
ABOUT CONTROL FLOW GRAPHS 
Constructing Precise Control Flow Graphs from 

Binaries 

9조 

200911408 이대희 

201011308 고명준 

201011325 김필제 



CONTROL FLOW GRAPH(CFG) 

 a fundamental data structure representing all 

the control flow paths of a program that might be 

traversed during execution. 

 The CFG is essential to many compiler 

optimizations and static analysis tools. 

http://en.wikipedia.org/wiki/Compiler_optimization
http://en.wikipedia.org/wiki/Compiler_optimization
http://en.wikipedia.org/wiki/Static_code_analysis


REASONS OF USING BINARY 

 First, source code is often unavailable since most 
commercial off-the-shelf (COTS) software and 
many third-party libraries are distributed in 
binary form only. 

 Second, binary analyses allow us to directly 
reason about the actual code running on the 
system, which is useful because compilers can 
introduce discrepancies and even errors [4].  

 Third, certain properties of the source code may 
no longer hold in the compiled binaries due to 
compiler optimizations. Therefore, it is possible 
to detect bugs and vulnerabilities in the binaries 
that are otherwise missed during source code 
analysis. 



AN EXAMPLE OF CFG CONSTRUCTION. 



FXE 

 This section presents our basic algorithm of CFG 

construction based on dynamic forced execution. 

  It also describes key optimizations and 

extensions to scale FXE to realistic programs. 



DEFINITIONS AND ASSUMPTIONS 

 Definition 3.1 (Control Transfer Instruction). 

A control transfer instruction (CTI) is either a 

conditional branch instruction (e.g., jz, jecxz, 

loop) or an unconditional branch nstruction 

(e.g., call, jmp, ret) which directs the flow of 

program execution. 

While an unconditional branch is always taken, 

a conditional branch can either be taken (where 

the execution continues at the branch target) or 

not taken (where the execution falls through to 

the next instruction). 



DEFINITIONS AND ASSUMPTIONS 

 Definition 3.2 (Basic Block). 
A basic block is a maximal sequence of 
consecutive instructions with a single entry and a 
single exit, i.e., only the first instruction can be a 
CTI target and only the last instruction can be a 
CTI. 

 

 Definition 3.3 (Control Flow Graph). 
Given a program P, its control flow graph is a 
directed graph G = (V;E), where V is the set of 
basic blocks and E  V  V is the set of edges 
representing control flow between basic blocks. 
A control flow edge from block u to v is e = (u; v) 2 
E. 



DEFINITIONS AND ASSUMPTIONS 

 Assumption 1: Target Feasibility (TF). Both 

directions of a conditional branch are feasible. 

This assumption applies to most compiler-

generated binaries because compilers can easily 

resolve trivial conditions (such as always true or 

false) in the source code.  

Similar to source-level CFG construction, we 

assume every remaining conditional branch can 

follow both its directions for the purpose of CFG 

construction. 



DEFINITIONS AND ASSUMPTIONS 

 Assumption 2: Target Resolution (TR). The target of 
an indirect branch is completely determined by a 
control flow path to this indirect branch and is 
independent of intermediate program states.  
Indirect branches usually serve for the purpose of 
calling a function that is in a different module using 
the import address table (IAT) or calling a function 
using a function pointer. 
In the first situation, the target of the indirect branch 
is determined when the program is loaded and will 
remain unchanged. 
For the second case, the function pointer is properly 
defined or assigned a valid address along a control 
flow path before the branch, as is the case in Figure 1. 
An exception to this assumption is the use of jump 
tables; we discuss how to handle jump tables later in 
this section. 



DEFINITIONS AND ASSUMPTIONS 

 Assumption 3: Call-Return (CR). 
Every function call returns to its call site. 
When a call instruction is issued, it saves the 
address of the next instruction (i.e., the return 
address) onto the stack and transfers the program 
control to the target procedure. 
We assume that when the function returns at the ret 
instruction, the control flow always returns to the 
call site so that the execution continues immediately 
after the call instruction. 
This assumption holds for most functions, as it 
follows the semantics of the call and ret 
instructions and also consistent with the way 
that compilers generate code [1]. 
However, in practice, we observe that a few library 
functions do not behave this way, and we treat them 
as special cases. 



DYNAMIC FORCED EXECUTION 

 The core of our analysis is dynamic forced execution. 
We execute the program under analysis in a virtual environment, 
monitor and analyze the execution trace as the program runs. 
As our goal is to construct the control flow graph, we work on basic 
blocks instead of individual instructions. 
During execution, a basic block ends with a control transfer 
instruction. 
Under Assumption 1 (Target Feasibility), each conditional branch has 
two possible directions. 
At the high level, we explore both directions of each conditional 
branch using forced execution. 
To this end, we control the execution of the program and construct the 
CFG using Algorithm 1. 
Initially, the CFG is empty. 
During program execution, FXE adds each basic block that belongs to 
the analyzed program (Line 6) to the CFG. 
We retrieve the program entry point from the executable file header, 
and calculate the exit point based on the value of the entry point and 
the size of the code section. 
For each instruction inside these basic blocks, FXE determines its 
type (Line 10).  



DYNAMIC FORCED EXECUTION 

 If it is a new conditional branch, FXE predicts whether the branch is 
taken or not by emulating the semantics of the branch instruction 
using the current values of the CPU flags. 
If the branch is taken, FXE saves the address of the instruction 
immediately after the branch (Line 13). 
Otherwise, it records the jump target address (Line 15). 
Either way, FXE saves the current CPU and memory states. 
With these information, it is possible to later revert execution to the 
branch point and force the execution down the alternative path. 
When we have explored all the branch alternatives on the current 
execution path, or when the program terminates, FXE checks 
whether there are any gray branches (Line 28). 
If so, FXE rewinds the execution to the nearest gray branch, restores 
the CPU and memory states associated with that branch, sets the 
instruction pointer to point to the unexplored path, and marks that 
branch as black. 
FXE then forces the execution to continue along an unexplored 
program path. 
In this way, we explore all the program paths in a depth-first order. 

 



DYNAMIC FORCED EXECUTION 



FXE ARCHITECTURE OVERVIEW 



STATEMENT OF PURPOSE 

Control Flow Graph (CFG) 
 

 We have presented a novel, practical technique based 
on forced execution to extract precise control flow 
information from binaries. 

 Our goal is to have the constructed control flow graph 
as close to a binary’s ideal control flow information as 
possible. 

 Using forced execution, our technique systematically 
explores both directions at each branch point and 
computes the targets of indirect branches at run time. 

 We do not consider the detail error. 

 We only focus on effective technique that can 
automatically generate precise CFGs from binaries. 


