
CFG (Control flow graph)

Class B T12

오지은 200814189 신승우 201011340 이종선 200811448

Introduction to CFG

Algorithm to construct Control Flow Graph

Q & A

Statement of Purpose

Introduction to CFG

Algorithm to construct Control Flow Graph

Q & A

Statement of Purpose

Introduction to CFG (1/17)

 Control flow graphs are one technique to ensure
that computer programs work correctly.

 Computer code is complicated and is worked
and reworked before it is ready for final release.

 There may be code that will never be executed
and there may be code that will lead to loops from
which you can never exit.

 Control flow graphs are one way of finding this
bad code.

 First the code is broken up into control blocks,
then graphs — trees.

 They are constructed to ensure that every block
is reachable and that no block loops endlessly.

CFGs help ensure that
software works correctly.

Introduction to CFG (2/17)

 In a control flow graph each node in the graph
represents a basic block, i.e. a straight-line piece of
code without any jumps or jump targets.

 Jump targets start a block, and jumps end a block.

 Directed edges are used to represent jumps in the c
ontrol flow.

 There are, in most presentations, two specially
designated blocks:
the entry block, through which control enters into
the flow graph, and the exit block, through which all
control flow leaves.

 The CFG is essential to many compiler optimizations
and static analysis tools.

entry block

exit block

Introduction to CFG (3/17)

Consider the following fragment of code:

0: (A) t0 = read_num
1: (A) if t0 mod 2 == 0
2: (B) print t0 + " is odd."
3: (B) goto 5
4: (C) print t0 + " is even."
5: (D) end program

In the above, we have 4 basic blocks:
A from 0 to 1, B from 2 to 3, C at 4
and D at 5. In particular, in this case,
A is the "entry block", D the "exit block"
and lines 4 and 5 are jump targets.
A graph for this fragment has edges
from A to B, A to C, B to D and C to D.

Introduction to CFG (4/17)

Basic Blocks (BB)

Compilers usually decompose programs into their basic blocks as a first step
in the analysis process.
Basic blocks form the vertices or nodes in a control flow graph.

 Meaning
A group of instructions applied with same performing condition.

 Definition
1. one entry point, meaning no code within it is the destination of a

jump instruction anywhere in the program.

2. one exit point, meaning only the last instruction can cause
the program to begin executing code in a different basic block.

Introduction to CFG (5/17)

A sequence of instructions forms a basic block

IFSequence while case

Introduction to CFG (6/17)

If statement

void if TestMethod (int a)
{

if (a < 5)
{

a = 5;
}
a= a*2;

}

start

a<5

a=a*2 a=5

end

Introduction to CFG (7/17)

If else statement

void if TestMethod (int a)
{

if (a < 5)
{

a = 5;
}
a= a*2;

}

start

a<5

a=5 a=10

end

a=a*2

Introduction to CFG (8/17)

Ternary operator

void ternaryTestMethod(int b, int a)
{

b = (a<1) ? 2 : 3;
}

start

a<1

2 3

end

Introduction to CFG (9/17)

For statement

void forTestMethod(int a)
{

for (a = 1; a < 20;)
{

if (a > 10)
{

break;
}
else
{

a = a + 2;
}

}
a= a*2;

}

start

a<20a>10

Expr

end

Expr

Expr which is an abbreviation of very Long Expression Statements.

Introduction to CFG (10/17)

For statement - Tree to Graph model

Break forces the if node
to connect to its parents
next node.

After the if
statement is
completed
the for node
is executed
again till false
or break is
encountered.

start

break

a=a*2

a=a+2

end

The for loop ends
Without breaks.

void forTestMethod(int a)
{

for (a = 1; a < 20;)
{

if (a > 10)
{

break;
}

else
{

a = a + 2;
}

}
a= a*2;

}

a<20

a>10

Introduction to CFG (11/17)

start

do

a>7 a<=10

end

Expr

Expr which is an abbreviation of very Long Expression Statements.

Do-while statement

Void doWhileTestMethod(int a)
{
do
{

if (a > 7)
{

break;
}
else
{

a = a + 2;
}

} while (a <= 10);
}

Introduction to CFG (12/17)

Do-while statement - Tree to Graph model

Void doWhileTestMethod(int a)
{
do
{

if (a > 7)
{

break;
}
else
{

a = a + 2;
}

} while (a <= 10);
}

Break forces the if node
to connect to its parents
next node.

Decisions are
taken from the
while node if
there is no
arbitrary jump like
break or continue.

start

do

break

a<=10

a>7

a=a+2

end

Expression returns
True.

Introduction to CFG (13/17)

Switch case statement

void switchTestMethod
(int a, int b, int c)
{

switch (a)
{
case 1:

b = 2;
case 2:

c = 3; break;
case 3:

b = 1; c = 1;
default:

a = 0; b = 0;
c = 0;

}
}

b=2

start

a

a=0

c=1

b=1 c=3

end

b=0

c=0

Introduction to CFG (14/17)

void tryCatchTestMethod
(int b, int c, int t)
{
try {
mightThrowAnException(b);
} catch (Exception e)
{

b = 3;
}

finally
{
t = b*3;

}
c= 3;

}

start

Try

b=3

Expr

Expr

end

c=3

Try-catch statement

Introduction to CFG (15/17)

Try-catch statement - Tree to Graph model

Next node.

Decision is taken.

start

try

c=3

t=b*3

mcall()

b=3

end

Statement which
might Throw
Exception.

void tryCatchTestMethod
(int b, int c, int t)
{
try {
mightThrowAnException(b);
} catch (Exception e)
{

b = 3;
}

finally
{
t = b*3;

}
c= 3;

}

-- The dotted lines represent the new connections added by the view algorithm.

Introduction to CFG (16/17)

Reachability

 If a block/subgraph is not connected from the
subgraph containing the entry block, that block is
unreachable during any execution, and so is
unreachable code; it can be safely removed.

 If the exit block is unreachable from the entry
block, it indicates an infinite loop. Not all infinite
loops are detectable, of course; see Halting problem.

 Dead code and some infinite loops are possible.

 Even if the programmer didn't explicitly code that
way: optimizations like constant propagation and
constant folding followed by jump threading could
collapse multiple basic blocks into one, cause edges
to be removed from a CFG, etc., thus possibly
disconnecting parts of the graph.

Introduction to CFG (17/17)

Domination relationship Dominator
(graph theory)

 A block M dominates a block N if every path
from the entry that reaches block N has to pass
through block M. The entry block dominates all
blocks.

 In the reverse direction, block M postdominates
block N if every path from N to the exit has to pass
through block M. The exit block postdominates all
blocks.

 It is said that a block M immediately dominates
block N if M dominates N, and there is no
intervening block P such that M dominates P and P
dominates N. In other words, M is the last
dominator on all paths from entry to N.

Each block has a unique immediate dominator.

* The dominance frontier
-entry, exit

* 6 dominates 2

Q & A

Introduction to CFG

Algorithm to construct Control Flow Graph

Statement of Purpose

Algorithm to construct Control Flow Graph

Partition the code into a set of basic blocks

Source
(Basic blocks)

Partition

Source (Instructions)

Source
(Instruction)

Source (Instrutions)

Branch

Branch

Branch

Source
(Instruction)

Branch

(1/10)

Look at the branches in the code and
fill in the cfg’s edges to represent the flow of control

Source (Instructions)

Source
(Instruction)

Source (Instrutions)

Branch

Branch

Branch

Source
(Instruction)

Branch

Fill edges

Source (Instructions)

Source
(Instruction)

Source (Instrutions)

Branch

Branch

Branch

Source
(Instruction)

BranchIt represents
the flow of control.

Algorithm to construct Control Flow Graph
(2/10)

It’s a base Algorithm to construct CFG

.

Algorithm to construct Control Flow Graph
(3/10)

block_list is list that includes
set of blocks.

Source (Instructions)

Source
(Instruction)

Source (Instrutions)

Source
(Instruction)

Block list

It start with block b in block_list.
So it remove block b from block_list,
and set branch_found variable false.

b

c d

e

It’s a base Algorithm to construct CFG

Algorithm to construct Control Flow Graph
(4/10)

Instruction i
Instruction p

…

b
Instruction i is branch?

→ branch_found = true
→ countdown = 1(branch_latency)

Search a branch in each instructions
this block.

D

We assume the target of i’s branch is ‘D’
and i has one branch.

It’s a base Algorithm to construct CFG

Algorithm to construct Control Flow Graph
(5/10)

Instruction i
Instruction p

…

b
Instruction p,
countdown--;

Look a after instruction that has branches.

It’s a base Algorithm to construct CFG

Algorithm to construct Control Flow Graph

Continue to decrement the countdown variable until it reaches
the zero (0) since branch is hidden as much as Branch Latency.

(6/10)

Instruction i
Instruction p

…

b

Split b at p

Instruction i
b

b’ = remainder of b

And add b’ to block_list

Instruction p
…

b’

It’s a base Algorithm to construct CFG

It’s a case countdown variable is ‘zero’
when it counts all branches.

Algorithm to construct Control Flow Graph
(7/10)

Instruction i
b

D

Instruction p
…

b’

Block list

add edges from b to target of i

If b is conditional add edge to b’

It’s a base Algorithm to construct CFG

It’s a case countdown variable is ‘zero’
when it counts all branches.

Algorithm to construct Control Flow Graph
(8/10)

It’s a base Algorithm to construct CFG

Algorithm to construct Control Flow Graph

If you do not find branch or do not reduce the number of
branch found, draw the basic edge of the next of the
block b.

(9/10)

a)

It’s a base Algorithm to construct dominate relations
in CFG

a) Start node no only dominates itself, no

b) Node n dominates itself (n) and nodes that p dominates.
(p is predecessor node of n)

b)

Algorithm to construct Control Flow Graph
(10/10)

Q & A

Introduction to CFG

Algorithm to construct Control Flow Graph

Statement of Purpose

Statement of purpose

Control Flow Graph

 Transfer Source code to Control Flow Graph.

 The program detects and traces variables to indicates their
flow.

 A variable is indicated when it is assigned first time.

 If a variable is assigned value, it is indicated by node of
rectangle.

 If a variable’s flow is split by condition, it is indicated by node
of rhomboid.

 Nodes of one same function are able to be presented by one
node.

Algorithm to construct Control Flow Graph

Introduction to CFG

Q & A

Statement of Purpose

