
200711470 정재호

200711457 윤홍국

200711438 송인근

How to Make CFG?
Introduction of CFG Algorithm

CFG Introduction

• What is CFG?
• Statement of Purpose

What is CFG?

A control flow graph (CFG) is a
representation, using graph notation, of all
paths that might be traversed through a
program during its execution.

Statement of Purpose

Reachability or different coverage strategies are some of the most common
objectives. CFG-s are also build for static analysis reasons. Static analysis is
the type of examination which does not consist on the execution of the
code being analyzed but rather gaining information from other sources like
documentation, reviews, formal methods or automated tools for analysis.
From the evaluation only we can not get such information like reachability
or coverage. This leads to the idea to use a specialized coverage tool to
supply the necessary information about this measurements. After examining
some know tools like EMMA, Coverlipse and others [linkCTools] to expand
the functionalities, CodeCover turned out as the most fitting white box
coverage tool for this plug-in and has been successfully integrated. It is a
fully optional feature and can be activated or not without having an impact
on the CFG generator.

Statement Processing

• Expression statement
• If statement

• Ternary operation
• For and While statement

• Do-while statement
• Switch case statement

• Try-catch statement

Expression statement

Expression statements are the nodes that
do not have child nodes and for this reason
the node is created and connected to its
next node coming from the recursion.

Expression statement

If statement

• The difference between expression-statements and
if-statements is that the last ones can contain child nodes.

• The second child is the content of the then-expression and
the third one of the else expression but there is no difference
between them.

• The first child of a node is the next node and not a real child
of that node but, as if-statements contain children they need
to be referenced as well.

• Depending on the existence of an else statement there could
not be a direct connection between if node and its next node.

If statement

If statement

Ternary operation
• The ternary operator is basically a short form

of the if-else-statement.

• It has three arguments on the right side and the first one is
the expression evaluation.

• The second and the third arguments are executed depending
on this evaluation.

• For this reason as the choice is made in an if-else-form
where both of them are always present, it was good to think
of it as an if-else-statement and treat it as such.

• The ternary statement is added to the tree as an if-node and
from that point it is used as such by the painting algorithm.

Ternary operation

For and While statement

• From the logical interpretation there is no difference in the treatment of
this two nodes.

• The expression evaluation is done at the beginning of the block for both
cases.

• So that they are both processed as one case.

• They have one more child which is the inner part of the statement.

• It can be of any type and they are recursively build knowing that there is
just a parent node and that is the for/while node.

• This is important for the case that a break or continue statement is
encountered and at that point it must be decided whether it should
connect to the parent (in case of a continue node) or to its next node
(in case of a break node) to exit the block.

For and While statement

Do-while statement

• Do statements are similar to the for and while
statements with the exception that we have do
nodes to represent this statement and the expression
examination is done at the end of the block.

• This doesn't lead to a reaction change for its children.

• Basically the expression goes at the bottom of the
block and it can be escaped from the bottom of the
block without referencing the top.

Do-while statement

Switch case statement

• If the if-statement allows just one of two possible choices,
with the switch-case statement it is possible to chose out of
an undefined number of choices.

• The switch node has as much children +1 where the first one
is the next node and the rest are the cases or the default case.

• As every branch represents a decision, every case should have
its own branch.

• If one case ends with a break statement, than it connects
strait to the end.

• But depending on the switch variable it can have previews
cases leading to it or not.

Switch case statement

Try-catch statement

• Try-catch-finally like switch nodes have an undefined number of child
nodes. It can have many catch block and/or a finally block.

• Each of the catch blocks is interpreted as a branch which is executed if an
error occurred in the try block.

• The finally block is the one which gets executed no matter if all the
statements in the try-block or catch-blocks were fully and successfully
executed.

• Therefore this is good reason to treat the finally-block as the next node in
the raw.

• Try blocks are a bit more complicated concerning the unpredictable jumps
that can occur during the execution and need to be examined in more
details.

Try-catch statement

• A try-catch statement can almost be seen as a if-else
statement, and sometimes incorrectly used as such instead of
if-else statements even though Java literature discourages the
usage of try-catch statements as normal control flow.

• If the try-block is executed successfully than none of the catch
block is entered and the next node in the raw is referenced.

• If it has a problem than only one catch block is executed
which turns it practically into a if-else similar form.

Try-catch statement

