.

After print command error message, controller trigger „print help‟

process.

If there is no error in command, this process does not print error

message.

Process Specification Level 2

45

DFD

Reference 2.9

Name Print Help Message

Input Trigger

Output Help Message

Process

Description

Whenever Error occur, this process is triggered.

This process help user to operate „CFG Generator‟ correctly.

After print help message, this program is terminated.

Process Specification Level 2

46

DFD

Reference 2.2.1

Name Parse Code

Input Trigger, File Name data, C Code

Output Middle Language

Process

Description

When Error isn‟t occurred,

this process read „C code‟ from File.

This process translates C code to middle language,

reading each line of c code.

Process Specification Level 3

47

DFD

Reference 2.2.2

Name Construct CFG

Input Middle Language

Output CFG Data

Process

Description

After Middle Language is generated,

This process construct CFG with middle language.

Finishing the constructing,

this process save CFG Data for print report and console.

Process Specification Level 3

48

DFD

Structured Design

 - Structured Charts

1.1

1.2

1.3

1.4

command
Command

Data

File Name
Data

Error
Data

Output
Option
Data

2.1

2.3

2.7

2.8

2.9

Trigger

2.6

2.5

Help
Message

File Error
Message

Command Error
Message

Generate
Message

CFG

CFG

File Name

CFG
Data

2.4

2.2.1 2.2.2

Middle
Language

Transform Analysis

Input Output Control

This is an original slide.
Next slide is a modified slide.

1.1

1.2

1.3

1.4

command
Command

Data

File Name
Data

Output Option
Data

Error
Data

2.1

2.3

2.7

2.8

2.9

Trigger

2.6

2.5

Command Error
Message

File Error
Message

Help
Message

Generate
Message

CFG

CFG

File Name

CFG
Data

2.4

2.2.1 2.2.2

Middle
Language

51

Transform Analysis

Input Output Control

Modified details are shown as different color.

Explanation of modified slide (slide number 50)

On the Transform Analysis of the original slide, the file name data doesn’t
go through the controller. It is connected with „Generate CFG’ process and
„Print report name‟ process directly. But, on the Structured Chart of the SD,
controller calls the „Determine file name‟ process. File name data from the
process(Determine file name process) is also delivered to controller.
It generate discordance between Transform Analysis and Structured Chart.
So we modify the Transform Analysis. On the Transform Analysis of the modified
slide, File name data go through the controller, and it is delivered to „Generate
CFG‟ process and „Print report name‟ process.

On the Transform Analysis of the original slide, Error data and Output Option
data are delivered to controller. But it is not expressed where to go. Some
connections between the data store and process are connected directly. We
modified these things according to adequate flow of the data.

*This slide is the same with slide number 18.

Notation

Modules

Library Modules

Module call

Data Flow

Control Flow

Data module Decision

Structured Charts

Main

Controller

Interpret
Command

Parse Code
Print

Report Name
Print CFG

To Console
Print Generate

Message
Print Help
Message

Print
File Error

Construct
CFG

Print CFG
To File

Print
Cmd Error

Determine
File Name

Determine
Error Data

Determine
Output Option

Data

Command Data

CFG
Data

Middle
Language

CFG
Data

Structured Charts - Input
Controller

Interpret
Command

Determine File
Name

Determine Error
Data

Determine Output
Option Data

Command Data

Structured Charts - Output

Parse Code
Print

Report Name
Print CFG

To Console
Print Generate

Message
Print Help
Message

Print
File Error

Construct
CFG

Print CFG
To File

Print
Cmd Error

CFG
Data

Middle
Language CFG

Data

Controller

Appendix
 - Middle Language
 - Parse Code
 - Construct CFG

58

Middle Language

Middle Language

Middle Language is modified language from C-Code for convenience of CFG output.

Middle Language is used for following three reasons.

1. When convert C code to CFG, unify overlapping concepts into one thing.

 ex) „for‟ function and „while‟ function has the same structure in CFG. Middle Language can

express this two different function code into the same term.

2. Using this, it can express the CFG more structural.

 ex) As specifying jump to where, it is better to realize the flow of the Code in CFG.

3. When programming, it is convenient to modularize and divide each task.

 ex) In Parse Code process, make Middle Language from C code. In Construct CFG process,

make CFG from Middle Language. This division of task reduces project delay.

59

Parse Code

Parse Code

Parser process makes Middle Language according to following ways.

1. Find the branch occurring spot in C code, add branch condition.

2. After numbering at each of branches, array these according to the numbering.

3. Add the matched [body] in Numbered branch.

60

Middle Language

Middle Language - Keyword

Middle Language is composed of following keywords.

n#COND $condition$ -> checkup condition, specify block that make branch.

n#BODY $code$ -> specify block that has no condition and branch.

#JUMP n -> specify relation of block and order of block.

** Between „$‟, code is lapped. It‟s for classifying Middle language.

** „n‟ is for numbering each block.

** „#‟ is for distinguishing keyword from other things.

61

Middle Language

Middle Language – example of branch

 *** while(condition) { code }

3#COND $condition$

#JUMP 6 // if not satisfy condition.

4#BODY $code$ // execute code.

#JUMP 3 // checkup condition again.

6#BODY $code$ // out of while connection.

......

 *** do{ body } while (condition)

11#BODY $code$

12#COND $condition$ // checkup condition.

#JUMP 11 // if satisfy the condition, go to 11.

13#BODY $code$ // out of do while.

....

62

Middle Language

Middle Language – example of branch

 *** if(condition){code} else if(condition){code} else{code}

25#COND $condition$

26#BODY $code$

#JUMP 30

27#COND $condition$

28#BODY $code$

#JUMP 30

29#BODY $code$

30#BODY $code$

...

63

Middle Language

Middle Language – example of branch

switch(variable) case status1: code break; case status2: code case status3:

25#COND $status1$ //if variable satisfy status.

26#BODY $code$

#JUMP 31 // escape switch because break.

27#COND $condition$

28#BODY $code$ // execute next condition because non-break.

29#COND $condition$

30#BODY $code$

31#BODY $code$ // out of switch code .

...

for(init condition; condition ; increase and decrease){body}

43#COND$condition$

44#BODY $code$

#JUMP 43

45#BODY $code$

…

64

Construct CFG

Construct CFG

Construct CFG analyze the Middle language. It prints as follows format.

1#
code....
2#
condition
 3#
 code..
4#
code......
5#
condition......
 6#
 condition....
 7#
 code....
 8#
 code....
9#
code.....
..

Thank You!

65

